
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

TEXAS iNSTRUMET 1~
Improving Man's Effectiveness Through - ,~eL~~ nics._ : ; i

. - - •:~=.~~'
~.s
4 . it

~

•• r

•

..,..:...,.,,"ti

Graphics Programming Language .
Programmer's Guide

ORIGINAL ISSUE 1 MAY 1979
REVISED 1 JUNE 1979

Personal Computer Division

- --

TEXAS INSTRUMENTS

GRAPHICS PROGRAM+iING LANGUAGE

USER'S GUIDE

TEXAS INSTRUMENTS INCORPORATED 1979

ALL RIGHTS RESERVED

Personal Computer Division

June 1, 1979

April 30=, 1979

Dear User:

The contents of this manual have been reviewed by members
of the Personal Computer Division for clarity, correctness and
completeness. We feel that the Graphics Programming Language
User's Guide will give a true representation of the graphics
language capabilities. If you find contradictions to any claims
made in this manual, or have any suggestions or corrections,
please let us know on the User's Response Sheet found in the
back of this manual. Send your response to:

Texas Instruments Incorporated
Personal Computer Software Manager
RE: GPL Manual
P.O. Box 10508, M/S 5890
Lubbock, Texas 79408

Thank you.

TABLE OF CONTENTS

GRAPHICS PROGRAMMING LANGUAGE

PAGE

Section 1.0 GRAPHICS PROGRAMMING LANGUAGE 1-1
1.1 Overview 1-1
1.2 GPL Instruction Synopsis 1-2
1.3 GPL Timing 1-2
1.4 GPL Assembler 1-3
1.5 Software Monitor Reconfiguration 1-3
1.6 Applicable Documents 1-4

Section 2.0
2.1
2.1.1

2.1.2

2.1.3
2.2

SUMMARY OF SYSTEM ORGANIZATION 2-1
VDP Organization 2-1
Patterns 2-1
Pattern Name Table 2-2
Pattern Generator Sets 2-2
Pattern Color Table 2-2
Sprites 2-3
Sprite Attribute Block (SAB) 2-3
Sprite Descriptor Block (SDB) 2-6
Sprite Velocity Block (SVB) 2-7
VDP Text Mode and Multicolor Mode 2-8
System Memory Organization 2-9

Section 3.0 GPL INSTRUCTIONS, 3-1
3.1 Addressing Memory 3-2
3.1.1 Immediate Field (IMM) 3-2
3.1.2 Global Source (GS) 3-4
3.1.3 Global Destination (GD) 3-4
3.1.4 Label 3-5
3.1.5 Addressing Modes 3-5
3.2 Format Types 3-8
3.3 Running GPL Programs 3-11
3.3.1 The Status Block 3-16

Maxmem 3-16
Data Stack 3-16
Subroutine Stack 3-17
Keyboard 3-17
Rey 3-17
Joystick Y 3-17
Joystick x 3-17
Random Number 3-17
Timer 3-17

3-18
Motion
VDP Status 3-18
Status 3-•18

Character Buffer 3-18
Y-Pointer 3-18

X-Pointer 3-18

3.4 The Status Byte 3-21

Section 4.0
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

TABLE OF CONTENTS
Page 2

INSTRUCTION DESCRIPTIONS
Compare and Test Instructions
Text Logical High Bit
Test Arithmetic Greater Than Bit
Test Carry Bit
Test Overflow Bit
Compare Equal
Compare High

4-1
4-2
4-2
4-3
4-4
4-5
4-6
4-7

4.1.7 Compare Logical High or Equal 4-8
4.1.8 Compare Greater Than 4-9
4.1.9 Compare Greter Than or Equal 4-10
4.1.10 Compare Logical 4-11
4.1.11 Compare Zero , 4-12
4.2 Program Control Instructions 4-13
4.2.1 Branch on Set 4-13
4.2.2 Branch on Reset 4-14
4.2.3 Branch 4-15
4.2.4 Case 4-16
4.2.5 Call Subroutine 4-17
4.2.6 Fetch 4-18
4.2.7 Return from Subroutine 4-19
4.2.8 Return from Subroutine (Save Condition) 4-20
4.3 Bit Manipulation Instructions 4-21
4.3.1 Reset Bit 4-21
4.3.2 Set Bit 4-21
4.3.3 Test if Bit Reset 4-21
4.4 Arithmetic and Logical Instructions 4-22
4.4.1 Add 4-23
4.4.2 Subtract 4-24
4.4.3 Multiply 4-25
4.4.4 Divide 4-26
4.4.5 Increment by One 4-27
4.4.6 Increment by Two 4-28
4.4.7 Decrement by One 4-29
4.4.8 Decrement by Two 4-30
4.4.9 Abosolute Value 4-31
4.4.10 Negate 4-32
4.4.11 Invert 4-33
4.4.12 Logical AND 4-34
4.4.13 Logical OR 4-35
4.4.14 Exclusive OR 4-36
4.4.15 Clear Location 4-37
4.4.16 Store 4-38
4.4.17 Exchange 4-39
4.4.18 Push Onto Data Stack 4-40
4.4.19 Pop Off of Data Stack 4-41
4.4.20 Block Move 4-42
4.4.21 Shift Left Logical 4-43
4.4.22 Shift Right Arithmetic 4-44
4.4.23 Shift, Right Logical 4-45
4.4.24 Shift Right Circular 4-46

TABLE OF CONTENTS
Page 3

4.5 Graphics and Miscellaneous Instructions 4-47
4.5.1 Coincidence ,. 4-47
4.5.2 Load Backdrop Color 4-48
4.5.3 Load Screen 4-49
4.5.4 Formatted Block Move 4-50
4.5.5 Generate Random Number 4-53
4.5.6 Scan Keyboard 4-54
4.5.7 Execute Machine Language 4-55
4.5.8 Exit GPL 4-57
4.5.9 I/O Instruction 4-58
4.5.10 HOME 4-59

Appendix A THE GPL ASSEMBLER A-1
Source File Format A-1
Assembler Directives A-2

DATA A-2
TITLE A-2
END A-2
EQU A-2
GROM A-3
ORG A-3
BASE A-3
PAGE A-4
LIST A-4
UNL A-4
LISTM A-4
UNLM A-4

GPL MACROS A-5
$END A-5
$SEND A-5
$WHILE A-5
$REPEAT A-5
$UNTIL A-5
$FOR GD = GS TO GS BY GS A-5
$FOR GD = GS DOWNTO GS BY GS A-6
$1F - GOTO A-6
$IF - THEN A-6
$ELSE A-6
$SELSE A-6
$CASE A-6
$GOTO A-6
$CALL A-7
COMPARISON A-7

Appendix B AUTOMATIC SPRITE MOTION B-I

Appendix C AUTO-SOUND INSTRUCTION C-I
Table Format C-I
Sound Generator Chip (SGC)

Control Summary C-3
Attenuation Control C-3
Frequency Control C-3
Noise Control - C-4

TABLE OF CONTENTS
Page 4

Appendix D HANDSET/KEYBOARD INTERFACE D-1
40-Key Keyboard D-1
Remote Handsets D-I
Remote Keyboard D-2
Wired Handsets D-2

Appendix E COINCIDENCE DETECTION E-1
Constructing Coincidence Tables for

Mapping = 0 E-2
Higher Mapping Values E-4

Appendix F I/O INSTRUCTION F-1

Appendix G TEXT AND MULTICOLOR MODE G-1

Appendix H DEVICE I/O H-1
System Initialization H-1
Power-Up Routines H-3'
Subroutine and DSR Calls H-4
General Subroutines Provided H-5

by the Monitor
Exit H-6
Bit Reversal H-6

Appendix I CASSETTE DSR I-1
Definition I-1
Mode of Operation I-2
Implementation 1-2
Peripheral Access Block (PAB)

Definition 1-2
I/O Opcodes 1-6

Open I-7
Close 1-7
Read 1-7
Write I-8
Restore/Rewind 1-8
Load 1-8
Save I-9
Delete I-9
Scratch Record 1-9

Verify 1-9
Error Codes I-10

Bad Device Name I-10
Illegal Operation I-10
Device Error I-10

Issuing the Command to the Cassette DSR I-10
Audio Gate 1-11
Motor Control I-il

TABLE OF CONTENTS
Page 5

Appendix J LIST OF INSTRUCTIONS J-1
Alphabetic J-1
Instruction Map J-4

Appendix K FLOATING POINT OPERATIONS K-1
CNS - Convert Number to String K-2
INT - Greatest Integer Function K-3
PWR - Involution Routine K-4
SQR - Square Root Routine K-5
EXP - Exponential Routine K-5
LOG - Natural Logarithm Routine K-6
COS - Cosine Routine K-7
SIN - Sine Routine K-7
TAN - Tangent Routine K-8
ATN - Arctangent Routine K-8
CSN - Convert String to Number K-9
CFI - Convert Floating Point to Integer K-10
FADD - Floating Point Addition K-10
FSUB - Floating Point Subtraction K-il
FMUL - Floating Point Multiplication K-11
FDIV - Floating Point Divide K-12
FCOMP - Floating Point Compare K-12
SADD - Value Stack Addition K-13
SSUB - Value Stack Subtraction K-13
SMUL - Value Stack Multiplication K-14
SDIV - Value Stack Division K-14
SCOMP - Value Stack Compare K-15
RADIX 100 - Internal Format K-15

Appendix L 9900 ASSEMBLY LANGUAGE L-1

Appendix M PROGRAMMING CONVENTIONS & CHARTS M-1
Function Keys M-1
Direction Arrows M-4

Glossary

Alphabetical Index

LIST OF FIGURES AND TABLES

Figure/Table Description Page

2.1 Color Nybble Assignments 2-4

2.1.A Best Color Combinations 2-5

2.2 CPU RAM Memory Map 2-10,2-11

2.3 VDP RAM Memory Map 2-12

3.1 Syntax for GS, GD 3-7

3.2 Formats of Instructions 3-9,3-10

3.3 Default Character Set 3-12

3.4 VDP Registers 3-14

3.4.A Command Register Values 3-15

3.5 Status Block 3-20

4.5.1 XML Table 4-56

A.1 Macro Expansions A-8,A-9,A-10

D.1 Console Keyboard D-4

D.I.A Console Keyboard Hex-Code Assignments D-5

D.2 Handheld Unit Keyboard D-6

D.2.A Console Keyboard Mapped as

Two Handheld Units D-7

D.3 Joystick Codes D-8

E.1 Coincidence Testing E-6

E.2 Coincidence Bit Table E-6

E.3 Manually Constructing a Bit Table E-7

E.4 Magnification zero Table E-8

G.1 Multicolor Mode Screen Format G-5

LIST OF FIGURES AND TABLES

Page 2

H.1 GROM Header H-2

H.2 Program Header H-2

I.1 PAB Layout I-5

I.2 I/O Opcodes I-6

J.2 Instruction Map J-4

M.1 Console Function Overlay M-5

1.0 GRAPHICS PROGRAMMING LANGUAGE

The system software resident in thei product consists of a

monitor and a GPL (Graphics Programming Language) processor. It

is the function of the monitor to insure that every time the

system is turned on, a new cartridge is inserted, or an existing

program terminates, that all memory and peripheral devices are

initialized. The GPL processor is an interpreter optimized to

execute GPL programs directly out of GROM. The GPL processor

software is coded in TMS 9900 assembly language.

1.1 OVERVIEW

GPL is a programming language specially developed by Texas

Instruments to provide the best possible tradeoff of code compac-

tion, execution speed, and ease of program development for the

target computer system. The GPL instruction set facilitates

development of programs which make use of the unique features of

the system chip set. It is byte oriented, and instructions

typically have one or two operands. The addressing scheme is such

that most instructions can access either standard

microprocessor RAM, GROM, or the video scratchpad RAM address

space easily.

byte values. The addressing modes are: immediate, direct,

indirect, indexed, indexed indirect (with pre-indexing), and 'top

of stack'. Source operands and destination addresses can be in

the CPU, video RAM, or in GROM. Support for two stacks is

available; a data stack and a subroutine return address stack

(allowing arbitrary nesting of subroutines).

1-1

1.2 GPL INSTRUCTION SYNOPSIS

GPL has the following types of instructions:

*DATA TRANSFER -single or double byte transfers;

-block to block transfers

-formatted block transfers

*ARITHMETIC -add, subtract, multiply, divide,

negate, absolute value

*LOGICAL -and, or ,exclusive or, shifting

*CONDITION TESTS -arithmetic and logical tests

*BRANCHING -unconditional and conditional

*BIT MANIPULATION -set, reset, and test

*SUBROUTINING -call, return, parameter fetching

*STACK OPERATIONS -push and pop

*MISCELLANEOUS -random number generation, key-

board scan, coincidence detection

pattern movement, sound control,

TMS 9900 subroutine linking, I/O

1.3 GPL TIMING

The GPL interpreter contains an interrupt driven service

routine which is tied to the video scan. Video symbols maz be

moved about the screen automatically; also sounds may be

generated from a sequence table.

These are of the "set it and forget it" type of

instructions which free up the control program to do concurrent

decision and computational operations. The interrupt also

controls a software real time clock.

1-2

Each system will have a clock byte reserved in the console ROM at

location >000C to indicate the clock rate for that system.

Peripherals may read this byte to adjust their timing interface

to the CPU's clock combinations in different consoles. The high

nybble contains the integer frequency in megahertz and the low

nybble, the fractional frequency.

1.4 GPL ASSEMBLER

The assembler for GPL (GPLASM) is written in a mixture of

FORTRAN and assembly language and is currently available for

installation on 990/10 DS minicomputers. The assembler provides

standard features such as creation of a list file, cross

reference tables, and error flagging. A set of macros is included

to help structure GPL programs; these include statements such as:

REPEAT ... UNTIL and IF ... THEN ... ELSE. The output of the

assembler is a 990 object module.

1.5 SOFTWARE MONITOR RECONFIGURATION

The monitor code is executed whenever a system restart is

required. The system parameters and control values are

initialized to default values. A default character set is loaded

into the video pattern generator, making it immediately available

to GPL programs. This pattern set consists of 64 ASCII

characters, including the upper-case alphabet, digits, arithmetic

symbols, and punctuation symbols.

The monitor is also responsible for determining the

existing system configuration. The power-up monitor must poll

1-3

add-on I/O peripherals and the 'SOLID STATE SOFTWARE CARTRIDGE'

to determine whiCh program to execute.

The Home Computer system has been designed to be flexible

and expandable. Each plug-in ROM or GROM may contain power-up

procedures. These power-up procedures will all be executed

allowing for expansion of the power-up routines. A power-up

routine may also be replaced by another.

1.6 APPLICABLE DOCUMENTS

• System Monitor Specification

• TMS 9918 Video Display Processor Specification

• TMS 9919 Sound Generation Controller

• TMS 9900 Microprocessor Specification

• File Management Specification

• Home Computer System Memory, CRU, and Interrupt Mapping

Specification

1-4

2.0 SUMMARY OF SYSTEM ORGANIZATION

The system, as supported by the interpreter, consists of a

9900 microprocessor with the following peripheral devices tied to

it:

• a Sound Generation Controller Chip

• a Video Display Processor Chip

• one or more GROM devices

• at• least one type of keypad entry device

The Sound chip interface is discussed in Appendix C.

The GROM is described in System Memory Organization below. The

following is a quick summary of the VDP organization. For more

detailed information on any of the system hardware, refer to the

appropriate document.

2.1 VDP ORGANIZATION

The VDP RAM contents determine what will appear on the

screen. They contain several sub-blocks, each of which is

described below. The base address of each sub-block is

determined by the contents of the VDP control registers. Table

3.4 (page 3-14) shows the interpretation of the VDP control

registers. Also shown are the most commonly used values for these

registers. These values keep all the sub-blocks within the first

4K bytes of VDP RAM, and insure that none of the sub-blocks

overlap each other.

2.1.1 PATTERNS

The active area of the screen is divided into a grid of 192

(vertical) by 256 (horizontal) pixels. These are clustered into

2-1

8 x 8 pixel groups called Patterns. Thus there are 24 x 32

pattern positions on the screen in the normal mode.

There are three sub-blocks of VDP RAM associated with

displaying patterns on the screen:

• Pattern Name Table (768 bytes)- Each byte corresponds to

a pattern position on the screen, and its value is the

pattern number (0 thru 255) displayed at that location.

• Pattern Generator Sets (8 * 256 = 2048 bytes)- Each block

of 8 bytes in the Pattern Generator Set defines a pattern

(8 x 8 pixels); the first 8 bytes correspond to pattern

number 0 (as called out in the Pattern Name Table), the

last 8 to pattern number 255. Note that a pattern is not

displayed on the screen until an entry in the Pattern Name

Table calls for it. Also, a pattern can be displayed in

multiple positions on the screen by setting several entries

in the Pattern Name Table to the same pattern number.

• Pattern Color Table (32 bytes)- Each byte of the Color

Table contains in its left nybble a foreground color (1's

in the pattern) and in its right nybble a background color

(0's in the pattern). The first byte describes colors for

pattern numbers 0 thru 7, the next for numbers 8 thru 15,

etc. See Table 2.1 (page 2-4) for color nybble

assignments. Table 2.1.A(page 2-5) contains some of the

best foreground/background combinations.

2-2

2.1.2. SPRITES

Sprites are objects that exist essentially in planes in

front of the pattern plane. These objects can be moved on a

pixel-by-pixel basis, providing for excellent animation capabi-

lity. Up to 32 Sprites may be on the screen at any time; however,

no more than 4 on a given horizontal pixel line are allowed

(subsequent sprites on that line will not be displayed). Three

sub-blocks of VDP RAM define the Sprites:

o Sprite Attribute Block (SAB) (4 * 32 = 128 bytes)- Each

4-byte entry in this block describes the position and color

of each Sprite:

byte 1- y-position of Sprite (0 is top of

screen-- >FF in SAL--must subtract 1

from desired starting position of

sprite);

byte 2- x-position of Sprite (0 is left edge of

screen);

byte 3- pointer to Sprite Descriptor Block

entry;

byte 4- early clock and color nybble.

The pointers to Sprite Descriptor Block entries,

when the recommended base addresses are chosen, range from

>80 to >FF if no Sprite motion is used and from >80 to >EF

if Sprite motion is used (each pointer points to a

succeeding 8-byte block in the Sprite Descriptor Block).

When size 1 sprites (32-byte) are chosen, the pointer value

must be an even multiple of 4 (i.e. >80, >84, >88, etc.)

and point to a 32-byte block in the Sprite Descriptor

Block. 2-3

TABLE 2.1

COLOR NYBBLE ASSIGNMENTS

NYBBLE VALUE (>) COLOR

0 Transparent
1 Black
2 Green 2
3 Green 1
4 Blue 2
5 Blue 1
6 Red 3
7 Cyan
8 Red 2
9 Red 1
A Yellow 2
B Yellow 1
C Green 3
D Magenta
E Gray
F White

When there is more than one shade of the same color, the
lowest numbered color is the lightest and the highest numbered
color is the darkest (e.g., Green 1 is the lightest, Green 2 is
medium, and Green 3 is darkest.)

2-4

BEST

Black
Black
Black
Black
Black
Light
Light
Light
Light
White
White
White

on Light Green
on Light Blue
on Dark Red
on Cyan
on Light Red
Green on Medium Red
Green on Dark Red
Blue on White
Yellow on Magenta
on Cyan
on Light Red
on Gray

SECOND BEST

Medium Red on Dark Red
Light Red on Medium Red
Dark Yellow on Medium Green
Light Yellow on Light Green
Light Yellow on Dark Blue
Light Yellow on Medium Red
Gray on Medium Green
Gray on Medium Red
Gray on Magenta
White on Black
White on Medium Red
White on Magenta
Dark Red on White

TABLE 2.1.A

BEST COLOR COMBINATIONS

THIRD BEST

Light Green on Light Blue
Dark Blue on Black
Light Red on Black
Light Red on Dark Green
Dark Yellow on Black
Light Green on Black
Light Yellow on Black
Gray on Light Blue
White on Light Green
White on Light Blue
White on Dark Red
White on Dark Green

FOURTH BEST

Medium Green on Black
Medium Green on Dark Green
Light Green on Dark Blue
Light Green on Dark Green
Light Blue on Black
Light Blue on Dark Blue
Dark Red on Black
Cyan on Black
Cyan on Dark Blue
Cyan on Dark Green
Medium Red on Black
Light Red on Dark Red
Light Red on Magenta
Dark Yellow on Dark Green
Light Yellow on Dark Green
Light Yellow on Dark Red
Light Yellow on Medium Green
Dark Green on Black
Magenta on Black
Magenta on Dark Blue
Gray on Black
Gray on Dark Blue
Gray on Dark Red
Gray on Dark Green
White on Medium Green
White on Dark Blue

2-5

The MSB of byte 4 is set if you want the sprite to come in

or go off smoothly on the left side of the screen. If this

bit is not set, the sprite will come in or go off smoothly

on the right side of the screen. The right nybble of this

byte is the color nybble. A)D0 in the first byte of a

4-byte block in the Sprite Attribute Block will tell the

system to disregard all following data in the Sprite

Attribute Block. The > D0 indicates to the system that the

preceding 4-byte block is the last sprite to be displayed

on the screen.

• Sprite Descriptor Block (SDB) (32*32 = 1024 bytes if no

sprite motion is used; 32*28 = 896 bytes if sprite motion

is used since the Sprite Velocity Block begins at 1780).

The SDB is similar to the Pattern Generator Set area, each

block of 8 bytes describes an 8 x 8 pixeled Sprite;

alternately, each block of 32 bytes may describe a 16 x 16

pixel Sprite (when the size bit is set to a 1 in the VDP

Command Register 1). When the size bit is set and 4

characters (32 bytes) are used to make the sprite, the

first 8 bytes are the upper left. character, the next 8

bytes are the lower left character, the next 8 bytes are

the upper right character and the last 8 bytes are the

lower right character. For example, if the bytes in a

32-byte Sprite Descriptor Block area are numbered 0 through

2-6

31, this is how the characters would be displayed in a

sprite:

bytes 0-7 bytes 16-23

bytes 8-15 bytes 24-31

When the magnification bit in the VDP Command Register (1)

is set, all sprites double their size, but keep-the same

pixel dimensions (8x8 or 16x16). Each pixel doubles its

size. This expansion of size is to the right and down.

Therefore, an unmagnified sprite on the screen will keep

the same upper left corner position when the magnification

bit is set.

• Sprite Velocity Block (SVB) (4*32 = 128 bytes)-Each

4-byte entry in this block assigns motion to the

corresponding 4-byte entry in the Sprite Attribute Block:

byte 1- y-velocity of Sprite (positive

number means down, negative

number means up)

byte 2- x-velocity of Sprite (positive

number means right, negative

number means left)

2-7

bytes 3 and 4- reserved for system use

(must be initialized to zero).

A velocity can range from 0 to >71? in the positive direc-

tion and from >FF to >80 in the negative direction. See

Appendix B for more information on Automatic Sprite Motion.

2.1.3 VDP TEXT MODE AND MULTICOLOR MODE

The VDP Text Mode and Multicolor Mode as described in the

VDP Specification are supported to the extent described in

Appendix G. The programmer may use Text, Multicolor and

normal mode in the same program if he chooses. The

programmer should be aware, however, that a new mapping of

VDP RAM into a screen im'age is created for each mode.

2-8

2.2 SYSTEM MEMORY ORGANIZATION

There are three segments of memory associated with the

basic system:

• CPU RAM: 256 bytes of high speeed Read/Write random

Ikaccess access memory (Figure 2.2, page 2-10, 2-11).

CPU RAM in Asssembly Language, a bias of > 8300 is add-

ed to the address.

• VDP RAM: 4K, 8R or 16K of Read/Write random access

memory (Figure 2.3, page 2-12); as discussed earlier,

this memory is segmented into subblocks whose data map

into a screen image; whatever memory is left over is

available for GPL programming use.

• GROM: Increments of 6K bytes located at 8K-byte boundar-

ies; this is special, medium speed, ROM; it typically

contains GPL programs and data.

Certain areas of the three segments are dedicated for

special use by the VDP hardware or the interpreter software. See

Figure 2.2 (page 2-10, 2-11) for CPU RAM segments dedicated to

the interpreter. See Figure 2.3 (page 2-12) for VDP RAM dedicated

for use by the VDP chip (note the base addresses of the

sub-blocks assume that the recommended values are loaded in the

VDP Registers). Also shown in Figure 2.3 (page 2-12) is a

sub-block that is used by the Interpreter software for

auto-motion of sprites. If auto-motion is not to be used in a

GPL program, this memory space is freed up for other use. See

Appendix B for details on Auto-Sprite motion. GROMs have a

format protocol which they must adhere to in order to maintain

system compatibility. See the System Monitor Specification for

details. 2-9

STANS BLĐCIC

FREE

INiwturi`
W3RKSPACE

INTERPREIER
WCIRK$PACv
TO>FF

FIGURE 2.2

DECIMAL HEX

0 0

16 > 10

32 >20

48 >30

64 >40

80 >50

96 >60

712 • >70

128 >80

144 >90

160 >AO

176 >BO

192 >CO

208 > DO

224 >E0

240 >F0

CA7 RAM MEMCRt MAP

R13 address of GRIM write address
R14 System flags

Sound timer in MSBy. Flags for
MCM, Interrupt flag, and GFVVDP
select for sound are in LSBy.

R15 address of VDP write address

fault subr. stack

fault Data Stack

2-10

FIGURE 2.2 (Cont.)

IlsTIERRUPT WORKSPACE

> CĐ: Random Seed
>C2- C9: Remote handset debounce
> CA: Console Keyboard debounce
> CC: Sound list pointer
>CE: Number of sound bytes
>DO: Search pointers for
>1)2: (ROM and RCM searches
>D4: One byte - stores last VDP (1)
>D6: Screen timeout counter
>DS: Save return address for scan

routine
>DA: Save player number in scan

routine

R13..R15: Return linkage for interrupts

2-11

FICA 2.3
VDP RAM MEMORY MAP *

DECIMAL HEX
0 >000

256 > 100

512 >200

768 >300

896 >380
1024 >400

1280 >500

1536 >600

1792 >700

1920 >780
2048 >800

2304 >900

2560 >A00

2816 >BOO

3072 > C00

3328 >D00

3584 >E00

3840 >F00

4096 >1000

PATTERN
NAME

TABLE (768 byte)

SPRITE ATTRIBUTE
LIST (128 bytes)

FREE (96 bytes)

SPRITE
DESCRIPTOR

BLACXS

(1K)

PATTERN

GENERATOR

AREA

(2K)

11-----PATTERN COLOR TABLE
(32 bytes)

41----SPRITE VELOCITY TABLE
(128 bytes)

*Assumes standard values in VDP
registers.

2-12

3.0 GPL INSTRUCTIONS

The Graphics Programming Language is similar to an Assembly

Language in many respects. Commands are followed by operands

which specify addresses and immediate values. The completed

program is run through an assembler which generates, for each

instruction, the opcode followed by an encoding of the operands.

Many instructions can operate on single or double byte values. In

the instruction descriptions of Section 4, this is indicated by a

"D" prefix on the mnemonic; for example, the single-byte to

single-byte "add" instruction is an ADD, while the

double-to-double-byte add is a DADD.

The extent of graphics support is through the following:

• Almost all instructions can modify locations in VDP RAM

easily; this can cause a change in the screen image;

• Locations in the Pattern Name Table can be addressed by

specifying an X pointer and a Y pointer;

• Special instructions allow the reading and writing of

large blocks of VDP RAM quickly;

• Automatic motion of Sprites can be initiated; after

enabling auto-motion with a GPL instruction, motion of

sprites is automatically controlled until stopped by

another GPL command.

GPL instructions fall into several classes:

• Data Transfer

• Arithmetic

• Logical

• Condition Tests

3-1

• Branching

• Bit Manipulation

• Subroutining

• Stack Operations

• Miscellaneous

3.1 ADDRESSING MEMORY

The addressing modes of most instructions allow operands to

reside anywhere in VDP RAM or CPU RAM. This is called "Global

Addressing". Each address above CPU location >7F requires two

bytes to specify its address.

The next section is a description of all GPL instructions.

The mnemonics used for specifying the operand types required for

a given instruction are always of the following types:

GS (Global Source), GD (Global Destination), IMM (immediate

value), LABEL (GPL label). These are each described more fully

below.

• 3.1.1.IMM

An immediate field can be a numeric constant in

decimal, hexadecimal or binary format. Depending upon

the context, values can be single or double byte values.

In DATA statements double-byte values must be preceded by

a pound sign (#). The # sign is optional for double-byte

values in branches, move statements, and double

instructions.

A symbol can be used in an IMM field if it is equated

to an immediate value using the assembler EQU directive

3-2

(commonly used locations in CPU RAM and VDP RAM are often

assigned symbolic equates to improve program clarity). If

it is a label in the GPL program, it is a double-byte

value unless used in a single byte operation. In this

case the least significant byte is used.

To.illustrate the possibilities:

FIVE EQU 5 (now the symbol FIVE can be used

wherever IMM is called for;)

51 ..decimal 51;

>33 or 033 ..hexadecimal 33;

&110011 ..binary 110011;

#LOOP ..(if LOOP is a label in the GPL program)

The ASCII equivalent of characters can also be used for

IMM fields. The character(s) should be enclosed between

colons; e.g.

:A: is equivalent to >41

:2A: is equivalent to >3241

The FMT instruction, to be discussed later, as well

as the assembler directive DATA (in Appendix A) can use

IMM fields of arbitrary length (e.g., :ABCD1234:). Instr-

uctions that require double-byte IMM operands begin with

a "D" (e.g., DADD = Double Add) as opposed to instruct-

ions that do not (e.g., ADD = Add). The instructions D

or DIV, DEC, and DECT require single-byte IMM operands;

while DD or DDIV, DDEC, and DDECT require double-byte IMM

operands.

3-3

• 3.1.2 GS (GLOBAL SOURCE)

Unless otherwise specified for a given instruction,

a Global Source operand can be an immediate value (i.e.

anything that fulfills requirements for IMM) , or an

address with any combination of the following features in

effect:

1) Select CPU RAM or VDP RAM (select ROM in a MOVE

statement only); .

2) Select direct or indirect addressing;

3) Select indexing or not.

There are two special mnemonics that can be used

wherever GS is called for: POP and TOP. POP pops the top

value off the data stack and uses this data as an

operand. TOP uses the data pointed to by the data stack

pointer, but it does not actually pop the data off the

stack. POP and TOP should not be used in double-byte

instructions. An example of the use of POP and TOP is:

ADD POP,TOP

This instruction is equivalent to the sequence:

ST *DATSTK,@TEMP

DEC @DATSTK

ADD @TEMP,*DATSTK

The next section discusses the Data Stack more

fully.

s 3.1.3 GD (GLOBAL DESTINATION)

Global Destination is exactly the same as Global

Source except that immediate values are not allowed.

3-4

• 3.1.4 LABEL

A LABEL field refers to a symbol which has been

used in front of a'GPL instruction, or a symbol that has

been equated (using EQU) to an IMM. A LABEL always

generates a 2-byte immediate value (16 bits). LABEL

fields are called for in Branch instructions and

Subroutine call instructions. A long branch (B)

insturction, a CALL subroutine instruction, and a GS or

GD of ROM (#LABEL) in a MOVE statement may use labels

contained anywhere in the program, but short branch

instructions (BR, BS, or $IF-GOTO) must use labels

contained in the same 6K GROM segment as the instruction.

A special LABEL, "$", is used to represent the current

location; (e.g. "B $" will cause the GPL program to loop

forever).

LABELs can have, in addition to the symbol, an

expression of the form (symbol)+IMM or (symbol)-IMM; for

example,

BR #LAB1+3

or: BR LAB3-1

• 3.1.5 ADDRESSING MODES

Table 3.1 (page 3-7) shows the formats for the

various mode combinations with an example. IMM specifies

a numeric constant. If an "at sign" (@) precedes an IMM

value, it specifies the contents stored at location IMM

in CPU RAM.

3-5

If a star (*) precedes an IMM value, it specifies

indirect addressing through location IMM in CPU RAM. For

example,

A EQU >02

B EQU >04

ST >60, @A

ST *A, @B

will take the data stored in CPU location >60 and store

it in CPU location >04.

A double byte value in CPU RAM can be used as an

index to a specified location. For example,

A EQU >02

B EQU >04

INDEX EQU >06

DST)000A, @INDEX

ST @A(INDEX), @B

will store the contents of CPU location)ĐC in CPU)04.

You would obtain the same results with:

ST A (> Đ'6) , @B

Notice that indexing takes the IMM value in the

parentheses and adds the double-byte value stored in

location IMM in CPU RAM to the location. You do not use

the @ sign when indexing. In the case of VDP RAM

indexing, the inner parentheses contain the index value.

3-6

TABLE 3.1
SYNTAX FOR GS, GD

SYNTAX MEANING EXAMPLE

C RIM
P SINN
U

*INN
R
A
M @E440141)

*I/440244)

IMMEDIATEI #LAB1, 21
@LOC, @30

*LAC

@LOCI. (LOC2)

*L (IOC)

CONTENTS OF CRT RAM

INDI. < 1 TO & TBJ CPU RAM
(INN MAY BE 0-6K BUT INDIRĐ TS
TO 0-255)

INDEXED BY A DOUBLE-BYTE VALUE
(BOTH INN'S IN (0-255))

II 1 CID INDIxrz`1'2
(INDEX MUST BE 0-255)

RAM (INS) RAM (LOC1) VDP RAM DIxrfi1
RAW @L44) VDP RPM INDIRELCP4 (THRu THE RAM (@IOC)

CPU RAM; INK IN (0-255))
RAM(I441(IN42)) VDP RAM INDEXED BY CPU RAM (n442 RAM(IOC(LAC2))

IN (0-255))
RAM (@INK (INM2))

V
III, 4 VDP RAM IND {RWI'

0-255)) (I/442IN
RAM (@IOC (TLr7))

D
P DISPLAY (X=INK, Y=INN) VDP RAM'S PATTERN NAME TABLE3

CBAR (INN) VDP RAM'S PATTERN GENERATO R3
R TABLE(I144) VDP RAM'S PATPERN COLOR TABLE3

VDP RAM'S SPRITE ATTRIBUTE LISTS A SPRITE(INK)
M FIGURE (M) VDP RAM'S SPRITE DESĆIRIP'ItOR BLOCK3

VDP RNA'S.SPRIIE VELOCITY TABLE3 VEL(D44)
VDP (INK) VDP REGI Sir.:R

1 GS ONLY
2 PRE-INDEXING
ASSUMES RE0341ENDED BASE ADDRESS VALUES ARE USED, SEE FIGURE 3.4 AND

APPENDIX A, "BASE" DIREX.TIVE
4 TEE INDIxtCt' ADDRESS IS IN CPU

3-7

3.2 FORMAT TYPES

In the next section you will see that instructions

get assembled into several different variations of

formats. Each instruction has a "format type" number.

Table 3.2 (page 3-9) shows all the possible formats,

listed by format type. Also shown is the op-code range

for each of the format types. The X's in the formats

represent bits that may be turned on or off according to

the opcode for the instruction. Each letter in the

format other than X is described on page 3-10 along with

the five forms of GS and GD.

3-8

TABLE 3.2

FORMAT OP CODES FORMAT TYPE

0 0

1 0 X

0 1 X Đ D 8X,9X , ~r ;~,,~ •~

bit# 76543210

00 0 X X X X X
IlMAri (1 BYTE)

bit# 76543210

OX ,IX

bit# 76543210

bit# 76543210

bit# 76543210

4X,5X,6X,7X

OX, IX

bit# 76543210

2

3

4

5

6

Ox,
1X

0 •0 ~ 0 0 1 0 !0 0 08
FORMAT CODES

76543210

1 1 1 1 0 1 110 F6
GS

ire (1 BYTE)

76543210

0 0 1 R V c I N 2X, 3X

8

7

9

bit#

bit

OAX,OBX,OCX
COX,OF.X

bit# 7 654 3210

1 X X X X X 'S D
GS
GD

1

0 X X X X X
LABEL (2 BYTES)

ADDESS1
ADDRESS, COMP D

X X 0 0 0 XIX X

10 VI 1111
ADDRESS
ADDRESS

III 1 1 V I ADDRESS
ADDRESS (CONT'D)

IV

ADDRESS

LIKE ABOVE III
EXTENDED ADDRESS AND INDEXED

3-10

V 11 VI 1111
ADDRESS

TABLE 3.2
(Cont.)

D = r-'\ 0 = SIDLE BYTE OPERATION
'-1 I = D UBLE BYTE OPERATION

S = r.-% 0 = GS IS NOT IPTg.DIATE
1 = GS IS IMMEDIATE (1 OR 2 BYTES DEPEND= ON D)

0 0 IRVCIN

R= i•-'\0 =GDisROM
6,/ 1 = GD is not RCM

V
 = >

0 = GD is not a VDP register
1 = GD is a VDP register

C = i-v) = GS is not RAM
6-1 1 = GS is RAM

I = {-NO = GS is not RCM addressed by CPU
"V 1 = GS is RCM indexed or addressed by a variable in CPU RAM

N = 0 = Number of bytes moved is not immediate value
1 = Number of bytes moved is immediate value

GS, GD HAVE 5 FORMS:

I 0 ADDRESSES = DIi ADDRESSING TO FIRST 128 BYTES OF CPU RAM;

II 1 O V I ADDRESS
ADDRESS (CONT' D)

; V=1 SEMIS VDP RAM; 0=CPU RAM
I=1 SELECTS INDIRECT;O=DIRECT

LIKE ABOVE, EXCEPT AN INDEX VALUE IS ADDED 'TO THE
ADDRESS IN CPU RAM

LIRE II WITH
EXTENDED RANGE 0-65K

3.3 RUNNING GPL PROGRAMS

The system Monitor performs the startup of a GPL program.

See the Monitor Specification for details on power-up and restart

sequences. It will suffice here to know the state of all RAM and

Register locations upon beginning program execution.

• An >60 is written to the VDP Command Register, which

makes the Start bit a 0; this turns the TV screen to the

background color.

• A default character set has been loaded into Pattern

Generator Sets 4 thru 11, corresponding to ASCII symbols

>20 thru >5F; see Table 3.3. The Pattern Color Table is

initialized and all other locations are zero.

• Several locations in the "Status Block" in the CPU RAM

have been initialized to pre-defined values; these

locations are explained in Appendix H under System

Initialization.

The programmer has the responsibility of initializing the

values of the VDP Registers if default values are not to be used.

The values in Table 3.4 are the default values. For a system

without RAM expansion, these VDP block bases are suggested.

VDP(0) is a read-only register which is read in the VDP

status byte in CPU RAM >7B. The MSB is a frame interrupt bit.

Bit 6 is the fifth sprite bit and is set any time there are five

sprites on a line. Bit 5 is a sprite coincidence flag and is set

any time there is sprite coincidence. The last five bits are

used for the number of the fifth sprite on a line.

3-11

TABLE 3.3

PATIIIđN #

DEFAULT CHARAC SET

>20 BLANK

!

"

>30 0

1

2

3

>40

°

@

A

B

C

>50 P

G

R

S

>24 $

$

&

>34 4

5

6

7

>44 D

E

F

G

>54 T

U

V

w

>28 (

)

*

>38 8

9

>48 H

I

J

>58 X

Y

Z

>2C ,

.

/

>3C <

=

>

?

>4C L

M

N

O

>5C \

]

A

3-12

VDP(1) is the command register. Bit 7 is set if there is a

16K chip in the system. This bit should always be reset by the

programmer. The interpreter will set the bit if there is 16K.

Bit 6 turns the screen on when set. Bit 5 is the interrupt enable

bit. The Bit 4 tells the VDP to use text mode when it is set

and Bit 3 tells the VDP multicolor mode when it is set. Bits 3

and 4 may not be set at the same time. Bits 1 and 0 tell the

system double-size and magnified sprites, respectively, when set.

Bit 2 must always be reset.

The value in VDP(2) can range from 0 to 15. The Pattern

Name Table will begin at location VDP(2) * 256.

The value is VDP(3) can range from 0 to>FF. The Pattern

Color Table will begin at location VDP(3) * 64.

The value in VDP(4) can range from 0 - 7. The Pattern

Generator Table will begin at location VDP(4) * >800.

The value in VDP(5) can range from 0 - >7F. The Sprite

Attribute List will begin at location VDP(5) * 128.

The value of VDP(6) can range from 0 - 7. The Sprite

Descriptor Block will begin at location (VDP(6) * >800) + >400.

The value of VDP(7) contains the only way of giving

foreground and background colors to Text mode. The most

significant nybble is the foreground color, and the least

significant nybble is the background color and also the border

color in any mode.

The value of VDP(1) will probably be the register most

often changed in a program. Table 3.4.A (page 3-15) lists some

of the most common values used in this command register and what

they represent.

3-13

SPRiITE ~#
0

6

PAT GEN
BASE'

i' 1

5 SPIdTE IATTIRIB.(LIS'Irt BAdE
i

. r

SDB BASE

r 1

4

TABLE 3.4

VDP REGISTERS

RECOMMENDED
MEANING VALUE

EGISTER
NUMBER FORMAT

7; 6 5! 4 j 3
o rFR '5TH SGr (FIFTH

INT r SP I I

~ ~ • ,

1 4K ,ST INT 'TXTj MC
16K, SNB !

! PNT BASE
a t I

PAT7ERN COLOR (TABLE' BASE

2

3

S I Z~ MAGI

Frame interrupt,
Five sprites on
a line, Sprite
Coincidence, Num-
ber of the fifth
sprite.

Command Reg.
bits turn on/off
4K or 16K, screen
on/off, interrupt
text mode, MC mode
Sprite size & mag

Multiple of 256
to start PNT at

Multiple of 64 to
to start col. table

Multiple of >800
to start pat. gen.

Multiple of 128
to start SAL,

Multiple of >800
then add >400 to
start SDB

Read only regis-
ter (CPU RAM)7B)

>60-sets VDP for
4K memory, turns
screen on,enable
VDP interrupt
puts VDP in norm
al pattern mode
with size 0, mai
0 sprites

0-puts Pattern
Name Table at 0.

>0E-puts color
table at >380

>1-puts pattern
generator area
>at 800

>06-puts Sprite
Attribute List
at >300

>0-puts Sprite
Descriptor
Blocks at > 400

! I I

7 TEXT COI,ORI Colors for text
mode, backdrop
color

>F7-make text
color white,
backdrop cyan

BACKDROP COLOR

3-14

TABLE 3.4.A,

COMMAND REGISTER VALUES

VALUE MEANING

>61 4K memory, screen on, interrupt on,
single-sized magnified sprites.

>62 4K memory, screen on, interrupt on,
double-sized unmagnified sprites

>63 4K memory, screen on, interrupt on,
double-sized magnified sprites.

>20 4K memory screen off (viewer sees a
blank screen the color of the
border).

>70 4K memory, screen on, interrupt on,
text mode (40 x 24 character screen)

>68 4K memory, screen on, interrupt on,
multicolor mode, single sized unmag-
nified sprites.

>69 4K memory, screen on, interrupt on,
multicolor mode, single-sized magni-
fied sprites.

>6A 4K memory, screen on, interrupt on,
multicolor mode, double-sized unmag-
nified sprites.

>6B 4K memory, screen on, interrupt on,
multicolor mode, double-sized magni-
fied sprites.

3-15

The actual mechanics of writing and running a GPL program

are described in Appendix A. This describes the format of

instructions that the GPL assembler will accept.

The interpreter and the GPL program communicate with each

other through a dedicated location in CPU RAM, called the Status

Block. Table 3.5 (page 3-20) shows the fixed locations of each

Status Block variable.

3.3.1 THE STATUS BLOCK

If any of the bytes in the Status Block are to be accessed

from a GPL program, it is recommended that the symbols in Table

3.5 (page 3-20) be equated to the proper values as shown at the

beginning of the GPL program. The symbol can then be used as an

instruction operand.

The following is a discušsion of each of the Status Block

bytes:

f MAXMEM - Highest available VDP memory address. For a 4K

system this would be >OFFF.

• DATSTK- Stack pointer for data; initialized to >9F by the

Monitor, the pointer always points to the last value pushed

on the data stack. The data stack is a pre-incremented,

byte-oriented stack, and grows to increasing values in CPU

RAM. If the user wishes, he can change the location of the

stack by doing an ST into DATSTK (e.g. ST >92,@DATSTK).

PUSH and POP affect the pointer value, as well as the

operand POP.

3-16

• SUBSTK- Stack pointer for subroutine return addresses;

initialized to >7E by the Monitor, the pointer always

points to the last address pushed onto the stack. Addresses

are automatically pushed onto the stack by the CALL

instruction, and popped off by the RTN and RTNC

instructions. As with DATSTK, the user can change the

default address of the stack. The user should be careful

when changing this stack pointer. SUBSTK should only be

initialized with even numbers if it is changed. The MOVE

and SCAN instructions use one level of subroutine stack.

• KEYBOARD, KEY,JOYY,JOYX- These locations are used for

handset, joystick and keyboard interfaces. KEYBRD is the

keyboard number, KEY is the returned keycode, JOYY and JOYX

are the returned joystick parameters. See the SCAN

instruction description for more details. Also see

Appendix D. These values are initialized to 0 by the

Monitor.

• RANDOM- This location is loaded with a random number when

the RAND instruction is executed. It is initialized to a

random number generated by the Monitor.

• TIMER- When the VDP Frame interrupt is enabled , this byte

gets incremented by one every 1/60 second. By clearing it

with a CLR and then using the loop

LOOP CEQ (delay),@TIMER

BR LOOP

3-17

a fixed delay in the GPL program can be implemented.

• MOTION- This location, when set to a non-zero value by the

programmer, represents the number of Sprites that are

included in auto-motion. For example, if it contains a

two, Sprites 0 and 1 will be put into auto-motion. See

Appendix B for details on Sprite auto-motion.

• VDPSTT- This location is a copy of the VDP Status register.

It is updated every frame interrupt (when frame interrupts

are disabled, VDPSTT is not updated).

• STATUS- This byte automatically gets loaded with bits as a

result of many instructions. It contains bits representing

equality, arithmetic greater than, logical greater than,

carry and overflow. See Section 3.4 for details.

• CB, YPT, XPT- These bytes, in conjunction with one another,

provide a method for writing information out to the VDP

Pattern Name Table. When the CB location is used as a

source operand in an instruction, it is first loaded with

the value of the Pattern Name Table specified by XPT and

YPT. This assumes that the Pattern Name Table base address

is 0 and the absolute VDP RAM address is calculated by

32*YPT+XPT. This provides a convenient method for reading

information off of the screen. If CB is ever found to have

been modified by an instruction, the new value of CB is

3-18

written to the Pattern Name Table location specified by XPT

and YPT.

Some examples:

DST #0302,YPT

ST CB,@TEMP ..causes TEMP to get loaded with the

byte from location XPT=2,YPT=3;

ST @CHR1, CB ..causes whatever is in CHR1 to be

written to the screen at the

location corresponding to the

current values of XPT and

YPT.

Multicolor mode uses YPT and XPT to do mapping

automatically in range YPT = 0 to 47, XPT = 0 to 63. CB,

XPT, and YPT are predefined symbols and can be used with or

without @ sign in front of them.

3-19

TABLE 3.5

STATUS BLOCK

RECOMENDED ADDRESS IN INITIALIZED TO

SYMBOL CPU RAN! (>) BY MINIM

70, 71 MAXIMCM VDP
MEMORY ADDRESS

72 > 9F
DA'iSI!{

SUffiTi{ 73 >7E

74 0
KE*iIERD

iwy 75 0

jOyy 76 0

JOYX 77 0

RANDCM 78 0

TIMER 79 0

NOPICN 7A 0

7B 0 VDea ii

STATUS 7C 0

CB 7D 0

YPT 7E 0

XPT 7F 0

3-20

3.4 THE STATUS BYTE

The byte in the STATUS BLOCK called STATUS is equivalent to

the status register found in many microprocessors. 5 bits in the

byte indicate the result of operations. The format of the STATUS

byte is:

/ H / GT / COND / CARRY / OVF / 0 / 0 / 0 /

bit 7 6 5 4 3 2 1 0

The COND bit is most important, since the BR (Branch on

Reset) and BS (Branch on Set) instructions use this bit to decide

whether to branch or not. Many operations affect all the bits,

especially single and double operand arithmetic/logical

instructions. Instructions have been provided which transfer one

of the other bits into the COND bit; this makes it easy to

conditionally branch based on the results of an operation (See

instructions H, GT, CARRY, OVF). For example, to branch to the

LABEL "BR1" if the CARRY bit or the OVF bit is set, the following

sequence can be used:

CARRY

BS #BR1

or $IF .CARRY. GOTO BR1

OVF

BS *BR1

or $IF .OVF. GOTO BR2

3-21

In the instruction descriptions in the following section,

the STATUS bits affected for each instruction are shown boxed in.

Other STATUS bits are not affected at all. Note that some

instructions like the branches always reset the COND bit.

3-22

4.0 INSTRUCTION DESCRIPTIONS

The following pages are a description of each Graphics

Language instrucion.

All instruction descriptions tell how the status byte is

affected and give execution results. The symbol represents

"takes the value of."

4-1

4.1 COMPARE AND TEST INSTRUCTIONS N

4.1.1 TEST LOGICAL HIGH BIT

Syntax definition: H

Example: LAB1 H TEST THE LOGICAL HIGH BIT

Definition: Set/reset condition bit to the logical high
status bit value

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := H

Application notes: Use the H instruction to detect whether the
logical high status bit was set as a result
of the previous instruction as a prelude to
a conditional branch (BR or BS)
For example:

H
BS LAB1
or $IF .H. GOTO LABl

causes a Branch to LABEL "LABl" if the
logical high bit has been set.

Op Code: > 09

Format Type: 5

4-2

4.1.2 TEST ARITHMETIC GREATER THAN BIT GT

Syntax definition: GT

Example: LABl GT TEST THE ARITHMETIC GT BIT.

Definition: Set/reset condition bit to the arithmetic greater
than status bit value.

Status bits affected: / H / GT / cond / carry / OVF/

Execution results: COND := GT

Application notes: Use the GT instruction to detect whether
•the Arithmetic greater than status bit was
set as a result of the previous instruction
as a prelude to a conditional branch (BR or BS)

Op Code: >OA

Format type: 5

4-3

4.1.3 TEST CARRY BIT CARRY

Syntax definition: CARRY

Example: LAB1 CARRY TEST THE CARRY BIT

Definition: Set/reset condition bit to the carry status bit value

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := CARRY

Application notes: Use the CARRY instruction to detect whether
there was a carry out of the most significant
bit of a byte or word as a result of the pre-
vious instruction as a prelude to a condi-
tional branch (BR or BS)

Op Code: > OC

Format type 05

4-4

OVF 4.1.4 TEST OVERFLOW BIT

Syntax definition: OVF

Example: LAB1 OVF TEST THE OVERFLOW all-

Definition: Set/reset condition bit to the overflow status
bit value.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := OVF

Application notes:

Op Code: >OD

Format type: 05

Use the OVF instruction to detect whether
an arithmetic overflow (the result is too
large or too small to be correctly
represented in two's complement representa-
tion) has occurred as a prelude to a condi-
tional branch (BR or BS).

4-5

CEQ
DCEQ

4.1.5 COMPARE EQUAL

Syntax definition: CEQ GS,GD
DCEQ GS,GD

Example: LAB1 CEQ 48,@A

OR

COMPARE (A) TO 48 AND
SET CONDITION BIT
ON EQUAL

LAB1 $IF @A .EQ. 48 THEN

Definition: Compare the GD to the GS and set the condition
bit depending on the result.

Status bits affected: / H / GT / cond / carry / OVF/

Execution results: (GD) = (GS) COND: = set, if true
COND: = reset, if false

Application Notes: Use the CEQ instruction to compare the GD to
the GS and set the condition bit if they are
equal. This is used as a prelude to a condi-
tional branch (BR or BS). The effect on the
status bits is as if GS is subtracted from GD
and the result compared to zero.

Op Code: >D4

Format type: 1

4-6

4.1.6 COMPARE LOGICAL HIGH CH

DCH

Syntax definition: CH GS,GD
DCH GS,GD

Example: .LAB1 CH @A,@B COMPARE (B) TO (A)
or AND IF (B) IS LOGICALLY

HIGHER THAN (A) SET THE
CONDITION BIT

LAB1 $IF @B .H. @A THEN

Definition: Compare the GD to the GS and set the condition bit
if the GD is logically higher than the GS

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := (GD) H (GS)

Application Notes:

Op Code: >C4

Format type: 1

Use the CH instruction to do the comparison
GD.H.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS).

4-7

4.1.7 COMPARE LOGICAL HIGH OR EQUAL CHE
DCHE

Syntax definition: CHE GS,GD
DCHE GS,GD

Example: LAB1 CHE 20,@VALUE COMPARE (VALUE) TO 20
& SET CONDITION BIT IF

or (VALUE) IS LOGICALLY
HIGHER THAN OR EQUAL TO 20

$IF @VALUE .HE. 20 THEN

Definition: Compare the GD to the GS and set the condition bit
if the GD is logically higher than or equal to
the GD

Status bit affected: / H / GT / cond / carry / OVF /

Execution Result: COND := (GD) HE (GS)

Application Notes: Use the CHE instruction to do the comparison
GD.HE.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS)

Op Code: >C8

Format type: 1

4-8

4.1.8 COMPARE GREATER THAN '
CGT
DCGT

Syntax definition: CGT GS,GD
DCGT GS,GD

Example: LABEL CGT @A,NEW COMPARE NEW TO (A) AND SET
CONDITION BIT IF NEW IS
GREATER THAN (A)

OR

LABEL $IF @NEW GT. @A THEN

Definition: Compare the GD to the GS and set the condition bit
if GD is greater than (arithmetically) the GS.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: COND := (GD) GT (GS)

Application Notes: Use the CGT instruction to do the comparison
GD.GT.GS and set the condition bit if the
relation is true. Use as a prelude to a
conditional branch (BR or BS)

Op Code: >CC

Format type: 1

4-9

4.1.9 COMPARE GREATER THAN OR EQUAL CGE
DC6E

Syntax definition: CGE GS,GD
DCGE GS,GD

Example: LAB1 CGE 82,@B COMPARE (B) TO 82 AND SET
CONDITION BIT IF (B) IS

or GREATER THAN OR EQUAL TO 82

LAB1 $IF @B .GE. 82 THEN

Definition: Compare the GD to the GS and set the condition bit
if GD is greater than or equal to the GS

Status bits affected: / H / GT / cond carry / OVF /

Execution results: COND := (GD) GE (GS)

Application Notes: Use the CGE instruction to do the comparison
GD GS and set the condition bit if the
relation is true as a prelude to a conditional
branch (BR or BS)

Op Code: >DO

Format type: 1

4-10

4.1.10 COMPARE LOGICAL CLOG
DCLOG

Syntax definition: CLOG GS,GD
DCLOG GS,GD

Example: LABEL CLOG >86,@VALUE SET CONDITION IF RESULT
OF >86.AND.(VALUE)
IS ZERO

Definition: Perform the bit by bit logical AND operation between
GS and GD and set the COND bit if the result is 0.

Status bits affected: / H / GT / cond / carry / OVF /

9
Execution Results: COND := (GS) AND (GD) = 0

Application Notes: Use the CLOG instruction to set COND
if GD and GS have no l's in same positions.

Use as a prelude to a conditional branch (BR
or BS)

Op Code: >D8

Format type: 1

4-11

4.1.11 COMPARE ZERO cz
DCZ

Syntax definition: CZ GD
DCZ GD

Example: LAB1 CZ @VALUE SET CONDITION BIT IF
(VALUE)IS EQUAL TO ZERO

Definition: Compare the GD to zero and set the condition bit
accordingly.

Status bit affected: / H / GT / cond / carry / OVF /

Execution Results: COND =: (GD) = 0

Application Notes: Use the CZ instruction to do the comparison
GD = 0 and set the condition bit if the
relation is true. Use as a prelude to a
condtional branch (BR or BS)

Op Code: >8E

Format type: 6

4-12

4.2 PROGRAM CONTROL INSTRUCTIĐNS BS

4.2.1 BRANCH ON SET

Syntax definition: BS LABEL

Example: LABEL BS HERE BRANCH TO ADDRESS OF HERE
IF CONDITION IS SET

Definition: Branch to address of the LABEL operand if the COND
bit is set. After branching the condition bit is
reset.

Status bit affected: / H / GT / cond / carry / OVF /

Execution results: IF (COND.EQ.set) THEN (PC):= LABEL

Application Notes: Use the BS instruction to branch to another
portion of the program depending on whether
the condition bit is set. For example if
the previous instruction was a SUB that re-
sulted in a zero result; the instruction,

BS ZERO

program execution commencing at the
instruction at label "ZERO".
NOTE: The LABEL must reside in the same
6K GROM segment as the BS instruction.

Op Code: > 60

Format type: 4

4-13

4.2.2 BRANCH ON RESET BR

Syntax definition: BR LABEL

Example: LAB1 BR HERE BRANCH TO ADDRESS "HERE" IF
CONDITION IS RESET

Definition: Branch to address of the label operand if the
condition bit is reset. After execution the
condition bit is reset.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: IF (COND.EQ.0) THEN (PC):= LABEL

Application notes: Use the BR instruction to branch to another
portion of the program depending on whether
the condition bit is reset. For example if
the previous instruction was an ADD that
resulted in a non-zero result the instruction,

BR NONZ

would result in the program commencing
at the instruction at "NONZ" in the program.
NOTE: The LABEL must reside in the same 6K
GROM segment as the BR instruction.

Op Code: >40

Format type: 4

4-14

4.2.3 BRANCH B

Syntax definition: B LABEL

Example: LAB1 B HERE BRANCH TO ADDRESS OF HERE

Definition: Branch absolutely to address of the label operand.
This branch is unconditional. The condition bit
is reset after execution.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (PC):= LABEL

Application Notes: Use the B instruction to unconditionally
transfer program control to another portion
of the program. If the label HERE is at
the address >OB; the instruction,

B HERE

will replace the PC with the value >013
The condition bit will be reset.
NOTE: The B instruction should be used
to transfer control between 5R GROM
segments.

•

Op Code: >05

Format type: 3

4-15

4.2.4 CASE CASE
DCASE

Syntax definition: CASE GD
DCASE GD

Example: LAB1 CASE @A GOTO NEXT INSTRUCTION FOR (A)
EQUAL TO ZERO, TWO MORE IF
(A) EQUAL TO ONE, ETC

Definition: Add two times the value of the operand to the current
GROM Program Counter. Resets condition bit in status.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results:(PC):= 2 *(GD)+pC

Application Notes: The CASE instruction is typically followed by
a series of BR statements. Since the condition
bit resets after executing, the BR's are always
taken. (The BR is used because it is a two-
byte instruction while B is a 3-byte instruc-
tion). An example of use of the CASE statement
is:

CASE @NMBR
BR LAB1
BR LAB2
BR LAB3

If the byte at location NMBR is a 0, branch to
LAB1, if a 1, branch to LAB2; if a 2, branch
to LAB3.
NOTE: All the labels have to reside in the
same 6K GROM segment as the (D) CASE instruc-
tion.

op Code: >8A

Format type: 6

4-16

4.2.5 CALL SUBROUTINE CALL

Syntax definition: CALL LABEL

Example: LAB1 CALL HERE CALL THE SUBROUTINE STARTING
AT THE ADDRESS OF THE LABEL HERE

Definition: Replace the PC with the address of the LABEL. Place
the old PC at the top of the call stack (pointer at
CPU RAM >73). Reset condition bit.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (SBRSTK):=(SBRSTK)+2
((SBRSTK)):=(PC)
(PC):=LABEL

Application Notes: Use the CALL instruction to enter a subroutine.

Op Code: >06

Format type: 3

The following table may be used as a reference for determining
when it is more economical to use a subroutine:

Instruction Set Length
(m) in bytes

Minimum Number of Times
Instruction Set is Used

Bytes Saved
n = Times Used

3 or less - -

4 6 n - 5

5 4 2n - 6

6 3 3n - 7

7 3 4n - 8

8+ 2 (m-3)n - (m+l)

4-17

4.2.6 FETCH FETCH

Syntax: FETCH GD

Example: LAB1 FETCH @VAL1 FETCH 1ST PARAMETER

Definition: Retrieves a byte of data pointed to by the return
address on the subroutine stack and increments this
return address by 1.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (((SBRSTK)))
((SBRSTK)):=((SBRSTK))+1

Applications Note: Use the FETCH instruction to pass parameters
in line to a subroutine For example in
this sequence,

CALL SUB
DATA 1,24

SUB FETCH @ARG1
FETCH @ARG2

The FETCH statement at SUB will place a 1 in location ARG1. The
next instruction will place a 24 in location ARG2. Upon returning
from the subroutine, execution commencences at instruction after
the 24. The FETCH instruction uses two bytes of the subroutine
stack. The FETCH instruction can only use CPU RAM as GD.

Op Code: >88

Format type: 6

4-18

4.2.7 RETURN FROM SUBROUTINE RTN

Syntax definition:. RTN

Example: LAB1 RTN RETURN WITH 0 TO CONDITION

Definition: Replaces PC with the value at the top of the sub-
routine stack (pointer at >73 in CPU RAM). Resets
the condition bit.

Status bits affected: / H / GT / cord / carry / OVF /

Execution results: (PC):= ((SBRSTK))
(SBRSTK):=(SBRSTK)-2
COND:=reset

Applications Notes: RTN is used to return from a subroutine call
when you don't care about saving the condition
bit value. By changing the value of the top
of the subroutine call stack (pointed to by
CPU RAM location >73), the return address
may be modified.

Op Code: > 00

Format type: 5

4-19

RTNC 4.2.8 RETURN FROM SUBROUTINE (SAVE CONDITION)

Syntax definition: RTNC

Example: LAB1 RTNC RETURN WITH NO EFFECT ON STATUS

Definition: Replaces PC with the value at the top of the
subroutine stack (pointer at >73 in CPU RAM).
Does not affect status.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (PC):= ((SBRSTK))
(SBRSTK):=(SBRSTK)-2

Applications Notes: see RTN

Op Code: > 01

Format type: 5

4-20

4.3 BIT MANIPULATION INSTRUCTIONS

Individual bits of memory may be set, reset, or tested using

bit operations. The memory bits are numbered 76543210, with 0

being the least significant and 7 the most significant bit. The

immediate operand that specifies bit number is truncated to 3

bits. The status byte is modified by these insructions.

These instructions are macro-instructions which the

assembler converts into equivalent GPL instructions.

4.3.1 RB GD,IMM AND IMM1,GD

Reset the bit in memory identified by the two operands. The COND

bit is set if the resulting destination byte is zero and reset

otherwise. Note that an AND instruction is generated by the

assembler.

4.3.2 SB GD,IMM .= OR IMM1,GD

Set the bit in memory identified by the two operands. The COND

bit is always reset. This instruction is assembled as an OR

instruction.

4.3.3 TBR GD,IMM CLOG IMM1,GD := $IF BIT(IMM) GD .EQ. 0 THEN

Test the bit in memory identified by the two operands and set the

COND bit if the tested bit is a zero. Otherwise reset the COND

bit. This instruction is assembled into a CLOG statement.

4-21

4.4 ARITHMETIC & LOGICAL INSTRUCTIONS

Arithmetic operations work on operands'in two's complement

form and affect the status byte. The result of an add, subtract,

increment, or decrement instruction sets the COND bit if the

result is zero, the H bit if logical high, the GT bit if

arithmetic greater than, the OVF bit on overflow, and the CARRY

bit if a carry occurs from the most significant digit. The

divide instruction sets the OVF bit if the divisor is less than

or equal to the first byte of the dividend. The. compare

instructions compare the destination operand to the source

operand. For example, a CGT instruction sets the COND bit if the

destination is greater than the source.

The address fields of these instructions contain one or two

operands. In general the first is the source operand and the

second the destination. For example, in an add operation the

first operand is added to the second and in a subtract operation

the first is subtracted from the second.

4-22

ADD OR A
4.4.1 ADD DADD OR DA

Syntax definition: ADD GS,GD
DADD GS,GD

Example: LAB1 ADD 48,@X(ONE) ADD 48 TO (X) INDEXED
BY (ONE)

Definition: Replace GD with the sum of the GS and GD. Compare
the result to zero and set/reset status bits to
indicate this result

Status bits affected: / H / GT / cond / carry / OVF /
i i I 1 f

Execution resluts: (GD) :_ (GS)+(GD)

Application notes: ADD is used to add Twos complement integer.
For example, if the address labeled TABLE
contains >FE and the address labeled NO
contains a >01; the instruction

ADD @TABLE,@NO

would result in NO containing a >FF and
TABLE remaining unchanged. The logical
high bit would be set and the other bits
reset.

Op Code: >AO

Format type: 1

4-23

4.4.2 SUBTRACT SUB OR S
DSUB OR DS

Syntax definition: SUB GS,GD
DSUB GS,GD

Example: LAB1 SUB @A,@B SUBTRACT (A) FROM (B)

Definition: Replace GD with the GD less the GS. Compare the
result to zero and set/reset status bits to indicate
this result.

Status bits affected: / H / GT / cond / carry / OVF /
t I

Execution results: (GD) := (GD) - (GS)

•
Application notes: Use the SUB instruction to subtract signed

integer values. For example, if the location
NEW contains a value of >6F and memory
location OLD contains a value of -1; the
instruction,

SUB @OLD,@NEW

results in the contents of NEW changing to
>70. The logical high, greater than status
bits set, the others reset.

Op Code: >A4

Format type: 1

4-24

MUL OR M
4.4.3 MULTIPLY DMUL OR DM

Syntax definition: MUL GS,GD
DMUL GS,GD

Example: LAB1 MUL >4,@A MULTIPLY >4 TIMES (A)

Definition: Multiply the GD by the GS. In the single byte MUL,
both operands are single byte values but the result
is stored in a double byte location at GD. The 8
most significant bits are stored in the GD. In the
double byte DMUL, both operands are double byte
values and the result is a four byte value at GD.
No status bits are affected. The multiply is an
unsigned type.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: MUL : (GD,GD+1) :=(GS)*(GD)
DMUL : (GD,GD+1,GD+2,GD+3):= (GS, GS+l) *

(GD, GD+1)

Application notes: In the single MUL the GS & GD are 8-bit
values. The result is a 16-bit value. In
the double DMUL, the GS and GD are 16-bit
values. The result is a 32-bit value. For
example, if location A contains a >F3 and
location B contains a >82, the instruction

MUL @A,@B

would result in location A being unchanged &
location B containing >7B, and location (B+1)
containing >66. Status bits are unchanged.

Op Code: >A8

Format type: 1

4-25

4.4.4 DIVIDE

Syntax definition: DIV
DDI V

DIV OR D
DDIV OR DD

GS,GD
GS,GD

Example: LAB1 DIV >08,@VALUE f DIVIDE TWO BYTES STARTING AT
VALUE BY >08

Definition: Replace the GD with the quotient and remainder of GD
divided by GS. Compare the result to zero and set/
reset status bits to indicate the result.
The divide is of the signed type.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results:
DIV: (GD):= (GD,GD+1)/(GS) ;(GD+1):= remainder;
DDIV: (GD,GD+l):= (GD,GD+I,GD+2,GD+3)/(GS,GS+1);

(GD+2,GD+3):= remainder.

Application Note: If the DIV instruction is a single byte
instruction, the single byte GS is divided
into the double byte GD and the quotient is
put in the GD. If the DDIV instruction is
used, the two byte GS. is divided into the four
byte GD and the quotient is put into the two
bytes at GD; the remainder is placed in two
bytes at GD+2.

Op Code: >AC

Format type: 1

4-26

4.4.5 INCREMENT BY ONE INC
DINC

Syntax definition: INC GD
DINC GD

Example: LABI INC @A INCREMENT (A) BY 1

Definition: Replace the GD with the GD plus one. The result is
compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (GD)+l

Application notes: Use the INC instruction to count and index
byte arrays, add a value of one to an
addressable memory location, or set flags.
For example, if COUNT contains a zero, the
instruction

INC @COUNT

places a >01 in COUNT and sets the logical
high, and arithmetic greater than status
bits, while the condition, carry, and overflow
status bits are reset.

Op Code: >90

Format type: 6

4-27

4.4.6 INCREMENT. BY TWO INCT
DINCT

Syntax definition: INCT GD
DINCT GD

Example: LAB1 INCT @A INCREMENT (A) BY 2

Definition: Replace the GD with the GD plus two. The result is
compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /
1

Execution Results: (GD) := (GD)+2

Application notes: Use the INCT instruction to count and index
double byte arrays and add a value of two to
an addressable memory location. For example,
if TEMP contains the address >00 (i.e. points
to the first temporary two-byte location in
CPU RAM; the instruction,

INCT @TEMP

places a 0002 in TEMP (so that it now points
to the next two bytes of temporary byte CPU RAM) .

Op Code: > 94

Format type: 6

4-28

4.4.7 DECREMENT BY ONE DEC
DDEC

Syntax definition: DEC GD
DDEC GD

Example: LAB1 DEC @A DECREMENT (A) BY 1

Definition: Replace the GD with the GD minus one. The result is
compared with zero & the status bits are set/reset to
indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (GD)-1

Application notes: Use the DEC instruction to subtract a value
of one from any addressable operand. The DEC
instruction is also useful in counting and
indexing byte arrays. For example, if COUNT
contains a value of 1, then

DEC @COUNT

results in a value of zero in location COUNT &
sets the condition and carry status bits while
resetting the logical high, arithmetic greater
than, and overflow status bits.

Op Code: >92

Format type: 6

4-29

4.4.8 DECREMENT BY TWO DECT
DDECT

Syntax definition: DECT (GD
DDECT GD

Example: LAB1 DECT @A DECREMENT (A) BY 2

Definition: Replace the GD with the GD minus two. The result is
compared with zero and the status bits are set/reset
to indicate the result of this comparison.

Status bits affected: / H / GT / cond / carry / OVF /
I I I I I

Execution results: (GD) := (GD)-2

Application notes: The DECT instruction is useful in counting &
indexing two byte arrays. Also, use the DECT
instruction to subtract a value of two from
any addressable operand. -For example, if
COLOR contains the value > OA the instruction

DECT @COLOR

would result in the value >08 being stored in
COLOR .

Op Code: >96

Format type: 6

4-30

ABS
4.4.9 ABSOLUTE VALUE DABS

Syntax definition: ABS GD

Example: LAB1 ABS @DX(INDEX) ABSOLUTE VALUE OF (DX)
INDEXED BY (INDEX)

Definition: Replace the GD with the absolute value of the GD.
Does not affect status bits.

Status bits affected: / GT / H / cond / carry / OVF /

Execution results: (GD) := ABS(GD)

Application notes: Use the ABS instruction to take the absolute
value of an operand. For example if the
location >76 (joystick Y) contains -4 then

ABS @ 76

will result in a +4 at >76.

Op Code: > 80

Format type: 6

4-31

4.4.10 NEGATE NEG
DNEG

Syntax definition: NEG GD
DNEG GD

Example: LAB1 DNEG @B NEGATE TWO BYTES AT B

Definition: Replace the GD with its two's complement value.
Does not affect status bits .

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) :_ -(GD)

Applications notes: Use the NEG instruction to make the contents
of an addressable memory location its additive
inverse. For example if TEMP contains the
value of 1, the instruction,

NEG @TEMP

would result in the value > FF being stored
in TEMP.

Op Code: >82

Format type: 6

4-32

4.4.11 INVERT INV
DINV

Syntax definition: INV GD
DINV GD

Example: LAB1 INV @A INVERT (A)

Definition: Replace the GD with its one's complement value.
Does not affect status bits.

Status bits affected: j GT / H / cond / carry / OVF /

Execution results: (GD) := LOGICAL INVERSION (GD)

Application notes: Use the INV instruction to complement an
operand. For example if location COUNT
contained a zero; the instruction

INV @COUNT

will result in a > FF being stored in COUNT.

Op Code: >84

Format type: 6

4-33

4.4.12 LOGICAL AND
AND
DAND

Syntax definition: AND GS,GD
DAND GS,GD

Example: LAB1 AND y F0,@Y SET 4 LSB OF (Y) TO ZERO

Definition: Perform a bit-by-bit AND operation of the 8 (16)
bits in GS with the GD and store the result in the
GD. The result is compared to zero and the status
bits are set/reset to indicate the result.

Status bits affected: / H / GT / cond / carry / OVF /
, , , , ,

Execution results: (GD) := (GS) AND (GD)

Application notes: Use the AND instruction to perform a logical
AND operation between a GS and GD. The AND
operation is useful in masking out bits before
a comparison. If location X contains a >66
and location Y contains a >OF; the instruction

AND @Y,@X

would result in X containing a> 06. The GT
and H status bits will be set and all other
status bits reset.

Op Code: >BO

Format type: 1

4-34

4.4.13 LOGICAL OR OR
DOR

Syntax definition: OR GS,GD
DOR GS,GD

Example: LAB1 DOR > FFFE,@VALUE "OR" THE DOUBLE BYTE
IMMEDIATE VALUE FFFE WITH
(VALUE)

Definition: Replace the GD with the GD OR'd with the GS. Compare
the result to zero & set/reset the status bits to
indicate this result.

Status Bits Affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (GS) OR (GD)

Application notes: Use the OR instruction to perform a logical OR
between the GS and GD. If location A contains

>F6 and location B contains a>68 the instruction

OR @A,@B

would result in location B changing to > FE.
The logical high status bit will be set, the
rest will be reset.

Op Code: >B4

Format type: 1

4-35

4.4.14 EXCLUSIVE OR XOR
DXOR

Syntax definition: XOR - GS,GD
DXOR GS,GD

Example: LAB1 XOR > F8,@A "EXCLUSIVE OR" >F8 WITH (A)
A

Definition: Exclusively OR the GS and GD and replace the GD with
the result. The result is compared to zero and the
status bits are set/reset to indicate the result.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) :_ (GS) XOR (GD)

Application notes: The exclusive OR is accomplished by comparing
the GD and GS on a bit-by-bit basis. If the
bits are both 0 or both 1, the GD is reset;
otherwise it is set. If location A contains
>88 and location B contains >87, the instruc-
tion

XOR @A,@B

would result in location B changing to >OF.
The logical high and greater than status
bits will be set, the rest will be reset.

To reverse bits in a byte, do an XOR with a
number which has all bits set you want to
reverse.

Op Code: >B8

Format type: 1

4-36

4.4.15 CLEAR LOCATION
CLR
DCLR

Syntax. definition: CLR GD
DCLR GD

~

Example: LAB1 CLR @A STORE ZERO IN (A)

Definition: Replace the GD with a zero. Does not affect status
bits.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := 0

Applications notes: Use the CLR instruction to replace any
addressable memory location with a zero.

Op Code: >86

Format type: 6

4-37

4.4.16 STORE ST

DST

Syntax definition: ST GS,GD
DST GS,GD

Example: LAB1 ST @X,@TEMP STORE CONTENTS OF LOCATION X
IN LOCATION TEMP

Definition: Replace the GD with the GS. Status bits are not
affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) := (GS)

Application notes: Use the ST instruction to copy the contents
of any addressable memory location or an
immediate value into any addressable memory
location. For example,' if location X
contains a>88; the instruction

ST @X,@TEMP

will result in both location X and TEMP con-
taining a >88.

Op Code: >BC

Format type: 1

4-38

4.4.17 EXCHANGE EX
DEX

Syntax definition: EX GD,GD
DEX GD,GD

Example: LAB1 EX @X,@Y EXCHANGE THE CONTENTS OF
LOCATIONS X & Y.

Definition: The contents of the first operand is exchanged with
the contents of the second operand. No status bits
are affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (GD) (EXCHANGE WITH) (GD)

Application notes: Use the EX instruction to exchange the
contents of two locations in memory. For
example if location >380 in VDP RAM contains
a 03 and location >381 in VDP RAM contains
a 05 the instruction;

EX RAM(>380),RAM(>381)

would result in location>380 in VDP RAM
containing a >05 & location >381_ in VDP
RAM containing a >03; thus swapping the
colors of pattern set #0 with pattern set
#1.

Op Code: >CO

Format type: 1

4-39

4.4.18 PUSH ONTO DATA STACK PUSH

Syntax definition: PUSH GD

Example: LAB1 PUSH @NEWEST PUSH VALUE AT LOCATION
NEWEST ONTO DATA STACK

Definition: Increment the data stack pointer & push the one
byte operand onto it. (Opposite of instruction
POP). No status bits are affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (DATSTK) (DATSTK) + 1
((DATSTR)):=(GD)

Application notes: Use PUSH instruction to add to data stack.
Opposite of POP.

Op Code: >8C

Format type: 6

4-40

4.4.19 POP OFF OF DATA STACK POP

Syntax definition: POP GD

Example: LAB1 POP @DAT POP top value off data
stack and into location DAT

Definition: Pop a byte off the data stack and load it into
GD, then decrement the value of the data stack
pointer

Status bits affected: / H / GT /.cond / carry / OVF /

Execution results: (GD):=((DATSTK))
(DATSTK); _ (DATSTK) - 1

Application notes: This is a macro instruction which the
assembler accepts. The pop instruction is
the opposite of the PUSH instruction. It
assembles into:

ST *STATUS,GD

The interpreter traps this out to POP a
byte of data off the data stack and places
it into the GD, then decrements the data
stack pointer.

4-41

4.4.20 BLOCK MOVE MOVE

Syntax definition: MOVE GS1 FROM GS2 TO GD

Example: MOVE 21 FROM ROM(#TABL) TO RAM(800)

Definition: Move the specified number of bytes from the source
to the destination.

Status bits affected: "/ B / GT / cond / carry / OVF /
L1 (GD):=(GS2)

GD:=GD+1
GS2:=GS2+1
GS1:=GS1-1
$IF GS1 .GT. 0 GOTO L1;

Execution results: The requested number of bytes are transferred
from the Source to the destination.

Application notes: The MOVE instruction is useful wherever a
block of data must be moved from one
section of memory to another. Note that
the 'byte count is IMM or CPU and a double-
byte value.The Source and Destination operands
can represent blocks in CPU RAM, VDP RAM, or
ROM. In addition, the following mnemonics
can be used:

Destination only: VDP(IMM) ..block of VDP Registers

Instead of using a LABEL for GROM, an IMM
field 0-48K, or a GS pointing into CPU RAM
can be used (e.g. ROM(22), ROM(@CPULOC)).
Furthermore, an index can be used, as in the
normal addressing mode (e.g. ROM(#AB(A)))
The VDP registers cannot be used as Source,
since they are write-only registers. The
MOVE instruction uses two bytes of the sub-
routine stack.

Op code: >20

Format type: 9

More examples:
MOVE 7 FROM ROM(2000) TO VDP(1) ..loads up registers 1 thru 7.
MOVE @COUNT FROM @0 to @100 ..copy a block from CPU to CPU

4-42

4.4.21 SHIFT LEFT LOGICAL SLL
DSLL

Syntax Definition: SLL GD, GS
DSLL GD, GS

Example: LAB1 SLL @ VALUE,5 SHIFT (VALUE) LEFT
LOGICAL 5 BITS

Definition: Shift the (GD) left for the (GS) number of bits.
Fill in the vacated bits with logical zeros. Status
is not affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: Shift the (GD) left for the (GS) number of
bits and fill in the vacated bit with zeros.

Application notes: Use the shift left logical to shift the GD.
For example, if VAL has >21 in it, the
instruction

SLL @VAL, 2
results in the contents of VAL becoming >84.
DSLL requires a 2-byte shift count.

Op Code: >EO

Format type: 1

4-43

4.4.22 SHIFT RIGHT ARITHMETIC SRA
DS RA

Syntax definition: SRA GD, GS
DSRA GD, GS

Example: LAB1 SRA @A,@B SHIFT (A) RIGHT ARITHMETIC BY
THE NUMBER OF BITS SPECIFIED
IN LOCATION B

Definition: Shift the (GD) right for the (GS) number of bits.
Fill in the vacated bits with the MSB of (GD).
Status is not affacted.

Status bits affected: i H / GT / cond / carry / OVF/

Execution results: See definition

Application Notes: An example of an arithmetic right shift is:
if location contains a> 86; the instruction

SR @A,2

will result in changing location A to be a
>E1. DSRA requires a 2-byte shift count.

Op Code: >DC

Format type: 1

4-44

4.4.23 SHIFT RIGHT LOGICAL SRL
DSRL

Syntax definition: SRL GD, GS
DSRL GD, GS

Example: LAB1 SRL @VALUE,7 SHIFT (VALUE) RIGHT 7 BIT
POSITIONS

Definition: Shift the contents of the GD to the right for the
(GS) number of bits while filling in the vacated bit
positions with zeros. Status is not affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: See definition

Application notes: An example of a logical right shift is: If
the double byte location A contains the value
>FFEF, then the instruction,

DSRL @A,3

changes the contents of location A to >1FFD.
DSRL requires a 2-byte shift count.

Op Code: >E4

Format type: 1

4-45

4.4.24 SHIFT RIGHT CIRCULAR SRC
DSRC

Syntax definition: SRC GD, GS
DSRC GD, GS

Example: LAB1 SRC @A,@B SHIFT (A) RIGHT CIRCULAR BY
THE NUMBER OF BITS SPECIFIED
IN LOCATION B.

Definition:

1
Shift the (GD) to the right for number of bits
specified in the GS while filling vacated bit
positions with the bit shifted out (LSB). Status
bits are not affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: See definition

Application notes: An example of a right circular shift is, if
location VALUE contains a >A5, the
instruction

SRC @VALUE,1

will result in location VALUE containing a
>D2. DSRC requires a 2-byte shift count

Op Code: >E8

Format type:

4-46

4.5.1 COINCIDENCE

Syntax definition: LAB 1 COINC GS, GD

Example: COINC RAM (>300),RAM(>304)

Definition: The Source operand must indicate a Y,X byte pair for
object 1; likewise, the Destination operand
indicates the Y,X byte pair for object 2; COINC sets
the status equal bit if the objects are in
coincidence; otherwise it resets the status equal
bit.

Status bits affected: H / GT / cond / carry / OVE /

Execution results: COND = (objects in coincidence?)

Application notes: See Appendix E for details on operation
of the COINC INSTRUCTION.

Op Code: >ED

Format type: 1

4-47

4.5.2 LOAD BACKDROP COLOR BACK

Syntax definition: BACK IMM

Example: LAB1 BACK 3 LOAD BORDER WITH COLOR 3

Definition: Load the border area of the display with the
immediate color specified. Does not affect status
bits. Loads VDP register 7.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (VDP reg.7) := IMM

Application notes: Use the BACK instruction to change the VDP
register 7 to change the border color of the
display to the desired color.

Op Code: >04

Format type: 2

4-48

4.5.3 LOAD SCREEN ALL

Syntax definition: ALL IMM

Example: LAB1 ALL 0 LOAD EVERY BLOCK ON SCREEN WITH
PATTERN #0 `(RESIDES AT >800 - >807
IN VDP RAM)

Definition: Replace every byte in the pattern name table
(768 bytes) with the immediate operand. No status
bits are affected.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: ST IMM,RAM(0)67
MOVE 767 from RAM(0) to RAM(1)

Application notes: Use the ALL instruction to display a
repetitive pattern on the entire screen.
This can be used to clear the screen.
Assuming >900 to >907 (Pattern number >20)
contains 00's (which they will at power up from
the ASCII default character set); the instruction

ALL >20

will result in the the sceen getting filled
up with ASCII blanks. No status bits are
affected.

Op Code: >07

Format type: 2

4-49

4.5.4 FORMATTED BLOCK MOVE FMT

Syntax definition: FMT OPERAND1,OPERAND2,OPERNAND3,...

Example: FMT BIAS)20,4('0,2,4,6')

Definition: Output immediate and variable data to the Pattern
Name Table in a controlled, formatted fashion.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: The Pattern Mame Table is modified; see
below.

Application notes:
The operands of the FMT instruction are encoded by

the assembler and placed inline after the FMT op code.
The FMT processor in the interpreter is essentially
a sub-interpreter in that its "language" is different
from the rest of GPL. The FMT instruction places
data into the VDP Pattern Name Table in such a way
that the resulting screen image is formatted in the
way the programmer desires.

The locations XPT and YPT in the CPU RAM are used
heavily by FMT to determine where to put the next bytes
of data. These locations can be set within the FMT
statement; they are updated by the FMT statement also.

Some of the FMT capabilitPes are:
• Place a sequence of immediate data across the

screen from a defined starting point;
• Place a sequence of immediate data down the

screen from a defined starting point;
• Repeat the same immediate data byte or sequence

of bytes across or down the screen;
• Nest the above features in order to put data

up in a rectangular fashion;

Each of the OPERANDs can be of one of the
following formats:

'IMM,IMM,IMM,
(places the data across the screen from

starting point specified by XPT,YPT);

4-50

"IMM,IMM,IMM,...."
(places the data down the screen from

starting point specified by XPT,YPT);

M('@IMM')
(repeats the data from location IMM in
CPU RAM across the screen M times, where
M is from 1 to 32, or left off for 1, uses
the data stack);

M'IMM'
(repeats the same value across the screen
M times; M is from 1 to 32, or left off for 1);

N"IMM"
(repeats the same value down the screen
N times; N is from 1 to 32);

':character string:' or ":character string:"
(outputs the ASCII equivalents of the character
'string to the Pattern Name Table; note also
that this colon-delimited string can be
used wherever IMM is called for in the
above formats);

N
(adds the value of N to YPT, N from 1 to 32);

M
(adds the value of M to XPT-, M from 1 to 32);

XPT=IMM
(sets XPT to a specified value);

YPT=IMM
(sets YPT to a specified value);

BIAS =GS
(sets the BIAS to a specified value, see below);

Upon entering the FMT statement, the BIAS is 0.
Everything that gets output to the Pattern Name Table
gets the value of BIAS added to it. Setting the BIAS
to a non-zero value allows using the same FMT statement
to output alternate character sets, the same character
set of different colors, etc.

Any sequence of operands to the FMT instruction
may be enclosed in parentheses, and a "loop" count
constant used in front of it. •The operands inside the
parentheses are then effectively repeated the number
of times specified by the loop count. Examples of this
will be seen below. Furthermore, these loop structures
may be nested inside one another.

4-51

If a horizontal boundary is reached while outputting
data to the VDP, XPT is reset to 0 and YPT is incremented.
Thus further data is then output starting at the beginning
of the next line. If the vertical boundary is reached, YPT
is reset to 0 ; XPT is kept the same (this means vertical
wrap-around will be to the same column).

Examples:

FMT 3":HELLO:" (Repeats HELLO 3 times
down the screen)

HOME
FMT 32'>E0' , 22 ('SHO' , 30 < ,'>EĐ') , 32,'>E0'

(Puts a border around the
screen one character wide
of character > EO)

FMT BIAS= > AO,XPT=13,YPT=23,':TENNIS:'
(Adds >AO to the hex value of
the ASCII characters and puts
those characters on the screen)

PADL1 EQU >A5

FMT XPT=15,YPT=1, 22"PADL1" (Puts 22 of characer >A5
down the screen)

FMT BIAS=>20,2('@NUM') (Adds >20 to the value stored
in NUM and puts 2 of those
characters on the screen.)

FMT 3(1A,29<,3(':AAA:')) (Moves pointer one line down,
29 spaces right, and puts 9
A's on the screen--repeats
this two more times)

FMT BIAS=RAM(0),1,2,3,4,5,6,7,8,9,0
(Adds the value at RAM(0) to
each number and puts that
character across the screen)

FMT XPT=0,YPT=0,":MM:",1 ,2<,":ARM:",1^,3<,
":THAT:",1 ,4<,":THROWS:"

(Starting at the top corner,
puts MY down the screen, moves
down 1 line, right 2 spaces,
puts ARM down screen, moves
down 1 line, right 3 spaces,
puts THAT down the screen,
moves down one line, right 4
spaces, puts THROWS down the
screen.)

Op Code >08

Format type: 7
4-52

4.5.5 GENERATE RANDOM NUMBER RAND

Syntax definition: RAND IMM

Example: LABEL RAND 25 GENERATE A RANDOM NUMBER FROM
0 TO 25 INCLUSIVE

s

Definition: Generate a random number from zero to the immediate
operand and store this number in location >78 of CPU
RAM. Does not affect status bits. If no immediate
value is specified, the default is 255.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: (RAND) := Random number in (0,IMM)

Application notes: Use RAND to generate random numbers. For
example, for RAND sprite motion the in-
struction,

RAND 3

would generate a random number between
0 and 3 inclusive.
There is a useful way to generate
the initial seed for the random number:

LOOP1 RAND
SCAN
BR LOOP1

This method generates a "random" number
of calls to RAND, depending on how long
it takes for a key to be pressed. All
subsequent calls to RAND will thus gene-
rate unique random numbers every time
the program is run. It is good to use
this loop everywhere you do a scan if
you need really random numbers.

Op Code: >02

Format type: 2
4-53

4.5.6 SCAN KEYBOARD SCAN

Syntax definition: SCAN

Example: LABI SCAN SCAN KEYBOARD

Definition: Scans keyboard specified in >74 in CPU RAM. Returns
the keycode in location >75, the Y-position of the
joystick in location >76, and the X-position in
location >77. The COND bit is set if a key is
found depressed; however, the keypad or keyboard
is "debounced" in the sense that if the same key
is found depressed as was depressed upon the previous
call to SCAN (on the same keyboard), the proper
keycode is returned, but the COND bit is reset.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: >75 KEY value
>76 := JOYY
>77 := JOYX
COND set if new key; reset if old key or

no key

Applications notes: See Appendix D for details on handsets and
keyboards.

Assembly Language: There is a keyboard scan subroutine that can
be called while executing 9900 Assembly

'Language code. This subroutine is located ac
location >000E in the console ROM. The key-
board number (CPU >74) should be specified
before calling the subroutine. A BL to this
subroutine will serve the same purpose as a
SCAN instruction in Graphics Language.

Op Code: >03

Format type: 5

4-54

4.5.7 EXECUTE MACHINE LANGUAGE

Syntax definition: XML IMM

Example: LAB1 XML >05

Definition: Begin execution of 9900 machine language.
Use the IMM field to tell where.

Status bits affected: / H / GT / cond / carry / OVF /

Execution results: Execute 9900 machine language directly.

XML

Application Notes: The immediate field of the XML instruction
is split into a left nybble (table number) and
a right nybble (index into table). There are 16
table addresses defined in the CPU address space.
See Table 4.5.1 for a list of these hardcoded values
(note that they have been arranged so as to insure
that at least one table exists in any conceivable
plug-in fast ROM). The left nybble specifies which
of the 16 tables to get the Branch address from.
The right nybble is then used to determine which
of the 16 addresses in the table to use. Each table
can contain up to 16 2-byte entry-point addresses.
Note that one can have less if one wishes. As an
example of XML,

XML >24
causes a branch to the address contained in the
fifth entry of Table 2.

This technique makes it easy to have a plug-
in ROM which contains up to 16 routines in it. One
determines which table will reside in the ROM's
address space; at the table address in the ROM,
the entry vectors for the ROM routines should
be stored. Upon entry to a routine, the 9900
workspace pointer is set to >83E0 and the 9900 ST

' is set to an unknown value. To return control to
the interprer, make sure WP is still >83E0 and
execute a "B *R11". GPL execution will continue
out of the GROM from which he XML was seen, at the
address specified by the internal GROM address.

To do a keyboard scan in 9900 Assembly Language, do a
BL to a subroutine located at location >000E in con-
sole ROM.

Op Code: >OF

Format type: 2
4-55

TABLE 4.5.1
XML TABLE

TABLE $ KI CTIW ADDRESS (>)

0 "FZ,TTAB" FLOATING POINT ROUTINES

1 "XTAB" CONVE3SICN AND BASIC ROUTINE

2 2000 SYSTEM EXPANSION RCM/RAM

3 BASIC ENHANCEMENT 3FC0 and "XTAB3"

4 BASIC ENHANCEMENT 3FE0 and "XTAB2"

5 4010 PERIPHERAL/MR RCM/

6 4030 PERIFf RAL/DSP RCM/RPM

7 GRCM M CULE ROM/RAM 6010

8 Chi MODULE RCM/RAM 6030

9 7000 GRCM MODULE RCM/RPM

10 8000 FUTURE E EXPANSION

11 A000 brut a EXPANSION

12 B000 FUTURE EXPANSION

13 C000 WiDxr: EXPANSION

14 FUTURE EXPANSION D000

15 SCRATCH PAD RAM 8300

4-56

EXIT
4.5.8 EXIT GPL

Syntax definition: EXIT

Example: EXIT ,

Definition: Terminate GPL execution; return control to
the system monitor.

Status bits affected:

Execution results: The monitor performs a restart sequence.

Application notes: All GPL programs that terminate should use
the EXIT command. See the Monitor Speci-
fication for details on system restart.

Op code: >OB

Format type: 5

4-57

4.5.9 I/O INSTRUCTION I/0

Syntax definition: I/O GS,IMM

Example: I/O @BLOCR,2

Definition: This is an extended instruction in the sense
that the action that occurs depends upon the value
of the IMM field. Specifically, this instruction
does SOUND, CRU input and output.

Status bits affected: / H / GT / cond / carry / OVF /

Execution result: See below.

Application notes: See Appendix F for currently supported
uses for the I/O instruction.

Op code: >F6

Format type: 8

4-58

4.5.10 HOME INSTRUCTION

Syntax Definition: HOME

Example: SOME

Definition: SET XPT and YPT equal to zero

Status bits affected: None

HOME

Execution results: >7E (YPT): = 0
>7F (XPT): = 0

Application notes: The HOME instruction assembles the same as:

DCLR YPT

4-59

PENDIX A - THE GPL ASSEMBLER

SOURCE FILE FORMAT

GPL source instructions are entered as card images to the

assembler in a free field format with the restrictions that LABEL

fields must begin in column 1 and Operand list fields must begin

before column 25. No imbedded blanks are permitted within an

operand list. Blank lines in the source are ignored.

The format of a typical instruction is:

(LABEL) (INSTRUCTION MNEMONIC) (OPERAND LIST) (COMMENT)

The LABEL field is always optional. It consists of an

alpha-numeric string of up to 6 characters , the first of which

must be non-numeric. Up to 1000 LABELs can be defined in any one

source file. Any label that is defined in a source file can be

referred to in the OPERAND LIST of any other instruction in that

source file. Note that SYMBOLS (as defined using the EQU

directive) are exactly like LABELs and their usage is the same.

The INSTRUCTION MNEMONIC must be one of the valid mnemonics

as described in Section 4 of this manual. The OPERAND LIST

must be of the type required by that particular instruction. For

instructions that allow OPERAND LISTs of arbitrary length, this

field may be continued up to 16 lines .by terminating an OPERAND

with a semicolon instead of a comma (the FMT is an example).

The comment field has no restrictions except that it cannot

span lines. It must be separated from the OPERAND LIST by at

least one space.

A-1

ASSEMBLER DIRECTIVES

These directives have a format similar to GPL instructions;

they can include LABEL fields as well as comment fields.

DATA IMM,IMM,IMM,...

The DATA instruction is used to generate a sequence of bytes

in the Graphics ROM. The address field contains a list of

immediate values or LABELS. In conjunction with the MOVE

instruction, the DATA statement provides a way to load up a

sequential block of CPU or VDP RAM. For example:

MOVE 10 FROM ROM(#LAB1) TO RAM(>300)

where later on in the source:

LAB1 DATA 0,1;2,3,4,5,6,7,8,9

TITLE XXXXXXXX

The TITLE directive provides an 8 character string that is

printed at the top of each page of listing and included in the

object file. It generates no code and should be placed at the

very beginning of the source file.

END

The END directive may be used to separate blocks of code.

It also is required to terminate the source file.

(SYMBOL) EQU IMM

The EQU directive assigns the immediate field value to the

symbol that starts in column one. A symbol may be a one or two

byte value.

A-2

GROM IMM

The GROM directive selects which GROM the assembled program

is to be in. In the current definition of the system the operand

must be less than eight and the maximum length of the program in

a GROM is 6K. The GROM directive sets the assembler location

counter to the start of the selected ROM. Remember that if a

program is longer than 6144 (>1800) bytes it must be partitioned

into segments. The only way to transfer control from one GROM to

another is through the long Branch instruction. However,

references can be made to LABELS and SYMBOLs in different GROMS.

ORG IMM

The ORG directive sets the assembler location counter to the

displacement within the currently selected ROM specified by the

operand. This is useful for generating data in a different

section of the GROM than)the program. IMM must be a value from

0 to >17FF. (s'

BASE IMM1,IMM2,IMM',IMM4,IMM5,IMM6, IMM7

The BASE directive specifies the base addresses for the

various sub-blocks in VDP RAM. The seven operands are the base

addresses for the Pattern Name Table, Pattern Generator Area, the

Pattern Color Table, Sprite Attribute List, Sprite Descriptor

Blocks, Sprite Velocity Table, and object code bias. The

default values correspond to the standard configuration and are

0, >800, >380, >300, >400, >780 and 0. It is necessary to use a

BASE directive only if one wishes to use the special mnemonics in

the MOVE instruction, and base addresses other than the defaults

listed above are used.

A-3

PAGE

The PAGE directive causes the listing to continue on a new

page. The PAGE statement is not printed.

LIST

The LIST directive restores printing of the source listing.

This directive is required only when UNL directive is in effect,

to cause the assembler to resume printing. The LIST statement is

not printed.

UNL

The UNL directive inhibits printing of the source listing.

The UNL statement is not printed.

LISTM

The LISTM directive restores printing of multiple lines of

object code. This directive is required only if a UNLM directive

is in effect. This statement is not printed.

UNLM

The UNLM directive inhibits printing of multiple lines of

object code. This statement'is not printed.

A-4

GPL MACROS

These macro instructions are designed to allow implementa-

tion of control statements similar to those in high level langua-

ges like PASCAL. Table A.1 shows the GPL instructions which each

macro expands to. The mnemonics for the statements are:

$END

Terminator for the $WHILE, $FOR, $IF, $ELSE, and $SELSE state-

ments.

$SEND

Same as end $END. When used as a terminator for $WHILE and $FOR,

it generates a BR instead of a B.

$WHILE GD .R. GS

Causes the following block to be executed as long as the

comparison is true. A list of valid relations is given below.

$REPEAT

Causes the following block to be executed until the comparison in

the terminating $UNTIL statement is true. The block is executed

at least once.

$UNTIL GD .R. GS

Terminator for the $REPEAT statement.

$FOR GD = GS TO GS BY GS

Causes the following block to be executed as a loop. The loop is

controlled by a counter specified by the first operand. The

counter is initialized by the second operand and incremented by

the optional fourth operand until it is greater than (arithmetic

compare) the third operand. The range of each GS operand is

0- >7F. If there is no fourth operand specified,a default value

of 1 is used to increment the second operand.

A-5

$FOR GD = GS DOWNTO GS BY GS

Same as previous statement except that the counter is decremented

by the optional fourth operand until it is less than (arithmetic

compare) the third operand.

$IF GD .R. GS GOTO LAB

The branch is taken if the comparison is true and otherwise

execution continues at the next line. No END statement is

required with this form of $IF. LAB must be a label in the same

GROM because the compare generates a BS or BR instruction.

$IF GD .R. GS THEN

The following block is executed if the comparison is true. If

false it is skipped. An END statement must terminate the block.

$ELSE

Terminates a block following an $IF statement. If the comparison

was true causes a skip around the following block. If the

comparison was false the block is executed.

$SELSE

Same as $ELSE, except it generates a BR instead of a B.

$CASE VAR OF LAB1, LAB2, ...

Branches to the label in the list whose position corresponds to

the value of the operand. (If the value in VAR is 0, then the

program branches to LAB1; if the value is 1, then the program

branches to LAB2, etc.) All labels in the list must be contained

in the same GROM as the $CASE statement.

$GOTO LAB

Branches to the label. Label can be anywhere in the program since

the $GOTO generates a long branch.

A-6

$CALL LAB

Calls the label as a subroutine.

The comparisons may take the following relations:
D

H. .HE.` .L. .GT. .GE. .LT. .LE.

.DH. .DHE. .DL. .DGT. .DGE. .DLT. .DLE.

.EQ. .NE. .AND.

.DEQ. .DNE. .DAND.

These relations are used in the logical expressions. The

relations .AND. or .DAND. generate a CLOG of the GS and GD.

Additionally the relations .H., .GT., .OVF., .CARRY. may be

used without arguments to test bits in the STATUS byte. The

negating prefix .NOT. may be used before the relation or first

argument to reverse the sense of the test.

Individual bits may be tested by using the prefix .BITn or

.BIT(IMM) before the first argument where n is a bit number from

0 to 7 or IMM is equated to a number from 0 to 7. Only the .EQ.

and .NE. relations may be used and the second argument must be a

0 or 1.

A-7

TABLE A.1
MACRO EXPANSIONS

INS"I rrICN $IF-' N' $IF-C PO $REPEAT-$WTIL SMILE
RELATION INSTRLKTICN BS/BR BS/BR BS/BR BS/ER
TEST CF BITS IN THE STATUS BYTE:

.H. H BR BS BR BR
.GT. GT BR BS BR BR
.OVF. OVF BR BS BR BR
.CARRY. CARRY BR ES BR BR

TEST RELATION OF GD TO GS:

.EQ. CEQ
.NE. CEQ
.H. CH
.BE. CHE
.L. CHE
.GT. CGT
.GE. CGE
.LT. CGE
.LE. CGT
.ADID. CLOG RH

E
N

RJ
R3

g1
K4

38
iK

i

ab1 RELATION CF GD TO 0:

.EQ. CZ BR

.NE. CZ BS

All other relations of GD to 0 are tested as GD to GS, using 0 as the GS.

Following are several MACRO instructions with their graphics
language equivalents:

ffiRR

1
6
1131%

818
1R
031

BS
BR

Ri
Na
lR
3R
3

8%%

81R
3

BR
BS

%N
aiR
3%

8
1%9
3
BIR
J

BR
ES

1. $REPEAT
$LNTIL GD .NC71*. .H. GS

2. $REPEAT
$LNTIL GĐ .HE. GS

3. $REPEAT
${MIL .NOT. GD .AND. GS

4. =PEAT
$INTIL .OVF.

CH GS,GD
ES (Code following $REPEAT)

C E GS,GD
BR (Code following $REPE.AT)

CLOG GS,GD
BS (Code following $REPEAT)

OVF
BR (Code following $REPEAT)

A-8

Page Two
MACRO EXPANSIONS - TABLE A.1

5. $WHILE GD .NE. GS CEQ GS,GD
BS ,(Code following $END)

$END • B '$WHILE

6. $WHILE .BITS GD .EQ. 1 CLOG >20,GD
BS (Code following $END)

$END B $WHILE

7. $WHILE .CARRY. CARRY
BR (Code following $END)

$END B $WHILE

8. $IF GD. .EQ. GS THEN CEQ GS,GD
BR (Code following $ELSE)

$ELSE B (Code following $END)
$END

9. $IF GD .DGE. GS THEN DCGE GS,GD
BR (Code following $END)

$END

10. $IF GD .L. GS THEN CHE GS,GD
BS (Code following $END)

$END

11. $IF GD .NOT. .AND. GS THEN CLOG GS,GD
BS (Code following $END)

$END

12. $IF GD .GT. GS GOTO LABEL CGT GS,GD
BS LABEL

13. $IF .H. THEN H
BR (Code following $END)

$END

14. $IF BIT7 GD .NE. 0 THEN CLOG >80,GD
BS (Code following $END)

$END

15. $FOR GD = GS1 TO GS2 BY GS3 S
BT $S+

,
6
GD

$FOR+6 ADD GS3, GD
$+6 CGT GS2, GD

BS (Code following $END)
$END B $FOR+6

A-9

Page Three
MACRO EXPANSIONS - Table A.1

16. $FCgt GD= OTVGS

SEND

17. $FOR C3) = GS DCxdV'PO 0

$END

18. $CASE VAR CF LAB1, LAB2

19. $GOIti LABEL

CZR G.,1
B $+5

$PCXt+5 INC G)
$+5 Cx,T GS, ®

BS (Code following $IIND)
B $e0K+5

ST GS,GD
B $+5

$PQR+6 DEC GD
$+5 CG8 GS,(D

BR (Code following $END)
B $ECR+6

CASE VAR
BR LABl
BR LAB2

B LABEL

20. $CALL LABEL CALL LABEL

A-10

APPENDIX B AUTOMATIC SPRITE MOTION

Any number of Sprites from 1 to 32 can be set into motion

in such a way that the direction and speeds of each Sprite are

constant, and independent of each other. The MOTION byte in the

STATUS BLOCK, which is normally 0, is set by the programmer to

the number of Sprites he wants to be governed by auto-motion.

If set to N, Sprite (0) thru Sprite (N-1) in the Sprite

Attribute List are set in motion. The Sprites are moved by

updating the Y and X pixel positions for each one in the Sprite

Attribute List.

A motion control block must be set up in VDP RAM prior to

making the MOTION byte non-zero. This control block must begin

at >780 in the VDP RAM. Four bytes are required for each Sprite

to be controlled:

byte 1: velocity in the vertical direction;

byte 2: velocity in the horizontal direction;

bytes 3,4: reserved for system use.

The velocity bytes are scaled in such a way that a value of

1 causes the Sprite to move in that direction once every 16 frame

refreshes (or 16/60 second, about 4 second). A value of 16 in a

velocity byte causes a movement of one pixel every one-sixtieth

of a second, or 60 pps. A positive Y velocity causes downward

motion, a positive X velocity causes horizontal motion to the

right. As an example, if the first two bytes are 1 and 8, then

every 16 frame refreshes the Sprite will move 1 pixel down and 8

pixels to the right. The motion will appear to be continuous.

For a complete example of Sprite auto-motion, see sample

program "SPRITES" on the following page.

B-1

11990 GL Ab6LMBLER SPRI1LS 04/12/79 07. 55:35 PAGE

1 TITLE SPRITES
2 * STATUS BLOCK LOCATION TELLING NUMBER OF MĐVING SPRITES

007A 3 MPC EGU >74
4 # COLOR NUMBER OF BLACK

0001 5 BLACK EGU 1
6 **************************** ****.**#*****-***************
7 # MAIN PROGRAM
8 ******** **4
9 *** TELLS BEGINNING LOCATION OF OBJECT CODE (:-6000) *
10 0ROM 3
11 ORG 0
12 **- HEADER BLOCK #

6000 AAO 101 13 DATA > AA, 1, 1
6003 000000 14 DATA 0,0,0
6006 6010 15 DATA #PROG1
6008 000000 16 DATA 0,0,0
600B 000000 17 DATA 0,0,0
600E 0000 18 DATA 0,0
6010 0000 19 PROG1 DATA 0,0
6012 601C 20 DATA #START
6014 075350 21 DATA 7,:SPRITES:
6017 524954
601A 4553

^1^9 m= *a* STORE NUMBER OF SPRITES IN MFC *1
601C BE7A20 23~ START ST 32,@MPC *32 SPRITES ALLOWED TO MOVE

24 LOAD COLOR TABLE THAT CONTAINS THE SPACE 4-

601F BEA384 25 ST 01, RAM(:::384) *COLOR SPACE BLACK
6022 01

26 *** LOAD VDP REGISTER 1 FOR DOUBLE-SIZED SPRITES 41

6023 390001 27 MOVE 1 FROM ROM(#VDPREQ) TO VDP(1)
6026 016045

28 *** ESTABLISH SPRITE ATTRIBUTE BLOCK *
6029 310080 29 MOVE 128 FROM RĐ1`1(#SAL I NT) TO RAhi (':300)
602C A30060
602F 46

30 **# ESTABLISH SPRITE DESCRIPTOR BLOCK
6030 310060 31 MOVE 128 FROM ROM(#SHAPE) TO RAM(400)
6033 A40061
6036 46

32 *#* ESTABLISH SPRITE VELOCITY BLOCK ~..

6037 310080 33 MOVE 128 FROM ROM (#}SMOTAB) TO RAhi (:'•780)
603A A78060
603D C6

34 *** MAKE ALL PATTERN NAME TABLE BLANK ~-,
603E 0720 35 ALL :'20
6040 0401 36 BACK BLACK *BORDER IS BLACK
6042 056042 37 B đ
6045 62 38 VDPREG DATA >62

TI990 GL ASSEMBLER SPRITES 04/12/79 07:55:35 PAGE

40 *********.***
41 # SPRITE ATTRIBUTE LIST INITIALIZATIONS
42 *******.***

6046 000080 43 SALINT DATA >00,>00,>80,>2,>06,>08,>84,>3
6049 020608
604C 8403
604E 0C1088 44 DATA, •OC, >10, 788, >4;512, 12, >18, >8C, >5
6051 041218
6054 8C05
6056 182080 45 DATA >18,>20,>80,>6,>1E,>28,>84,>7
6059 061E28
605C 8407
605E 243088 46 DATA >24,>30,>88,>8,>24,>38,>8C,>9
6061 082A38
6064 8C09
6066 304080 47 DATA >30,>40,>80,>4,>36,>48,>84,>8
6069 0A3648
606C 8408
606E 3C5088 48 DATA)3C,)50, ::>88,)C, :42, : 58, >8C, >D
6071 0C4258
6074 8COD
6076 486080 49 DATA >48, :>60,)80, :>E, :>4E, ::68, >84, :>F
6079 0E4E68
607C 840F
607E 547088 50 DATA >54,>70,>88,>2,>54,>78,>8C,>3
6081 025A78
6084 8CO3
6086 608080 51 DATA >60,>80,>80,>4,>66,)88,>84,>5
6089 046688
608C 8405
608E 6C9088 52 DATA)6C, >9Đ, ?88, :•6, :>72, :98, :•8C,)7
6041 067298
6094 8C07
6046 78A080 53 DATA :>78, :>A0, >80, >8, •7E, :>A8, >84, >9
6099 087E48
604C 8409
609E 848088 54 DATA >84,>80,:88:>4,>84,>88,>8C,>8
6041 048488
6044 8COB
6046 900080 55 DATA :'•90, :-•CĐ, :•80, >C, ::•96, :::•C8, 3.84,)D
6049 0096C8
60AC 840D
604E 9CD088 56 DATA)9C, :>DĐ, 88, >E, ::A2, :: D8, 78C, :••F
6081 OEA2D8
6084 BCOF
6086 A8E000 57 DATA : AB, `•EĐ, :'80,)2, :••AE, :=EB, 784, >4
6089 024EE8
6080 8404
608E 24F088 58 DATA :•84, : F0, :'BS, D6, :'•BA, :'•F8, :- $C, :•'•S
6001 0484F8
6004 SCO8

B-3

I J. 7 7L/ LV.L.1•

60 ********** *************** .******hč**********************.

61 * SPRITE MOTION TABLE
62 **4

6006 021000 63 SMOTAB DATA 2, 16, 0, 0, 2, 14, 0, 0
60C9 00020E
60CC 0000
60CE 020000 64 DATA 2, 12, 0, 0, 2, 10, 0, 0
60D1 00020A
60D4 0000
6006 020800 65 DATA 2, 8, 0, 0, 2, 6, 0, 0
6009 000206
60DC 0000
60DE 020400 66 DATA 2, 4, 0, 0, 2, 2, 0, 0
60E1 000202
60E4 0000
60E6 040200 67 DATA 4, 2, 0, 0, 6, 2, 0, 0
60E9 000602
60EC 0000
60EE 080200 68 DATA 8, 2, 0, 0, 10, 2, 0, 0
60F1 000A02
60F4 0000
60F6 00O200 69 DATA 12, 2, 0, 0, 14, 2, 0, 0
60F9 000E02
60FC 0000
60FE 100200 70 DATA 16, 2, 0, 0, 8, 0, 0, 0
6101 000800
6104 0000
6106 O0F800 71 DATA 0, -8, 0, 0, -2, --16, 0, 0
6109 ĐOFEFO
610C 0000
610E FEF200 72 DATA -2, -14, 0, 0, -2, -12, 0, 0
6111 OOFEF4
6114 0000
6116 FEF600 73 DATA -2, -10, 0, 0, -2, -8, 0, 0
6119 OOFEF8
611C 0000
611E FEF= AOO 74 DATA -2, -6, 0, 0, -2, -4, 0, 0
6121 00FEFC
6124 0000
6126 FEFEOO 75 DATA -2, -2, 0, 0, -4, -2, 0, 0
6129 OOFCFE
612C 0000
612E FAFEOĐ 76 DATA -6, -2, 0, 0, -8. -2, 0, 0
6131 OOFSFE
6134 0000
6136 F6FE00 77 DATA -10, -2, 0, 0, -12, -2, 0, 0
6139 0OF4FE
613C 0000
613E F2FE0O 78 DATA -14, -2, 0, 0, -16, -2, 0, O
6141 OĐFOFE
6144 0000

TI990 GL ASSEMBLER SPRITES 04/12/79 07:55:35 PAGE

80 *****************4**.
81 SPRITE DESCRIPTOR BLOCKS
82 * (SQUARE, DIAMOND, CIRCLE, TRIANGLE)
83 ***

6146 FFFFCO 84 SHAPE DATA '.>FF, :>FF, :>CO3 ::•CO3 :>CO3 ::CO, CO, :>CĐ SQUAB
6149 COCOCO
614C COCO
614E COCOCO 85 DATA ::CO, ?CO3 CO, :>CO3 :>CO3 = CO, :>FF, ::FF
6151 COCOCO
6154 FFFF
6156 FFFF03 86 DATA FF, :>FF, :=03, -03, 03, :>03, ::•03, :03
6159 030303
615C 0303
615E 030303 87 DATA 03, :>03,03, ::-03, :--03, 03, _ -FF, FF
6161 030303
6164 FFFF
6166 010306 88 DATA e.-01, :>03,`.•06, :>OC, :> 18, 30, :>60, :>CO D I AMCP
6169 0C1830
616C 6000
616E C06030 89 DATA >CO3>60,>30,>18,>00,)06,>03,>01
6171 18ĐC06
6174 0301
6176 800060 90 DATA)80,.)-0O3)-60,30,.>18,)0C,.>06,)03
6179 30180C
617C 0603
617E 03060C 91 DATA >03,>06,>0C,-)18,>30,>60,>CO3>80
6181 183060
6184 C080
6186 071F3C 92 DATA _-07, 1F, 3C, 70, >60, E0, CO, : C0 CIF'»
6189 7060E0
618C COCO
618E C OCOEO 93 DATA ::>CO3 : CĐ,) EO, 60,) 70:? 3C , :. I F, 07
6191 60703C
6194 1F07
6196 EOF83C 94 DATA _ EĐ, F8, :>3C, OE, 06, :-.07, x-03, _--03
6199 0E0607
619C 0303
619E 030307 95 DATA :-03, 03,)Đ7, :>06, :>OE, : 3C, :: F8, :: EĐ
61A1 060E3C
61A4 F9E0
61A6 010103 96 DATA 01, 01, : 03, :-03, :'--06, :06, OC, ::-ĐC TR I ANGI
61A9 030606
61AC OCOC
6IAE 181830 97 DATA : 18, > 18, ::-30, 30, :>6Đ, 60, 'FF, FF
61B1 306060
6154 FFFF
6136 808000 98 DATA)8O,)80, CO,)-0O3 :60, :'60, '.--30, :>30
61B9 C06060
61BC 3030
618E 18180C 99 DATA :: 18, : 18, :::OC, :GC, :•06, `06, FF, ::FF
61C1 000606
61C4 FFFF

100 END

ERRORS= 0

LENGTH= 454 (:0106)

B-5

APPENDIX C AUTO-SOUND INSTRUCTION

The sound instruction allows the programmer to control the

Sound Generator Chip (SGC) in the system ćonsole by means of a

pre-defined table in GROM, or VDP RAM. Sound output is

controlled by the table and the VDP interrupt service routine. A

control byte at the end of the table can tell the interpreter to

end sound output, or can cause control to loop back up in the

table.

Table Format

The format of the table is the same regardless of where it

resides. The table consists of a series of blocks, each of which

contains a series of bytes which are directly output to the SGC

chip. The exact format of each block is:

(block size in bytes)

byte 1 to output to SGC;

byte 2

byte N1

Interrupt count (unsigned)

Since the VDP generates 60 interrupts per second, the

interrupt count is expressed in units of one-sixtieth of a

second. When the I/O instruction is called, upon the next

occurring VDP interrupt, the first block of bytes is output to

the SGC chip. The interpreter then waits for the requested num-

ber of interrupts (for example, if interrupt counts are 1, every

C-1

interrupt causes the next block to be :output). Remember

that interpretation of GPL continues normally while the SGC

control is enabled.

The sound control can be terminated by using an interrupt

count of 0 in the last block of the table. Alternatively,

a primitive looping control is provided by using a block whose

first byte is 0, and the next 2 bytes indicate an address in the

same memory space of the next sound block to use. If the first

byte is hexidecimal FF, the next two bytes indicate an address in

the other memory space. These allow switching sound lists from

GROM to VDP or VDP to GROM. By making this the beginning of the

entire table, the sound sequence can be made to repeat

indefinitely.

To initiate sound use the I/O instruction:

I/O GS, 0 for list in GROM

or I/O GS,1 for list in VDP RAM, e.g. I/O @FAC, 1

The GS points to two-byte block in CPU RAM which contains the

address of the sound list.

GPL can also check for completion of an executing sound

list by testing whether location >83CE (> CE in GPL) in CPU RAM

is equal to 0 (this byte is a down-counter and is 0 only after

table-driven execution is complete). Additionally, the address of

the sound block currently executing is in CPU RAM locations >83CC

and >83CD.

Executing a sound list while table-driven sound control is

already in progress (from a previous sound list) causes the old

C-2

sound control to be totally supplanted by the new sound

instruction.

Sound Generator CHIP (SGC) Control Summary

The SGC has 3 tone (square wave) generators - 0, 1, and 2 -

all of which can be working simultaneously or in any combination.

The frequency (pitch) and attenuation (volume) of each generator

can be independently controlled. In addition, there is a noise

generator which can output white or periodic noise.

Attenuation Control (for generators 0,1,2 or 3)

One byte must be transmitted to the SGC:

+ + + + + + + + +

/1 /REG# /1 / A /

REG# = register number (0,1,2,3);

A = attenuation/2

(e.g. A=0000 = 0 db = highest volume;

A=1000 = 16 db = medium volume;

A=1111 = 30 db = off.)

examples: 1 10 1 0000: turn on gen. #2 to highest volume;

1 11 1 1111: turn off noise generator (#3).

You should not use all three tone generators at maximum

attentuation at once.

Frequency Control (for generators 0,1,2)

Two bytes must be transmitted to the SGC to control the

frequency of a given register. To compute the number of

counts from the frequency f, use:

N = 111860 / f ;

C-3

byte 1: byte 2:

+ + + + + + + + + + + + + + + +. + +

/1 /REGi / N (ls 4 bits) / / 0 0 / N (ms 6 bits)/

Note that N must be split up into its least

significant 4 bits and most significant 6 bits (10 bits

total).

The lowest frequency possible is 110 Hz and the

highest is 55,938 Hz.

Noise Control

One byte must be transmitted to the SGC:

+ + + + + + + + +

/1 1 1 0 /0 /T / S /

T = 0 for white, 1 for periodic noise;

S = Shift rate (0,1,2,3) =frequency center of noise.

S = 3 = frequency dependent on the frequency

of tone generator 3.

For more information on controlling the SGC, see the

TMS9919 SGC Specification.

Creates a Falling Sound (High to Low)

SOUND EQU >00

DTEMP1 EQU >02

TR EQU >79

MUSIC EQU >400

Move 8 bytes from ROM(*DROP) to RAM(MUSIC)

DST >0039, @DTMP1 >39 = Highest possible frequency

@DTEMP1 = 2-byte temp area

C-4

DST MUSIC,@SOUND (Music is a constant of >400 --

could`be anywhere in RAM

BO1 DST @DTEMP1, RAM(MUSIC+1)

DSRC RAM(MUSIC+1),4

SRL RAM(MUSIC+1),4

OR &10000000,RAM(MUSIC+1)

I/O @SOUND,1 @SOUND = 2-byte area for ADDR

CLR @TR @TR = Timing register (>79)

B02 CZ @TR

BS B02

DINC @DTEMP1

DCGE >0200,@DTEMP1 >0200 = Lowest frequency played

BR B01

DST #ENDROP,@SOUND *Turns sound off

I/O @SOUND, 0.

B $

DROP DATA 3,>00, > 00, >00, >92,1

ENDROP DATA 1, >9F, 0

A similar routine could be implemented to create a rising sound

by storing a low frequency in DTEMP1 to begin with, do a DDEC to

DTEMP1 and a compare low with a high frequency value.

CREATES AN EXPLOSION SOUND

DST #EXPL,@SOUND

I/O @SOUND,0

B $

C- 5

EXPL DATA 2, >EO, >F2, 5

DATA 2, >EO, >FO, 18

DATA 2, >E0, >F1, 16

DATA 2, >EO, >F2, 14

DATA 2, >EO, >F3, 12

DATA 2, >EO, >F4, 10

DATA 2, >El, >F5,

DATA 2, >El, >F6,

9

8

DATA 2, >El, >F7, 7

DATA 2, >El, >F8, 6

DATA 2, >El, >F9, 5

DATA 2, >E2, >FA, 4

DATA 2, >E2, >FB, 3

DATA 2, >E2, >FC, 2

DATA 2, >E2, >FD, 1

DATA 2, >E2, >FE, 1, 1, >FF,0

C-6

APPENDIX D HANDSET/KEYBOARD INTERFACE

As mentioned in Section 4 of this manual, the SCAN

instruction is used to poll the state of the handsets and

keyboards on the system. The byte KEYBRD in the STATUS BLOCK is

used by the SCAN instruction to determine which peripheral device

to look at, as well as how to interpret the results.

Presently, the following peripherals are supported by the

SCAN instruction:

• 40-KEY KEYBOARD (KEYBRD = 0):

When scanning this keyboard, only the bytes KEY,

and the COND bit are affected. The layout of the keyboard

and the codes returned by each key are shown in Figures

D.1 and D.1.A. If more than one key is depressed at a

given time, only one key will be read.

• REMOTE HANDSETS (KEYBRD = 0,1,2,3,4)

See Figures D.2, and D.2.A for keycodes assigned to

the Remote Handsets. Note that if KEYBRD = 0, Handsets 1

and 2 are assumed to be adjacent to each other and thus

simulate the 40-key keyboard. If KEYBRD = 1,2,3 or 4, the

correspondingly numbered handset is scanned; in addition,

the joystick is scanned, and each of JOYY and JOYX will get

a value returned in them ranging from -7 to +7, depending

upon the amount of deviation from the neutral position in

the Y and X axes respectively.

D-1

• REMOTE KEYBOARD (KEYBRD = 5)

Remote handsets 3 and 4 can be mapped into a 40-key

keyboard in the same manner as handsets 1 and 2.

• WIRED HANDSETS (KEYBRD = 1,2):

See Table D.3 for keycodes assigned to this type of

handset. The joystick behaves similarly to the remote

handsets except that the range of JOYY and JOYX is limited

to values of -4,0, or +4. These values were chosen to make

the remote and wired joysticks as compatible as possible.

Note there is a pushbutton mounted on the joystick. This

button is electrically and logically the same as the key

corresponding to keycode >C. The console keyboard may be

used to simulate two 20-key keypads for the wired handsets.

Note that if the joystick pushbutton is depressed, it will

always be recognized, as it has the highest priority. The

depression of more than 2 keys causes undefined values to

be returned.

Since the GPL program is not immediately alerted that the

state of a handset has altered, it is necessary to regularly scan

the handsets, if input from them is desired. The COND bit in the

STATUS byte is set only the first time a given key is found

depressed. If the same key is found depressed on successive

scans, the successive calls to SCAN reads the keycode properly,

but resets the COND bit. Thus in applications like the above,

where we wish to recognize fresh keystrokes only, the following

code sequence can be used:

D-2

LOOP1 SCAN

BR LOOP1

The above code causes GPL to loop until a fresh keystroke

is seen.

In order to debounce the Fire button a routine must

be implemented to make sure it ,pa been lifted before it is

detected as being down again. A :example of this routine would

be:

SCANIT SCAN

$IF @KEY .EQ. @OLDKEY THEN

B SCANIT

$ELSE

ST @KEY, @OLDKEY

(operate on KEY)

$END

B SCANIT

D-3

0 7 8 3 1 2 5

Q W R T Y U I 0 P

SPACE A S D F G H K L

•

6

~

9

~

4

~

E

A

J

C V

a • •

B N

SPACE

FIGURE Dal

CONSOLE KEYBOARD

SHIFT Z X M ENTER

FIGURE D.1.A

CONSOLE KEYBOARD HEXDECIMAL-CODE ASSIGNMENTS

(21) (40) (23) (24) (25) (27) (26) (2A) (28) (29)

31 32 33 34 35 36 37 38 39 30

(05) (OE) (06) (06) (07) (3E) (5F) (2D) (2B) (22)

51 57 45 52 54 59 55 49 4F ' 50

(20) (01) (08) (09) (03) (04) (3C) (5E) (2F) (3D)

20 41 53 44 46 47 48 4A' 4B 4C

SHF (OF) (OA) (02) (OC) (3F) (3A) (3B) (2C) (OD)

5A 58 43 56 42 4E 4D 2E OD

SPACE

HANDHELD UNIT KEYBOARD

A

~

~
=
W

HORIZONTAL

CLR

(13)

7

(7)

8

(8)

9

(9) (A)

GO

(12)

4

(4)

5

(5)

6

(6)

X

(B)

SET

(11)

1

(1)

2

(2)

3

(3)

NO-

(C)

NEXT

(10)

STOP.

(F)

0

(0)

E_

(E)

YES+

(D)
rr

NOTE 1: Hexidecimal numbers in parenthesis correspond to keycodes returned

by console system software.

D-6

FIGURE D.2.A

CONSOLE KEYBOARD MAPPED AS TWO HANDHELD UNITS

CLR 7 8 9 CLR 7 8 9

(>13) (7) (8) (9) (>OA) (>13) (7) (8) (9) (>OA)

GO 4 5 6 X GO 4 5 6 X

(>12) (4) (5) (6) (>OB) (>12) (4) (5) (6) (>OB)

SET 1 2 3 NO- SET 1 2 3 NO-

(>11) (1) (2) (3) (>0C) (>11) (1) (2) (3) (>0C)

NEXT STOP. 0 E= YES+ NEXT STOP. 0 E= YES+

(>10) (>0F) (0) (>0E) (>OD) (>10) (>OF) (0) (>OE) (>OD)

SPACE

7
4

1

0

-1

-4
-7

TABLE D.3

JOYSTICK CCDES

PO.SITICN
(AORI ZCINTAL)

Y POSITICN HEXIDECIMAL
CCDE (VIItTICAL)

7 Full Right Full Up

4* Medium Right Medium Up

1 Near Right Near Up

0 Center Off Center Off

> FF (-1) Near Left Near Down

> FC* (-4) Medium Left Medium Down

>F9 (-7) Full Left Full Down

>F8 Illegal Illegal

*These codes to be returned if joystick has only single bit resolution in any
direction.

JOYSTICK CDDES

Example

Full Right and Medium Down 7,;>FC

-7 -4 -1 0 1 4 7

D-8

APPENDIX E COINCIDENCE DETECTION
4.

The VDP provides a bit in the VDP statuš register that is set

whenever any Sprites are in coincidence with one another (in this

instance, coincidence means that they overlap by at least one

pixel of foreground). From GPL, this bit is most easily checked

by the instruction:

CLOG >20,@VSTAT

The VDP Status byte in CPU RAM is copied from the VDP

Status register every frame interrupt; the third bit is the

sprite coincidence bit.

The COINC instruction in GPL allows the user to check for

coincidence between any 2 objects. These may be 2 Sprites, a

Sprite and another object, or any 2 generalized objects. The

strict definition of coincidence can be dictated by a bit table

the user must provide in GROM; one might desire coincidence to be

true when the objects just touch, or a one dot overlap may be

required. Or perhaps coincidence may be true only when object 1

overlaps object 2 exactly.

Coincidence statements must be followed by a one-byte

mapping value, plus a 2-byte address pointing to a table in GROM.

Mapping = 0 gives the highest resolution coincidence checking,

but requires the largest table. Mapping = 1 yields a table of

the size; however, coincidence errors of + 2 pixels are possible.

Mapping = 2 yields one-sixteenth the table size but can have

errors of +4 pixels.

Let an "object type" be a set of identical objects. Then 2

sprites which have identical dot patterns are actually of the

E-1

same object type. To detect coincidence between objects of 2

types (may be the same type) a unique table for this type

combination is necessary.

Coincidence screening is done on 2 levels. The first,

range checking, involves looking at the distance between the

objects as well as their individual dimensions (in pixels). If

they are out of range, coincidence is terminated by resetting the

condition bit and terminating. If in range, a table lookup is

used to determine coincidence. The delta-y and delta-x are

found; using them as indices, a bit is read from the table. If

it is a 1, coincidence is true, and the cond bit is set;

otherwise coincidence is false. Remember that a unique table is

required for each combination of object types; e.g. for 2 object

types, say girls and boys, three tables are required for complete

coincidence detection:

- girls : girls

- girls : boys

- boys : boys

Coincidence must always be called with its arguments in the

same order that the table was constructed for.

CONSTRUCTING COINCIDENCE TABLES FOR MAPPING = 0

Let Vi and Hl be the dimensions of object type 1 in pixels

(for irregular objects, these are the dimensions of the

circumscribing rectangle). Likewise, let V2 and H2 be the

vertical and horizontal dimensions of object type 2. Let Yl, Xi

E-2

be the dot position of object type one, and Y2, X2 the same for

object type 2 (the origin is at the top left of the TV screen;

object position is the position of the top left dot of the

circumscribing rectangle).

Then let DY be Y1 _ Y2, and DX be Xi - X2. Then DX, DY,

V1, H1, V2 , H2, and the object shapes completely specify whether

coincidence is true or not. See Figure E.1 (page E-6).

Imagine object 2 fixed in one place on the screen, and

object 1 mobile. It is not hard to see that after object 1 is

more than Hi dots to the left of object 2, coincidence is no

longer possible. Similarly after it is more than H2 dots to the

right of object 1, coincidence is not possible. Applying the

same logic to the vertical axis, we arrive at the rules for the

range check:

-H1 .LE. DX .LE. H2

-Vi .LE. DY .LE. V2 ;

After finding DX and DY to be within this range, they are

used to compute a unique bit index into the bit table:

INDEX = (DX + Hi) + (DY + V1)*(H1 + H2 + 1).

The bit table is most easily visualized as seen in

Figure E.2 (page E-6). This table is then encoded by bytes;

starting at the top left, working to the right, then going to the

second row and repeating.

The easiest way to manually construct a bit-table is to

draw object 2 on graph paper, letting each square represent a

pixel. Then cut out object 1 from another sheet. Starting with

object 1 at the top left corner of object 2 (circumscribing

E-3

rectangles just touching), move it to the right, generating a 1

or a 0 each movement. An• example is shown in Figure E.3
r

(page E-7). Then repeat the same with object 1 down by one dot.

This technique is repeated through the row in which object 1 is

just touching the bottom of object 2.

The table in GROM requires a 4 byte header. The exact

structure is:

(label) DATA (vertical size of table less 1)

DATA (horiz. n n n n n)

DATA (V1)

DATA (Hl)

DATA (bits, grouped in 8's)

In the example from Figure E.3, we have

EXAMP DATA 4

DATA 5

DATA 2

DATA 2

DATA >73,>FF,>FF,>FF (2 scrap bits at end);

HIGHER MAPPING VALUES

By specifying MAPPING values greater than 0, one can make

the bit table more compact; however, accuracy of detection

suffers. In the case of MAPPING =1, instead of a one-to-one

mapping of DX,DY pairs onto bits of the table, 4 combinations of

DX,DY all map into one bit. Thus the bit table is smaller, but

it is necessary to lose detection resolution.

E-4

To construct ale for MAPPING = 1, construct a

magnification 0 t.first (see Figure E.4 (page E-8); note

that the objects of shown in this example). Then draw 2x2

boxes on the table,ting at the box corresponding to DX=0,1,

DY=0,1. A new tablthen constructed; each group of 4 bits in

a box are compacted to one bit. Note that:

- small 2x1 bon the edges reduce a single bit;

- the single bould reflect the predominant value of the

cluster;

- in the cases ones and 2 zeros, the user has a choice,

depending one wants coincidence to predominate.

To make a taif MAPPING =2, do the same process, but

make 4x4 boxes on tlimensional table (the first box is at DX

= 0,1,2,3, DY = O r). Note that resolution of coincidence

suffers greatly becaow we have 16 combinations of DX and DY

mapping into one bii

The concept APING lends itself well to changing the

magnifications of s;. If a MAPPING = 0 table is designed

for two mag 0 sprithe same table can be used for checking

coincidence when mai by merely calling COINC with MAPPING=

1. Remember though coincidence resolution goes down.

Note that any:t can be used in coincidence detection;

all that is requir that a Y,X byte pair exists in the VDP

RAM for that objectte also that the object can be purely

fictitious as far a:TV screen is concerned.

E-5

ti
--z-:\'...."\/ ti o -A

~
X x ,

~ ~~ ~ti
~ ~

t

DY=-1
DX=-2
V1= 3
H1= 4
V2= 3
H2= 2

00 110 1 0 1 1 0 0 1 1

11
1 1 1 0 0 0 0 0 0 1 1

1 0 0
00 1
00 1
00 0
0 0 1
0 0 1
10 0
11 1

V 2-1 0 1
V 2 0 1

FIGURE E.2 E-6

FIGURE E.I. OBJECT 1 -

1
0

OBJECT 2

>
GENERATED 0 1 1 1 0 0

1 1 1 1 1 1 GENERATED

GENERATED 1 1 1 1 1 1 1

GENERATED 1 1 1 1 1 1

GENERATED 1 1 1 1 1 1

DX

-2 -1 0 +1 +2 +3

>

FIGURE E.3

E-7

0 1 2 3 4 5

0 1 1 1 1 1
1 1 1 0 1 1
1 1 1 1 1*1
1 0 1 1 1 1
1 0 1 1 1 1

0
011

0 1 1 0
101110

1 0 1 1
01

0

0 0 1 1 1 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1
1 1 1 0 1 0 1 1 1 1
0 1 0 0 1 0 1 1 1 1
1 0 0 1 1 11 1 1 1
0 0 0 0 0 1 1 1 1 0
1 0 1 1 1 111 0 1

-3 -2 -1
-6
-5
-14
-3
-2

2
3

V

FIGURE E,4 TABLE: DATA 4
DATA 5
DATA 6
DATA 3
DATA >7F, >BF,

>EF, >BC

E-8

APPENDIX F I/O INSTRUCTION

The I/O instruction is used to control a variety of

input-output devices including cassettes, speech, sound, and CRU.

The format of the I/O instruction is:

I/O GS, IMM

where

GS is the address of a list whose format depends on

the value of IMM.

IMM specifies what type of input-output currently supported

values of IMM are:

0 = Sound in GROM

1 = Sound in VDP RAM

2 = CRU input

3 = CRU output

4 = Casšette write

5 = Cassette read

6 = Cassette verify

The format of the list specified by GS for sound I/O

instructions is given in Appendix C.

The format of the lists for CRU output is the same. GS

points to a 4 byte block in CPU RAM. The format of the block is:

bytes 0 and 1 - CRU base address. The interpreter

will double this for you since the

9901 ignores the least significant

bit of the base register.

byte 2 - The number of bits to input or

output (1-16)

F-1

byte 3 • A pointer to a one or two byte area

in CPU RAM to write from or read

to. If the number of bits to read

or write is greater than 8 then

this address must be even.

The CRU data to be written should be right justified in the

byte or word. The least significant bit will output to or input

from the CRU address specified by the CRU base address.

Subsequent bits will come from or go to sequentially higher CRU

addresses. If the CRU input reads less than 8 bits, the unused

bits in the byte are reset to zero. If the CRU input reads less

than 16 but more than 8 bits, the unused bits in the word will be

reset to zero.

The three different cassette I/O instructions use the same

list format. This list must be in CPU RAM.

bytes 0, 1 - are the length of the data transfer

(or the number of bytes to verify).

This length is rounded up to the

nearest multiple of 64.

bytes 2, 3 - are the source or destination

address in VDP RAM or the address

of the bytes to verify the tape.

The read and write instructions physically perform I/O to

the cassette. The verify instruction will read a tape and

compare it, byte for byte, against what is in the specified VDP

RAM area. It will se.t the status in CPU RAM location >7C if

any differences are detected.

F-2

The I/O instructions for cassette will not generally be used

by the application programs. There is a cassette program written

in GPL that should be used by the application programs. This

program will uniformly request the user to perform certain manual

operations necessary to the operation of the cassette. This

cassette program is described in Appendix I.

F-3

APPENDIX G TEXT AND MULTICĐLOR MODE

When the Text Mode bit (bit 4) in VDP register $1 is set,

40-character mode is selected. The screen is 40 x 24 characters

with each character being 6 x 8 dots. The Pattern Name Table is

now 960 bytes long and is in locations 0 - >3BF in VDP RAM. Each

byte in the Pattern Name Table corresponds to a pattern position

on the screen (0 - >27, first row; >28 - >4F, second row; etc.).

The pattern numbers are still 0 - 255, corresponding to VDP >800

->FFF, but in text mode the last 2 bits of each byte in the

patterns are ignored, making the 6 x 8 dot patterns. The only

means of changing the screen in text mode is to write the pattern

numbers to the Pattern Name Table position. There is not a color

table to use with text mode. The only way to give color to the

patterns is by loading VDP (7) with the foreground/background

combination desired.

When the MCMD bit (bit 3) in VDP register #1 is set,

the multicolor mode is selected. Each 8 x 8 dot pattern on the

screen is now divided into four quadrants (4 x 4 dots each). Each

quadrant must be given a nybble assignment in the pattern

generator block before you can use multicolor mode correctly. The

nybbles used in the pattern generator block are from RAM 800

thru DFF. The nybble assignments are made with a format

statement as follows:

HOME

FMT 4(' >00, >01, >02... >IF'), 4(' >20, >21, >22... >3F'),

4(' >40, >41, >42... >51'), 4(' >60, >61, >62... >7F'),

4(' >80, >81, >82... >9F') 4(' >AO, >Al, >A2... >BF')

G-1

This format statement puts 24 rows of 32 characters in the

Pattern Name Table (VDP RAM >0 - > 2FF), but it puts 48 rows of

64 characters on the screen (each byte in the PNT corresponds to

a 2 x 2 block of 4 x 4 dots on the screen) VDP RAM locations 0,

>20, >40, and > 60 all have the value 0, but RAM (0) uses the

nybbles at >800 and >801; RAM (>20) uses the nybbles at> 802 and

>803; RAM (>40) uses the nybbles and >804 and >805; RAM (>60)

uses the nybbles at > 806 and >807.

The value in each byte of the PNT is the number of. the

character in the Pattern Generator. Although each character in

the Pattern Generator consists of 8 bytes, the system has a

pointer for each byte in the PNT which tells it which two bytes

of that charater it uses to color the quadrants. The nybbles in

these two bytes are used as follows:

- The first byte's MSN describes the upper left quadrant's

color

- The first byte's LSN describes the upper right

quadrant's color

- The second byte's MSN describes the lower left quad-

rant's color.

The second byte's LSN describes the lower right

quadrant's color.

Figure G.I shows the ranges of XPT and YPT and the VDP

nybble assignments. As you can see from this drawing there is a

type of indexing of the bytes in an 8-byte pattern generator

block which corresponds to YPT. For example:

G-2

Index into Pattern Generator YPT- Values

0 0, 8, 16, 24, 32, 40

1 1, 9, 17, 25, 33, 41

2 2, 10, 18, 26, 34, 42

3 3, 11, 19, 27, 35, 43

4 4, 12, 20, 28, 36, 44

5 5, 13, 21, 29, 37, 45

6 6, 14, 22, 30, 38, 46

7 7, 15, 23, 31, 39, 47

When XPT is even, then MSN of each byte is used; and when

XPT is odd, the LSN of each byte is used.

After the screen has been initialized with the format

statement as described above, bit 1 of CPU RAM location >FD must

be set. Once this bit is set, 'you cannot use format statements

to change the screen. All changes to the screen must be done by

setting XPT and YPT to specific values and storing the color you

wish for that block in the character buffer (CB - CPU RAM >7D).

For example, the instructions:

ST 37,@XPT

ST 13,@YPT

ST 4,@CB

would put a 4 x 4 dot block of color blue 2 at the specified

place on the screen and also put a 4 in the right nybble of VDP

RAM (>995). A store in CB does not affect the PNT since the

values from the initial format statement are the only ones which

allow MCMD to work correctly.

G-3

The ALL instruction may be used in this mode to change

screen. For example:

ALL >24

will look at VDP RAM (>920->927) and fill the screen with tr

colors in 2 x 8 blocks of 4 x 4 dots. It will also store >24

VDP RAM (0->2FF). Since the ALL instruction changes the val

in the PNT, before successful use of MCMD can be made,

programmer must reset bit 1 of CPU RAM location >FD

re-initialize the screen with the format statement above. T

set bit 1 at location >FD and proceed as above with a store

CB of a color.

G- 4

APPENDIX H DEVICE I/O

Each GROM or ROM that contains programs that may be accessed

by programs outside of that ROM or GROM need a header. There

are 6 types of programs currently defined. They are power up,

user application, device service, subroutine links BASIC sub-

program libraries, and interrupt service programs. Every type of

program except user application programs, BASIC subprogram

libraries, and interrupt service routines can be in either ROM or

GROM. User application programs and BASIC subprogram libraries

can only be in GROM. For every type of program in a GROM or ROM,

there is a chained list of program headers. The first program

header of each type is pointed to by an entry in the GROM/ROM

header. GROM/ROM headers must be located at the beginning of a

GROM or ROM. Program headers can be located anywhere. Within a

multi-GROM package the GROM headers and program headers may be in

the same or different GROMs. Table H.1 shows a GROM/ROM header

and Table H.2 shows a program header.

1. SYSTEM INITIALIZATION

The monitor will start every applićation program with all of

RAM in a defined state. CPU RAM will be zeroed except for

>70 through >81. Location >70, >71 contains the highest

address in VDP RAM. Location >72 will contain >9E and is the

data stack pointer. Location >73 (the subroutine stack pointer)

is initialized to >7E. Location >74 is zero. The other

locations (>75 to >81) have undefined values.

H-1

>AA valid identification"
version number
number of program
reserved
address of
address of
address of
address of
address of
address of
libraries

first
first
first
first
first
first

power up routine header
user program header
DSR header
subroutine link header-
interrupt link
BASIC subprogram

TABLE H.1

GROM HEADER

LOCATION SIZE CONTENTS

X000 byte
X001 byte
X002 byte
X003 byte
X004 word(2 bytes)
X006 word
X008 word
XOOA word
XOOC word
XOOE word

The address of any program types should be 0 in the GROM/ROM
header if there are no programs of that type. The number of
programs and verison number are not currently being used but
should be used for future expansion.

TABLE H.2

PROGRAM HEADER

SIZE

word

word
byte
N. bytes

CONTENTS

pointer of next program header of the same program
type (0 if end of list)
entry address of program
number of characters in program name (N)-
ASCII character representation of program name

H-2

VDP RAM will have the 6 X 8 character set loaded. The VDP

registers will be set for the standard locations (see Table 3.4,

page 3-14). The screen will be blanked and the color table will

contain a•ll >17. All the rest of VDP RAM will be zeroes.

2. POWER-UP ROUTINES

The monitor initializes the system by calling power-up

routines. It searches peripheral ROM and GROM headers for

power-up routine addresses and executes them as it finds them.

After each power-up routine is executed, a search is made for the

next one. When there are no more power-up routines found, the

console power-up routine is invoked. This routine puts up the

initial screen and menu and calls the selected program. The

selected program is started with the system initialized as

described in Section 1.

Each ROM power-up can use RO - R10. R12 will be set up with

the proper CRU address to address the attached peripheral's CRU.

The ROM power-up routine should end with a INCT R11 and a B *R11

to return to the system.

GROM power-up routines are called from GPL. They can be

located in any slot of the library peripheral. They may not use

subroutine links or call DSR's.

Power-up routines can use CPU RAM > 4 to > 71 for whatever

it needs. They may also use all of ̀VDP RAM. They must not

change the data or subroutine stack pointers upon return to the

monitor.

S-3

3. SUBROUTINE AND DSR CALLS

Subroutines and DSR's may be called through the monitor.

The monitor is passed the name of the routine 'in VDP RAM. The

name location in VDP RAM is pointed to by a 2-byte value in CPU

RAM >56. The VDP locations contain a one-byte count of the

number of characters in the name followed by the ASCII

representation of the name with a "." (period) and some more

characters. This may be repeated any number of times. The

routine name the monitor uses consists of the string up to the

first period, if any. The routine itself is called by

CALL LINK LINK EQU >10

DATA BYTE

where byte is 8 for a DSR and > A for a subroutine link. The

subroutine or DSR should return by

CALL RETN EQU > 12

If the routine is in ROM, Ri will contain a version number

starting with 1. Every time a routine is found with the right

name, R1 is incremented. This enables a routine to determine its

position relative to other routines of the same name. If the

version number is wrong, the routine should B *R11 without

changing any registers. If the routine is executed , it should

return by incrementing R11 by 2, moving a >12 to the top of the

subroutine stack overwriting the address that is there, and

branching indirect on R11. Registers RO - R10 can be used. Rll

has the return address for ROM code and R12 will be pointing to

the peripheral CRU space.

H-4

For GROM programs, the subroutine or DSR may reside in

another library peripheral slot. The subroutine or DSR calls may

be nested. Each GROM subroutine or DSR call takes 4 bytes of

subroutine stack. ROM subroutines and DSR's called through the

monitor may not be nested.

4. GENERAL SUBROUTINES PROVIDED BY THE MONITOR

The monitor provides a group of subroutines that are of

general use in many applications. These include mathematical

functions, character sets, certain sounds, and application exit.

The mathematical functions are described in Appendix K.

There are two routines to load VDP RAM with either a 6 x 8

or 5 x 6 character set. They are called by:

CHR1 EQU >16

CALL CHR1 (6 x 8 characters)

CHR2 EQU >18

CALL CHR2 (5 x 6 characters)

When they are called, CPU RAM location FAC should be

pointing to the VDP RAM location of the first character (space).

There are two routines that give positive and negative

acknowledge tones. These are used primarily for acknowledging

good and invalid key pushes. The two routines are called by:

TON1 EQU >34

CALL TONi (positive acknowledge)

TON2 EQU >36

CALL TON2 (negative acknowledge)

H-5

EXIT - RETURN TO MONITOR

An application program may exit and return to the monitor

by:

EXIT

This instruction causes a software reset of the system. All

power-up routines are executed and the initial screen displayed.

This should not be confused with a hardware reset.

BIT REVERSAL ROUTINE >3B

Purpose: Provide a quick way to form mirror image bytes

in VDP RAM

Input: FAC address of data in VDP (CPU RAM

location >4A)

FAC+2 number of bytes to reverse

Call: BITRVR EQU >3B

CALL BITRVR

Output: Every byte in VDP RAM from the first

address pointed to by FAC to the byte

pointed to by the address + numbers of

bytes in FAC+2 is bit reversed. This

means bits 0 and 7 are exchanged,

bits 1 and 6 are exchanged, bits 2 and

5 are exchanged, and bits 3 and 4 are

exchanged to give a mirror image of the

byte.

Exceptions: None

Side Effects: CPU RAM from >00 to >40 will be

destroyed.

H-6

APPENDIX I CASSETTE DSR

DEFINITION

A file consists of a collection of data groupings called

logical records. This division of the file into logical records

does not necessarily correspond to the physical division of data

on the medium (like a block on a disk). Thus, there are two

types of records:

• Logical records - the data grouping of a file as seen by

the BASIC interpreter or other application programs.

• Physical records - the buffers physically transferred

between memory and medium.

File I/O from a program is done on a logical record basis.

The manipulation of physical records is done by the DSR.

For relative files, the logical records are fixed length.

This enables the system to easily locate the physical position of

a logical record, relative to the beginning of the file.

Sequential files allow variable length logical records.

When a file is created, the logical record size must be

specified. For relative record files this size must be exact.

For sequential files the specification is optional. If

specified, the logical record size is used as an upper limit for

any logical record size of that file.

The physical record size for any medium is specified within

the DSR and is implementation dependent.

I-1

MODE OF OPERATION

A file is opened for a specific mode of operation, specified

in the OPEN I/O call. The three modes of operation are:

• INPUT - the contents of the file may be read, but they

may not be altered.

• OUTPUT - the file is being created. It's contents may

be written but not read.

• APPEND - new data may be added at the end of the file,

but the contents of the file may not be read.

This is the same on the cassette as output mode.

Each DSR decides whether or not a specific mode for an I/O

operation can be accepted by the corresponding device.

IMPLEMENTATION

As mentioned, the DSR's should present a uniform interface

between the File Management System and the peripherals. This

section will give implementation details on this interface.

PERIPHERAL ACCESS BLOCK DEF/NITION

All DSR's are accessed through a so called Peripheral Access

Block (PAB). The definition for these PAB's is the same for

every peripheral. The only difference between peripherals is

that some peripherals will not support every option provided for

in the PAB.

All PAB's are physically located in VDP RAM. They are

created before the OPEN call, and are not to be released until

the I/O has been closed for that device or file.

1-2

BYTE BIT'

Figure I.1. (page I-6) shows the layout of a PAB. The PAB

has a variable length, depending upon the length of the file

descriptor.

The meaning of the bytes and bits within the PAB is:

MEANING

0 I/O opcode - contains opcode for the current

I/O-call.

1 Fl.agby to/status - all the information the system

needs about file-type, mode of operation, and

data-type, is stored in this byte. The mean-

ing of the bits within this flagbyte is (bit 7

is most significant bit, bit 0 is least signi-

ficant bit) .

0 Filetype - indicated file-type

0 = Sequential file

1 = Relative record file

Cassettes are always sequential.

1-2 Mode of operation - indicates operation mode file

has been opened for:

00 = UPDATE

01 = OUTPUT

10 = INPUT

11 = APPEND

Cassette DSR does not support update or

append.

I-3

BYTE BIT MEANING

3 Datatype - indicates type of data stored in the

file. DISPLAY type data comprises standard

ASCII data. INTERNAL type data is imple-

mentation dependent.

0 = DISPLAY

1 = INTERNAL

4 Recordtype - indicates type of record used.

0 = Fixed length records

1 = Variable length records

5-7 Errorcode - these three bits indicate, in

combination with the I/O opcode, the error

type that has occurred (0 = no error).

2-3 - Data buffer address - address of the data buffer

the data has to be written to or read from.

The buffer is always in VDP RAM.

4 - Logical record length - indicates the logical

record length for fixed length records, or the

maximum length for a variable length record

(see flagbyte). It is rounded up to the next

highest multiple of 64.

5 Character count - number of characters to be

transferred in write mode, or the number of

bytes actually read in read mode. It is used

by the cassette DSR only for reads and writes.

1-4

BYTE BIT MEANING

6-7 - For cassettes, the record number is used for the

number of bytes to load or save. This number

must be larger than the number of bytes on the

cassette record. This number is rounded up to

the nearest multiple of 64 by the cassette DSR.

8 Screen offset - offset of the screen characters

in respect to their normal ASCII value. This

is used if your characters are not at the

default positions in VDP RAM. It enables the

cassette DSR to use your character set for

messages. The cassette DSR messages look best

using the small character set.

9 Name length - length of the file descriptor

following the PAB.

10+ - File descriptor - devicename. The length of this

descriptor is given in byte 9. There are two

valid names for cassettes:

CS1 - cassette unit 1

CS2 - cassette unit 2

1-5

*
C 0

I/O OPCODE !
! 1

FLAG / STATUS
! ! !
! !
! 2-3 !

DATA BUFFER ADDRESS !
!
! !
! 4 ! 5 !
! LOGICAL RECORD LENGTH ! CHARACTER COUNT !
1 1 i
j
! 6-7
! RECORD NUMBER !
i P

1 1

! 8 ! 4 !
! SCREEN OFFSET ! NAME LENGTH !
1 1 i

i o
! 10... !
! !

FIGURE I.1 PAB LAYOUT

I-6

I/O OPCODES

This section describes the valid opcodes that can be used in

the PAB. These valid opcodes are shown in Table 1.2 (page I-6)

The following section will describe the general actions

caused by an I/O-call with each of the I/O-opcodes. Each

I/O-call returns any error-codes in the FLAG/STATUS byte of the

PAB.

OPCODE MEANING

00 OPEN

0I CLOSE

02 READ

03 WRITE

04 RESTORE/REWIND (not supported)

O5 LOAD

06 SAVE

07 DELETE FILE - NO OPERATION

FOR CASSETTE

08 SCRATCH RECORD - NOT USED BY

CASSETTE

09 .END OF FILE TEST (not supported)

TABLE 1.2 I/O OPCODES

1-7

Open

The OPEN operation should be performed before any data

transfer operation. The file remains open until a CLOSE

operation is performed. The mode of operation for which the file

has to be OPENed should be indicated in the flag byte of the PAB.

In case this mode is OUTPUT, APPEND or INPUT, the record length

(64) is returned in byte 4.

, An OPEN operation must be performed before any other

operation except LOAD or SAVE. Consistent use of OPEN and CLOSE

is recommended for all files and devices; however, neither the

OPEN nor the CLOSE operation is required for devices.

Close

The CLOSE operation informs the DSR that the current I/O

sequence to that DSR has been completed.

After the CLOSE operation, the PAB is no longer needed, so

it can be released. As long as no CLOSE operation is performed

on an active PAB, this PAB has to be preserved.

Read

The READ operation reads a record from the selected device

and stores the bytes In the specified buffer. The buffer address

is specified in PAB entry 2 and 3, and the buffer size is

specified in PAB entry 4. If the length of the input record

exceeds the buffer size, the record is not read and an error is

returned.

I-$

Write

The WRITE operation writes a record to the specified device

from the buffer specified in the PAB. The number of bytes to be

written is specified in byte 5 of the PAB.

Restore/Rewind

The RESTORE/REWIND operation repositions the file read

pointer to the beginning of the file.

A RESTORE can only be used if the file is opened for INPUT

mode. RESTORE itself does not perform any READ operation.

Load

The LOAD operation loads an entire program from an external

device or file into program memory. All the control information

for BASIC is contained in the load file. Since all information

is directly written to program memory without intermediate

buffering, no buffer memory needs to be assigned.

The LOAD operation is a stand alone operation, i.e., the

LOAD operation can be used without previous OPEN operation.

For the LOAD operation, the PAB needs to contain the

following information:

Bytes 2 and 3 should contain the start address of the

program memory.

Byte 6 and 7 should. contain the maximum number of bytes

available for the program.

Aside from the I/O opcode and the file descriptor, no more

information is required for the LOAD operation.

1-9

Save

SAVE is the complementary operation for LOAD. Instead of

loading a program from a device or file, it writes a program from

program memory to a device or file. Again, only a small part of

the PAB is used. Aside from the usual information (I/O opcode

and file descriptor), the PAB should contain the start address of

the program to be SAVEd in bytes 2 and 3, and the number of bytes

to be SAVEd in bytes 6 and 7.

BASIC automatically saves all the control information

necessary for reloading of the program, together with the program

code.

Delete

The DELETE operation deletes the specified file from the

specified device. This operation also CLOSEs the I/O sequence.

The DELETE operation can only be used in UPDATE, APPEND or OUTPUT

mode.

Scratch Record

The SCRATCH RECORD` operation scratches the specified record

from the specified (relative record) file. The record to be

scratched is specified in byte 6 and 7 of the PAB. This

operation will cause an error for sequential files and devices.

VERIFY

The VERIFY command allows the record on tape to be compared

against what is in VDP RAM. It will return an error code if the

I-10

record is unreadable or if there is a difference between the

tape's data and the VDP data.

ERROR CODES

The File Management System shall support the following

error codes: ;

1. BAD DEVICE NAME

the device indicated is not in the system.

2. ILLEGAL OPERATION

either an invalid operation was specified,

or a conflict with the OPEN mode has occurred.

3. DEVICE ERROR

covers all hard device errors, such as parity and bad

medium errors.

ISSUING THE COMMAND TO THE CASSETTE DSR

After the PAB is set up, the cassette DSR is called by

putting the address of the name length (byte 9 of the PAB) in CPU

RAM location > 56 and then calling a subroutine at location > 10

in GROM 0. This is illustrated as follows for a save routine:

DSR EQU >10 Address of subroutine

NAMLEN EQU >56 Address of byte 9 of PAB

MOVE 13 FROM ROM($PABCAS) TO RAM (>500)

DST # >509, @NAMLEN Address of byte 9 of PAB in VDP

CALL DSR

DATA 8 *Tells subroutine this is a DSR

•

PABCAS DATA >06 Opcode for save

DATA >02 Sets output status for save

DATA b>600 Address in VDP of data buffer

DATA >40 Fixed record length size for cassette

DATA >00 Character count for cassette

DATA #>6F0 Number of bytes to be read

DATA >00 Bias for ASCII characters

DATA >03 Length of name of device

DATA :CS1: Name of device*

* For cassettes the name of the device is predefined as CS1 or

CS2 and these are the only names you are allowed to use.

AUDIO GATE

CRU bit 24 is the audio gate bit which allows data being

read to be heard. If the bit is set to 0, the data being read is

heard, and if the bit is set to 1, the data is not heard.

Setting this bit to a 0 or 1 is done with an I/O instruction.

MOTOR CONTROL

There are two CRU bits (22 and 23) used to control cassettes

1 and 2, respectively. When there is no Cassette I/O being done,

I-12

both motors remain on. When Cassette I/O is specified, the DSR

will control the data being read. If there are two motor units

connected, the data will be read simultaneously, or you may have

the option of reading data from one motor unit and playing the

recorded' voice from another motor unit through the TV speaker.

I-13

APPENDIX J - LIST CF ERSTRECTIONS

PART 1 ALPHABETIC
STATUS

INSTRUCTION SECTICN MNEMONIC OPC OCE (>) FORMAT AFFECTED

A AO 1 ALL ADD 4.4.1

ABS 80 6 NONE ABSOLUTE VALUE 4.49

ADD AO 1 ALL ADD 4.4.1

ALL 07 2 NONE 4.5.3 LOAD SCREEN

AND BO 1 ALL LOGICAL AND 4.4.12

B 05 3 COND LONG BRANCH 4.2.3

BACK 04 2 NONE LOAD BORDER COLOR 4.5.2

BR 40 4 C OND 4.2.2 BRANCH CN RESET

BS 60 4 CCND BRANCH ON SET 4.2.1

CALL 06 3 C OND CALL SUBROUTINE 4.2.5

CARRY OC 5 MIND ` CARRY STATUS TO CCND 4.1.3

CASE 8A 6 CxND CASE BRANCH 4.2.4

CEQ N 1 C C D COMPARE EQUAL 4.1.5

C GE DO 1 CTN D COMPARE PARE GREATER Cat EQUAL 4.1.9

CGT CC 1 CCr D COMPARE GREATER 4.1.8

CH C4 1 GELID CARE HIGH 4.1.6

CHE C8 1 C OND COMPARE HIGH aR EQUAL 4.1.7

CLOG D8 1 COND CARE LOGICAL 4.1.10

CLR 86 6 NONE CLEAR 4.4.15

CĐINC ED 1 CORD COINCIDENCE 4.5.1

CCNT 10 5 NONE BASIC CONTINUE

CZ 8E 6 CTJND COMPARE TO ZERO 4.1.11

D AC 1 ALL DIVIDE 4.4.4

DEC 92 6 ALL TECREMENT BY ONE 4.4.7

DECT 96 6 ALL DECREMENT BY TWO 4.4.8

J-1

MNEMONIC OPC E(>) FORMAT
STATUS

SF7CI'ICN AFFECTED ENSIxu..rtCN

DIV PC 1 ALL DIVIDE 4.4.4

EX CO 1 NONE EXCHANGE 4.4.17

ExEc 11 5 ALL BASIC EXECUTE

EXIT OB 5 NONE EXIT PROGRAM 4.5.8

88 6 NONE 4.2.6 FETCH kri' f FROM CALL

FMr 08 7 ---- FAT SCREEN 4.5.4

GT OA 5 CONE GREATER STATUS TO C OND 4.1.2

S 09 5 CfID HIGH STATUS TO C ND 4.1.1

INC 90 6 ALL INCREMENT BY C NE 4.4.5

INCT 94 6 ALL INCREMENT BY TWO 4.4.6

I/O F6 8 NONE SPECIAL I/O 4.5.9

INV 84 6 NONE DIVERT (ONE'S COMPLEMENT) 4.4.11

MOVE 20 9 NONE MOVE DATA 4.4.20

M A8 1 NeNE MULTIPLY 4.4.3

NVL A8 1 NONE MULTIPLY 4.4.3

NEG 82 6 NONE NEX A IE (TWO'S COMPLEMENT) 4.4.10

OR B4 1 ALL LOGICAL OR 4.4.13

OVF OD 5 CND OVERFLOW STATUS TO CND 4.1.4

PARSE OE 2 ALL BASIC PARSE

PUSH 8C 6 NONE PUSH DATA STAG{ 4.4.18

RAND 02 2 NONE RANDOM NUMBER 4.5.5

RB BO 1 ALL 4.3 RESET BIT

R IN 00 5 CX2 D 4.2.7 RETURN FROM SUBROUTINE

RTNB 12 5 ALL BASIC RETURN

RINC 01 5 NONE 4.2.8 RETURN FROM SUBROUTINE

S A4 1 ALL SUBTRACT 4.4.2

3-2

MNEMONIC FCRMAT
STATUS

SEX`TICN OP(S)LEO.; AFFECTED INSTRUCTICN

SB B4 1 ALL 4.3 SET BIT

SCAN 03 5 CX~ND SCAN KEYBOARD 4.5.6

SLL EO 1 NONE SHIFT LEFT LOGICAL 4.4.21

SRA DC 1 NONE 4.4.22 SHIFT RIGHT ARITHMETIC

SRC E8 1 NONE SHIFT RIGHT CIRCULAR 4.4.24

SRL E4 1 NONE SHIFT RIGHT LOGICAL 4.4.23

ST BC 1 NONE 4.4.16 5ivr

SUB A4 1 ALL 4.4.2 SUBTRACT

TBR D8 1 COND 4.3 rrt BIT RESET

XML OF 2 NCNE 4.5.7 EXECUTE MACHINE LANGUAGE

XOR B8 1 ALL LOGICAL EXCLUSIVE OR 4.4.14

The following instructions are used to access BASIC

Language:

CZNT BASIC Continue

PARSE BASIC Parse

RINB BASIC Return

EXEC BASIC Execute

J-3

0 1 2 3 4 5 6 7 8 9 A B C D E F

PART 2 INSTRUCTION MAP

RTN RTNC RAND SCAN BACK B CALL ALL FMT H I GT EXIT CARRY OVF PARSE XML

CONT EXEC RTNB UNUSED

MOVE

BR

BS

ABS NEG INV CLR FETCH CASE I PUSH

UNUSED

CZ

INC DEC INCT DECT UNUSED

ADD

AND

SUB MUL DIV

OR XOR ST

EX CH CHE CGT

CGE CEQ CLOG SRA

- ̂
SLL

UNUSED

SRL SRC UNUSED COI NCI UNUSED -

I I/O I UNUSED

0

1

2

3

4

5

6

7

8

9

A

B

C

0

E

F

APPENDIX K FLOATING POINT OPERATIONS

There are several subroutines in the monitor which can be

called from a GPL program. These subroutines are described in

this appendix. It is important the programmer realize that when

one of these subroutines is called the contents of CPU RAM

locations >4A through >6F may be used, and VDP RAM locations >3C0

through >3DF will be used for roll out.

The mathematical function subroutines provided in the

monitor include convert number to string, greatest integer, invo-

lution, square root, exponential, natural log, cosine, sine,

tangent, and arctangent. They are called as follows:

FAC is CPU RAM > 4A (8 bytes)

ARG is CPU RAM >5C (8 bytes)

STATUS is CPU RAM >7C

SGN is CPU RAM >75

EXP is CPU RAM >76

VSPTR is CPU RAM > 6E (2 bytes)

FPERAD is CPU RAM > 6C

- warning, overflow

- division by zero

syntax error

- integer overflow on conversion

- square root of negative number

- negative number to non-integral power

log of negative number or zero

- invalid argument in trig function

K-1

Error Codes:

WRNOV >01

DIVZER >01

ERRSNN >02

ERRIOV >03

ERRSQR >04

ERRNIP >05

ERRLOG >06

TRIGER >07

CNS - CONVERT NUMBER TO STRING

Purpose: Convert a floating point number to an ASCII

string.

Input: FAC The floating point value.

CALL:

FAC+11 If set to 0, the output string will be

in BASIC format. If greater than 0,

represents output in CALCULATOR mode.

The contents are the effective

calculator width, exclusive of decimal

point. The following two cells are

also required in CALCULATOR mode.

FAC+12 If zero, express overflow from

calculator range by + or - EE...E.

Underflow is expressed as 0. If

positive, under- or over-flow from

calculator range is expressed in

E-format using the number of

significant digits specified by this

cell.

FAC+13 The number of digits to fix to the

right of the decimal point. A

negative value disables the FIX mode.

CNS EQU >14

CALL INS'

K-2

Output: . FAC The FAC contents will be modified due

to rounding performed for display

purposes.

FAC+11 Points to the beginning of the result

string. The string will be entirely

contained within the. floating point

scratch area between FAC and FPERAD.

FAC+12 The length of the string, in bytes.

Exceptions: None

INT - GREATEST INTEGER FUNCTION

Purpose: Compute the greatest integer contained in a

floating point value.

Input: FAC The floating point value.

INT EQU >22

Call: CALL INT

Output: FAC The greatest integer contained in the

floating point value. For positive

numbers the integer is the truncated

value. For negative numbers the

integer is the truncated value plus

one.

R-3

STATUS The status byte is set according to the

contents of FAC after the operation.

Exceptions: None

PWR - INVOLUTION ROUTINE

Purpose: Raise a number, B, to a specified power, E

Input: FAC The exponent, E.

STACK The base, B.

PWR EQU >24

Call: CALL PWR

Output: FAC The result, B**E. The result is com-

puted as EXP (E * LOG(ABS(B))). If B

is negative and E is an odd integer,

the result is negated.

STATUS The status byte is set according to the

contents of FAC.

Exceptions: Negative number to non-integer power.

Zero raised to a negative power.

Overflow if result greater than maximum

value.

K-4

Side Effects: SGN and EXP are destroyed. The

previous FAC contents are destroyed and

the contents of VSPTR are decremented

by 8.

SQR - SQUARE ROOT ROUTINE

Purpose: Compute the square root of a number.

Input: FAC The input value.

SQR EQU >26

Call: CALL SQR

Output: FAC The square root of the number.

STATUS Set according to the contents of FAC.

Exceptions: If the input value is negative, the

ERRSQR condition results.

Side Effects: SGN and EXP are destroyed. The con-

tents of VSPTR are unchanged.

EXP - EXPONENTIAL ROUTINE

Purpose: Compute the inverse natural logarithm.

Input: FAC The input value.

EXP EQU >28

R-5

Call: CALL EXP

Output: FAC The inverse natural logarithm.

STATUS Set according to the contents of FAC.

Exceptions: Overflow of the result causes the WRNOV

condition.

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

LOG - NATURAL LOGARITHM ROUTINE

Purpose: Compute the natural log of a number.

Input: FAC The input value.

LOG EQU >2A

Call: CALL LOG

Output: FAC The natural log of the number.

STATUS Set according to the contents of FAC.

Exceptions: If the input value is zero or negative,

the ERRLOG condition results.

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

R-5

COS - COSINE ROUTINE

Purpose: Compute the cosine of a-number (in radians).

Input: FAC The input value.

COS EQU >2C

Call: CALL COS

Output: FAC The cosine of the number.

STATUS Set according to the contents of FAC

Exceptions: None

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

SIN - SINE ROUTINE

Purpose: Compute the sine of a number (in radians)

Input: FAC The input value.

SIN EQU >2E

Call: CALL SIN

Output: FAC The sine of the number.

STATUS Set according to the contents of FAC.

Exceptions: None

K-7

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

TAN - TANGENT ROUTINE

Purpose: Compute the tangent of a number (in radians).

Input: FAC The input value.

TAN EQU >30

Call: CALL TAN

Output: FAC The tangent of the number (in radians).

STATUS Set according to the contents of FAC.

Exceptions: If the input value causes an overflow

the WRNOV condition results.

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

ATN - ARCTANGENT ROUTINE

Purpose: Compute the arctangent of a number (in radians)

Input: FAC The input value.

ATN EQU >32

Call: CALL, ATN

Output: FAC The arctangent of the number.

STATUS Set according to the contents of FAC.

K-8

Exceptions: None

Side Effects: SGN and EXP are destroyed. The

contents of VSPTR are unchanged.

The floating point routines provided in ROM are convert

string to number, convert floating to integer, floating add,

floating subtract, floating multiply, floating divide, floating

compare, stack add, stack subtract, stack multiply, stack divide,

and stack compare. All numbers are 8-bits.

As a number is used on the value stack, the stack pointer is

incremented by 8. All errors are returned in location FAC + 10.

Only overflow errors are detected and the code is 1 for a

floating point overflow and 3 for integer overflow.

CSN - CONVERT STRING TO NUMBER

Purpose: Convert an ASCII string to a floating point

number.

Input: FAC Address of the string.

CSN EQU >10

Call: XML CSN (The instruction FLTPT will

generate the same code as

XML)

Output: FAC Number returned here. All numbers are

returned in internal format which is

K-9

radix 100. CPU RAM space FAC thru

FAC+9 should be reserved for the

answer.

FAC+10 Error code (>01 - overflow)

CFI - CONVERT FLOATING POINT TO INTEGER

Purpose: A rounded conversion of a floating point number

to an integer.

Input: FAC Floating point number

CFI EQU >12

Call: XML CFI

Output: FAC Integer value returned in first two

bytes.

FAC+10 Error code (>03 - overflow)

Exceptions: Range of integer must be -32,768 to 32,767

FADD - FLOATING POINT ADDITION

Purpose: Perform addition in base 100.

Input: ARG Left-hand term

FAC Right-hand term

FADD EQU >06

Call: XML FADD

R-10

Output: FAC Result of addition problem.

FAC+10 Error code (>01 - overflow)

FSUB - FLOATING POINT SUBTRACTION

Purpose: Perform subtraction in base 100.

Input: ARG Left-hand term

FAC Right-hand term

FSUB EQU >07

Call: XML FSUB

Output: FAC Result of subtraction problem.

FAC+10 Error code (>01 - overflow)

FMUL - FLOATING POINT MULTIPLICATION

Purpose: Perform multiplication in base 100.

Input: ARG Multiplicand

FAC Multiplier

FMUL EQU >08

Call: XML FMUL

Output: FAC Result

FAC+10 Error code (>01 - Overflow)

FDIV - FLOATING POINT DIVISION

Purpose: Perform division in base 100.

%

Input: ARG Dividend

FAC Divisor

FDIV EQU >09

Call: XML FDIV

Output: FAC Result

FAC+10 Error code (01 - Overflow)

FCOMP - FLOATING POINT COMPARE

Purpose: Compare two base 100 numbers.

Input: ARG First argument to compare

FAC Second argument to compare

FCOMP . EQU >OA

Call: XML FCOMP

Output: STATUS Bits set according to the compare --

High bit is set if ARG is logically

higher than FAC', greater than bit is

set if ARG is arithmetically

greater than FAC, condition bit is

set if ARG and FAC are equal.

K-12

SADD - VALUE STACK ADDITION

Purpose: Perform base 100 addition of the top value on

the value stack in VDP RAM with another value.

Input: ARG Top number on the value stack (VDP RAM

address pointed to by VSPTR) is left-

hand term.

FAC Right-hand term

SADD EQU >OB

Call: XML SADD

Output: FAC Result

FAC+10 Error code (>01 - Overflow)

SSUB - VALUE STACK SUBTRACTION

Purpose: Perform base 100 subtraction of a number from

the top of the value stack.

Input: ARG TOP number on the value stack is

left-hand term

FAC Right-hand term

SSUB EQU > OC

Call: XML SSUB

Output: FAC Result

FAC+10 Error code (> 01 - overflow)

K-13

SMUL - VALUE STACK MULTIPLICATION

Purpose: Perform base 100 multiplication of a number

from the top of the value stack with another

number.

Input: ARG TOP number on the value stack is

multiplicand.

FAC Multiplier

SMUL EQU >OD

Call: XML SMUL

Output: FAC Result

FAC+10 Error code (>01 - Overflow)

SDIV - VALUE STACK DIVISIĐN

Purpose: Perform base 100 division of a number from the

top of the value stack by another number.

Input: ARG Top number on the value stack-dividend

FAC Divisor

SDIV EQU >OE

Call: XML SDIV

Output: FAC Result

FAC+10 Error code (>01 - overflow)

K-14

SCOMP - VALUE STACK COMPARE

Purpose: Compare the top number on the value stack to

another number

Input: ARG TOP number on the value stack - first

argument

FAC Second argument

SCOMP EQU >OF

Call: XML SCOMP

Output: STATUS ARG is compared to FAC and the high,

greater than, and condition bits are

set accordingly.

RADIX 100

The internal format for all floating point numbers is radix

100. Each number consists of 8 bytes.. The first byte is the

exponent byte with a bias of >40. The exponent for the number

is added to >40 to get the exponent needed. The following bytes

are the base-100 digits of the number. The first word of the

number is negated if the number is negative. An even number of

digits must follow the decimal (radix) point. Only the most

significant digits of the number should be used and at least one

digit and not more than 2 digits should be to the left of the

radix point. For example, the number 12,500 has 3 most

significant digits, 1, 2, and 5. Using only these digits and

having an even number of digits following the radix point, we

must write 1.25 x 1002. In radix 100 it would look like:

>42 >01 >19 >00 >00 >00 >00 >00

bytel byte2 radix byte3 byte4 byte5 byte6 byte7 byte8

point

K-15

APPENDIX L 9900 ASSEMBLY LANGUAGE

The VDP chip is accessed by writing to the appropriated

memory mapped location (see Home Computer System Memory, CRU, and

Interrupt Mapping Specification). First, the VDP address pointer

is loaded by writing out, sequentially, two bytes (low byte

first) to the VDP address location. (If the full operation is to

be a WRITE data to VDP, then the 2 byte address must be ORed with

>4000).

Because of timing considerations on the VDP, there should be

a delay of at least 6 isec between a read or write operation and

loading the address pointer (or between any two VDP operations).

Data may then be moved from (to) the VDP read-(write)-data

address which will contain the content of VDP memory pointed to

by the VDP address register. After each operation the VDP address

pointer automatically increments and points to the next location.

Therefore, the address pointer does not have to be reloaded to

move blocks of VDP memory.

R1 = @MSB(LSB) two byte VDP address

R2 = @VDPWA I/O write address

R3 = @VDPWD address to write data

R4 = @VDPRD address to read data

{ORI Rl,>40001 write option

MOVB @R1LSB,*R2

MOVB R1,*R2

SLA R8,6 delay

MOVB *R4,@LOC read data R4 = @VDPRD

{MOVB @LOC,*R31 write $3 = @VDPWD

L-1

GROM is accessed by writing a two-byte address (high order

byte first) to the appropriate memory-mapped GROM write address

location. Data may then be moved from (tol the GROM read (write)

data address which will contain the contents of GROM memory

pointed to by the GROM address location. After each operation,

the GROM address pointer automatically increments and points to

the next location. Therefore, the address pointer does not have

to be reloaded to move blocks of GROM data.

R1 = @MSB(@LSB) two-byte GROM address

R2 = @GRMWA - GROM write address

R3 = @grmwd - address to write GROM data

R4 = @GRMRD - address containing current GROM data

MOVB R1,*R2

MOVB @R1LSB,*R2

SLA R8,16 delay

MOVB *R4,R6 movze data from GROM address to R6

MOVB R6,*R3 move data from R6 to GROM address

To create sound in an Assembly - Language program, you create

a sound list exactly as you would in Graphics Language. The

address of this sound list should be stored in locaion >83CC

which is CPU RAM location >CC. If this address is in VDP RAM,

the low order of R14 should be a 1; if the address is in GROM,

the low order bit should be a 0. Location >83CE (CPU RAM >CE -

number of sound bytes) should contain a 1. To allow for

interrupt detection, you should do two LIMI instructions about

every 400 instructions.

R14LB EQU >83FD

ONE BYTE >01

L- 2

SOUND DATA >700 *Sound list in VDP RAM

MOV @SOUND,@>83CC

MOVB @ONE,@>83CE

SOCB @ONE,@R14LB

. (400 - 500 Instructions)

LIMI 2 Sees interrupts greater or equal to 2

LIMI 0 No interrupts except reset or load

L-3

ašsist the user at a particular point in the program. The

form of this help is completely application-dependent; most

of the time aid will not be available. A;message that AID

is active should be displayed when such is the case.

D. PAGE FORWARD (FWD)

ENTER is to be used to go forward to the next display. The

situation arises when a message is on the screen and the

program is waiting to be told that the user is ready to go

on; this may also be used to add more information to the

current display under user control. A message to "PRESS

ENTER" can be dynamically added to the display at the

appropriate time. An extra ENTER to go forward is required

after the ENTER used to record a data entry field at the end

of the page.

E. PAGE BACKWARD (BACK)

SHIFT-Z returns the user to the nearest previous logical

point in the program. This will usually be the display seen

immediately prior to the current one. When properly

implemented, the user should be able to back out to the

console display with successive presses of SHIFT-Z.

F. REDO (REDO)

SHIFT-R is appropriate to replot or restart the current

display. This is particularly useful to allow the user to

restart at the top of a multi-prompt display.

M-2

assist the user at a particular point in the program. The

form of this help is completely application-dependent; most

of the time aid will not be available. A č message that AID

is active should be displayed when such is the case.

D. PAGE FORWARD (FWD)

ENTER is to be used to go forward to the next display. The

situation arises when a message is on the screen and the

program is waiting to be told that the user is ready to go

on; this may also be used to add more information to the

current display under user control. A message to "PRESS

ENTER" can be dynamically added to the display at the

appropriate time. An extra ENTER to go forward is required

after the ENTER used to record a data entry field at the end

of the page.

E. PAGE BACKWARD (BACK)

SHIFT-Z returns the user to the nearest previous logical

point in the program. This will usually be the display seen

immediately prior to the current one. When properly

implemented, the user should 'be able to back out to the

console display with successive presses of SHIFT-Z.

F. REDO (REDO)

SHIFT-R is appropriate to replot or restart the current

display. This is particularly useful to allow the user to

restart at the top of a multi-prompt display.

M-2

Keys should be referred to by function name in the GROM

rather than by how they are implemented, i.e., "PRESS AID"

rather than "PRESS SHIFT-A." The user's instruction manual

will list the correspondence between key and name. This

will allow the GROM to be used in a later version of the

machine that may have those functions implemented in

different keys. See Figure M.1 for a list of key code

assignments.

G. INSERT (INS)

Data will be inserted in front of the character which the

cursor is over when SHIFT-G is pressed.

H. DELETE (DEL) .

SHIFT-F is pressed to delete the character under the cursor.

I. ERASE (ERASE)

SHIFT-T is pressed to delete a line which is being typed in

BASIC.

J. COMMAND (CMD)

SHIFT-V is a special key that is program definable.

K. CLEAR (CLEAR)

SHIFT-C is used to clear a field in an application program;

also acts as the "BREAK" key in BASIC.

M-3

DIRECTION ARROWS

Up and down non-destructive movement of the cursor is

accomplished by"means of the SHIFT-X and SHIFT-E keys. Use

of either of these keys substitutes for an ENTER at the end

of a line.

Basically, the scroll or cursor control keys, when

implemented, specify the direction to move the user's line

of sight:

a. SHIFT-E is the up arrow key, and will cause the screen

to scroll down, revealing previous lines.

b. SHIFT-X is the down- arrow key, and will cause the

screen to scroll EE, revealing new lines.

c. SHIFT-S is the left arrow key, and will cause the screen

to move to the right, revealing the area on the left.

d. SHIFT-D is the right arrow key, and will cause the

screen to move to the left, revealing the area on the

right.

When circumstances make such usage unambiguous, the

unshifted arrow keys, as well as contiguous keys, may be

used to give a joystick control on the console keyboard.

NN

 The mapping for this is: W! t
r/w

it

r~~-sĐ

X C

M-4

QUIT BEGIN UP REDO ERASE

Q W E R T

LEFT RIGHT DEL INS

S D F G

AID

BACK DOWN CLEAR CMD
(

Z X C V

FWD

FIGURE M.1

CONSOLE FUNCTION OVERLAY

• The charts on pages M-7 through M-9 may be used as an

aid to the programmer to keep track of CPU and VDP RAM. The

chart on page M-7 i5 a representation of CPU RAM locations

>00'through > BP which are locations available to the

programmer. Page M-8 is a chart with locations for the

Sprite Attribute Block, Sprite Descriptior Block, and Sprite

Velocity Block. Page M-9 shows the first 32 sets of

patterns in the Pattern Generator area. The beginning VDP

RAM location for each set is given with the pattern numbers

for each pattern. .

M-6

CPU-RAI ;HART FIGURE ,1.2
00 20 40 60 80

(sub stack)
AO

(data stack)

01 21 41 61 81 . Al

02 22 42 62 82 A2

03 23 43 63 83 , A3

04 _
05

24 44 64 84 A4

' 25 . 45 — 65 85 A5

06 26 46 66 86 A6

,07 27 47 67 81 A7

08 28 48 68 88 A8

09 29 49 69 89 A9

OA 2A 4A 6A 8A AA

06 28 48 68 88 AB

OC 2C 4C , 6C 8C AC

00 20 40 60 80 AD

OE 2E 4E 6E 8E AE

OF
~

2F 4F 6F 8F AF
-

10 30 50 70 90 BO

11 31 51
RAM SIZE

11 91 . 81

12 32 52 72 DATSTK (3.A0) 92 82

13 33 53 . 73 SUBSTK (40) 93 83

14 34 54 74 KEYBRD 94 B4

15 . 35 55 75 KEY 95 85

16 . 36 56 .76 JOY Y 96 06

17 37 57 . 77 JOY X 97 B7

18 38 58 78 RANDOM 98 88

19

IA

39 59 79 TIMER 99 69

3A 5A 1A MOTION 9A BA

1B

1C

38 5B 78 VDPSTT 98 BB

3C 5C 7C STATUS 9C BC

10 30 50 7D CB 90 80

tE 3E • 5E 0 YPT BE BE

1F 3F 5F 7F XPT 9F BF

FIGURE M,3

SPRITE TABLE VDP REG (1)=

SPRITE = YPT XPT CHAR COL. VELD- Y X SPRITE = YPT XPT CHAR. COL VELO- Y X

0 >300

CITY

>780 16 >340

CITY

>7C0
1 >304

•
>784 17 >344 >7C4

2 >308 >788 18' >348 >7C8
3 >30C >78C 19 >34C >7CC
4 >310 >790 20 >350 >700
5 >314 >794 21 >354 >704
6 >318 >798 22 >358 >708
7 >31C >79C 23 >35C >70C
8 >320 >7A0 24 >360 >7E0
9 >324 _ >7A4 25 >364 >7E4

10 >328 >7A8 _26 >368 - >7E8
11 >32C >7AC 27 >36C >7EC
12 >330 >780 28 >370 >7F0
13 >334 >784 29 >374_ _ >7F4
14 >338 >788 30 >378 >7F8
15' >33C >78C 31 >37C >7FC

CHAR. RAM DATA CHAR RAM DATA CHAR. RAM DATA CHAR. RAM DATA
4

>80 >400 >98 >4C0 >80 >580
~

>C8 >640
>81 >408 >99 >4C8 >81 >588 >C9 >648
>82 >410 >9A >4DG . >82 >590 >CA >650
>83 >418 >98 >408 >83 >598 >CB >658
>84 >420 >9C >4E0 >84 >5A0 >CC >660
>85 >428 >90 >488 >85 >5A8 >CD >668
>86 >430 >9E >4F0 >88' >580 >CE >670
>87 >438 >9F >4F8 >B7 >588 >CF >678
>88 >440 >AO >500 >88 >5C0 >00 >680
>89 >448 >A1 >508 >89 >5C8 >01 >688
>8A >450 >A2 >510 >BA >500 >02 >690
>88 >458 >A3 >518 >88 >508 >03 >698
>8C >460 >A4 >520 >BC >5E0 >04 >6A0 . .
>8D >468 >A5 >528 >BD >5E8 >05 >6A8
>88 >470 >A6 >530 >BE >5F0 >06 >680
>8F >478 >A7 >538 >BF >5F8 >07 >688
>90 >480 >A8 >540 >CO >600 >08 >6C0
>91 >488 >A9 >548 >C1 >608 >09 >6C8
>92 >490 >AA >550 >C2 >610 >OA >600
>93 >498 >AB >558 >C3 >618 I >08 >608
>94 >4A0 >AC >560 >C4 >620 >DC >6E0
>95 >4A8 >AO >568 >CS >628 >DO >6E8
>96 >480 >AE >570 >C6 >630 >OE >6F0
>97 >488 >AF >578 >C7 >638 >OF >6F8

M-8

GLOSSARY

Bit Reset - The bit has value 0

Bit Reversal - Create a mirror image of a byte

Bit Set - the bit has value 1

CPU - Central Processor Unit

DSR - Device Service Routine

GROM - Graphics Read Only Memory; P-Channel ROM

LSB - Least significant bit

LSBy - Least significant byte

LSN - Least significant nybble

MSB - Most significant bit

MSBy - Most significant byte

MSN - Most significant nybble

Nybble - half of a byte

PAB - Peripheral Access BLock

Pixel - Dot on the screen

PNT Patern Name Table - Each byte contains the character num-

ber for each pattern position on the screen. The first 32

bytes correspond to the first row of patterns on the screen

the next 32 bytes to the next row, etc.

RAM - Random Access Memory

SAB - Sprite Attribute Block - contains four bytes for each

sprite telling y-pixel position, x-pixel position, cha-

racter number, and early Clock/color.

SDB - Sprite Descriptor Block - contains 8-byte characters used

for sprites

GLOSSARY (Continued)

Sprite - objects which exist in planes in front of the pattern

plane. Moved on pixel-by-pixel basis.

SVB Sprite Velocity Block - Contains four bytes for each moving

sprite on the screen. The first two bytes give Y velocity

and X velocity, respectively. The last two bytes must be

initialized to zero by the system, but are used by the

system as counters for auto-motion.

VDP - Video Display Processor

VSPTR - Floating point stack pointer

FIGURE 4

SET 0 SET 1 SET 2 SET 3 SET 4 SET 5 SET 6 SET 7 SET 8 SET 9 SET 10
RAM>800 RAM>840 RAM>880 RAM>8C0 RAM>900 RAM>940 RAM>980 RAM>9C0 RAM >A00 RAM >A40 RAM >A80
COLOR:

>00

>01

>02

>03

>04

>05

>06

>07

COLOR:

>08

>09

>0A

>011

>OC

>01,1

>01

>OF

COLOR:

>10

>11

>12

>13

>14

>15

>16

>17

COLOR:

>18

>19

>1A

>18

>1C

>10

>1E

>1F

Sp

!

"

$

%

&

.

COLOR:

>20

>21

>22

>23

>24

>25

>26

>27

(

i

*

+

,

-

,

/

COLOR:

>28

>29

>2A

>28

>2C

>20

>2E

>2F

0

1

2

3

4

5

6

7

COLOR:

>30

>31

>32

>33

>34

>35

>36

>37

8

9

;

<

=

>

?

COLOR:

>38

>39

>3A

>38

>3C

>30

>31

>3F

@

A

B

C

D

E

F

G

COLOR:

>40

>41

>42

>43

>44

>45

>46

>47

11

I

J

K

l

M

N

0

COLOR:

>48

>49

>4A

>48

>4C

>41:I

>41

>41

P

0

R

S

T

U

V

W

COLOR:

>50

>51

>52

>53

>54

>55

>56

>5/

SL

COI

X

Y

2

RAM

f

OR:

11
>ACO

>58

>59

>5A

SET
RAM

COLOR:

12
>B00

>60

>61

>62

SET
RAM>

COLOR:

13
B40

>68

>69

>6A

SET

COLOR:

RAM>B80

14

>70

>_71

>72

SET
RAM>

COLOR:

15
BCO

>78

>79

>7A

SET
RAM

COLOR:

[

16
>COO

>80

>81

>82

SET
RAM>

COLOR:

17
C40

>88

>89

>BA

SET
RAM

COLOR:

18
>C80

>90

>91

>92

--

SET
RAM

COLOR:

19
>

_
CCO

>98

>99

>9A

SET
RAM

COLOR:

20
>D00

>AO

Al>

>A2

rSET
RAM

COLOR:

21
> 040

>A8

>A9

 >AA

I

\

>50

>5C

>51)

>5E

>51

>63

>64

>65

>66

>6/

>68

>6C

>611

>6E

>6F

>73

>74

>75

>16

>17

•
~

>78

>7C

>11:1

>7E

>71

>83

>84

>85

>86

>87

>88

>8C

>80

>81

>81

u >93

>94

>95

>96

>91

'-

_

>96

>9C

>90

>9E

>91

>A3

>A4

>A5

>A6

>A7

>AB

>AC

>AD

>AE

>AF

SFr
RAM

COLOR:

22

>080

>130

>81

>B2

>03

>B4

>B5

SE

RAM

COLOR:

r

> UCO

23

>B8

>119

>BA

>BB

>BC

>80

SET

RAM

COLOR:

24

> E00

>CO

>C1

>C2

>C3

>C4

>C5

SET

RAM

COLOR:

25

> (40

>C8

> CO

>CA

>CB

>CD
>CC

SET

RAM

COLOR:

26

>E80

>DI)

>D I

>D2

>03

>04

>05

SET
RAM

COLOR:

27
> (CO

>08

>139

>DA

>DB

>DC

>DO

SET

RAM

COLOR:

28

> F00

>10

>11

>12

>13

>14

>E5

SET

RAM >

COLOR:

29

F40

>E8

>E9

>EA

>EB

>EC

>ED
-

SET

RAM

COLOR:

30

> 100

-

>F0

>F1

>F2

>F3

>F4

>15

_

SET

RAM

COLOR:

31

> FC0

>F8

>F9

>FA

>F8

>FC

>10

-

-

__ W

-

>86

>87
--_ -- - -

>BE

>BF
- ~- - --

>C6

>C7
- -- --

-->CF

>CE
-- - --

>D6

>07
- - - -.__-

>DE

>OF
-.. --- --.~E7 >E6 __ _- --- -

>EF

>11 >F6

>F1 r _. _._

>FE

>FF
-~----

I-IGURE M, 5

TEXAS INSTRUMENTS
Iti< f/w►Illl • I < O

HOME COMPUTER "GROM" DEVELOPMENT

PROJECT:

VIDEO/COPY

AUDIO/TONES'

1978 Texas instruments incorporated

ALPHABETICAL INDEX

Page
Addressing Modes

Direct 3-5,
3-7

Immediate 3-2,
3-7

Indexed 3-5,
3-7

Indexed Indirect 3-7
Indirect 3-5,

3-7
Top of Stack 3-4

ASCII Character Sets 3-11,
3-12,
H-1,
H-5

Bit Reversal H-5

Cassette DSR I-1

CPU RAM 2-9,
2-10,
2-11

Destination Address 1-1,
3-4

Floating Point Subroutines K-1
ATN K-8
CFI K-10
CNS K-2
COS K-7
CSN K-9
EXP K-5
FADD K-10
FCOMP K-12
FDIV K-12
FMUL K-11
'FSUB K-11
INT K-3
LOG K-6
PWR K-4
SADD K-13
SCOMP K-15
SDIV K-14
SIN K-7
SMUL K-14
SQR K-5
SSUB K-13
TAN K-8

ALPHABETICAL INDEX
Page 2 . .

Page

Function Keys M-1

GPL Assembler 1-3

GPL Directives A-2
BASE A-3
DATA A-2
END A-2
EQU A-2
GROM A-3
LIST A-4
LISTM A-4
ORG A-3
PAGE A-4
TITLE A-2
UNL A-4
UNLM A-4

GPL Instructions 4-1,
J-1,
J-4

A 4-23
ABS . 4-31
ADD 4-23
ALL 4-49
AND 4-34
B 4-15
BACK 4-48
BR 4-14,

A-8
BS 4-13,

A- 8
CALL 4-17
CARRY 4-4,

A-8
CASE 4-16
CEQ 4-6,

A-8
CGE 4-10,

A-8
CGT 4-9,

A-8
CH 4-7,

A- 8
CHE 4-8,

A-8
CLOG 4-11,

A-8
CLR 4-37
COINC 4-47,

E-1
CZ 4-12,

A-8

ALPHABETICAL INDEX
Page 5

Page

GPL Timing 1-2

Handsets
Joystick Codes D-8
Remote D-1,

D-6,
D-7

Wired D-2
Instruction Formats 3-8,

3-9,
3-10

Keyboards
40-Key D-1,

D-4,
D-5

Remote D-2
Label 3-5
Monitor 1-3,

H-4

Multicolor Mode

Pattern Color Table

2-6,
G-1

2-2,
2-3,
2-4

Pattern Generator Sets
Multicolor Mode G-2
Normal Mode 2-2
Text Mode G-1

Pattern Name Table
Multicolor Mode G-2
Normal Mode 2-2 ►

3-1
Text Mode G-1

Patterns (Characters) 2-1

Peripheral Access Block (PAB) I-2

Programming Conventions M-1,
M-5

Radix 100 Numbers K-15

ALPHABETICAL INDEX
Page 4 0

Page

GPL Instructions (Cont.)
INC 4-27
INCT 4-28
INV 4-33
M 4-25
MOVE 4-42
MUL 4-25
NEG 4-32
OR 4-35
OVF 4-5,

A-8
POP 4-41
PUSH 4-40
RAND 4-53
RB 4-21
RTN 4-19
RTNC 4-20
S 4-24
SB 4-21
SCAN 4-54
SLL 4-43
SRA 4-44
SRC 4-46
SRL 4-45
ST 4-38
SUB 4-24
TBR 4-21
XML 4-55,

H-3,
R-1,
L-1

XOR 4-36

GPL Macro Instructions
$CALL A-7
$CASE A-6
$ELSE A-6
$END A-5
$FOR - TO A-5
$FOR - DOWNTO A-6
$GOTO A-6
$IF - GOTO A-6
$IF - THEN A-6
$REPEAT A-5
$SELSE A-6
$SEND A-5
$UNTIL A-5
$WHILE A-5

ALPHABETICAL INDEX
Page 4

Page

GPL Instructions (Cont.)
INC 4-27
INCT 4-28
INV 4-33
M 4-25
MOVE 4-42
MUL 4-25
NEG 4-32
OR 4-35
OVF 4-5,

A-8
POP 4-41
PUSH 4-40
RAND 4-53
RB 4-21
RTN 4-19
RTNC 4-20
g 4-24
SB 4-21
SCAN 4-54
SLL 4-43
SRA 4-44
SRC 4-46
SRL 4-45
ST 4-38
SUB 4-24
TBR 4-21
XML 4-55,

H-3,
K-1,
L-1

XOR 4-36

GPL Macro Instructions
$CALL A-7
$CASE A-6
$ELSE A-6
$END A-5
$FOR - TO A-5
$FOR - DOWNTO A-6
$GOTO A-6
$IF - GOTO A-6
$IF - THEN A-6
$REPEAT A-5
$SELSE A-6
$SEND A-5
$UNTIL A-5
$WHILE A-5

ALPHABETICAL INDEX
Page 6

Page

Reference Documents 1-4
Sample Program B-2
Sound C-i,

H-5

Source Operand 1-1,
3-3

Sprites 2-3
Sprite Attribute Block (SAB) 2-3
Sprite Descriptor Block (SOB) 2-6
Sprite Velocity Block (SVB) 2-7,

3-1,
B-1

Status Block 3-16,
3-20,
H-1

System Initialization H-1,
H-2,
H-3,
H-5

System Organization 2-1

Text Mode 2-6,
G-1

VDP RAM 2-1,
2-9,
2-12

VDP Control Registers 3-11,
3-13,
3-14,
3-15,
H-3

USER'S RESPONSE SHEET

Graphics Programming Language User's Guide

April 30, 1979

User's Name Telephone

COMPANY Date

Please list any discrepancy found in this manual by page,
paragraph, figure, or table number in the following space. If
there are any other suggestions that you wish to make, feel free
to include them. Thank you.

LOCATION IN MANUAL COMMENT/SUGGESTION

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215

