
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

Texas Instruments Home Computer

Line-by-Line
Assembler

This cassette contains the LINES graphics demonstration program
(operational only on the TI-99/4A computer) and a line•by-line symbolic
assembler program that lets you create your own TMS9900 assembly
language programs from the keyboard of your TI Home Computer.

These programs require the use of a cassette recorder/player (not
included).

Copyright © 1982 by Texas Instruments Incoporated
Program and database contents
copyright © 1982 by Texas Instruments Incorporated

TEXAS INSTRUMENTS
HOME COMPUTER

TABLE OF CONTENTS

Introduction 3

Loading the Line-by-Line Assembler 4

Assembler Syntax 6

Assembler Directives 7
Absolute Origin—AORG 8
Block Starting with Symbol—BSS 8
Word Initialization—DATA 9
End Program—END 10
Assembly-Time Constant Definition—EQU 10
Symbol Table Display—SYM 10
String Constant Initialization—TEXT 12

The Symbol Table 12
Defined Symbol References 13
Unresolved Word References 13
Unresolved Jump References 13
Maximum Number of Displayed Unresolved References 14

Editing Techniques 15

Error Conditions 16

Running Your Program 18
Example: Determining Remaining Memory Space 19
Example: Adding Program Name and Address 20

Storing Your Program on Cassette Tape 20

This program was developed by the staff of Texas Instruments
Personal Computer Division, with contributions by:

Granville Ott
Paul Urbanus

This manual was developed by the staff of the Texas Instruments
Learning Center, with contributions by:

Ira McComic
Jacquelyn Quiram
Jan Stevens

2

Line-by-Line Assembler

INTRODUCTION

The cassette tape enclosed with the Mini Memory Solid State
SoftwareTM Command Module contains a line-by-line symbolic
assembler and a graphics demonstration program named LINES. The
Line-by-Line Assembler allows you to enter TMS9900 assembly
language source code, one line at a time, directly from the computer
keyboard. The LINES demonstration program (operational only on the
TI-99/4A Home Computer) automatically draws colorful lines on the
screen.

When the Assembler program is loaded in the Mini Memory module,
each source statement you enter is immediately assembled into object
code and stored in the memory locations specified by your source
code. Therefore, as soon as you complete the entry of your program
and store its name and address in the REF/DEF table, it is ready to be
run.

IMPORTANT NOTE: Since code is assembled and stored directly, as
you enter each line, be sure that the memory addresses specified in
the program are available. Otherwise, no code will be generated or
stored.

Although the Assembler converts each instruction into machine code
as it is entered, some source code is retained in a nine-page text
buffer. You can scroll the screen to review previously entered lines of
source code by pressing the up- and down-arrow keys.

This manual discusses the features of the Line-by-Line Assembler,
assuming that you already know assembly language programming. For
a complete reference guide to the TMS9900 assembly language, see
the Editor/Assembler owner's manual. Instructions for running the
LINES demonstration program are also given in this manual (see
"Loading the Line-by-Line Assembler").

Note: The LINES program is operational only on the TI-99/4A Home
Computer, which has the enhanced graphics processor required by the
program.

3

TEXAS INSTRUMENTS
HOME COMPUTER

LOADING THE LINE-BY-LINE ASSEMBLER

Both the Line-by-Line Assembler and the LINES graphics program are
loaded at the same time from the cassette tape by the L (LOAD)
command of the EASY BUG debugger option. The steps below
describe the loading procedure.

1. With the Mini Memory module installed in the computer console,
attach your cassette recorder/player to the console, as described in
the User's Reference Guide.

2. Press any key to make the master selection list appear, and select
the MINI MEMORY option from the list. When the Mini Memory
selection list appears, press 3 for REINITIALIZE to prepare the
memory for loading a new program. Then press QUIT to return to the
computer's master title screen.

3. Insert the Assembler cassette into the recorder, and rewind the
cassette tape.

4. Press any key to make the master selection list appear, and then
select the EASY BUG option from the list.

5. When the EASY BUG command description screen appears, press
any key to clear the screen. Then type L and press ENTER to start
the loading process. From this point on, the screen displays
instructions to help you through the procedure. Follow these
directions to load the program.

6. After the Assembler program is loaded, press QUIT to return to the
master title screen. Then press any key to go on to the master
selection list, and select the MINI MEMORY option.

7. When the Mini Memory selection list appears, press 2 to select the
RUN option. The screen clears, and the program prompts you for
the name of the program you want to run.

A. If you want to run the LINES program (available only on the
TI-99/4A), type LINES and press ENTER. The program draws a
colorful line design on the screen. If you press the C key, you
can "freeze" the color of the current line, and all subsequent
lines will be that color. Pressing C again cancels the single-color
effect. To stop the program, press QUIT.

4

Line-by-Line Assembler

B. If you want to create a new assembly language program, type
NEW and press ENTER. The program enters the Assembler, clears
the Symbol Table (more on this later), and waits for your first
program line entry.

C. If you want to continue writing a program that you began
previously, type OLD and press ENTER. The old Symbol Table is
retained, and the screen displays the next memory location,
ready for you to continue your program.

Note: Your Mini Memory module may already be loaded with the
Assembler and LINES programs. To check, select the Mini Memory
RUN option, and enter the appropriate program name when the prompt
appears. If present, the program immediately begins to run. If the
program has not been loaded into the module, the screen reports
"PROGRAM NOT FOUND."

You may also review the LINES code by means of the M command in
EASY BUG. Just enter M7CD6, and keep pressing ENTER to review
each line of code without changing any data.

IMPORTANT NOTE:
When you enter and assemble a program, the Symbol Table
may overwrite part of the LINES program stored in the Mini
Memory module. When you want to run LINES again, simply
load the program again from the cassette tape into the
module.

5

TEXAS INSTRUMENTS
HOME COMPUTER

ASSEMBLER SYNTAX

Each line (or record) of your source program consists of four sections
known as fields. These fields, if present (some are optional), must
appear in the order and format (syntax) required by the Assembler. In
this manual, the following conventions are used in the syntax
definitions for machine instructions and directives.

■ Items in capital letters, including special characters, must be
entered exactly as shown.

■ Items within brackets (H) are optional.

■ Items within angle brackets (< >) are required fields.

■ A lower-case b indicates a single space.

■ A lower-case b followed by three dots (b...) indicates one or more
spaces.

The general syntax for an Assembler directive is as follows:

[label]b... <opcode> b[operand][,operand][b...comment]

The label field requires either a space (when there is no label) or one
or two characters. The first character must be alphabetic; the second
character, if present, may be alphanumeric. The label is followed by
one or more spaces. If you do not type a label, pressing the SPACE
BAR moves the cursor automatically to the beginning of the opcode
field.

The opcode field contains the operation code of the task to be
performed by the source statement. The field consists of one to four
alphabetic characters, such as A for Add or AORG for the Absolute
Origin directive, followed by a single space.

The operand field contains one or two operands, as required by the
particular instruction. Note that the operand field has no spaces
within it, and multiple operands are separated by commas. The
operand field is concluded by pressing the SPACE BAR (cursor
advances to the comment field) or ENTER (signifies the end of the line).
If an instruction has no operand, the operand field is omitted.

The comment field, if used, may include any character, and it
continues until you press ENTER to end the line.

6

Line-by-Line Assembler

Examples:

XY MOV R1,@VP Save R1 in VP.
Z S R1, R2 Calculate difference.

The Line-by-Line Assembler predefines certain symbols. When an
operand includes a dollar sign ($) as an initial character, it is
considered to refer to the contents of the location counter. For
example, at location >7D00, the statements

JMP $+8
and

JMP >7D08

are considered to be equivalent. When specifying register operands,
you can use the symbol R, followed by a decimal number. Thus,

MOV R1,R15
and

MOV 1,15

are equivalent.

Note: The default number system for the Line-by-Line Assembler is
decimal; hexadecimal numbers are indicated by the greater than (>)
prefix.

ASSEMBLER DIRECTIVES

This section discusses the seven directives recognized by the Line-by-
Line Assembler. An assembler directive should not be confused with
an assembly language instruction, which tells the microprocessor to
perform a single function only, such as Add or Move. Directives are
programming-aid commands which direct the Assembler to perform
certain operations at assembly time, and the Assembler may execute
many instructions to satisfy one directive. (For a discussion of the
TMS9900 assembly language instructions, see the Editor/Assembler
owner's manual.)

The directives described here are:
AORG Absolute Origin
BSS Block Starting with Symbol
DATA Word Initialization
END End Program
EQU Assembly-Time Constant Definition
SYM Symbol Table Display
TEXT String Constant Initialization

7

TEXAS INSTRUMENTS
HOME COMPUTER

Absolute Origin—AORG

Format: [label] AORG <address>

This directive can be used to set the location counter to a specific
value (always an even address) during Assembler operation. Generally,
it is used as the first program entry to set the starting location of the
assembled code; however, it can be used at any time during program
entry.

Example:

AORG >7D80 Results in the next instruction assembled
being stored beginning at memory address
> 7D80.

Block Starting with Symbol—BSS

Format: [label] BSS <number of bytes to be reserved>

The BSS directive reserves a block of memory (for variable storage or
workspace registers) without initializing the space. Starting from the
address specified by the label, the Assembler increases the location
counter by the number of bytes specified in the directive.

The number of bytes must be zero or positive. The resulting value in
the location counter is rounded down to an even number, if necessary.
In other words, the least significant bit of the address is truncated if
the resulting value is odd.

Example:

WS BSS 32 Assuming that WS refers to memory
location >7D00, increases the location
counter to >7D20, reserving a 32-byte
block as a workspace.

8

Line-by-Line Assembler

Word Initialization—DATA

Format: [label] DATA <value>

The DATA directive allows you to initialize a word or words of memory
to a particular value. This directive is particularly useful for entering a
table of data as part of your program. At any point in the assembly of
your program, you can insert a DATA directive in the opcode field,
followed by a constant or symbol as an operand.

The operand for a DATA directive may consist of an unresolved
forward reference, a numeric constant, a defined symbol, or a string of
numeric constants and defined symbols connected by plus (+) and
minus (-) signs. If the operand is the latter (a string of sums and
differences), no regard is given to carry or overflow.

Examples:

DATA >1234 Causes location to be initialized to >1234.

DATA AX If AX = >3456, causes location to be
initialized to >3456.

DATA GH If GH is an undefined forward reference,
location will be initialized to the value
corresponding to GH when GH is resolved.

DATA 1+5-3 Initializes location to 3 (equivalent to DATA
3).

The DATA directive also supports a sequence of constants separated
by commas.

DATA [constant (defined or undefined), constant,...,constant]

Note that an unresolved constant is acceptable only as the first
operand of the statement.

The BSS and DATA directives are similar in function; however, the BSS
directive simply sets aside memory space without initializing it, while
the DATA directive both sets aside memory space and initializes it to
a specific value (or values).

TEXAS INSTRUMENTS
HOME COMPUTER

End Program—END

Format: END

The Assembler can be exited at any time by entering the END directive
in the opcode field. When the END directive is entered, the Assembler
displays the number of unresolved references, if any. If unresolved
references exist, return to the Assembler and resolve them before
exiting from the Assembler. Failure to do so may result in invalid
opcodes in your program. The SYM directive (described below) is
helpful in identifying unresolved references before EN Ding your
program.

When all references have been resolved, the Assembler displays the
report

0000 UNRESOLVED REFERENCES

Pressing ENTER at this point exits from the Assembler and returns to
the Mini Memory selection list. Pressing any other key except ENTER
causes the Assembler to wait for your next instruction.

Assembly-Time Constant Definition—EQU

Format: <label> EQU <defined constant>

The EQU (equate) directive is used to define a value for a symbolic
constant and to assign the value of one defined symbol to another
symbol.

Note: No directive is provided to change the value of a symbol once it
is defined.

Examples:

CD EQU >A55A Sets CD to the value of >A55A.
FG EQU 15 Sets FG to the value of 15.
A EQU FG Sets A equal to FG.

Symbol Table Display—SYM

Format: SYM

The SYM directive allows you to review, at any time during the entry of
a program, the reference symbols and their associated values, if any,
which you have used in the program to that point.

10

Line-by-Line Assembler

The Symbol Table is displayed in three categories:

RESOLVED REFERENCES Any label which has been
defined (given a value).

UNRESOLVED REFERENCES (WORD) Any label which has been
referenced in an instruction
other than a jump instruction.

UNRESOLVED REFERENCES (JUMP) Any label which has been
referenced in a jump
instruction.

If a category has no symbols associated with it, that category is not
displayed. If a symbol is unresolved (has been referenced but not
defined), the address of the symbol is also displayed. If the symbol
table is empty, the SYM directive is erased, and the Assembler waits
for your next instruction.

Example:

Location

7D00 0000
7D20 0201
7D22 7D00
7D24 0201
7D26R0000
7D28R1OFF
7D2A XXXX

Instruction
AORG > 7D00

WS BSS 32
LWPI WS

LI R1,W1

JMP J1
SYM

Comments
Set starting address of program.
Reserve workspace.
Load the workspace.

Load Register 1 with undefined data.

Jump to undefined address.
Display Symbol Table.

RESOLVED REFERENCES
WS-7D00

UNRESOLVED REFERENCES (WORD)
W1-7D26

UNRESOLVED REFERENCES (JUMP)
J1-7D28

7D2A XXXX (XXXX is existing data in
memory.) The Assembler waits
for the next instruction.

If an unresolved symbol is referenced at more than one location, the
symbol and the address of each reference, up to a maximum of 32
references, is displayed.

11

TEXAS INSTRUMENTS
HOME COMPUTER

String Constant Initialization—TEXT

Format: [label] TEXT '<character string>'

The TEXT directive allows you to enter a string of characters and have
them translated to ASCII code and stored as part of your program. Any
displayable character, except the single quote character ('), may be
entered as part of the TEXT statement, and the ASCII code for each
character is stored in memory as you enter the character. Note also
that the control and special function keys (AID, REDO, etc.) generate
valid ASCII codes (in the range of >0 through >F) which are stored
but not displayed on the screen.

The TEXT string may be as long as desired, and it must be preceded
and terminated by a single quote (') character. If an odd number of
ASCII characters is entered, a null byte (>00) is added to the string to
force the location counter to an even boundary.

Example:

TEXT `ABCD' Stores the values >4142 and >4344 in the
corresponding memory locations.

Note: The ERASE function does not affect characters in memory that
have already been entered as part of the TEXT string.

THE SYMBOL TABLE

The Assembler allows unresolved forward word and jump references;
that is, references to symbols that are defined later in the program.
The Assembler keeps track of all the symbols defined or referenced in
a program and stores this information in a Symbol Table.

The Symbol Table is actually a combination of three tables: defined
symbol references, unresolved word references, and unresolved jump
references. The number of entries in the table is also stored; since
each entry is stored as four bytes, the physical length of the table is
four times the number-of-entries value.

The Symbol Table starts at memory location >7CD8. Since each
Symbol Table entry is four bytes long, be sure that the beginning
address of your object code allows adequate room for the number of
Symbol Table entries required for your program. Otherwise, when your
program is assembled, the Symbol Table may overwrite the beginning
of your object code.

12

Line-by-Line Assembler

Defined Symbol References

If an entry is a resolved label or other defined symbol, the label word
stored in the Symbol Table is simply the ASCII equivalent of the
symbol. A single character symbol is stored in its ASCII form preceded
by the ASCII code for 1; for example, the symbol A is stored as >3141.
The second word (the address word) contains the address, constant
equivalent, or memory location corresponding to the label or symbol.
For example, if label AC (ASCII >4143) is defined to be >8375, the
Symbol Table entry is

4143 Defined symbol reference entry.
8375 Value.

Unresolved Word References

The Symbol Table entry for an unresolved word reference is similar to
that described above, except that the most significant bit of the label
word is set, and the address word points to the last location in which
this label was used as a forward reference. For example, if the label
AC is used as an unresolved forward reference in location >7E00, and
no further references to this label have been made in your program,
the Symbol Table entry is

C143 Unresolved word reference entry.
7E00 Address.

Unresolved Jump References

The Symbol Table entry for an unresolved jump reference is also
similar, except that the most significant bit of the least significant
byte of the label word is set, and the address word points to the
location of the last jump instruction that uses this unresolved label.
For example, if location >7D00 has an unresolved jump reference to
label AC and no other references to this label have been made, the
Symbol Table entry is

41C3 Unresolved jump reference entry.
7D00 Address.

The least significant byte of the unresolved jump instruction indicates
the word distance to the most recent previous unresolved jump
reference to the same label. If there is no previous reference, the byte
is assigned the value of —1 (>FF).

TEXAS INSTRUMENTS
HOME COMPUTER

Maximum Number of Displayed Unresolved References

The first time the Assembler places an unresolved symbol in the
Symbol Table, the characters of the symbol are placed in the table
followed by the address where the symbol was referenced. This
address is called a pointer. The content of that address is then set to
zero, indicating that this is the first reference to the unresolved
symbol.

For example, consider the following program segment as it is
assembled.

7D00 02E0 LWPI WS
7002R0000
7004 C820 MOV @WS,@DG
7D06R7D02
7008R0000

SYM
UNRESOLVED REFERENCES (WORD)
WS-7D06 WS-7D02 0G-7008

In this example, the content of the first unresolved reference to WS (at
location >7D02) is set to zero to indicate the first reference to that
symbol. The content of the next unresolved reference to WS (at
location >7D06) is set to > 7D02 (the address of the previous
reference to WS.)

As the result of a typing error during program entry, an unresolved
reference may appear to have an unlimited number of pointers. The
following program segment gives an example.

7D00 W1 EQU > 1234
7D00 0201 L1 R1, WS
7D02R000
7D04 AORG > 7D00
7D00 0201 L1 R1, W1
7D02 1234

14

Line-by-Line Assemble,

In this segment, WS appears in the Symbol Table as an unresolved
word reference with a pointer of >7D02. The subsequent AORG
directive causes location >7D02 to contain >1234. Therefore, there
are an indefinite number of pointers to WS, since the Assembler
considers the value >1234 in location >7D02 to be the pointer to a
prior reference, and so on.

To prevent the possibility of an indefinite display of unresolved
references in such a case, the SYM directive displays a maximum of
32 references to an unresolved symbol.

EDITING TECHNIQUES

As mentioned earlier, the Assembler retains some source code in a
nine-page buffer, allowing you to review previously entered program
lines. When you reach the end of the buffer, the Line-by-Line
Assembler title scrolls back onto the screen to signify that you have
filled the buffer and have returned to its beginning. Any new source
code you enter will overwrite the previously entered source code.
Therefore, it's a good idea to review your source code at that point, by
using the up- and down-arrow keys to scroll the data on and off the
screen, while the old source code is retained in the buffer.

If you find an error in your source code, make a note of the address of
the incorrect line. Then use the AORG directive to return to that
address, and retype the line correctly.

You can also correct typing errors as you are typing a line, by pressing
ERASE or by using one of the methods discussed below.

A label, whether in the label field or in the operand field, can be
corrected by simply continuing to type the correct symbols before
pressing the SPACE BAR to exit from the field. For example, if you type
VF instead of CD as a label, just type CD before you press the SPACE
BAR to go on to the next field. The Assembler accepts the last two
characters entered in the field as the correct label. If you need to
correct a single-character label, type 1 to indicate that a single-
character label is being used, and then type the correct alphabetic
character before pressing the SPACE BAR.

1

TEXAS INSTRUMENTS
HOME COMPUTER

A similar method can be used to correct a hexadecimal entry in the
operand field. For example, if you type >1234 but meant to type
>2234, simply continue to type the correct entry. In other words, your
entry would be >12342234. The Assembler considers the last four
characters as the correct hexadecimal entry. Corrections to decimal
entries are somewhat more difficult, since the Assembler considers
the last 16 decimal digits entered to be the correct entry. If your
decimal value is less than 16 digits long, you must enter enough
leading zeros to make the value 16 digits long. For best results, it is
probably better to cancel the line by pressing ERASE and then retype it
correctly.

An opcode entry cannot be corrected except by pressing ERASE to
cancel the entire line and then retyping the line correctly.

ERROR CONDITIONS

During program entry and assembly, there are three conditions that
result in the display of an error message.

Condition Displayed Message
1. Attempting to redefine a previously defined *ERROR*

label.

2. Entering an undefined opcode or directive. *ERROR*

3. Exceeding the reach of a jump instruction. *R-ERROR*

Each error display is accompanied by a bad-response tone and is
printed on the same line as the instruction which produced the error.
Press any key to erase the line. (The location counter is unchanged.)

If you attempt to jump to an undefined label and subsequently find
that the definition of the label causes previous jump instructions
referring to it to be out of range, the address displayed to the left of
the *R-ERROR* message is the address of an out-of-range jump
instruction. Continue to press ENTER to see other addresses of out-of-
range jump references to the same level.

16

Line-by-Line Assembler

If you anticipate that a jump instruction to an as yet undefined label
might be out of range, it's a good idea to follow the jump instruction
with two NOP (no operation) instructions, to allow patching your
program if a reach error occurs. The following program segment
illustrates this procedure.

7D00 XXXX JNE J1
7D00R16FF
7002 1000 NOP
7004 1000 NOP
7006 C081 MOV R1, R2

7E10 XXXX J1 EQU $
7000 *R-ERROR* (Press ENTER to see additional out-of-

range jump references to J1; then
press any key to clear the error
condition.)

7E10 XXXX
7D00 1302

7D02 0460
7004 7E10

AORG > 7000
JEQ $+6 Note that the logic of the

replacement jump instruction is
opposite to that of the original.

B @J1

1

TEXAS INSTRUMENTS
HOME COMPUTER

RUNNING YOUR PROGRAM

After a program is assembled, the name and address of the program
must be added to the REF/DEF table so that the Mini Memory module
can find the program and run it. One way to add the name and
address is to use the LOAD subprogram from TI BASIC (see
"Additional TI BASIC Subprograms" in the Mini Memory owner's
manual).

Another way to add the program's name and address is to use
Assembler directives. First, you must determine that there is enough
memory space left for you to add your program name to the REF/DEF
table. After you have entered the last line of your program, use the
AORG directive to read from memory the First Free Address in the
module (FFAM) and the Last Free Address in the module (LFAM). The
addresses of these two variables are >701C and >701E, respectively.
Subtract the value in >7010 from the value in >701E; if the difference
is greater than 7 bytes, you have enough room to store your program
name.

After insuring that there is enough room (8 bytes) to add the program
name to the REF/DEF table, subtract 8 from the old LFAM, and poke
the new LFAM value to >701E using the DATA directive. This reserves
room in the REF/DEF table for your program name and address.

A program name may be from one to six characters in length;
however, the program name in the REF/DEF table must be exactly six
characters long. If the name of your program is less than six
characters long, you must "pad" the name with trailing spaces when
you enter it in the table.

Use the AORG directive again to get to the new entry point in the
table, and then enter the program name by means of the TEXT
directive. When you have entered the program name, the location
counter advances to the next word boundary, where the program
address (two bytes) is to be stored. Use a DATA directive again to
enter the starting address of your program.

18

Line-by-Line Assembler

Example: Determining Remaining Memory Space

The following example assumes that you have just entered the
"Sample Program" given in the Mini Memory owner's manual and have
not exited from the Assembler.

Screen Shows You Enter Comments
7F04 XXXX AORG > 7010 > 7F04 represents the current location

counter address, and XXXX represents
any data at that address.

7010 XXXX XXXX represents the address of the old
FFAM.

7010 7F04 DATA >7F04 The DATA statement supplies the new
FFAM, which is the first address
immediately following the program.

701E 7FE8 >7FE8 represents the current address
of the LFAM. Subtract the FFAM from
this value; if the result is 7 bytes or
greater, you have enough room for your
program name.

701E 7FE0 DATA >7FE0 Subtract 8 bytes from the old LFAM,
and store the result as the new LFAM
by means of the DATA directive
(> 7FE0 represents the new LFAM).

7020 XXXX The counter advances to the next
location and displays any assembled
data.

19

TEXAS INSTRUMENTS
HOME COMPUTER

Example: Adding Program Name and Address

The following example, starting from the end of the example above,
shows you how to add the name and address of the DISP$ program
(see "Sample Program" in the Mini Memory owner's manual) to the
REF/DEF table.

Screen Shows You Enter Comments
'7020 XXXX AORG >7FE0 Gets to the new entry point in the

table.

7FE0 XXXX XXXX represents any value currently
stored at location >7FEO.

7FE0 4449 TEXT 'DISP$ ' Enters the program name DISP$. (Note
7FE2 5350 that one blank space is added to "pad"
7FE4 2420 the name to six characters.) The

characters of the name, including the
blank space, are stored in the six bytes
beginning at location >7FEO.

7FE6 XXXX The counter advances to the next
location, where the entry point of the
program will be stored, and displays
any value currently stored there.

7FE6 7E20 DATA DS The label DS is equated to the address
which is the entry point in the program.

You are now ready to exit from the Assembler and run your program.

STORING YOUR PROGRAM ON CASSETTE TAPE

To store a program on cassette tape, first press QUIT to leave the Mini
Memory option; then select EASY BUG and use the S command. For
best results, enter a starting address of >7000 and an ending address
of >7FFF to be sure that the REF/DEF table and the pointers in low
memory are saved. Otherwise, it will be necessary to enter your
program name in the REF/DEF table every time you load the program.

For additional details, see the "EASY BUG Debugger" section of the
Mini Memory owner's manual.

TEXAS INSTRUMENTS
I

Printed in U.S.A.
NCORPORA7Eo

1036061-2
DALLAS, TEXAS

20

