
Do not upload this copyright pdf document to any other website. Breaching copyright may
result in a criminal conviction and large payment for Royalties.

This Acrobat document was generated by me, Colin Hinson, from a document held by me,
believed to be out of copyright. It is presented here (for free) and this pdf version of the
document is my copyright in much the same way as a photograph would be. If you believe the
document to be under other copyright, please contact me.

The document should have been downloaded via my website https://blunham.com/Radar, or
any mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

If you find the file(s) of use to you, you might like to make a donation for the upkeep of the
website – see https://blunham.com/Radar for a link to do so.

Colin Hinson
In the village of Blunham, Bedfordshire, UK.

TEXAS INSTRUMENTS
HOME COMPUTER

GAME WRITERS' PACK 2
CASSETTE SOFTWARE

WITH MANUAL

An integrated pack containing a series of programs on cassette that develop and graphically
display major ideas covered in the accompanying book. Enables any user to progressively

understand and make full use of this computer.
r:tiwrialmw

TEXAS INSTRUMENTS
HOME COMPUTER

Game Writers'
Pack 2

PK Mc Bride

COLLINS
MICROSOFTWARE

Contents

Introduction
1 Word Games 5
2 Dice and Board Games 17
3 Don't Get Cross! 26
4 Dealing and Sorting a Pack of Cards 36
5 Decisions, Decisions 41
6 Do you want to Bet? 54
7 War Games 1— Co-ordinates 70
8 War Games 2 — Movement 82
9 Simulations 88

Appendix
Program Lists 97

c William Collins Sons & Co. Ltd., 1983
1103216-0000

123456789

Produced and printed by Contract Books Ltd,
1983. All rights reserved, no part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior permission of the copyright owner.

2 3

1
Introduction Word games

In Game Writer's Pack 1, the computer was used to organize
the games, and served as the board on which the games
were played, but it took no really active part. Most of games
covered here are those where the 99 acts as a player.
Sometimes its play is automatic, but in most games, the 99
has to think! Of course, computers cannot think for
themselves — at least not yet — so it's up to you, the
programmer, to teach it how. This means that you have to
think hard about how a game works, and how a human
player takes decisions during a game. It takes time, but it's
worth it in the end. You will find that you learn a
tremendous amount about computing techniques while you
are working out your own games.

The programs in this pack are mainly examples of the sorts
of games you can write using the techniques covered in the
book. Please feel free to extend or alter these programs to
make them into games of your own. As long as you do not
try to record over the original programs on the cassette,
then, whatever you try, the programs will not be lost or
damaged. The program LISTs are given in the Appendix for
your reference.

The book assumes that you have read the two Starter
Packs, and Games Writer's Pack 1, and that you have a
reasonable grasp of the computing techniques covered in
those. It also assumes that you will work through chapter by
chapter and learn to use each new idea before moving on.

You don't need any special equipment for games
programming, just a T.V., a cassette recorder, your trusty 99,
lots of paper and plenty of ideas. A printer is of tremendous
help in sorting out long programs, and the TI EXTENDED
BASIC cartridge can make life easier, but neither are
essential.

Word games rely on the comparison of strings or parts of
strings. HANGMAN, included in Starter Pack 2, is a useful
demonstration of the use of string-slicing techniques in
games.

The game follows the normal rules. Correctly guessed
letters are written on the dashes to build up the mystery
word. Bad guesses are recorded, and the hanging man is
drawn in ten stages.

The essential routines of the game are very simple. The
major complications lie in the screen presentation. Using
standard TI BASIC, it is not possible to PRINT at set points
on the screen, and so the HCHAR sub-program has to be
used. (In TI EXTENDED BASIC you have a DISPLAY AT
command which makes screen presentations that much
easier.)

The heart of the program is the comparison of the guessed
letter with each of the letters of the word in turn. In
EXTENDED BASIC it would look something like this (L$ is
the Letter, W$ is the Word):

FOR T = 1 TO LEN(W$)
IF L$ = SEG$(W$,T,1) THEN....ELSE....

NEXT T

In TI BASIC it's not that easy. If you allow a letter to be
INPUT, then your screen will scroll up and you will lose your
display. The Letter must be collected by a CALL KEY line.
You now have a code rather than a letter, so the codes of the
letters of the Word need to be checked. That check line now
looks like this:

IF K = ASC(SEG$(W$,T,1)) THEN....

4 5

K is the code of the letter collected by CALL KEY(3,K,S). The
alternative is to transfer the letter code to a string:
L$ = CHR$(K) and carry on as before.

Either way you do it, the result is the same. If the word
was "HANGMAN" and the letter was "A" then this is what
happens:

HANGMAN

GOTO "found" routine.

If you look at the HANGMAN LIST in the Appendix , you
will find this part of the program around lines 600 onwards.

The found routine is at 1000. The first thing to do is to print
the found letter in the right place on the screen.

CALL HCHAR(15,T*2+8,K)

This prints the letter, CHR$(K), on the 15th row, starting
8 columns in, and spaced out with a single space between
the letters. From the example above, the first "A" would
appear at 15,12 (=2*2+8) and the second "A" at 15,20.

You could at this stage simply mark up a correct guess,
(CG=CG+1) and go on, checking to see if you have as many
guesses as there are letters in the word (IF CG = LEN(W$)
THEN...). Unfortunately, some players cheat. There would
be nothing here to stop someone using the same correct
letter all the time, and building up his score that way. This is
why lines 1030 to 1070 are there. They remove the guessed
letter from the word and replace it with a space.

1030 P=POS (W$, C H R$ (K) ,1) (where's the letter
again?)

1040 L$= S EG$ (W$,1, P-1) (left-hand side up to
the letter)

(right-hand side — L
is Len(W$))

(add a space)

1050 R$=SEG$(W$,P+1,L—P)

1060 W$= L$ &" "
1070 W$= W$ & R$

Back to the example — on the first "A" this happens:

P=2
L$ = "H" (SEG$(W$,1,1))
R$ = "NGMAN" (SEG$(W$,3,4))

W$ is redefined to read "H NGMAN"
The same technique can be used, by the way, to knock a

single space invader out of a string of them.
You can now add to your Correct Guesses score, and

check for enough Correct Guesses. The actual program uses
a different check routine. There, a Check String is created
(C$) which is the same length as the Word, but filled entirely
with spaces. When the letters of the word have all been
replaced with spaces, then this is picked up by comparison
with C$. (Lines 1090 to 1120).

Bad Guesses

You need some sort of flag in your "found" routine to show
that the computer has been there. In the program it is Z. If at
the end of the loop, Z is still zero, then clearly no letter has
been found, and it was a Bad Guess. The computer now goes
off to the drawing routine. M is the counter for the number
of Misses. Look at lines 2000 onwards.

2000 M=M+1
2010 ON M GOSUB

Each sub-routine draws another part of the picture.
The Bad Guesses must also be recorded on the screen, and

their position is held in GR (Guess Row) and GC.

2040 CALL HCHAR(GR,GC,K)

prints up the letter. GR and GC are then adjusted ready for
the next Bad Guess.

Figure 1 shows the flowchart for the basic HANGMAN
game.

6 7

Add to Misses
Draw Hangman

Print Bad Guess

Figure 1

Here the word is entered by a second player at the start of
the game.

Word Banks for Hangman

Two separate word banks are included in the HANGMAN
game in Pack 2 — one of BASIC words, the other of animal
names. You can very readily add extra banks, or extend
these. To add extra banks simply type the words in as DATA
lines starting at 8000, 9000, 10000 (or any other well-spaced
numbers). Next alter the selection routine that starts at 180.
You want to be able to fix the RESTORE position so that the
99 begins to read at the start of the chosen set of DATA lines.
It is probably easiest to ask the player for a number reply.

"For BASIC Hangman enter 1
For Animal Hangman enter 2
For Geography Hangman enter 3

,,

You follow with something like this:

190 INPUT A
200 ON A GOTO 205,215,225,...
205 RESTORE 5000
210 GOTO 250
215 RESTORE 6000
220 GOTO 250
225 RESTORE 8000

The routine from line 250 READS the word bank into the
array Q$(42). If you want more than 42 words you will have
to change the dimension of Q$ and make sure that all your
banks have the same number of words.

Words are chosen from the Q$ array by the lines from 460
to 466.

460 N= INT(RND*42)+1
462 IF Q$(N)="" THEN 460
465 W$= Q$(N)
466 Q$(N) = ""

This picks a word at random, checks that it hasn't been used,
transfers it to W$ for the game, and then marks off the word
in the array.

Before you can teach the 99 to play Hangman, you have to
work out how you play, and break your game technique
down into a series of separate steps and decisions. Most
people start by guessing the commonest letters, vowels first.
Then, when a few letters have been found, they will look at
the shape of the word and try to guess the word. If they
think they know what the word is, then they will normally
try the first blank letter. Let's look at an example. Here's the
line of blanks:

Vowels first.

no good
"A" good one _A___
"I" good one _A_I_

8 9

Think, think. No, don't recognize it yet. There are enough
vowels. Let's try some consonants. "N" is the commonest.

"N" no good
"S" good one _ASI_

This looks like BASIC. Try "B" to check.

"B" spot on
"C" finishes the word BASIC

We can now write out a game plan as a flowchart. (Figure 2)

START

Figure 2 WIN

BASI_

If you can flowchart it, you can program it. (Keep saying that
to yourself when things are not going smoothly. It's a very
encouraging thought.)

Take it a step at a time. How do you "try a vowel"? You
will need an array of vowels - V$(1) ="E" ; V$(2) = "A" ;
V$(3) = "I" ; V$(4) _ "O" ; V$(5) = "U" ; V$(6) = "Y". You
need that "Y" there in case of words like "WHY".

You will also need a couple of variables - VN to keep track
of which Vowel Number you are trying, and VF to count
how many Vowels you have Found.

Figure 3

How many vowels are "enough"? As a general rule there's
one vowel to every 2 or 3 consonants. This line compares the
number of Vowels Found with the length of the word:

IF VF = INT (LEN(W$)/3)+1

With a five letter word, INT(LEN(W$)/3)+1 comes to 2.
Think of a few five letter words and count how many vowels
in each.

10 11

"Recognize shape"? No problem — as long as the player is
only allowed to use words in the 99's word bank. First run
through the word bank — Q$(..) and find one the right length
(WL is the Word Length)

IF LEN Q$(N) = WL THEN

Transfer it to a simple string store, as this makes slicing
much easier.

C$ = Q$(N)

and mark this word off in your array, so that you don't keep
trying it:

Q$(N) = ,,,,

Now go through the two words, W$ and C$, and compare
them letter by letter, ignoring the blanks:

1500 FOR T=1 TO WL
1510 IF SEG$(W$,T,1)=" "THEN 1530

(ignore blanks)
1520 IF SEG$(W$,T,1)<>SEG$(C$,T,1) THEN....

(back up for a different word)
1530 NEXT T

Suppose the word that you are thinking of is "INPUT". The
computer has guessed and found I__U_. It checks the word
bank and comes up with "BREAK" — the first five letter word
it meets. On the first run through the letter checking loop it
discovers that SEG$(W$,T,1) — "I" is not the same as
SEG$(C$,T,1) — "B". It goes off for another word.

Eventually it finds "INPUT", and checks those letters. The
only letters that it has guessed "I" and "U" are in the right
places. It completes the loop and is ready for the next stage.
Find the first blank letter, and try that.

P=POS (W$," ",1)

Finds the position of the blank.

SEG$(CS,P,1)

is the letter at that point in the C$ word.

This kind of routine works perfectly well where you have a
limited number of words that the player can use. You could
have a much larger word bank if you wanted. The 99 has
memory space for several hundred words. With a large
bank, the 99 could soon use up its guesses working through
all of the words of the right length. This is where you need to
write in a consonant guessing routine, so that the computer
tries to guess more single letters before it begins to compare
with the words in its memory.

The consonant routine works the same as the vowel
routine, only now, instead of using the 6 vowels, you will
use the 6 (or more) commonest consonants. In normal
English these are T,N,S,H,R,D. Check your own word bank
though, to see which consonants are used most there.

You now have most of the routines you need to teach the
99 how to play Hangman. For a look at how to organize a
computerized guessing game, run the LOGICOL program,
and check through its LIST (in the Appendix).

How many words?

How many words of 3 letters or more can you make out of
the word "TEXAS" — using each letter once only in each
word? The 99 can make 300 — except that most of them are
not proper words. We'll come back to that in a minute, but
first let's put a word-maker game together. The game is fun
to play, easy to write, and gives good practice in handling
arrays.

12 13

Here's the flowchart.

SCORE =

found?

Set up word
Bank Q8(...)

Player enters
word W$

99 checks through
word bank

Print
"No Good"
Message

Mark off in array
Add to Score

Print "OK" message

Figure 4

The program starts by READing its word bank from a
DATA list into an array. This is done exactly the same as in
Hangman. If you are not too bothered about the screen
display, then the player's word can be entered by a normal
INPUT line, otherwise use the Input Anywhere routine from
Pack 2.

Comparing whole words in easy. Simply work through
the word bank, checking each word in the array with the
player's word.

FOR N =1 TO 100 (or however many)
IF W$ = Q$ (N) THEN (off to O.K. routine)
NEXT N

(leads to "no good" routine.)

The O.K. routine removes the word from the word bank, so
that it cannot be re-used:

Q$(N) = " "

It adds to the score (longer words count more):

XS = LEN(W$)- 2 (eXtraScore)
SCORE =SCORE + XS

- 3-letter words get 1 point, 4-letter words get 2, etc.
And it PRINTs an appropriate message:

PRINT "THAT'S A GOOD WORD."

Now for the Word Bank.
You want to make sure that you include in your word bank

every possible word. What better way to do this than to get
the 99 to work out every different combination of letters. You
can then quickly check through the list to see which are real
words.

This routine produces every 3-letter combination from the
word "TEXAS".

10 W$="TEXAS"

20 FOR N=1 TO 5
30 L$(N)= SEG$(W$,N,1)
40 NEXT N }

This splits the
word into
separate letters -
it makes the rest
of the program
simpler

50 FOR A =1 TO 5
60 FOR B = 1 TO 5
70 FOR C = 1 TO 5
80 IF (A=B) + (A=C) + (B=C) THEN 100
90 PRINT L$(A);L$(B); LS(C);" ";

(space to separate the words)
100 NEXT C
110 NEXT B
120 NEXT A

Look at line 80. This uses the "Value of truth" functions to
check whether or not any letter is being used twice. If any of

14 15

those pairs of numbers are the same then the equation will
have a value of —1, and the program will jump to line 100.

Type the program in and run it. The 99 will print out 60
3-letter combinations, starting with
"TEX", "TEA", "TES", "TXE", "TXA", "TXS"

Jot down the good words as it runs and you finish up with
the following list:

TEA, TAX, EAT, ATE,AXE,SET,SEX,SEA,SAT

We can add to the program so that it does the same for
4-letter combinations.

75 FOR D=1 TO 5
95 NEXT D

and alter lines 80 and 90

80 IF (A=B)+(A=C)+(B=C)+(A=D)+(B=D)+(C=D)
THEN 95
90 PRINT L$(A);L$(B);L$(C);L$(D);" ";

This time you will get 120 combinations. The useful ones are
here:

TEAS,EATS,EAST,AXES,SEAT

You can add a further loop to check for 5-letter combinations.
It is interesting — but an almost complete waste of time with
"TEXAS". The only other acceptable word from the 120 new
combinations is "TAXES".

Try this program out with a different base word. Make
sure that the number in the loops is the same as the length of
the word.

2
dice and board games

Time to take a break from the complexities of computer
strategies and turn to simple board games. Here the
computer can still take an active part, but its play is
automatic. Sometimes it's useful to have a second "player"
sitting in the 99 ready for when you feel like a game.

The actual screen display is a vital part of any board game.
But don't worry too much at first about the quality of your
colours or the details of the graphics characters that you are
using. They can always be improved later, once the game is
running properly. Likewise with any messages or special
effects — they can be sorted out later. Get your pieces moving
in the right way at the right time first.

The simplest type of dice-based race is one where the
counters start on the left-hand side of the screen, and move
across to the right, travelling as many squares as are shown
on a dice. (Figure 5)

PLAYER 1

YOU HAVE ROLLED - 5

Figure 5

16 17

Ì

0

C(1) and C(2) hold the Column numbers for the counters.
D is the random number produced for the "dice". A player's
movement is run through a simple loop which blanks out his
previous position and re-prints one column further on.

FOR N = 1 TO D (how many moves)
CALL H C H A R (15+P, C (P) , 3 2) (P = Player number)
C(P)=C(P)+1
CALL HCHAR(15+P,C(P),120) (120 being your

graphic)
NEXT N

Notice here how the player number (P) is used not only to
control which Column variable is used, but also to adjust
the Row position, so that Player 1 is on Row 16, Player 2 on
Row 17.

Try writing a game using a routine like this. Leave the dice
as a simple number display for the moment. Get it running
and play it until you are bored.

Bored with it yet? Right, now's the time to look at some
variations.

Alter that line so that it sends the program off to a line which
makes W= —1. Your end-check line should now be:

IF C(P)=1 THEN...

2 Improve the Display

Moving one square at a time means that you haven't really
got room to draw a decent sized board. The only way you
can mark out your board is by making little "square"
graphics:

Figure 6

1 There and Back again
This time the race is across to the right hand edge, and back
to the start. You do not need a "move right" routine and a
"move left" routine for this. All you need is a direction
indicator. (W = Which Way). The line that alters the column
variable:

C(P)=C(P)+1

needs to have two forms:

C(P)=C(P)+1 and C(P)=C(P)-1

Start with W set to +1 and write in a check line
(C(P)=C(P)+W).

At the moment you should have something which checks
for the end:

IF C(P)=32 THEN.... (off to the Win routine)

and printing these instead of spaces when you wipe out the
counters.

If you make each move two squares long, then it leaves
space for marking out a board.

Figure 7

18 19

21 20

Figure 8

You will need to create a set of graphics like those of figure 8,
to produce a board like figure 7. Drawing lines through the
middle of squares in this way means that your counters are
in the centre of the marked squares.

The movement routine remains the same as before, except
that W is now either +2 or —2.

C(P)=C(P)+W

If you look at the DICERACE program you will see that there
the movement is of three spaces at a time. This produces a
very spread out board, and does so using only the one board
graphic.

3 Round the Board

In the "single-track" races, each counter has had its own line
to run along. With a "round the board" game, this could get
complicated, and you will find it easier to use a track made
out of a single set of large squares, as in DICERACE. There
are complications with this as well, but only minor ones.

You do not want to have counters printed on top of each
other — unless you are making a Ludo type of game (see
below). In DICERACE, each counter has its own corner of
the squares, and the three-at-a-time movement keeps it in
the same corner. Now the problem is that a single row or
column check is not enough. Two counters in the same
square could be at rows 20 and 21, and columns 6 and 7. The
movement section of DICERACE starts at line 970. Look

there to see how the counters' positions are checked. You
will also notice there that a different way of changing
positions is used. If a counter is on the right-hand side
(below the top square) the program goes to 1040 where the
row (P(N,1)) is reduced by three. This is easier than using a
"Which Way" variable, as the row number can be added to,
reduced, or stay the same. The routines needed to alter each
Which Way variable at the appropriate time would be rather
complicated.

4 Dice with spots on

The dice display in DICERACE is big and easy to read, but
rather slow in appearing. This is because each dice picture is
made up of 9 squares. The pictures are all held in the D$()
array, and the 99 has to find the right picture and display it
with a HCHAR routine, one square at a time. (see lines
5000-5060)

A single character dice could be displayed much quicker,
and a better "rolling" effect could be produced, but the
graphic would be rather small. A compromise solution is to
use a 2 x 2 dice display, but now you need 24 graphics
characters, as each corner of every "face" is different: You
may like to alter DICERACE to give it a smaller, but faster
dice. Remove the graphics for characters 120 and 122 (line
160), and the whole routine from 425 to 650. Re-dimension
the D$() array (line 80) and write in your own routine to
define graphics and to set them into the D$() array. You
could use the characters from 96 to 119. Don't forget to
define your colours for those sets.

Start something like this:

430 FOR N=96 TO 119
440 READ G$
450 CALL CHAR(N,G$)
460 NEXT N
470 DATA 0000000000010307,00000000008000E0,

0703010000000000,E000800000000000..

That's the one spot.

CALL KEY

Yes
 RETURN

= G + 1

Yes

No

"Try Again"

"Press" & STRS(Z)

Put the characters in the array like this:

500 D$(1,1)= CHR$(96) & CHR$(97)
510 D$(1,2)= CHR$(98) & CHR$(99)

5 Counting Exercise
Rather than moving the counter automatically after the dice
has been rolled, have a routine which asks the player to
press the number of the dice. This turns the game into a
simple counting exercise for young children. If you do this,
then you should include a check routine, so that if the child
is unable to find the right number after 2 or 3 goes, the 99
tells him which to press. This can be slotted into DICERACE
as a sub-routine, with a line

965 GOSUB 7000

to send it there. Here's the flowchart for the routine.

"Press the number"

Figure 9

"Z" is the random number for the dice. Add 48 so that it can
be compared with the "K" ASCII code.

6 Incidents
Add some excitement to the race by writing in incident
routines. These can be of the immediate, or delayed action
types — either "go back to the start" or "miss the next go".
The section of DICERACE from 3000 is left for your
incidents.

First decide where your incidents are, and write in check
lines to pick up any counters that land there.

IF (P(N,2)>29)*(P(N,1)<5)...

This line in the DICERACE game would pick up any counter
in the top right-hand square.

IF (P(N,1)>10)*(P(N,1)<13)...

This would pick up counters on rows 11 or 12, on either side
of the board.

To move a counter backwards or forwards is very simple
now. You know exactly where it is, so you can tell exactly
how far and in which direction you want it to move. You do
not need the same kind of checks that you have in the main
movement loop.

P(N,1)=P(N,1)+6

This would move a counter on two, if it was on the left-hand
side, and back two if it was on the right.

7 Snakes and Ladders
This is really a variation on There and Back again, with
incidents. A Which Way variable is used to control
movement, but the routine which changes W also moves the
counter up a row.

W=W * —1
R(P)=R(P)-1

22 23

e e e e
o
o
o

e

i

e o

—o •

I••••

e
0
0

These lines work equally well for both edges. Multiplying by
—1 changes plus to minus, or minus to plus.

The counters will rub out your nicely drawn snakes and
ladders as they move round, but do not worry, this can be
put right. Use the CALL GCHAR sub-program to find out
what character is on a square before you print a counter
there. When the counter moves off, replace it, not with a
space, but with the right graphic. The GHAR check can also
be used to spot the tops of snakes and the bottoms of
ladders. You will need as many up and down sub-routines as
you have lengths of snakes and of ladders. Jump the counter
from one end to the other if you are feeling lazy, or when
you first put the program together. Move the counter square
by square if you are up to making the effort. The 99 has
enough memory space to cope with a very detailed game.

8 Ludo

DICERACE can be turned into a simple one-counter game of
Ludo. Change the start positions of the counters so that they
all occupy the same square. Next write in a GCHAR check so
that if a counter lands on top of another at the end of its
move, the original counter is sent back to the start. You will
also need a GCHAR check on the squares that a counter
passes over during a move, so that any covered counter can
be reprinted afterwards.

For a proper Ludo game you will need a totally new
program. The board needs to be drawn with a set of paths
leading to the "homes". Each player needs 4 counters, so the
array that holds information about the counters needs to be
changed. P(4,4,3) will hold row, column and graphics
number for 4 counters for 4 players.

Most importantly, you will have to teach the 99 the tactics
of the. game. Which of its four counters should it move?
Should it chase the one ahead, run from the one behind, or
just try to get "home" as quickly as possible? When should it
turn off the main track and up the path to "home"?

The game has many complications, and is probably best
left until you have reached the War Games section of the
book. There you will come across ways of teaching the 99 to
make these kinds of tactical decisions.

Figure 10

24 25

3
Don't get cross!

x

Figure 12

Two crosses in a line would appear as 110, 101, or 011.
Whichever way they are, if you add up the values in that line
you get a total of 2. The 99 now has a simple way to spot a
line that needs stopping. Likewise, if the total of the line is 3,
then it knows that you have won — an unlikely event!

We need to mark the 99's move in the array. "1" shows a
cross, but we can't use 2 or 3 because a single nought in a line
would then have the same value as 2 or 3 crosses. The next
available number is 4. Let's use that. A total of 8 now shows
two noughts, and the 99 will know to finish that line and
win.

Over twenty-five different combinations of noughts and
crosses (and spaces) are possible, but if you remember that a
single nought, or cross, or space in a line gives the same total
wherever it is, then there are only 10 combinations to think
about.

Screen display Array Line Total Action?
000 0 No

X__ 100 1 No
XX_ 110 2 Yes — put an O quick!
XXX 111 3 Player wins
O__ 400 4 No
OX_ 410 5 No
OXX 411 6 No
00_ 440 8 Yes — put an O quick!
OOX 441 9 No
000 444 12 99 wins

Figure 13

No, don't get cross if the 99 won't let you win at CROSSES —
just fix the program so that it will.

CROSSES is included in this pack for two reasons — it
shows how arrays can be used to keep track of a game, and it
also shows that it is possible to turn your 99 into an expert at
a game. The 99 can learn any game as long as you can
analyse the game thoroughly enough and as long as the
memory space can cope with all the possible game
variations.

Noughts and crosses is a simple game, and there are only a
limited number of moves. If you think about how two
humans play the game, you will realize that after the first
few moves, neither player has much real choice. He is either
stopping his opponent from completing a line, or finishing
one of his own. In either case, the player is looking for two of
the same marks in one line. The game is really decided in
those first few moves. That is the more difficult part, so we
will leave it until later. Let's look first at the "two-in-a-line"
checker.

For the 99 to play intelligently it must be able to "see" the
game. You could use the GCHAR function for this, but it is
much easier to record the moves in an array. A simple 3x 3
array will match the screen display.

S(3,3)
r°T°T°1
~°♦°+°-'

L-0+2,_+0-1 -i

Figure 11

We can now indicate a move by changing the value in the You will see that if the total is 2 or 8, then the 99 must
array. In CROSSES, "1" is used to show the player's move. search for the space in the line and put its nought — either to

26 27

stop the player, or to win. A total of 3 or 12 is the end of the
game. 6 and 9 both show full lines which can be ignored, and
a line total of 5 is no use either, as neither player can win on
it. This leaves 0,1 and 4 lines for free use, but in fact, once
you have checked for key totals, the overall shape of the
game is more important than any single line.

Checking Routines
The checks on the lines cannot simply add across the rows of
the array. There are 8 possible winning lines in noughts and
crosses.

e tt
Figure 14

Each line must be checked. One way to do this is to
transfer the values of the lines from the screen array, S(3,3)
to a working array, W(8,3).

1 2 3 1 2 3

1 0 0 1 0 0

2 0 4 0 2 0 4 0 horizontal

3 0 0 3

4

0 0

0 0

5 S(3,3)
0 4 0 vertical

0 0 6

7 4

8 } diagonal 0 4 0

W18,3)

screen

Figure 15

The first three lines are the simplest to transfer:

FOR R=1 TO 3
FOR C=1 TO 3
W(R,C)=S(R,C)
NEXT C
NEXT R

For the next three, the order is reversed, so that the lines are
read down, not across. The only difference is in the actual
transfer line:

FOR R=1 TO 3
FOR C=1 TO 3
W(3+R,C)=S(C,R)
NEXT C
NEXT R

These routines can be happily merged into one. (See lines
500 — on in the LIST of the CROSSES program in the
Appendix)

The diagonals are a bit more fiddly, and can best be
understood by looking at the co-ordinates:

1,1 1,3

2,2

3,1 3,3

Figure 16

FOR R=1 TO 3
X(7,R)=S(R,R)
W(8,R)=S(4—R,R)
NEXT R

Line W(7) in the working array now stores the values for
squares (1,1), (2,2) and (3,3). W(8) holds those for (3,1), (2,2)
and (1,3). This routine is tucked into the R loop at lines 550
and 560.

The program is now able to run through the working array
and check line totals. It has to do it in a certain order of
priority. It is no good simply totalling each line to see what
comes up. The 99 must first check for a line total of 3. (Lines
710 to 770). If the player has won, then there is no point in
going further. The next most important line total is 8 —
winning chances must not be ignored. (Lines 780 to 830). The
third total to look for is 2 so that the player can be stopped.
(Lines 840 to 880).

28 29

Line 640 will always mark a nought in the top-left hand
corner. Because the crosses board is so symmetrical, all
corners are, in effect, the same. You could, if you liked, add
an extra routine here so that the 99 chooses a corner at
random. It would add variety to the game's appearance, but
would make no difference to the way it played.

At the second move stage there are two dangerous
situations that the line totals check will not spot. They are
these.

Figure 18

The 99 found no 3 or 8 totals, but it did spot the 2 in line 5 —
the centre vertical. The program goes off to the sub-routine
at 2000 to look for the blank in the line and write in its 4. This
value is then transfered back from the working array to the
screen array (see lines 1000 to 1110), and the move is
displayed on the screen. (Lines 1130 to 1200).

If the 99 does not find any 2,3 or 8 total, and it almost
certainly won't in the early part of the game, then it must
"think" about its move.

First move strategy is straightforward. The centre square is
so important, that if the player has not already gone there,
then the 99 will. If the centre square is in use, then the corner
squares are more use than middle of line squares. The
routine from 600 on covers this first move. Look at it in the
LIST — remember that W(2,2) is the centre square. You will
notice a line:

The 99 could either go for a corner or for one of the
middle-of-line squares. Here's what happens with a corner
move.

99's move Player's 3rd move 99's 3rd move

Figure 19

A middle square move takes the game to a draw.

Here is an example of the check routines in action.

Screen Screen array

o x o

Working Array
414

across 010
001
400

down 110
401

 f

411
014

Line totals
9
1
1
4
2 F- Action!
5
6
5 diagonal

Figure 17

Nought line stopped 99 can only stop
— 2 lines set up. one line— player must win.

Player's 3rd move 99's 3rd move

Nought line stopped — 99 blocks cross line —
only one line set up. must end in draw.

99's move

Figure 20

610 IF RND>.9 THEN 700

This is one of the things that gives you a chance of winning.
9 times out of 10 the 99 will take the centre square if it can,
but every now and then it will miss its chance. Remove this
line completely if you want to make the 99 even harder to
beat. Reduce the random limit if you want to improve the
player's chances.

4 4
o o

o o

30 31

S cannot be used as a simple variable because it is used
elsewhere in the program as the arrayed variable S(3,3).
Trying to use a simple and an arrayed variable of the same
name will give you a *NAME CONFLICT message.

CROSSES uses letters rather than co-ordinates. It makes
the program a bit fiddlier, but is easier for the player to
operate. The letters are written into the board by the routine
between 270 and 310. The key line is 290.

CALL HCHAR(9+R*2,13+C*2,93+3*R+C)

This gives the spacing — 9+R*2 produces the Row numbers
11,13 and 15, 13+C*2 gives you Columns 15,17 and 19. The
third expression turns the R and C variables into the codes of
letters from "A" to "I".

Row

Column

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Figure 22

To convert the letter code of the player's move back into
co-ordinates, you need another bit of mathematical juggling.

400 R=INT(K-62)/3)
410 C=K—(61+3*R)

Not very friendly equations, but see how they work.
Suppose the player has gone for the centre square. He
presses "E", Code "E" is 69. K collects large capitals.

K K-62 (K-62)/3 INT((K-62)/3)
69 7 2.33 2

R C 3*R+C
4
5

10

93+3*R+C (ASCII Code)
97
98

103

Letter
A

B

G

1 1
1 2
3 1

The lines that check for these situations are between 900
and 970. Look at line 900:

IF (RND>.9)*(W(1,1)=1)*(W(3,3)=1) THEN 940

You will see that another random factor has been built in.
Remove that random expression and the 99 will never miss
such a dangerous situation. Reduce the random limit to
improve the human's chances.

There is one last routine written in to cover those odd
situations where there is no obvious move for the 99 to
make. In practice the routine will be hardly ever used, but it
must be there to fall back on. It is written in from line 2500
onward.

If all else fails, the 99 will mark its nought in the top right
(W(1,3)) if it's free, otherwise the bottom middle, or the first
empty square it comes to.

Letters to Co-ordinates
You might have expected the squares on the board to have
been identified by co-ordinate numbers:

1 2 3
1

2

3

Figure 21

The player would then have been asked "Which Square?
Row? Column?" The numbers could have been simply
collected by two CALL KEY lines and transferred directly to
R and C variables.

CALL KEY (3,K,Z)
IF Z = 0 THEN...
R=K-48 (changes ASCII code into number)

By the way, you may note that in the program the CALL
KEY line has been changed from its usual form .. CALL
KEY(3,K,S) to CALL KEY(3,K,Z)

32 33

If "G" was pressed. .

71 9 3 3

To find C, you reverse the expression used earlier in the
HCHAR line.

Letter K R 61+3*R K—(61+3*R)
"E" 69 2 67 2
"G" 71 3 70 1

The 99 Starts
CROSSES has been written so that the player always starts.
This was mainly to keep the program simple, but it should
also give the player a much-needed advantage. However, it
can be readily adapted so that the 99 and the player take it in
turns to start. The first change to make is to put the codes for
printing the noughts and the crosses into variables. At the
moment you have this line after the player's move:

CALL HCHAR(9+2*R,13+2*C,88)

88 is the code for "X". Change this to:

CALL HCHAR(9+2*R,13+2*C,PM)

PM (Player's Mark) is set earlier to be 88, but is changed to 79
("O") at the end of the first game. You will also need CM for
the Computer's Mark and this will likewise be switched
between 79 and 88. The routine which updates the screen,
after the computer's go, is between 1130 and 1200.

To swop those "O" and "X" codes over, use a simple
switch routine of the bubble-sorting type. (See next chapter).

First Move
Insert 2 lines before the start of the main game loop.

314 IF PM=88 THEN 320 (jump next line if player
starts)

316 GOSUB 1500

At 1500 you can write in whatever first move you want.
Taking the centre square is the best bet, but some people
object to the first player going there. You can always write a
randomized routine so that different first squares are chosen.
You will also need to include a line to display the move. The
game can now return to the main loop and carry on as
before.

If, as you play your new version, you discover new
dangerous situations, then include more check lines to cover
them, after line 900.

34 35

4
Dealing and sorting
a pack of cards
A full analysis of a card game program is beyond the scope of
this book. Even the simplest card games require a very
careful study of the tactics and strategy of play. Card-playing
isn't simply a matter of logic either. A good player will watch
his opponents' expressions, note the way they play during
each game, and make guesses about the kinds of hands they
hold. However, in this chapter, and further on in "Do you
want to bet?", we will cover some of the techniques needed
in card game programs.

The program CARDS shows how arrays can be used to
hold information about the pack, and about individual
hands. It also shows how to sort a hand by order of card
value. The program shuffles and deals out all 52 cards, as if
in preparation for a game of whist or bridge, and it makes
sure that no card is used twice. It aims to do this as quickly as
possible. There is always a problem with picking numbers at
random, and it is this. The more numbers you pick, the more
likely you are to get one that has cropped up already. By the
time you are down to the last few numbers, it is very unlikely
that you will find an unused one. A little program will show
this. Let us suppose that you wanted the 99 to pick the
numbers 1 to 10 in random order — each one only once. After
a while all the numbers will have been found except one (say
6). This program shows how many times it would have to
pick a number before it found that special one.

10 RANDOMIZE
20 N=1 (Number of pickings)
30 X=INT(RND*10)+1
40 PRINT N,X
50 IF X=6 THEN 80

60 N=N+1
70 GOTO 30
80 STOP

Type this in and run it a few times. How long does it take to
find 6? Now change that random number in line 30 to "52".

In the CARDS program, the pack is held in a two-
dimensional array — C$(4,13). Each point in the array
contains two characters, which show the Suit and the Value
of each card. Special graphics are defined for the suits and
for the high value cards. The suits are Spades (120), Hearts
(113), Diamonds (112) and Clubs (104). Notice that the higher
value suits (for bridge players) have higher graphics
character numbers. 10, Jack, Queen, King and Ace are
defined twice into character numbers 114 to 118 and 121 to
125. This is so that they can be coloured black and red to fit
the suits.

The routine from 3000 to 3160 collects the characters into
the C$() array. It works through one suit at a time, first
READing the Suit graphic (S$), and then calculating the
value character, using the T loop (3050 to 3130). The first 8
numbers are converted to card values 2 to 9 with the line:

3060 V$= CHR$(49+T)

The higher value cards characters are produced by lines

3090 V$= CHR$ (112+T) (the black graphics)

3110 V$= CHR$ (105+T) (the red graphics)

The cards are then "Shuffled and Dealt" by the routine from
3200 to 3300. You will see that this only deals three hands.
This avoids the long searches for the last remaining cards.
The program first checks that a card has not been used,
before it transfers the card to the hand (H$()), and then
marks that card off in the pack array.

3250 IF C$(X,Y)="" THEN.... (newRNDnumbers)
3260 H$(T,N)=C$(X,Y)
3270 C$(X,Y)="" (this card now dealt)

36 37

(PRINT-out) } W$(N+1)
"ANIMAL"

W$(N)
"ANIMAL"

W$(N)
"ANIMAL"

W$(N+1)
"ZOO"

X$
"ZOO"

To collect the last hand together (H$(4,..)), a separate routine
is used — 3400 to 3530. This scans through the whole pack
array looking for undealt cards, and transferring them to the
fourth hand.

Sorting Cards
The human player would probably sort his cards by first
grouping them into suits, and then ordering each suit. You
could get the 99 to do it this way, but a simpler method is
used in CARDS. It is called "Bubble sorting" or "Ripple
sorting".

Every card has two values — the suit and the card number.
These "values" are actually the character numbers, and the
sorting routine is the same one that would be used for any
alphabetical sort. Type in this program:

10 OPTION BASE 1
20 DIM W$(10)
30 FOR N=1 TO 10
40 INPUT W$(N)
50 NEXT N
60 FOT T=1 TO 9
70 FOR N=1 TO 9
80 IF W$(N)<=W$(N+1) THEN 120
90 X$=W$(N)

100 W$(N)=W$(N+1)
110 W$(N+1)=X$
120 NEXT N
130 FOR P=1 TO 10
140 PRINT W$(P);" ";
150 NEXT P
160 PRINT
170 NEXT T

Line 80 compares the ASCII codes of pairs of W$() words. If
the words are "A" and "B", then it notes that ASCII "A" is
65, and less than ASCII 'B" (66). The sort routine would be
jumped. If the words were "AN" and "ANT", then it would
find that the first two letters were the same, but that "T" is

more than nothing. Again the sort routine would be jumped.
If W$(N) ="ZOO" and W$(N+ 1) ="ANIMAL", then it
would go through the lines from 90 to 110.

"ZOO" is there transferred to a temporary store
(X$);W$(N) is redefined to be "ANIMAL" and finally,
W$(N+1) takes "ZOO" from the temporary store. You could
think of it like this:

Start
W$ (N)
"zoo"

x$

W$(N+1)
"ANIMAL"

W$ (N)
"ZOO"

x$
"ZOO"

W$(N+1)
"ANIMAL"

End

Figure 23

(INPUT stage. Enter words
of any length)

(Sort
routine)

1st move

2nd move

38 39

Exactly the same process takes place in the CARDS, except
that the sign in the "does-it-need-sorting" line is reversed
> = and not < _ . This is so that the highest value cards are
at the start of the line.

The suit characters codes are fixed so that Spades are
worth more than Hearts, and Diamonds and Clubs follow
after. The suit characters appear first in the string, so that
any Spade is worth more than any Heart, just as any word
starting with "B" has a higher value than any word starting
with "A". The high card graphics are similarly ordered.
Thus, the Ace of Spades has the ASCII codes 120 (Spades)
and 125 (Ace). The King of Spades has codes 120 and 124.
The 10 of Diamonds has codes 112 (Diamonds) and 114 (ten);
the 9 of Diamonds has codes 112 and 57 (normal 9 character).

The sorting routine in the CARDS program is between
lines 320 and 440. The fact of having four hands to sort
makes it appear a little more complicated, but compare it
with the program given above. Notice how in both programs
the numbers in the sorting loops are one less than the
number of items to be sorted. This has to be, as otherwise the
expression W$(N+1) would take you beyond the edge of the
array. Both programs also travel round that sorting loop for
one fewer times than there are items. On any one run
through the inner loop the items can be passed several places
to the right, but at most one place to the left. A hand that had
the Ace of Spades on the far right would need to be rippled
12 times to pull it across to the far left.

If you want to slow the sort down, so that you can see it
better, write in:

395 INPUT A$

Now press ENTER when you are ready for each new move.
CARDS has been written so that it can form the basis of a

card game program of your own. Delete those lines which
PRINT the pack (3125), the hands (220-280) and the sorting
process (3550-3650). You now have a pack of cards, and
no-one can see them!

5
Decisions, decisions

Computers make decisions by means of branching lines,
IF. ..THEN... ELSE. ..or ON... GOTO.... You met
them in the CROSSES program:

IF (the centre square is free) THEN (put a nought there)
LOGICOL uses a far more complicated branching routine to
work the 99's strategy. Let's start by looking at the other part
of the game, where the human is trying to guess the 99's
hidden colours.

LOGICOL may well remind you of the game Mastermind,
itself a plastic peg version of an old paper and pencil game. It
is similar in a way to HANGMAN, in that a set is to be
guessed. Here it is a set of colours. With HANGMAN it is a
set of letters (that form a word), but there the player guesses
only one item at a time, rather than a whole set.

The computer's checking routine is much the same, but
now, instead of checking one variable against a string, the 99
is checking a string against another string. Look at the LIST
for the program in the Appendix, and find lines 900 to 1000.
P$(4) holds the player's 4 guessed colours. C$(4) holds the 4
colours that the computer picked at the start of the game.
The two strings need to be compared to see if any colours are
in the same place in both strings (line 920 IF P$(T)=C$(T)
THEN 950), and also if any of the player's colours turn up
anywhere in the computer's set. (Line 930 IF P$(T)= C$(N)
THEN 970). In the following example, the computer's set is
Blue, Cyan Green and Magenta. The player has just guessed
Red, Green, Blue and Magenta.

C$(4) BC GM
P$(4) R G BM

On the first run through the T loop, the 99 finds that C$(1)
and P$(3) are both "B" — blue. It marks off one Right Colour.

40 41

42
43

Figure 24

= "Please check that!"

= 4 Right Colours?

= "Success at last"

No

GOT IT!

No 0
BGMR

BCMR
N

BGMY

191

CGMR

Yes
CGMY

BCGY
Yes

Yes

BCGR

BCMY

®Yes~GOT IT!

(GOT IT!

BGRY

No

Yes

191

BCGM

Yes

BCRY

Yes

!91

 GOT IT!

191
Yes

CMRY
Yes

191

No

B Blue
C Cyan
G Green
M Magenta
R Red
Y Yellow

GOT IT!

191

o
Yes

GMRY

Yes

GOT IT!
Yes

CGRY

191

No
Yes

(GOT IT !)

GOT IT!

Yes

(GOT IT!

Yes BMRY

The common "G" is picked up on the third run. Finally it will
spot that C$(4) and P$(4) are the same, and will add one to
the Right Place score.

Once you have had your go, whether you got it right or
have simply run out of guesses, then the 99 will ask you if it
can have a go.

You don't have to let it, and, unlike some human players,
it won't sulk if it doesn't get a turn. It's not very good at the
game in any case, and can only sort out which are the right
colours, not where those colours should be. The program
allows for four out of six colours to be used, and each one can
only be used once. This means that there are 15 possible
combinations. The flowchart in figure 24 shows how the 99
works out which combination. You will notice that the 99
solves the problem in no more than six guesses.

That flowchart is the result of a lot of game-watching, and
several lengthy sessions with pencil and paper. This is
essential with any game program. Do not expect to be able to
write it directly into the 99. Think about how you and other
humans play the game. Record every guess you make, every
decision you take, and the reasoning behind every decision.
When you have your strategy written down as a series of
decisions, it is quite easy (really!) to turn it into the 99's
program.

Lines 2070 to 2890 in the LOGICOL program show that
flowchart turned into lines. For simplicity each stage is
written in exactly the same form. The following lines cover
that section of the flowchart on the top of the right-hand
side:

2700 G$="CGMY"
2710 GOSUB 5000
2720 ON K GOTO 2730,2750,2730,3000
2730 GOSUB 3500
2740 GOTO 2720

G$ is the Guess. The sub-routine at 5000 displays the colours
and collects the player's response into the K store. The
answer must be a number in the range of 1 to 4. At any stage
of the program a "1" response will send the program to a line

that leads to the sub-routine at 3500, which asks the player to
"Please check that!" It is not possible to have only one colour
right, as this would mean that there are 3 wrong. As the 99
has guessed 4 out of 6 colours, the most it can miss is 2.

At this particular stage a "3" response will also lead to a
"Please check that." To have reached this point the 99 must
have got 3 right on each of its earlier guesses. It has already
found two wrong colours, and could not possibly have
found a third. (See the example below).

A "2" response sends the program on to the next guess
(line 2750). A "4" jumps out of the guessing routine to
"How's that then!" and "Do you want another go?"

If you look at any of the sections which cover bottom of
flowchart lines you will see the ON K GOTO... line looks
like this:

2870 ON K GOTO 2880,2880,2880,3000

The branching here is really only two ways. Either the player
tells the 99 that he has got all 4 right, or he doesn't. These
lines could be replaced by a simple:

2870 IF K = 4 THEN 3000
2880 GOSUB 3500

Play through the game a few times, following the 99's
"thoughts" on the flowchart. You should see something like
this. Here the colours B,C,G,R were entered by the player.

Guess Response 99's thoughts:

B C G M 3 Either R or Y must be right

C G M R 3 Either C G M are right and I need
Y or both B and R were right.
Try Y.

C G M Y 2 So B and R were right. Y is no
good.

B C G R 4 How's that then?

44 45

This time the colours were CGRY

BCGM 2 2 missing. Must have R and Y.

BCRY 3 AndBorC;andGorM - not
very helpful.

B G R Y 3 Perhaps the B was right. try M.

BMRY 2 The B was wrong, and the M.
But now I know the answer.

CGRY 3 "Please check that" (He's
cheating!)

CGRY 4 I should think so too.

It is perfectly possible to work out a program to sort the
colours into their right places. Human players can usually do
it in 4 to 8 goes. The program could be a straightforward
branching one, but you would need an awful lot of branches.

Think of how a human player behaves. He will check back
through his previous guesses noting how many he had right,
and in the right place, each time. He will see which colours
can be fixed, and which are likely possibilities, and then test
out his possibilities next time. The game might go like this:

Guess
Number

Guess Right
Place

Right Thinks: Which?
Colour Which order?"

1 BCGM 0 3 "One wrong colour,
and all out of place."

2 CGMR 0 2 "B and Y must be
there."

3 BYCG 1 2 "Still a colour short."

4 YCMB 0 4 "Got the colours!"

At this point he knows that the colours are YCMB, and by
checking guesses 1,2 and 4 he knows that neither B nor C nor
Y should be the first colour. He can fix M as the first colour.

5 MBYC 2 2

6 MYBC 1 3

The second colour must be one of Y, B or C, but it can't be C
(guess number 4 proves that) and it can't be Y (guess number
6). It must be B. M and B must have been the colours in the
right place in guess number 5, so we just need to swop over
Y
and C.

7 M B C Y 4 0 "Logicol, isn't it?"

You are now in a position to start translating the human
reasoning process into computer language. What follows is
not the only way of tackling this, and is not, in any case, the
complete solution. Rather it is a set of suggestions that you
should be able to work up into the necessary routines.

For a start you will need a number of new arrays to store
and handle information. Of these the most significant will be
a Marking array, (M$(4,6)) in which the 99 can mark off those
colours that are in the wrong places. You will need to set this
up at the start of the 99's go, and it should have this form:

M$14,6) B B B B

c C c c
G G G G
M M M M
R R R R
Y Y Y Y

Figure 25

Now, whenever the 99 gets a "none in the Right Place"
result it can work through that array, marking off those bad
guesses.

"Not a lot of help -
try a shuffle."

"Ah! Now we're getting
somewhere."

46 47

IF RP=O THEN.... (to the following routine)
FOR N=1 TO 4
FOR T=1 TO 6
IF SEG$(G$,N,1)<>M$(N,T) THEN...

(jump to NEXT T)
M$(N,T) = ""
NEXT T
NEXT N

The player has chosen RM C B. The 99's first guess is
BC GM, as usual. None are in the right place. After it has
been through the mark-off routine, the M$() looks like this

B B B

C C C

M$(4,6)
G G G

M M M
R R R R

Figure 26 Y Y Y Y

3 of the colours were right, so the next guess is C G MR.
Here's that array again after this time.

B B B

C C

M$(4 6) G G

M M
R R R

Figure 27 Y Y Y Y

3 Right Colours again. The next guess should be C G MY, but
in this version it pays to alter the order of the letters each
time, as this helps to find the right places. The guess is
GMYC.

This gives a "1 in the Right Place" result, which is not very
helpful as the 99 hasn't a clue which one. It does, however,
know that as only 2 colours were right altogether, the Y must
be wrong. You can write in a little routine at this stage in the
branching program to mark off all Y's.

B

B

C

G

M M

R

R R

FOR N=1 TO 4
M$(N,6)=""
NEXT N

Time for the next guess at the colours. It is written as
B C G R in the simple version, but we will shuffle the letters
for this version. G$ = "G R B C" This produces another
"None in the Right Place" result. The M$() array is getting
quite empty by now.

M$(46)

all "Y"s marked off already

Figure 28

The next guess at the colours finds the 4 right colours. The
guess has been shuffled so that G = "RB CM". This gives us
a "1 in the Right Place" result (the C), but at the same time
lets us mark off the other wrong colour — G.

We now need to go back to that earlier guess where we
had 1 in the Right Place — G MY C. A temporary store is
needed to hold those sort of guesses, so that they can be
recalled later. (S$(10) will hold ten guesses). Compare that
with the M$() array to see if 1, and only 1 could be right.

FOR X = 1 TO 10
Z = 0 (counter)
IF S$(X)="" THEN.... (jump to next X, this store

is empty)
S 1$=S$ (X) (simple Strings are easier to handle)
FOR N=1 TO 4
FOR T= 1 TO 6
IF M$(N,T)<>SEG$(S1$,N,1) THEN....

(jump to NEXT T)
Z=Z+1 (found one that matches)
T 1 = T (remember where you found it!)
N1 = N

48 49

B B
c

M
R R R

NEXT T
NEXT N
IF Z =1 THEN (next routine)
NEXT X

The "M" is found in column 2 (Nl = 2) and row 5(T1 = 5).
The next routine trims down the M$() array. First it goes

through that array and marks off all the other appearances of
the "Right Place" colour.

FOR N= 1 TO 4 (across the columns)
IF N= N1 THEN (jump to NEXT N)
M$ (N, T 1) _"" (mark off) other M's, at M$(1,5),

M$(3,5) and M$(4,5)
NEXT N

In the example, the M in the second place was the Right one.
The M$() array is pared down to this.

Figure 29

We know that M is right in the second column, so any other
letters that are there can be removed.

FOR T = TO 6 (down the rows)
IF T = T1 THEN (jump to NEXT T)
M$(N1,T)=""
NEXT T

This removes the "B", leaving only the "M".
A simple check down the columns to see if any column has

only one letter left, will show any other certain Right Places.
The first glance at the array shows us that R must be the
colour in the first place. Mark that off in the other columns
and it leaves only C in the 3rd column and B in the 4th.

If that was the end of the story, then life would be
(relatively) easy. Unfortunately it isn't. There will be many

times when the 99 has found the 4 colours, but does not have
enough information to work out their places. It will now
have to try new combinations of the colours. There are 24
possible combinations! Over half of these will give 1 or 2
Right Place results, which are not a lot of use to the program.
The simplest approach is to try a few shuffles and hope that
something comes out of them. This routine swops the last
two colours over.

G$ = SEG$(G$,1,2) & SEG$(G$,4,1) &
SEG$(G$,3,1)

This swops the two halves of the string over.

G$ = SEG$(G$,3,2) & SEG$(G$,1,2)

The "shuffle and test" routine should increase the 99's
success rate. It is possible to write a far more sophisticated
program that compares every guess and its results, the way a
very good player does, and performs the complex logical
reasoning needed to solve the problem quickly. However,
who wants the computer to win every time?

To adapt the LOGICOL program so that the 99 can try to
find Right Places as well, you will need to do the following.
Slip in a GOSUB line somewhere between 1850 and 2070, to
send the 99 to a sub-routine to set up its arrays. Add in the
main "Right Place" routine at 5200. This should include the
player's response, marking off M$() and storing any "1 Right
Place" results. When 4 Right Colours have been found, the
program should now go to a section to check if all the Places
are known, and if not, to "shuffle and test". You will also
need to alter the order in which the letters appear in the
Guesses, so that more places are tested, and you can add in
two small routines to mark off "R" and "Y" at certain places
in the branching routine. Figure 29 shows the new version of
this routine.

50 51

52
53

BCGM

Yes
GOT IT!

No

Yes

CGMR

191
Yes

No

!9!

!9!

191

Yes

RYMG

Yes

YMCR

191

No
Yes

191

Yes

~

191
Yes

(GOT IT 5

~
No

Yes
GOT IT!

®Yes

Nc

Yes

MBCY

Yes

• Nc

GMYB

No
Yes

GOT IT!

GOT IT!

GOT IT!

GMYC

GYBC

Yes
GOT IT!

Yes

!9 !

191

CC

RBCG

Yes

MRBC

191

GOT IT!

Yes

CRYB

GOT IT!

o
Yes

RYBG

Figure 30

MBRY

GOT IT!

Yes

Yes

YGCR

Mark off all "R"s now.

4 YO
Mark off all "Y"s now.

!9!

No
Yes

GOT IT!

• Yes

No
Next
Player

EXTRA CARD E

RESET
ARRAYS
H$()
HV()
B()

and variable
KT (Kitty)

On to
4
No

Next
Stage

TOTAL HAND VALUE

1 On to

•

EXTRA CARDS

SET UP ARRAYS

HOW MANY PLAYERS?
PLAYERS' NAMES

EXTRA CARDS
FOR

PLAYERS

DEAL HANDS

SET UP PACK

SHUFFLE TO D$(52)

PAY OFF
BETS

WORK OUT
WINNER

EXTRA CARDS
FOR

BANKER

TOTAL
PLAYERS'

HANDS

No

end
Figure 31

G
DO you want ÍO get?
The worst thing about playing gambling games with a
computer is that it won't pay up when it loses. The best thing
is that it doesn't expect you to either! "Pick-a-Straw" and
coin-tossing games were covered in the earlier Game
Writer's Pack. Here we will look at two games where the 99
has to think about its game.

Vingt-et-un
This game is also known as "Pontoon" and "21". The object
is to get a set of cards that total 21, or as near to 21 as
possible. All picture cards have a value of 10, and the Ace
counts 11, though in some versions of the game it can also be
counted as 1. Cards are dealt by the "Banker", who also acts
as a player. At first each player is dealt 2 cards, further cards
are dealt at the players' request. A player whose hand totals
more than 21 is "bust" and out of the game for that round,
otherwise, the one whose hand is closest to 21 wins. In the
version that we will work out now, each player pays 5 chips
at the start of each round, and a further chip for each extra
card. The bets are collected into a kitty which goes to the
winner, or the banker if all the other players are "bust".

Figure 30 shows the flowchart for the game.

A number of arrays are needed here.

P$(4,13) The ordered Pack
D$(52) The shuffled Deck
N$(6) Names of up to 5 players and "Banker"
H$(6) Their Hands
HV(6) The Hand Values
B(6) The Bets
C(6) The players' Chips — start with 100 each.

VINGT-ET-UN

You will also need several sub-routines which are not
shown on the flowchart. These are to allow you to PRINT
anywhere, INPUT anywhere, and check INPUTs for number

54 55

values. Normal PRINT and INPUT commands will obviously
destroy any screen display. If you are working in
EXTENDED BASIC you can use the DISPLAY AT and
ACCEPT AT commands instead.
You can adapt the CARDS program to give you some of the
routines that you will need. It will also save you the trouble
of defining your own graphics. Notice a significant change
here. In CARDS the pack was shuffled and dealt in one
operation. You could use a variation of that technique, by
picking a card at random from the Pack, each time one was
wanted. Here another technique is used, for the sake of
variety. Instead of the cards going, at random, to different
hands, they are collected into a single array - D$(), the
shuffled Deck. In this particular game, you will never
actually need a full deck. Even with 6 players, you will only
use at most 30 cards, as no hand is likely to have more than
5. It is enough, therefore, to shuffle only 30 or so cards into
D$(). This will save the long hunts for the last few unused
cards.

The number of players is collected at the start of the game
into variable PN. This is then increased by 1, and the last
player is the 99. Players' names are collected by a loop:

FOR T = 1 TO PN-1
INPUT "NAME ":N$(T)
NEXT T
N$(PN)="BANKER"

Hands are dealt into single string arrays. The variable CN
keeps track of the Card Number in D$(). At first 2 cards are
dealt to each player:

FOR C = 1 TO 2
FOR T = 1 TO PN
H$(T)= H$(T) & D$(CN)
CN=CN+1
NEXT T
NEXT C

If a player is lucky, then his hand might be like this - H$(4) =
"4 10 ♦A" A variation on this routine is needed for the

"Extra Cards for Players". Work through the players one at a
time (not including the 99) and ask if another card is wanted.
If yes, add the next D$() card to his Hand (H$()). Ask again.
Players can have as many extra cards as they want. Include a
line in that routine to add 1 to his Bet (BO) and take 1 from
his pile of chips (CO).

You cannot, of course, ask the 99 if it wants another card.
It must work that out for itself. To do this we will need a
routine that will work out the values of hands. Write it as a
subroutine, as it will also be wanted in the later stage where
the hands are assessed to see who wins. At that stage the
hands will be run through a loop (FOR T=1 TO PN-1), so
send the 99's hand off using the same variables.

T=PN
GOSUB (totalling)

This sub-routine is here numbered from 7000, but it could be
anywhere. The 99 works through the hand, picking out the
card value characters, and ignoring the suits. The ASCII code
of those characters is then converted into numbers between 2
and 11. All "Picture Cards" count 10, all Aces count 11.

7000 FOR L=2 TO LEN(H$(T)) STEP 2
7010 V$=SEG$(H$(T),L,1)
7020 V=ASC(V$)-48
7030 IF V<9 THEN 7080 (cards 2 to 9)
7040 IF (V=70)+(V=77) THEN 7070 (Aces)
7050 V=10 (all picture cards)
7060 GOTO 7080
7070 V=11
7080 HV(T)=HV(T)+V
7090 NEXT L

Suppose the hand consisted of the 3 of diamonds, the Ace of
spades and the queen of clubs. H$()= "♦ 3 A► A 4 Q"
Going through this in steps of 2, line 7010 will pick up 3, A
and Q. Watch what happens to each. First the 3, ASCII code
51, line 7020 gives V a value of 3. This is less than 9, so the
program jumps to line 7080. The total Hand Value is, so far,
3. Next the Ace. It's a black Ace, so its ASCII code is 125; line

56 57

7020 gives 77 (125-48). This is more than 9, and the program
runs past 7030 to 7040. From there it jumps to 7070, and V is
reset to 11. Total Hand Value now 14. Lastly the Queen,
ASCII code 123 (black).'Its initial Value of 75 takes it past
7030 and 7040, and the Value is changed to the 10. The
program then jumps to the totalling line, and the player
finds he is bust, 24 is no good.

Check that HV (the Hand Value) is set to 0 before going to
the routine. If you are mathematically inclined, you can work
out the percentage chances of different values of cards
cropping up next, given what has already been visibly dealt.
This can form the basis of the 99's decision to take another
card or not. If you are not so inclined, then follow the flow-
chart. It is a reasonable bet that the next card will have a value
of 7 or less. (Halve the time you will be right). So, if the 99's
total is less than 14, send the program off to deal it another.

At the final stage, "Work out Winner", you must first
check that a player's hand is not over the limit. Next see if it
has a total of 21. If so, then declare him the winner, and
increase his pile of chips by the value of the KiTty. (KT).
Otherwise, compare his hand with the Best Hand (BH) so
far.

BH is set to 0 at the start of this routine. By the time the
program reaches the Best Hand lines, it has already checked
that the hand is not "bust", and not worth 21. You simply
check that it is better than the previous best.

IF HV(T) < BH THEN.... (jump next 2 lines)
BH = HV(T)
WN = T

BH now has the Best Hand Value, and WN has the Winner's
Number. WN should be set to the same as PN (the
computer's number) beforehand, so that if there are no
winners, then the computer collects the kitty.

Note that before a second game can be played, you need to
reset several of the arrays, and the Kitty, and that the Pack
will need to be re-organized and shuffled again.

Plan out a rough screen display before you start to put the
program together, and work to that until you are satisfied

that all the routines are in and running properly. Come back
to the display at that stage, and improve your layouts. That
is also the time to alter routines if the program does not run
the game the way you are used to it. You may, for a start,
want to allow Aces to count High or Low. For the players'
hands, this simply means adding a routine to ask the player
what he wants to do about his Ace. For the 99 you will need
add some lines in the "Extra Card" routine. At the simplest,
you could check, after the extra card, whether or not the 99's
hand was over the limit. If so, does it contain an Ace? If it
does, knock 10 off the hand value, and check to see if it is
worth having another extra card.

Pokerdice

This game combines technique from "Dice and Board
Games" and from "Cards". Its flowchart is shown in
figure 32.

Pokerdice, in case you have never come across the game,
works like this. The "dice" used in the game have symbols
on, to represent high value cards, 9 to Ace. 5 dice are used.
The player rolls all the dice at first, and can then for two
more turns, select which ones he wants to roll again. The
object of the game is to build up "poker hands". 3 of a kind
are worth more than a pair, 4 of a kind more than three. A
"flush" — a set of cards in series, 9, 10, Jack, Queen, King — is
worth more than 4 of a kind, but less than 5. The best hand
you can collect is 5 Aces — which is possible in Pokerdice,
though not in real poker (unless you are an awful cheat).

Let's work through that flowchart. You will need your
graphics for the 6 faces of the dice. At first though, you could
simply use numbers 1 to 6, then add your fancy graphics
later. As with ordinary dice, these can be single characters,
or formed out of several characters. Include a page of
instructions and rules of the game if the program is likely to
be used by people who don't know it.

Several arrays are used in the game, but only one will need
dimensioning at the start. D(2,5) will hold the 5 dice
numbers of the player and the computer —this version is for

58 59

Figure 32 STOP

99

Yes

START

99'S GO

99'S BET

PLAYER'S BET

PLAYER'S GO

PLAYER'S GO

PLAYER'S BET

VALUATION

99'S BET

99'S GO

CHANGE
START
FLAG

SET UP ARRAYS
AND VARIABLES

DEFINE
GRAPHICS

RULES OF THE
GAME - IF
NEEDED

Who Wins?
PAY OFF BETS

one human only, but could be simply adapted for several
players. The other arrays and variables will become clearer as
you work out the program, only one need be mentioned
here. S will indicate who Starts. Set to +1 initially this lets
the player start. At the end of the round it is multiplied by
—1. The effect is to make it +1 and —1 in turns.

The Player's go is shown in more detail in figure 33.

PLAYER'S GO

ROLL 5 DICE

HOW MANY
TO ROLL AGAIN?

WHICH ONES?

ROLL DICE

J

Figure 33

This routine will "roll" and display 5 dice. The dice are
here single characters with codes from 128 upwards. The
Player number (P) is 1 for the human, 2 for the 99.

3000 FOR T= 1 TO 5
3010 FOR N= 1 TO 6
3020 CALL HCHAR(20,T*3,127+N)
3030 NEXT N
3040 D(P,T)= INT(RND*6)+1 (the way it lands)
3050 CALL HCHAR(20,T*3,127+D(P,T))
3060 NEXT T

Lines 3010 to 3030 "spin" the dice on screen. You might like
to add a CALL SOUND(. .) line in there to slow things
down. The CALL HCHAR(. . lines used here will print the
dice characters at Row 20, spaced out in 3's, from 20,3 to
20,15. Adjust these to suit your own display.

"Rolling"
dice

60 61

ROLL ANOTHER
DICE

You can tackle the "Which ones do you want to re-roll?"
section in various ways. Here's one. This assumes that the
dice have some kind of reference number shown on the
screen, as in the example display in figure 34.

BONUSES
5 OF A KIND
FLUSH
4 OF A KIND
FULL HOUSE
3 OF A KIND
PAIR

MONEY
150 YOUR CASH
120 MY CASH
90 YOUR BET
60 MY BET
30
10

YOUR HAND VALUE 34

DICE NUMBERS
MY GO 1 2 3 4 5

10 J 10 9 K

ROLLING MY DICE AGAIN

Figure 34

1500 FOR T= 1 TO 2
1510 INPUT "HOW MANY
1520 FOR N=1 TO M
1530 INPUT "NUMBER ?

PLEASE":RR(N)
1540 NEXT N
1550 FOR N=1 TO M
1560 D(P,RR(N))=INT(

(rolling display)

1600 NEXT N

The numbers of the dice to be Re-Rolled are collected in the
RR() array in the following manner. Suppose the player has
had his first roll and is faced with this set of dice:

Dice Number 1 2 3 4 5
Face Value A 9 J A Q

The player wants to keep the 2 Aces and roll the rest. He tells
the 99 he wants to roll three, then enters the numbers 2,3
and 5. When the 99 reaches the routine starting at 1550 it
finds that RR(1) =2; RR(2)= 3 and RR(3)= 5. Those dice are
rolled.

99'S GO

ROLL 5 -DICE

SORT AND VALUE
HAND. MARK OFF

ANY WORTH KEEPING

Figure 35

Now for the tricky bit. The 99's go. The flowchart for this
section is shown in figure 35. The dice rolling routines are
more or less the same as the human's routines, and can be
left. The hardest part to program is that box marked "Sort
and Value hand. Mark off any worth keeping." Look back
for a moment at figure 34. When humans play poker they are
able to say, at the end of the game, "3 of a kind beats any
pair." or similar comments. The 99 can best tell who wins by
putting number values on the hands — hence the "Bonuses".

f10O
f100

L5
f1O

(you can roll again twice)
TO ROLL AGAIN?":M

ONE AT A TIME,

RND*6)+1

62 63

from main program

NEXT T

Yes

ETURN

No

ETURN

Yes

N.B. Minor checks and adjustments
on loop variable (T) not shown.

Figure 36

~
No

BONUS RETURN

Next, the Bonuses. These are added on to the hand value.

2120 REM BONUSES
2130 FOR T=1 TO 4
2140 IF D(P,T)<>D(P,T+1) THEN 2460

(not a pair, NEXT T)
(Pair Bonus) V(P)=V(P)+10

L(T)=1
L(T+1)=1

2150
2160
2170

These are worked out so that 3 of a kind will beat any pair,
and so on up through the combinations. The dice have a Face
Value going from 1 for a 9 up to 6 for an Ace. The poorest
hand you could have with 3 of a kind would be 9 9 910 J.
This is worth 8 (1+1+1+2+3) for Face Values, plus the
Bonus of 30. Total 38. The best hand with a pair in it would
be A A K Q J. Value 24 (6+6+5+4+3) plus a Bonus of 10.
Total 34.

When the program reaches its final stage, and works out
who has won by totalling the Values and Bonuses of each
hand, part of the routine is concerned with finding pairs, or 3
or more of a kind. This is exactly what we want the 99 to do
when it is "thinking" about which dice it will keep, and
which it will roll again. It makes sense then to use the same
routine for both purposes. Figure 36 shows the flowchart for
the valuation sub-routines.

The first stage is to sort the dice into order of value.
A Bubble sort routine is used for this.

2000 FOR T=1 TO 4
2010 FOR N=1 TO 4
2020 IFD(P,N)>=D(P,N+1) THEN 2060
2030 TS= D(P,N) (Temporary Store)
2040 D(P,N)=D(P,N+1)
2050 D(P,N+1)=TS
2060 NEXT N
2070 NEXT T

You will notice that the expression in line 2020 is "more than
or equal to". There is no point in swopping a pair that are the
same.

We can now start to work out the value of the hand. Face
Values first.

2080 V (P)=0 (reset the Value to 0 at the start of the
routine)

2090 FOR T=1 TO 5
2100 V(P)=V(P)+D(P,T)
2110 NEXT T

64 65

The array L(5) — reset to zero throughout before valuation
starts — stores the numbers of any dice which are to be left.
Look below to see how this fits in with the "Roll again"
routine.

2180 IF T=4 THEN 2460
(jump the rest of the valuation)

2190 IF D(P,T)<>D(P,T+2) THEN 2430
(not 3 of a kind)

2200 V(P)=V(P)+20 (brings total bonus to 30)
2210 L(T+2)=1
2220 IF T=3 THEN 2240

(check for Full House, 3 on 2)
2230 GOTO 2280 (jump to Full House 2 on 3 check)
2240 IF D(P,1)=D(P,2) THEN 2260
2250 RETURN
2260 V(P)=V(P)+30
2270 RETURN

Lines 2240 to 2270 are only used when T=3. To get there the
99 must have already discovered that the last 3 dice are the
same (T,T+1,T+2). It is now checking to see if the first two
dice also form a pair. If they do then a Full House Bonus is
given. Otherwise the computer goes back to the main
routine with the 3 of a kind bonus only. A similar routine is
needed to check for a Full House where the pair comes after
the three.

2280 IF T<>1 THEN 2350
(only do this if the first 3 are a set)

2290 IF D(P,4)=D(P,5) THEN 2310
2300 GOTO 2350
2310 V(P)=V(P)+30
2320 L(4)=1 (mark them off to leave)
2330 L(5)=1
2340 RETURN
2350 IF T>2 THEN 2450
2360 IF D(P,T)<>D(P,T+3) THEN 2450

(not 4 of a kind)
2370 V(P)=V(P)+60 (bonus now 90)

This is all a bit complicated, so let's run a few examples
through to see how it works. The first hand started out as
A9J9Q.

After sorting it looked like this = A Q J 9 9.
On the first three runs through the T loop,

D(P,T)< >D(P,T+1), and the program jumps to 2460 for the
next T. On the fourth run D(P,4) =D(P,5) and the Bonus of
10 is given. Those last two are marked off to save, and the
program jumps to the end of the loop.

Here's another hand. After sorting it is like this:
AKKK10

The Kings on dice 2 and 3 are seen as a pair and the
program goes through lines 2150 onwards. The third King is
recognized and the 3 of a kind bonus is given by line 2200. At
this stage T is 2, not 3, so line 2220 is ignored, and the
program jumps to 2280. This makes it jump on again to 2350
to check for 4 of a kind. There are not 4, and the next jump
takes us to line 2450 T=T+2. This is essential. Without it, the
program would go through the T loop again with T=3, and it
would there pick up an extra bonus of 10 for the "pair" of
Kings on dice 3 and 4.

Think of a few more types of hand and trace their progress
through the routine. It's the best way to see how it all works.

There is one more section that needs to be added to this
valuation routine, though it is not needed by the 99 when it
is working out which dice to leave, and which to roll. The
player might decide to collect a flush, rather than so many of
a kind. Checking for a flush is easy. The dice are already in

2380 L(T+3)=1
2390 IF D(P,1)<>D(P,5) THEN 2450

(not 5 of a kind)
2400 V(P)=V(P)+60 (total Bonus 150)
2410 L(5)=1
2420 RETURN
2430 T=T+1 (look back to line 2190)
2440 GOTO 2460
2450 T=T+2 (see line 2360)
2460 NEXT T

66 67

order of value. If they form a flush, then each die will be
worth 1 more than the next - A K Q J 10.

2500 F=0 (Flush' indicator)
2510 FOR T=1 TO 4
2520 IF D(P,T)<>D(P,T+1)+1 THEN 2540
2530 GOTO 2550
2540 F=1
2550 NEXTT
2560 IF F THEN 2580
2570 V(P)=V(P)+120
2580 RETURN

As long as each die is worth one more than the next, the
Flush indicator remains set to 0, and the Flush Bonus is given
in line 2570.

The 99 Rolls Again.
The routine which rolls the dice (lines 3000 to 3060) can be
re-used for the 99's second and third rolls. Slip in a line to
check the Leave-it array:

3005 IF L(T)=1 THEN 3060

If you do this, make sure that you reset L() to 0 throughout
before you use that routine for normal rolling.

One last point. How much should the 99 bet? You will see
on the flowchart that the player's hand is valued before the
99 makes his bet (player's start). The highest possible value
any hand can have is 156, 5 Aces. Why not make the 99's bet
156 - HV(1) the player's hand value. When the 99 rolls and
bets first, then why not one chip for every point in his hand.

This is a crude, but effective system. An alternative is to
insist that the second player must match the first player's bet
if he wants to stay in the game. In this case, the 99's decision
to bet, when the player has started, would depend upon the
player's score. When the 99 starts, he would bet only if his
score was above a certain minimum - say 50. Work out your
limits by running the program lots of times and collecting the
range of scores. Your limit should be set just above average.

You now have the essential routines you need to write
your own Pokerdice program. The line numbering suggested
here does not have to be followed, of course, but is spaced to
allow you plenty of room for the lines needed for the display
and for organizing the 99's and the player's goes.

68 69

7
War games 1-Co-ordinates

War Games have been around in various forms for many
hundreds of years, and they include a vast range of different
types of games. Chess, a stylized battle between two armies,
is probably the war game that has been with us longest.
Converting Chess into a computer program is a job of
enormous complexity, and not a subject for a book like this.
You can get some idea of the complications of a full Chess
program by looking at the listings of the programs in the
Chess Learner pack, in this series. There the programs only
have to handle few pieces at a time, rather than the full set of
32. They are, however, written in simple TI BASIC, which
means that you can list them, and they have been REM'd to
help you follow what is happening. Full Chess games, like
the TI Video Chess (on Solid State Module) are written in
machine code. This makes them much faster, and able to
handle information and calculations much quicker. The
Video Chess also uses Sprite graphics for an improved
presentation.

Military planners use computers in their War games in
many different ways, but mainly as "number-crunchers". If
you need to work out how many bombers will reach their
target, you have to calculate the effect of anti-aircraft
defences, enemy fighter squadrons, engine failure, and
many other factors. Many of these cannot be determined
exactly, but you can work within a range of possibility. The
anti-aircraft defences might take out between 20% and 40%
of your bombers, but less if you follow a different flight path.
In that event, the fighter opposition will also be different.
The computer can run through all the many combinations of
possibilities in a fraction of the time it would take to work out
with calculators. It can also throw in a random element to
allow for human error or breakdown of equipment. When

the computer has done its job, the planners will have some
idea of the likely outcome of a battle, and also of some of the
ways in which they can improve their performance.

The computer is also used in the design of new pieces of
equipment. What balance of speed, armour, gun-size and
range produce the best tank? The effect of different
combinations in conflict with enemy tanks of various types
can be simulated on the computer. After many hundreds, or
perhaps thousands, of simulations, the planners will have a
better idea of how to design their new machine.

"All very interesting," you might be saying, "but what has
this got to do with war games on my 99?" The answer is, "it
depends how seriously you take your gaming." If you are a
real enthusiast, the sort that plays games on hexagonal
boards, with thick reference books to give you the outcome
of engagements between two units, with speed, range,
firepower, damage status and a random factor all built in,
then you will want a different sort of game from the person
whose usual limit is Battleships. For the enthusiast, the best
use of the 99 is as a number-cruncher. Turn your 99 into the
reference manual, and play the game on the usual board
with your fellow enthusiasts. The 99 can store details of the
effectiveness of the players' units, and work out the result of
engagements, weighting the results according to fire power,
relative strength, defensive advantages, ground conditions
and the usual random factors. If you are this type of
war-gamer, then you will know the sort of calculations you
normally have to work out. Converting them to a suitable
program may be tedious to do, but will make gaming far
simpler and quicker in future.

What we are trying to do here, is to turn the 99 into a
worthy opponent. That is difficult enough in itself, without
trying to make the game realistic as well! We will look at two
games in detail — COMMANDO, one of the cassette
programs, and Battleships: As war games go, COMMANDO
is rather one-sided. The 99's role is always defensive, with
the tactics of his soldiers being to keep on the watch and on
the move. The complexities of that program are mainly in
handling the multiple moves. What should make the game

70 71

POSITION OF
PLAYER'S
PIECES

POSITION OF
99'S PIECES

BATTLESHIPS

SCREEN
DISPLAY

PLAYER'S SHOT

RANDOM
SHOT

RESULT?
MARK HITS

interesting for the player is the difficulty of predicting future
situations and planning to meet them. In Battleships, the 99
should play the game in the same way as a human.

As with any program, a war game program should start
life on paper. If you are converting a board game, then the
programming starts on the board. Play through the game
until you know its moves by heart, until you can see its
typical situations in your mind's eye. Keep the game by you
while you are developing the program, and refer back to it
frequently. What is the aim of the game? What is the player
trying to do? How does a player try to achieve those aims? Is
the game played in exactly the same way all the time, or does
it go through different stages?

Let's have a look at Battleships. This game, in case you
have never seen it, is played on two grids, usually 10 by 10.
Each grid represents an area of sea, in which each player has
hidden a number of ships. The object of the game is to "fire"
into each other's grids, by giving the co-ordinates of squares,
and to "sink" your opponent's ships, before he sinks yours.
Most players start by shooting at random until they hit one
of the enemy ships. These ships may occupy anything from
one to 4 squares each. To sink a 3-square ship, you have to
hit each of the 3 squares. Once you have found a hit,
therefore, you will normally shoot around it until you hit it
again, and so on until it is sunk. You can teach the 99 to do
exactly that.

The outline flowchart for a Battleships program is shown in
figure 37; the board for the game, in figure 38. You will see
that the grid has been divided off into 10 squares by 10, using
thin lines. The 99 has, of course, no high-resolution
graphics, so that you cannot actually draw thin lines. Figure 37

72 73

1
2
3
4
5
6
7
8
9
0

B
1 Battleship
2 Cruisers
3 Destroyers
4 Patrol Boats

(next ship's routine)

If you are likely to be dealing with awkward players, then
you will need to write extra checks into this to make sure that
the Row and Column numbers are within the range for the
game, and also that the squares that make up a ship are in
line.

The 99 will position its ships at random. In some versions
of the game, diagonal placing are allowed — indeed, there is
nothing here to stop the player from putting his ships
diagonally — but for simplicity, the 99 will stick to either
horizontal or vertical placings. This routine works out the
position for the battleship. It is not, however, marked on the
screen — that would ruin the game wouldn't it. Instead, the
ship's position is marked in an array.

IF RND>.5 THEN (jump next 6 lines)
R=INT(RND*10)+1
C=INT(RND*7)+1
FOR N=0 TO 3
B$(R,C+N)='B"
NEXT N
GOTO

This routine would mark on the 2 Cruisers.

FOR T=1 TO 2
1 31111MMIII■
2 IMIIIIIM111111113
3 »MUM PRINT "CRUISER ";T

FOR N=1 TO 3
4 .111■1•■1111■■1111
5 Bffill111131111111131
6 ■■■.■..■■■ PRINT "SQUARE ";N 7 ■111MMIIMMI
8 111■11■N»1■■ INPUT "ROW NUMBER ? ":R
9 =.~■■■~■~~~~ INPUT "COLUMN NUMBER ?":C 0 ■IEMM■11113

(The numbers added to R and C push the grid down and
away from the corner. X is the code of whatever graphic

you are using)

You can, however, create your own "grid" graphics. This is
done on the COMMANDO program. The line:

CALL CHAR(128,"01000100010001AA")

produces this character.

Put lots of those together and you have a grid. An outside
edge of solid blocks completes the picture. The two grids can
be drawn using just a few HCHAR and VCHAR commands.

In the version of the game we are using here, each player
has 10 ships.

The simplest way to collect the information about the
position of the player's pieces, is to ask him to enter them,
one square at a time. The ships are then marked on the screen.

CALL HCHAR(R+2,C+5,X)
NEXT N
NEXT T

This finds a startpoint for the Battleship on any row,
between columns 1 and 7, and marks of that square, and the
next 3 horizontally after it. A similar routine produces a
vertical positioning.

B B B

c c c c c c
D D D D D D

1234567890 1234567890

Figure 38

74 75

R=INT(RND*7)+1
C=INT(RND*10)+1
FOR N=0 TO 3
B$(R+N,C)="B"
NEXT N

Variations on this routine can be used to dot the rest of the
ships about the board. Later routines must, however,
include lines to make sure that the ships don't crash into
each other. Write in a line, just before the point where the
array is marked, to check that the array is empty at that
point. If it is not, then the 99 must go back and try another
pair of co-ordinates.

The Player's Shot
Unless you are working in TI EXTENDED BASIC, with its
ACCEPT AT command, you are going to have to collect the
co-ordinates for the players' shot through CALL KEY lines.
There is a minor problem here. On a 10 by 10 grid, you are
faced with a 2-digit number —10. there are several ways to
deal with this. You can identify the last Row and Column
with a 0, then write an adjusting line into the routine. These
lines collect the Row number:

CALL KEY(3,K,S)
IF S=0 THEN.... (wait for a contact)
R=K-48 (turns ASCII code into number)
IF R>0 THEN.... (jump next line)
R=R+10 (turns 0 into 10)

You can create an imitation input:

1000 CALLKEY(3,K,S)
1010 IF S=0 THEN 1000
1020 IF K=13 THEN 1060

(ENTER has been pressed)
1030 IF (K<48)+(K>57) THEN 1000

(accept numbers only)

1040 R$=R$ & CHR$(K)
1050 GOTO 1000
1060 R= VAL(R$)

R$ — set to "" before this routine starts — collects the numbers
entered in the CALL KEY line. The routine could be used to
collect numbers of any size, though here you are only
concerned with two digits. You would need to add a further
check line to prevent any number larger than 10 slipping
through. (See the imitation input in the AIRSHIP program.)

There are two simpler solutions to this problem. Identify
your grid with letters rather than numbers, or use a 9 by 9
grid.

However you decide to tackle it, you must finish up with
the Row and Column co-ordinates of the player's shot. This
can then be compared with the array that represents the 99's
sea. The squares there will be empty except for those marked
with "B","C","D" or "P" for the different ships. The
presence of any letter will mean a hit, and this should be
reported back to the player — perhaps by flashing that square
on the screen, and marking on an "H". You also need to
show whether the ship is sunk or not. With the Patrol Boats,
there is no problem, because one hit sinks. With the larger
ships you need some means of counting how many hits have
been scored on each ship.

As always, there are several possible solutions, some
better than others. One way would be to collect the letter
from the hit square into a Hit string.

H$= H$ & B$(R,C)

After the first Hit on a battleship, H$="B". After 4 hits,
H$"BBBB". The hit string could be compared with the
possible ship strings after each hit.

IF H$="BBBB" THEN
IF H$="CCC" THEN....
IF H$="DD"....

When the hit string and a ship string match, a "Sunk" report
is given, and H$ is emptied ready for the next time.

76 77

7

8

9

the player's cruiser

2nd hit 1st hit (HR,HC)

(R,C)

This routine will work perfectly well for most of the time.
Every now and then, however, you will have a situation
where two ships are next to each other, and the first hit is on
one ship, and the second on the other. The routine cannot
cope with this.

You can improve it by using a POS comparison, rather
than a simple "=".

IF POS (H$, BBBB",1) THEN

Now it will pick up the presence of a sinking within a more
complex sequence of hits.

You will then need a clever bit of string slicing to remove
the sunken ship from the hit string.

If the 99 scores a Hit, then it will want to try some tactical
shooting next time round. Transfer the co-ordinates of the
square to a store, and activate a hit marker.

HR=R
HC=C
HM=1 (Hit Marker)

Tactical Shooting

Finding a two-square ship is easy. All you have to do is fire
away at the squares around the original hit. If the hit was on
Row 5, then the second square must be on Row 4,5 or 6. You
need to add —1,0 or +1 to the Hit Row.

The 99's Shot 7

—1 0 +1

-1

Random shooting is easy. 8
HR,
HC 0

R=INT(RND*10)+1 9 +1

C=INT(RND*10)+1 4 5 6

IF S$ (R, C) <>"" THEN (tried that already,
new RND numbers)

Figure 39

S$ is the array where the 99 remembers what is happening
on the player's Sea. To tell the player where the 99 is
shooting, the program can either display the Row and
Column numbers using a Print anywhere routine, or it could
flash the shot on the screen. The routine below finds the
character in that square on the player's grid, and prints that
and an asterisk alternatively until the player responds with a
Miss, Hit or Sunk report.

CALL GCHAR(R,C,Z)
CALL HCHAR(R,C,42) (print asterisk)
CALL SOUND(50,500,1) (beep)
CALL KEY(3,K,S)
IF S<>0 THEN.... (jump out of loop)
CALL HCHAR(R,C,Z) (print original character)
CALL SOUND (50,500,1) (beep again)
GOTO (print asterisk line)

R=HR+INT(RND*3)-1

A similar line gives you the Column number.
Check that your new R and C numbers are within the

range of the array, and check the array to make sure that the
square has not been tried already. This will find a second hit
just as well as any human could do it.

Figure 40

Ships of 3 or 4 squares present different problems, and
require different solutions. Look at figure 40. The first hit

78 79

was on square 8,5. The second on square 8,4. A human
player can see immediately that the rest of the ship must be
on 8,3 or on 8,6. If you leave the 99 with routines given so
far, and no more, then it would now start potting away
around 8,4 — and never find anything. Skip the rest of this
section if you want to give the human the advantage in this
game.

Send the program off to this routine when the 99 scores a
second hit.

DR=HR—R
DC=HC—C
HM=2

DR is the Difference between the two row numbers. In figure
40, the difference is zero. DC (the Difference in Column
numbers) would here be 1.

Next time the 99 has a shot, the Hit Marker will send it off
to a new tactical shooting routine.

R=HR+DR
C=HC+DC

In the example given, R would be 8, and C would be 6. Bull's
eye!

However, if the third square of the Cruiser had been 8,3,
and not 8,6, the 99 would have missed. To cope with this
situation, you will need to move the Hit Marker on one
more, and try another tactical shot next time. Here it is:

R=HR-2*DR
C=HC-2*DC

This produces the numbers R=8 and C=3. Bang on, at last.
It's all very fiddly, but such is the nature of computer

games. However, that extra effort has produced a program
that plays like a human. You will need a further variation on
these routines to handle the 4-square ship.

Add in simple counters to keep track of the scores, check
lines to cover those "All Sunk?" diamonds on the flowchart,
and some good sound effects, and your Battleships program

is more or less complete. The next section is included for
interest only, and should not be used in your program.

The Intelligent Computer

"Intelligence" here means the same as it does in the
expression "Military Intelligence". "Spying" is a more
accurate name for it. There is nothing to stop the 99 from
using the CALL GCHAR routine to find the player's ships.
Nothing, that is, except the honesty of you, the programmer,
and the fact that if it's too good a player, humans might get
suspicious. Used with discretion, the occasional check ahead
to see if a random shot is worth doing, or a quick scan across
a line to see if anything is there, would scarcely be noticed.
You could include a check line (if N$ = "HONEST SID"
THEN...) to make it jump its cheating routine when playing
you. It is, however, a well-known fact that 99 owners are
extremely honest, and there is therefore no point in going
into this any further.

80 81

Yes

GAME CHOICE.
TARGET,

NUMBER OF MOVES

INSTRUCTIONS

f PLAYER'S MOVES

No
SET UP TARGET

POSITION PIECES

PRINT SCREEN

PLAYER'S GO.
COLLECT ORDERS

PLAYER'S MOVES

99'S MOVES

WHAT SORT?
TYPES 1 — 10 I

PRINT
RESULT/
SCORES

mcnt
8

War games Z - Move

A simplified flowchart for the COMMANDO game is shown
in figure 41. Much of the programming is quite obvious — see
the LIST in the Appendix — but it is probably worth looking a
little more closely at the way in which the player's and the
99's moves are handled.

The Player's Moves
Several arrays are used in this game, and they are all brought
into play at some point during the player's go. The key ones
are B$(18,16) which maps the Board, U(3,2) which holds Row
and Column numbers for the 3 Units (the player's pieces),
and 0(3,6) which can hold up to 6 Orders for the 3 Units.
The orders are collected by the routine between 1200 and
1490. (See the LIST). You will notice that the first thing to do
is to check that the Unit is still available.

1220 IF U(T,1)=0 THEN
(jump to next Unit)

The removal of a Unit is flagged by changing its Row number
to 0. The orders are given in letter codes, and these are
changed to simple numbers for storage in the Order array.

1340 CALL KEY(3,K,S)
1350 IF S=0 THEN 1340
1360 IF (K<65)+(K>75) THEN 1330

(beep and try again)
1370 0(T,N)=K-64

The orders are carried out by the next section, 1500-1900.
The line:

1560 ON 0(T,N) GOTO

COMMANDO

STOP

Figure 41

sends the program off to the appropriate routine. Where the
order is to change position, then lines like this:

1570 U(T,2)=U(T,2)-1—B$(U(T,1),U(T,2)-1)
<>CHR$(144))

will make the move, but cancel it again automatically if the
square to be moved to is not a space. (CHR$(144) is the grid
character).

82 83

B
om

b
 N

u
m

be
r

Firing is managed through a sub-routine, but before going
there, the Direction of fire has to be given.

1670 D=4
1680 GOSUB 3000

This Direction variable must be either 1,2,3 or 4. It would be
possible to allow your fighters to fire diagonally as well.
Possible, but more complicated.

(C-1) 4 4 - D —% 2 (C+1)

l

3 (R + 1)

Figure 42

The firing sub-routine is used for both the player's Units and
the 99's Guards. The Unit's (or the Guard's) co-ordinates are
transferred to simple R and C variables, at the bullet's start
point. The bullet will then travel for up to 6 squares in the
direction given by D.

3100 FOR S=1 TO 6
3110 R=R+(D=1)—(D=3) (up or down)
3120 C=C+(D=4)—(D=2) (left or right)

There are a number of check lines that send the program off
different ways according to what is on the square that the
bullet is about to go through. If it's a space, then carry on
(line 3130). A building, or the screen edge, will stop the
bullet (3140). If it's a Unit, we must find out which Unit and
knock it out. (Line 3150 and the routine from 3160 to 3270).
Likewise, a Guard must be identified and removed. (3280
and the sub-routine from 4500 onwards.) In both cases, the
bullet's Row and Column numbers are compared with those
of each of the Units (or Guards). If they are the same, then

that square is flashed to show the hit; the same point in the
array is made into a blank, and the Unit's (or Guard's) Row
number is changed to 0, to indicate its removal from the
board.

Bombs are handled through another array, B(10,3). This
stores the co-ordinates and a timer for each of 10 bombs.
When a bomb has been planted, a Bomb Signal (BS) is
switched on. This tells the program to go to the "Explosion?"
sub-routine each time it goes through the main order loop.

1840 IF BS=0 THEN 1900
1850 GOSUB 4000

At this sub-routine, the 99 adds onto the "timer" of each
bomb that has been planted, and if the timer has reached a
certain point, it jumps to an explosion routine.

4000 FOR Z=1 TO 10
4010 IF B(Z,1)=0 THEN 4410

(bomb not planted, or exploded already)
4020 B(Z,3)=B(Z,3)+1
4030 IF B(Z,3)<18 THEN 4410

(don't explode yet)

Part way through the game, the Bomb array might look like
this:

1(Row) 2 (Column) 3 (Timer)

1 0 4 18 Was at 6,4. Now
exploded.

2 7 12 17 At 7,12, about to
blow.

3 10 4 8 At 10,4. Timer nearly
half-way.

4 0 0 0 Not yet set

5 0 0 0 Not yet set.

84 85

The 99's Moves

These are handled by the lines from 1910 to 2300. These
Guards are supposed to be on sentry duty, so their main task
is to keep their eyes open for intruders. Fortunately for the
player, they don't always do that. A line is written in so that
some of the time their eyes are shut.

1940 IF RND>.7 THEN 2300

This random limit can be changed to make the game easier or
harder, as you like. The search routine is run through two
loops, covering all 10 guards (the T loop) and the 3 Units (the
Z loop). Here's the section that checks to see if there is a Unit
on the same column as a Guard, and if it is in range:

1960 IF G(T,2)<>U(Z,2) THEN 2020
(not on same Column check the Row next)

1970 IF ABS(G(T,1)—U(Z,1))>6 THEN 2100
(out of range)

1980 D=1 (shoot up)
1990 IF G(T,1)>U(Z,1) THEN 2080

(go to firing routine)
2000 D=3
2010 GOTO 2080

The first two lines have checked that a target is there
somewhere, the question is, "is it above or below the
Guard?" This is checked by line 1990. If the Unit is upscreen,
then the Direction variable is left at 1, and the 99 goes to the
firing sub-routine. If the Unit is downscreen, then the
Direction variable needs to be reset before firing.

Having had their look around, and perhaps fired at an
intruder, the Guards now continue their sentry duty and
march on. The direction in which each is to move has been
fixed, at random, at the start of the program. It is held in the
3rd store in the Guards' array. The Guards will march in
their allotted direction until they bump up against
something. (See lines 2130 to 2260). If they can go no further,
then they will turn.

2270 G(T,3)=G(T,3)+1
2280 G(T,3)=G(T,3)+(4*(G(T,3)>4))

(keep D in range 1-4)

This produces a quarter turn clockwise. The amount of turn
could be randomised instead, to make their movements less
predictable.

At the moment, if a Guard find a Unit on the same Row (or
Column), but out of range, it will simply ignore it. This could
be altered to make the Guards more menacing. Write in a
routine to make the Guard move closer to the Unit, rather
than following its normal patrol route. The Guards could
also be allowed to pass through buildings, if you felt they
needed any extra advantages.

The 99 in this game is a good tactical player - it can always
make a sensible move, but it has no real strategy - it does not
plan ahead. For examples of strategic play, you could look at
the listings of the programs in the Chess Pack in this series.

86 87

CALL KEY

Yes

CHANGE
VARIABLE

AS ORDERED

CALCULATIONS

9

Simulations

The object of a simulation program is to get the computer to
produce a copy of the real world, or at least, of one small part
of it. A good simulation will present you with the same
problems that you would get in reality. Flight simulators are
much used in the training of civil and military aircraft pilots.
It costs millions to crash a Jumbo Jet, but nothing to "crash"
a computer program! War games are simulations so are
business games. Simulation programs are also used in
scientific research, economic planning and weather
forecasting. The key point to bear in mind about a simulation
program is that it will only be as good as you knowledge of
the subject — which might explain why AIRSHIP will be of
little value in training airship crew!

AIRSHIP could be made into an effective simulation, given
a fuller understanding of the various factors at work and
sufficient memory space. The wind is purely random at the
moment. It should correspond to likely weather conditions
in this part of Europe. It should also vary with height, and
the safe flying height should also vary according to
whereabouts on the map you are supposed to be. To do this,
you would have to build a 3-dimensional map into the
program, and check the airship's position on there as it flies.

These would be significant improvements, but the major
change that the program needs is the inclusion of a "real-
time" element. AIRSHIP works in set units of time. You give
your orders for the next hour, and that's it. It doesn't matter,
either, how long it takes you to work out those orders — the
airship will hang suspended, and unmoving, until you are
ready. To make this change you would need to be able to
alter speed, height and bearing at any time, through the
keyboard. This is not really feasible in TI BASIC. The
program would have to run continuously round a loop that

recalculates and displays all the speed, bearing and distance
information, passing through CALL KEY lines, but not
stopping there. (See figure 43).

The calculations are done rapidly, but the display of the
variables takes time when you have to use an HCHAR —
Print anywhere — routine. As a rough guide, calculations of
the type "AX= SIN(AB*.017)*AS" (line 1610) are performed
at the rate of about 9 a second. Displayed with a normal
PRINT command, the rate is around 5 a second. Put that
display through the 'Print Anywhere" routine, and you are
down to 3 a second. The AIRSHIP program has 12 variables
that need continual updating and display. To ask your user
to catch the one brief moment of a CALL KEY line in a
4 second loop, is to ask too much. Working in TI EXTENDED
BASIC, with its DISPLAY AT command, and faster working,
you would be able to reduce the loop time to a little over
1 second. You could reduce it further by cutting down on the
display — but is it worth it?

Figure 43

88 89

If you want to produce a reasonable spaceflight, or jet
flight simulation, you are going to have to transfer to
machine code to get the necessary speed.

Meanwhile, let's have a closer look at the AIRSHIP
program, as it shows the use of some of the 99's
trigonometry functions, SIN,COS and ATN.

In fact, you won't find the equation in the program in quite
this form. Line 2130

Is a generalized form of the equation, which is used for
several different calculations of the same type.

D=INT(SQR(X*X+Y*Y))

airship (20 kph)

\~ Z/>t

x

wind
(10 kph)

♦

Figure 44

As you probably saw on the demonstration early in the
program, if the airship is flying due East at 20 kph, and the
wind is blowing due South at 10 kph, then you actually
travel East South East at about 22 kph. (See figure 44). With
simple speed figures, and the wind and the ship's direction
at right angles to each other, this is fairly obvious. We can
calculate the actual speed by using Pythagorus's theorem —
"The square on the hypothenuse is equal to the sum of the
squares on the other two sides."

air speed

ground speed \ wind speed

Figure 45

"Ground Speed2 = Airspeed2 + Windspeed2

That translates to this equation:

GS = SQR(AS*AS + WS*WS)

Figure 46

To find the bearing, we use the Arctangent function
(ATN). This lets us work out an angle if we know the
opposite and adjacent sides. In figure 46, angle B is the
Arctangent of the opposite (x) divided by the adjacent (y). Of
course, if we ask the 99 for the angle, it will give it to us in
radians. We are trying to work in degrees, like all good
navigators, so we must multiply by 57.3 to convert radians to
degrees. (1 circle = 2 Tr radians = 360 degrees).

The final line looks like this:

2380 B= INT(ATN(X/Y)*57.3)

It is not very accurate. If you refer to your User's Guide, you
will see that TI recommend that you multiply by
57.295779513079 to make the conversion. Integerizing
numbers also plays havoc with your accuracy, but decimals
make a mess of your screen.

There's more to this, but let's look back at the "real travel"
calculations for a moment. Suppose at the start of your flight,
there was a wind blowing on a bearing of 60° at 30 kph. You
want to travel on a bearing of 330. Which way should you
point your ship? (figure 47). You guess that a bearing of 300

90 91

120°

Wind speed (30 kph)

Y

A=60 X

600

330°

X

Wind speed (30 kph)

North

R North

LONDON \\ Wind

Figure 47

degrees and a speed of 100 kph should do the trick. So what
happens?

North

Figure 49

gives us the answer, without having to bother to draw
triangles, or bring the angle down to 90 or less. In this
example SIN(60*.017)*30 is 25.6. You will be blown 25.6 km
East. The COSINE of the angle lets us work out the North/
South (Y) movement.

Y=COS(WB*.017)*WS

Figure 48

First of all, how far East/West and North/South will a wind of
30 kph on a bearing of 600 degrees blow you? If you were
working this out on paper, you would draw in the right-
angled triangle (figure 48) and find the angle A (60°).

Look what happens when the bearing is over 90 degrees.
You then find X (East/West) by multiplying SIN A by 30. The
99 can work out the sines of any angle, so the line

X=SIN(WB*.017)*WS

Here COS(60*.017)*30 gives 15.7. That's 15.7 km North.
Notice in both of the equations we have to include "*.017" to
convert degrees to radians for the 99. If you want greater
accuracy, use*.01745329251994.

We can perform the same calculations on our airship's
speed and bearing, and find that (in still air) these would
produce movements of 92.5 km West (X=-92.5) and 37 km
North. (Y=37). If we combine the two lots of figures, we get
the movement of the airship, in relation to the ground.

1650 X=AX + WX (here, —92.5+25.6 = —66.9)
1660 Y =AY + WY (here, 37+15.7 = 52.7)

The wind has cancelled some of the westward movement,
but has increased the total shift to the north. We can now use
the same calculations we used earlier, to find the total
diagonal movement and bearing. In this case, we have a
ground speed of approximately 82 kph, and have flown on a
bearing of —51 degrees. —51?? That can't be right!

92 93

+ Y

—X/+Y = +ATN +X/+Y = +ATN

x

+X/—Y = —ATN —X/—Y = —ATN

It isn't. While the SIN and COS functions will work right
round the circle, from 0 to 360 degrees, the ATN function
will always give you a result between 0 and 90, and either
positive or negative. Look at the equation in simple form:

B= ATN(X/Y)

If either X or Y are negative, then the result will be negative.
If both are positive, or both negative, then the result is
positive. In the figure below, you can see how this varies
according to the values of X and Y. In AIRSHIP the
Arctangents are calculated in the routine from 2320 to 2430.
Only one line performs the actual calculation, the rest are
there to allow for all the different possible values that might
occur.

Figure 50

Dry Running
If you are a mathematical wizard, then you will be able to get
equations sorted out correctly first time, and any minor
typing errors you have made will show up as soon as you
run the program. If, like the writer, you have only a limited
grasp of higher mathematics, then "Dry Running" is
essential.

Work out your equations as carefully as you can — possibly
writing little programs to test the effect of various functions.
Now write them out in program lines, and then take some
simple figures (ones where you can work out the
approximate answer on paper, or with a hand calculator) and
go through your lines with those figures. Will the program
you have written produce the results you expect? If not —
back to the drawing board. You should have a better idea of
where the problem is, if nothing else.

Test Data
Having checked your program on paper, type it in and test
again. Don't use the random function at this stage. Set the
variables to figures where you know the answer and run
them through. Does the program give the right answer? Try
with a variety of figures, ones which you will test all of the
lines of the routine.

With something like the arctangent function you would
want to test all the possible positive/negative combinations —
comparing your results with paper sketches or calculations.
It is also worth writing a temporary loop into your program
so that the same calculations are performed with all but one
of the factors held constant. Fix the speed and run through
the bearings from 0 to 360 (in steps of 5 or 10, or you will be
there all night).

TRACE in cases of difficulty. It ruins the screen display,
but at least you can tell if the 99 is going through the program
lines in the way that you think it should. If you have a
printer, then you can follow the trace numbers on the print
out. If not, then you will have to do it the other way. Write
down the trace sequence for that section that worries you,
then compare that with the LIST on the screen later.

Other Simulations

Why not write your own business simulation? A good one
need not be complicated, and they can be fun games to play.
At the simplest, you would have only one product, and you

94 95

P

PRICE

WEATHER,
etc.

COMPETITION

Rr
CASH RESERVE

; VE
RTISING

A
. S

1 \

PROFIT
OR LOSS

430 E$=CHR$(122)2,CHR$(122)&CHR$::
122'
4,39 'REM spot in centre
440 F$=CHR$(122)2,CHR$(120)&CHR$::
12=,
449 REM -pat an rieht
450 Gig=CHR$(122)&CHR$(122)&CHR$::
120
459 REM spot on left
460 H$=CHR$(120)&CHR$(122)&CHR$<:
12-
4è9 ' REI.1 spots both sides
47C I$=CHR$(120)&CHR$(122)&CHR$i
12C
46:C D$(1,1)=E$
49. D$(1,2)=F$
5ü(D$(1,3)=E$
51(D$'2, l)=G$
523 D$ (2,2) =E$
53(RI(2,3)=H$
54C D4: .3 . 1.=G$
SSC D1-3,2) =F$
SSC D'$ 3)=H$
57C D'1.•4,1 =I$
58l 00:4, 2)=E$
59. 01..4,3)=I8
vii i D1.. =I$

620 DO':5,3)=I$
630 D1.•6.11=I$
640 D$(6,2)=1$
650 D$ 3)=1$
659 REM start positions
660 FOR N=1 TO 4
570 READ F(N,1),P(N,2),P(N,3)

30 NEXT o
690 DATA ,3,128,20,4,136,20,3,
144,21,4,152
700 FOR N=1 TO PN
710 CALL HCHAP-PrFI, 1.,F'(71,2),P(N
,3ì''
720 NEXT N
729 REM main acme loon
73C FOR N=1 TO FN

"&N$(N) 74: WO=-PLAYER
751 R=7 764 C_7
77(GO:SUB 6000
779 REI.F random dice number
72C Z=INT(RND*6)+1
79C GO:_:UB 4500
799 REI.F i .don't press-
200 IF N=1 THEN 910
840 WI=" PRESS ANY KEY TO ROLL DI
CE"

860 C=23
870 GOS:UB 6000
880 CALL SOUNU(250,550, 1)
890 CALL KEY (3,f112)
900 IF S=0 THEN 890
905 CALL HCHRR(23.3,32,26)
90.9 REM rullino dice
910 FOR Z=1 TO 6
920 CRLL "BOUND(I00,110=Z,1)
930 GOSUB 4500
940 NEXT Z

would take only the cost of production and of advertising
into account.

Key factors would be how much cash you have to start
with; how much it costs to produce 1 whatever-it-is; how far
price affects sales (and profits); the effect and cost of
advertising. You can refine the program later to bring other
factors into play. Do you have any competitors, and what are
they doing? What's happening to the price of raw materials?
If your product is something like lemonade or ice cream,
then the weather is important.

Figure 51 shows, as a diagram and not as a flowchart, the
interplay of some of the factors in a business game.

Figure 51

This type of game may be best played by several people at
once, each in competition with the other.

The best simulations to write are those where you
understand the subject, and where you can give a
straightforward number value to each factor. It is very
difficult to write a good simulation that has to take humans
into account.

/appendix
Program lists

80 DIM D2(6,3)
90 PRINT
100 PRINT " THI
E AND"::" UP TO

110 PRINT " DEFINING GRAFHIL_-"
. PLEASE LIAIT A MOMENT."::
120 FOR N=1 TO
130 REA➢ 5. G5
140 CALL CHAR(.G$)
150 NEXT N
159 REM dice and edles
160 DATA 120, 00183C7E7E3C1800, 12
1,FF99A5DBDBA599FF, 122,0
164 REM counters
165 DATA 128,1381000000008103,13
6.C38100000000031C3, 144,C38100000
000.81C3,152,C3810000000081C3
170 FOR N=12 TO 16
180 READ P.O
190 CALL COLOR'!N,F.E3
200 NEXT N
210 DATA 2,16,8,5,2,7•8,3,2414
220 INPUT"HOW MANY PLAYERS 1-.

FN
25 IF PN> _; THEN 220
230 FOR N=2 TO PN+1
240 PRINT "PLAYYER UMBER "IN-1
250 INPUT "FIRME PLEASE ":Ill(N)
259 REIF make sure nerve fits
260 IF LEN(N$iü))G12 THEN 280
270 NO(N::,=:_:EG$(N$(N), 1,11)
280 NEXT rI
289 REM I'm the first Player

290 N'1:(1 ="ME"
295 PN=PN+1
300 PRINIT " PRESS ANY KEY TO SIR
RT "
310 CALL KEU' 3,1,.5)
320 IF S=0 THEN 310
325 RANDOMIZE
330 CALL CLEAR
=:9 REM the board

340 FOR F=1 TO 22 STEP 3
350 CALL HCHRR(R,2.121,:31)
350 NEXT F
370 FOR C=2 TO 32 STEP 3
380 CALL 'VCHRR (1,C. 121.22)
3:90 NEXT C
400 FOR R=5 TO 18
410 CRLL HCHAR(R,6.:32,23)
420 NEXT R
425 REM dice srephics
429 REM rom oT blanks

DICERACE 10 REM DICERRCE
20 REM MACBRIDE 1983
30 CALL SCREEN(8)
40 CRLL CLEAR
50 OPTION BASE 1
59 REM n$(4)= slayers names
60 DIM NO(4:;
69 REM p(4,3)=taunters raw,
umn and character
70 DIM F'(4,3)
79 REM d$(6,3)=dice sraehics

DrI CERACE": :
IS A GAME FOR M

3 HUMAN PLAYER._.

96 97

949 REM random dice number
950 Z=INT(RND=6)+1
960 GOGJB 4500
970 FUR T=1 TO Z
980 CALL HCHAP-= N•1,,P:N,2),30'
989 REM ris-'-•a,:i side
990 IF CP(N,- P(N,i:•>4)THE
N 1040
999 REM top
1000 IF {P(N,I) :4 -'P011,2:>4?THE
N 1060
1009 REM - - i side
1910 IF (P~,.= _ ;P(N,1) (20)TH
EN 1080
1019 RE•• -
1020 P(N,2`•- '••2:+3
1030 GOTO
1039 REM ,.• - 3, so
1 040 P (N, . •., 1: -3
1050 GOTO e
1059 REM - 30 left
1060 P(N,22)=P '1,2: -3
1070 GOTO 105
1079 REM le,' - 30 down
1080 PIN,1)=F
1090 CALL Hf.•.•.:'0H11.1:.P(N,2),P,:
N, 3)
1094 REM

- -
,.r - end

1095 GOSUB- -- .
1100 NEXT T
1110 CALL HCHS= ,8,32,20)
1119 REM incident ,,utines
1120 GOSUB '000
1130 NEXT "1
1140 GOTU 730
1999 REM rea-:ted end?
2000 IF (P(í1,1) 19•-+(PIN,2) (5)TH
EN 2100
2090 RETURN
2100 W$=N$ W).' HAS WON!"
2110 R=23
2120 C=5
2130 GOSUB 6571
2140 W0=" ANOTHER GRME ^(Y.-N>'
2150 R=24
2160 C=3
2170 GOSUB 6000
2180 CALL SOUND T.00,250,1)
2190 CALL KEY'3,K.S)
2200 IF S=0 THEN 2190
2230 IF K=89 THEN 300
2240 IF K:,. 78 THEN 2180
2250 CALL SCREEN(8)
2260 CALL CLEAR
2270 PRINT TRBI?)i"PROGRAM INDEX

2280 PRINT " TEl UP ARRAYS
..50"::

2290 PRINT " DEFINE GRAPHICS
120"::

2300 PRINT COLLECT NAME-.
.220"::

2310 PRINT EGARD AND DICE
...330"::
2320 PRINT - IHHE STARTS HERE
.659"::

2330 PRINT DICE ROUTINES
.779"::

2340 PRINT MOVE-WHICH WRY
.970"::

2350 PRINT ' END 7 INCIDENT 7
..1094"::
2360 PRINT ' DISPLAY ROUTINES
..4499"
2370 END
3000 REM write your own
3010 REM incident routines
3020 REM here.
3990 RETURN
4499 REM wipe out dice face
4500 FOR T=1 TO 3
4510 CALL HCHAR'9+1,16,122,3)
4520 NEXT T
4999 REM draw new dice
5000 FOR T=1 TO 3
5810 W0=11(7,7)

10 PEN CROSSES.
20 REM MACBRIDE 1983
30 CALL SCREENC16)
40 CALL CLEAR
50 PRINT TAB(12);"CROSSES '::
60 PRINT " ONE MOMENT PLEAS

70 RESTORE 5000
80 GOSUB 5000
90 PRINT
100 FEN sraphics defines
liO REM ready to start
120 INPUT " PRESS ENTER TO ::TART

130 ❑PPTION BASE 1
135 REM screen array 3x3
140 DIM S(3,3)
145 REM workine array 8x3
150 DIM W(8,3)
160 CALL CLEAR
170 PRINT :: ME DF:A4 -
TAB(22)9"YOU"
180 PRINT ::TAB(5);I;TAE(14):I'T
AB(22);Y
185 REM this draws the

lines of the board
190 B1$=" "&CHR$(128)&" "&CHR$(1
28)
200 B2$=CHR$C130)&CHR$(129)&CHR$
(130)&CHR$(129)&CHR$(130)
210 PRINT : ::TAB(13);Bl$
220 FRINT TAB(1:=)9132$
230 PRINT TAB(1 '•;Bi$
248 PRINT TAB(13);B2$
250 PRINT TAB(13);B1$
200 PRINT
270 POF' P=1 TO 3
280 FOR C=1 TO
2E5 REM puts letters on

board-small caps
to allow colorins

290 CALL HCHRR(9+R=2,13+C*2,93+3
*R+C)
300 NEXT C
310 NEXT R
320 W$="YOUR í100E - WHICH t_f'LARE

330 R=20
340 C=3
350 GOSUB 6000
360 CALL SOUND(250, 1397. 1)
370 CALL KEY(3,K,Z)
380 IF 2=0 THEN 370
385 REM input check

390 IF (KC65)+(K:73)THEN 360
395 REM convert ASCII code

to co-ordinates
400 R=INT({K-62)•'3)
410 C=K-(61+3*R)
420 IF S(R,C): 0 THEN 360
425 CALL HCHAR(20,4,32,26)
430 CALL HCHAR(9+2*R,13+2*C,88)
435 REM mark move on array

440 S(R,C)=1
445 REM P=number of plays

450 P=P+1
490 REM screen array data

to workins array
500 FOR R=1 TU 3
510 FOR C=1 TO 3
520 WIR.C)=5(R,C)
530 W(3+R,C)=S(C,R)
540 NEXT C
550 W(7,R)=S(R,R)
560 W(8,R)=£ :4-R,R)
570 NEXT R
580 IF P>1 THEN 700
590 REM first move?

600 IF íJ(2,2)=1 THEN 640
610 IF RND>.9 THEN 700
620 W(2,2)=4
630 rOSTO 1900

.340 W(1.12=4
650 GOTO 1000
690 REM line checks start

700 M=0
705 REM har Player won ?

710 FOR R=1 TO 8
720 T=11(R.1)+W(R,2)+W(R,3)
730 IF TC-3 THEN 770
740 WIN=1
750 M=1
760 GOTO 1000
770 NEXT P
775 IF P',4 THEN 3400
77:3 REM can i win ?

780 FOR R=1 TO 8
790 T=W(R,1)+W(R,2)+W(R,3)
800 IF T<.; 8 THEN 830
810 F=1
820 GUSUB 2000
825 GOTO 1000
830 NEXT R
835 REM has player sot

2 in a line?
840 FOR R=1 TO 8
850 T=W(R,1)+WCR,2)+W(R,3)
860 IF T<>2 THEN 880
870 GOSUB 2000
880 NEXT R
890 IF Ft THEN 1000
895 REM trap spotter

900 IF •SF'ND>.97+(W(1,1)=1)*(W(3,
3)=1)THEN 940
910 IF •'RND>.9)*(61(1,3)=1)*(W(3.
1)=1)THEN 970
915 REM still not moved ?
920 GOSUB 2500
930 GOTO 1000
940 !,I(2, 1)=40
950 M=1
960 SOTO 1000
970 1J f3:. 1) =4
980 M=1
990 REM transfers move

back to screen array
1000 FOR R=1 TO 3
1010 FOR C=1 TO 3
1020 IF W(R,C)=0 THEN 1040 •
1030 S(R,C)=W(R,C)
1040 IF W(3+R,C)=0 THEN 1060
1050 S(C,R)=íJ(3+R,C)
1060 NEXT C
1070 IF W(7,R)=0 THEN 1090
1080 S(R,R)=W(7,R)
1090 IF W(8,R)=0 THEN 1110
1100 S(4-R,R)=W(8,R)
1110 NEXT R
1120 IF WIN THEN 3000
1125 REM putt move on screen

1130 FOR R=1 TO 3
1140 FOR C=1 TO 3
1150 IF S(R,C><>1 THEN 1170
1160 CALL HCHAR(9+2*R,13+2*C,88)
1170 IF S(R.C)•..4 THEN 1190 •
1180 CALL HCHAR(9+2*R.13+2*C,79)
1190 NEXT C
1200 NEXT F
1210 IF F THEN 3200
1215 REM name must end

after 5th move
1220 IF P4 THEN 3400
1230 GOTO 320
1990 REM finds empty sauare

after 2 in a line
check.

2000 FOR C=1 TO 3
2010 IF W(R,C)90 THEN 2060
2020 W(R,C)=4
2030 M=1
2040 C=3
2050 R-8

5020 R=9-T
5030 C=15
5040 GOSUB 6000.
5050 NEXT T
5060 RETURN
5999 REM w
6000 FOR 4=:
6010 =ASC'.--.-
602' CALL HCr:A:c,R•
6030 NEXT t
6040 RETURN

CROSSES

- 30 r-3ht

98 99

10 REM CARD:_
20 REM MACBRIDE 1983
30 OPTION BASE 1
40 DIM C$'Ó:4.13)
50 DIM H$(4,13)
60 CALL SCREEN(8)
70 CALL CLEAR
80 PRINT TAB":l)'';"CARDS":::
90 PRINT " THIS PROGRAM SHUFFLES
,DEALS"::" RND SORTS A PACK OF C
ARDS.":::
95 REM define srarhic:

100 HOUSE 5000
120 CALL KEY(3,K,S)
130 INPUT " PRESS ENTER TO BEGIN
":A$

1411 CALL CLERP
150 PRINT " HERE - S THE PACK:":
•
160 PRINT " C$(SUIT,YALUE' CA
RD"
165 RESI sets Up rack

170 GOSUB 3000
175 REM how many in each

hand
130 01=13
135 REM how mant hands

190 T1=3
195 REM shuffle and deal

200 GOSUB 3200
205 REM fourth hand

210 GOSUB 340C
2210 PRINT " HERE ARE THE HHNDS."
230 FOR N=1 TO 4
240 PRINT :. " HAND ";N::
250 FOR T=1 TO 13
260 PRINT H$(N,T);
270 NEXT T
280 NEXT N
290 PRINT ::" THEY NEED SORTING.

PRESS ANY KEY WHEN READY. ":

300 CALL KEY(3,K,S)
310 IF S=0 THEN 300
315 REM 4 hands

320 FOR N=1 TO 4
325 REM 12 runs throush

330 FOR: T=1 TO 12
335 REM 12 'bubbles'

340 FOP I=1 TO 12
350 IF H•ß (N, b :H$ (N, I+1) THEN 400
360 :X'$=H$(N, I)
370 H'0'N.I)=H$(N,I+1)
380 H$•(li.1+1)=X$
390 GOSUB 3550
4110 NEXT I
405 NEXT T
440 NEXT N
450 PRINT " PRESS ANY KE''' TO 00
ON"
460 CALL I:EY(33,K,S)
470 IF ÓS=0 THEN 460
420 CRLL CLEAR
490 PRINT TRB(7 ;"PROGRAM INDE::"

500 PRINT ' DEMONSTRATION

510 PRINT " SET OF PACK.
.3000"::
520 PRINT " SIHUFFLE AND DEAL
.32o0":

530 PRINT " FILL FOURTH HAND
.34011"::
540 PRINT ' DI:':F'LRY SUBROUTINE.

5D"
550 PRINT " DEFINE GRAPHIC:'
.5n0!í"::::
560 END
30170 REM set. ut rack
3010 RESTORE 3000

3020 FOR N=1 TO 4
3025 REM pets suit eraehir

30:30 READ X
3040 G$=CHR'O(i0
3050 FOR T=1 TO 13
3055 REM value Snarhic
3060 F'$=CHR$(49+T)
3070 IF T<9 THEN :3120
3030 IF (N=2)+(N=:3)THEN 3110
3035 REM Fish value cards

3090 P$:=CHR$(112+T)
3100 GOTO :3120
3110 P$=CHR'E(105+T)
3120 C$(N,?)=G$&P$
3125 PRINT TRB(6);N;TAB(11);T;TA
B(21'1C$'N,T>
3130 NEXT T
31411 NEXT N
3150 DATA 120,113,112,104
3160 RETURN
3200 REM deals hand:
3201 PRINT :: SHUFFLING AND DER
LING."
3210 FOR T=1 TO T1
3220 FOR IJ=1 TO NI
3230 :3=INT(RN➢=4)+1
3240 Y=INT(RN➢+13)+1
3245 REM .dealt already?

3250 IF C$(X,'ü ="" THEN 3230
3260 H$(T,N)=C$ X,Y:,
3265 REM card now dealt
3270 C$(X,Y:-:=
3280 NEXT N
3290 NEXT T
3300 RETURN
3400 X=1
3410 Y=I
3415 REM fill fourth hand

with undealt cards
3420 FOR N=1 TO 13
3430 IF C8(X,Y'='- " THEN 3470
3440 H$(4,N)=C$
3450 C$(X,Y)=""
3460 GOTO 3520
3470 Y=Y+1
3480 IF 3,14 THEN 3510
3490 ''f=1
3500 ::=X+1
3510 GOTO 3430
3520 NEXT N
3530 RETURN
3540 REM sortins display
3550 FOR J=0 TO 1
3570 D$=HE'N,I+J)
3600 =AS:C.•:EG$(DO,1,1:Ó
3610 Y=ASC(SEG$(D$,2,1))
3620 CRLL HCHRR(2+N+4,1+(I+J)*2,
X)
3630 CALL HCHAR(2+NÚ4,2+(I+J)*2.
Y)
3640 NEXT J
3650 RETURN
5000 PRINT " GRAPHICS: BEING DEFI
NED"::" PLEASE WRIT.":: :
5005 RESTORE 5000
5020 FOR N=1 TO 14
5030 READ ;ÓX,0,$Ó
5040 CALL CHAR(X,G$:)
5050 NEXT N
5070 DATA 113, 006CFEFEFE7C3810,1
12,0010387C:FE7C3T10.114,4C525252
5252534C, 1 l5, 7E 03 i 120808 I0'4Ó:3:10
5080 DATA 116,182442424246241R.1
17,4448506050484442,118.18244242
7E424242
5090 DATA 120. 1OÓ387CFEFE541OY 8,1
04,3833106FED61038. 121.405225252
52525240. 122,7E000803001084830
5100 DATA 123, 12244242424A241A,1
24.4448506050484442.125.182442422
7E424242
5200 CRLL COLOR(11.9.1)
5220 RETURN

CARDS
2060 NEXT C
2070 RETURN
2490 REM finds first empty

snuare if 99 has
no better move

2500 IF W(1,3)=0 THEN 2600
2510 IF Iá":3.2?=0 THEN 2620
2520 FOR R=1 TO 3
2530 FOR C=1 TO 3
2540 IF I.I(F.C'' 0 THEN 2570
2550 W(R,C)=4
2560 GOTO 2590
2570 NEXT C
2580 NEXT R
2590 RETURN
2600 1,1(1,3:,=4
2610 RETURN
2620 W(:3.2)=4
22630 RETURN
3000 W$=" YOU WIN
3010 R=20
3020 C=12
30311 GOSUB 6000
3040 CRLL SOUND(1000,110,1,11'2,1
014,1.-4,1)
3050 Y=Y+1
3060 GOTO 3600
3200 W$=" I WIN "
3210 R=20
3220 C=12
3230 GOSUB 60100
3240 CALL SOUND(1000,220, 1.2777,1
,330,1)
3250 I=I+1
3260 GOTO 3600
3400 W$=" DRAWN GAME "
3410 R=20
3420 C=11
3430 GOSUB 6000
3440 CALL SOUND(500,440,1)
3445 CALL SOUND(500,3:30, 1)
3450 D=D+1
3600 W$=" ANOTHER GAME ? (YIN)"
3610 R=22
3620 C_.=3
3630 GOSUB 6000
3640 CALL SOUND(250, 1397, 1)
3650 CALL K:E,':: S,Ir,2)
3660 IF =t! THEN 3650
3670 IF 1=:9 THEN 3700
3680 IF K;=7£: THEN 3800
3690 GOTO 3640
3700 FOR R=1 TO 3
3710 FOR: C=1 TO 3
3720 0(R.C:', =0
3730 NEXT C
3740 NEXT R
3745 REM clear screen array

Same 0aria51 e_
3750 WIN=n
3760 F=0
3770 P=0
37£:0 GOT❑ 160
3800 CALL :SCREEI:.0:'
3810 CALL CLEAR'
3820 PRINT TAO:' 7'' 1 "PROGRAh1 INDE,

3830 PRINT " :ET LIP ARRAY-7
▪ .130"::
3840 PRINT " DE=W SCREEN
...160"::
3860 PRINT " FLAYER':`: MOVE

3▪ 870 PRINT . 3 TO Idk:) TRANSFER
..4.901":

3880 PRINT " FIRST MOVE

3890 PRINT " LINE CHECK:'

3900 PRINT " Il'., TO S:) TRANSFER

3:910 PR.'IIdT " UF'DATE I!I:_F'LAY
..11:5"::
920 PRINT " MOVE FIIdDEF:Ó::....199

Oe,24.30": .

3 9311 P'R'INT " RESET FOR: NEW GAME.

3940 FORD=1 TO 5000
3950 NEXT D
3960 END!
5000 FOR N=126: TO 130
5010 READ G$
5020 CALL CHARiN.G$'
5030 NEXT N
5040 DATA 1312Ó1::18181E 1818, 1818:1
8FFFF181813. 000000FFFF!)00000
5050 CALL COLOR ,9,5.1,
5060 CALL COLOR 10,5_.1)
5070 RETURN
64100 FOR 0=1 TO LEN(W$)
6010 :=ASC ('_E61,1I3. Q. 1)
6020 CALL HCHAF ,R.7+C,X)
6030 NEXT Q
6040 RETURN

100 101

LOGICOL
10 REM LOGICOL
20 REM MRCBRIDE 1983
30 CALL SCREEN116>
40 CRLL CLEAR
50 PRINT TRB(10)5"LOGICOL":::
60 PRINT " I WILL THINK OF 4 DIF
FERENT"::"COLOURS."::
70 PRINT YOU MUST TRY TO GUES
S WHAT"::"THEY ARE."::
80 PRINT " I'LL TELL YOU HOW MAN
'r ARE"::'- IN THE RIGHT PLACE-(P)
RND"::"HOW MANY ARE RIGHT COLOUR

• 90 .PRINT "BUT IN THE WRONG PLACE

10: PRINT -- ONE MOMENT PLEASE.'

110 FOR N=96 TO 135 STEP 8
120 CALL CHRR(N,'0
130 NEXT N
140 CALL CHAR(144,'1824040810100
010")
150 FOR N=9 TO 15
160 READ B
170 CALL COLOR(N,2,B)
180 NEXT N
190 DATA 5,8,3,14,9,12,16
200 OPTION BASE 1
210 ➢IM R$(4;
220 ➢IM C$.4:
230 ➢IM L$(6:
240 FOR N=1 TO 6
250 READ L$(N)
260 NEXT N
270 DATA B,C,G,M,R,Y
280 PRINT PRESS ANY KE`, TO BEG
IN."::
290 CRLL 'OUN._ '300,500,1)
300 CALL KEY(3.i .S)
310 IF S=0 THEN 300
320 CALL CLEAR
325 MYGO=O
330 PRINT TRB(21iCHR$(144)5" "'C
HR$(144)5" ";CHR$(144)5 -' "SCHR$(
144)5" P C COLOUR CODE"
340 PRINT ::TAB 17);CHR$(96:'9" B
LUE....B"::
350 PRINT TAB(17 5CHR$(104);' CY
RN.. .C"::
360 PRINT TAB(17);CHR$(112';' GR
EEN...."::
370 PRINT TAB(17);CHR$(1220);' MA
GENTA M"::
380 PRINT TAB(171 5CHR$(128)i" RE
D R"::
390 PRINT TAB(17);CHR$(136)5" YE
LLOW Y"::::
400 PRINT TAB(2)5"PICK 4 DIFFEE.E
NT COLOURS
410 FOR N=1 TO 4
420 :1=IN?(RND*6)+1
430 IF N=1 THEN 470
440 FOR T=1 TO N-1
450 IF L$(X)=C$(T)THEN 420
460 NEXT T
470 C$(N)=L$i',
480 NEXT N
490 PR=4
500 P.P=0
510 RC=0
520 FOR N=1 TO 4
530 W$="COLOUR 'ESTR$(N)
540 R=22
550 fJ=3
560 GOSUB 6000
570 CALL SOUND(500,500,1)
580 CALL KEY(3,K,S)
590 IF 3=0 THEN 580
600 CRLL HCHAR(24,1,32,32)
610 FOR T=1 TO 6
620 IF K:<>ASC(L$CT))THEN 640
630 GOTO 700
640 NEXT T
650 W$="PLEASE PRESS INITIAL LET
TER"
,60 R=24

570 C=1
680 GOSUB 6000
690 GOTO 570
700 IF N=1 THEN 800
710 FOR T=1 TO N-1
720 IF CHR$(K)=P$(T)THEN 750
730 NEXT T
740 GOTO 800
750 W$="DIFFERENT COLOURS PLERCE

760 R=24
770 C=2
780 GOSUB 6000
790 GOTO 570
800 PS(N)=CHR$(K :,
810 FOR T=1 TO 6
820 IF P$(N)C>LO(T) THEN 840
830 CN=T+8+88
840 NEXT T
850 CRLL HCHAR(PR,N'2+2,CN)
860 NEXT N
870 IF MYGO THEN 2020
900 FOR T=1 TO 4
910 FOR N=1 TO 4
920 IF P$(T?=CB(T)THEN 950
930 IF PS(T)=C$(N)THEN 970
940 GOTO 990
950 RP=RP+1
960 GOTO 1001
970 RC=RC+1
980 GOTO 1000
990 NEXT N
1000 NEXT T
1010 W$=STR$(RP.
1020 R=PR
1030 C=12
1040 GOSUB 51 J0
1 050 W$=3TR$ (RC:
1060 C=14
1070 GOSUB 6000
1080 PR=PR+2
1090 IF PR>18 THEN 1200
1100 IF RP=4 THEN 1400
1110 GOTO 500
1200 W$=-ENOUGH !!IT WAS "
1210 FOR N=1 TO 4
1220 W$=1W8:C$CN)
1230 W$=W$&`
1240 NEXT N
1250 R=22
1260 0=3
1270 GOSUB 6006
1280 GOTO 1600
1400 W$="RIGHT IN 'GSTR$((PR-4).'
2)
1410 W$=W$E" GOES."
1420 R=22
1430 C=3
1440 CALL SOUND(1000,500,1)
1450 GOSUB 6000
1460 GOTO 1600
1600 W$="CRN I HAVE R GO ?(Y/N)

1610 R=24
1620 C=5
1630 GOSUB 6000
1640 CRLL SOUND(1000,500,1)
1650 CRLL KEY(3,K,S)
1660 IF S=0 THEN 1650
1670 IF K=29 THEN 1850
1680 IF K=7E: THEN 1700
1690 GOTO 1640
1700 W5="00 YOU WANT ANOTHER GO?
(Y/N) "
1710 R=24
1720 C=2
1730 !3O'CUE 6000
1740 CALL SOUND(500,500,1)
1750 CALL KEY ::3.5,5)
1750 IF S=0 THEN 1750
1770 IF K=89 THEN 320
1780 IF K=78 THEN 1800
1790 GOTO 1740
1800 STOP
1850 FOR N=2 TO 18 STEP 2
1850 CALL H_HAP(N,4,32,12D

1870 NEXT N
1880 CR=4
1885 CC=4
1890 CG=O
1900 CALL HCHRR(19,1,32,192)
1910 W$="PLEASE TELL ME YOUR: COL
OURS"
1920 R=19
1930 C=2
1940 GOSUB 6000
1950 W$="I PROMISE NOT TO FEMEMB
ER!"
1960 R=20
1970 GOSUB 6000
1980 CALL SOUN➢(500,500,1)
1990 MYG0=1
2000 PR=2
2010 GOTO 520
2020 CALL HCHAR(19,1,32, 192)
2030 00="I CANNOT GUESS PLACES."
2040 R=20
2050 C=3
2060 GOSUB 6000
2070 G$="BCGM"
2080 GOSUB 5000
2090 ON K OSTO 2100,2150,2500,30
00
2100 GOSUB 3500
2110 GMT 2090
2150 G$="BCR'I"
2160 GOSUB 5000
2170 ON K GOTD 2180,2200,2250,30
00
2180 GOSUB 3500
2190 GOTO 2170
2200 G$="GMRY"
2210 GOSUB 5000
2220 ON K GOTO 2230,2230,2230,30
00
2230 GOSUB 3500
2240 GOTO 2220
2250. G$="BGRY"
2260 GOSUB 5000
2270 ON K GOTO 2280,2300,2350,30
00
2280 GOSUB 3500
2290 6070 2270
2300 G$="CMRY"
2310 GOSUB 5000
2320 ON K GOTO 2330,2330,2330,30
0G
2330 GOSUB 3500
2340 GOTO 2320
2350 G$="BMRY"
2360 GOSUB 5000
2370 ON K 8070 2380,2400,2380,30
00
2380 GOSUB 3500
2390 6070 2370
2400 60="CGRY"
2410 GOSUB 5000
2420 ON K GOTO 2430,2430,2430,30
00
2430 '00)00 3500
2440 GOTO 2420
2500 G$="CGMR"
2510 GSS:UE 5000
2520 UN I:: GOTO 2530,2550,2700,30
00
2530 GOSUB 3500
2540 GOTO 2520
2550 G$="BC.GY"
2560 GOSUB 5000
2570 ON K GOTO 2580,2580,2600,30
00
2580 GOSUB 3500
2590 GMT 2570
2600 6:$='BCM'"

2610 GOSUB 5000
2620 ON K: 0010 2630,2630,2650,30
00
2630 GOSUB 3500
2640 GOTO 2620
2650 G$="BOGY'
266.0 GOSUE 5000
2670 ON K: GOTO 268092
00

G0S.UB 0500
G0T❑ 2670
:;:I:="CiMY..

GOSUE: 5000
ON K 8010 2730,2750,2730,30

GOSUB 3500
601.0 2720
G•I:="BCGR"
GO::UB 5000
014 k GSM 2780,2780,2800,30

GOSUB 3500
GOTO 2770
G$="BCMR"
GOSUB 5000
ON K GOTO 2830,2830'2850,30

GOSUB 3500
GOTO 2820
='BGMR'

73SUB 5000
UN K GUTS 2880.2880,2880,30

GOSUE 3500
60TO 2870
W$="HOW'1 THAT THEW--
R=22
C=5
60SUB 5000
00T0 1700
W$="PLEASE CHECK THAT!"
R=23
C=3
GOSUB 6000
CALL SOUND (500, 500. 1)
CG=CG-1
GOSUB 5100
RETURN
FOR N=1 TO 4
FOP T=i TO 6
IF :_.:EG$(G$.N, lì- L$(T.'THEN

CN=T*8+88
CRLL HCHRR(rP,CC,CN)
CC=CC+2
NEXT T
NEXT N
CR=CR+2
CC=4
AB=-HOW MANY RIGHT COLOURS'?

5110 R=24
5120 C=2
5130 GOSUB 6000
5145 CALL SOUND(500,500. 11
5150 CRLL KEY(3,K,S)
5160 IF S=0 THEN 5150
5170 IF (K049)+(052)THEN 5140
5180 CRLL HCHAR(24,26,K)
5190 K=K-48
• 520 C!. CG=C!,+1
5210 CALL HCHAF:(2:=:,1,32564)
5220 RETURN
6060 FOR 0=1 TO LEN(WS)
6010 Y=A:SC(SEG3:(14$,0,1))
6020 CALL HCHRRiR.Q+C,X)
6030 NEXT Q
6040 RETURN

c62(I. 30

2620
2690
2700
2710
2720
00
2730
2740
2750
2760
2770
00
2780
2'90
2800
2310
2820
00
2830
2840
2850_
226
2870
DO
2880
28?0
3000
3010
3020
3030
3040
3500
3510
3520
3530
3540
3550
3560
3570
5005!
5010!
5020
5060
5030
5040
5050
5060
5070!
5080
5090
5100

102 103

COMMANDO 10 REM COMtiANIIO
20 REM MRCBRIDE 1983
21 REM
22 REM please note **
23 REM rems removed from

cassette programs
24 REM to same memür ,

30 CALL CLEAR
40 PRINT TADK30):"COMMANDO":::
50 PRINT "GRAPHIC:: BEING DEFINED

60 PRINT " PLEASE FIAIT."::
70 FOR N=1 TO 12
80 READ X. G:$
90 CALL CHAR(X,G$)
100 NEXT FI
105 REM see 190 and

290-310 for kef

110 DATA 128,"0818080808081C",12
9,"1C22020408103E"
120 DRTR 130,"300440418044438",13
1. "FF'3'9'93FFFFE7E7E7"
130 DATA 136,"00101893FE981810",
137." 0030389CFF9C3830"
140 DATA 132, 7278FCFFFC787800",
139,"FFBDDEE7E7DBBDFF",152,"0080
80FFFSC00000"
150 DATA 144,-010001 00010001AR",
145,"FFFFFFFFFFFFFFFF",146,"00110
001818"
160 CALL COLOR:(13,2,8)
170 CRLL COLOR(14,9.12)
180 CALL COLOR(15.3,16)
185 CALL COLOR (16,2, 166)
190 PRINT " IN THIS GAME YOU WIL
L GIVE"::"THE ORDERS. TO 3 UNITS:
":i:HR$(128.1 ':CHR$,:129):" ":CH
R$,:130)::
200 PRINT "IN THEIR RAID ON AN E
NEM`i'• ::" INSTALLATION."::
210 PRINT " THEFE ARE THREE DIFF
ERENT"::"TRR73ET'_ -1 THE FUEL DUM
F"'::" -2 THE TANK DEPUTE"

220 PRINT " -3 THE AIRPOR
T."::
230 PRINT "1 HAS FE! G IIHF'DY : 3 HA
S. MOST.':: -
240 INPUT ":4HICH TARGET ,1 2 OR

":TN
250 IF TN>3 THEN 240
260 PRINT YOU CAN GIVE YOUR
UNITS :"ORDER:_ FOR UP TO 6 MOM
ES"::"AHEAD."::
270 INPUT "HOW MANY MOVES AT A T
IME 7 (1 TO 5.) ":M
280 IF M>5 THEN 270
290 PRINT THESE SYMBOLS ARE
USED:":: .' .':CHR$(136)1" "1 CHR$(
137):" PLANES:"::
300 PRINT " ": LCHR$(138):" TANK
".CHR$(139)3" FUEL DUMP"::" ":C
HR$(131):" BUILDING",
310 PRINT CHR$(152):" GUARD"::
" YOU SCORE BY BLOWING UP "::"PL
ANES, TANKS AND FUEL DUMPS"::
320 PRINT " OR BY :_HOOTING GUARD
S."::
330 PRINT " THE LOSS OF A UNIT
HILL"::" REDUCE YOUR SCORE."::

340 PRINT " ONE MOMENT PLEASE
5*"::

345 REM set UP arrays

350 OPTION BASE 1
355 RANDOMIZE
359 REM Board
360 DIM 80(18,16)
364 REM Bombs
365 DIM B(10,3)
369 REM Guards
370 DIM G(10,3)
379 REM Units
380 DIM U(3,2>

384 REM _hot guard count
385 GN=0
389 REM Orders
390 DIM 0(3,6)
394 REM live unit count
395 UN=:3
399 REM basic board

400 FOR R=2 TO 17
410 FOF: C=2 TO 15
420 B$(R,C)=CHR:$(144)
430 NEXT C
440 NEXT R
450 ON TN GOTO 460,570,680
459 REM fuel dump

460 FOR N=1 TO 8
470 C=INT (RND*13)+3
430 R=INT (PND*6)+6
490 B$(R,C>=CHR$(131)
500 NEXT N
510 FOR R=3 TO 5 STEP 2
5220 D$(R.3>=CHR$(139)
530 B$ (F', 5) =CHR$ (139)
540 NEXT R
550 MOTO 780
560 REM
569 REM tank depot

570 FOR N=1 TO 6
500 R=INT(RND*5)+8
590 C=INT(RND*13)+3
600 B$(R,C)=CHR$(131)
610 NE:-=:T N
620 FOR N=1 TO 10
630 R=INT (PND*7)+2
640 C:=IN T (Rt1D*13)+3
650 B$(R.C)=CHR$(138)
660 NEXT N
670 MOTO 780
673 REM airport

680 FOP N=1 TO 10
590 R=INT(RND*14)+1
700 C=16-R-(F:ND>.5)
710 B:0(R.,C)=CHR:$(131)
720 X=1:36-(RND).5)
730 F INT(FND'-14)+2
740 C=INT(.RND-1:)+3
750 IF R+C>15 THEN 730
760 E$(R, C)=CHR$(X)
770 NEXT Fl
779 REM board edoes

780 FOF: R=1 TO 12
790 B$(5:,2)=C:HR$(145)
800 B$(R.15' C:HR$(145)
810 IF R>16 THEFT 845
830 B$(1,R)=CHF.'$(145)
840 E$(18.R)=CHR:£(M5)
845 B$(R,1)=CHR$(32)
850 NEXT R
859 REM position guards

860 FUR N=1 TO 1+TN*3
870 R=INT(RND^10)+2
880 C=INT(R,ND*13)+3
890 IF BO<R,C:)*:>CHRS(144?THEN 87
0 •
900 B$(R,C)=CHR$(152>
910 G(N, 1) =R
9206(142)=C
930 G(N,3)=INT(RND*4)+1
940 NEXT N
945 REM position units

950 C=INT(RND*8)+4
955 FOR N=1 TO 3

960 E$(17,C+N)=CHR$(127+N)
970 U(N,1)=17
980 U(N,2)=C+N
9B5 NEXT N
990 INPUT "PRESS ENTER TO START
GAME ":R$
999 REM initial screen

1000 CALL SCREEN(12)
1010 CALL CLEAR
1020 FOR R=1 TO 18
1030 FOR C=I TO 16
1040 X=A'SC(B$(R,C))
1050 CALL HCHAR(R,C,X)
1060 NEXT C
1070 NEXT R
1080 C=18
1090 FOR R=1 TO 18
1100 READ Ai$
1110 GOSUB 6000
1120 NEXT R
1130 DATA ORDER CODE:S:," ".20 LEF
T A.GO RIGGHT B,GO UP C
,G0 DOWN D
1140 DATA " ",FIRE LEFT E.FIRE
RIGHT F,FIRE UP G.FIRE DOEM
H
1150 DATA " ",SET BOMB I," ".N
O MOVE J," ",CHANGE LHST,MO'•,'E

1160 41$="GAME LEVEL ".STR$(Tfi*6+
M)
1170 R=20
1180 C=3
1190 GOSUB 6000
1199 REM main loop start

1200 CALL HCHRR':21,1132, 128>
1210 FOR T=1 TO 3 -
1220 IF U(T,1)=0 THEN 1430
1230 41$="ORDER.3 FOP UNIT "&STR$(

1240 R=23
1250 C=3
1260 GOSUB 6000
1270 CALL HCHRR'(21,(T-1)*10+2,12
7+T)
1280 1290 FOR N=1 TO M

144="MM'E "&STR$(N)
R=24 1300
C=5 1310
GOSUD 6000 1320
CHU :=:DUND(500,508,1) 1330
CALL KEY(3.8.3) 1340
IF S=0 THEN 1340 1350
IF <K<65)z(K)7)THEN 1330 1360
OCT,N) K-64 1370
CALL HCHRR(21.f.T-1>f,10+3+N. 1300

K)
1390 IF K<75 THEN 1420

N=N-1-(N=1) 1400
MOTO 1290 1410
NEXT N 1420
NEXT T 1430
FOR T=1 TO 5 1440
FOR P=:300 TO 600 STEP 60 1450
CALL SOUND(20,P.1) 1460

1470 NEXT F
NEXT T 1480
CALL HCHAR(23,1.32.64> 1490
REM carry out orders 1499

1500 FOR N=1 TO M
1510 FOR T=1 TO 3
1520 IF LI(T,1)=0 THEN 1900
1530 IF 0(TIN)>4 THEN 1560
1540 CALL HCHAR(U(T,1),U(T,2),14
4i
1550 B$(U(T,1),U(T,2)i=CHR$(144)
1560 ON O(T,N>G01.0 1570,1590,161
0.1630.1670.1700.1730,1760,1790.
1850
1570 U<T,2)=U(T,2)-1-(B$(U(T,1),
U (T, 2) -1> <>CHRS (144))

1580 MOTO 1640
1590 U(T,2)=UCT.2)+1+(BS(U(T,1),
U(T,2)+1) C>CHR$(144))
1600 GOTO 1640
1610 U(T,1)=U(T,1)-1-CBS(U(T,1)-
1, U(T,2))<>CHR$(144))
1620 MOTO 1640
1630 U(T,1)=U(T.1)+1+(B$<.U(T.L)+
1, U(T,2))<>CHR$(144))

1640 B$:U(T,1),U(T,2):)=C:HR$(127+
Ti
1650 CALL HCHAR(U(T,1),U(T,2),12
7+T)
1660 MOTO 1850
1670 D=4
1680 GONE 3000
1690 GOTO 1850
1700 D=2
1710 GOSUB 3000
17220 GOTO 1850
1730 D=1
1740 GOSUB 3000
1750 GOTO 1850
1760 D=3
1770 GOSUB 3000
1780 GOTO 1850
1790 IF 1IN=10 THEN 1.10
1800 GOSUB 3500
1805 GOTO 1850
1810 Id$=" YOU HAVE RUN OUT OF BO
MB'_"
1820 R
1830 C=2
1840 GOSUB 6000
1850 IF BS=O THEN 1900
1860 GOSUB 4000
1900 NEXT T
1909 REM -,ards nu e

1910 FOR T=1 TO 10
1920 IF G(T,1)=0 THEN 2300
1929 REM look for enemy

1930 FOR 2=1 TO F:
1935 IF iJ(2,1=0 THEN 21()
1940 IF RND>.7 THEN 2100
1950 IF G(T,2) O U(Z,2)THEN 2020
1970 IF ABS(G(T,li-U(2,1))>6 THE
N 2100
1980 D=1
1990 IF G(T, U>U(Z,i:)THEN 2080
2000 D=^-.
2010 GOTO 2080
2020 IF G(T,I) OU(Z,1)THEN 2100
2040 IF ABS(G(T,2)-U(2,2))>6 THE
N 2100
2050 D=4
2060 IF G(7,2)>U(Z,2)THEN 2080
2070 D=2
2080 GOSUB 3030
2090 Z=3
2100 NEXT Z
2109 REM Patrolling

2110 B$(G T,1),G(T,2))=CHR$(144)
2120 CALL HCHAR(G(T,1),G(T,2).14
4>
2130 004 G(T,3)60TO 2140,2170.220
0,2230
2140 IF B$(.15(T,l)-1,G(T,2)> OCHR
$(144)THEN 2270
2150 GG(T.1)=G(T,1)-1
2160 GOTO 2290
2170 IF B$(G(T, 1).G(T,2)+1)OCHR
$(144)THEN 2270
2180 6(T,2)=G(T,2)+1
2190 MOTO 2290
2200 IF B$(6(T,1)+1,6(T.2)) OCHR
6(144)THEN 2270
2210 6(T,1>=G(T,1)+1
2220 MOTO 2290
2230 IF B$(G(T.i),G(T,2)-1) OCHR
0(144)THEN 2270
2240 6(T.2)=6(T,2)-1
2260 MOTO 2290
2270 6(T,3>=6(T,3)+1
2280 G(T.3)=6(T,3)+(4*(6(7,3))4)
)
2290 B$(6(T,1),G(T,2)>=CHRS(152)
2295 CRLL HCHRR(6(T,1),G(T,2),15
2)
2300 NEXT T
2310 NEXT N
2320 IF UN THEN 2340
2330 MOTO 5000

104 105

2340 I. Io="FRE':`. IC TO 0 IT.G TO GO
ON"

2350 R=24
2360 C=1
2370 GOSUB 6000
2380 CRLL KEY(3,K.S)
2390 IF K=81 THEN 5000
2400 IF I(=71 THEN 1200
2410 GOTO 2380
2999 REM shooting

3000 R=U(T.1)
3010 C=U(T,2)
3020 GUM 3100
3030 R=G(T.1)
3040 C=G(T,2)
3100 FOR S=1 TO 6
3110 R=R+(D=1)-(D=3)
3120 C=C+0=4)-(0=2)
3130 IF B$(R,C =CHR$(144)THEN 33
00
3140 IF (B$(12,C)=CHR$(131))+(B$(
R,C)=CHR$(145))THEN 3350
3150 IF (B$(R,C.,(CHR$(128)>+(B$(
R,C))CHR$(130))THEN 3280
3155 REM unit hit

3160 FOR A=1 TO 3
3170 IF .U(R,1)=R)+(U(R.2)=C)THE
N 3190
3180 GOTO 3270
3190 U(R,1>=0
3200 FOR 0=1 TO 5
3210 CALL HCHAR(R,C,127+R)
3220 CALL z:OUND(50,2000X,1)
3230 CRLL HCHAR(R,C,144)
3240 CALL SOUND(50,110#X,1)
3250 NEXT X
3255 E$(R.C)=CHR$(144)
3260 LIFT=UN-1
3265 IF UN=0 THEN 5000
3270 NEXT A
3280 IF B$(R,C)':.>CHR$(152ïTHEN 3
350
3290 GOSUB 4500
3295 GOTO 3350
3299 REM bullet
3300 CALL HCHAR(R,C,146)
3310 CALL ::OUND(50,-1,1)
3320 CHLL -=:0000020,-1,1)
3330 CALL HCHAR(R,C,144)
3340 GOTO 3400
3350 S=6
3400 NEXT S
3410 RETURN
3499 REM bombs

3500 BN=BN+1
3510 B(BN.1)=U(T,1)
3520 B(BN,2)=U(T,2)
3530 W$="CHARGE SET.TIMEF: STARTE

3540 R=23
3550 C=2
3560 GOSUB 6000
3570 CALL SOUN➢(500,760,1)
3520 E:;=ES+1
3590 RETURN
4000 FOR Z=1 TO 10
4010 IF E(Z,1)=0 THEN 4410
4020 B'::Z,3)=BCZ,3)+1
4030 IF E(2,3)(18 THEN 4410
4040 REM explosion

4050 FOR R=B(2,1)-1 TO B(Z.1)+1

4060 FOR C=B(Z,2)-1 TO E(Z,2)+1
4070 IF (R(2)+(R>17)THEN 4360
4080 IF (C<2)+(_>15)THEN 4360
4090 CALL GCHAR(F.C,GC
4100 CALE 7OUND(50,-1.1)
4110 CALL HCHRR(R,C,145)
4120 CALL SOUND(:50,-5,1)
4130 CALL HCHAR(R,C,32)
4140 CALL SOIJOD (50,-8. 13
4150 CALL HCHAF'(R.C, 144)

4160 IF Gf.-.;152 THEN 4240
4165 REM any guards there?
4170 FOR W=1 TO 10
4180 IF CG(Ii,1)=0:0(G(W.2)=Ci THE
N 4200
4190 GOTO 4230
4200 G(W,I)=0
4210 GN=GN+1
4220 B$(R,C=CHP$'144:
4230 NEXT IJ
4240 IF (GC>135)+(GC140)THEN 42
60
4250 GOTO 4280
4260 B$(R,C)=CHR$:144>
4270 TS=TS+1
4280 IF (GC<128;+(GC.• 130)THEN 43
50
4285 REM any units there?

4290 FOR W=1 TO
4300 IF CU(W•l'=0)'-(U (8,2)=C""THE
N 4320
4310 GOTO 4343
4320 OUJ,17=0
4330 IJN=UN-1
4335 IF UN=O THEN 500(1
4340 NEXT b1
4350 B$(R,C>=CHR:$(1445
4360 NEXT C
4370 NEXT R
4390 BS=BS-1
4400 B(Z.1.-0
4410 NEXT
4420 RETURN
4499 REM guard shot

4500 FOR H=1 `O 10
4510 IF (G (R. I' =F: = <6 íA.2, =r THE
N 4530
4520 GOTO 4620
4530 0(:0.1)=0
4540 FOR X=1 TO 6
4550 CALL HCHRR(R.C.152>
4560 CALL SOUND(50,--ri.1
4570 CALL HCHAR•:R,C.144)
4580 CALL SOUND(50.110l)
4590 NEXT
4600 GN=GN+i
4610 08(0,0. =CHR$(144)
4620 NEXT A
4630 RETURN
4999 REM end of same

5000 IF UN THEN 5040
5010 CALL _OUND(1000.22ü,1)
50220 CALL SDUND•.1000,110,1)
5030 GOTC 5050
5040 CALL _ OUND•:2000.294,1.370,1
.440.1)
5045 CALL HCHAF.:22. 1,32,96)
5050 88=" FINAL SCORE ":.STRB.:TN
5MO(TS`10)+(GN^5:.,
5060 R=23
5070 C=2
5080 GOSUB 6000
5090 W$="ANOTHER GAME
5100 R=24
5110 GOSUB 60010
5120 CRLL SOUND(150,1397.1°
5130 CRLL K:EY:3.13,0)
5140 IF S=0 THEN 5130
5150 IF K:=89 THEN 190
5160 IF K=78 THEN 5180
5170 GOTO 5130
5180 END

6000 FOR 0=1 TO LEN(W$)
6010 X=RSC(SE13$(I,l$.Q,1))
6020 CALL HCHAR(R,Q+C,X)
6030 NEXT (!
6040 RETURN

AIRSHIP 10 REM AIPSHIP
20 REM MAI-BRIDE 1983
.o LALLSCREEN(8)
40 CALL CLEAR
50 F'RINT TAB(10);"RIRSHIF":::
.0 F'A'INT " YOU ARE THE CRF'THI
N OF"::" RN AIRSHIP, FLYING FF'
OM ":
70 PRINT " PARIS TO LONDON.":

75 REM graphics definition

80 GO_LII: 2690
90 CALL KE'Y(3.K,S)
100 INPUT,_'' DO YOU KNOW HOW TO F
L'r' AN R I SHIP^ 'Y,7lì":R$
110 IF A:g="M"' THEN 690
120 IF A:g="N" THEN 140
130 GOTO 100
140 CALL 3CREEN(8)
1511 CALL CLEAR
155 REM instructions

160 PRINT ' KEEP R CLOSE WATCH 0
N WIND"::" ;PEED AND DIRECTION."

170 PRINT " IT WILL TEND TO BLOW
YOU OFF COURSE."::
180 PRINT ' E.G.- AIRSPEED 20 A.
P.H"::" BEARING 90 DEGREES"::
190 PRINT ' WIN➢ - 10 K.F.H."::"

BEARING 180 DEGREES"::
200 CALL CHAR~136,"87IIFFFFFFUF_:FO
203")
210 CALL CHAR- 137,"E0F8FEFEF=:EO4
OCO")
220 PRINT 'PRESS RNY KEY TO 50 0
N.":::
230 CALL COLORr13,14,1)
240 FOR C=3 TO 27 STEP 3
250 PRINT T0B(Ci;CHR8(128);
260 NEXT C
270 PRINT " WIN➢ (10 K.P.H)"
280 CRLL COLOR(14,5,1)
290 PRINT ::CHR$(129);" ";CHR$(1
36);CHR$ 137);" AIRSPEED 20 K.P.

300 CALL KEY .3,1,8)
310 IF S=0 THEN 300
320 FOR C=1 T❑ 23 STEP 2
330 CALL SOUND(500,110,25i
340 PRINT TAB(C);CHR$(129);" ";C
HRO 1367; CHRO(13?)
350 CALL IOUND(1.-1,30:
360 IF C>21 THEN 380
370 CALL HCHAR(23,C+2,32,6)
380 NEXT C
390 PRINT " REAL DEAFING 122 DEG
REES"::" GROUND =PEED 22.5 F::.F'.H

400 INPUT "DO YOU LINDERSTANLI DER
RINGS"-:AO
410 IF A:g="Y" THEN 600
420 IF A:g="N" THEN 440
4311 GOTO 400
435 PEN bearings displu-,

440 PRINT TRB(13) ; "NORTH": TAB'::14
::O::TAB(6,: 315;TAB(20);45

450 PRINT " WEST";TRB(23);"EAST"
:TAB (4);27O;TRE(:22):90 TAB(
• 25; TAB(21); 135:::
450 PRINT TALlO ':130,:TAB•:12);"S
❑0TH"::" PPE::: ANY KEY TO GO ON"
470 CALL V::HAF'=..17,130,7)
480 CALL ':,fHAt 13,17,128,7>
490 CALL HCHAO 12,11,131,6)
500 CALL HCHAPA12.18,129,6)
510 FOR N=1 TO 5
520 CALL HCHAF:(12-N,17+N,132)
530 CALL HCHAR(12+N.17+N,133)
540 CALL HCHRR(12+N,17-N,134)
550'C:ALL HCHAR.'12-N, 17-N, 135)
560 NEXT N
570 CALL SOUND(500,550,1)
500 CALL KE'ì(:3.l:i.0 ,

590 IF ,;=0 THEN 5::0
595 REM how to give your

commands
600 PRINT TAB(2);"COMMANDING YOU
R AIRSHIP":::
610 PRINT " WHEN THE 99 IS READ

620 PRINT " GIVE YOUR COMMANDS F
OF'. THE":` NEXT HOUR'S FLYING."::
" MAX. :=PEED 100 KPH."::
630 PRINT " MAX. HEIGHT 1000 M."

BEARINGS IN WHOLE NUMBERS"::
" USE)S< TO DELETE ERRORS."::
640 PRINT " >ENTEP-(ALL COMMANDS
•:" YOU WILL BE FULLED IN WHEN
WITHIN 10 KM. OF HIRFORT.":::

650 PRINT PRESS ANY IEY TO E
EGIN
660 CALL SOUND(500,1397,1 -
670 CRLL KEY13,K,S)
680 IF S=0 THEN 670
685 REM initial .values

see below .810-.`
690 RESTORE 700
700 READ GN,T,R:•AB,r,S.GB.LD,LB,
PD,PB,H
710 DATA 1,-190,3305,0.400.33.5,
0, 0, 0

720 RANDOMIZE
730 WS=INT(ONDOSO*5
740 WB=INT•(RNDä72::.=5
750 CRLL CLEAR
760 PRINT "WIND':" bearing r
peed kph"::"AIRSHIP":' beari
no 4Peed kph"::
770 PRINT "ACTUAL TRAVEL 'i' bear
ins speed kph"::
780 PRINT "HEIGHT metres"::
:'TRB(11);"AIRPORT:".:"PARIS":"he
aping distance
790 PRINT "LONDON":"bearing
distance km"::"FLIGHT TIME

hours":::
800 C=11
810 (4=STR$UIB)
815 REM Wind Bearing

820 R=2
830 GOSUB 2810
840 W8=STR8(AB)
841 REIT Airship Bearing

850 R=5
860 GOSUB 2810
870 W$=STR$05B)
875 REM Ground Bearing
the war you really so
880 R=8
890 GOSUB 2810
900 C=21
910 W$=STR$<WS,
915 REM Wind Speed

920 R=2
930 GOSUB 2810
940 bl$=STR$(RS)
945 REM Rir Speed
950 R=5
960 GOSUB 2810
970 IW0=71-00(GS)
975 REM Ground Speed

900 R=0
990 GOSUB 2810
1004 P.=10
1010 f=9
1020 W$=STR$(H)
1025 REM Heisht

10:30 GOSUB 2810
1040 C=10
1050 Weg=:STR$(PB)
1055 REM Paris Bearing

1060 R=15
1070 GOSH 2010

106 107

1080 W$=STR'b'(LEH 1660 Y=RY+WY 2285 REM adjusts for actual 2910 PRINT HOW TO COMMAND....
1085 REM London Bearing 1670 GOSUB 2310 movement ...595"

1680 GX=:: 2290 X=X—GX 2920 PRINT " INITIAL VALUES
1090 R=19 1690 GY=Y 2300 Y=Y—GY .685"
1100 GOSUB 2810 1695 REM Ground Bearing 2305 REM common subroutine 2930 PRINT PRINT VARIABLES
1110 T=T+1 Ground Sreed finds bearing and ...800"
1115 REM Time—flying hours 1700 GE=8 speed-distance from E/kI. 2940 PRINT CHECK FOR END

1710 GS=D N!S figures ..1225"
1120 0J$=3TRS(T) 1715 REM find Distance and 2310 D=INT<SQR(X*X+Y*Y)) 2950 PRINT COMMAND TIME
1130 R=21 Bearing of London 2320 IF Y<:>0 THEN 2350 ..1260"
1140 I =14 1720 B=LE 2330 B=90 2960 PRINT " CHECK: SAFE HEIGHT?
1150 GOSUB 2810 1730 D=LD 2340 GOTO 2440 .1465"
1160 C=23 1740 GOSUB 2270 2350 IF ;X<:0 THEN 2380 2970 PRINT " NAVIGATOR WORKING.
1170 IJ'E=STR$ (P➢) 1750 LD=D 2 360 B=0 .1570"
1175 REM Paris Distance 1760 LE=B 2370 GOTO 2440 2980 PRINT " REAL FLIGHT—PATH

1765 REM now for Paris 2380 B=I NT(RTN(X/Y)*C7.3) .1605"
1180 R=I6 2:390 IF ('r'0)*(X>0)THEF! 2440 2990 PRINT " AIRPORT FIGURES
1190 GOSUB 2810 1770 E=F'E 2400 IF (Y:>0)*(X<0)THEN 2430 ..1715"
1200 W$=STR$(LD) 17:80 D=FD 2410 B=16:0+B 3000 PRINT " CHANGING
1205 REM London Distance 1790 005ÚE 2270 2420 GOTO 2440 .1815"

1800 FB=B 2430 B=360+8 3010 PRINT CRASH"
1210 R=19 1810 FD=D 2440 REM at last!! an end .1885"
1220 GOSUB 2810 1815 REM the wind keeps to those awful sums. 3020 PRINT " ARRIVAL
1225 REM Game Number

1 to London 1820
chamois,

WS=WS+(INT.:RND*3)*5)-5
2450 RETURN
2455 REM call key-input.

..2045"
3030 PRINT " RESET FOR PARIS

2 to Paris 1830 IF WS>=0 THEN 1850 .2235"
1230 IF (LD<11)*(GN=1)THEN 2050 1840 W:_=0 2460 1$="" 3040 PRINT " MORE CALCULATIONS.
1235 REM close enough to 1850 W8=WB+(INT(RN➢*3)*10)-10 2470 C1=14 .2265"

catch the oUY ropes:' 186.0 IF 4B>=0 THEN 1880 2480 CALL :SOUN➢ "15051397,1) 3050 PRINT INPUT SUB—ROUTINE.
1240 IF (PD<11)*(GN= 1)THEN 2050 1870 IJE=IJE+360 2490 CALL HCHAR(23,C1,144) .2455"
1250 CALL SOUND(250,1397,1' 1875 REM back to dioPlav 2500 CALL K:E'«3.K.:> 3060 PRINT GRAPHICS
1255 REM sire orders 1880 GOTO 800 2510 IF -=0 THEN 2490 .2685"

1890 518="!! TOO LObI — TOO FAST— C 2520 IF I:=13 THEN 2610 3070 PRINT FRINT ANYWHERE
1260 W$="* READY FOR YOLP CO!11.188 RASH!!" 2530 IF .1 =83''>'I$>"")THEN 2640 ..2810"
DS *" 190(FOR V=30 TO 1 STEP —1 2540 IF ü::42.+ ,1>57)THE!J 2500 3080 FDR D=1 TO 5000
1270 R=24 191(CALL SOUND(200,200+5*V,V,25 2550 I$=10::::CHR$:K) 3090 NEXT D
12810 8=1 0+1f*'d.V,300+10*V,V,-8,Ví2) 2560 CALL SOUND(100,—I,10) 3100 END
1290 GOSUB 2810 1920 NEXT V 2570 CALL HCHAR'23,C1,K)
1300 W8="EERRING 193(R=23 25.80 CALL SOUND(I0,-1,10)
1310 R=23 194f 8=1 2590 C1=C1+1
1320 C=3 195 f GOSUB 2820 2600 GOTO 2500
1330 GOSUB 2810 196C CALL SOUNI'S'J00, 110. 1.115,1 2610 I=VAL I8:'
1340 GOSUB 2460 ,500,15-8,1) 26.20 CALL HCHAR(23,14,32.LEN(I8)
1350 88=I 197(20="00 YOU i,IANT TO TRY AGRI +1:)

1360 IF (RB>360>+(RB<0)THEN 1300 N?(5 N:)" 2630 RETURN
1370 W'ì=" RIRSFEED ?" 1980 R=24 28.40 81=81-1
1380 GOSUB 2810 1990 GOSUB 2810 2650 L=LEN(I0)
1390 80538 2460 2000 CALL :SOUND(150,1397,1) 2660 I$=SSEG8r:I$:. 1,L-1)
1400 A:'=I 2010 CALL KEY(3,K,S) 26.70 CALL HCHAR (2:3.C1+1.32)
1410 IF (A'_>100)+(RS<O:THEN 1370 2020 IF k::=89 THEN 690 22680 GOTO 2490
1420 W$="HEIGHT ? " 2030 IF K:=78 THEN 2860 2685 REM arrow graphics
1430 GOSUB 2810 2040 GOTO 2010 2690 RESTORE 2690
1440 GOSUB 2460 2045 REM in range of- 2700 FOR N=128 TO 135
1450 H=I airport 2710 READ G0
1460 IF H•1000 THEN 1430 2050 IF H<::110 THEN 2110 2720 CALL CHAR (á,88)
1465 REM crash?? 2060 W$="OVER AIRFORT — BUT TOO 2730 NEXT N

HIGH" 2740 I18TA 382828AREE7C3810. 00130
1470 IF (H<:20)*(RS>207THEN 1890
1475 REM too low??

1480 IF H<50 THEN 1500
1490 GOTO 15'0
1500 W8="!! DANGER — TOO LOW !
1510 8=24
1520 GOSUB 2810
1530 FOR N=1 TO 6
1540 CALL SOUND(50,-1,1)
1550 NEXT N
1560 GOTO 1420
1570 00=" WRIT — NAVIGGATOR WORKI
NG "
1575 REM calculation time

1580 R=24
1590 C=2
1600 GOSUB 2810
1605 REM ?.East—West shift

Y=North—South
1610 RX=.SIN(RB*.017)*RS
1620 AY=COSCAB*.017``)*RS
1630 WX=SIN(WB*.017)*WS
1640 W8=COS(00*.(117)*WS
1645 REM overall E:W,WS

movement. — find speed an
d bearing
1650 X=RX+W)(

2070 R=24
2080 C=1
2090 GOSUB 2810
2100 GOTO 800
2110 W$="THAT`S CLOSE ENOUGH!"
2120 R=23
2130 C=2
2140 G03:08' 2810
2150 W$="DO YOU WONT TO FLY BACK
7(Y/N)"
2160 R=24
2170 GOSUB 2810
2180 CALL SOUND(150,1397,1)
2190 CALL KEY(3,K,S)
2200 IF K=89 THEN 2230
2210 IF K=78 THEN 2860
2220 GOTO 2190
2230 RESTORE 2240
2235 REM data for London

to Paris trip
2240 READ GN,T,AS,AB,6S,GB,LD,LB
,RD, PB,H
2250 DATA —1,-1,030,0,0;.0,0,400,
150,0
2260 6010 750
2265 REM finds how far E/W

N'S of airports
2270 X=S IN (B*. 017)*D
22280 Y=COS(B*.017)*D

CFE87FE OC18, 081C3E775514141C. 103
07FE17F301000
2750 DATA 3F1F0F172851A140, 40815
12B170F1F3F, 02:858AD4E8FOF8FC.FCF
0F0E824888502
2760 CALL CHRR(144,"003C3C3C3C3C
3C")

2770 FOR S=9 TO 12
2780 CALL COLOR(:S,2,16)
2790 NEXT S
2800 RETURN
2805 REM Print. anywhere

2810 W0=000," ..
2820 FOR 0=1 TO LEN (W$)
2830 CALL HCHRR(R,C+0,ASC(SEG$(4.I
8,0,1)))
2840 NEXT 0
2850 RETURN
2860 CALL SC:REEN(16)
2870 CALL CLEAR
2880 PRINT TRB(8):"PROGRRM INDEX

2890 PRINT " INSTRUC:TIONS
..155"

2900 PRINT " BEARINGS DISPLA'Y

108 109

