Do not upload this copyright pdf document to any other website. Breaching copyright may
result in a criminal conviction and large payment for Royalties.

This Acrobat document was generated by me, Colin Hinson, from a document held by me,
believed to be out of copyright. It is presented here (for free) and this pdf version of the
document is my copyright in much the same way as a photograph would be. If you believe the
document to be under other copyright, please contact me.

The document should have been downloaded via my website https://blunham.com/Radar, or

any mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website (https://blunham.com/Radar). Please do not point them at the

file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

| put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, | need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. | then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after that, | end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

If you find the file(s) of use to you, you might like to make a donation for the upkeep of the
website — see https://blunham.com/Radar for a link to do so.

Colin Hinson
In the village of Blunham, Bedfordshire, UK.

% TEXASINSTRUMENTS
HOME COMPUTER

Game Writers'
Pack 2

PK McBride

© william Collins Sons & Co. Ltd., 1983
1103216-0000

123456789

Produced and printed by Contract Books Ltd,
1983. All rights reserved, no part of this
publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior permission of the copyright owner.

Conterts

Introduction

1 Word Games 5

2 Dice and Board Games 17

3 Don’t Get Cross! 26

4 Dealing and Sorting a Pack of Cards
5 Decisions, Decisions 41

6 Do you want to Bet? 54

7 War Games 1- Co-ordinates 70
8 War Games 2 - Movement 82

9 Simulations 88

Appendix

Program Lists 97

36

INtroduction

In Game Writer’s Pack 1, the computer was used to organize
the games, and served as the board on which the games
were played, but it took no really active part. Most of games
covered here are those where the 99 acts as a player.
Sometimes its play is automatic, but in most games, the 99
has to think! Of course, computers cannot think for
themselves — at least not yet — so it’s up to you, the
programmer, to teach it how. This means that you have to
think hard about how a game works, and how a human
player takes decisions during a game. It takes time, but it’s
worth it in the end. You will find that you learn a
tremendous amount about computing techniques while you
are working out your own games.

The programs in this pack are mainly examples of the sorts
of games you can write using the techniques covered in the
book. Please feel free to extend or alter these programs to
make them into games of your own. As long as you do not
try to record over the original programs on the cassette,
then, whatever you try, the programs will not be lost or
damaged. The program LISTs are given in the Appendix for
your reference.

The book assumes that you have read the two Starter
Packs, and Games Writer’s Pack 1, and that you have a
reasonable grasp of the computing techniques covered in
those. It also assumes that you will work through chapter by
chapter and learn to use each new idea before moving on.

You don’t need any special equipment for games
programming, justa T.V., a cassette recorder, your trusty 99,
lots of paper and plenty of ideas. A printer is of tremendous
help in sorting out long programs, and the TTEXTENDED
BASIC cartridge can make life easier, but neither are
essential.

1
Wordgames

Word games rely on the comparison of strings or parts of
strings. HANGMAN, included in Starter Pack 2, is a useful
demonstration of the use of string-slicing techniques in
games.

The game follows the normal rules. Correctly guessed
letters are written on the dashes to build up the mystery
word. Bad guesses are recorded, and the hanging man is
drawn in ten stages.

The essential routines of the game are very simple. The
major complications lie in the screen presentation. Using
standard TI BASIC, it is not possible to PRINT at set points
on the screen, and so the HCHAR sub-program has to be
used. (In TTEXTENDED BASIC you have a DISPLAY AT
command which makes screen presentations that much
easier.)

The heart of the program is the comparison of the guessed
letter with each of the letters of the word in turn. In
EXTENDED BASIC it would look something like this (L$ is
the Letter, W$ is the Word):

FOR T = 1 TO LEN(WS)
IF L$ = SEG$(W$,T,1) THEN....ELSE....
NEXT T

In TI BASIC it’s not that easy. If you allow a letter to be
INPUT, then your screen will scroll up and you will lose your
display. The Letter must be collected by a CALL KEY line.
You now have a code rather than a letter, so the codes of the
letters of the Word need to be checked. That check line now
looks like this:

IF K = ASC(SEG$(W$,T,1)) THEN....

K is the code of the letter collected by CALL KEY(3,K,S). The
alternative is to transfer the letter code to a string;:
L$ = CHR$(K) and carry on as before.

Either way you do it, the result is the same. If the word
was “HANGMAN" and the letter was A" then this is what
happens:

HANGMAN

GOTO “found” routine.

If you look at the HANGMAN LIST in the Appendix , you
will find this part of the program around lines 600 onwards.

The found routine is at 1000. The first thing to do is to print
the found letter in the right place on the screen.

CALL HCHAR(15,T*2+8,K)

This prints the letter, CHR$(K), on the 15th row, starting
8 columns in, and spaced out with a single space between
the letters. From the example above, the first “A” would
appear at 15,12 (=2*2+8) and the second A" at 15,20.

You could at this stage simply mark up a correct guess,
(CG=CG+1) and go on, checking to see if you have as many
guesses as there are letters in the word (IF CG = LEN(W$)
THEN...). Unfortunately, some players cheat. There would
be nothing here to stop someone using the same correct
letter all the time, and building up his score that way. This is
why lines 1030 to 1070 are there. They remove the guessed
letter from the word and replace it with a space.

1030 P=POS(W$,CHR$(K),1) (where’s the letter

again?)
1040 L3$=SEG$(W$,1,P-1) (left-hand side up to
the letter)
1050 R$=SEG$(WS$,P+1,L—P) (right-hand side - L
is Len(W$))

1060 W$=L3&” ” (add a space)
1070 WS$=W$ &R$

Back to the example ~ on the first “A” this happens:

p=2
LS = “4’ (SEGSWS,1,1))
R$ = “NGMAN’ (SEG$(W$,3,4))

W8 is redefined to read “H NGMAN”

The same technique can be used, by the way, to knock a
single space invader out of a string of them.

You can now add to your Correct Guesses score, and
check for enough Correct Guesses. The actual program uses
a different check routine. There, a Check String is created
(C$) which is the same length as the Word, but filled entirely
with spaces. When the letters of the word have all been
replaced with spaces, then this is picked up by comparison
with C$. (Lines 1090 to 1120).

Bad Guesses

You need some sort of flag in your “found” routine to show
that the computer has been there. In the program itis Z. If at
the end of the loop, Z is still zero, then clearly no letter has
been found, and it was a Bad Guess. The computer now goes
off to the drawing routine. M is the counter for the number
of Misses. Look at lines 2000 onwards.

2000 M=M+1
2010 ON M GOSUB.....

Each sub-routine draws another part of the picture.
The Bad Guesses must also be recorded on the screen, and
their position is held in GR (Guess Row) and GC.

2040 CALL HCHAR(GR,GC,K)

prints up the letter. GR and GC are then adjusted ready for
the next Bad Guess.

Figure 1 shows the flowchart for the basic HANGMAN
game.

[INPUT Ws |

4

'y

>
>

[GET LETTER |
Add to Misses No
any good? Draw Hangman
Print Bad Guess
i Yes Yes
Print and LOST

replace with “”

Figure 1

Here the word is entered by a second player at the start of
the game.

Word Banks for Hangman

Two separate word banks are included in the HANGMAN
game in Pack 2 — one of BASIC words, the other of animal
names. You can very readily add extra banks, or extend
these. To add extra banks simply type the words in as DATA
lines starting at 8000, 9000, 10000 (or any other well-spaced
numbers). Next alter the selection routine that starts at 180.
You want to be able to fix the RESTORE position so that the
99 begins to read at the start of the chosen set of DATA lines.
It is probably easiest to ask the player for a number reply.

“For BASIC Hangman enter 1
For Animal Hangman enter 2
For Geography Hangman enter 3

14

You follow with something like this:

190 INPUT A

200 ON A GOTO 205,215,225,...
205 RESTORE 5000

210 GOTO 250

215 RESTORE 6000

220 GOTO 250

225 RESTORE 8000

The routine from line 250 READS the word bank into the
array Q$(42). If you want more than 42 words you will have
to change the dimension of Q$ and make sure that all your
banks have the same number of words.

Words are chosen from the Q$ array by the lines from 460
to 466.

460 N= INT(RND*42)+1
462 IF Q$(N)=*" THEN 460
465 W$= Q$(N)

466 QAS(N) =

This picks a word at random, checks that it hasn’t been used,
transfers it to W$ for the game, and then marks off the word
in the array.

Before you can teach the 99 to play Hangman, you have to
work out how you play, and break your game technique
down into a series of separate steps and decisions. Most
people start by guessing the commonest letters, vowels first.
Then, when a few letters have been found, they will look at
the shape of the word and try to guess the word. If they
think they know what the word is, then they will normally
try the first blank letter. Let’s look at an example. Here’s the
line of blanks:

Vowels first.

“E” nogood _____
“A” good one A
“T’ good one AT

Think, think. No, don't recognize it yet. There are enough
vowels. Let’s try some consonants. ““N” is the commonest.

“N” no good

“s” good one _ASI_
This looks like BASIC. Try “B” to check.
“B” spot on BASI_
“C” finishes the word BASIC
We can now write out a game plan as a flowchart. (Figure 2)
C START)

[try a vowel |

try a common
consonant

Yes

recognize
shape?

Yes

Try the first
blank letter

No

S

Yes

fill in the
remaining
blanks

Figure 2

If you can flowchart it, you can program it. (Keep saying that
to yourself when things are not going smoothly. It's a very
encouraging thought.)

Take it a step at a time. How do you ““try a vowel”? You
will need an array of vowels — V§(1) =“E"”; V$(2) = “A”";
V§(3) = “T"; V§(4) = “O”; V§(5) = “U” ; V$(6) = “Y”. You
need that “Y" there in case of words like “WHY"'.

You will also need a couple of variables — VN to keep track
of which Vowel Number you are trying, and VF to count
how many Vowels you have Found.

] W =1 |
[Try VWY] Il
[W =V + 1]
. any No
good? -
| Yes
VF = VF + 1 |

No

enough
vowels?

Figure 3

How many vowels are “enough”’? As a general rule there’s
one vowel to every 2 or 3 consonants. This line compares the
number of Vowels Found with the length of the word:

IF VF = INT (LEN(W$)/3)+1

With a five letter word, INT(LEN(W$)/3)+1 comes to 2.
Think of a few five letter words and count how many vowels
in each.

10

11

“Recognize shape’’? No problem - as long as the player is
only allowed to use words in the 99’s word bank. First run
through the word bank — Q$(..) and find one the right length
(WL is the Word Length)

IF LEN Q$(N) = WL THEN.....

Transfer it to a simple string store, as this makes slicing
much easier.

C$ = Q3(N)

and mark this word off in your array, so that you don’t keep
trying it:
Q$(N) =

Now go through the two words, W$ and C$, and compare
them letter by letter, ignoring the blanks:

1500 FOR T=1 TO WL
1510 IF SEG$(WS$,T,1)=" "THEN 1530
(ignore blanks)
1520 IF SEG$(WS$,T7,1)<>SEG$(C$,T,1) THEN....
(back up for a different word)
1530 NEXT T

Suppose the word that you are thinking of is “INPUT". The
computer has guessed and found I__U_. It checks the word
bank and comes up with “BREAK” - the first five letter word
it meets. On the first run through the letter checking loop it
discovers that SEG$(W$,T,1) — “1” is not the same as
SEG$(C$,T,1) — “B”. It goes off for another word.

Eventually it finds “INPUT”, and checks those letters. The
only letters that it has guessed “1” and “U” are in the right
places. It completes the loop and is ready for the next stage.
Find the first blank letter, and try that.

P=POS(WS$,” ”,1)

Finds the position of the blank.
SEG$(C$,P,1)

is the letter at that point in the C$ word.

12

This kind of routine works perfectly well where you have a
limited number of words that the player can use. You could
have a much larger word bank if you wanted. The 99 has
memory space for several hundred words. With a large
bank, the 99 could soon use up its guesses working through
all of the words of the right length. This is where you need to
write in a consonant guessing routine, so that the computer
tries to guess more single letters before it begins to compare
with the words in its memory.

The consonant routine works the same as the vowel
routine, only now, instead of using the 6 vowels, you will
use the 6 (or more) commonest consonants. In normal
English these are T,N,S,H,R,D. Check your own word bank
though, to see which consonants are used most there.

You now have most of the routines you need to teach the
99 how to play Hangman. For a look at how to organize a
computerized guessing game, run the LOGICOL program,
and check through its LIST (in the Appendix).

How many words?

How many words of 3 letters or more can you make out of
the word “TEXAS” - using each letter once only in each
word? The 99 can make 300 - except that most of them are
not proper words. We’'ll come back to that in a minute, but
first let’s put a word-maker game together. The game is fun

to play, easy to write, and gives good practice in handling
arrays.

13

Here’s the flowchart.

(SCORE = 0)

Set up word
Bank Q8(...)

No

v

Player enters

99checks through
word bank

No Print
“No Good” >
Message

Yes
l Mark off in array

Add to Score
Print “OK’ message

I R

Figure 4

The program starts by READing its word bank from a
DATA list into an array. This is done exactly the same as in
Hangman. If you are not too bothered about the screen
display, then the player’s word can be entered by a normal
INPUT line, otherwise use the Input Anywhere routine from
Pack 2.

Comparing whole words in easy. Simply work through
the word bank, checking each word in the array with the
player’s word.

FOR N =1 TO 100 (or however many)

IF W$=Q$(N) THEN..... (off to O.K. routine)
NEXT N
-e (leads to “no good” routine.)

Yes
uorT WS Quit? STOP

The O.K. routine removes the word from the word bank, so
that it cannot be re-used:

Qg(N) =~ ~
It adds to the score (longer words count more):

XS = LEN(W$)— 2 (eXtra Score)
SCORE =SCORE + XS

- 3-letter words get 1 point, 4-letter words get 2, etc.
And it PRINTSs an appropriate message:

PRINT “THAT'S A GOOD WORD.”

Now for the Word Bank.

You want to make sure that you include in your word bank
every possible word. What better way to do this than to get
the 99 to work out every different combination of letters. You
can then quickly check through the list to see which are real
words.

This routine produces every 3-letter combination from the
word “TEXAS”.

10 W$="TEXAS” .
This splits the

word into
separate letters —
it makes the rest

20 FOR N=1 T0 5
30 L$(N)= SEGS(WS$,N,1)

40 NEXT N of the program
simpler

50 FOR A =1 T0 5

60 FOR B =1 T0 5

70 FOR C = 170 5

80 IF (A=B) + (A=C) + (B=C) THEN 100
90 PRINT L$(A);L$(B);LS$(C);” 7;
(space to separate the words)

100 NEXT C
110 NEXT B
120 NEXT A

Look at line 80. This uses the “Value of truth”” functions to
check whether or not any letter is being used twice. If any of

14

15

Put the characters in the array like this:

500 D$(1,1)= CHR$(96) & CHR$(97)
510 D$(1,2)= CHR$(98) & CHR$(99)

5 Counting Exercise

Rather than moving the counter automatically after the dice
has been rolled, have a routine which asks the player to
press the number of the dice. This turns the game into a
simple counting exercise for young children. If you do this,
then you should include a check routine, so that if the child
is unable to find the right number after 2 or 3 goes, the 99
tells him which to press. This can be slotted into DICERACE
as a sub-routine, with a line

965 GOSUB 7000

to send it there. Here’s the flowchart for the routine.

[e=0]

[“Press the number”|

—p

| CALL KEY |

*
Yes
RETURN

No

—
(9]
I

il
+

[“Try Again” |

[“Press” & STR$(2) |

Figure 9 <

“Z"” is the random number for the dice. Add 48 so that it can
be compared with the “K” ASCII code.

6 Incidents

Add some excitement to the race by writing in incident
routines. These can be of the immediate, or delayed action
types — either “go back to the start” or “‘miss the next go”.
The section of DICERACE from 3000 is left for your
incidents.

First decide where your incidents are, and write in check
lines to pick up any counters that land there.

IF (P(N,2)>29)*%(P(N,1)<5)...

This line in the DICERACE garﬁe would pick up any counter
in the top right-hand square.

IF (P(N,1)>10)*(P(N,1)<13)...

This would pick up counters on rows 11 or 12, on either side
of the board.

To move a counter backwards or forwards is very simple
now. You know exactly where it is, so you can tell exactly
how far and in which direction you want it to move. You do
not need the same kind of checks that you have in the main
movement loop.

P(N,1)=P(N,1)+6

This would move a counter on two, if it was on the left-hand
side, and back two if it was on the right.

7 Snakes and Ladders

This is really a variation on There and Back again, with
incidents. A Which Way variable is used to control
movement, but the routine which changes W also moves the
counter up a row.

W=W * —1
R(P)=R(P)—1

22

23

These lines work equally well for both edges. Multiplying by
—1 changes plus to minus, or minus to plus.

The counters will rub out your nicely drawn snakes and
ladders as they move round, but do not worry, this can be
put right. Use the CALL GCHAR sub-program to find out
what character is on a square before you print a counter
there. When the counter moves off, replace it, not with a
space, but with the right graphic. The GHAR check can also
be used to spot the tops of snakes and the bottoms of
ladders. You will need as many up and down sub-routines as
you have lengths of snakes and of ladders. Jump the counter
from one end to the other if you are feeling lazy, or when
you first put the program together. Move the counter square
by square if you are up to making the effort. The 99 has
enough memory space to cope with a very detailed game.

8 Ludo

DICERACE can be turned into a simple one-counter game of
Ludo. Change the start positions of the counters so that they
all occupy the same square. Next write in a GCHAR check so
that if a counter lands on top of another at the end of its
move, the original counter is sent back to the start. You will
also need a GCHAR check on the squares that a counter
passes over during a move, so that any covered counter can
be reprinted afterwards.

For a proper Ludo game you will need a totally new
program. The board needs to be drawn with a set of paths
leading to the “homes”. Each player rieeds 4 counters, so the
array that holds information about the counters needs to be
changed. P(4,4,3) will hold row, column and graphics
number for 4 counters for 4 players.

Most importantly, you will have to teach the 99 the tactics
of the game. Which of its four counters should it move?
Should it chase the one ahead, run from the one behind, or
just try to get “home’” as quickly as possible? When should it
turn off the main track and up the path to “home”?

The game has many complications, and is probably best
left until you have reached the War Games section of the
book. There you will come across ways of teaching the 99 to
make these kinds of tactical decisions.

[| L[]

I
l

W@TI
|

Figure 10

24

25

3
Dont get aoss

No, don’t get cross if the 99 won’t let you win at CROSSES —
just fix the program so that it will.

CROSSES is included in this pack for two reasons - it
shows how arrays can be used to keep track of a game, and it
also shows that it is possible to turn your 99 into an expert at
a game. The 99 can learn any game as long as you can
analyse the game thoroughly enough and as long as the
memory space can cope with all the possible game

variations.

Noughts and crosses is a simple game, and there are only a
limited number of moves. If you think about how two
humans play the game, you will realize that after the first
few moves, neither player has much real choice. He is either
stopping his opponent from completing a line, or finishing
one of his own. In either case, the player is looking for two of
the same marks in one line. The game is really decided in
those first few moves. That is the more difficult part, so we
will leave it until later. Let’s look first at the ““two-in-a-line”
checker.

For the 99 to play intelligently it must be able to “’see” the
game. You could use the GCHAR function for this, butitis
much easier to record the moves in an array. A simple 3X3
array will match the screen display.

S(3.3)
M Ta Tl
bt
Fototod

S T Eg |

Figure 11

We can now indicate a move by changing the value in the
array. In CROSSES, “1” is used to show the player’s move.

Figure 12

LT,T.71

1

H+

0,0
-+
0 0

fofoto]

Two crosses in a line would appear as 110, 101, or 011.
Whichever way they are, if you add up the values in that line
you get a total of 2. The 99 now has a simple way to spot a
line that needs stopping. Likewise, if the total of the line is 3,
then it knows that you have won —an unlikely event!

We need to mark the 99's move in the array. “1” shows a
cross, but we can’t use 2 or 3 because a single nought in a line
would then have the same value as 2 or 3 crosses. The next
available number is 4. Let’s use that. A total of 8 now shows
two noughts, and the 99 will know to finish that line and

win.

Over twenty-five different combinations of noughts and
crosses (and spaces) are possible, but if you remember that a
single nought, or cross, or space in a line gives the same total
wherever it is, then there are only 10 combinations to think

about.

Screen display
X__

XX_

XXX

O__

OX_

OXX

OoOo_

00X

000

Figure 13

Array
000
100
110
111
400
410
411
440
441
444

Line Total

O O RNUTHR WD =O

Action?

No

No

Yes — put an O quick!
Player wins

No

No

No

Yes — put an O quick!
No

99 wins

You will see that if the total is 2 or 8, then the 99 must
search for the space in the line and put its nought - either to

26

27

stop the player, or to win. A total of 3 or 12 is the end of the
game. 6 and 9 both show full lines which can be ignored, and
a line total of 5 is no use either, as neither player can win on
it. This leaves 0,1 and 4 lines for free use, but in fact, once
you have checked for key totals, the overall shape of the
game is more important than any single line.

Checking Routines

The checks on the lines cannot simply add across the rows of
the array. There are 8 possible winning lines in noughts and
crosses.

viviv

Figure 14

Each line must be checked. One way to do this is to
transfer the values of the lines from the screen array, S(3,3)
to a working array, W(8,3).

1 2 3 1 2 3
X 111]10{0 il1{0/o0 z
) 2i0(4f0 2{0]4]0 horizontal
X 31010(1 3[ofo]1
4|11]0|0
screen S(3,3) 5(014,0 %vertical
6(0[0j1
7111411
glolalo }diagonal
Figure 15 s

The first three lines are the simplest to transfer:

FOR R=1 TO 3

FOR C=1 TO 3
W(R,C)=S(R,C)
NEXT C
NEXT R

For the next three, the order is reversed, so that the lines are
read down, not across. The only difference is in the actual
transfer line: '

FOR R=1 T0 3
FOR C=1 TO 3
W(3+R,C)=S(C,R)
NEXT C

NEXT R

These routines can be happily merged into one. (See lines
500 - on in the LIST of the CROSSES program in the
Appendix)

The diagonals are a bit more fiddly, and can best be
understood by looking at the co-ordinates:

11 1,3
2,2
3,1 3,3

Figure 16

FOR R=1 T0 3
X(7,R)=S(R,R)
W(8,R)=S(4—RR)
NEXT R

Line W(7) in the working array now stores the values for
squares (1,1), (2,2) and (3,3). W(8) holds those for (3,1), (2,2)
and (1,3). This routine is tucked into the R loop at lines 550
and 560.

The program is now able to run through the working array
and check line totals. It has to do it in a certain order of
priority. It is no good simply totalling each line to see what
comes up. The 99 must first check for a line total of 3. (Lines
710 to 770). If the player has won, then there is no point in
going further. The next most important line total is 8 —
winning chances must not be ignored. (Lines 780 to 830). The
third total to look for is 2 so that the player can be stopped.
(Lines 840 to 880).

28

29

Here is an example of the check routines in action.

Screen Screen array Working Array Line totals
414 9
olx|o al1]4 across 010 1
X| 0j1]0 001 1
X 0j0|1 400 4
down 110 2 « Action!
401 5
. 411 6
diagonal { 014 5
Figure 17

The 99 found no 3 or 8 totals, but it did spot the 2 in line 5 -
the centre vertical. The program goes off to the sub-routine
at 2000 to look for the blank in the line and write in its 4. This
value is then transfered back from the working array to the
screen array (see lines 1000 to 1110), and the move is
displayed on the screen. (Lines 1130 to 1200).

If the 99 does not find any 2,3 or 8 total, and it almost
certainly won't in the early part of the game, then it must
“think”” about its move.

First move strategy is straightforward. The centre square is
so important, that if the player has not already gone there,
then the 99 will. If the centre square is in use, then the corner
squares are more use than middle of line squares. The
routine from 600 on covers this first move. Look at it in the
LIST — remember that W(2,2) is the centre square. You will
notice a line:

610 IF RND>.9 THEN 700

This is one of the things that gives you a chance of winning.
9 times out of 10 the 99 will take the centre square if it can,
but every now and then it will miss its chance. Remove this
line completely if you want to make the 99 even harder to
beat. Reduce the random limit if you want to improve the
player’s chances.

Line 640 will always mark a nought in the top-left hand
corner. Because the crosses board is so symmetrical, all
corners are, in effect, the same. You could, if you liked, add
an extra routine here so that the 99 chooses a corner at
random. It would add variety to the game’s appearance, but
would make no difference to the way it played.

At the second move stage there are two dangerous

situations that the line totals check will not spot. They are
these.

Figure 18

The 99 could either go for a corner or for one of the
middle-of-line squares. Here’s what happens with a corner
move.

99's move Player’s 3rd move 99's 3rd move
X O X 0 X 0
0 0 = 0|0
X — X X X X
Nou'ght line stopped 99 can only stop
- 2lines set up. one line - player must win.
Figure 19

A middle square move takes the game to a draw.

99's move Player's 3rd move 99’s 3rd move
X X X
0|0 g g X| 010 X|0}0
X X w—- O X
) Nought line stopped — 99 blocks cross line —
Figure 20 only one line set up. mustend in draw.

30

31

The lines that check for these situations are between 900
and 970. Look at line 900:

IF (RND>.9*(W(1,1)=1)*(W(3,3)=1) THEN 940

You will see that another random factor has been built in.
Remove that random expression and the 99 will never miss
such a dangerous situation. Reduce the random limit to
improve the human’s chances.

There is one last routine written in to cover those odd
situations where there is no obvious move for the 99 to
make. In practice the routine will be hardly ever used, but it
must be there to fall back on. It is written in from line 2500
onward.

If all else fails, the 99 will mark its nought in the top right
(W(1,3)) if it’s free, otherwise the bottom middle, or the first
empty square it comes to.

Letters to Co-ordinates

You might have expected the squares on the board to have
been identified by co-ordinate numbers:

123
1

2
3

Figure 21

The player would then have been asked “Which Square?
Row? Column?”” The numbers could have been simply
collected by two CALL KEY lines and transferred directly to
R and C variables.

CALL KEY (3,K,2)
IF Z = 0 THEN...
R=K—438 (changes ASCII code into number)

By the way, you may note that in the program the CALL
KEY line has been changed from its usual form . . CALL
KEY(3,K,S) to CALL KEY(3,K,Z)

32

S cannot be used as a simple variable because it is used
elsewhere in the program as the arrayed variable 5(3,3).
Trying to use a simple and an arrayed variable of the same
name will give you a *NAME CONFLICT message.

CROSSES uses letters rather than co-ordinates. It makes
the program a bit fiddlier, but is easier for the player to
operate. The letters are written into the board by the routine
between 270 and 310. The key line is 290.

CALL HCHAR(9+4R*2,13+4C*2,93+3*R+C)

This gives the spacing — 9+R*2 produces the Row numbers
11,13 and 15, 13+C*2 gives you Columns 15,17 and 19. The
third expression turns the R and C variables into the codes of

£4 .77 1477

letters from “A” to “1”.

C 3*R+C 93+3*R+C(ASCII Code) Letter

R
1 1 4 97 A
1 2 5 98 B
3 1 10 103 G
Column

AlBlcC 1,111,2(1,3

DIE|F Row 21 22123

G[H|I

3,1{3,2|33

Figure 22

To convert the letter code of the player’s move back into
co-ordinates, you need another bit of mathematical juggling.

400 R=INT(K—62)/3)
410 C=K—(61+3*R)

Not very friendly equations, but see how they work.
Suppose the player has gone for the centre square. He
presses “E”, Code “E” is 69. K collects large capitals.

K K-62 (K-62)/3 INT((K—62)/3)
69 7 2.33 2

33

If “G” was pressed. .
71 9 3 3

To find C, you reverse the expression used earlier in the
HCHAR line.

Letter K R 61+3*R K—(61+3*R)
“E” 69 2 67 2
“G"” 71 3 70 1

The 99 Starts

CROSSES has been written so that the player always starts.
This was mainly to keep the program simple, but it should
also give the player a much-needed advantage. However, it
can be readily adapted so that the 99 and the player take it in
turns to start. The first change to make is to put the codes for
printing the noughts and the crosses into variables. At the
moment you have this line after the player’s move:

CALL HCHAR(9+2*R,13+2*C,88)
88 is the code for “X”’. Change this to:
CALL HCHAR(9+2*R,13+2*C,PM)

PM (Player’s Mark) is set earlier to be 88, but is changed to 79
(“O”) at the end of the first game. You will also need CM for
the Computer’s Mark and this will likewise be switched
between 79 and 88. The routine which updates the screen,
after the computer’s go, is between 1130 and 1200.

To swop those “O” and “X"* codes over, use a simple
switch routine of the bubble-sorting type. (See next chapter).

First Move
Insert 2 lines before the start of the main game loop.

314 IF PM=88 THEN 320 (jump next line if player
starts)
316 GosuB 1500

At 1500 you can write in whatever first move you want.
Taking the centre square is the best bet, but some people
object to the first player going there. You can always write a

randomized routine so that different first squares are chosen.

You will also need to include a line to display the move. The
game can now return to the main loop and carry on as
before.

If, as you play your new version, you discover new
dangerous situations, then include more check lines to cover
them, after line 900.

35

4
Dealing and sorting

a pack of cards

A full analysis of a card game program is beyond the scope of
this book. Even the simplest card games require a very
careful study of the tactics and strategy of play. Card-playing
isn’t simply a matter of logic either. A good player will watch
his opponents’ expressions, note the way they play during
each game, and make guesses about the kinds of hands they
hold. However, in this chapter, and further on in ‘Do you
want to bet?”, we will cover some of the techniques needed
in card game programs.

The program CARDS shows how arrays can be used to
hold information about the pack, and about individual
hands. It also shows how to sort a hand by order of card
value. The program shuffles and deals out all 52 cards, as if
in preparation for a game of whist or bridge, and it makes
sure that no card is used twice. It aims to do this as quickly as
possible. There is always a problem with picking numbers at
random, and it is this. The more numbers you pick, the more
likely you are to get one that has cropped up already. By the
time you are down to the last few numbers, it is very unlikely
that you will find an unused one. A little program will show
this. Let us suppose that you wanted the 99 to pick the
numbers 1 to 10 in random order — each one only once. After
a while all the numbers will have been found except one (say
6). This program shows how many times it would have to
pick a number before it found that special one.

10 RANDOMIZE

20 N=1 (Number of pickings)
30 X=INT(RND*10)+1

40 PRINT N,X

50 IF X=6 THEN 80

60 N=N+1
70 GOTO 30
80 STOP

Type this in and run it a few times. How long does it take to
find 6? Now change that random number in line 30 to “/52".

In the CARDS program, the pack is held in a two-
dimensional array — C$(4,13). Each point in the array
contains two characters, which show the Suit and the Value
of each card. Special graphics are defined for the suits and
for the high value cards. The suits are Spades (120), Hearts
(113), Diamonds (112) and Clubs (104). Notice that the higher
value suits (for bridge players) have higher graphics
character numbers. 10, Jack, Queen, King and Ace are
defined twice into character numbers 114 to 118 and 121 to
125. This is so that they can be coloured black and red to fit
the suits.

The routine from 3000 to 3160 collects the characters into
the C$() array. It works through one suit at a time, first
READing the Suit graphic (5$), and then calculating the
value character, using the T loop (3050 to 3130). The first 8
numbers are converted to card values 2 to 9 with the line:

3060 V$= CHR$(49+T)
The higher value cards characters are produced by lines
3090 V$=CHR$(112+T) (the black graphics)

3110 V$=CHR$(105+T) (the red graphics)

The cards are then “Shuffled and Dealt” by the routine from
3200 to 3300. You will see that this only deals three hands.
This avoids the long searches for the last remaining cards.
The program first checks that a card has not been used,
before it transfers the card to the hand (H$()), and then
marks that card off in the pack array.

3250 IF C$(X,Y)=*" THEN.... (new RND numbers)
3260 H$(T , N)=C$(X,Y)
3270 CS$(X,Y)="" (this card now dealt)

36

37

To collect the last hand together (H$(4,..)), a separate routine
is used — 3400 to 3530. This scans through the whole pack
array looking for undealt cards, and transferring them to the
fourth hand.

Sorting Cards

The human player would probably sort his cards by first
grouping them into suits, and then ordering each suit. You
could get the 99 to do it this way, but a simpler method is
used in CARDS. It is called “Bubble sorting” or “’Ripple
sorting”’.

Every card has two values — the suit and the card number.
These “‘values” are actually the character numbers, and the
sorting routine is the same one that would be used for any
alphabetical sort. Type in this program:

10 OPTION BASE 1
20 DIM Ws$(10)

30 FOR N=1 TO 10 } (INPUT stage. Enter words

40 INPUT WS(N) of any length)

50 NEXT N

60 FOT T=1 TO 9
70 FOR N=1 TO 9
80 IF WS(N)<=W$(N+1) THEN 120

90 X$=W$(N)
100 WS(N)=WS(N+1) (Sort
110 WS(N+1)=X$ routine)
120 NEXT N

130 FOR P=1 T0 10

140 PRINT W$(P);” 7; (PRINT-out)
150 NEXT P

160 PRINT

170 NEXT T

Line 80 compares the ASCII codes of pairs of W$() words. If
the words are “A” and “‘B”, then it notes that ASCII “A" is
65, and less than ASCII ‘B” (66). The sort routine would be
jumped. If the words were “AN"" and “ANT”, then it would
find that the first two letters were the same, but that “T” is

more than nothing. Again the sort routine would be jumped.

If W§(N) ="ZOO"” and WH(N+1) ="ANIMAL", then it
would go through the lines from 90 to 110.

“Z0O0" is there transferred to a temporary store
(X$);WS$(N) is redefined to be “ANIMAL" and finally,
WS(N+1) takes “ZOO” from the temporary store. You could
think of it like this:

Start

WS(N)

“gz Oon \

X$

WS (N+1)
“ANIMAL"

1st move

WS (N)
IIZ ooll

X$
“200”

WS (N+1)
“ANIMAL”

2nd move

WS(N)
“ANIMAL”

X$
“700”

WS (N+1) *_———/

“ANIMAL”

End

WS(N)
“ANIMAL”

WS (N+1)
llzooll

Figure 23

38

39

Exactly the same process takes place in the CARDS, except
that the sign in the “does-it-need-sorting’” line is reversed
> = and not < =. This is so that the highest value cards are
at the start of the line.

The suit characters codes are fixed so that Spades are
worth more than Hearts, and Diamonds and Clubs follow
after. The suit characters appear first in the string, so that
any Spade is worth more than any Heart, just as any word
starting with “’B” has a higher value than any word starting
with “A”. The high card graphics are similarly ordered.
Thus, the Ace of Spades has the ASCII codes 120 (Spades)
and 125 (Ace). The King of Spades has codes 120 and 124.
The 10 of Diamonds has codes 112 (Diamonds) and 114 (ten);
the 9 of Diamonds has codes 112 and 57 (normal 9 character).

The sorting routine in the CARDS program is between
lines 320 and 440. The fact of having four hands to sort
makes it appear a little more complicated, but compare it
with the program given above. Notice how in both programs
the numbers in the sorting loops are one less than the
number of items to be sorted. This has to be, as otherwise the
expression W$(N +1) would take you beyond the edge of the
array. Both programs also travel round that sorting loop for
one fewer times than there are items. On any one run
through the inner loop the items can be passed several places
to the right, but at most one place to the left. A hand that had
the Ace of Spades on the far right would need to be rippled
12 times to pull it across to the far left.

If you want to slow the sort down, so that you can see it
better, write in:

395 INPUT A$S

Now press ENTER when you are ready for each new move.

CARDS has been written so that it can form the basis of a
card game program of your own. Delete those lines which
PRINT the pack (3125), the hands (220-280) and the sorting
process (3550-3650). You now have a pack of cards, and
no-one can see them!

5
Dedsions, decisions

Computers make decisions by means of branching lines,
IF. . . THEN. . . ELSE. . .or ON. . . GOTO. . . . You met
them in the CROSSES program:

IF (the centre square is free) THEN (put a nought there)
LOGICOL uses a far more complicated branching routine to
work the 99's strategy. Let’s start by looking at the other part

‘of the game, where the human is trying to guess the 99's

hidden colours.
LOGICOL may well remind you of the game Mastermind,

~ itself a plastic peg version of an old paper and pencil game. It

is similar in a way to HANGMAN, in that a set is to be
guessed. Here it is a set of colours. With HANGMAN itis a
set of letters (that form a word), but there the player guesses
only one item at a time, rather than a whole set.

The computer’s checking routine is much the same, but
now, instead of checking one variable against a string, the 99
is checking a string against another string. Look at the LIST
for the program in the Appendix, and find lines 900 to 1000.
P$(4) holds the player’s 4 guessed colours. C$(4) holds the 4
colours that the computer picked at the start of the game.
The two strings need to be compared to see if any colours are
in the same place in both strings (line 920 IF P$(T)=C$(T)
THEN 950), and also if any of the player’s colours turn up
anywhere in the computer’s set. (Line 930 IF P$(T)= C$(N)
THEN 970). In the following example, the computer’s set is
Blue, Cyan Green and Magenta. The player has just guessed
Red, Green, Blue and Magenta.

C$(4) BC G M
P$(4) R G B M

On the first run through the T loop, the 99 finds that C$(1)
and P$(3) are both ““B”" —blue. It marks off one Right Colour.

40

41

Magenta
Red
Yellow

B
C
G
M
R
Y
@ = 4 Right Colours?

Figure 24 GOT IT! = “Success at last

= “Please check that!”

42

The common “G” is picked up on the third run. Finally it will
spot that C$(4) and P$(4) are the same, and will add one to
the Right Place score.

Once you have had your go, whether you got it right or
have simply run out of guesses, then the 99 will ask you if it
can have a go.

You don’t have to let it, and, unlike some human players,
it won’t sulk if it doesn’t get a turn. It’s not very good at the
game in any case, and can only sort out which are the right
colours, not where those colours should be. The program
allows for four out of six colours to be used, and each one can
only be used once. This means that there are 15 possible
combinations. The flowchart in figure 24 shows how the 99
works out which combination. You will notice that the 99
solves the problem in no more than six guesses.

That flowchart is the result of a lot of game-watching, and
several lengthy sessions with pencil and paper. This is
essential with any game program. Do not expect to be able to
write it directly into the 99. Think about how you and other
humans play the game. Record every guess you make, every
decision you take, and the reasoning behind every decision.
When you have your strategy written down as a series of
decisions, it is quite easy (really!) to turn it into the 99’s
program.

Lines 2070 to 2890 in the LOGICOL program show that
flowchart turned into lines. For simplicity each stage is
written in exactly the same form. The following lines cover
that section of the flowchart on the top of the right-hand
side:

2700 G$=“CGMY”

2710 GosuB 5000

2720 ON K GOTO 2730,2750,2730,3000
2730 GosuB 3500

2740 GOTO 2720

G$ is the Guess. The sub-routine at 5000 displays the colours
and collects the player’s response into the K store. The
answer must be a number in the range of 1 to 4. At any stage
of the program a “1”” response will send the program to a line

that leads to the sub-routine at 3500, which asks the player to
“Please check that!” It is not possible to have only one colour
right, as this would mean that there are 3 wrong. As the 99
has guessed 4 out of 6 colours, the most it can miss is 2.

At this particular stage a ““3" response will also lead to a
“Please check that.” To have reached this point the 99 must
have got 3 right on each of its earlier guesses. It has already
found two wrong colours, and could not possibly have
found a third. (See the example below).

A 2" response sends the program on to the next guess
(line 2750). A “4” jumps out of the guessing routine to
“How’s that then!” and “Do you want another go?”’

If you look at any of the sections which cover bottom of
flowchart lines you will see the ON K GOTO. . . line looks
like this:

2870 ON K GOTO 2880,2880,2880,3000

The branching here is really only two ways. Either the player
tells the 99 that he has got all 4 right, or he doesn’t. These
lines could be replaced by a simple:

2870 IF K = & THEN 3000
2880 GOsuB 3500

Play through the game a few times, following the 99's
“thoughts” on the flowchart. You should see something like
this. Here the colours B,C,G,R were entered by the player.

Guess Response 99’s thoughts:

BCGM 3 Either R or Y must be right

CGMR 3 Either CG M are right and I need
Y or both B and R were right.
Try Y.

CGMY 2 So Band R were right. Y is no
good.

BCGR 4 How’s that then?

44

45

This time the colours were CGRY

BCGM 2 2 missing. Must have Rand Y.

BCRY 3 AndBor C; and G or M —not
very helpful.

BGRY 3 Perhaps the B was right. try M.

BMRY 2 The B was wrong, and the M.
But now I know the answer.

CGRY 3 ““Please check that”” (He's
cheating!)

CGRY 4 I should think so too.

It is perfectly possible to work out a program to sort the
colours into their right places. Human players can usually do
itin 4 to 8 goes. The program could be a straightforward
branching one, but you would need an awful lot of branches.

Think of how a human player behaves. He will check back
through his previous guesses noting how many he had right,
and in the right place, each time. He will see which colours
can be fixed, and which are likely possibilities, and then test
out his possibilities next time. The game might go like this:

Guess Guess Right Right Thinks: Which?

Number Place Colour Which order?”
1 BCGM O 3 “One wrong colour,
and all out of place.”
2 CGMR 0 2 “B and Y must be
there.”
BYCG 1 2 “Still a colour short.”
4 YCMB 0 4 “Got the colours!”’

At this point he knows that the colours are Y CMB, and by
checking guesses 1,2 and 4 he knows that neither B nor C nor
Y should be the first colour. He can fix M as the first colour.

5 MBYC 2 2 “Notalotof help -
try a shuffle.”

6 MYBC 1 3 “Ah!Now we're getting
somewhere.”

The second colour must be one of Y, B or C, but it can’t be C
(guess number 4 proves that) and it can’t be Y (guess number
6). It must be B. M and B must have been the colours in the
right place in guess number 5, so we just need to swop over

and C.
7 MBCY 4 0 “Logicol, isn't it?”

You are now in a position to start translating the human
reasoning process into computer language. What follows is
not the only way of tackling this, and is not, in any case, the
complete solution. Rather it is a set of suggestions that you
should be able to work up into the necessary routines.

For a start you will need a number of new arrays to store
and handle information. Of these the most significant will be
a Marking array, (M$(4,6)) in which the 99 can mark off those
colours that are in the wrong places. You will need to set this
up at the start of the 99’s go, and it should have this form:

M$(4.6)

B|B|B|B
cicicic
G|G|G|G
MIM{M[M
R{R[R]R
Y|YiY]Y

Figure 25

Now, whenever the 99 gets a “‘none in the Right Place”
result it can work through that array, marking off those bad
guesses.

46

47

IF RP=0 THEN.... (to the following routine)
FOR N=1 TO 4

FOR T=1 TO 6
IF SEG$(G$,N,1)<>M$(N,T) THEN...
(jump to NEXT T)
M$(N,T) =
NEXT T
NEXT N

The player has chosen RMCB. The 99's first guess is
BCGM, as usual. None are in the right place. After it has
been through the mark-off routine, the M$() looks like this

@
o)
w

M$(4,6)

o)
Py

<[=][Z][a]o
<[=[z]lo
£

Figure 26

3 of the colours were right, so the next guess is CGMR.
Here’s that array again after this time.

B|B(B
Cc|C
G

M$(4,6)

MEIRER

M
RiR
Figure 27 Y

3 Right Colours again. The next guess should be CGMY, but
in this version it pays to alter the order of the letters each
time, as this helps to find the right places. The guess is
GMYC.

This gives a ““1 in the Right Place” result, which is not very
helpful as the 99 hasn’t a clue which one. It does, however,
know that as only 2 colours were right altogether, the Y must
be wrong. You can write in a little routine at this stage in the
branching program to mark off all Y's.

FOR N=1 TO 4
M$(N,6)=""
NEXT N

Time for the next guess at the colours. It is written as
BCGR in the simple version, but we will shuffle the letters
for this version. G$ = “GRBC” This produces another
“None in the Right Place” result. The M$() array is getting
quite empty by now.

M$14.6) G

all “Y”s marked off already

Figure 28

The next guess at the colours finds the 4 right colours. The
guess has been shuffled so that G = “RBCM". This gives us
a ““1 in the Right Place” result (the C), but at the same time
lets us mark off the other wrong colour - G.

We now need to go back to that earlier guess where we
had 1 in the Right Place - GMYC. A temporary store is
needed to hold those sort of guesses, so that they can be
recalled later. (5$(10) will hold ten guesses). Compare that
with the M$() array to see if 1, and only 1 could be right.

FOR X = 1 T0 10

Zz =0 (counter)

IF S$(X)="" THEN.... (jump to next X, this store
is empty)

1=S$(X) (simple Strings are easier to handle)

FOR N=1 TO 4

FORT= 1 T0 6

IF M$(N,T)<>SEG$(S1$,N,1) THEN....

48

(jump to NEXT T)
1=1+1 (found one that matches)
Tl = (remember where you found it!)
N1 =N
49

NEXT T
NEXT N
IF Z =1 THEN..... (next routine)
NEXT X

The “M” is found in column 2 (N1 = 2) and row 5(T1 = 5).
The next routine trims down the M$() array. First it goes
through that array and marks off all the other appearances of

the “Right Place” colour.

FOR N= 1 TO 4 (across the columns)

IF N= N1 THEN..... (jump to NEXT N)

MS(N,T1)="" (mark off) other M’s, at M$(1,5),
M$(3,5) and M$(4,5)

NEXT N

In the example, the M in the second place was the Right one.
The M$() array is pared down to this.

1B {B

Figure 29

We know that M is right in the second column, so any other
letters that are there can be removed.

FOR T = TO 6 (down the rows)

IF T = T1 THEN..... (jump to NEXT T)
M$(N1,T)=""
NEXT T

This removes the “B”, leaving only the “M"".

A simple check down the columns to see if any column has
only one letter left, will show any other certain Right Places.
The first glance at the array shows us that R must be the
colour in the first place. Mark that off in the other columns
and it leaves only C in the 3rd column and B in the 4th.

If that was the end of the story, then life would be
(relatively) easy. Unfortunately it isn’t. There will be many

times when the 99 has found the 4 colours, but does not have
enough information to work out their places. It will now
have to try new combinations of the colours. There are 24
possible combinations! Over half of these will give 1 or 2
Right Place results, which are not a lot of use to the program.
The simplest approach is to try a few shuffles and hope that
something comes out of them. This routine swops the last
two colours over.

G$ = SEGS$(G$,1,2) & SEG$(GS$,4,1) &
SEG$(GS$,3,1)

This swops the two halves of the string over.
G$ = SEG$(G$,3,2) & SEG$(G$,1,2)

The “shuffle and test” routine should increase the 99's
success rate. It is possible to write a far more sophisticated
program that compares every guess and its results, the way a
very good player does, and performs the complex logical
reasoning needed to solve the problem quickly. However,
who wants the computer to win every time?

To adapt the LOGICOL program so that the 99 can try to
find Right Places as well, you will need to do the following.
Slip in a GOSUB line somewhere between 1850 and 2070, to
send the 99 to a sub-routine to set up its arrays. Add in the
main “Right Place” routine at 5200. This should include the
player’s response, marking off M$() and storing any ‘1 Right
Place” results. When 4 Right Colours have been found, the
program should now go to a section to check if all the Places
are known, and if not, to ““shuffle and test”’. You will also
need to alter the order in which the letters appear in the
Guesses, so that more places are tested, and you can add in
two small routines to mark off “R”” and “’Y”” at certain places
in the branching routine. Figure 29 shows the new version of
this routine.

50

51

Figure 30

-<E
13
(7]

[}

o

pur

L)

-

(=]
] W
-<)
z w©
[+]

Yes
RYBG
No
@ @ GoT IT!
No
Yes
RYMG Yes MBRY
v W] Te
E 1 Q GOT IT!
No Yes . No E?! NoYes
GOT IT! Yes
YMCR
Yes
G Lk
No @
Yes Yes
GOT IT!
YGCR
(2G>
° Yes
Mark off all “R"s now. GOT IT!

Mark off all “Y”s now.

52

Y
G
r' 3 N
o Yes
G
No Yes E’] o
Yes
Yes L
&2
121 No No
=< [®ece]
Yes
&
Yes 2! Yes
& &
No
E No Yes
WRec]
G>—@or)
No Q
Yes No g
es
[GAs_]
No Yes

53

6
Do youwant to bet?

The worst thing about playing gambling games with a
computer is that it won’t pay up when it loses. The best thing
is that it doesn’t expect you to either! “Pick-a-Straw’” and
coin-tossing games were covered in the earlier Game
Writer’s Pack. Here we will look at two games where the 99
has to think about its game.

Vingt-et-un

This game is also known as “Pontoon” and “21”. The object
is to get a set of cards that total 21, or as near to 21 as
possible. All picture cards have a value of 10, and the Ace
counts 11, though in some versions of the game it can also be
counted as 1. Cards are dealt by the “Banker”, who also acts
as a player. At first each player is dealt 2 cards, further cards
are dealt at the players’ request. A player whose hand totals
more than 21 is “‘bust” and out of the game for that round,
otherwise, the one whose hand is closest to 21 wins. In the
version that we will work out now, each player pays 5 chips
at the start of each round, and a further chip for each extra
card. The bets are collected into a kitty which goes to the
winner, or the banker if all the other players are “bust”.
Figure 30 shows the flowchart for the game.

A number of arrays are needed here.

P$(4,13) The ordered Pack

D$(52) The shuffled Deck

N$(6) Names of up to 5 players and ‘‘Banker”
H$(6) Their Hands

HV(6) The Hand Values

B(6) The Bets

C(6) The players’ Chips - start with 100 each.

54

1

VINGT-ET-UN

SET UP ARRAYS

HOW MANY PLAYERS?

PLAYERS” NAMES

1

4

SET UP PACK

¥

SHUFFLE TO D$(52

)

Y

DEAL HANDS

t

EXTRA CARDS
FOR
PLAYERS

1

EXTRA CARDS
FOR
BANKER

T

¥

TOTAL
PLAYERS’
HANDS

Qo
3
[ad
o

RESET

ARRAYS

H$()

HV()

B()
and variable
KT (Kitty)

Figure 31

WORK OUT
WINNER

PAY OFF
BETS

o
—
2
~
[1:3
3

G >

No

You will also need several sub-routines which are not
shown on the flowchart. These are to allow you to PRINT
anywhere, INPUT anywhere, and check INPUTs for number

55

values. Normal PRINT and INPUT commands will obviously
destroy any screen display. If you are working in
EXTENDED BASIC you can use the DISPLAY AT and
ACCEPT AT commands instead.
You can adapt the CARDS program to give you some of the
routines that you will need. It will also save you the trouble
of defining your own graphics. Notice a significant change
here. In CARDS the pack was shuffled and dealt in one
operation. You could use a variation of that technique, by
picking a card at random from the Pack, each time one was
wanted. Here another technique is used, for the sake of
variety. Instead of the cards going, at random, to different
hands, they are collected into a single array — D$(), the
shuffled Deck. In this particular game, you will never
actually need a full deck. Even with 6 players, you will only
use at most 30 cards, as no hand is likely to have more than
5. Itis enough, therefore, to shuffle only 30 or so cards into
D$(). This will save the long hunts for the last few unused
cards.

The number of players is collected at the start of the game
into variable PN. This is then increased by 1, and the last
player is the 99. Players’ names are collected by a loop:

FOR T =1 TO PN-1
INPUT “NAME ”:N$(T)
NEXT T

N$ (PN)="BANKER”

Hands are dealt into single string arrays. The variable CN
keeps track of the Card Number in D$(). At first 2 cards are
dealt to each player:

FOR C =1 TO 2

FOR T =1 TO PN
HS(T)= H$(T) & DS$(CN)
CN=CN+1

NEXT T

NEXT C

If a player is lucky, then his hand might be like this ~ H$(4) =
“& 10 ®A” A variation on this routine is needed for the

“‘Extra Cards for Players”’. Work through the players one ata
time (not including the 99) and ask if another card is wanted.
If yes, add the next D$() card to his Hand (H$()). Ask again.
Players can have as many extra cards as they want. Include a
line in that routine to add 1 to his Bet (B()) and take 1 from
his pile of chips (C()).

You cannot, of course, ask the 99 if it wants another card.
It must work that out for itself. To do this we will need a
routine that will work out the values of hands. Writeitas a
subroutine, as it will also be wanted in the later stage where
the hands are assessed to see who wins. At that stage the
hands will be run through a loop (FOR T=1 TO PN-1), so
send the 99’s hand off using the same variables.

T=PN
GOSUB..... (totalling)

This sub-routine is here numbered from 7000, but it could be
anywhere. The 99 works through the hand, picking out the
card value characters, and ignoring the suits. The ASCII code
of those characters is then converted into numbers between 2
and 11. All ““Picture Cards” count 10, all Aces count 11.

7000 FOR L=2 TO LENCHS$(T)) STEP 2

7010 VS$=SEG$(H$(T),L,1

7020 V=ASC(V$)—48

7030 IF V<9 THEN 7080 (cards2to9)

7040 IF (V=70)+(V=77) THEN 7070 (Aces)
7050 v=10 (all picture cards)

7060 GOTO 7080

7070 v=11
7080 HV(T)=HV(T)+V
7090 NEXT L

Suppose the hand consisted of the 3 of diamonds, the Ace of
spades and the queen of clubs. H$()="43 4 A 4Q”
Going through this in steps of 2, line 7010 will pick up 3, A
and Q. Watch what happens to each. First the 3, ASCII code
51, line 7020 gives V a value of 3. This is less than 9, so the
program jumps to line 7080. The total Hand Value is, so far,

3. Next the Ace. It's a black Ace, so its ASCII code is 125; line -

56

57

7020 gives 77 (125—-48). This is more than 9, and the program
runs past 7030 to 7040. From there it jumps to 7070, and V is
reset to 11. Total Hand Value now 14. Lastly the Queen,
ASCII code 123 (black).'Its initial Value of 75 takes it past
7030 and 7040, and the Value is changed to the 10. The
program then jumps to the totalling line, and the player
finds he is bust, 24 is no good.

Check that HV (the Hand Value) is set to 0 before going to
the routine. If you are mathematically inclined, you can work
out the percentage chances of different values of cards
cropping up next, given what has already been visibly dealt.
This can form the basis of the 99's decision to take another
card or not. If you are not so inclined, then follow the flow-
chart. It is a reasonable bet that the next card will have a value
of 7 or less. (Halve the time you will be right). So, if the 99’s
total is less than 14, send the program off to deal it another.

At the final stage, “Work out Winner”’, you must first
check that a player’s hand is not over the limit. Next see if it
has a total of 21. If so, then declare him the winner, and
increase his pile of chips by the value of the KiTty. (KT).
Otherwise, compare his hand with the Best Hand (BH) so
far.

BH is set to 0 at the start of this routine. By the time the
program reaches the Best Hand lines, it has already checked
that the hand is not “bust”’, and not worth 21. You simply
check that it is better than the previous best.

IF HV(T) < BH THEN....
BH HV(T)
WN T

BH now has the Best Hand Value, and WN has the Winner’s
Number. WN should be set to the same as PN (the
computer’s number) beforehand, so that if there are no
winners, then the computer collects the kitty.

Note that before a second game can be played, you need to
reset several of the arrays, and the Kitty, and that the Pack
will need to be re-organized and shuffled again.

Plan out a rough screen display before you start to put the
program together, and work to that until you are satisfied

(jump next 2 lines)

58

that all the routines are in and running properly. Come back
to the display at that stage, and improve your layouts. That
is also the time to alter routines if the program does not run
the game the way you are used to it. You may, for a start,
want to allow Aces to count High or Low. For the players’
hands, this simply means adding a routine to ask the player
what he wants to do about his Ace. For the 99 you will need
add some lines in the “Extra Card” routine. At the simplest,
you could check, after the extra card, whether or not the 99's
hand was over the limit. If so, does it contain an Ace? If it
does, knock 10 off the hand value, and check to see if it is
worth having another extra card.

Pokerdice

This game combines technique from “‘Dice and Board
Games” and from “Cards”. Its flowchart is shown in
figure 32.

Pokerdice, in case you have never come across the game,
works like this. The “dice”” used in the game have symbols
on, to represent high value cards, 9 to Ace. 5 dice are used.
The player rolls all the dice at first, and can then for two
more turns, select which ones he wants to roll again. The
object of the game is to build up “poker hands”. 3 of a kind
are worth more than a pair, 4 of a kind more than three. A
“flush’” — a set of cards in series, 9, 10, Jack, Queen, King —is
worth more than 4 of a kind, but less than 5. The best hand
you can collect is 5 Aces — which is possible in Pokerdice,
though not in real poker (unless you are an awful cheat).

Let’s work through that flowchart. You will need your
graphics for the 6 faces of the dice. At first though, you could
simply use numbers 1 to 6, then add your fancy graphics
later. As with ordinary dice, these can be single characters,
or formed out of several characters. Include a page of
instructions and rules of the game if the program is likely to
be used by people who don’t know it.

Several arrays are used in the game, but only one will need
dimensioning at the start. D(2,5) will hold the 5 dice
numbers of the player and the computer —this version is for

59

@D The Player’s go is shown in more detail in figure 33.

PLAYERS GO
DEFINE | e T -
GRAPHICS !
RULES OF THE ROLL 5 DICE
GAME - IF
NEEDED
HOW MANY
SET UP ARRAYS TO ROLL AGAIN?
AND VARIABLES 1

WHICH ONES?

u;;\\\\\\99

starts?] ROLL DICE
Ptayer I 99’5,1 GO] .
[PLAYERS GO | 995 87] No
|
(PLAYETS BET | [PLAYETS BET | Yes
L VALU?TION | PAvE®S @] T TTmTTT -
[9951357] Figure 33
[99s 6o |
! This routine will ““roll” and display 5 dice. The dice are
L ~ here single characters with codes from 128 upwards. The
PA"#"°0F"F1 "SETS Player number (P) is 1 for the human, 2 for the 99.
' 3000 FOR T= 1 TO5S
CHANGE Yes 3010 FOR N= 1 T0 6 “Rolling’”
- STARr 3020 CALL HCHAR(20,T3,127+N) g B
o 3030 NEXT N
] (" stop) _ 3040 D(P,T)= INT(RND*6)+1 (the way it lands)
Figure 32 3050 CALL HCHAR(20,T*3,127+D(P,T))
. 3060 NEXT T
one human only, but could be simply adapted for several) .,)))
players. The other arrays and variables will become clearer as Lines 3010 to 3030 “spin th? dlc.e on screen. You r.mght like
you work out the program, only one need be mentioned toadd a CALL SOUND(. .) hn(? in there to slow .thmgs
here. S will indicate who Starts. Set to +1 initially this lets ; dpwn. The CALL HCHAR(. . lines us?d here will print the
the player start. At the end of the round it is multiplied by dice characters at Row 20, spaced out in 3’s, from 20,3 to

—1. The effect is to make it +1 and —1 in turns. 20,15. Adjust these to suit your own display.

These are worked out so that 3 of a kind will beat any pair,
and so on up through the combinations. The dice have a Face
Value going from 1 for a 9 up to 6 for an Ace. The poorest
hand you could have with 3 of a kind would be 999 10].
This is worth 8 (1+1+1+2+3) for Face Values, plus the
Bonus of 30. Total 38. The best hand with a pair in it would
be A AKQJ. Value 24 (6+6+5+4+3) plus a Bonus of 10.
Total 34.

When the program reaches its final stage, and works out
who has won by totalling the Values and Bonuses of each
hand, part of the routine is concerned with finding pairs, or 3
or more of a kind. This is exactly what we want the 99 to do
when it is “‘thinking”” about which dice it will keep, and
which it will roll again. It makes sense then to use the same
routine for both purposes. Figure 36 shows the flowchart for
the valuation sub-routines.

The first stage is to sort the dice into order of value.
A Bubble sort routine is used for this.

2000 FOR T=1 TO 4

2010 FOR N=1 TO &

2020 IFD(P,N)>=D(P,N+1) THEN 2060
2030 Ts= D(P,N) (Temporary Store)
2040 D(P,N)=D(P,N+1)

2050 D(P,N+1)=TS

2060 NEXT N

2070 NEXT T

You will notice that the expression in line 2020 is “more than
or equal to”. There is no point in swopping a pair that are the
same.

We can now start to work out the value of the hand. Face
Values first.

2080 v(P)=0 (reset the Value to 0 at the start of the
routine)

2090 FOR T=1 TO 5

2100 V(PI=V(P)+D(P,T)

2110 NEXT T

from main programl

SORT INTO ORDER

FACE VALUE TOTALS

]

NEXT T
Yes
ANY No
LEFT? — PAIR?
4 BONUS
BONUS | ::
a
BONUS
] BONUS
BONUS
N.B. Minor checks and adjustments
on loop variable (T) not shown.
Figure 36 RETURN —4—| BONUS

Next, the Bonuses. These are added on to the hand value.

2120 REM BONUSES
2130 FOR T=1 TO 4
2140 IF D(P,T)<>D(P,T+1) THEN 2460

(not a pair, NEXT T)
2150 V(P)=V(P)+10 (Pair Bonus)
2160 L(T)=1

2170 L(T+1)=1

65

The array L(5) - reset to zero throughout before valuation
starts — stores the numbers of any dice which are to be left.
Look below to see how this fits in with the “Roll again”
routine.

2180 IF T=4 THEN 2460
(jump the rest of the valuation)
2190 IF D(P,T)<>D(P,T+2) THEN 2430
(not 3 of a kind)
2200 V(P)=V(P)+20 (brings total bonus to 30)
2210 L(T+2)=1
2220 IF T=3 THEN 2240
(check for Full House, 3 on 2)
2230 GOTO 2280 (jump to Full House 2 on 3 check)
2240 IF D(P,1)=D(P,2) THEN 2260
2250 RETURN
2260 V(P)=V(P)+30
2270 RETURN

Lines 2240 to 2270 are only used when T=3. To get there the
99 must have already discovered that the last 3 dice are the
same (T,T+1,T+2). It is now checking to see if the first two
dice also form a pair. If they do then a Full House Bonus is
given. Otherwise the computer goes back to the main
routine with the 3 of a kind bonus only. A similar routine is
needed to check for a Full House where the pair comes after
the three.

2280 IF T<>1 THEN 2350

(only do this if the first 3 are a set)
2290 IF D(P,4)=D(P,5) THEN 2310
2300 GOTO 2350
2310 V(P)=V(P)+30
2320 L(4)=1 (mark them off to leave)
2330 L(5)=1
2340 RETURN
2350 IF T>2 THEN 2450
2360 IF D(P,T)<>D(P,T+3) THEN 2450

(not 4 of a kind)

2370 V(P)=V(P)+60 (bonus now 90)

2380 L(T+3)=1
2390 IF D(P,1)<>D(P,5) THEN 2450
(not 5 of a kind)
2400 V(P)=V(P)+60 (total Bonus 150)
2410 L(5)=1
2420 RETURN
2430 T=T+1 (look back to line 2190)
2440 GOTO 2460
2450 T=T+2 (see line 2360)
2460 NEXT T

This is all a bit complicated, so let’s run a few examples
through to see how it works. The first hand started out as
A9J9Q.

After sorting it looked like this—- AQJ 99.

On the first three runs through the T loop,
D(P,T)<>D(P,T+1), and the program jumps to 2460 for the
next T. On the fourth run D(P,4) =D(P,5) and the Bonus of
101is given. Those last two are marked off to save, and the
program jumps to the end of the loop.

Here's another hand. After sorting it is like this:
AKKK10

The Kings on dice 2 and 3 are seen as a pair and the
program goes through lines 2150 onwards. The third King is
recognized and the 3 of a kind bonus is given by line 2200. At
this stage T is 2, not 3, so line 2220 is ignored, and the
program jumps to 2280. This makes it jump on again to 2350
to check for 4 of a kind. There are not 4, and the next jump
takes us to line 2450 T=T+2. This is essential. Without it, the
program would go through the T loop again with T=3, and it
would there pick up an extra bonus of 10 for the “‘pair” of
Kings on dice 3 and 4.

Think of a few more types of hand and trace their progress
through the routine. It’s the best way to see how it all works.
There is one more section that needs to be added to this

valuation routine, though it is not needed by the 99 when it
is working out which dice to leave, and which to roll. The
player might decide to collect a flush, rather than so many of
a kind. Checking for a flush is easy. The dice are already in

66

67

order of value. If they form a flush, then each die will be
worth 1 more than the next- A K Q] 10.

2500 F=0 (Flush indicator)

2510 FOR T=1 TO 4

2520 IF D(P,T)<>D(P,T+1)+1 THEN 2540
2530 GOTO 2550

2540 F=1

2550 NEXTT

2560 IF F THEN 2580

2570 V(P)=V(P)+120

2580 RETURN

As long as each die is worth one more than the next, the
Flush indicator remains set to 0, and the Flush Bonus is given
in line 2570.

The 99 Rolls Again.

The routine which rolls the dice (lines 3000 to 3060) can be
re-used for the 99's second and third rolls. Slip in a line to
check the Leave-it array:

3005 IF L(T)=1 THEN 3060

If you do this, make sure that you reset L() to 0 throughout
before you use that routine for normal rolling.

One last point. How much should the 99 bet? You will see
on the flowchart that the player’s hand is valued before the
99 makes his bet (player’s start). The highest possible value
any hand can have is 156, 5 Aces. Why not make the 99’s bet
156 — HV(1) the player’s hand value. When the 99 rolls and
bets first, then why not one chip for every point in his hand.

This is a crude, but effective system. An alternative is to
insist that the second player must match the first player’s bet
if he wants to stay in the game. In this case, the 99's decision
to bet, when the player has started, would depend upon the
player’s score. When the 99 starts, he would bet only if his
score was above a certain minimum - say 50. Work out your
limits by running the program lots of times and collecting the
range of scores. Your limit should be set just above average.

68

You now have the essential routines you need to write
your own Pokerdice program. The line numbering suggested
here does not have to be followed, of course, butis spaced to
allow you plenty of room for the lines needed for the display
and for organizing the 99’s and the player’s goes.

69

7

\X/ar games 1-Co-ordinates

War Games have been around in various forms for many
hundreds of years, and they include a vast range of different
types of games. Chess, a stylized battle between two armies,
is probably the war game that has been with us longest.
Converting Chess into a computer program is a job of
enormous complexity, and not a subject for a book like this.
You can get some idea of the complications of a full Chess
program by looking at the listings of the programs in the
Chess Learner pack, in this series. There the programs only
have to handle few pieces at a time, rather than the full set of
32. They are, however, written in simple TI BASIC, which
means that you can list them, and they have been REM’d to
help you follow what is happening. Full Chess games, like
the TI Video Chess (on Solid State Module) are written in
machine code. This makes them much faster, and able to
handle information and calculations much quicker. The
Video Chess also uses Sprite graphics for an improved
presentation.

Military planners use computers in their War games in
many different ways, but mainly as “number-crunchers”. If
you need to work out how many bombers will reach their
target, you have to calculate the effect of anti-aircraft
defences, enemy fighter squadrons, engine failure, and
many other factors. Many of these cannot be determined
exactly, but you can work within a range of possibility. The
anti-aircraft defences might take out between 20% and 40%
of your bombers, but less if you follow a different flight path.
In that event, the fighter opposition will also be different.
The computer can run through all the many combinations of
possibilities in a fraction of the time it would take to work out
with calculators. It can also throw in a random element to
allow for human error or breakdown of equipment. When

the computer has done its job, the planners will have some
idea of the likely outcome of a battle, and also of some of the
ways in which they can improve their performance.

The computer is also used in the design of new pieces of
equipment. What balance of speed, armour, gun-size and
range produce the best tank? The effect of different
combinations in conflict with enemy tanks of various types
can be simulated on the computer. After many hundreds, or
perhaps thousands, of simulations, the planners will have a
better idea of how to design their new machine.

“All very interesting,” you might be saying, “but what has
this got to do with war games on my 99?” The answer is, “it
depends how seriously you take your gaming.” If you are a
real enthusiast, the sort that plays games on hexagonal
boards, with thick reference books to give you the outcome
of engagements between two units, with speed, range,
firepower, damage status and a random factor all built in,
then you will want a different sort of game from the person
whose usual limit is Battleships. For the enthusiast, the best
use of the 99 is as a number-cruncher. Turn your 99 into the
reference manual, and play the game on the usual board
with your fellow enthusiasts. The 99 can store details of the
effectiveness of the players’ units, and work out the result of
engagements, weighting the results according to fire power,
relative strength, defensive advantages, ground conditions
and the usual random factors. If you are this type of
war-gamer, then you will know the sort of calculations you
normally have to work out. Converting them to a suitable
program may be tedious to do, but will make gaming far
simpler and quicker in future.

What we are trying to do here, is to turn the 99 into a
worthy opponent. That is difficult enough in itself, without
trying to make the game realistic as well! We will look at two
games in detail - COMMANDO, one of the cassette
programs, and Battleships: As war games go, COMMANDO
is rather one-sided. The 99’s role is always defensive, with
the tactics of his soldiers being to keep on the watch and on
the move. The complexities of that program are mainly in
handling the multiple moves. What should make the game

70

71

interesting for the player is the difficulty of predicting future
situations and planning to meet them. In Battleships, the 99
should play the game in the same way as a human.

As with any program, a war game program should start
life on paper. If you are converting a board game, then the
programming starts on the board. Play through the game
until you know its moves by heart, until you can see its
typical situations in your mind’s eye. Keep the game by you
while you are developing the program, and refer back to it
frequently. What is the aim of the game? What is the player
trying to do? How does a player try to achieve those aims? Is
the game played in exactly the same way all the time, or does
it go through different stages?

Let’s have a look at Battleships. This game, in case you
have never seen it, is played on two grids, usually 10 by 10.
Each grid represents an area of sea, in which each player has
hidden a number of ships. The object of the game is to “’fire”
into each other’s grids, by giving the co-ordinates of squares,
and to “sink” your opponent’s ships, before he sinks yours.
Most players start by shooting at random until they hit one
of the enemy ships. These ships may occupy anything from
one to 4 squares each. To sink a 3-square ship, you have to
hit each of the 3 squares. Once you have found a hit,
therefore, you will normally shoot around it until you hit it
again, and so on until it is sunk. You can teach the 99 to do
exactly that.

The outline flowchart for a Battleships program is shown in
figure 37; the board for the game, in figure 38. You will see
that the grid has been divided off into 10 squares by 10, using
thin lines. The 99 has, of course, no high-resolution
graphics, so that you cannot actually draw thin lines.

BATTLESHIPS

SCREEN
DISPLAY
v

POSITION OF
PLAYER'S
PIECES

Y

POSITION OF
99'S PIECES
v

| PLAYERS SHOT |

RESULT?
MARK HITS

ALL Yes

SUNK?

No
[99s sHoT |

ANY
PREVIOUS
HITS?

Yes

TACTICAL
SHOOTING

No

RANDOM
SHOT

Y

RESULT?
MARK HITS

ALL

Yes

Y

>

SUNK?

No

Figure 37

I 3

A\ 4

(_ END OF GAME)

72

73

R=INT (RND*7)+1
C=INT(RND*10)+1
FOR N=0 T0 3
B$(R+N,C)="B"
NEXT N

Variations on this routine can be used to dot the rest of the
ships about the board. Later routines must, however,
include lines to make sure that the ships don’t crash into
each other. Write in a line, just before the point where the
array is marked, to check that the array is empty at that
point. If it is not, then the 99 must go back and try another
pair of co-ordinates.

The Player’s Shot

Unless you are working in TI EXTENDED BASIC, with its
ACCEPT AT command, you are going to have to collect the
co-ordinates for the players’ shot through CALL KEY lines.
There is a minor problem here. On a 10 by 10 grid, you are
faced with a 2-digit number - 10. there are several ways to
deal with this. You can identify the last Row and Column
with a 0, then write an adjusting line into the routine. These
lines collect the Row number:

CALL KEY(3,K,S)

IF S=0 THEN.... (wait for a contact)
R=K—48 (turns ASCII code into number)
IF R>0 THEN.... (jump next line)
R=R+10 (turns 0 into 10)

You can create an imitation input:

1000 CALLKEY(3,K,S)
1010 IF s=0 THEN 1000
1020 IF K=13 THEN 1060
(ENTER has been pressed)
1030 IF (K<48)+(K>57) THEN 1000
(accept numbers only)

1040 R$=R$ & CHR$(K)
1050 GOTO 1000
1060 R= VAL(R$)

R$ - set to ”*”" before this routine starts — collects the numbers
entered in the CALL KEY line. The routine could be used to
collect numbers of any size, though here you are only
concerned with two digits. You would need to add a further
check line to prevent any number larger than 10 slipping
through. (See the imitation input in the AIRSHIP program.)

There are two simpler solutions to this problem. Identify
your grid with letters rather than numbers, or use a 9 by 9
grid.

However you decide to tackle it, you must finish up with
the Row and Column co-ordinates of the player’s shot. This
can then be compared with the array that represents the 99’s
sea. The squares there will be empty except for those marked
with “B”,”C”,”D” or “P” for the different ships. The
presence of any letter will mean a hit, and this should be
reported back to the player — perhaps by flashing that square
on the screen, and marking on an “H”. You also need to
show whether the ship is sunk or not. With the Patrol Boats,
there is no problem, because one hit sinks. With the larger
ships you need some means of counting how many hits have
been scored on each ship.

As always, there are several possible solutions, some
better than others. One way would be to collect the letter
from the hit square into a Hit string.

H$= H$ & B$(R,C)

After the first Hit on a battleship, H$="B". After 4 hits,
H$"“BBBB”. The hit string could be compared with the
possible ship strings after each hit.

IF H$="BBBB” THEN.....
IF H$=“CCC” THEN....
IF H$="DD”....

When the hit string and a ship string match, a “Sunk” report
is given, and H$ is emptied ready for the next time.

76

77

This routine will work perfectly well for most of the time.
Every now and then, however, you will have a situation
where two ships are next to each other, and the first hit is on
one ship, and the second on the other. The routine cannot
cope with this.

You can improve it by using a POS comparison, rather

r__1r

than a simple .
IF POS(H$,”BBBB”,1) THEN.....

Now it will pick up the presence of a sinking within a more
complex sequence of hits.

You will then need a clever bit of string slicing to remove
the sunken ship from the hit string.

The 99’s Shot
Random shooting is easy.

R=INT(RND*10)+1
C=INT(RND*10)+1
IFS$(R,C)<>"" THEN...... (tried that already,

new RND numbers)

S$ is the array where the 99 remembers what is happening
on the player’s Sea. To tell the player where the 99 is
shooting, the program can either display the Row and
Column numbers using a Print anywhere routine, or it could
flash the shot on the screen. The routine below finds the
character in that square on the player’s grid, and prints that
and an asterisk alternatively until the player responds with a
Miss, Hit or Sunk report.

CALL GCHAR(R,C,Z)

CALL HCHAR(R,C,42) (print asterisk)

CALL SOUND(50,500,1) (beep)
CALLKEY(3,K,S)

IF S<>0 THEN.... (jump out of loop)

CALL HCHAR(R,C,2) (print original character)
CALL SOUND(50,500,1) (beep again)

(print asterisk line)

If the 99 scores a Hit, then it will want to try some tactical
shooting next time round. Transfer the co-ordinates of the
square to a store, and activate a hit marker.

HR=R
HC=C
HM=1 (Hit Marker)

Tactical Shooting

Finding a two-square ship is easy. All you have to do is fire
away at the squares around the original hit. If the hit was on
Row 5, then the second square must be on Row 4,5 or 6. You
need toadd —1,0 or +1 to the Hit Row.

-1 0 +1

7 -1
HR,
8 HC 0
9 +1
4 5 6

Figure 39

R=HR+INT (RND*3)—1

A similar line gives you the Column number.

Check that your new R and C numbers are within the
range of the array, and check the array to make sure that the
square has not been tried already. This will find a second hit
just as well as any human could do it.

3la|sle]|7

| _—the player’s cruiser

\
2nd hit 1st hit (HR,HC)

(R,C)
Figure 40

Ships of 3 or 4 squares present different problems, and
require different solutions. Look at figure 40. The first hit

78

79

was on square 8,5. The second on square 8,4. A human
player can see immediately that the rest of the ship must be
on 8,3 or on 8,6. If you leave the 99 with routines given so
far, and no more, then it would now start potting away
around 8,4 — and never find anything. Skip the rest of this
section if you want to give the human the advantage in this
game.

Send the program off to this routine when the 99 scores a
second hit.

DR=HR—R
DC=HC—C
HM=2

DR is the Difference between the two row numbers. In figure
40, the difference is zero. DC (the Difference in Column
numbers) would here be 1.

Next time the 99 has a shot, the Hit Marker will send it off
to a new tactical shooting routine.

R=HR+DR
C=HC+DC

In the example given, R would be 8, and C would be 6. Bull’s
eye!

However, if the third square of the Cruiser had been 8,3,
and not 8,6, the 99 would have missed. To cope with this
situation, you will need to move the Hit Marker on one
more, and try another tactical shot next time. Here it is:

R=HR—2%*DR
C=HC—-2%DC

This produces the numbers R=8 and C=3. Bang on, at last.

It's all very fiddly, but such is the nature of computer
games. However, that extra effort has produced a program
that plays like a human. You will need a further variation on
these routines to handle the 4-square ship.

Add in simple counters to keep track of the scores, check
lines to cover those ““All Sunk?”” diamonds on the flowchart,
and some good sound effects, and your Battleships program

is more or less complete. The next section is included for
interest only, and should not be used in your program.

The Intelligent Computer

“Intelligence” here means the same as it does in the
expression ““Military Intelligence”. “Spying” is a more
accurate name for it. There is nothing to stop the 99 from
using the CALL GCHAR routine to find the player’s ships.
Nothing, that is, except the honesty of you, the programmer,
and the fact that if it's too good a player, humans might get
suspicious. Used with discretion, the occasional check ahead
to see if a random shot is worth doing, or a quick scan across
a line to see if anything is there, would scarcely be noticed.
You could include a check line (if N$ = “HONEST SID”
THEN...) to make it jump its cheating routine when playing
you. It is, however, a well-known fact that 99 owners are
extremely honest, and there is therefore no point in going
into this any further.

80

81

8
Wargames Z-Moverment

A simplified flowchart for the COMMANDO game is shown
in figure 41. Much of the programming is quite obvious - see
the LIST in the Appendix — but it is probably worth looking a
little more closely at the way in which the player’s and the
99’s moves are handled.

The Player’s Moves

Several arrays are used in this game, and they are all brought
into play at some point during the player’s go. The key ones
are B$(18,16) which maps the Board, U(3,2) which holds Row
and Column numbers for the 3 Units (the player’s pieces),
and O(3,6) which can hold up to 6 Orders for the 3 Units.

The orders are collected by the routine between 1200 and
1490. (See the LIST). You will notice that the first thing to do
is to check that the Unit is still available.

1220 IF U(T,1)=0 THEN.....
(jump to next Unit)

The removal of a Unit is flagged by changing its Row number
to 0. The orders are given in letter codes, and these are
changed to simple numbers for storage in the Order array.

1340 CALL KEY(3,K,S)
1350 IF S=0 THEN 1340
1360 IF (K<65)+(K>75) THEN 1330
(beep and try again)
1370 0(T ,N)=K—64

The orders are carried out by the next section, 1500-1900.
The line:

1560 ON O(T,N) GOTO.......

COMMANDO

_ START

GRAPHICS
DEFINITION
T

|
GAME CHOICE.
TARGET,
NUMBER OF MOVES

i
| INSTRUCTIONS |

—— e e ———

PLAYER'S MOVES

WHAT SORT?
TYPES 1 — 10

SET UP TARGET
&
POSITION PIECES

l

[PRINT SCREEN |

PLAYER'S GO.
COLLECT ORDERS

|

I |

MOVES |
PLAYER'S MOVES |
99's MOVES

Yes PRINT
RESULT/
SCORES

No
STOP

| 10, NO MOVE |

S S — |

Figure 41

sends the program off to the appropriate routine. Where the
order is to change position, then lines like this:

1570 U(T,2)=U(T,2)—-1-B$(U(T,1) ,U(T,2)-1)
<>CHR$(144))

will make the move, but cancel it again automatically if the
square to be moved to is not a space. (CHR$(144) is the grid
character).

82

83

Firing is managed through a sub-routine, but before going
there, the Direction of fire has to be given.

1670 D=4
1680 GOSUB 3000

This Direction variable must be either 1,2,3 or 4. It would be
possible to allow your fighters to fire diagonally as well.
Possible, but more complicated.

1 (R-1)

T

(C-1 4«— D —> 2 (C+1)

l

3 (R+1)

Figure 42

The firing sub-routine is used for both the player’s Units and
the 99’s Guards. The Unit’s (or the Guard’s) co-ordinates are
transferred to simple R and C variables, at the bullet’s start
point. The bullet will then travel for up to 6 squares in the
direction given by D.

3100 FOR S=1 TO 6
3110 R=R+(D=1)—(D=3)
3120 C=C+(D=4)—(D=2)

There are a number of check lines that send the program otf
different ways according to what is on the square that the
bullet is about to go through. If it’s a space, then carry on
(line 3130). A building, or the screen edge, will stop the
bullet (3140). If it’s a Unit, we must find out which Unit and
knock it out. (Line 3150 and the routine from 3160 to 3270).
Likewise, a Guard must be identified and removed. (3280
and the sub-routine from 4500 onwards.) In both cases, the
bullet’s Row and Column numbers are compared with those
of each of the Units (or Guards). If they are the same, then

(up or down)
(left or right)

84

Bomb Number

that square is flashed to show the hit; the same point in the
array is made into a blank, and the Unit’s (or Guard’s) Row
number is changed to 0, to indicate its removal from the
board.

Bombs are handled through another array, B(10,3). This
stores the co-ordinates and a timer for each of 10 bombs.
When a bomb has been planted, a Bomb Signal (BS) is
switched on. This tells the program to go to the “Explosion?”
sub-routine each time it goes through the main order loop.

1840 IF BS=0 THEN 1900
1850 GOSUB 4000

At this sub-routine, the 99 adds onto the “timer” of each
bomb that has been planted, and if the timer has reached a
certain point, it jumps to an explosion routine.

4000 FOR z=1 T0O0 10
4010 IF B(Z,1)=0 THEN 4410
(bomb not planted, or exploded already)
4020 B(Z,3)=B(Z,3)+1
4030 IF B(Z,3)<18 THEN 4410
(don’t explode yet)

Part way through the game, the Bomb array might look like
this:

1(Row) 2 (Column) 3 (Timer)

1 0 4 18 Was at 6,4. Now
exploded.

2 7 12 17 At7,12, about to
blow.

3 10 4 8 At 10,4. Timer nearly
half-way.

4 0 0 0 Not yet set

5 0 0 0 Not yet set.

85

The 99’s Moves

These are handled by the lines from 1910 to 2300. These
Guards are supposed to be on sentry duty, so their main task
is to keep their eyes open for intruders. Fortunately for the
player, they don’t always do that. A line is written in so that
some of the time their eyes are shut.

1940 IF RND>.7 THEN 2300

This random limit can be changed to make the game easier or
harder, as you like. The search routine is run through two
loops, covering all 10 guards (the T loop) and the 3 Units (the
Z loop). Here’s the section that checks to see if there is a Unit
on the same column as a Guard, and if it is in range:

1960 IF G(T,2)<>U(Z,2) THEN 2020
(not on same Column check the Row next)
1970 IF ABS(G(T,1)—-U(Z,1))>6 THEN 2100
(out of range)
1980 D=1 (shoot up)
1990 IF G(T,1)>U(Z,1) THEN 2080
(go to firing routine)
2000 p=3 :
2010 G6OTO0 2080

The first two lines have checked that a target is there
somewhere, the question is, ““is it above or below the
‘Guard?” This is checked by line 1990. If the Unit is upscreen,
then the Direction variable is left at 1, and the 99 goes to the
firing sub-routine. If the Unit is downscreen, then the
Direction variable needs to be reset before firing.

Having had their look around, and perhaps fired at an
intruder, the Guards now continue their sentry duty and
march on. The direction in which each is to move has been
fixed, at random, at the start of the program. It is held in the
3rd store in the Guards’ array. The Guards will march in
their allotted direction until they bump up against
something. (See lines 2130 to 2260). If they can go no further,
then they will turn.

2270 G6(T,3)=G(T,3)+1
2280 G(T,3)=G(T,3)+(4*(G(T,3)>4))
(keep D in range 1-4)

This produces a quarter turn clockwise. The amount of turn
could be randomised instead, to make their movements less
predictable.

At the moment, if a Guard find a Unit on the same Row (or
Column), but out of range, it will simply ignore it. This could
be altered to make the Guards more menacing. Writein a
routine to make the Guard move closer to the Unit, rather
than following its normal patrol route. The Guards could
also be allowed to pass through buildings, if you felt they
needed any extra advantages.

The 99 in this game is a good tactical player — it can always
make a sensible move, but it has no real strategy — it does not
plan ahead. For examples of strategic play, you could look at
the listings of the programs in the Chess Pack in this series.

86

87

9
SImuationNs

The object of a simulation program is to get the computer to
produce a copy of the real world, or at least, of one small part
of it. A good simulation will present you with the same
problems that you would get in reality. Flight simulators are
much used in the training of civil and military aircraft pilots.
It costs millions to crash a Jumbo Jet, but nothing to “crash”
a computer program! War games are simulations so are
business games. Simulation programs are also used in
scientific research, economic planning and weather
forecasting. The key point to bear in mind about a simulation
program is that it will only be as good as you knowledge of
the subject — which might explain why AIRSHIP will be of
little value in training airship crew!

AIRSHIP could be made into an effective simulation, given
a fuller understanding of the various factors at work and
sufficient memory space. The wind is purely random at the
moment. It should correspond to likely weather conditions
in this part of Europe. It should also vary with height, and
the safe flying height should also vary according to
whereabouts on the map you are supposed to be. To do this,
you would have to build a 3-dimensional map into the
program, and check the airship’s position on there as it flies.

These would be significant improvements, but the major
change that the program needs is the inclusion of a ““real-
time” element. AIRSHIP works in set units of time. You give
your orders for the next hour, and that’s it. It doesn’t matter,
either, how long it takes you to work out those orders — the
airship will hang suspended, and unmoving, until you are
ready. To make this change you would need to be able to
alter speed, height and bearing at any time, through the
keyboard. This is not really feasible in TIBASIC. The
program would have to run continuously round a loop that

recalculates and displays all the speed, bearing and distance
information, passing through CALL KEY lines, but not
stopping there. (See figure 43).

The calculations are done rapidly, but the display of the
variables takes time when you have to use an HCHAR -
Print anywhere — routine. As a rough guide, calculations of
the type “AX= SIN(AB*.017)*AS” (line 1610) are performed
at the rate of about 9 a second. Displayed with a normal
PRINT command, the rate is around 5 a second. Put that
display through the “Print Anywhere” routine, and you are
down to 3 a second. The AIRSHIP program has 12 variables
that need continual updating and display. To ask your user
to catch the one brief moment of a CALL KEY line in a
4 second loop, is to ask too much. Working in TI EXTENDED
BASIC, with its DISPLAY AT command, and faster working,
you would be able to reduce the loop time to a little over
1 second. You could reduce it further by cutting down on the
display — but is it worth it?

A

CALL KEY |
]
Yes
ORDERS? > 1
1
CHANGE
VARIABLE
No AS ORDERED
r'y A 2 T

[CALCULATIONS |

| DISPLAY |

Figure 43

88

If you want to produce a reasonable spaceflight, or jet
flight simulation, you are going to have to transfer to
machine code to get the necessary speed.

Meanwhile, let’s have a closer look at the AIRSHIP
program, as it shows the use of some of the 99’s
trigonometry functions, SIN,COS and ATN.

airship (20 kph)

~
~
\\:6'6/
wind \270,,9
kph) ~ s,
(10kp \/g

Sa
Figure 44

As you probably saw on the demonstration early in the
program, if the airship is flying due East at 20 kph, and the
wind is blowing due South at 10 kph, then you actually
travel East South East at about 22 kph. (See figure 44). With
simple speed figures, and the wind and the ship’s direction
at right angles to each other, this is fairly obvious. We can
calculate the actual speed by using Pythagorus’s theorem —
“The square on the hypothenuse is equal to the sum of the
squares on the other two sides.”

air speed

ground speed wind speed

Figure 45

“Ground Speed? = Airspeed? + Windspeed?

That translates to this equation:
GS = SQRCAS*AS + WS*WS)

In fact, you won't find the equation in the program in quite
this form. Line 2130

D=INT(SQR(X*X+Y*Y))

Is a generalized form of the equation, which is used for
several different calculations of the same type.

X

y

D

Figure 46

To find the bearing, we use the Arctangent function
(ATN). This lets us work out an angle if we know the
opposite and adjacent sides. In figure 46, angle B is the
Arctangent of the opposite (x) divided by the adjacent (y). Of
course, if we ask the 99 for the angle, it will give it to us in
radians. We are trying to work in degrees, like all good
navigators, so we must multiply by 57.3 to convert radians to
degrees. (1 circle = 2 7 radians = 360 degrees).

The final line looks like this:
2380 B= INT(ATN(X/Y)*57.3)

It is not very accurate. If you refer to your User’s Guide, you
will see that TI recommend that you multiply by
57.295779513079 to make the conversion. Integerizing
numbers also plays havoc with your accuracy, but decimals
make a mess of your screen.

There’s more to this, but let’s look back at the ‘‘real travel”
calculations for a moment. Suppose at the start of your flight,
there was a wind blowing on a bearing of 60° at 30 kph. You
want to travel on a bearing of 330. Which way should you
point your ship? (figure 47). You guess that a bearing of 300

90

91

k A North
\

LONDON \\ Wind

60°

330°

Figure 47

degrees and a speed of 100 kph should do the trick. So what
happens? '

A North

Wind speed (30 kph)

Figure 48

First of all, how far East/West and North/South will a wind of
30 kph on a bearing of 600 degrees blow you? If you were
working this out on paper, you would draw in the right-
angled triangle (figure 48) and find the angle A (60°).

Look what happens when the bearing is over 90 degrees.
You then find X (East/West) by multiplying SIN A by 30. The
99 can work out the sines of any angle, so the line

X=SIN(WB*.017)*WS

4 North

120°

Wind speed (30 kpn)

Figure 49

gives us the answer, without having to bother to draw
triangles, or bring the angle down to 90 or less. In this
example SIN(60*.017)*30is 25.6. You will be blown 25.6 km
East. The COSINE of the angle lets us work out the North/
South (Y) movement.

Y=COS(WB*.017)*WS

Here COS(60%.017)*30 gives 15.7. That’s 15.7 km North.
Notice in both of the equations we have to include “*.017” to
convert degrees to radians for the 99. If you want greater
accuracy, use *.0174532925199%4.

We can perform the same calculations on our airship’s
speed and bearing, and find that (in still air) these would
produce movements of 92.5 km West (X=-92.5) and 37 km
North. (Y=37). If we combine the two lots of figures, we get
the movement of the airship, in relation to the ground.

1650 X=AX + WX (here, —92.5+25.6 = —66.9)
1660 Y =AY + WY (here, 37+15.7 = 52.7)

The wind has cancelled some of the westward movement,
but has increased the total shift to the north. We can now use
the same calculations we used earlier, to find the total
diagonal movement and bearing. In this case, we have a
ground speed of approximately 82 kph, and have flown ona
bearing of —51 degrees. —51?? That can’t be right!

92

93

It isn’t. While the SIN and COS functions will work right
round the circle, from 0 to 360 degrees, the ATN function
will always give you a result between 0 and 90, and either
positive or negative. Look at the equation in simple form:

B= ATN(X/Y)

If either X or Y are negative, then the result will be negative.
If both are positive, or both negative, then the resultis
positive. In the figure below, you can see how this varies
according to the values of X and Y. In AIRSHIP the
Arctangents are calculated in the routine from 2320 to 2430.
Only one line performs the actual calculation, the rest are
there to allow for all the different possible values that might
occur.

+]Y
—X/+Y = +ATN +X/+Y = +ATN
- +
X
—X/-Y = =ATN +X/~Y = —ATN

Figure 50

Dry Running

If you are a mathematical wizard, then you will be able to get
equations sorted out correctly first time, and any minor
typing errors you have made will show up as soon as you
run the program. If, like the writer, you have only a limited
grasp of higher mathematics, then “Dry Running” is
essential.

Work out your equations as carefully as you can — possibly
writing little programs to test the effect of various functions.
Now write them out in program lines, and then take some
simple figures (ones where you can work out the
approximate answer on paper, or with a hand calculator) and
go through your lines with those figures. Will the program
you have written produce the results you expect? If not -
back to the drawing board. You should have a better idea of
where the problem is, if nothing else.

Test Data

Having checked your program on paper, type it in and test
again. Don’t use the random function at this stage. Set the
variables to figures where you know the answer and run
them through. Does the program give the right answer? Try
with a variety of figures, ones which you will test all of the
lines of the routine.

With something like the arctangent function you would
want to test all the possible positive/negative combinations -
comparing your results with paper sketches or calculations.
It is also worth writing a temporary loop into your program
so that the same calculations are performed with all but one
of the factors held constant. Fix the speed and run through
the bearings from 0 to 360 (in steps of 5 or 10, or you will be
there all night).

TRACE in cases of difficulty. It ruins the screen display,
but at least you can tell if the 99 is going through the program
lines in the way that you think it should. If you have a
printer, then you can follow the trace numbers on the print
out. If not, then you will have to do it the other way. Write
down the trace sequence for that section that worries you,
then compare that with the LIST on the screen later.

Other Simulations

Why not write your own business simulation? A good one
need not be complicated, and they can be fun games to play.
At the simplest, you would have only one product, and you

94

95

would take only the cost of production and of advertising A d
into account. ppen ,X

Key factors would be how much cash you have to start)
with; how much it costs to produce 1 whatever-it-is; how far P ’ t
price affects sales (and profits); the effect and cost of r Ogr a‘]] ’S S
advertising. You can refine the program later to bring other

factors into play. Do you have any competitors, and what are
they doing? What's happening to the price of raw materials?

If your product is something like lemonade or ice cream, 10 REW DICERACE
1S 1 D'CER/A\CE &0 REM MACERILE 1333
then the weather is important. %0 CALL SCREEN(S)
. . o CALL CLEAR
Figure 51 shows, as a diagram and not as a flowchart, the BOPTIONERSE L
interplay of some of the factors in a business game. DI N ers o col

umn and character
TOODIM Fids?
7% REM 4

=dice srarhics

CASH RESERVE

&0 DIM DE .

20 PRINT DICERACE"::
100 PRINT THRIZ 1T A GAME FOR M
E ANR"::” P TO 2 HUMAN PLAYEREZ.

110 PRINT 2" DEFIMING GRAFHICTY
i FLEAZE WAIT A MOMENT."::

\/

PRODUCTION | [ADVERTISING

CALL
150 HEXT N
159 REM dice a
160 DATA 120
1« FF¥9ASIEIER
184 REM

PRICE

SALES <—| COMPETITION

RNEATHER,

etc.

FERD F+F
CALL COLOR “MeF s EX
MEXT M
DATA 2y 168 Sei5 7T
IMFUT “HDW MANY PLAY
FN

IF FPMN:Z THEN 20

FOR H=& TO FH+1
U PREINT “FLAYER NUMEER “iN-1
0 INFOT "MAME FLERZE H

PROFIT
OR LOSS
FEM 1i°m the first rlaver
Figure 51 %;ér':;rqs"

By FRINT * PREZE

i CALL KEYY
IF =0 TH

This type of game may be best played by several people at
once, each in competition with the other.

The best simulations to write are those where you
understand the subject, and where you can give a
straightforward number value to each factor. Itis very

difficult to write a good simulation that has to take humans 450 RECL HUHARR: 6032, 230
. 425 REM dice ararhics
into account. 423 REM row o1 blanis

430 EF=CHRE (1225 SCHRE (1220 ROHRE |

SELGEL

ZhGCHRE Y

LEED LOHRE ¢

L A A N e T oy

I ide 1
DE 4.

k1
=%

FEAD P oMy 1x o FoNaZ0 o P ols 32
HEXT N

EALL HCHAR (F s 12 1 F €My 2 o F N
HEST M
PEM main 3ams
FOR N=! TO FN

WE="F "3

i
€M rand
=THT (RN
ROZUE 4500
REM 1 don't prezz
IF N=1 THEMW 314
40 WE="PREIT ANY KETY TO ROLL DI
£

dice number

L
290 CALL KEY (2
F00 IF Z=0 THENW
0SS CALL HCHRR C
0% REM rollina dice
210 FOR 2=1 T0 &
F20 CALL OUNDCI00s 110420 13
930 GOZUE 4500
40 HEXT 2

96

97

CROSSES

EELUNS
MNorndd
REM

0 M=1
G0TO 1000

o HEXT R

IF P:d4 THEN 24900
REM can 1 owin 7

+i iR 5

ME DRF" §

2y IITREC s DT

aver 2ot
& inoa line 7
FOR R=1 70
T=ld iR 12+l R 3

32 THEM

REM Futs lattersz on
board-small caes

to allow colorina

i CALL HOHAR (3+4Rx2. 13

kEM ztill not mowed 7
GOIUB 2500
OT0 1900

ZRURRE

FEM inFut oh

£
I CHLL CLEAR
¢V PRINT TAE <733 "PROGRAN INDES

SET WP ARRRYI.L.. ..

COLLECT NAMES E'ﬁ THEH
i i
FEM eutz me

ECARD AND DICE....

ZTARTZ HERE..

IICE RPOUTINEZ..... Fla

T INCIDENT 7..

DISFLAY ROUTINEZ..

THEN Tio0
first moweT

1 THEN &40
THEN 7o

EXT o
RETURN
] FEN Hn.

4ot

first emety

3030 BOSUR
2040 CALL

[
3220 L=12
3830 GOZUE &00s
3240 CALL OUNDC1000, 220, 1277+ 1
13300 15
3250 I=1+1
3260 GOTO 2600
34090 MS-‘ DRAWN BAME

3420 C= ll
3430 GOSUB 6000

40 CALL SOUND SO0, 44010
45 CALL SOUNDCS 30 1

RN

CALL ILEHF

FRINT TAE i "PROGKAM THIE:

TOZET UF BRRAVIL.LL..

© DRAN ZCREEM...... ..

T FLRVER'Z MOVE......
TO W TRAWSFER

©FIFET MOVE.........

* LINE CHEC

CWEe 70 E TRANSFER
* UFDATE DISFLAY.....
" MOYE FINDERZ,...133

© RETET FOR NEW SAME.

=1 70 Siag

100

CARDS

0 FOR N=1 70 4
FEM a3ets zult ararhis

THEN =110

wvaloe car

100 =03
120 C

ENTEFR TO EEGIN

i _HLL CLEAR
0 FRINT ™ RERE"Z THE PH

ZUITeYALUE: CH

SHUFFLING AND DER
TOT

70 N1

hands 7

iw and deal

=& THE HAMDZ."

" MEED ZORTING,
7 WHEN READY, 3

ANy KEY TO B0

FREZE

50 PRINT ©
o

FRINT THEl 3 "FROGRAM INDE

DEMOMETRATION......

GET UR PACK........

ZHUFFLE AND DEAL...

FILL FOURTH HANL...
DIZFLA

ZUERDUTINE.

GBOS05034320

. qIﬂU DATA 123, 12244242424A2418: 1
24+ 4442005 050454942, 125, 123442492

DEFINE SRAFHICE

TE4TIT4T
3000 REM zet ur epack S200 CALL COLORC11a2.10
2010 REITORE] SZ20 RETURN

101

LOGICOL

,
- OF ¢ DIF ECTITHEN 750

i =070
\WE=" DIFFERENT COLOURS PLERZE

HOW MR
FIDE= P

THE WRONS FLACE

EOTTHEN

AR CFR N Z+ 3 CH

THEN
;4
TC 4

T2 THEM
H: THEN

NEXT
0
!

ETRE COPR-40

THEN 471
7O M-1
T3 THEMN 420

THEH &40

: THEN 1304
TO 1740
0

IMITIAL LET

-

LI HOHAR 196 1.3
="PLERZE TELL ME UR COL

SOnd

AR C19a 1
ANMNET

T S22

THHT!"

SN0 S0 1)

LE¢T: THEN

ALL
20 MNEXT B
40 RETURH

&1

1 ON K GOTO 2580.2580:2600

GO0SUE 3500

GbgUB‘SUUn
4 OM ¥ 6070

SOSUE S0
70 OM K 5070

102

103

COMMANDO

10 REM COMMAKID

20 PEM MRCBRIDE 1
€1 REM
22 REM
&3 REM

note

Fleas e

24 REM S mem ot

20 CALL CLEAR
40 FRINT T
WU PPINT “GRAFHI

OMFANDD" s 1 2
EEING DEFIMED

hU PPINT " PLEAZE WAIT,"::
v FOR N=1 TO 12
20 READ ¥

40 CALL CHRR BE

100 MEXT H

FRINT

&n "IN THEIR PHID OH AN E
YUl

HLLATION.
THEFE RRE THREE DIFF
$UTRREGETE -1 THE FUEL DM
-& THE TRNE DEFOTE"

-% THE RIRFOR

"1 HAZ FEW GUARDE 3 HA

=T,
INFI IT

"WHICH TARGET »1 & OR

T oS
c4a

THEN 240

N GIYE {DUF
FOR UF TO & MOV

280 IF 15 THEN
zan P&INT

3 3 1587 GURRD" 2 2
¥ vOu 3CORE ELOVING UP PL
RNE\-TRN = HND FUEL DLRFZ*

: By ZHOOTING FUHFD

T

330 PRINT s THE LO3Z OF A UNIT
WILL"::" REDICE vOUR SCORE, "2
340 PRINT © ONE MONMEMT PLEASE
#¥13

345 REM =zet up arravs

350 OFTION BASE 1
355 RANDOMIZE

359 REM Board
360 DIM B (18,162

364 REM ambs
365 DIM Bolos3:

369 REM Guards
IT0DIM Bl

379 REM Units

380 DIM U333

L auard count

Orders

basic board

440 NEXT F

tank derat

N
bDTD =1
FEHM airFort

tien syards
SEG FOR N=1 TO 14TH+3

EV0 R=INT (RND100 +2

+3
4

00 B R C3=CHRE (1520

HT CRND#40 +1
945 REM Fezition unitsz

330 C=INT (RND#31 +4
255 FOR N={ TO 3

0 BS\I/;C+N)‘CHR$(1€’+N)
970 UiNy
280 U
285 MEXT N

930 INPUT "FRESZ ENTER TO STRRT
GAME ":A%

239 REM initial screen

XF 1443 THEN 27

1000 CALL ZCREEMCL2:
1010 CALL CLERR

1020 FOR R=1 TO 1Q
1030
1040 ¢
1050
1060
1070
1ugn
1030
1100 3

1110 GOEUR &000

1120 NEXT R

1120 DATA ORDER COD "+50 LEF
T AsG0 RIGHT EB.50 UF c
«50 DOWH I

1140 DATR “ "«FIRE LEFT EJFIRE
RIGHT FyFIRE UP o FIRE DOWN

H
1150 DRTR
0 move -

T EOME It
CHANGE LAZT,MOYE

¥
1160 WE="3RME LEYEL

119% REM main loos

1200 CALL HOHAR S2is1e32s1
1210 FOrR T=! 70 2 -
1220 :
1e30

Ty

1

1

156

1

7

i

1

i

13

I

1

17

1

1

(T 54
CALL HCHARCELs <T-13 #1043+,

<} IF S THEN 1420
0 N=H-1-cN=1%

GOTD 12%0

NE=T H

MEST T

1490 CALL HCHAR <
1499 REM carry

1500 FOR N=1 TO M
1510 FOR T=1 TO 2
1520 IF UdTs1
1530 IF OC(T+N
1540 CALL HCHI
42

1550 BRCUCTs 10 s U T2 E0 =CHRE (144)
1560 ON D(T>N:0TD 1570: 1590 161
D3 1E309 1670 17009 1720 17E0s 1730y
13350

1570 UiTs2r=UTs20 -1~ (B UiTs1)>»
U{Tsax=12 >CHRE (14411

1980 6070 1640

1530 U(Ts@2=UT»2) +1+(BFULT+ 10
T2 20 +17 CCHRE (14400

1600 G0TO 1640

1610 UgTo 10 =U(Te 12 =1-(BEULTo 10—
1oUTe 80 SUHRE (1440

16€0 GOTD 1644

1630 LT 15=U(Ts 12414 (BEUCTS L0+
Lo UCTa 223 OHRE (14400

THEN 1200
THEN 1560
ROCTa 130Ty 200 14

1640 BT 10 o LTy HEE (1274

1850 CALL HOHARWUCTs 12 sU{TydD s 12

1660 5070 185
170 D=4

1620 G0IUE 2000
1630 G070 1250
1700 D-E

1210 WE=" vOU HRYE RUN BUT OF EC

{10

THEN 1301
GOZUE 4001

mMHNEXT T

REM Fiards move
1310 FOR 70 10
1920 IF & I THEN 2390
1223 REM k far enemy

1330
1935
1540
1950
1370

N 2100
1950 D=1

21un

1 THEN
2r1xé THE

ratrolling

HRE (144
¥sBTaEr 014

2110 BPFCGTa10y
2180 CALL HCHAR

5T
(5Tl

2130 OM ST 206070 2140:2170:82

2170 IF BE(G(To 104 RcTs@0 412

$ 71442 THEN 2270

2180 GTE8r=G(Ts 3041

€130 6070 2E%0

2200 IF BR(B(Ta13+1+5CTa &2 {CHR
3 (144 THEN 2270

S210 GiTa12=6(Ts1i+1

2ea0 50Ta 2890

2230 IF BR(GTy1236:Ts2r 12 <CHR
$(1442 THEN 2E70

€240 G(Ts22=6(T2>~-1

2260 S0T0 2290

2270 G(T+D=6(T+3)+1

fESU GiTsN=ETsD+U@xG(T D>

22290 BS(G(T 12»5(T+2>>=CHRE (152)
§$95 CALL HCHARKG(Ts12sGCTe@) 15
2300 NEXT T

2310 NEXT N

2320 IF UN THEN 2340

2330 6070 S000

104

105

E°4D WE="FREZS @ TO QUIT.E 7O GO

IF GC0- 152 THEN 4240 :

PEM anv suards there? A,RSHIP 30 ben

FOF =1 TO 10 S0 CRL
£R

iF o THE

o
C T 1 =R O0E

0 FUCOMMAREDING YvOU
5070
b'le

9% I READ
ZHIF, FLlINb FF
F COMMANDE F

PHEIZ TO LONDOM. "¢ FLYING,

ararhic: definition

LL KE
THFLIT,

o ,nn ENDW HDM TaF
nlb HIF?

EE PULLED IN MHEH
OF AIRFORT.
FRETT AMY KEY

FEM anv unitz there? TD E

FOR b=1 TGO
IF olhie g

r da

EH‘INH
1 CALL

P N N A A AT S N N N NN

shat

i
bzarlna

LIGHT TIME 3

sCHRERCISEN THEN 3

RETURN
RENM tombs

‘BN+1

0 ENH

© GROUND ZFEED

S REM Wind f

GOTO d00

11
UMD CS00s TEDs 13 FEM kearinas

dizrlaxy

2590
4000
4010
402

THEN 4410

+1
THEN 4410

exFlosion
430

40610
4070
4020
4030
4100 C

Tl B2
SNy 17 -H 1350 5 REM Pariz Bearina

A Wl
4150 ©

106 107

102] WE=STI
FEM Lo

103

1030 R=1%
1100 &

1119
1115

11en
1120

1180

1124 i
1200

1209

12in

FCLE:
don Eearing

TPl
Fariz Distance

i
LD
an Distance

2 THEW 1300

THEM 1370

IF H: 1000 THEN 1434

£S5 REM crashi?

1810
1620
1630
1640
1643

movement - find sreed an
4 bearins

1650

IF 43 THEM 1830

REM too

50 THEM 1500
1570
t DANGER - TOO LOW 2~

CRLL SDUND(SO;-I;ID

NEXT

GOT0 14°U

US-' WRIT - NAYIGATOR WORKI

REM calculation time

R=24

c=2

GOSUE 2310

REM M=East-West shift
F=North-South
AX=ZINCAB:, 0177 #RE
RAY=COS AR+, 0171 #AS
WH=SINCWE, 0170 #WS
WY=COS (MR, D170 0T

REM ouverall E<WsN-Z

AEARER

1860 V=AY 4

1870 EDSUB 2310
1620 G
1630
1695

17e0
1710 &
1715

LB=F
FEM now for Faris

1101611501

T3 TRY AGEAT

cart
10 THEW 2110
‘EF. HIRPORT - EUT TOO

2150 US— DO YOU WANT TO FLY BACK
TN
2160 R=24
2170 GOSUBR 2810
2180 CALL SOUND(150s1397512
2190 CALL KEY(3:Ks3)
2200 IF K=89 THEN 2230
2210 IF K=¥3 THEN 2860
2220 6OY0 21940
2230 RESTORE 2244
2835 REM data for London
to Paris trie
2240 READ GNsT+AS+ABsG3yGB2LDsLB
+PDsFBsH
2250 DATA ~1s~1s 0 0y 0x 05 B 3+ 400

150s0
2eér 6070 7S0
2265 REM finds how far E-/W

NeR of airports
IN\B* 017 =D
O3 B+, 0172 %D

227d
2280

(]
[
w
on

REM adiuzts for actual
movement

ooy
W G O

¥
REM common subroutine
finds bearing and

distance from E<ils

+E
GOTO 2444
i B=Ze0+E
REM at last!! an end
fu thoze awful sums.
2450 RETURN
REM call kevsineut

sLENCIE:

U’FEIrFUU1°DD
2730 DATA 3F1FUF172ESIRI4M 40R1S
12E17OF IF 3 SAD4ERFOFSFCL FOF
°FDE°D4 SHSS
0 CALL CHAR (144,

DO3C3CICICIC

FOR =2 70 12

2780 CALL COLD s 2y 1R
2790 NEXT =

2800 RETURN

2805 REM erint anvubars

2810 WH=tigz"

2820 FOR @=1 TO LEN(WE:
2230 CALL HIHAR (R O+
Ballalrad

2840 NEXT 0

2850 RETURN

2860 CALL ZCREEN:16:
2870 CALL TLEARR

2880 PRINT TREZ)§ “PROGRAM INDEX
2890 PRINT * INITRUCTIONS......
.. 155"

2900 PRINT " BEARINGE DISFLAY..

SERE W

2910 PRINT * HOW TO COMMAND....
<. 595"
2920 PRINT * IMNITIAL YRLUEZ....
.. 625"
2930 PRINT “ PRINT YARIABLEZ...

... 3007
€940 PBINT " LHECK FOR END.....

.. 1225
2950 PRINT * COMMAND TIME......
60"

E°60 PRINT “ CHECK-ZAFE HEIGHT?
Tl465

29?0 PPINT " MRAYIGATOR WORKING.

.. 1570"

2980 PRINT

.. 16037

2990 PRINT * RIRPORT FIGUREZ...
2qen

FEAL FLIGHT-PATH..

w17

3000 PRINT * CHANGING WINDZ....
L1815

?Ulﬂ PR'NT "
885

o1
3020 PRINT * ARRIVAL...........
2045"
3030 PRINT " REZET FOR PRRIZ...
.2835"
q040 PRINT “ MORE CALCULATIONS,
S

3050 PRINT " INFUT ZUE-ROUTINE.
=

. 245
3060 PRINT GRAPHICE.y..s
..2689"
3070 PRINT * FFRINT ANYWHERE....
«.2810"
3080 FOR D=1 TO S000
3090 NEXT D
3100 END

108

109

