
Do not upload this copyright pdf document to any other website. Breaching copyright may
result in a criminal conviction and large payment for Royalties.

This Acrobat document was generated by me, Colin Hinson, from a document held by me,
believed to be out of copyright. It is presented here (for free) and this pdf version of the
document is my copyright in much the same way as a photograph would be. If you believe the
document to be under other copyright, please contact me.

The document should have been downloaded via my website https://blunham.com/Radar, or
any mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

If you find the file(s) of use to you, you might like to make a donation for the upkeep of the
website – see https://blunham.com/Radar for a link to do so.

Colin Hinson
In the village of Blunham, Bedfordshire, UK.

~t} TEXAS INSTRUMENTS
HOME COMPUTER
STARTER PACK 2

SETTE SOFTWARE
WITH MANUAL

An integrated pack containing a series of programs on cassette that develop and graphically
display major ideas covered in the accompanying book. Enables any user to progressively

understand and make full use of this computer.

7- -: . T: T T ~~ T ._ T S ~ . r rR RC ~ AM s K Mee Pr E s ® el
~ <1 .,1 ® !! ar eti lle T 11131 1r

®

(OWNS
MICROSOFTWARE

1984= 1000 = 1 x 10 x 10 x 10
+ 900=9x10x10
+ 80=8x10
+ 4 = 4 units.

The value of a number depends upon which column it is in.
In BINARY counting numbers are grouped in two's. 2

units make 1 two. 2 twos make 1 four, etc. This means, in
practice that binary numbers are made up of l's and 0's only.
This makes them very easy for computers to handle. 1 and 0
can be translated into electric currents —1 for on, 0 for off.

Binary
8's 4's 2's l's

Decimal Hexa-
decimal

0 0 0 1 = 1x1= 1 1
0 0 1 0 = 1x2 +0= 2 2
0 0 1 1 = 1x2+lxl= 3 3
0 1 0 0 = 1x4 +0 +0= 4 4
0 1 0 1 = 1x4 +0+1x1= 5 5
0 1 1 0 = 1x4+1x2 +0= 6 6
0 1 1 1 = 1x4+1x2+1x1= 7 7
1 0 0 0 = 1x8 +0 +0 +0= 8 8
1 0 0 1 = 1x8 +0 +0+1x1= 9 9
1 0 1 0 = 1x8 +0+1x2 +0=10 A
1 0 1 1 = 1x8 +0+1x2+1x1=11 B
1 1 0 0 = 1x8+1x4 +0 +0=12 C
1 1 0 1 = 1x8+1x4 +0+1x1=13 D
1 1 1 0 = 1x8+1x4+1x2 +0=14 E
1 1 1 1 = 1x8+1x4+1x2+1x1=15 F

Figure 2

Got the hang of Binary numbers? Good, because now it's
time for .. .

Hexadecimal

This time we are counting in Base 16. 16 units make one
group (of 16). Because we only have 10 figures for numbers,
we have to use letters for units over 10. See the right hand
column in figure 2.

You have to use Hex for defining characters, but don't
worry too much, you only have to use the first 16 numbers (0
to F). It is, when you are used to it, much easier, and
quicker, to use Hex than it is to use binary.

Back to defining characters

Start by working out your character on squared paper. When
you are happy with your design draw a line through the
middle to divide it into left and right sides. Now take the
rows one at a time from the top down, left side first, then
right. Think of each coloured square as being the 1 of a
binary number, and work out the value in Hex.

Here is how the rows worked out on the dog.

HexDecimal

0= 0 = 0000 =

Left Right

=0100=

Decimal Hexa-
decimal

4= 4
4= 4=0100=- = 0111 = 7 = 7
4 = 4=0100 = = 0111 = 7 = 7
7 = 7 = 0111 = = 1100 = 12 = C
7 = 7 = 0111 = = 1111 = 15 = F
4= 4 = 0100 = = 0101 = 5 = 5
4= 4 = 0100 = — 0100= 4= 4
4= 4 = 0100 = —0100= 4= 4

Row Left Right Together
1 0 4 04
2 4 7 47
3 4 7 47
4 7 C 7C
5 7 F 7F
6 4 5 45
7 4 4 44
8 4 4 44

Figure 3

That's the worst of it done. It's all downhill from here.
There is a built-in routine that does the actual definition.

All you have to do is state which character number you are

6 7

going to redefine, and feed in those 8 pairs of hexadecimal
numbers. All that is done in one line.

CALL CHAR(128,"0447477C7F454444")

When you are doing this check carefully that the character
number you use is one that can be defined — i.e. between 128
and 159.

Check also that you have the right number of figures and
letters in your hexadecimal number (there should be 16;
Left-hand side 0's must be included); and that you have put
quotes around the Hex string.

Figure 4 may help you sort out your Hex numbers.

0
~
2

3
4

5

6
7

8

9

A

B

C

D

E

F

Figure 4

If, having read this far, you are not too happy with the
thought of converting dots to binary to hexadecimal, then
load the program CHARDEF. There you can work out your
characters dot by dot and the 99 will tell you what strings of
Hex numbers you need to define each character. Make a
careful note of the numbers, and when you have done all the
characters you will need, NEW that program and start on
your own.

Note

You can, if you like, redefine every character from 32 to 127
as well, but there is a difference. These characters all go back
to their normal state whenever the program is not running.
This means that they are reset at every break point, and that
you cannot see them in your program lines as you are typing
in. The other characters (128 to 159) can all be called up from
the keyboard using the CTRL key, as you may have seen in
Starter Pack 1. (In case you haven't got Starter Pack 1, you
will find a keyboard plan in Appendix C which shows you
where these 32 characters are located.)

If you redefine the characters used in BASIC words, it
makes not the slightest difference to the 99. Type this
three-liner in and see. It redefines R, used in PRINT and in
CALL CHAR.

10 CALL CHAR(82,"FFFFFFFFFFFFFFFF")
20 PRINT "CHARACTERS"
30 GOTO 30 (to hold the screen while the program's

running).

All of which goes to show that the 99 can look after itself
despite all that we humans might do to try and confuse it.

NEXT JOB

P INT
"CHA ■ ACTEiS"

8 9

2
Program planning 1
-A Dit at a time
As your programs become more complicated, so you will
need to spend more time working on and checking over the
different routines within the program. There are several
ways in which you can take your program a bit at a time, and
here they are.

The latest addition
You have a fairly lengthy program and have just added some
more onto the end. You want to look at how the latest
addition works, but don't want to wait ten minutes while the
program runs through to that point. You do not have to RUN
the whole program. You can tell the 99 which line to start to
RUN from. Type this in:

10 PRINT "HELLO"
20 PRINT "GOODBYE"

You know that if you now type RUN it will print "HELLO"
and then "GOODBYE". Type RUN 20 and see what
happens. If that had been line 20000, coming after 19999
other lines, the effect would have been more marked, but the
principle is the same. You can start to RUN at any line.
Watch out for these points though. If there is anything in the
latest routine that depends on earlier lines, it won't work.
You can't start in the middle of a FOR. . .NEXT. . . loop. If
graphics characters are defined in the sections that you have
jumped over, then they will be undefined in the part that
you run. You will also have problems if you are using
variables in the new section if these are supposed to have
numbers already stored in them from earlier. All your stores
are cleared on each RUN command, so that the numbers are

all 0 and string stores all "".
Watch your line numbers as well. Try RUN 15 on that little

program and see what happens.

Slow down!

You are developing a fast-moving program and need to slow
it down for checking. There are two simple ways to do this,
as you have probably already discovered.

Put in a (temporary) delay loop.

1002 FOR D= 1 TO 500
1003 NEXT D

Or delay it with some sounds. Remember that one sound
alone will slow nothing down. With a pair of sounds though,
the program will wait for the second sound before it moves
on.

CALL SOUND (1000,-1,1)
CALL SOUND (1,-1,1)

Here the second sound is the briefest possible blip, but it
makes sure that the program waits while the loud beep
sounds. That beep will also serve to draw your attention.

When the program is running as it should (apart from the
delays) then you can knock out the sounds or the loop lines.

Hold it!

Hold the program at the end of a section by writing in a
CALL KEY routine.

CALL KEY(3,K,S) IF S=0 THEN....

10 11

You can add a few extra lines to this to give yourself some
options. You might want to run that section again, or go back
to the start, or carry on, or simply stop so that you can
rewrite lines. The following lines would do it:

I F K=82 THEN (82 = "R" — Run this section
again)

I F K=66 THEN... (66 = "B" — Back to the
Beginning)

I F K= 67 THEN (67 = "C" — Carry on)
STOP

You don't need to bother to write in any print lines as these
lines are only for your own temporary use.

There is another way to hold the program, and it needs
even less typing.

INPUT Z$

The computer now waits for an input. By pressing ENTER
you can move it on. You could also include a set of check and
redirect lines here, as with the CALL KEY routine. N.B.
make sure that the store you use on this INPUT line is not
already in use for something else. Notice also that a string
store is used. This allows you to ENTER nothing. If you use a
number store, you will have to ENTER a number if you want
to avoid a * WARNING: INPUT ERROR report.

Take a break
You know already that you can break into the program
whenever you want by using FCTN and E. It is all too easy

though to miss the exact point that you wanted to break at.
Here is the way to plan your breaks exactly. You can set your
breakpoints before you run the program by typing in:

BREAK 150 (or whatever line number)

Run the program now and it will stop with a * BREAKPOINT
AT 150 report. To carry on, type in:

CONTINUE (or CON which means the same to the 99)

and the program will continue from that point.
CONTINUE will restart the program after any

BREAKPOINT, even one that has been produced by FCTN
and ®, as long as you haven't changed the program in
between. You can LIST (or perform any other command) at a
breakpoint, and still Continue afterwards.

If there are a number of places that you would like to stop
the program at, then type in the line numbers of all the
BREAKPOINTS at the beginning.

BREAK 150,300,590

This will stop the program at each of those three places.
The BREAK command only lasts for the first run through

the program. Run it a second time and it will go through
without stopping.

If you have written a lot of breakpoints into the program at
the beginning, and then decide half way through the run
that you no longer need them, then rub them out with :

UNBREAK

This clears all the breakpoint markers. You can remove
particular breakpoints by telling the 99 which ones you don't
want.

UNBREAK 300
UNBREAK 300,590

Setting breakpoints in this way is much simpler than writing
in Slow Down, or Hold it lines, but has the disadvantage that
it prints on screen — and may therefore ruin a nice screen
display.

12 13

3
Colour

Magic painting

Have you seen those children's painting books where you
simply paint with water and the colours appear, as if by
magic? You can produce the same kind of effect on the T.V.
screen by colouring characters that have already been
printed up in invisible ink. You will probably have seen this
effect on the Master Title screen in the KEYS program in Pack
1. Colour changing is much quicker than printing, and so is
very useful for giving the impression of movement, or for
producing (more or less) instant pictures.

You can see this at work if you type this in:

10 CALL CLEAR
20 CALLCOLOR(6,1,1) (so set 6 letters are

transparent)
30 PRINT "HI" (both "H" and "I" are in

set 6)
40 INPUT A$ (Hold it!)
50 CALL COLOR(6,2,1) (to recolour them black)
60 INPUT A$ (Hold it!)
70 GO TO 20

Run this, and you won't know that the "HI" has been
printed until you press ENTER and move the program onto
line 50. ENTER again and send the program round the loop.
When the letters are reset to transparent, you can only tell
where they are by the odd gaps in the line of INPUT?'s that
go up the left hand side.

LIST the program and remove line 10. Now run again and
you will see odd gaps scattered through the LIST as all the
set 6 letters become transparent. If we recolour all the letter

sets then we can make the whole lot disappear. Replace the
single CALL COLOR lines with loops:

15 FOR S=5 TO 8
20 CALL COLOR(S,1,1)
25 NEXT S

Run it now and see how your program lines disappear, and
reappear. The numbers and symbols are still around of
course, but you can include these in the disappearing act by
changing the Set range to: FOR S=2 TO 8.

Now knock out your INPUT A$ lines, and RESEQUENCE
(just to tidy things up). You should be left with something
like this.

10 FOR S= 2 TO 8
20 CALL COLOR(S,1,1)
30 NEXT S
40 PRINT"HI"
50 FOR S= 2 TO 8
60 CALL COLOR(S,2,1)
70 NEXT S
80 GO TO 10

LIST again (just to make sure there are plenty of characters
on screen) and run. As the program runs, so the list will be
gradually pushed up the screen by an increasing line of
"HI"s. You will notice that where several different sets are
involved, it takes a little time to get round and recolour them
all — hence the flickering effect. However when the letters on
screen are all of the same set (keep running until the list has
worked its way right off the top) you get a nice steady flash.

If you particularly want a flashing message, it may be
worth defining characters from one set into the letters you
need, and then recolour that single set. In the example below
characters 128, 129 and 130 are defined as L, O and K, so that
a flashing LOOK can be printed on a steady screen.

14 15

10 CALL CHAR(128,"004040404040407E") (L)
20 CALLCHAR(130,007C44444444447C)
30 CALL CHAR(130,"0044485060504844") (K)
40 CALL CLEAR
50 PRINT "LOOK HERE" (normal capitals)
60 PRINT "LOOK" (L — CTRL and H O - CTRL and

HK-CTRL and
70 CALL COLOR(13,1,1)
80 CALL COLOR(13,2,1)
90 GO TO 70

Notice how the CTRL key is used to get to the defined
characters for that second "LOOK". You may well find it
useful to run the program as soon as you have typed in the
first three lines. That way the characters will be there, ready
for use.

You will find a number of variations on this theme in the
color section of the EFFECTS program in Pack 1. The RIPPLE
effect (at 1000 —) works by defining two pairs of characters
the same but in different sets. See figure 5. The are all
printed on the screen at the start of the routine and remain
there throughout, but by switching from red to invisible in
turns, they give the illusion of movement.

Here is a simple version of the routine:

10
20

30

CALL CHAR(128,"FFFFFFFFFFFFFFFF") (defines
CALL CHAR(136,"FFFFFFFFFFFFFFFF") two

blocks)
CALL CLEAR

40 FOR C=1 TO 31 STEP 2
50 CALL HCHAR(10,C,128) (prints a line
60 CALL HCHAR(10,C+1,136) of blocks)
70 NEXT C
80 CALL COLOR(13,8,1) (set 13 now red,
90 CALL COLOR(14,1,1) 14 transparent)

100 CALL COLOR(13,1,1) (and swaps them
110 CALL COLOR(14,8,1) round)
120 GO TO 80

You will find that this all whizzes through rather quickly,
which is why there are sounds included in the RIPPLE
routine in the program.

The RUNNING LIGHTS routine on the EFFECTS program
is produced by a similar routine, although there, three
colours, and three sets of characters are used. This helps
to give a greater sense of direction to the movement.

Figure 5

El> "I> El> ESP> n>

Figure 6

16 17

Where you have a lot of colour changes to make, and these
changes follow a set pattern, it may be worth using a
switching routine, rather than have dozens of CALL COLOR
lines. In the example below, the program colours sets 5, 6
and 7, blue (5), red (9) and white (16), then changes blue to
red, red to white and white to blue.

COLI
5

Initial values

10 PRINT `BITBITBITBITBIT" (B, set 5, I set 6,
T set 7)

COLX
0

COL2
9

20 C0L1=5 (blue)
30 C0L2=9 (red) 3 stores for color codes.
40 C0L3=16 (white)
50 CALL COLOR(5,C0L1,1)
60 CALL COLOR(6,COL2,1) COL3

16
70 CALL COLOR(7,COL3,1)
80 COLX=COL1
90 C0L1=COL2

100 COL2=COL3 Figure 6A

110 COL3=COLX
120 GOTO 50

And here's what happens with that switching routine in
lines 80 to 110.

A fourth store is brought into play (COLX). This takes the
value of the first store (blue). The first store then changes the
value of the second store (red), and this takes the number
from the third store (white). The third store then collects
blue (5) from the temporary store (COLX). Figure 6 shows
this in operation

After 1st move

COL2
9

COL3
16

Figure 6B

18 19

After 3rd move

COLX
5

Figure 6C

COL3 needs to collect 5 from COLX to complete the
switch.

After a second run through the switches, COL1 is 16
(white), COL2 is 5 (blue) and COL3 is 9 (red).

Colour blocks
You can turn any character into a solid block of colour by
making the foreground and background colour the same.
You can then turn these into larger blocks, or solid lines
using the HCHAR or VCHAR statements.

This program produces a large block of red in the middle
of the screen.

10 CALL CLEAR
20 CALL COLOUR(13,9,9)
30 FOR R= 6 TO 15
40 CALL HCHAR(R,12,128,10) (10 lines of 10

characters)
50 NEXT R
60 INPUT A (Hold it!)

The character used in line 40 (128) could have been any one
from set 13. They all give the same red on red block.

You can add to this program to give other blocks of
different colours. Here a block of green is added in the
bottom right of the screen.

60 CALL COLOR(14,3,3)
70 FOR R= 18 TO 21
80 CALL HCHAR(R,24,136,6) (4 lines of 6

characters)
90 NEXT R
100 INPUT A

In the last example HCHAR and VCHAR are combined to
produce a coloured border. Notice the STEPs in lines 30 and
60. These make sure that it is only the edges which are
coloured. Miss them out and see what happens.

10 CALL CLEAR
20 CALL COLOR(13,9,9)
30 FOR R= 1 TO 23 STEP 22 (leave line 24

clear for the
INPUT)

40 CALL HCHAR(R,1,128,32)
50 NEXT R
60 FOR C=1 TO 32 STEP 31
70 CALL VCHAR(1,C,128,23)
80 NEXT C
90 INPUT A (hold it!)

Multi-coloured mosaics
In the PATTERN program you will see that the same shape
can be printed on screen in different colours at the same
time. There is no special trick to this. It is an extension of the
idea used in the RIPPLE effect covered earlier. There are
16 different shapes of tile, and each one has been defined
4 times, so that there are 4 full selections of the same tiles.
Each selection takes up a pair of colour sets. It is possible to
take this idea further and define characters over a wider

20 21

GOSUB (whatever line number)

and send it back to the program with:

RETURN (no line number)

Type this is and listen:

10 PRINT "HELLO"
20 GOSUB 100
30 PRINT "HOW ARE YOU?"
40 GOSUB 100
50 PRINT "GOODBYE"
60 GOSUB 100
70 STOP
100 CALL SOUND(500,-1,1)
110 CALL SOUND(500,-8,1)
120 RETURN

SUBROUTINE

When Chip comes to a GOSUB he
makes a note of where he is:

range of colour sets to give yourself even more colours on
screen. That is, however, probably worth leaving until later,
as there are a number of routines that can make complicated
programming much simpler.

Meanwhile, why not load up some of your old programs
and improve their presentation with colour blocks and
flashing messages. When you have loaded in a program
RESEQUENCE it to give yourself room to add lines. If you
resequence in 20's, or even 100's, it will give you lots of
space. The only thing you need to watch out for when
resequencing is that the final number is no more than 32767.
Even if you space out in 100's, you would need a program of
more than 320 lines to reach this!

4
Program planning 2
-Subroutines
A subroutine is a part of a program that you can re-use as
often as you like. The beauty of it is that whenever you send
the computer off to a subroutine it always comes back to the
line it was on before, without being told which line number.

Send the 99 to a subroutine with the instruction:

22

Patterned backgrounds
You can produce a simply-patterned screen with just one
line:

100 CALL HCHAR (1,1,42,768)

This will print up 768 asterisks starting at the top left and
working across and down. VCHAR would give the same
result, but printing down and across. This may be useful as
a background to a screen printed with HCHAR commands
(see 'Strings'), or as a dividing screen between sections of
a program.

You could start your pattern lower down the screen,
beneath normally PRINTED material. Don't worry about
getting the number of repititions exactly right. The 99 will
not be fussed if you ask it to print too many.

23

Here the program will return first to line 150, and when it
reaches the next RETURN instruction, it will go back to 80.

NOTE: You can use an ON. ..GOSUB line in the same
way as ON. ..GOTO.

You can follow the movements of the computer through a
program by using the TRACE command. Type in TRACE
now (no line number), and then run the program again. You
should get something like this:

(silly sounds and
GOSUB 200)
(whizzing round the
CALL KEY loop)
(back to 120, then to 30)

(back to 120 then 50)

<10>
<20>

HELLO
<100> <110> <115> <200>

<210> <200> <210> <200> <210>

<200> <210> <220> <120> <30>
HOW ARE YOU?
<40> <100> <110> <115> <200>
<210> <200> <210> <200> <210>
<220> <120> <50>

NEXT JOB

RETURN

Figure 7

WHERE Where was I?
AM I? ... AAH 20.

~o-

So that when he RETURNS, he knows where to go:

The RETURN line numbers are stored in a special place
known as the GOSUB stack. There is room for more than one
number here, which means that you can go to a subroutine
from inside another one. Add these lines to the program
given above:

115 GOSUB 200
200 CALL KEY(3,K,S)
210 IF S= 0 THEN 200
220 RETURN

Now, before the computer returns from its silly sound
subroutine, it will go off to the second routine to wait for a
key contact. After a touch, it returns to the end of the silly
sounds, and then goes back to wherever it was in the print
lines.

The line numbers are stored on the GOSUB stack on the
last-on-first-off principle. You could think of it as a paper
spike.

Figure 8

GOODBYE
<60> <100> <110> <115> <200>
<210> <200> <210> <200> <210>
<200> <210> <220> <120> <70>
** DONE **

Figure 9

You will see numbers printed in brackets. These are the
numbers of the lines that the program is going through at
that moment. If you ever have any doubts about whether or
not a program is going through its routines in the proper
order, you will find TRACE invaluable.

NOTE: Once you have entered a TRACE command, the
computer will trace on every run until you cancel it with an
UNTRACE command.

SUBROUTINE

(back to 120 then 70)

24 25

DATA

BILL
SUSAN
FRED ~J
ALISON
SANDY

DATA

BILL
SUSAN
FRED
ALISON
SANDY

Cri
erNE

5
Teach your 99 to READ

There will be many times when you will want the computer
to perform a series of routines that are almost, but not quite,
the same. You might be playing a tune, so that the lines all
start "CALL SOUND..." but then have some different
numbers in the brackets. You might be printing out a
standard message to several people. You might be defining
characters. Let's start by reading some names.

Here you want the 99 to print a friendly "HELLO" to all
your friends. Your program might look like this:

10 PRINT "HELLO BILL"
20 PRINT "HELLO SUSAN"
30 PRINT "HELLO FRED"
40 PRINT "HELLO ALISON"
50 PRINT "HELLO SANDY"

You finish up with as many lines as you have friends. You
could also do it this way:

10 INPUT N$
20 PRINT "HELLO" ;N$
30 GO TO 10

but then you would have to sit there inputting all the names.

Here's a better way:

10 READ N$
20 PRINT "HELLO" ;N$
30 GO TO 10
40 DATA BILL,SUSAN,FRED,ALISON,
SANDY,

When you tell the computer to READ it goes off in search of a
line marked DATA and picks up the first thing it finds there.
"BILL" goes into the N$ store, and is printed by line 20.
When the computer goes back to READ for a second time it
picks up the next name in the DATA list and puts that in the
N$ store. It prints "HELLO" to SUSAN and goes round the
loop, each time picking up the next name. When it has run
out of new words it will stop with a * DATA ERROR IN 10
report.

In figure 10 you can see Chip READing names from the
DATA list. Notice the little marker beside the names. This is
to let him know where he should start to READ next time.

Figure 10

Here's a close-up of the list showing the marker. FRED gets
READ next time.

Figure 11

When you RUN the program the DATA marker is pushed
back up to the top of the list. Write a program of your own to

26 27

32 FOR T=1 TO 5 (or however many)
34 READ N$
36 PRINT "GOODBYE";N$ (or whatever message)
38 NEXT T

Run this, and you will get another DATA ERROR report. All
the DATA has been used up by the first loop, and you need
to reset the marker back at the top of the DATA list. No
problem! Add another line.

31 RESTORE

RESTORE pushes the marker to the top of the list. Try it and
see. You can see the effect of RESTORE even more clearly if
you put a RESTORE line inside the loop. Then the marker
will keep going to the top and the same name will be printed
five times.

How to read characters
You will find it very useful to apply data-reading routines to
your character definitions. The more characters you want,
the more you save in typing time and memory space. Let's
suppose that you wanted to define the following four
characters — a solid block, a triangle, a space, and an empty
'box'. You are going to allocate them to character numbers
128, 129, 130, 131.

80
CO
EO
F0
F8
FC
FE
FF

00
00
00
00
00
00
00
00

FF
81
81
81
81
81
81
FF

FF
FF
FF
FF
FF
FF
FF
FF

128 129

Figure 12

130 131

These are the hex strings you need to define them.
block (128) "FFFFFFFFFFFFFFFF"
triangle (129) "80C0E0FOF8FCFEFF"
space (130)"0000000000000000"
box (131) "FF818181818181FF"

say the same thing to a set of people. It might be "Welcome
to the party", or "Hello"; (whatever your name is); "how are
you." The DATA list can be as long as you like, and it can be
split up over as many lines as you like:

40 DATA BILL,SUSAN,FRED,ALISON,
SANDY,GEORGE,KATE

50 DATA MARGARET,TONY,MICHAEL,DAVID,
ROY

60 DATA WILLIAM SHAKESPEARE,R.REAGAN

Your DATA lines cannot be more than 4 screen lines long, of
course, and you will find it much more convenient to keep
them short. This makes it easier to correct typing errors, or to
add, or take away from the list.

Make sure that the names are all separated by commas.
You can, if you like, enclose the names in quotes, but this is
not normally necessary. The only time you must put quotes
round words in the DATA list is when you want to include a
comma or quotes inside the group of words to be read.

70 DATA "MITTERAND,FRANCOIS",
"P.K." "MAC" " MCBRIDE"

(note: double quotes needed to get one set printed)

When you run your program it will stop with a DATA
ERROR report once it has run out of things to read. This
could be very irritating if you wanted the program to carry
on and do something else afterwards. It is, however, an easy
error to avoid. Replace your simple GO TO loop with a
FOR. . .NEXT. . . loop that will make sure that the 99 only
reads as many data items as are there.

5 FOR T= 1 TO 5 (or however many)
10 READ N$

30 NEXT T

Now let's squeeze some more lines in between the "HELLO"
loop and the DATA. (You can always tidy up with
RESEQUENCE afterwards.

28 29

Note that the hex numbers are actually strings of
characters, so must be read into a string store.

This is the routine that defines them

10
20

FOR N=128 TO 131
READ G$ (G for Graphics)

30 CALL CHAR(N,G$)
40 NEXT N
50 DATA FFFFFFFFFFFFFFFF
60 DATA 8000EOFOF8FCFEFF
70 DATA 0000000000000000
80 DATA FF818181818181FF

On the first run through the loop line 30 is, in effect, this:

CALL CHAR(128,"FFFFFFFFFFFFFFFF")

and similarly for later runs through.
Notice how each character has its own DATA line. This is

a little wasteful of memory space, but it makes alterations so
easy. Saving memory space does not really matter unless
you intend to write extremely long programs, as 16k goes a
long way. However, being able to alter your character
definitions easily is very important, as it usually takes a lot of
practice before you get your graphics looking right on the
first attempt.

If you wanted to define a number of characters and their
numbers did not run in sequence, then you could include the
character number in the read and data lines.

10 FOR N= 1 TO 4
20 READ C,G$ (Character number, Graphic string)
30 CALL CHAR(C,G$)
40 NEXT N
50 DATA 128, FFFFFFFFFFFFFFFF
60 DATA 136, 8000EOFOF8FCFEFF

If you are mixing number and string stores in this way, then
take even more care than usual when typing in your data
lines.

G
Reading music

Did you know your 99 could read music? Not the little black
dots on the lines type of music, but music as a computer
understands it, and that means numbers.

Try this:

10 FOR T=1 TO 4
20 READ P (Pitch)
30 CALL SOUND(500,P,1)
40 NEXT T
50 DATA 262,330,392,523

Isn't that easier than writing 4 separate CALL SOUND lines?
When you realise that you can have as much data (and
therefore as many pitches) as you like, you may begin to see
some of the potential of READ instructions for music
making.

'What about chords?' you say. No problem. The 99 can
read several different things at once. The program below will
read the three notes needed for each of four different chords.

10 FOR CHORD = 1 TO 4
20 READ N1,N2,N3 (3 notes)
30 CALL SOUND(1000,N1,1,N2,1,N3,1)
40 NEXT CHORD

Now let's work out the data that we need to make it work.
The four chords that we are going to play are C, F, G and a
second (different) C chord.

30 31

Chord First note Second note Third note

C
F
G
C

letter frequency letter frequency letter frequency

C 262
F 349
G 392
E 330

E
A
B
G

330
440
494
392

G
C
D
C

392
523
587
523

To get our data line out of this, we simply read across one
line at a time. It is probably worth typing each chord in as a
separate line. It will make editing easier in case of mistakes.

50 DATA 262,330,392 (C)
60 DATA 349,440,523 (F)
70 DATA 392,494,587 (G)
80 DATA 330,392,523 (2nd C)

So far, the time of our notes have lasted, and their volume
have remained the same for all the notes, but these could just
as easily be included in the data. The next example produces
a loud top C, and a longer, but quieter middle C.

10 FOR N= I TO 2 (2 Notes)
20 READ T,P,V (Time, Pitch, Volume)
30 CALL SOUND(T,P,V)
40 NEXT N
50 DATA 500, 523,1, (short, top C, loud)
60 DATA 2000,262,10 (long, middle C, quiet)

If you have the time and the inclination, you can get the 99 to
play whole (single note) tunes, using that simple four line
routine, and lots of data. It will be easier on your first efforts,
to fix the volume in the CALL SOUND line, and simply read
Time and Pitch. The example below shows how the first line
of 'Girls and Boys come out to play' was converted into data
for a program. It was used for Violet's entrance in the
CHARLIES program in Pack 1, although there the rhythm of
the music was slightly affected by various character printing
routines.

g •
1 2 3

Note length

Figure 14

•

4

(crochet) = 600

(quaver) = 300

(dotted crochet) = 900

J •

so each bar lasts
about 2 seconds

5 6 - 7 8 9 10 11 12 13 14 15 16

Music 99 coding

Number Value Note Time Pitch

1 D 600 587

2 ,j) B 300 494

3 C 600 523

4 4,r) A 300 440

5 .J D 600 587

6 ,) B 300 494

7 ~ G 600 392

8 G 300 392

9 ~ A 600 440

10 N 4 B 300 494

11 ~ C 300 523

12 ,j) B 300 494

13 ,P A 300 440

14 ,j D 600 587

15 i) B 300 494

16 . G 900 392
Figure 15

32 33

Timing Slow Fast
2400 800
1200 400

600 200
300 100

Note Frequency
G 196
A 220
Bb 233
B 247
C 262
D 294
E 330
FF 349
F# 370
G 392
A 440
Bb 466
B 494
C 523
D 587
E 659
F 698
F# 740
G 784

Figure 16

Figure 17

And so the DATA lines:

50 DATA 600,587,300,494,600,523,300,440

into the joys of music on the 99, your Texas dealer should
have the TI Music Maker in stock.

(first 4 notes) Note values
60 DATA 600,587,300,494,600,392,300,392 1 semi-breve o = 2 minims

(next 4) 1 minim j = 2 crochets
70 DATA 600,440,300,494,300,523,300,494 1 crochet = 2 quavers

(next 4) 1 quaver = 2 semi-quavers
80 DATA 300,400,600,587,300,494,900,392

(next 4) A dotted note is half as long again dJ . = + ~^

For more complicated tunes, with three part harmony and
rests (periods of silence), you would need to combine these
routines, to give these lines:

20 READ TIME,P1,V1,P2,V2,P3,V3
30 CALL SOUND(TIME,P1,V1,P2,V2,P3,V3)

a DATA line for a 1 second chord would look like this:

..DATA 1000,262,1,330,1,392,1

which gives a C chord at volume 1.
If only 2 notes are needed, you would still neet to include a

'dummy note', so that you had a full set of numbers for the
CALL SOUND line.

..DATA 500,294,1,440,1,-1,30

which gives half a second of D and A at volume 1, and a
silent beep. It doesn't matter what that third sound it, and a
beep only needs 2 characters to be typed in. You can't use 2
noises in a CALL SOUND line, so a single note for this
routine would need this kind of DATA line:

DATA 1000,349,1,349,30,-1,30

so that here you have a silent note, and a silent beep.
Below you will find a table of note values, and the

frequencies for the notes in the keys of C, G and F, which
may be useful to you in your music making.

You will find a more complete list of frequencies in the
User's Reference Guide, and if you want to explore further

34 35

KEY OF C (all notes natural)
CDEFGABC

KEY OF G (one sharp F#)
GABCDEF#G

KEY OF F (one flat Bb)
FGABbCDEF

Main Chords
C(CEG) F(FAC) G7(GBF)

G(GBD) C(CEG) D7(DAC)

F(FAC) Bb(BbDF) C7(CEBb;

Am(ACE)

Em(EGB)

Dm(DFA)

7
AZ SAYS

If you load up the SOUNDS program, you will find that the
keyboard has been reprogrammed to make the number keys
play single notes, and some of the letter keys give chords.

We will return to sounds later, and look at ways of
extending the organ keyboard on the 99, but first we need to
look at another programming technique.

ARRAYS are special sorts of memory stores. Once you have
got the hang of using them, you have at your fingertips a
very powerful programming tool. Basically they are a means
of collecting sets of information. Suppose you were doing a
survey on the heights of your friends. You plan to measure
them, type in their heights, and then have all the heights
printed out at the end. You write this program:

10 INPUT "HEIGHT":H
20 IF H=0 THEN 40 (your escape from the loop)
30 GOTO 10
40 PRINT H
50 GOTO 40

You run the program and enter 150,134,168,145,0. The
computer prints 0's all down the screen! Each new number
has replaced the old one in the H store, so that 0 is there
when it reaches line 40.

You need a separate store for every number, so you
rewrite it:

10 INPUT "HEIGHT ":H1
20 INPUT "HEIGHT":H2
30 INPUT "HEIGHT ":H3

 (how many people are you measuring?)
100 PRINT H1
110 PRINT H2
120 PRINT H3

Well, it works, but how much typing would you need if you

36 37

NEXT JOB

DIM H(20)

were surveying 30 people? You have no doubt noticed that
you have a set of stores here that all start with H and end in a
number — H1,H2,H3,... Why not use a loop?

10 FOR N=1 TO 5
20 INPUT "HEIGHT ":HN
30 NEXT N
40 FOR N = 1 TO 5
50 PRINT HN
60 NEXT N

You're getting warmer, but this still won't work. HN is the
name of a single store. Put that N in brackets, and you are
just about there. Now when the 99 sees H(N) it will check
back to the loop to find the value of N, and store the heights
in H(1), H(2) and H(3), etc. You have made an array.

Actually, you haven't made the array, the 99 did it for you.
When it sees a variable name with a number in brackets after
it, the 99 assumes you want an array, and sets up a little one
for you. This array stops at H(10). If you want any more than
that in your set of stores, you have to organise it yourself. Do
this by telling the computer the DIMENSIONS of your stores
before you try to use them.

5 DIM H(20)

You have now asked the computer to set up a ONE-
DIMENSIONAL ARRAY. Its one dimension is its length,
and here it has a length of twenty. It can be as long as you
want, within limits. Eventually you run out of memory
space. In figure 18 you can see Chip setting up that array for
you.

Figure 18

If you want to see just how rapidly you can use up 16k of
memory, NEW and type this in:

10 DIM A(1813)

Run this, and you will see a * MEMORY FULL IN 10.
Change that to A(1812) and it will work, ending with a

* DONE report. Mind you, there is no memory left at all.
Add one short line:

20 PRINT "HI"

and you will get that MEMORY FULL report again.

LJ

PE TO U R>

Numbers and the 99
Where has all the memory gone? The answer to that is also
the reason why the 99 has a much higher level of
mathematical accuracy than the great majority of home
computers. Each number store actually takes up 8 bytes of
memory. This allows it to handle very large numbers, very
small numbers, and numbers with lots of decimal places
(though it will only display 10 of them on the screen).

If you want to see the size of numbers that the 99 can
handle, try this:

10 N=1
20 PRINT N
30 N=N*2
40 GOTO 20

Run this and it will start doubling and printing. When it
reaches 8589934592 (that is a 10 digit number) it changes the

38 39

way it presents the numbers. The next one it prints looks like
this:

1.71799E+10

This means 1.71799 times 10 to the power of 10, or
17179900000. 1.71799E+10 is the number shown in
SCIENTIFIC NOTATION, and it is a more convenient way to
handle very large (or very small) numbers.

When your number gets even larger you will notice
another change. After 8.749E+99 the next number appears
as 1.7498E+**. It is still keeping track of the powers of 10, but
is no longer able to print them.

Eventually you reach this point:

8.66459E+**
*WARNING
NUMBER TOO BIG IN 30
9.99999E+**

That number is stored in the computer as 9.9999999999999
times 10 to the power of 127, or
99999999999999000000000000000000000000000000000000000
000
000000000000000000000

If you could count a million numbers a second, it would
take you 31709800000000000000000000000000000000000000
000
0000000000000 years to reach that number!

Change line 30 so that the numbers are halved rather than
doubled, and you can see the process in reverse. Eventually,
and it is after a very long while, the 99 decides the number is
too small to bother about and treats it as 0.

All of which should help explain why the 99 needs 8 bytes
to store a number. When the number is in an array, a further
byte is needed for labelling. If you type in:

PRINT 1812*9

you should get 16308. You started off with 16384 bytes of
memory, and have used a few for the DIM line itself.

Back to arrays
You will have noticed in figure 18 that the first of the array
stores was labelled H(0). The 99 will start numbering arrays
either from 0 or from 1, depending on your instructions. If
you want the first one to be H(1) then you need a line at the
beginning of the program:

1 OPTION BASE 1

If you want to start from H(0) you would write

1 OPTION BASE 0

If you don't tell the 99 what your OPTION BASE is, it will
assume 0. Let's rewrite that height program properly and see
what else we can do with arrays.

10 OPTION BASE 1
20 DIM H(20)
30 FOR N=1 TO 20
40 INPUT "HEIGHT ":H(N)
50 NEXT N
60 FOR N=1 TO 20
70 PRINT N,H(N)
80 NEXT N

Now, having collected all your information into an array,
you process it in various ways very easily. You might start by
working out an average. In Pack 1 you saw how you could
total figures by adding a series of numbers into a store. We
can do the same now by means of a loop:

90 T=0
100 FOR N= 1 TO 20
110 T = T + H(N)
120 NEXT N
130 PRINT "TOTAL. ";T

The average is the total divided by the number of entries,
so add this:

140 PRINT "AVERAGE ";T/20

40 41

You can sort the array. Here the computer counts how many
of the heights were over 150 (cms) and how many 150 or less.

150 B=0 (Big people counter)
160 S=0 (Small people counter)
170 FOR N= 1 TO 20
180 IF H(N)> 150 THEN 210

weeks. Here is the program you need to collect and analyse
your data.

10 OPTION BASE 1
20 DIM H(2,7) (Hours for 2 weeks, 7 days in

each)
30 FOR W=1 TO 2 (Weeks)

190 S=S+1 (must be smaller, so add one on) 40 FOR D= 1 TO 7 (Days)
200 GOTO 220 (then jump over the next line) 50 PRINT "WEEK"; W, "DAY "; D (just so you can
210 B=B+1 see where you are)
220 NEXT N 60 INPUT "HOURS? ": H(W,D)
230 PRINT "BIG PEOPLE ":B 70 NEXT D
240 PRINT "SMALL PEOPLE ":S 80 NEXT W

You can pick individual items out of your array:
90

100
FOR D= 1 TO 7
PRINT H(1,D),H(2,D) (same day, week 1

250
260

PRINT H(3)
PRINT H(15)

110 NEXT D
and week 2)

You can see a one-dimensional number array at work in the
ARRAYS program. There it is used to store the pitches for a
tune. A similar array is used on the SOUNDS program to
store the pitches that are produced by pressing the number
keys. For details about that see 'More Sounds' below.

Into the second dimension and beyond
When you use a one-dimensional array, you have got, in
effect, a list of numbers (or whatever - see below). Suppose
you wanted to compare two or more lists? You could set up
two (or more) separate arrays, but there is an alternative,
which is often easier to handle. Your array can have two
dimensions - the first says how many lists, and the second
dimension is the length of the lists.

Your family tells you that you are getting more and more
obsessed by the computer and that you are spending more
time every week playing with it. After you have told them at
great length, and in no uncertain terms, that you are not
'playing', you decide to keep records of the time you spend
at the typeface, and compare the results from a couple of

This is the basic program which collects, and prints out the
numbers. Notice how the double loop between lines 30 and
80 manages the two dimensions of the array. If you wanted
to compare the results of a month's programming hours, all
you would need to change would be the number in line 30. If
you used a separate (one-dimension) array for each week's
entries, you would need four separate loops to collect the
number from the four weeks.

Now, let's start to analyse the figure a little. Add this line:

105 PRINT "WEEK 2 - WEEK 1",H(2,D)-H(1,D)

and this will print up the number of extra hours you put in
on the second week. The number may well be a negative
one.

We can add a further set of lines to total up the hours in
each week.

120 FOR W = L TO 2
130 FOR D = 1 TO 7
140 T(W) = T(W) + H(W,D)
150 NEXT D
160 PRINT "TOTAL WEEK ";W; " = ";T(W)
170 NEXT W

42 43

The key line in this is line 140 where an array is introduced —
T(2). This collects the totals for each week, and at the end of
the week is printed out by line 160. So now you can prove
that you aren't obsessed by the machine. Collect your daily
hours in a table like figure 19, and type this program back in
two weeks later. Your final display should look something
like figure 20.

Week 1 Week 2

Monday 3 4

Tuesday 4 2

Wednesday 3 3

Thursday 1 0

Friday 3 5

Saturday 4 4

Sunday 6 7

Figure 19

for sounds. The array would then be as many notes long as
you wanted, and 3 numbers deep. S(10,3) would store full
information on ten sounds. The sounds would be played by
a routine like this:

100 FOR N= 1 TO 10
110 CALL SOUND(S(N,1),S(N,2),S(N,3))
120 NEXT N

When you are using arrays in bracketed instructions like
this, make sure you put in the right number of closing
brackets. It's very easy to miss one out. The 99 won't notice
when you type the line in, but later, when it tries to work
that line it will stop with an error report. By that time you
will have carefully typed in all sorts of information, and you
can't change a line and then CONTINUE a program. You
have to run it again, and that means losing all the input data.

Two-dimensional arrays are also used in writing computer
games, where you want to keep track of positions on a
board. You will find more about this in the Games Packs, but
here is a simple example of this kind of usage. The program
takes in 9 numbers in a 3 x3 array (perhaps for a noughts and
crosses game) and prints them out.

(busy day, Thursday)

3 10 OPTION BASE 1
WEEK 2-WEEK 1

4 2 20 DIM B(3,3) (Board)
WEEK 2-WEEK 1 —2 30 FOR R = 1 TO 3 (Row)

3 3
WEEK 2-WEEK 1 0

1 0
WEEK 2-WEEK 1 —1

3 5

40
50
60

FOR C = 1 TO 3 (Column)
INPUT "NUMBER":B(R,C)
NEXT C

WEEK 2-WEEK 1 2
4 4 70 NEXT R

WEEK 2-WEEK 1 0
6 7

80 FOR R = 1 TO 3
WEEK 2-WEEK 1 1 90 FOR C = 1 TO 3
TOTAL WEEK 1 = 24 100 PRINT B (R, C) ; (note the semi-colon at the
TOTAL WEEK 2 = 25 end)

110 NEXT C
Figure 20 120 PRINT (to move the print position down)

Well, it was only one hour extra! 130 NEXT R

Two-dimensional arrays can be put to other uses besides
comparing lists. You can use them for storing the numbers

44 45

NEXT JOB

Z (3,4,2,12,7,9,64)

*Z(3,4,2,13,7,9,64)

+Z(1,2,4,6,8,12,64)

So much for the second dimension, but what about beyond?
You can have arrays of up to 3 dimensions in TI BASIC. To

go back to our "No-I'm-not-getting-obsessed" program, the
third dimension could be for different months. Your new
array is — H(13,4,7) — you work in lunar months, by the way!
You are now able to compare the same week in different
months, or even the same day of the week in different
months. The program is basically the same as you had
earlier, but with an extra loop to cope with months, and you
have to remember to include all three subscripts (the
numbers in the brackets) when you call up anything from the
array. H(1,2,3) refers to the 3rd day of the 2nd week of the
ist month.

If you want to start comparing the results from different
years (you are getting obsessed you know), then you
will need a 4-dimensional array. You will also need a
TI EXTENDED BASIC module. With this you can have up to
7 dimensions. Writing those sort of programs can be
tremendously fiddly, but at the end of it, you have a very
compact block of data that can be processed in all sorts of
ways. Chip can cope with it!

Now where did I put
Z(3,4,2,12,7,9,64)?

0

Strings and things

You may remember the "WHO'S THERE?" program in
Pack 1, where the 99 asked for peoples' names and printed a
friendly message. The names all went into the same store
though, so that each new name overwrote the old one. If we
set up an array of stores, the 99 could remember all the
names to say goodbye to later.

10 OPTION BASE 1
20 DIM NAME$ (5) (change the numbers later to suit

yourself)
30 FOR 1=1 TO 5
40 INPUT "WHOS THERE?":NAME$(T)
50 PRINT "HELLO ";NAME$(T)
60 NEXT T
70 FOR T=1 TO 5
80 PRINT "GOODBYE";NAME$(T)
90 NEXT T

Run this and try typing in names of different lengths. You
will see that the string arrays automatically have two
dimensions — the first is the store number, and you fixed that
in the DIM line — the second is the length of the string, and
that depends upon what is entered at the INPUT line. This
could be a little inconvenient if you wanted to print out the
names as part of a survey in a nice tidy table. There is a
solution — of course — isn't there always? You can chop off as
much of the string as you want using the SEG$ instruction.
This tells the 99 you only want a SEGment of the string.
Change line 50 to this:

50 PRINT "HELLO ";SEG$(NAME$(T),1,5)

Now type in RUMPLESTILTSKIN and see what it prints.
You should see "HELLO RUMPL". The SEGment you

asked for picked out five characters starting from the first.
There are three bits of information needed in the brackets.

S EG$ (which string, where to start, how many characters) Figure 21

46 47

OPTION BASE 1
DIM N$(6)
DIM A(6)
DIM H(6)

10
20
30
40

Here's a test to show it more clearly. Type in (no line
number):

T$="T EST ING"
PRINT SEG$(T$,3,3)

and you will get "TIN".

Now try: PRINT SEG$(T$,1,1)

You should see "T".

PRINT SEG$(T$,7,10)

Will print "G". You actually asked for a further 9 characters
that weren't there. The 99 cannot be fooled that way. It went
as far as it could and then stopped. This is very handy. It
means that if you want to produce a nice neat table, like
figure 22, you can set a limit to the length of names, by using
the SEG$ instruction, and if the names are shorter than your
limit, then the 99 will simply print all that is available. On
some computers you would get into trouble if you asked
them to print a long segment of a short word. It is another
example of how the 99 takes some of the minor irritations out
of programming.

NAME AGE HEIGHT

MUM 34 160
DAD 37 185
JONATH 15 176
SALLY 13 148
BABY 2 95
GRANDA 99 180

Here is the program that produced it. Notice how in this
the variable names have all been kept as short as possible. It
really does save on typing errors.

(the program will work without
any of these lines as the
numbers are small, but write
them anyway. You would need
them for a larger survey)

50 FOR N=1 TO 6
60 INPUT "NAME ":N$(N)
70 INPUT "AGE ":A(N)
80 INPUT "HEIGHT ":H(N)
90 NEXT N

100 CALL CLEAR (just to tidy up)
110 PRINT TAB(2);"NAME";TAB(12);

"AGE"; TAB(22);"HEIGHT" (titles)
120 FOR N = 1 TO 6
130 PRINT TAB(2);SEG$(N$(N),1,6); (first 6
TAB(12);A(N); TAB(22);H(N) letters

only)
140 NEXT N

Do you see how the 99 chopped the names down to a
maximum of 6 letters in line 130? You can see what has
happened to Jonathan's and Grandad's names in figure 22.
Chopping up strings in this way is known as STRING
SLICING, and we will come back to it later. Meanwhile, let's
have a look at the way that arrays are used in the SOUNDS
programs, and see what else we can do with the 99's sounds
possibilities.

48 49

Lef t
key

pressed

No
Right contact e

key

Right
key

pressed

DOUBLE
NOTE

SINGLE
NOTE

No
contact

pressed y

CALL KEY(1,L,S1)
CALL KEY(2,R,S2)

READ 20 notes
into an ARRAY.
P(0) to P(19)

8
The musical keyboard

In the SOUNDS program you will find a routine that turns
the 99 into a simple electric organ. You might like to build on
this to give the '99-organ' a greater range of notes. There are
two parts to that routine, one produces single notes, the
other gives three-note chords. Let's look at the single notes
first.

The frequencies for the notes in the scale of C are read into
an array — P(8).

Array number Frequency Note
P(1)
P(2)
P(3)
P(4)
P(5)
P(6)
P(7)
P(8)

We now have a simple means of calling up those frequency
numbers. A CALL KEY line finds the code number of the key
that is touched. It is checked to make sure that it is in the
range 49 to 56 (ASCII codes for 1 to 9), then 48 is taken off.
Pressing 33 gives the key code 51, take away 48 leaves 3, and
P(3) is 330, the frequency of E. The note playing line looks
like this:

CALL SOUND(-2000,P(K),1)

A negative sign in front of the time number tells the 99 to
cut any existing sound short, and play the new one
immediately.

You can extend this idea in various ways. One way would

be to use the split keyboard scan so that notes could be
played by the left hand, or the right hand or both. Figure 24
shows the flowchart for the program that would do that. You
will notice that on this flowchart the boxes enclose routines
that may well take up several programming lines, and which
may have jumps and loops inside them. This is standard
flowcharting practice. The first thing to work out is the
overall shape of a program, and the details can be sorted out
later. It may be that you find the need to draw up flowcharts
for more complicated routines within the program.

Figure 24

There are various little problems here, and many of the
solutions can be applied to routines in other programs as
well, so let's work our way through them.

If you look at figure 25 you will see the code numbers
returned by the CALL KEY instruction when working on a
split keyboard. As you can see, the numbers are not nicely
arranged in order. This means that either you must fit the
pitch frequencies into the array so that the keyboard
becomes ordered, or you will have to hunt for your notes
when you reach the playing stage. We will sort out the
pitches in the array. It's fiddly, but worth it in the end. The

262 C
294 D
330 E
349 F
392 G
440 A
494 B
523 C

50 51

Q

18
D

3

T 1

11 1118

Y

L

12

P

11

C

14

V

13

N

15

12

B

6
F

3

4
D

Bb

5
E F#

17 2

A

G A Bb B High
beep

15 0 14 13 16

G

18

Low

CALL KEY(1,....) CALL KEY(2,....) We can arrange these into a table:
1 2 3 4 5 ' 6 7 8 9 0 =

19 7 8 9 10 I 19 7 8 9 10

16
G

17 I

Code 0 1 2 3 4 5 6 7 8 9

Note ACDE A Bb B E F F#

Frequency 220 262 294 330 440 446 494 659 698 740 A
4

S

2

5 6
F

12

H
4

J

2

5
K

3

6

17

ENTEP

16 I 14 13
ALPHA CTRL SPACE FCTN

Figure 25

Code 10 11 12 13 14 15 16 17 18 19

Note G C F B Bb G beep F# G D

Frequency 784 523 349 247 233 196 1397 370 392 587

Figure 27

Z

15

X

0

M SHIFT B SHIFT

pitches can cover any range of notes you want, but here we
will use those given eariler in figure 17, which go from a low
G through to G 2 octaves higher. There are only 19 pitches
there, so we will add a twentieth —1397, this is the frequency
of the high beep that the 99 makes when the INPUT ?
appears. The keyboard is arranged as in figure 26. This
shows only the left hand side. The right hand side follows
the same key codes, and produces the same range of notes.
The high beep is the only note whose key is not in the
equivalent place on the right hand side. (Right code 16 is
above ENTER)

D E F F# G

19 7 8 9 10

And then read them into an array.

10 OPTION BASE 0 (this time we need to start at 0)
20 DIM P(19)
30 FOR N = 0 TO 19
40 READ P(N)
50 NEXT N
60 DATA 220,262,294,330,440,

466,494,659,698,740
80 DATA 784,523,349,247,233,

196,1397,370,392,587

Don't type this in yet. Wait until you can assemble the whole
program.

The central part of the program is the keyboard check, and
there are four possibilities to be accounted for — left hand key
only, right hand key only, one from each side, and none.
Either single key contact will lead on to the single-note
playing routine. You can see the type of routine that will
check in this way in the example below. This prints the code
number(s) of the key(s) pressed.

High

Figure 26

52 53

100 CALL KEY(1,K1,S1) (left)
110 CALL KEY(2,K2,S2) (right)
120 IF S1<>0 THEN 200 (left contact)
130 IF S2<>0 THEN 300 (right contact only)
140 GOTO 100 (no contact)
200 IF S2=0 THEN 300 (no right side key)
210 PRINT K1,K2 (both sides touched)
220 GOTO 100
300 K=K1+K2+1 (single key routine)
310 PRINT K
320 GOTO 100

Compare this with the flowchart, and take a few 'dry runs'
through it. What would you expect to happen under
different types of contact?

The line which needs a little further explanation is line 300.

K = K1 + K2 + 1

The Key Contact variables (K1 and K2) are reset to a value
of —1 whenever the CALL KEY is performed. As only one of
these has been altered by the time the program reaches line
300, the other must still be —1 we need to neutralise it by
adding 1. The end result is that the variable K takes the value
of the key which was pressed, whichever side of the board it
came from. Type that routine in, and run it and see.

Those CALL KEY lines can be simply altered to produce
sounds, rather than print the code numbers. The single note
line becomes:

310 CALL SOUND(-2000,P(K),1)

and the double note:

210 CALL SOUND(-2000,P(K1),1,P(K2),1)

Put it all together and you will have a 2-octave, 2-handed
organ. It is not as quick to respond as a modern electric
organ, but plays more like the old-fashioned wind-powered
organs. How about a bit of Bach, with counterpoint and
two-part harmonies?

P.S. There is no reason of course why you should have the
same sets of notes on both sides of the keyboard — except that
it's easier to write. You would need two arrays, or a
two-dimensional array for the two sets of frequencies, and
you would need to split the single note line into two
routines, one for each half. You would also need a minor
adjustment to the double note line.

~• U I L
DETOUR>

Musical intervals
If you look at a table of note frequencies, you might wonder
how all those numbers fit together. Here's a program which
shows the pattern.

10 OPTION BASE 1
20 DIM P(12)
30 FOR N = 1 TO 12
40 READ P(N)
50 NEXT N
60 DATA 262,277,294,311,330,349,

370,392,415,466,494

This puts into the array the frequencies of the 12 semitones
from middle C upwards — C, C#, D, D#, E, F, F#, G, G#, A,
Bb, B.

70 FOR N = 1 TO 11
80 PRINT P(N);P(N+1);(P(N+1)—P(N))/P(N)
90 NEXT N

This prints out each pair of adjacent notes, and also the
difference between them (the interval) — (P(N+1)—P(N)),
divided by the first of the pair.

Run this and you will see that the third number is always
between .057 and .061. The number varies because the

54 55

frequencies used are all rounded up or down to the nearest
whole number, while they should really be more
complicated decimals.

The difference averages .05935. You can use this to create
any scale. Add this:

100 S=262 (middle C)
110 FOR N= 1 TO 12
120 PRINT INT(S +.5) (to give the nearest

whole number)
130 CALL SOUND(1000,S,1)
140 S=S +S*.05935 (add on the difference)
150 NEXT N

Run this and you will see that the numbers printed agree,
almost exactly, with the frequencies used in the data line.
There is a slight difference on a couple of notes, but not the
sort of differences that most people could hear. Change the
frequency given in line 100 and try this for different scales.
This might prove useful at some point if you ever want to
generate the values for notes, rather than reading them in
from data. The program might also suggest to you other
ways in which you might use the 99 to work out
mathematical problems.

NOTE: The Nearest Whole Number
The INT instruction always rounds down, by chopping off

the decimals. You can get it to round to the nearest whole
number by adding .5 before you INTegerise the number. If
you start with 1.9 (nearest whole number 2), add .5 (to get
2.4) and then INT, you are left with 2. Start with a smaller
decimal bit, e.g. 1.4, add .5 (= 1.9) the INTeger is still 1.

9
Program planning 3
Controlled inputs
Large and small letters
The fact that the 99 has large and small capitals means that
you can vary your presentation of text on the screen, it also
means that you have to be extra careful when checking
inputs. You may remember how, in Pack 1, the answers in
the branching programs (PETS and TRANSPORT) were all
numbers, or "YIN".

The string answers are checked by lines like these:

IF A$= Y" THEN....
IF A$= "N" THEN ELSE (back to

INPUT line)

The program checks for large capitals. What happens if
you type in small capitals? Type in the routine below, and
find out:

10 INPUT A$
20 IF A$-="Y" THEN 50
30 PRINT A$
40 GOTO 10
50 PRINT 'BIG Y"
60 GOTO 10

If you don't use a large Y, the 99 won't jump to line 50. This
could be inconvenient, expecially if you were writing your
program for young children or other people who would be
unlikely to spot the difference between "Y" and "Y". You
need to add some means of making both Y's acceptable to
the 99. There are several ways of doing this — aren't there
always several ways of doing everything?

56 57

The simplest method is to add this line at the beginning of
the program:

5 CALL KEY(3,K,S)

No more is needed. You are not interested in which key is
pressed — that will come through the I_NPUT line. What this
line does for you is to reset the way in which the 99 looks at
the keyboard. Run the program again, and you will see that
large capitals appear on screen at the INPUT, whether or not
you are pressing SHIFT, and whether the ALPHA LOCK is
on or off. This effect only works in keyboard mode 3. In the
other CALL KEY variations the keys give both big and small
capitals (modes 4 and 5) or special code number (modes 1
and 2). On A CALL KEY (3...) line will reset the keyboard
for the rest of the program, or until a different CALL KEY line
is used.

You may wish to allow small letters to be input, in which
case the CALL KEY routine is no use. Here's the second
way, and it's the more obvious one:

IF A$ = "Y" THEN....
IF A$ = "Y" THEN
etc.

These two lines can actually be compressed into one using
logical operators, and you will find out about them in
chapter 11.

The third way of checking your inputs is to use the ASCII
codes.

10 INPUT A$
20 IF ASC(A$)<91 THEN 40
30 A$ = CHR$(ASC(A$)-32)
40 IF ASC(A$) = 89 THEN 60
50 GOTO 10
60 PRINT "THIS IS Y"

The ASCII code is checked twice. At line 20 the check is to
find out if a small letter has been input. Small letters have
codes from 97 to 122. Large letter codes finish at 90. If a large
"Y" has been entered, the program jumps from 20 to 40 and

there it leaps on to 60, as ASCII "Y" is 89. If a small "Y" was
entered the program would go through line 30. This finds
the ASCII code of the letter that was input, (ASCII"Y" is 121)
takes off 32 (121 — 32 = 89) and gives A$ a new code number.

NOTE: ASC(A$) actually checks only the first letter of A$,
no matter how long the string may be, and the new A$ at line
30 is only one letter long. Add a line:

35 PRINT A$

and run the program, typing in "Y" and "YES" in large and
small letters. You will see that no matter what the answer, as
long as the first letter is a "Y" of some sort, the check line at
40 will accept it. This routine is particularly useful when you
can't be sure just how people will try to answer.

INPUT anywhere
You may be writing a program where you would like your
user to write his answer (or other message) at a particular
point on the screen, rather than on the bottom line. The
routine below uses CALL KEY instead of INPUT to get the
information from the keyboard, and CALL HCHAR instead
of PRINT to put it on the screen.

10 CALL CLEAR
20 C = 10 (Column starting point)
30 CALL KEY(3,K,S)
40 IF S<>1 THEN 30 (so that only new contacts

are picked up)
50 IF K = 13 THEN 90 (13 is the code for

ENTER)
60 CALL HCHAR(10,C,K) (starts to "PRINT" at

10, 10)
70 C = C + 1 (to move the "PRINT" position

along)
80 GOTO 30
90 PRINT "END OF INPUT"

(both go to same line)

58 59

Type it in and try it. You can fix the starting position by
changing the value of C in line 20, and the Row number in
the CALL HCHAR line.

If you are only interested in what the first letter of the
INPUT is ("Y" ?) then you would include a line at 45 or 55 to
check this. If you want to store the whole of the input for
later use, you need to collect it into a string store. This
introduces a new technique for handling strings known as
STRING CONCATENATION. String slicing is about
chopping strings up, string concatenation is about sticking
them together (see below). Add this line to the program:

75 A$ = A$ & CHR$(K)

The "&" (ampersand) joins strings together. This line adds
the character with the code K onto the end of A$. Add
another line:

100 PRINT A$

You should have the same message at the bottom of the
screen as you have in the middle. A$ can now be checked
and compared in the usual ways.

You can dress this kind of input routine up, to produce a
better effect. Add a flashing cursor and a beep or two. You
may have come across the imitation inputs in the KEYS
program in Pack 1.

NAME JAMES
J
A
M
E
S
* * DONE * *

Figure 28

String slicing
You can 'slice' any string. It doesn't have to be in an array, it
doesn't even have to be in a variable. Prove it with this:

PRINT SEG$(`TESTING",4,3)

Type this in, and it will print three letters starting from the
fourth one:

TIN

You can slice your way through a string by using a loop. Try
this:

10 INPUT "NAME ":N$
20 FOR 1= 1 TO 5
30 PRINT SEG$(N$,T,1)
40 NEXT T

Run this an type in "JAMES". You will see this

10
Strings

60 61

(R E p

NAME FRED
70
82
69
68

DONE

You don't have to restrict yourself to single-letter slices in
line 30. Change it to PRINT SEG$(N$,T,2) and you will
see this:

NAME HENRY
HE
EN
NR
RY

Figure 29

You will notice that when the loop reaches 5 there is nothing
after the 5th letter, so the single "Y" is printed.

Now this is all very well for names of 5 letters, but what
about longer ones? You need to find how long the name is
before you fix the number in the loop. You can do this using
the LEN command. This tells you the LENgth of a string.
You can see this by typing in : (no line number);

PRINT LEN("WORD")

The 99 will print 4. Notice that you must put quotes around
the word in the brackets so that the 99 knows it is a string.
Failure to do so will give the error report * STRING —
NUMBER MISMATCH.
Add a line to that last program:

15 PRINT LEN(N$) (the $ says it's a string, you
don't need "")

and change line 20

20 FOR T = 1 TO LEWIS)

Line 15 is just there so that you can see what's happening, it
is line 20 which has really altered the program. Now the loop
will always be as long as the word. Try it with names like
"JIM", "JB" and "RUMPLESTILTSKIN".

Printing anywhere
You saw in Controlled Inputs how to input anywhere on the
screen. You are now almost ready to print anywhere on the
screen. To do this you will use an HCHAR (or VCHAR)
instruction, and to use that instruction you need to know the
character codes of the letters you want printed. We can find
this out by getting the ASCII codes of our single letter slices.

Add a line:

25 A = ASC(SEG$(N$,T,1)) (watch those
brackets!)

and change line 30

30 PRINT A

Now type in some names and you will see the codes of the
letters printed on the screen. Add one more line and you
have got controlled printing:

35 CALL HCHAR(10,T,A)

It's also worth adding a CALL CLEAR line at the start of the
program, just to tidy things up.

When you run this now you will get something like this:

Figure 30

Aargh! What went wrong? The problem is, you are
PRINTING (which makes the screen scroll) while you are
HCHARing (which really needs a steady screen). Knock out
line 30, you don't actually need it. Now try again. Better, but

62 63

not too good. The left hand side of the picture tends to
disappear off the screen. Move the column position across by
adding to it in the HCHAR statement:

CALL HCHAR(10,T+10,A)

You should finish up with something like this:

FRED

NAME FRED
* * DONE * *

Figure 31

You will find this sort of "print-anywhere" routine in most of
the programs on the cassette. It is usually worked in as a
sub-routine from line 6000 on. The program then specifies
the string that needs printing, and the row and column
start-points, before the GOSUB command.

350
360
370

W$ = "HELLO AND WELCOME"
R = 3 (will print near the top
C = 7 middle of the screen)

380 GOSUB 6000
390

Bann

6000 FOR Q= 1 TO LEN(W$)
6010 X = ASC(SEG$(W$,Q,1)) (watch the

brackets!)
6020 CALL HCHAR(R,C+Q,X) (C + Q moves

"PRINT" position
along)

6030 NEXT Q
6040 RETURN

You may notice here that Q is used to label the variable in the
loop, rather than N or T, which are the loop variables
normally used in these packs. It is, of course, entirely up to
the individual what variable names he uses. What is
important is that you do not use the same name for two
different stores, especially if there is the slightest possiblity
that these might cross paths during the course of a program.
It helps a great deal if you stick to the same names for the
same types of stores in different programs. In most of the
cassette programs, Q is used as the loop variable in the print
routine. W$ is used for the string of words that are to be
printed.

What's in a string?
Suppose you are looking for a particular word or letter that
may appear in an answer. You might have written a quiz
program and have as a question "WHAT IS THE CAPITAL
OF FRANCE". If your check line looks like this:

IF A$ "PARIS" THEN (well done routine)
PRINT "WRONG"

It could be awkward if the player had entered "THE
CAPITAL OF FRANCE IS PARIS". What you need is some
means of checking whether or not "PARIS" appears
anywhere in the string. There is a simple way of finding that
out. It uses the POS function. This looks for the POSition of a
string inside another string. If the computer reaches the end
of the answer string without finding the word it was looking
for, then it gives a value of 0, otherwise it gives the number
of the letter where the word starts. The line looks like this:

IF POS(A$,"PARIS",1)>0 THEN.... (well done)

It looks through A$ for "PARIS" starting from the first letter
(1). Here's what happens with some different answers to the
question.

64 65

Figure 32

RUN
? THE
THE
QUICK
QUICK
BROWN
BROWN
FOX

FOX

Now enter first "MALE" and then "FEMALE". What
happened?

"I DON'T KNOW"

Ah, it's a
"NO" answer

ANSWER POS number
"THE CAPITAL OF FRANCE IS PARIS" 26
"PARIS" 1
"I THINK IT'S PARIS" 14
"LONDON" 0

Take care as the results are not always what you would
expect. Try this and see;

10 INPUT "MALE OR FEMALE ":S$
20 IF POS(S$,"MALE",1)>0 THEN 50
30 PRINT "YOU'RE A GIRL" (must be if not male)
40 GOTO 10
50 PRINT "YOU'RE A BOY"
60 GOTO 10

We now need to chop that first word off the string, and
leave the rest. It would help if we knew how long the string
was to start with:

15 L = LEN(S$)

Rather than put the rest of the string into a different store,
we will change S$ so that we can go back through the same
lines to chop off the next word:

50 S$ = SEG$(S$,X+1,L)
60 PRINT S$ (just so you can see)
70 GOTO 15 (back for more)

Add the new lines and run it again. You should see
something like this:

QUICK BROWN FOX

BROWN FOX

FOX

Split and shuffle
You can use the POS function to split a string up into its
separate words. The words are marked off by the spaces
between them, so all you need to look for are those spaces.
We can build up a program to do this. Start with this:

10 INPUT S$ (sentence)
20 X = POS(S$," ",1)
30 Z$=SEG$(S$,1,X)
40 PRINT Z$

Line 20 finds the position of the first space, and line 30
puts into the Z$ store the characters from the beginning of
the string up to that space. Run it and enter a short sentence.

The problem is, you haven't told it when to stop. The
obvious time to stop is when you are down to one word, and
there are no spaces left. Add another line:

35 I F X = 0 THEN 80
80 STOP

Variations on this technique are much used in word-
processing programs, where the text is entered in a continual
string, and then chopped into line lengths by the machine,
using this type of check to make sure that each line ends with
a whole word. Words may also be separated by different
types of punctuation (,.;:-) so these must be looked for as
well.

66 67

Knots

You would think that the term used for joining strings
together would be knotting — it isn't. As mentioned earlier,
joining strings is referred to as
STRING CONCATENATION.

If you simply want to print strings together on screen, you
don't bother with this — you just arrange them in your print
line.

10 A$ = "HELLO"
20 INPUT "NAME":N$
30 B$ = "HOW ARE YOU ?"
40 PRINT AS; NS; B$

However, if you were going to use a pretty printing
technique — with an HCHAR subroutine, you would need to
join all the strings together before you sent them off for
processing and printing. Replace line 40 with this:

40 W$ = A$ & NS & B$
Add 50 PRINT W$ (just so you can see)

You cannot include a simple number in a string. It has to
be strung up first. You might have a program that uses a
CALL KEY line, and you want to print the letter of the key
that was touched. Use the CHR$ function:

...W$ = "YOU HAVE TOUCHED THE " & CHR$(K)
& " KEY."

Notice the space left in the strings immediately before and
after the CHR$(K) part. Without these it will be squashed
together in the middle.

You might want to include a number (perhaps in a sums
program) in a line of comment. The function STR$ puts

quotes round a number, or a number variable, thus making it
into a string:

... INPUT ANSWER

if it's wrong.. .

... W$ = " NO, "& STR$(ANSWER) & " IS WRONG"

By the way, if you have got a number in a string store, and
want to know its value, you can reverse the process.
VAL(ANSWER$) will give you the VALue of the numbers in
the string. You will find VAL used in the Games Packs for
getting the value of numbers that have been stored in string
arrays. Number arrays you will remember are very
expensive on memory space. String arrays are much cheaper
to use.

You will see a number of these string handling techniques
used in the HANGMAN program. This, and other string-
based games are covered in Game Writer's Pack 1.

68 69

11
random Iocic

Random Logic !?! There's no such thing, you say. Quite
right, there isn't. That misleading title is just to get you
interested. What we are going to do is to combine random
numbers, which you will have come across in Pack 1, with
LOGICAL OPERATORS which you probably haven't met.

Random
Just to refresh your memory — the RND function produces a
(more or less) random number between 0 and 1. To turn this
into a decent sized number you multiply it. RND*10 gives
you a random number between 0 and 10. This can be turned
into a whole number by the INT function, which chops off
the decimal part.

INT(RND*10)

will produce a random number between 0 and 9.
If you wanted the range of numbers to be 0 to 10 add .5

before you INT.

INT(RND*10 +.5)

or push your range of numbers up by adding another
number.

INT(RND*10) + 1

gives numbers between 1 and 10.
Don't forget to include RANDOMIZE at the start, so the

numbers really are random.

Logical

The 99 will check any equation to see if it is TRUE or FALSE.
A TRUE equation will give a value of —1, a FALSE equation
is worth 0. You can see this in the program below:

10 A = 99
20 PRINT (A =99)
30 PRINT (A = 1)

Run this and the 99 will print —1, because it is true that
A = 99, and then 0, because the equation in line 30 is false.
Add another line:

40 PRINT (A>90)

This is true, and you will see —1 printed. In just the same
way (A<100) would give a —1 value.

True and false works for strings as well. NEW that
program and type this in:

10 A$ = "TEST"
20 PRINT (A$ = "TEST")
30 PRINT (A$ = "TRY")

Run this and you will see —1 and then 0 printed.
You can work these into IF. ..THEN... lines:

10 INPUT A$
20 IF (A$ = "TEST") = —1 THEN 30
ELSE 10
30 PRINT "YOU TYPED IN TEST."

Try it. You will see that it works just as well as the normal
sort of check line — IF A$ = "TEST" THEN 30.. If you want to
check a single variable you might just as well stick to the
standard lines. However, using the logical operators you can
include more than one thing in your check line. Change lines
20 and 30 to these:

20 IF (A$ = "TEST") +(A$ = "TRY") = —1
THEN 30 ELSE 10
30 PRINT "YOU TYPED IN TEST OR TRY"

70 71

Now run it a few times entering "TEST",TRY" and some
other words. The two equations in line 20 are valued, and
their results added together. If both are false the total is 0. If
either of them is true, the result is the same. —1 + 0 = 0 + —1
= —1. You can include as many checks as you want in that
line. As long as any one of the equations is true the result is
still-1.

This routine works in the same way as what is known in
mathematics as the Boolean OR operator. IF either this OR
that OR something else is TRUE.. .

You can produce a routine to work the same as an AND
operator. IF this AND this are TRUE... Try this:

10 INPUT A$
20 INPUT B$
30 IF (A$ ="TEST") + (B$ = "RUN") = —2
THEN 40 ELSE 10
40 PRINT "TEST RUN"

Type in "TEST" and then "RUN" and see what happens. Try
different combinations of inputs. Both equations must be
true to give a total value of —2. Change line 30:

30 IF (A$ = `TEST") + (B$ = "RUN")<>0
THEN 40 ELSE 10

You now have combined AND/OR. The program will jump
to line 40 if "TEST" AND "RUN" are entered. It will still
jump if either "TEST" OR "RUN" are entered. Try it and see.

NOTE: Actually, you can save a bit of typing on that line.
Miss out the "<>0" and it still works. On any IF.. .
THEN... line, IF the condition gives a non-zero result
THEN the program jumps. This is what happens with a
normal check line.

IF A = 99 THEN...

When the 99 hits this line it works out the truth value of
(A = 99). If it is true (value —1, which is not zero) then it
jumps.

You will find logical operators in the check lines in some of
the programs on the cassette. They are frequently used to
check the ASCII code of inputs. Look at the listing of the
SOUNDS program and you will find this:

1230 CALL KEY(3,K,S)

1230 IF (K>64) + (K<72) =-2 THEN 1400

This line checks to see if one of the letters A to G has been
pressed. The range of acceptable character codes is therefore
65 to 71 (>64 AND <72).

Hunt the thimble
Do you know this game? One person hides a thimble (or
something) and the other player(s) try to find it. To help
them in their search the thimble-hider tells them if they are
getting closer to it, or further away. You are 'cold' if you are a
long way from it, and 'getting warmer' as you draw near. We
can get the 99 to hide thimbles for us, using random
numbers, and compare our guesses with the true position
using logical operators. We can play the game on the screen
using co-ordinates. The flowchart for the game is shown in
figure 33.

72 73

74 75

D>4
AND
D<10

Yes
"FOUND
IT !"

RND CO-ORDINATES
RX,CX

INPUT GUESSES
ROW? :R
COLUMN?:C

t
SHOW GUESS
CALL HCHAR
(R,C,42)

t
TOTAL DIFFERENCE

=D

Yes

 Yes
"COOL" I 4

"WARM"
D>2 AND
D<5

D must be
less than 3)

Figure 33

"HOT"

Random co-ordinates
There is no reason why you shouldn't use the whole screen,
leaving just the bottom line free for printing messages on.
INT(RND * 23)+1 will give you a value for RX between 1 and
23. Use a similar line for the column.

Inputs
If you use a normal input your screen will scroll, which will
ruin the display, so use an 'Input anywhere' routines to get
the player's guesses. The numbers could well be two-figure
ones, so collect the key contacts into a string, until ENTER is
pressed, and then evaluate the string. R = VAL(R$).

Show the guess
A simple CALL HCHAR(R,C,42) will print an asterisk at the
guessed spot, but you might like to define a different
character, and give it a splash of colour.

Total difference
You need to find the absolute difference between the
thimble's hiding place and the player's guess. This line
gives it:

D = ABS(R-RX)+ABS(C-CX)

The ABS function tells you the ABSolute difference
between two numbers. It is essential here. Look what might
happen without it. Suppose the thimble was at 10,15 and the
player guessed 12,13.

You can work most of the program out already, but there R-RX = 10 — 12 = —2

may be a few points worth looking at more closely. C-CX = 15 — 13 = 2

Add these together and the total is 0. He's found it!!!
ABS knocks any negative sign off the front of a number.

ABS(-2) + ABS(2) = 2+2 =4

Check lines

Simple check lines only are needed for the "found it" — IF
D = 0 THEN... and for the "COLD" — IF D>9 THEN.. .

Use AND type checks for the others:

IF(D>4)+(D<10) = —2 THEN...

Messages

Have these printed on the bottom line using the HCHAR
routine. If you make sure that each message is the same
length (by padding up with spaces where needed), then they
will overprint each other, and you won't have to worry about
rubbing them out.

Limits and scores

You could limit the number of guesses by using a
FOR. . .NEXT. . . loop, rather than a simple GOTO, and
print the thimble's position if it still hasn't been found after
(say) 10 goes. You could allow as many guesses as need be,
but keep a count, printing it out at the end. This would give
players a best score to aim at.

Have fun, and if you want to know more about the uses of
random numbers in games, then have a look at the Games
Packs.

12
Morse and more sounds

If you LIST the SOUNDS program you will see these lines:

2100 CALL KEY(3,K,S)
2110 IF S=0 THEN 2100

2130 IF (K>64)+(K<90) =-2 THEN 2495

2495 PRINT CHR$(K);
2500 K = K — 64
2505 IF K>13 THEN 2800
2510 ON K GOTO

This is the part of the program which prints the letters and
sends the computer off to make the morse beeps and buzzes.

Notice the semi-colon at the end of line 2495. This is so that
the letters are printed across the screen like a typewriter.
Line 2500 then brings the value of K down into the range 1 to
26. This is so that an ON. ..GOTO... line can work. That
line cannot, however, cope with the full 26 GOTO line
numbers, so line 2505 redirects the letters of the second half
of the alphabet (K over 13). At line 2800 K is again revalued
to bring it back into the range from 1 up, and a further
ON... GOTO... line sends the computer off for the
appropriate beeps. You might have expected this part of the
program to be packed full of CALL SOUND lines. It isn't.
The dot and dash sounds are produced by two separate
subroutines (at 2400 and 2450), so the program is packed
with GOSUBS instead.

GOSUB 2400
GOSUB 2450

produces the dot and dash for the letter A.

76 77

r CALL SOUND
(SHORT)

CALL SOUND
(LONG)

Figure 34 shows the Morse code for use with this program.

0 A ._ K _._ U .._
1 B _... L ._.. V ..._
2 C _._. M __ W .__
3 D _.. N _. X _.._
4 E . O O. Y _. __
5 F .. _. P . __. Z __..
6 G __. Q --•-
7 H.... R .__
8 I .. S ...
9 J J. ___ T _

Figure 34

You could adapt the program so that the dots and dashes
were printed out. The sections that deal with the different
letters and numbers are all clearly REMed. Include a print
line in each of the sections like this:

2520 REM A
2521 PRINT "._" (your new line)
2522 GOSUB 2400 (dot)
2525 GOSUB 2450 (dash)
2530 GOTO 2100 (back for the next)

Notice that there is no semi-colon this time. The screen you
get will look like this;

Figure 35

After a while you will get to know the morse code, and no
longer need to cheat by making the 99 work it out for you.
That's the time to build your own morse buzzer. Here is the
flowchart for a simple buzzer.

CALL KEY

Figure 36

Sound effects
The best way to find out the sort of sound effects you can get
out of the 99 is to sit and play with it for a few hours, but here
are a few ideas that might lead you towards some good
sounds. Some of these you may have come across in the
EFFECTS program in Pack 1, others are included in the
SOUNDS program.

Falling bomb
Because each sound on the 99 is distinct, it is not possible to
get a completely smooth sliding or dropping effect, however,
this doesn't sound too bad:

10 FOR P = 1500 TO 200 STEP —10 (down the
scale)

20 CALL SOUND(10,P,1)
30 NEXT P

78 79

and when it lands you need a good blast:

40 CALL SOUND(1000,110,0,215,0,
315,0,-8,0)

"0" is as loud as you can get. The combination of three notes
out of harmony and the crackly white noise is fairly striking.

The explosion must then die away, so this time the volume
goes into a loop:

50 FOR V = 0 TO 30
60 CALL SOUND(100,150,V,200,V,

300,V,-5,v)
70 NEXT V

You don't have to change the note pitches in line 60. They
could be the same as in line 40, but it definitely helps to use
—5 here rather than —8. There is a distinct difference in the
quality of the noise.

Sirens

These do present a real problem, because the best sirens
have a fast smooth up and down sound. A straight two-tone
is easy enough:

10 CALL SOUND(300,523,1)
20 CALL SOUND(300,392,1)
30 GOTO 10

Sliding ones are a bit fiddlier. How does this sound to you?

10 FOR P = 400 TO 600 STEP 10
20 CALL SOUND(-50,P,1,-1,1)
30 NEXT P
40 FOR P = 600 TO 400 STEP —1
50 CALL SOUND(-50,P,1,-1,1)
60 NEXT P
70 GOTO 10

Notice the negative time (-50,...). This gives a smoother
change from one note to the next. Take the minus sign out
and listen to the difference.

The inclusion of the noise in the sound gives a more
interesting edge to the effect. Alter the ranges in the P loops,
and also the size of the STEPs and try some variations. You
will tend to find that if you make your noises any shorter the
end-of-sound clicks become more of a nuisance.

Beeps

The 99 produces two types of beeps as part of its user
guidance system. There is a high-pitched one, when you
have an INPUT and when you first turn the machine on, and
a lower one that you will hear on an INPUT WARNING, or a
BREAKPOINT. If you are developing your own "Home
Confuser" you will need to include these.

High beep CALL SOUND(150,1397,1)
Low beep CALL SOUND(200,220,1)

Engines

The 'white noises' (-5 to —8) can be used on their own for
space-age engine sounds, or they can be combined with
notes to produce different effects. This is the train on
SOUNDS.

4610 FOR V = 1 TO 10 STEP 9
(first time loud (1), next quiet (10))

4620 FOR N = 1 TO 3
4630 CALL SOUND(40,220,V,-7,V+6)

(to give an undertone of noise)
4640 NEXT N
4650 CALL SOUND(100,165,V,-7,V+6)
4660 NEXT V

The whole routine is then enclosed in another loop to keep it
going. The train's 'whistle' also combines noise and notes.

4680 CALL SOUND(1000,440,1,622,1,880,1,-1,1)

80 81

13
Graphs and maths

Two different sounds are used to make the 'old car' noise — in
fact it uses three sounds.

4510 CALL SOUND(10,-3,V) (Volume also
looped)

4520 CALL SOUND(10,-5,V)

The third noise is the end of sound 'click', which is very
noticable with short sounds.

While the 99 has an excellent 'number crunching' capability,
it isn't so hot on graphic displays, as only low-resolution
graphics are available in TI BASIC. This means that the
'graph paper' of the screen is only 24 squares by 32. With
high-resolution graphics you might have 'graph paper' as
fine as 200 by 250 squares.

This doesn't matter with fixed displays, as you can
produce finely detailed pictures using the character
definition routines, but it is a little limiting for mathematical
displays. However, that said, here is some idea of the sort of
things you can do.

Equations of lines
You can get a display for any equation of the type X=Y * Z
using this routine.

10
20

INPUT
FOR Y

Z
= 1 TO 24 (to go on every line)

30 C = Y*Z
40 IF C<=32 THEN 70 (it's going off the screen)
50 Y = 24
60 GOTO 90
70 R=25 — Y (so it works from the bottom)
80 CALL HCHAR(R,C,42) (prints asterisks)
90 NEXT Y

100 INPUT A$ (wait for it!)
110 CALL CLEAR
120 GOTO 10 (try another number)

In normal maths X and Y co-ordinates start at the bottom left
and go up and right. The 99's co-ordinates, of course, start at

82 83

~-~

the top left. You have got two choices — either stand the T.V.
set on its side and look at it in the mirror, or swop them
around. If you look closely at this program you will realise
that much of it is devoted to producing the right type of
presentation. Type it in and run it and try entering different
numbers, whole numbers and decimals. X=Y/2 is the same
as X = Y * .5. Figure 37 shows (in line form) some of the
displays you should see.

Figure 37

(Note — this program will not work where Z is less than .5, as
this gives a value for C, in line 80, of 0.)

More complicated equations of the type X = Y * Z + A can
be catered for by a couple of minor additions.

15 INPUT A
30 C = Y*Z + A

You should now get displays something like this:

~X ~
L4 ~

+%~X
,'‘) y*2

Figure 38

The 99 can also be used to plot SINE waves using a
program like this:

10 CALL CLEAR
20 FOR C = 1 TO 32 STEP .5 (note the step)
30 R = INT(SIN(C)*5 +15)
40 CALL HCHAR(R,C,42)
50 NEXT C

The numbers in line 30 can be varied to produce different
effects. The wave will remain lumpy whatever you do.

Angles

For some reason best known to themselves, computers do
not measure angles in degrees like most folk do. They
measure in RADIANS. An angle of 1 RADIAN is what you
have got when the arc is one radius long. (see figure)

Figure 39

85

86 87

*

STEP .2 (we will use
radians this
time)

(5 to make it bigger, +10 to
move it to the centre)

A whole circle therefore has 2 PI radians (approximately
6.3 rads). This is all very inconvenient to those of us used to
working in degrees, but you can get the 99 to convert
degrees to radians for you. The neatest way to do this is by
using the ARCTANGENT function. As any mathematician
will tell you, 4 * ATN(1) is equal to PI. (If you want to know
why, ask that mathematician.) PI/180 is what you need to
turn degrees into radians. Try this:

10 DR = (4*ATN (1)) /180 (Degrees to Radians)
20 INPUT ANGLE
30 PRINT SIN(ANGLE*DR)
40 GO TO 20

Run it and try a few different angles. Sine 30° is .5, sine 90°
is 1, sine 60° is .866. Change line 30 to read:

30 PRINT COS(ANGLE*DR)

and you can get the cosines of angles in the same way.
Sines and cosines can be used to plot 'circles'. (They are

not very round)

10 FOR A = L TO 6.3

20 R=SIN(A)*5 + 10

30 C=COS(A)*5 + 15
40 CALL HCHAR(R,C,42)
50 NEXT A

Change the numbers in 20 and 30 to alter the size and
position. * *

* *

22

21

20

19

18

17

16

15

14

13

12

11

10

*

*

**
*

*
*

Figure 40

*

**

*
*

**** **
*********** **

Figure 41

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

J

* **
*

*
* *

*
*

**
********** *
***********i*

*
*
*

*
*

*
*

* * ***

-=- - - - ~ - - - - - • ~ ~ -

a _._**~*
* * * s *

* *
*
*

*

*

*

*

*
*

9

8

7

6

5

4

3

2

*

Displaying statistics

Here's a way of displaying figures as graphs. It is suitable for
things like monthly sales or production figures. The first half
of the program collects in a set of thirty numbers into an
array. You will notice that the numbers are all stood on their
heads so the graph comes out the right way round. These
numbers must all be in the range of 1 to 24 — this is only a
simple demonstration after all.

10 OPTION BASE 1
20 DIM R(30)
30 FOR N = 1 TO 30
40 INPUT "NUMBER ":R(N)
50 R(N) = 24 — . R(N) (upside down)
60 NEXT N

The next part plots the figure across the screen.

70 CALL CLEAR
80 FOR C = 1 TO 30
90 CALL HCHAR(R(C),C,42)

100 NEXT C
110 INPUT A$ (hold it!)

The graph in figure 40 was produced by this set of
numbers:

1,2,3,4,5,6,8,10,12,14,16,18,20,22,20,18,20,20,18,17,16,15,14,
13,12,9,9,9,5,3

A simple conversion will make this program produce
barcharts instead of line graphs. We can use the VCHAR
routine to drop columns down from the line. All you need to
calculate is the length of the VCHAR column. Add this:

85 L = 24—R(C)
and alter 90 CALL VCHAR(R(C),C,42,L)

The same set of figures now look like figure 41.
The Record Keeper's Pack goes into far more detail on the

display of statistics, and of their analysis, and provides some
programs to do it for you.

Maths on the 99

What follows is simply an outline of the different
mathematical functions that are available on the 99, and not
an attempt to teach you how to use them. Some of them will
be dealt with in more detail in later books in this series, as
and when they are needed for particular routines.

ABS — The ABSOLUTE value of a number is the value of the
number itself, never mind whether it is positive or negative.

ABS (99) — the ABSOLUTE value of 99 is 99
ABS (-99) — the ABSOLUTE value of —99 is still 99

ATN — gives you the ARCTANGENT, that is, the angle for a
given tangent. The angle will be given in radians. To convert
these to degrees multiply by 180/7r which is 57.3 (approx.).

COS — gives the COSINE of an angle, where the angle is in
radians. If the angle (A) is in degrees you must multiply by
7r/180. You can use this formula for accurate work:

COS(A * 4 * ATN(1)/180)

Otherwise, use

COS(A)*0.02

which is roughly the same.

EXP — the EXPONENTIAL function is the inverse of the
LOGARITHM function. In other words, it will convert a
natural logarithm back to a decimal number.

INT — gives the INTEGER of a number. The INTEGER is the
whole number part, with the decimal lopped off the end.
This means that INT always rounds down. To make it round
to the nearest, you must use this formula:

INT(X + .5)

If X was 1.2 to start with, it becomes 1.7, with the extra .5.
and is INTEGERED to 1. When X is 1.8 it becomes 2.3 (with
the extra) and is rounded to 2.

88 89

LOG gives you the natural logarithm of a number.

RANDOMIZE makes the random numbers produced by
RND start at an unpredictable part of their sequence, and
thus appear truly random. If you do not include a
RANDOMIZE line early in a program that uses RND, then
the numbers will come out the same every time you run the
program.

RND — produces pseudo-random numbers. The range is
normally between 0 and 1 but can be pushed into whatever
range you need by multiplying, and adding. (See chapter 11
and Pack 1).

SGN — the SIGNUM function looks at the sign in front of a
number and tells you if it is positive or negative.

PRINT SGN(99)

will give you 1. (Positive number)

PRINT SGN(-99)

will give you —1. (Negative number)

PRINT SGN(0)

will give you 0

SIN — the SINE of an angle. This assumes the angle is in
radians. If it is in degrees, use the same formula as for COS.

SQR — tells you the SQUARE ROOT of a number

TAN — the TANGENT of an angle. Again, normally in
radians, use the COS formula for angles in degrees.

14
Why won't it work?

The thing to do when you have a program that doesn't work
when you run it for the first time, is keep calm. Don't worry,
it happens all the time. It often happens for the silliest
reasons. A major cause of program failure is typing error.
You spelt a variable name wrongly, or typed the wrong letter
for it. You missed the last closing bracket off a line that had
lots of brackets. You missed out the space between two
words, where your program line spills off the edge of the
screen and onto a second line. Whatever the error, you will
almost certainly be told what line it's on. Check that you
have typed what you meant to type.

Variables can also cause trouble if they are not kept under
control. If you suspect that one may be the cause of your
bug, then add lines to the program to print it out, whenever
it is used or altered in any way. You can then check that it is
what it should be. Make the lines something like this:

101 PRINT "N=";N

and you will know what it is there for. It is definitely worth
including the variable's name in your print line if you are
following two or three different ones at the same time.

TRACE your programs and check that the computer
actually goes through the routines you want it to.

Check your error reports using Appendix B or your User's
Reference Guide.

If you still can't work it out, SAVE the program on tape,
turn the 99 off and go away. When you come back to it again
the next day you will look at it with fresh eyes and will be
much more likely to spot the bug.

90 91

appendices
A

Glossary
Array a set of variables having the same name, but with
different numbers, e.g. A(1),A(2),A(3), etc. The 99 will set up
small arrays automatically, but if you want an array of more
than one-dimension, or with more than 10 items, you must
organise it yourself with a DIM statement. (See 'Arrays')
ASC gives you the ASCII code number of a character. (See
Pack 1 and 'Strings')
Binary a system of counting used by computers and people
with only two fingers. (See 'Creating your own Characters').
BREAK used to halt the program at particular places during
its run. Restart with CONTINUE. (See 'Program Planning 1')
Bug a fault in the program. Complicated programs very
rarely work well first time (or second time, or third time).
You have to go through them sorting out minor errors. This
is known as 'debugging'.
Byte a unit of memory. The smallest unit of memory is a
BIT — Binary digIT. This is either 1 or 0 (on or off). 8 BITS
make one BYTE (a number between 0 and 255). 1024 BYTES
make 1 KILOBYTE (1K). The 99 is a 16k computer, so has
16384 bytes of memory. Roughly speaking, 1 byte will hold
one character, or BASIC instruction. The average program
line will use around 25 bytes.
CALL CHAR built-in sub-program used for defining
characters. (See 'Creating your own Characters')
CALL HCHAR Horizontal CHAracter Repitition sub-
program. For examples of use, see 'Color', 'Strings' and
Pack 1.
CALL VCHAR Vertical CHAracter Repitition. As above.
CALL GCHAR used for finding out what's where on the
screen. (See Game Writer's Pack 1')

CALL KEY used to get information direct from the
keyboard, without the user having to press ENTER. See Pack
1 and also 'The Musical Keyboard' and 'Strings'.
CALL COLOR fixes the colours of sets of characters. (See
Pack 1 and 'Colour')
CALL SCREEN fixes the screen colour. (See Pack 1)
CALL SOUND the sub-program that produces music and
noises. (See Pack 1 and chapters 6, 8 and 12 in this Pack.)
CALL JOYST the sub-program which takes in information
from joysticks. (See Game Writer's Pack 1)
Character A letter, number, symbol, or user-defined
graphic. Each character is known by its own special ASCII
code. ASCII code lists are given in Pack 1 and the User's
Reference Guide.
CHR$ followed by a number (in brackets) will give the
character that has that code number. CHR$(65) is "A". (See
Pack 1)
CONTINUE will restart the program after a BREAKPOINT
report. (See 'Program Planning 1')
Data means information given to the computer to work on.
Inputs are Data. DATA also refers to the information written
into the program for the computer to READ. (See 'Teach
your 99 to read')
DELete the function key is used to rub out unwanted
characters when writing or editing lines.
DIM short for DIMension. Used to set the size of arrays.
(See 'Arrays')
DISPLAY means the same as PRINT. In TI EXTENDED
BASIC, DISPLAY allows you to include extra information in
your print line.
EDIT the command used to pull a program line back to the
workspace for rewriting. Can be more simply replaced by the
line number followed by FCTN and ❑E or FCTN and E.
ELSE included in an IF. ..THEN... line when you want
to include an alternative jump in the line. (See Pack 1)
END Traditionally, the last line in a program is ...END.
Can be used instead of STOP, and works exactly the same.
FOR... NEXT ... loops ways of running a series of
numbers through the same part of a program. (See Pack 1)

92 93

GOTO or GO TO sends the computer to a particular line.
This is an UNCONDITIONAL JUMP. The computer must
GOTO the line, what ever has happened. (See JUMPS
below)
GOSUB sends the computer off to a subroutine. (See
'Program Planning 2')
Hexadecimal number system used in defining characters.
Easy to operate if you have 2 tame spiders, or a 16-bead
abacus. (See 'Creating your own characters')
IF...THEN ... makes the computer jump to a line IF a
certain condition , or set of conditions exist. If things aren't
right, then the computer will jump to the line number given
after ELSE (if used), or simply go on to the next line.
IF. ..THEN... produces a CONDITIONAL JUMP. (See
Pack 1 and 'Random Logic')
INPUT waits for some data to be ENTERED from the
keyboard. (See Pack 1)
Jumps where the computer goes off to another line further
on, or back up the program, rather than simply to the next
line.

an Unconditional Jump occurs with GOTO or GOSUB, or
ON. ..GOTO (GOSUB)

a Conditional Jump is what you get with IF. ..THEN.. .
LEN measures the LENgth of a word or a string variable, by
counting its letters; e.g. LEN("METRE") = 5. (See 'Strings')
LET puts a number or a string into a store. It can be
omitted. LET A = 5 is the same as A = 5 to the 99. Use it if it
makes the program easier to read. (See Pack 1)
LIST makes the program appear on screen. Stop the
listing by pressing FCTN and E.
LIST 1000 would make the single line appear.
LIST 1000- will LIST the program starting from line
1000. (See Pack 1)
LIST 1000-2000 will list the lines from 1000 down to
2000 and stop there.
Load to transfer a program from tape (or disk) into the
computer's memory, using the OLD command. (See below)
Loop where the program runs through the same routine
several times. (See Pack 1)

NEW wipes a program and all its data from memory, ready
for a new program. (See Pack 1)
NEXT see FOR... NEXT... loops.
OLD command used to load programs from tape (or disk)
into memory. The 99 must know where the program is
coming from, as it has different routines to deal with tape
and with disk loading. Load from tape using "OLD CS1".
ON ... GOTO (GOSUB) a way of controlling jumps. The
number in the variable after ON must be part of a simple
series, 1,2,3... etc, and must not be higher than the number
of possible lines to jump to.

ON K GOTO 100,200,300

will only work as long as either 1,2 or 3 is the value of K. (See
Pack 1)
OPTION BASE fixes the lowest number to be used in an
array. Can be either 0 or 1. (See 'Arrays')
POS finds the POSition of a string inside another string.
(See 'Strings')
PRINT puts characters on the bottom line of the screen.
PRINT " " prints whatever is in the quotes.
PRINT A+B works out the sum of the two numbers and
prints that.
Print Separators different sorts of punctuation, to give
different screen spacings.
Semi-colons (;) print things close together.
Commas (,) leave half-screen spaces.
Colons (:) push the print position to the next line. (See
Pack 1)
READ tells the computer to collect some information from
the DATA list and put it into a store. (See 'Teach your 99 to
Read')
REM short for REMark. Used in programs to write notes to
yourself so you know what you are doing. (See Pack 1)
R E S EQU E N C E tells the 99 to renumber the program so that
the lines are nicely spaced out again. (See Pack 1)
RESTORE puts the DATA marker back to the beginning of
the DATA list. Can also be used to set the DATA marker to
particular points in the program, and is very useful if you are

94 95

using several different blocks of DATA and cannot tell which
will be used when. RESTORE 4000 will make the 99 READ
the next DATA item it finds after line 4000. Well worth
including a RESTORE ... (whatever line number) at the
start of any section where you are going to do some reading.
(See 'Teach your 99 to Read')
RETURN sends the computer back from a subroutine to the
main program. (See 'Program Planning 2')
Routine a section of a program that does a particular job. It
may be one line long, or hundreds. See also Subroutine.
RUN clears all the variables and starts the program from the
beginning. RUN followed by a line number will start the
program from that point instead. (See 'Program Planning 1')
SAVE copies a program from the 99's memory onto tape (or
disk.) The program in memory is unaffected by SAVE. (See
Pack 1)
SEG$ gives a SEGment of a string. (See 'Strings')
ST EP sets the difference between the numbers in a
FOR. . .TO. . .NEXT. . . series. Miss it out if the difference
is 1. (See Pack 1, and 'Morse and More Sounds' for examples
of its use.)
STOP stops the program, with a * DONE * report.
STR$ converts a number (or number variable) into a string
(variable). (See 'Strings')
Sub-program one written into the 99's operating system,
and used with a CALL instruction.
Subroutine a routine which can be re-used as often as need
be. The computer goes to it on a GOSUB instruction, and
goes back to the main program with RETURN. (See 'Program
Planning 2')
Subscript the number in brackets after an array name. It
must be a whole number, and not higher than the number
set by the DIM instruction. (See 'Arrays')
TAB fixes the column number at which a print item will be
placed. (See Pack 1)
THEN see IF. ..THEN... above.
TO sets the range of numbers in a FOR... TO... line. 1
TO 5 means 1,2,3,4,5.
TRACE allows you to see where the program is going while

it runs. (See 'Program Planning 2')
UNBREAK cancels a BREAK command. (See 'Program
Planning 1')
UNTRACE cancels TRACE. (See above)
VAL works out the value of any numbers in strings, or in
string variables. (See 'Strings')
Variables a memory store. Number variables store
numbers, and string variables store words, letters, symbols
or numbers in quotes.

96 97

B
Error messaces

A list of common Error Messages is given in Pack 1, and a full
list can be found in the User's Reference Guide. The
following may be useful to you when you are first exploring
different areas of programming, as this is the time when you
make most mistakes, and when the messages mean least to
you.

CALL sub-programs

• BAD VALUE — you are using a number which is outside
the possible range; e.g. a color-set number, or color code
above 16, or a row number over 24. Easily happens with the
hex-strings (the pattern-identifiers) in CALL CHAR lines. If
you type CALL HCHAR, instead of CALL CHAR, you will
also see this.
• INCORRECT STATEMENT — you have most likely
mistyped the word after CALL, or your are trying to produce
more than three notes, or more than one noise with a CALL
SOUND line.
• MEMORY FULL — and there is no room left for you define
a new character.

Sub-routines

• BAD LINE NUMBER — the line number you have told it to
GOSUB to, doesn't exist.
• MEMORY FULL — you have mistyped and finished up
with a line like this:

100 GOSUB 100
The 99 whizzes round this loop unitl the GOSUB STACK
(where it keeps a note of the line numbers it must RETURN

to) is full of 100's. Hence MEMORY FULL.
• CAN'T DO THAT — the program has arrived at a RETURN
without going past a GOSUB. Most likely it ran off the end of
the main program and into the first sub-routine.
• INCORRECT STATEMENT — there is something typed
after RETURN, or you have mistyped an ON. ..GOSUB.. .
line.
• BAD VALUE — you have an ON... GOSUB... line and
the number that it is supposed to jump ON is either 0, or too
big. If you have 4 possible sub-routines, the only acceptable
numbers are 1,2,3 and 4.

Data

• DATA ERROR The four most likely causes of this are:
1 trying to READ too many items.
2 commas missing between items in the DATA list.
3 mixing strings and numbers so that an item is READ into

the wrong type of store.
4 using RESTORE with a line number, and the line number

is higher than the last line of the program.

Arrays

Most Array Errors are picked up by the computer while it is
checking the program before it actually starts to run. This is
the point at which arrays are dimensioned.
• BAD VALUE — the array has a dimension greater than
32767, or of 0, when the OPTION BASE is 1.
• CAN'T DO THAT — the OPTION BASE line comes after
the DIM line, or you are trying to use more than one
OPTION BASE line in the program.
• INCORRECT STATEMENT — check the typing of your
DIM line, you have got an invalid name, a bracket missing,
or too many dimensions. (Max. 3 in TI BASIC)

Check also the OPTION BASE line. It might be mistyped,
or lack a number (0 or 1) at the end.
• NAME CONFLICT — You have got two arrays with the

98 99

same name, or, more likely, an array and a simple variable
with the same name. You cannot have A(10) and A in the
same program.
• MEMORY FULL — you are too ambitious. Try again with a
smaller array.
You may also get this when the program is running:
• BAD SUBSCRIPT — subscripts must be whole numbers,
and within the dimensions of the array.

String handling

• BAD ARGUMENT — most likely with ASC and VAL where
you are asking the 99 to do something to a string that doesn't
exist at all, or is empty. ASC(A$) won't work if A$ is "" at the
time.
• BAD VALUE — this might crop up with CHR$,POS and
SEG$ if the number in brackets is 0 or more than 32767.
• STRING — NUMBER MISMATCH. You have got your
strings crossed and are asking the 99 to perform a string
function on a number, or a number function on a string.
ASC(N) won't work. Neither will CHR$(N$). Remember you
can always convert a number to a string by using STR$, and
that VAL will give you the number value of a string (as long
as it is a number — e.g. "99").

C
Keyboard plan
(CH 128 to 159)

1 2 3 4 5 6 7 8 9 0 =

158 159 157

Q w E R T Y U O P I/

145 151 133 146 148 153 149 137 143 144

A

129

S

147

D

132

F

134

G

135

H

136

J

138

K

139

L

140 156
ENTER

SHIFT
Z

154

X

152

C

131

V

150

B

130

N

142

M

141 128 155
SHIFT

ALPHA
LOCK CTRL SPACE FCTN

CHARACTERS 128 TO 159 FROM THE
KEYBOARD
Use this when you have defined your own characters to
numbers in this range. Hold down CTRL and press the key
to get the character number shown. CTRL and ❑ A is the
same as CHR$(129)

Characters called up this way can be included in the LISTS
and used in PRINT lines. (See Pack 1).

100 101

