
As you are now the owner of this document which should have come to you for free, please
consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. I give my time for free, but it costs me money to bring this document to you.
You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any
mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at
the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

TEXAS INSTRUMENTS

TM 990
POWER BASIC
Reference Manual

Second Edition

PREFACE

This document describes Texas Instruments' POWER BASIC which is an
interactive programming language used with the TM 990/101M or the TM
990/10M microcomputers.

The manual is organized into three major segments: Overview,
Functional Description, and POWER BASIC Reference Guide. The first
segment contains the introduction and a full discussion of the
installation procedures. The second segment contains a functional
description of POWER BASIC as well as general programming information
that describes conventins of the language. The third segment is a
more specific reference section which covers POWER BASIC in greater
detail. It contains statement syntax and specific examples.

The following manuals present additional information relative to the
use of POWER BASIC.

Hardware:

MP321 "TM 990/100M Microcomputer User's Guide"
MP337 "TM 990/101M Microcomputer User's Guide"
M15334 "TM 990/201 and TM 990/206 Expansion Memory Boards"
MP336 "TM 990/203 Expansion Memory Board"
MP344 "TM 990/302 Hardware User's Guide"

Software:

MP311 "TM 990 POWER BASIC Elementary Tutorial Manual"

TABLE OF CONTENTS

MERVIN
SECTION I. INTRODUCTION

1.1 General 1-1
1.1.1 Evaluation BASIC 1-1
1.1.2 Development BASIC 1-1
1.1.3 Development BASIC Enhancement Software

Package 1-2
1.2 Interaction with POWER BASIC 1-2
1.3 Conventions Used in This Manual 1-2

SECTION II. INSTALLATION

2.1 POWER, BASIC 2-1
2.2 Equipment Requirements 2-1
2.2.1 Microcomputer Board 2-2
2.2.2 Accessory Boards 2-2
2.2.3 Power Supply 2-2
2.2.4 Chassis 2-3
2.2.5 Terminal and Cables 2-3
2.2.6 Audio Cassettes and EPROM Programming 2-4
2.3 System Setup 2-4
2.3.1 Power Supply Connections 2-4
2.3.2 EPROM Insertion 2-7
2.3.3 CPU Jumper Settings 2-8
2.3.4 Five Switch Dip on TM 990/101M Board 2-13
2.3.5 Accessory Boards Jumper Settings 2-13
2.3.5.1 TM 990/302 Jumper and Switch

Settings 2-13
2.3.5.2 TM 990/201 Jumper and Switch

Settings 2-14
2.3.6 Board Insertion and Terminal Hookup 2-14
2.3.6.1 Board Insertion 2-15
2.3.6.2 Terminal Hookup 2-16
2.4 Operation 2-18
2.4.1 Verification 2-18
2.4.2 Power-up/Reset 2-18
2.5 Sample Programs 2-19
2.6 Debug Checklist 2-21
2.7 RAM Expansion 2-23
2.8 Cassette Transportation Operation 2-23
2.8.1 Procedures to Record on Digital

Cassette From POWER BASIC
(SAVE) 2-27

iii

2.8.2 Procedures to Record on Audio
Cassette From Development BASIC
(SAVE) 2-28

2.8.3 Procedures to Playback Tape From Digital
Cassettes to POWER BASIC (LOAD) 2-29

2.8.4 Procedures to Playback Audio Cassette
to Development BASIC (LOAD Unit #) 2-31

2.9 Two User or Single User/Two Partition
Operation 2-31

2.9.1 Single User/Two Partition POWER BASIC
Configuration 2-32

2.9.2 Two/User/Two Partition POWER BASIC
Configuration 2-34

2.9.3 Communications Between Multiparttttons 2-35
2.9.4 Example 2-35
2.10 EPROM Programming 2-35
2.11 LOAD Vector 2-36
2.12 TM 990/101M Second EIA Port 2-37

FUNCTIONAL DESCRIPTION
SECTION III. GENERAL PROGRAMMING INFORMATION

3.1 General 3-1
3.2 BASIC Language 3-1
3.3 POWER BASIC Program 3-1
3.4 Source Statement Format 3-2
3.4.1 Character Set 3-2
3.4.2 Line Number Field 3-2
3.4.3 Statement Field 3-3
3.4.4 Tail Remark 3-3
3.5 Edit Mode Commands 3-3
3.6 Constants 3-5
3.6.1 Hexadecimal Integer Constants 3-5
3.6.2 Decimal Integer Constants 3-5
3.6.3 Decimal Real Constants 3-5
3.6.4 String Constants 3-6
3.7 Variables 3-6
3.7.1 Simple Variables 3-7
3.7.2 Numeric Array Variables 3-7
3.7.3 Simple String Variables 3-7
3.7.4 String Array 3-8
3.7.5 Reserved Variables 3-9
3.7.6 Variable Storage 3-9
3.7.6.1 Number Array Storage 3-9
3.7.6.2 Strings and String Array Storage 3-11
3.7.7 Variable Format and Accuracy 3-12
3.8 Operators and Expressions 3-15
3.8.1 Arithemetic Operators 3-15

iv

3.8.2 Arithmetic Expressions 3-15
3.8.3 Logical Operators 3-16
3.8.4 Logical Expressions 3-16
3.8.5 Relational Operators 3-17
3.8.6 Boolean Operators 3-17
3.8.7 Boolean and Relational Expressions 3-18
3.8.8 Expression Evaluation 3-18
3.9 Multiple Statements "••" 3-18
3.10 Keyboard Mode 3-19
3.11 Errors and Error Listings 3-20
3.12 Reset and Load Function Operation 3-23

POWER BASIC REFERENCE GUIDE

SECTION IV. BASIC COMMANDS

4.1 General 4-1
4.2 CONTINUE Command 4-1
4.3 LIST Command 4-2
4.4 LOAD Command 4-2
4.5 NEW Command 4-5
4.6 PROGRAM Command 4-6
4.7 RUN Command 4-11
4.8 SAVE Command 4-11
4.9 SIZE Command 4-12

SECTION V. BASIC STATEMENTS

5.1 General 5-1
5.2 COMMENT or Remark (REM) Statement 5-3
5.3 Dimension Statement 5-4
5.4 Function Definition 5-5
5.5 Variable Assignment 5-6
5.5.1 LET Statement 5-6
5.6 Control and Computed Transfer Statements 5-7
5.6.1 Unconditional GOTO Statement 5-7
5.6.2 Conditional IF-THEN-ELSE Statement 5-8
5.6.2.1 IF-THEN Statement 5-8
5.6.2.2 ELSE Statement 5-9
5.6.3 Subroutine (GOSUB, POP, and RETURN)

Statements 5-10
5.6.4 ON Statement 5-15
5.6.5 FOR/NEXT Loops 5-16
5.6.6 ERROR Statement 5-21
5.6.7 STOP Statement 5-22
5.6.8 END Statement 5-22
5.7 Internal Input Statements 5-23
5.7.1 DATA Statement 5-23

5.7.2 READ Statement 5-24
5.7.3 RESTOR Statement 5-25
5.8 Terminal I/O Statements 5-26
5.8.1 INPUT Statement 5-26
5.8.2 PRINT Statement 5-32
5.8.2.1 Print Formatting 5-36
5.8.2.2 TAB 5-42
5.8.2.3 Summary - Print Statement Rules 5-43
5.8.3 UNIT Statement 5-44
5.8.4 BAUD Statement 5-45
5.9 Interrupt Processing 5-46
5.9.1 IMASK Statement 5-46
5.9.2 TRAP Statement 5-47
5.9.3 IRTN Statement 5-48
5.9.4 Assembly Language Processors 5-48
5.10 BASE Statement 5-50
5.11 TIME Statement 5-51
5.12 RANDOM Statement 5-53
5.13 ESCAPE and NOESCAPE Statements 5-54
5.14 CALL Statement 5-55

SECTION VI. CHARACTER STRINGS

6.1 General 6-1
6.2 Character Assignment 6-1
6.3 Character Concatenation 6-3
6.4 Character Pick 6-4
6.5 Character Replacement 6-4
6.6 Character Insertion 6-5
6.7 Character Deletion 6-5
6.8 Byte Replacement 6-6
6.9 Convert ASCII Character to Number 6-6
6.10 Convert Number to ASCII Character 6-7
6.11 String Length Function 6-8
6.12 Character Search Function 6-8
6.13 Character Match Function 6-9
6.14 ASCII Character Conversion Function 6-9

SECTION VII. POWER BASIC FUNCTIONS

7.1 General 7-1
7.2 Mathematical Functions 7-1
7.2.1 Absolute Value Function (ABS) 7-1
7.2.2 Arctangent Function (ATN) 7-1
7.2.3 Sine and Cosine Functions (SIN)(COS) 7-2
7.2.4 Exponential Function (EXP) 7-2
7.2.5 Integer Part Function (INP) 7-3
7.2.6 Logarithm Function (LOG) 7-3
7.2.7 Square Root Function (SQR) 7-4

vi

7.3. String Functions 7-4
7.3.1 ASCII Character Conversion Function 7-4
7.3.2 Length Function (LEN) 7-5
7.3.3 Character Match Function (MCH) 7-5
7.3.4 Character Search Function (SCH) 7-6
7.4 Miscellaneous Functions 7-6
7.4.1 CRU Single Bit Function (CRB) 7-6
7.4.2 CRU Field Function (CRF) 7-7
7.4.3 Key Function (WY) 7-7
7.4.4 System Interrogation (SYS) Function 7-7
7.4.5 Delta Time (TIC) Function 7-8
7.4.6 Memory Modification (MEM) Function 7-9
7.4.7 Bit Modification (BIT) Function 7-10
7.4.8 Random Number (RND) Function 7-10
7.4.9 Memory Word Modification Function 7-10

APPENDICES

Appendix A Error Codes A-1
Appendix B Statement and Command Summary B-1
Appendix C Sample Programs C-1
Appendix D XOPS D-1

vii

LIST OF ILLUSTRATIONS

Figure 2-1 Power Supply Hookup 2-5
Figure 2-2 TM 990/101M Board in TM 990/510 Chassis 2-6
Figure 2-3 TM 990/101M Jumper Locations 2-11
Figure 2-4 TM 990/100M Jumper Locations 2-12
Figure 2-5 TM 990/302 XU25 Platform Wiring 2-13
Figure 2-6 TM 990/101M Board in TM 990/510 Chassis 2-15
Figure 2-7 743 KSR Terminal Hookup 2-17
Figure 2-8 Connector P2 Connected to R5-232-C

Device Modle 733 ASR) 2-17
Figure 2-9 Connector P2 Connected to TTY Devioe 2-18
Figure 2-10 Evaluation BASIC Memory Maps 2-24
Figure 2-11 Development BASIC Memory Maps 2-25
Figure 2-12 ASR Module 2-26

Figure 5-1 GOSUB Example 5-11

LIST OF TABLES

Table 2-1 TM 990 Circuit Board Current Requirements 2-2
Table 2-2 TM 990/101M Jumper Settings 2-8
Table 2-3 TM 990/100M Jumper Settings 2-8
Table 2-4 TM 990/101M Jumper Positions 2-9
Table 2-5 TM 990/100M Jumper Positions 2-10
Table 2-6 TM 990/201 Switch Settings 2-14
Table 2-7 Recommended RAM Expansion Configurations 2-22
Table 2-8 5-Bit Dip Switch Option 2-33

Table 5-1 POWER BASIC Statements 5-2
Table 5-2 Formatting String Characters 5-39
Table 5-3 Interrupt Level Data 5-49

viii

OVERVIEW

SECTION I

INTRODUCTION

1.1 GENERAL

POWER BASIC* is a family of software products offering a wide range of
features and capabilities. These products are available in a variety
of forms including EPROMs, TM 990 boards, and floppy diskettes. The
family is primarily designed to support the industrial user, providing
not only classical features often found in BASIC, but also features
specifically designed to support real time industrial control
applications. Some family members provide capability for supporting
either multiusers or concurrent tasks written in POWER BASIC; other
members support single user environments. Typical applications for
the language include data acquisition and control, data
communications, direct digital control, data reduction and analysis,
etc. The two family members documented in this manual are Evaluation
and Development Basic. See Appendix B for an enumeration of the
language features supported by each of the products.

1.1.1 Evaluation BASIC

Evaluation BASIC requires the TM 990/100M or the TM 990/101M CPU board
and optionally a TM 990/201,206, or 203 memory expansion board.
Evaluation BASIC supports one or two users on RS-232-C compatible
terminals including the TI 733. If desired, Evaluation BASIC has the
option of two partitions for the single user. Section II discusses
this feature and provides a full discussion of the installation
procedures for Evaluation BASIC.

1.1.2 Development BASIC

Development BASIC requires the TM 990/100M or the TM 990/101M CPU
board; also required is the TM 990/302 software development board or
the TM 990/201 memory expansion board. Optionally, additional
TM 990/201, 206, or 203 memory expansion boards may be used.
Development BASIC will support a single user on an RS-232-C compatible
terminal, including the TI 733. Development BASIC supports a superset
of the Evaluation BASIC statements and commands, as well as the
capability to link to the Development BASIC Enhancement Software
Package as explained in paragraph 1.1.3. Section 2 provides a full
discussion of the installation procedures for Development BASIC.

*Trademark of Texas Instruments

1-1

1.1.3 Development BASIC Enhancement Software package

The Development BASIC Enhancement Software package is used in
conjunction with the Development BASIC Package. The software resides
on either the TM 990/302 software development board or the TM 990/201
memory expansion board. The Development BASIC Enhancement Software
Package provides additional capabilities that allow the user to save
application programs on audio cassette, program these applications
into TMS2716 EPROM's, provide decimal print formatting using a string
image, and provide complete error message reporting.

These additional features are described in detail in the appropriate
sections of this manual. Section 2 provides a full discussion of the
installation procedures for the Enhancement Software Package.

1.2 INTERACTION WITH POWER BASIC

Interaction with BASIC involves user input of a series of program
statements and commands and user response to program-generated
requests for input. The user may enter program statements or invoke
commands required to examine, debug, or run the program. The user
completes each statement or command by entering a carriage return.

The carriage return terminates and enters the line, advances one line,
and waits for further keyboard input. Each program statement is
stored as it is entered, and the program may be listed at any time
during its generation or at its completion by using the LIST command.
Commands are not stored but are executed when they are entered. At
any time, the user may halt execution or terminate a statement or
command by striking the escape (or BREAK) key.

1.3 CONVENTIONS USED IN THIS MANUAL

The following conventions are used to describe the statements,
commands, and examples in this manual:

Numeric values for command parameters are decimal unless
otherwise specified.

Angle brackets (<)) indicate essential elements of user-supported
data in statements, commands, and examples.

10 LET <variable> = <expression>

Braces ({I) indicate a choice between two or more possibilities
(alternatl.ve items), one of which must be included.

1-2

<variable>
10 ON <expressior> THEN GOSUB <statement number list>

Brackets (0) enclose optional items.

CIO [LET] A=1 IATN(1)

Items in capital letters must be entered exactly as
shown.

Items in lower case letters are user-supplied
characters.

1-3

SECTION II

INSTALLATION

2.1 POWER BASIC

This section describes the setting-up and initial operation of both
the Evaluation and the Development BASIC software systems. The
installation and operation steps described are common to both software
packages except as noted.

Evaluation BASIC is shipped in one of two forms:

• A TM 990/101M-10 microcomputer board with Evaluation Basic
resident in EPROMs and inserted in the board as initially
shipped from the factory

• A TM 990/450 software package consisting of a set of four
EPROMs containing Evaluation BASIC, which are to be inserted
into the user supplied TM 990/101M or TM 990/100M
microcomputer board.

Development BASIC is shipped as:

• A TM 990/451 software package consisting of six EPROMs
containing Development BASIC, which are to be inserted into
the user supplied TM 990/101M or TM 990/100M microcomputer
board, and TM 990/302 software development board or TM
990/201 EPROM/RAM expansion board.

• A TM 990/452 Development BASIC Enhancement Software Package
consisting of a pair of EPROMs which are to be inserted into
the TM 990/302 or the TM 990/201 board.

It is recommended that the microcomputer board have a fully populated
RAM area (4K bytes on TM 990/101M or 1K bytes on TM 990/100M) to
provide sufficient user storage for significant POWER BASIC program
development.

2.2 EQUIPMENT REQUIREMENTS

Both the equipment required and appropriate options are described in
the following paragraphs. The different equipment requirements for
Evaluation BASIC and Development BASIC are also detailed.

2-•1

2.2.1 Microcomputer board

One of the following microcomputer boards will be required:

• TM 990/101M (-1, -2 or, -3) microcomputer board

• TM 990/100M (-1, -2, or -3) microcomputer board

Or for Evaluation BASIC only:

• TM 990/101M-10 microcomputer board shipped from the factory
containing the Evaluation BASIC EPROM set

2.2.2 Accessory boards

To make use of all the features of the Development BASIC Enhancement
Software Package, it is necessary to include the TM 990/302 Software
Development' board in the system configuration. If the EPROM
programming and audio cassette capabilities of the Enhancement
Software Package are not required, or if the Enhancement Software is
not being used, then the system may be configured with either a
TM 990/302 Software Development board or a TM 990/201 (-41, -42, or
-43) Memory Board.

2.2.3 Power supply

The power requirements of the boards that may be used for system
configuration (see paragraphs 2.2.1 and 2.2.2) are listed below in
Table 2-1. The power supply used must be capable of supplying the
total required current of the selected system configuration as a
minimum. It is recommended that current ratings of the power supply
be increased above the minimum to allow for the addition of other
boards to the system (memory, I/O, etc.). Regulation must be +3% on
all supplies except the +48V*.

TABLE 2-1. TM 990 CIRCUIT BOARD CURRENT REQUIREMENTS

TM 990 Circuit board
Current

+12V
Requirements

-12V +48V• +51/

/100M CPU Board 1.4 0.2 0.1
/101M CPU Board 2.6 0.5 0.4
/302 Software Devel. Board 0.9 0.2 0.1 0.1
/201-41 2.5 0.2 0.5
/201-42 3.0 0.4 0.6
/201-43 5.5 0.8 0.7
•35-55V unregulated for EPROM Programming
All currents are MAX

2-2

2.2.4 Chassis

The use of a TM 990/510 4-slot chassis, TM 990/520 8-slot chassis or
an equivelent is necessary for the set-up of Development BASIC since
more than one board is required in the system configuration.
Evaluation BASIC can be executed on a single board system, so a
chassis is not a requirement but does facilitate set-up and use of the
system.

Alternately, one of the following 100-pin, 0.125 inch (center-
to-center) PCB edge connectors may be used to interface with connector
P1, such as wire wrap models:

• TI H321150

• AMPHENOL 225-804-50

• VIKING 3VH50/9CND5

• ELCO 00-6064-100-061-001

2.2.5 Terminal and cables

POWER BASIC supports the following terminal devices:

• RS-232-C compatible terminal (using a TM 990/502 cable), or
the TI ASR 733 (using a TM 990/505 cable): see Appendix B of
the "TM 990/100M" or "TM 990/101M Microcomputer User's Guide"
to verify the cabling you have, or for instructions to make a
custom cable.

• TI 743/745: See Appendix B of the "TM 990/100M or
"TM 990/101M Microcomputer User's Guide" for special cabling
requirements. The TM 990/503 cable may be used to interface
a 743/745 terminal.

• Teletype Model 3320/5JE (for TM 990/100M-1, TM 990/101M-1,
and -3 microcomputer boards only): see Appendix A of the
"TM 990/100M" of "TM 990/101M Microcomputer User's Guide" for
required modifications for 20 mA neutral current loop
operation and proper cable connections to the TM 990/504
cable.

A 25-pin RS-232 male plug, type DB25P, is required if an interface
cable is not purchased.

2 -3

NOTE

POWER BASIC requires use of a standard USASCII coded terminal
device. Most terminals use this standard character code.
Also, be sure that the correct cable assembly is used with
your data terminal. For teletypewriters (TTY), refer to
Appendix A of the "TM 990/100M" or "TM 990/101M Microcomputer
User's Guide" for the signal configuration used by the main
I/O port.

2.2.6 Audio cassettes and EPROM programming

If the sytsem is configured with the TM 990/302 and the TM 990/452
Enhancement Software Package, the user has the option of operating
with audio cassettes and/or EPROM programming. The following cassette
players are recommended for correct operation:

• Realistic CTR-40

• Sharp RD 610

• Sears Model No. 799.21683700

• Bigston KD 130

• Panasonic RQ 413AS

Criterion for selection of audio cassette recorder:

• UL approved

• Ear, aux, and remote inputs

• Volume control

• AC operation

The 302 board is shipped with a TM 990/514 EPROM personality module
which will allow the programming of TMS2716 EPROMs using Development
BASIC with the Enhancement Software Package.

2.3 SYSTEM SETUP

This section describes the steps required to set-up the system to
begin operation.

2.3.1 Power Supply Connections

Figures 2-1 and 2-2 illustrate power supply hookup by connection to a
lone 100-pin edge connector and by installation in a card chassis,
respectively. Only the TM 990/101M microcomputer board is displayed
in the figures. However, the figures are applicable to both the

2-4

TM 99/101M

0 > " CONNECTOR g >.4
Z ITOPI

60 70

inn[10101110[111a109011119001IDOUfl00000000000b26011aoaationog1[Tr--

EDGE CONNECTOR

11y 11 11 IN 11 11 El 11 [HI El 11 11 En 111111 diillith 1/ 11 11)111i 11 11 11 11 11 11 11 11 !ILI

 SHRINK SLEEVING

18 AWG INSULATED STRANDED WIRE

BANANA PLUGS

(SUGGEST COLOR COOING)
[GND 11+5V THESE AS PER TABLE -12V1J +12V1J

VOLTAGE P1 PIN* SUGGESTED PLUG COLORS

+5V 3, 4, 97, 98 RED

+12V 75,76 BLUE

-12V 73, 74 GREEN

GND 1, 2, 99, 100 BLACK

•ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

A0001417

Figure 2-1. Power Supply Hookup

2 —5

+12 0

+5 0

3N0 0

-12 0

TM 990/100M and the TM 990/101M microcomputer boards.

Figure 2-1 shows how the power supply is connected to the
microcomputer board through connector P1, using a 100-pin edge
connector. Be careful to use the correct pins as numbered on the
board; these pin numbers may not necessarily correspond to the numbers
on the particular edge connector used. Check connections with an
ohmmeter before applying power if there is any doubt about the quality
or location of a connection.

The table in Figure 2-1 shows suggested color coding for the power
supply plugs. To prevent incorrect connection, label the top side of
the edge connector "TOP" and the bottom "TURN OVER".

For power connection to one of the chassis, look at the backside of
the backplane, find the connections for each of the supply voltages
and connect them to the power supply. Be sure to turn power off
before installing or removing any boards from the chassis.

CAUTION

BEFORE connecting the power supply to the microcomputer, use
a volt-ohmmeter to verify that correct voltages are
present at the power supply. After verification, switch the
power supply OFF, and then make the connections to the
chassis as shown in Figure 2-2. The correct voltages should
also be verified at the chassis or edge connector prior to
insertion of a board.

FIGURE 2-2. TM 990/101M BOARD IN TM 990/510 CHASSIS

2-6

Power connection to the second board in a Development BASIC System is
through the system backplane. When the system is configured with a
TM 990/302 Software Development board and a TM 990/452 Enhancement
Software Package, the user may program TMS2716 EPROMs. This requires
that the programming voltage (35-55V) be connected to pins 1 and 2 of
TB1 on the TM 990/302. Pin 2 of TB1 is the positive. Care should be
taken to guard against ground violations.

2.3.2 EPROM insertion

Skip this step and continue on to paragraph 2.3.3 if you have
received the TM 990/101M-10 microcomputer board with the Evaluation
BASIC EPROMs already installed.

The user should carefully remove all EPROM chips from the board
(marked as U42, U43, U44, and U45) if present, and place them in
conductive foam for safe keeping. Note that the POWER BASIC EPROMs in
the plastic shipping case are appropriately marked as U42, U43, O44,
and U45, and that each EPROM is marked with the part number
(TM 990/450 or TM 990/451). Remove these EPROMs one at a time
beginning with U42, and carefully insert them into the board sockets.
Make sure they are placed in the correct sockets and that pin 1 (next
to white dot on EPROM) of the EPROMs match with pin 1 as marked by the
silkscreen on the board. Carefully inspect each EPROM to ensure that
all pins have seated correctly into the socket and that none have bent
under the device. Be careful to avoid bending the pins at all times.
Bent EPROM pins are the number one cause of "mysterious" board
failures. Development BASIC consists of six TMS2716 EPROMs, all of
which will be marked TM 990/451. Four of the six will also be marked
U42 through U45, corresponding to the TM 990/100M or TM 990/101M EPROM
sockets. The two other EPROMs marked as U15 and U17 need to be
inserted in either the TM 990/302 or the TM 990/201 EPROM sockets. If
the TM 990/302 is used, the EPROM (marked U15) should be inserted in
the socket marked U15, and the EPROM (marked U17) should be inserted
in the socket marked U17 . If the TM 990/201 is used, the EPROM
(marked U15) should be inserted in the socket marked U64, and the
EPROM (marked U17) is inserted in the socket marked U56.

The Development BASIC Enhancement Software Package (TM 990/452)
consists of two TMS2716 EPROMs. Both EPROMs are marked with the part
number and an additional marking of (U14 or U16). The EPROM marked
U14 is inserted into the TM 990/302 socket marked U14 or the TM
990/201 socket marked U65, while the one marked U16 is inserted into
the TM 990/302 socket marked U16 or the TM 990/201 socket marked U57.

2-7

Jumper Comments

E1-E2, E4-E5, E8-E53, E9-E10,
E13-E14, E16-E17, E26-E27, E28-E29
E31-E32, E33-E34, E39-E40, E54-E55

E36-E37

All other jumpers

Required

Install for TTY
Remove for EIA RS-232-C

Don't care

2.3.3 CPU jumper settings

The user should appropriately connect and verify that the jumper
configurations on the TM 990/101M or TM 990/100M board are as
described in Table 2-2 and Table 2-3 respectively.

Tables 2-4 and 2-5 provide detailed jumper placement information for
use if the CPU board does not have the required jumper placement.
Figure 2-3 and 2-4 show the board locations of these jumpers for
reference.

TABLE 2-2. TM 990/101M JUMPER SETTINGS

TABLE 2-3. TM 990/100M JUMPER SETTINGS

Jumper Jumper Setting

J1 P1-18
J2 2716
J3 16
J4 16
J5-J6 Don't care
J7 EIA
J8-J10 Don't care
J11 Install for TTY

Remove for EIA RS-232-C
J12-J18 Don't care

2-8

TABLE 2-4. TM 990/101M JUMPER POSITIONS

JUMPER
FUNCTION POSITION EXPLANATION

Interrupt 4 Source E1-E2 Connects INT 4 to pin 18 of P1 edge con-
nector.

Interrupt 5 Source E4-E5 Connects INT 5 to pin 17 of P1 edge con-
nector.

Slow/Fast EPROM E8-E53 Causes no WAIT states: memory cycles
are full speed.

2708/2716 Memory Map E9-E10 Selects memory map for TMS2716 EPROMs
EPROM Enable E13-E14 On-board EPROM is enabled into memory map.
HI/LO Memory Map E16-E17 EPROM at low address, RAM in high.
EIA Connector Ground E18-E19 Connect PIN 1 of Connector P3 to ground.

When using as an auxiliary serial I/O
device, consult that devices" manual con-
cerning grounding. Normally, this jumper
is installed.

Microterminal +5 V E20-E21 Microterminal Power:+5 V to pin 14 of P2
edge connector. (See note 1)

Microterminal +12V E22-E23 Microterminal Power:+12 V to pin 12 of P2
edge connector. (See note 1)

Microterminal -12V E24-E25 Microterminal Power:-12 V to pin 13 of P2
edge connector. (See note 1)

2708/2716 Addressing E26-E27 Main EPROM is TMS2716.
E28-E29 Main EPROM is TMS2716.
E31-E32 Expansion EPROM is TMS2716.
E33-E34 Expansion EPROM is TMS2716.

Teletype* E36-E37 REMOVE this jumper if using an RS-232 de-
vice. If using a teletype device connect-
ed to Port 2, INSTALL this jumper.

ETA/MD Receive select E39-E40 This jumper should be INSTALLED when an
RS-232 or TTY device is connected to port
P2. The multidrop interface is normally
not used with POWER BASIC.

Multidrop Termination** E41-E42 These are the connectors for the multi-
E45-E46 drop termination resistors. These jumpers
E49-E50 should be REMOVED since the multidrop in-
E51-#52 terface is normally not used with Power

BASIC.
Multidrop Half Duplex** E43-E44 These jumpers should be REMOVED since

multidrop half duplex operation is type-
cally not required with POWER BASIC.

P3 Port Mode E54-E55 Connects TMS9902 RTS to CTS for port P3
to communicate with an RS-232 compatible
terminal.

* On TM 990/101M-1 and -3 only
** On TM 990/101M-2 only
Note 1: These jumpers should be removed since the TM 990/301 microtermina:

is not used. (May be left installed for certain terminals, e.g.,
TI 743.)

2-9

TABLE 2-5. TM 990/100M BOARD JUMPER POSITIONS

FUNCTION JUMPER POSITION EXPLANATION

Interrupt 4 Source J1 "P1-18" Connects INT 4 to pin 18 of P1
edge connection

2708/2716 Memory Map J2 "2716" EPROM is TMS2716's
J3 "16"
J4 "16"

Multidrop Interface J5 Out These jumpers should be REMOVED
J6 Out since the multidrop interface
J8 Out is normally not used with POWER
J9 Out BASIC.
J10 Out
J12 Out

EIA/Multidrop Select J7 "EIA" An RS-232 or TTY device is nor-
mally connected to the serial
port (jumper INSTALLED).

20mA/RS-232 Interface J11 In/Out REMOVE this jumper is using an
RS-232 device. If using a TTY
device, INSTALL this jumper.

Microterminal Power J13 In/Out These jumpers should be REMOVED
J14 In/Out since the TM 990/301 microtermi-
J15 In/Out nal is not used with this system.

(May be left installed for cer-
tain terminals, e.g., TI 743.)

Spare Jumpers J16 X Spare jumpers, irrelevant to sys-
J17 X tem operation.
J18 X

X - Don't care

2 -10

E8/E53
NO WAIT
STATE FOR
ON-BOARD
EPROM

E20/E21; E22/E23; E24/E25
POWER TO TM 990/301
MICROTERMINAL

E54/E55
SELECT PORT P3
FOR USE WITH

E18/E19 A TERMINAL

CONNECTS E55/E56

P3 PIN 1 SELECT PIN P3 FOR

TO GROUND USE WITH A MODEM

E41/E42, E45/E46.
E49/E50, E51/E52
MULTIDROP
INTERFACE
TERMINATION
RESISTORS

E15/E16
RAM IN LOW
MEMORY
EPROM IN HIGH

EVES
ONE WAIT
STATE FOR
ON-BOARD
EPROM

E16/E17
RAM IN HIGH
MEMORY, EPROM
IN LOW MEMORY

E13/E14

SELECTS
ON-BOARD
EPROM

E12/E13
DESELECTS
ON-BOARD
EPROM

E43/E44
MULTIDROP
INTERFACE

HALF DUPLEX
SELECTORS
E47/E48

E39/E40
CONNECTS
EIA AND TTY
INTERFACE
TO TMS 9902

E9/E10

SELECTS
2716 MODE
ADDRESS MAP

SELECTS
2708 MODE
ADDRESS MAP
E10/E11

CONNECTS
MULTIDROP
INTERFACE

TO TMS 9902
E38/E39

ENABLES
TTY INTER-
FACE
E36/E37

1:1v,

t • . 'et:
 Mar.

1.,,,, . 1 0•1111,t

li Fm.`"t";
4 4 , 9 IWO Or , • ilia i P

11 T1 • 1,! "0,-1 11 1

I i I

#i rry,"4107 ,t irt,1 ;)Til i di, E it
. 1.

it,)1 II

..1111L..7) 1 11
0 10:4 11-12-141

MI). ''•,' 1 _ --1 II

... ? II) r IR ..v...fo,
3j

lNOAliiii‘.thilitek
U43, U45
ARE
TMS 2708

IMIIMI*11011111/11111f11114

CONNECTS INT5 TO P1 17
E4/E5

U43, U45 ARE
TMS 2716
E31/E32
E33/E34

U42, U44
ARE TMS 2708
E27/E28
E29/E30

AA,ICIITI:t111117 11'

/ ijgei / I I IV I

Dial I i 61114 I I I 1;1 icfrir
U42, U44 ARE

CONNECTS INT5 TO
TMS 2716
E26/E27

E5/E6
AUXILIARY TMS 9902 E28/E29

CONNECTS
INT4 TO P1-18

E1/E2

CONNECTS INT4 TO

MAIN TMS 9902

E2/E3

E32/E33
E34/E35

J13 I

J14 MICROTERMINAL
I USE

J15

SPARE JUMPERS
J16, J17, J18

J12 MULTIDROP INTERFACE

/
: : ! —2:111011111 J11 (I/O INTERFACE TYPE)

9

VI .,..

TMS 2708/16
EPROM
SELECT

J4

J2

J3

J10
J9
J8

J5

J7 (EIA MULTIDROP SELECT

MULTIDROP
INTERFACE

J1 INTERRUPT 4 SOURCE

Figure 2-4. TM 990/100M Jumper Locations

2.3.4 FIVE SWITCH DIP ON TM 990/101M BOARD

Evaluation BASIC on the TM 990/101M board is capable of supporting a
two user Power BASIC System using ports P2 and P3, or a single user/
two-partition Power BASIC system using only port P2. For this
partitioning of memory between users or between user partitions is
required. It is performed by reading the positions of the five-
switch dip on the TM 990/101M board. (Note that reading the CRU lines
on the TM 990/100M which correspond to the CRU lines of the dip
switches results in only single user operation.) For initial
power-up, the user should have all swtiches of the five-switch dip in
the OFF position. This configures Evaluation BASIC for single user,
single partition operation. The CRU lines corresponding to the DIP
switch are never addressed by Development BASIC, so the switch
settings are immaterial.

2.3.5 ACCESSORY BOARDS JUMPER SETTINGS

This section describes the necessary switch and jumper settings for
the second board in a Development BASIC system configuration. The
second board can be either a TM 990/201 or a TM 990/302 board. Only
the section giving details on the selected board need be read.

2.3.5.1 TM 990/302 JUMPER AND SWITCH SETTINGS

There are two stake pin jumpers on the TM 990/302; wait/no wait and
load/no load. The TMS2716 EPROMs shipped have a 450 ns access time
and require one wait state: the wait/no wait should be set for "wait"
(El connected to E2). Since Development BASIC operation is initiated
by the RESET stimulus, the TM 990/302 LOAD logic should be disabled by
setting the load/no load jumper to "no load" (E5 connected to E6).

The DIP platform is used to configure the TM 990/302 for the type of
EPROM being used. Development BASIC is shipped in TMS2716 EPROMs and
requires wiring of the platform as shown in Figure 2-5.

Pin 1

•
•

Figure 2-5. TM 990/302 XU25 PLATFORM WIRING

2-13

The DIP switch on the TM 990/302 board is used to select where the
EPROM and RAM appear in the system memory map. Development BASIC
requires the on board EPROM to be from 2000 16 to 3FFF16. This mapping
is achieved by setting SW1, SW2, and through SW3 to OFF ON OFF
respectively.

2.3.5.2 TM 990/201 JUMPER AND SWITCH SETTINGS

Development BASIC requires the EPROM to be addressed from 2000 16
to 2FFF16 (200016 to 3FFF16 with the Enhancement Software Package).
The DIP switch settings to accomplish this are listed in Table 2-6;
also shown are the switch settings to place the TM 990/201 RAM from
EFFF1

6
down.

2.3.6 BOARD INSERTION AND TERMINAL HOOK-UP

These procedures assume that the POWER BASIC EPROMs are resident in
the required address space as described in paragraphs 2.3.2 and that a
terminal and cable of the proper type to match the intended serial
interface are also employed.

CAUTION

Be very careful to apply the correct voltage levels to the
TM 990 system. A volt/ohmmeter should be used to verify power
supply voltages and connections. Boards should never be
inserted in or removed from a system with power applied. This
is also true for front edge connections (cassette cables or
EPROM personality cards).

Texas Instruments assumes no responsibility for damage caused by
improper wiring or voltage application by the user.

TABLE 2-6. TM 990/201 SWITCH SETTINGS•

Memory Board SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

TM 990/201-41
TM 990/201-42
TM 990/201-43

ON
ON
OFF

ON
OFF
ON

OFF
OFF
ON

OFF
ON
ON

OFF
ON
ON

ON
ON
ON

OFF
ON
ON

OFF
OFF
ON

EPROM - 2000 16 to 3FFF16
RAM - EFFE 16 to DOWN16

2 -1 4

.6.1 Board insertion. Figure 2-6 shows how to correctly place the
microcomputer board in the TM 990/510 card chassis. Slot 1 of the
chassis is reserved for the microcomputer board because termination
resistors for the control bus signals are at the opposite end of the
backplane. Slide the microcomputer board into the slot, following the
guides. Be sure the microcomputer P1 connector is correctly aligned
in the socket on the backplane, then gently but firmly push the board
edge into the edge connector socket.

The second board in a Development BASIC system should be inserted in
the next slot down, although this is not critical.

Since the Evaluation BASIC can be used as a single board system, a
lone edge connector can be used (as described in paragraph 2.3.1) in
this configuration. The same caution should be used in voltage level
checking each time the board is inserted.

+12 0

+5 0

ONO 0

-12 0

FIGURE 2-6. TM 990/101M BOARD IN TM 990/510 CHASSIS

2-15

2.3.6.2 Terminal hookup. Figure 2-7 shows how the microcomputer board is
connected to the TI 743 KSR terminal;through connector P2. A DB15S
connector attaches to the terminal; a DB 25P connector attaches to P2
on the board. Point-to-point connections between the connectors are
shown in the table in Figure 2-7. Figure 2-8 shows a RS-232 terminal
(e.g., TI 733), and Figure 2-9 shows a TTY, connected to the
TM 990/101M board through connector P2. All terminals connected to
the microcomputer will have a similar hookup procedure and
point-to-point configuration. For the differences between terminal
cables, A and B of the"TM 990/101M" or "TM 990/100M Microcomputer
User's Guide". Evaluation BASIC configured as single user must have
its terminal device connected to the main communications port
(connector P2) at the corner of the board.

POWER BASIC operates the EIA/TTY ports at any of the following baud
rates:

110, 300, 1200, 2400, 4800, 9600 or 19200 baud.

There is a 200ms delay following a carriage return for all baud rates.
The delay allows for printhead travel.

The TMS9902 asynchronous communication controller is initialized by
Evaluation and Development BASIC for a seven-bit ASCII character, even
parity, and two stop bits (for compatibility with all terminals). At
the terminal, set the baud rate of the terminal to one of the above
speeds.

Power BASIC also uses conversational mode full-duplex communication.
Set the communications mode of your terminal to FULL DUPLEX, and set
the OFF/ON LINE switch to ON LINE or the functional equivalents.

Note that the printer of the TI 733 terminal will operate with
Evaluation BASIC only at or below 300 baud. Therefore, do NOT use the
733 terminal set to high speed or 1200 baud for communication with
Evaluation BASIC. TI 733 ASR 1200 baud operation is allowed with
Development BASIC, with some restrictions (see the note in paragraph
2.8.3).

2-16

Imr

L4 CONDUCTOR CABLE, 24 AWG
INSULATED STRANDED WIRE

DE156
"Mr

TO P2 ON
TVA IN/N11111

TO 743 DATA
TERMINAL

CONNECTIONS

PIN ON DE15S PIN ON 13125P SIGNAL

13

12

11

1

2

3

S

7

XMIT

RECV

DCD

ONO

A000141S

Figure 2.7. 743 KSR Terminal Hookup

Figure 24 Connector P2 Connected to RS-232-C Device (Model 733 ASR)

2-17

FIGURE 2-9. CONNECTOR P2 CONNECTED TO TTY DEVICE

2.4 OPERATION

2.4.1 Verification

Verify the following conditions before applying power:

• Power connected to correct pins on P1 connector

• Terminal cable between P2 connector (NOT P3 for single user)
and terminal

• Jumpers in correct positions (see Paragraph 2.3.3)

• Five-switch dip all in OFF position

• Baud rate and communications mode are correctly set at terminal
and terminal is ON LINE.

2.4.2 Power-up/reset

To power-up and initialize POWER BASIC, perform the following
sequence:

1) Apply power to board and data terminal

2) Activate the RESET switch near the corner of the

2-18

microcomputer board. This causes BASIC to begin execution.

3) Press the "A" or carriage return key on the terminal device
BASIC measures the time of the start bit and determines the
baud rate. A carriage return time delay of 200 ms will be
provided for all baud rates at or slower than 1200 baud

4) BASIC prints the banner message and, on a new line, the
"'READY" message as shown below.

TM990 BASIC REV X.n.m.
'READY

Where:

X=language level
n=the release number
m=the revision number

At this point, POWER BASIC is in keyboard mode awaiting keyboard input
of POWER BASIC commands or statements.

2.5 SAMPLE PROGRAMS

Once BASIC has been initialized, the user may immediately enter the__
following sequence of commands and statements to verify that
BASIC has powered-up correctly. Other sample programs which may be
entered and executed are provided throughout this manual and in
Appendix C.

When Evaluation BASIC powers up it displays the following banner
message. The user may then enter the "SIZE" command to display the
amount of RAM area "free" for user program storage. (The amount of
free RAM given in the following examples is dependent on system
configuration).

The revision D.1.8 and subsequent versions of Development POWER BASIC
report memory usage in hexadecimal.

TM990 BASIC REV. X.n.m
'READY
SIZE
PRGM: 18 BYTES
VARS: 0 BYTES
FREE: 3564 BYTES

(SIZE numbers will depend on system configuration)

The user may then enter the following program:

2-19

10 DIM A(4)
20 $A(0)="THE NUMBER IS"
30 INPUT "INPUT NUMBER", N THEN
40 IF N-INP(N)00 THEN PRINT $A(0);N;::GOTO 60
50 GOSUB 100:: ! EVEN OR ODD INTEGER
60 PRINT ", ITS SQUARE IS";N*N;", AND ITS SQUARE ROOT IS";
70 IF N<0 THEN PRINT " UNDEFINED.":: GOTO 30
80 PRINT SQR(N);"."
90 GOTO 30
100 IF INP(N/2)*2=N THEN PRINT $A(0);" EVEN";::RETURN
110 PRINT $A(0);" ODD";
120 RETURN

The user may then display the program size and list the program as
follows:

SIZE
PRGM: 292 BYTES
VARS: 0 BYTES
FREE: 3272 BYTES
LIST
10 DIM A(4)
20 $A(0)="THE NUMBER IS"
30 INPUT "INPUT NUMBER", N
40 IF N-INP(N)O0 THEN PRINT $A(0);N;:: GOTO 60
50 GOSUB 100:: ! EVEN OR ODD INTEGER
60 PRINT ", ITS SQUARE IS";N*N;", AND ITS SQUARE ROOT IS";
70 80 IF N<0 THEN PRINT " UNDEFINED.":: GOTO 30

PRINT SQR(N);"."
GOTO 30 90
IF INP(N/2)*2=N THEN PRINT $A(0);" EVEN";::RETURN 100
PRINT $A(0);" ODD"; 110

120 RETURN

The RUN command will then execute this program. The program will
request numeric user input by prompting with the question mark as
follows:

RUN
INPUT NUMBER?
THE NUMBER IS
INPUT NUMBER?
THE NUMBER IS
INPUT NUMBER?
THE NUMBER IS
INPUT NUMBER?
STOP AT 30

17 (carriage return)
ODD, ITS SQUARE IS 289, ITS
-6 (carriage return)
EVEN, ITS SQUARE IS 36, ITS
2.35 (carriage return)
2.35, ITS SQUARE IS 5.5225,
(escape key)

SQUARE ROOT IS 4.1231

SQUARE ROOT IS UNDEFINED

ITS SQUARE ROOT IS 1.532971

The user may then enter the SIZE command to display the program size
and the variable storage used by the program.

2-20

SIZE
PROM: 244 BYTES
VARS: 28 BYTES
FREE: 3244 BYTES

All variable and program space may then be cleared as shown by the
following sequence:

NEW
TM990 BASIC REV x.x.x
•READY
SIZE
PRGM: 18 BYTES
VARS: 0 BYTES
FREE: 3567 BYTES

2.6 DEBUG CHECKLIST

If the microcomputer does not respond correctly, turn the power OFF.
Do not turn the power ON again until you are reasonably sure that the
problem has been found. The following is a checklist of points to
verify.

• Check POWER circuits:
-Proper power supply voltages and current capacity.
-Power connections from the power supply to the P1 edge con-
nector. Check pin numbers on P1. Check plug positions at
connections. Make sure board is seated in chassis or edge
connector socket correctly. Be certain that the edge con-
nector socket (if used) is not upside down.

• Check TERMINAL circuits:

-Proper cable hookup to P2 connector and to terminal. Verify
with data in Appendices A and B of the "TM 990/101M" or
"TM 990/100M User's Guide". One of the most common errors is
that the terminal cable is not plugged in.
-Check for power at the terminal. This is another common
error - the terminal is not turned ON.

-Terminal is in ON LINE mode, or equivalent.
-Terminal is in FULL DUPLEX mode, or equivalent. If the
terminal is in HALF DUPLEX mode,it will print everything you
type twice,or it may print garbage when you type. Put the
terminal in FULL DUPLEX mode.

-EIA/MD jumper in EIA position.
-Check BAUD RATE of terminal - it must be 110, 300, 1200, 2400,
4800, 9600, or 19200 BAUD. (Recall that Evaluation BASIC will
not communicate with the 733 ASR at 1200 baud.)

2-21

TABLE 2-7. RECOMMENDED RAM EXPANSION CONFIGURATIONS

MEMORY
BOARD

EXPANSION
EPROM
K WORDS

EXPANSION
RAM

K WORDS
SWITCH SETTINGS

S1 S2 S3 S4 S5 S6 S7 S8

TM 990/302
(note 1)

4Kx16 2K x 16 OFF ON NOTE ON X X X X
2

s
TM 990/201-41
(note 3)

4K x 16 2K x 16 OFF OFF OFF OFF OFF ON OFF OFF

*
TM 990/201-42
(note 3)

8K x 16 4K x 16 OFF OFF OFF OFF ON ON ON OFF

s
TM 990/201-43
(note 3)

16K x 16 8K x 16 OFF OFF OFF OFF ON ON ON ON

TM 990/206-41
(note 3)

X 4K x 16 X X X X ON OFF OFF OFF

TM 990/206-42
(note 3

X 8K x 16 X X X X OFF OFF OFF ON

X - NOT APPLICABLE
• - Expansion EPROM is not required for Evaluation BASIC. The

switch settings to disable all expansion EPROM memory from the
system are S1-S4 all OFF. For Development BASIC see paragraph
2.3.5.2.

Note 1: Jumpers E1-E2 and E5-E6 must be installed on the TM 990/302
board when it is used as RAM expansion.

Note 2: If the TM 990/302 is used as the extra EPROM for Development
BASIC S3 must be OFF, otherwise it should be ON.

Note 3: Assumes TM 990/302 on board RAM is disabled, if TM 990/302
is used in system.

2-22

• Check jumper plug positions against Table 2-2 or 2-3.

• Be sure BASIC EPROMs are in place correctly.

• Be sure all switches of five position dip switch are in OFF
position.

• Check all socketed parts for correctly inserted pins. Be sure
there aren't any bent under or twisted pins. Check pin 1 loca-
tions.

If nothing happens, reapply power and try to feel the components for
excessive heat. Be careful as burns may occur if a defective
component is found. If the cause of failure cannot be found, turn
power OFF and call you TI distributor. Before calling, please be sure
that your power supply, terminal, and all connectors (use a
volt-ohmmeter) are working properly.

2.7 RAM EXPRESSION

The user may expand the RAM area by configuring additional expansion
memory boards into the system. Additional RAM area will provide more
user storage area for developing larger POWER BASIC programs. This
does not require any modification to the POWER BASIC software package
or to the TM 990/101M or TM 990/100M microcomputer boards if
configured as described in the preceding sections. When expanding the
RAM area, the top of the expansions RAM must be at location EFFE 16
Recall that the TM 990/302 RAM resides from E00016 to EFFE16. The
expansion RAM must also be contiguous from EFFE 1 6down. Table 2-7
shows the expansion memory boards currently availabre as well as the
required switch settings to configure each of them to operate with the
POWER BASIC configuration as described in Sections 2.3 through
2.3.5.2. Figure 2-10 shows the memory map of the Evaluation BASIC
packages on the TM 990/101M and TM 990/100M boards as well as the RAM
expansion memory areas. Figure 2-11 shows the memory map of
Development BASIC.

2.8 CASSETTE TRANSPORTATION OPERATION

POWER BASIC has the ability to "SAVE" and "LOAD" programs from
cassette as explained in paragraphs 4.8 and 4.4, respectively.
Evaluation BASIC will support only the digital cassette transports of
the TI 733 ASR terminal. The following sections and Figure 2-12 will
assist the user in operating the cassette units. If more detailed
instructions are required, refer to "Model 733 ASR/KSR Operating
Instructions", manual number 959227-9701.

Development BASIC can also support audio cassettes if used with the
TM 990/302 Software Development Board, for more information than
presented here see "TM 990/302 Hardware Reference Manual".

2-23

EPROM
ON TM 990/101M BOARD

4K x 16

V
EXPANSION RAM
TM 990/302

or TM 990/201
or TM 990/206
or TM 990/203

RAM
ON TM 990/101M BOARD

2K x 16

TM 990/101M
WITH EXPANSION RAM

EPROM
ON TM 990/100M BOARD

4K x 16

♦

IF
EXPANSION RAM
TM 990/302

or TM 990/201
or TM 990/206
or TM 990/203

UNUSED

RAM
ON TM 990/100M BOARD

512 x 16

TM 990/100M
WITH EXPANSION RAM

000016

2000
16

F000 16 F000 16

FC0016

000016

200016

FIGURE 2-10. EVALUATION BASIC MEMORY MAPS

2 -24

EPROM
ON TM 990/101M BOARD

4K x 16

EPROM
ON TM 990/302 OR

TM 990/201
2K x 16
EPROM

ON TM 990/302 OR
TM 990/201
2K x 16

EXPANSION RAM
TM 990/302

or TM 990/201
or TM 990/206

RAM
ON TM 990/101M BOARD

2K x 16

EPROM
ON TM 990/100M BOARD

4K x 16

EPROM
ON TM 990/302 OR

TM 990/201
2K x 16
EPROM

ON TM 990/302 OR
TM 990/201
2K x 16

EXPANSION RAM
TM 990/302

or TM 990/201
or TM 990/206

UNUSED

RAM
JN TM 990/100M BOARD

512 x 16

000016

200016

300016

400016

000016

2000 16

3000
16

110001 6

Development
BASIC

)
Enhancement
Software

TM 990/101M TM 990/100M
WITH EXPANSION RAM WITH EXPANSION RAM

FIGURE 2-11. DEVELOPMENT BASIC MEMORY MAPS

2-25

REWIND LOAD/FF

CASSETTE 1

0

END 0
STOP 0 STOP STOP 0

PLAYBACK

READY

END

RECORD

CASSETTE 2

0 REWIND LOAD/FE

—J

RECORD

READY

PLAYBACK STOP

N

C
0

0

ON

ERROR

0

PRINT CHARACTER

PLAYBACK CONTROL

CONT BLOCK CHAR
START FWD FWD

STOP

RECORD CONTROL

TAPE FORMAT

N
E

ERASE

0
ON

OFF REV

LINE

OFF

LOCAL

LINE

OFF

LOCAL

444

KEYBOARD PLAYBACK RECORD PRINTER

BIT 1 BIT 8

FIGURE 2-12. ASR MODULE ASSEMBLY SWITCH PANEL

2-26

2.8.1 Procedures to record on digital cassettes from POWER BASIC (SAVE)

Record a POWER BASIC program on cassette as follows:

On the ASR switch panel lower row, verify that the following switches
are set as follows:

1) KEYBOARD to LINE

2) PLAYBACK to LINE

3) RECORD to LINE

4) PRINTER to LINE

Insert the cassette tape on which the POWER BASIC program is to be
"SAVEd" into either cassette transport. Check that the tabs on the
bottom of the cassette are not in the write protect position. Then,

5) Verify terminal is ON-LINE

6) SET RECORD CONTROL to OFF

7) Set selected cassette transport to RECORD

8) Set TAPE FORMAT switch to LINE

9) Momentarily press REWIND on selected cassette transport

10) When the END indicator lights, press LOAD/FF on the selected
selected cassette transport. The READY indicator lamp should
light after a few seconds.

11) If the 733 ASR does not have the Automatic Device Control
(ADC) option continue to step 12. With the ADC option, the
cassette transport will accept the Record On (DC2) and Record
Off (DC4) control characters output by POWER BASIC at the
start and end of program saving. If the ADC Option is
present, the user may enter the "SAVE" command followed by a
carriage return and Evaluation BASIC will automatically
record off, and stop the cassette. When the cassette stops,
RECORD OFF must be pressed to complete the save process.

-27

12) If the 733 ASR does not have the ADC option, the user must
manually start and stop the cassette when "saving". Perform
this procedure by readying the cassette transport (step 1 thru
10 above). Enter the "SAVE" command, but do not yet enter the
carriage return. Then manually set the RECORD control to ON
and enter the carriage return to terminate entry of the "SAVE"
command and start the process. The user program currently in
POWER BASIC's memory will then be saved on cassette. This
continues until the entire program has been recorded. When
the cassette stops, the RECORD CONTROL must be pressed to OFF
before making any keyboard entries to complete the 'save'
process.

2.8.2 Procedures to record on audio cassette from development BASIC (SAVE
UNIT #)

Recording on audio cassettes requires:

1) TM 990/302 Software Development Board

2) TM 990/452 Enhancement Software Package

3) Audio cassette recorder

Note, that though only one cassette player is required for SAVEing and
LOADing, program development is greatly facilitated by the use of two
cassette players: one for playback, and one for record. The
procedure to record on audio cassette is:

1) Insert the appropriate motor control plug into the cassette
recorder's motor control jack (the small jack in the
"MIC/REMOTE" pair).

2) Insert the same unit number's record plug into the cassette
recorder's AUX jack.

3) Rewind the cassette to be used (it may be necessary to
temporarily remove the motor control plug).

4) Remove the cassette and rewind the take-up reel (on the right)
to position the start of the magnetic tape (not the clear or
colored leader) at the edge of the tape head access opening.

5) Re-insert the cassette into the audio cassette recorder

6) Set the cassette for recording (usually by simultaneous
depression of RECORD and PLAY buttons; consult your cassette
recorder user's manual)

2-28

7) Enter the SAVE command with the appropriate unit number: the
cassette unit will record the user's program and stop when
loading is complete.

The motor control circuitry can only stop the cassette recorder
capstan motor, not disengage the capstan; if the cassette is not to be
used immediately for playback or record the user should disengage the
capstan from the pinch roller by pressing the STOP (or equivalent)
key. If this is not done a dent can form in the pinch roller causing
excessive wow and resulting in cassette errors. To keep the
cassette's recording surface clean it is recommended that a cassette
be rewound before it is removed.

2.8.3 Procedures to playback tape from digital cassettes to POWER BASIC
(LOAD)

To load a POWER BASIC program from cassette tape into the POWER BASIC
system, proceed as follows:

On the ASR switch panel lower row, verify that the following
switches are set:

1) KEYBOARD to LINE

2) PLAYBACK to LINE

3) RECORD to LINE

4) PRINTER to LINE

Insert the cassette tape containing the POWER BASIC program to be
"LOADed" into either cassette transport. Then,

5) Verify terminal is ON-LINE

6) Set selected cassette transport to PLAYBACK

7) Set TAPE FORMAT to LINE

8) Momentarily press REWIND on selected cassette transport
9) When the END indicator lights, press LOAD/FF on the selected

cassette transport. The READY indicator lamp should light
after a few seconds.

10) If the 733 ASR does not have the Automatic Device Control
(ADC) option, in Evaluation BASIC (or the RDC option in
Development BASIC) continue to step 11. With the ADC option
the cassette transport will accept the Playback ON (DC1)
control character output by Evaluation BASIC to start the

2-29

cassette,and the Playback Off (DC3) at the end of the saved
program to stop the cassette. (With the RDC option, the
cassette transport will accept the BLOCK FORWARD commands
output by Development BASIC to start the cassette and read
the next record.) If the ADC option is present, (an RDC
option in Development BASIC), enter the "LOAD" statement
followed by a carriage return and POWER BASIC will automati-
cally load and stop the cassette. When the cassette
transport stops, press the ESC(ape) key to exit the loading
procedure of Evaluation BASIC. Development BASIC
automatically returns to the keyboard mode when loading is
completed. BASIC then outputs the "'READY" message and the
program on cassette is loaded into POWER BASIC and ready for
use. If an error occurs during loading, go to Step 12.

11) If the 733 ASR does not have the ADC option (or RDC Option in
Development BASIC), manually start and stop the cassette
when "loading". Perform this procedure by reading the
cassette transport (steps 1 thru 9 above). Then enter the
"LOAD" statement followed by a carriage return and
momentarily press the PLAYBACK CONTROL (middle row) CONT
START switch; playback transmission and loading will
commence. When loading is complete, the ESC(ape) key must be
pressed to exit the loading procedure of Evaluation BASIC.
Development BASIC automatically returns to the keyboard mode
when loading is complete. BASIC will then output the
"'READY" message. At this point, the program on cassette
will be loaded into BASIC and ready for use. If an error
occurs during loading, go to Step 12 below.

12) When an error occurs, POWER BASIC will print the error number
and the statement in error. POWER BASIC will stop loading
and return to the keyboard mode when an error is found.
Manually stop the cassette transport or subsequent errors
will result when attempting to load a program while POWER
BASIC is not in the "load mode". To stop the tape transport
momentarily press the PLAYBACK CONTROL (middle row) STOP
switch. Then attempt to correct the problem to complete
loading or re-enter the program into POWER BASIC from the
keyboard. Note that all statements on the cassette tape
prior to the occurrence of the error will have been
successfully loaded and need not be entered again.

NOTE

Evaluation BASIC requires that the 733 ASR terminal operates
at 300 baud. Development BASIC allows 1200 baud cassette
operations if the 733 ASR is equipped with the Remote Device
Control (RDC) option, to respond to BLOCK FORWARD commands. If
the 733 ASR does not have the RDC option,1200 baud loading may

2-30

still be possible, as described in step 11 above, but this
will be data dependent. If a cassette will not load at 1200
baud, set the terminal for 300 baud and proceed as in step 11
above.

2.8.4 Procedures to playback audio cassette to development BASIC (LOAD
UNIT#)

Reading from audio cassettes requires:

1) TM 990/302 Software Development Board

2) TM 990/452 Enhancement Software Package

3) Audio cassette recorder

The procedure to read from audio cassette is as follows:

1) Insert the appropriate motor control plug into the cassette
recorder's motor control jack (the small jack in the
"MIC/REMOTE" pair).

2) Insert the same unit number's playback plug into the cassette
recorder's earphone or external speaker jack.

3) Rewind the cassette to be used (it may be necessary to
temporarily remove the motor control plug).

4) Set the cassette for playback, (consult your cassette
recorder user's manual).

5) Enter the LOAD command with the appropriate unit number. The
cassette unit will play back the user's program and stop when
loading is complete.

All of the cassette handling cautions listed in paragraph 2.8.2 should
be observed during playback operations also.

2.9 TWO USER OR SINGLE USER/TWO PARTITION OPERATION

Evaluation BASIC, when used on the TM 990/100M may only be used as a
single user/single partition BASIC operation. Evaluation BASIC on the
TM 990/101M board may optionally be configured for single user
two-partition operation or for two-user/two-partition operation.
Multipartition operation on the TM 990/101 board is performed with the
use of the on board 5-switch DIP, the I/O ports P2 and P3, and the
main and auxillary TMS9902s.

2-31

The five-bit DIP switch is used to:

• Initialize Evaluation BASIC pointers and tables for multiuser/
multipartion operation

• Partition the available user memory between users on a two-user
system or between partitions for a single use system.

• Configure both TMS9902 I/O ports on the 101M board

Table 2-8 summarizes the switch settings of the TM 990/101M board.

The ratio represents the memory partition size for 1) each partition
of a single user system, or 2) for each user of a two-user system.

Note that Development BASIC does not allow two partition or two user
operation, and therefore the five-bit DIP switch performs no function
in Development BASIC.

2.9.1 SINGLE USER/TWO PARTITION POWER BASIC CONFIGURATION

To configure the POWER BASIC system for single user operation with two
user RAM partition areas, the following sequence must be performed:

a) Select the user memory area for each partition by setting the 5
position dip switch as per Table 2-8.

b) Insert board in chassis and connect terminal to connector P2.

c) Apply power to the board and activate the reset switch. This
causes POWER BASIC to size RAM from the top (FFDC16) down, and
divide the available user area between user partitions.

d) Press the "A" or carriage return key on the terminal device.
POWER BASIC measures the time of the start bit, determines the
baud rate, and initializes the TMS9902 at this baud rate for I/O
communications.

e) Evaluation BASIC will print out the banner message and await
further keyboard input.

f) Hold down the control key and depress the "T" key to "toggle"
control to the other user partition.

g) Repeat steps d) and e) above.

h) At this point both partitions are initialized. Control may be

2-32

transferred between partitions at any time by using the
"(control) " key as in step f) above. It is no longer required
to autobaud the terminal (step d above). Evaluation BASIC waits
for further keyboard entry of commands or statements into either
partition of the user's RAM area.

Example:

(press RESET switch on microcomputer board)
(strike the "A" key)
TM990 BASIC REV E.x.x
•READY
SIZE
PRGM: 0 BYTES
VARS: 0 BYTES
FREE: 2000 BYTES
(strike "control T")
(strike the "A" key)
TM990 BASIC REV E.x.x
*READY
SIZE
PRGM: 0 BYTES
VARS: 0 BYTES
SIZE: 1000 BYTES

TABLE 2-8. 5-BIT DIP SWITCH OPTION

SWITCH POSITIONS
MULTIPARTITION

USER
AREA

RATIO OF RAM
USER AREA #1 TO
USER AREA #2 S1 S2 S3 S4 35

OFF
OFF
OFF
OFF

OFF

ON

ON
ON

OFF
OFF
OFF
OFF

ON

OFF

ON
ON

OFF
OFF
OFF
OFF

OFF

ON

ON
ON

OFF
OFF
ON
ON

ON

ON

ON
ON

OFF
ON
OFF
ON

OFF

OFF

OFF
ON

NO
YES
YES
YES

YES

YES

YES
YES

SINGLE USER/
SINGLE PARTITION

1 : 1
2 : 1
3 : 1

10 : 1

22 : 1

30 : 1

31 : 1

2-33

2.9.2 Two user/two partition POWER BASIC configuration

To configure the POWER BASIC system for two-user operation, the user
must perform the following sequence:

1) Select the user memory area for each partition by setting
the 5-dip as per Table 2-8.

2) Insert board into chassis and connect the two terminals to
connectors 2 and P3 on board.

3) Apply power to the board and activate the RESET switch. This
causes Evaluation BASIC to size RAM and divide the available
user RAM area between the two users.

4) Press the "A" or carriage return key on either terminal
device. POWER BASIC measures the time of the start bit,
determines the baud rate, and initializes the TMS9902 I/O
port connected to this terminal at this baud rate.

5) Evaluation BASIC will print out the banner message on this
terminal and await further keyboard input.

6) Press the "A" or carriage return key on the other terminal
device. POWER BASIC measures the baud rate and initializes
the second TMS9902 at this baud rate for this terminal. Note
that the two terminal devices do not need to be initialized
to the same baud rate.

7) Evaluation BASIC will print out the banner message on this
terminal and await further keyboard input.

8) At this point both user program areas are initialized, and
each user may proceed to enter his sequence of POWER BASIC
statements and commands. At any point either user may "swap"
his entire user partition (including program statements,
variables, etc.) with the other user partition by striking
the "(control) T" key. This operation will be performed even
if one or both of the user programs are in execution.

Example:

(press RESET switch on microcomputer board)
(strike the "A" key on one of the terminals)
TM9909 BASIC REV E.x.x
'READY
SIZE
PRGM: 0 BYTES
VARS: 0 BYTES
FREE: 2000 BYTES

2-34

(on the other terminal)
(strike the "A" key)
TM990 BASIC REV E.x.x
•READY
SIZE
PRGM: 0 BYTES
VARS: 0 BYTES
FREE: 1000 BYTES

2.9.3 Communications between multipartitions

When using either the two-user/two partition or single user/two
partition option, programs can communicate with each other through a
set of common dimensioned variables: COM(0) through COM(9). These
variables are predefined variables common to each partition and do not
require explicit dimensioning. The linkage between two programs in
the two partitions is not established until the "RUN" command has been
executed by both partitions. The "NEW" command terminates the link
between the two user partitions and also clears all program and
variable storage associated with the partition in which the "NEW"
command was executed.

2.9.4 Example

Typically, one of the "common" variables is used for control of
communication while the others are used for data transfer. The
following example illustrates their usage.

PARTITION #1 PARTITION #2
10 DIM A(8) 10 IF COM(0)=0 THEN GOTO 10
20 COM(0)=0 20 PRINT $COM(1)
30 INPUT $A(0) 30 COM(0)=0
40 IF COM(0) 0 THEN GOTO 40 40 GOTO 10
50 $COM(1)4A(0)
60 COM(0)=1
70 GOTO 30

Partition #1 inputs characters into array $A(0) and sends the string
to partition #2 when COM(0) has been cleared. Partition #2 waits for
the message by monitoring COM(0) until it is reset or readied for
another message.

2.10 EPROM PROGRAMMING

Development BASIC has the facilities to program user software into
TMS2716 EPROMs. The programming of EPROMs requires:

2-35

1) TM 990/302 Software Development Board

2) TM 990/452 Enhancement Software Package

3) TM 990/451 TMS2708/TMS2716 Personality Board

4) A power supply with +35V to +55VDC output

Power connections and Personality Board installation should
never be attempted with system power on.

The procedure to program TMS2716 EPROMs is:

1) Turn off system power

2) Connect the 35V-55V power supply to the terminal block-TB1 on
the TM 990/302 board (see paragraph 2.3.1).

3) Install the TM 990/514 EPROM personality board on the 50 pin
edge connector-P3 on the TM 990/302 board; the TM 990/514
should be positioned so that the stake pin jumpers are on the
right side.

4) Position all three of the stake pin jumpers on the TM 990/514
to select "2716" EPROMs.

5) Turn system power on.

6) Enter (or LOAD) the user program to be programmed into EPROM

7) Insert a TMS2716 into the socket on the TM 990/514; pin one
is the upper right corner of the socket.

8) Program the EPROM (see paragraph 4.6)

9) Repeat steps 7 and 8 as necessary.

2.11 LOAD VECTOR

Development BASIC can be "warm started" (see paragraph 3.12) by use of
the LOAD trap vector. The simplest way to initiate the LOAD is via a
normally open push-button switch connected between backplane (P1) pin
93, and ground. On the TM 990/510, and the TM 990/520 Card
Chassis(P1) available on the backplane terminal block,and is labeled
RESTART.B; this will be the simplest place to connect a push-button. A
39 of capacitor must be installed on the CPU card to act as a

2-36

debouncing circuit for the LOAD pushbutton: on the TM 990/100M this
is C5, on the TM 990/101M this is C18.

2.12 TM 990/101M SECOND EIA PORT

In Development BASIC the second EIA port on the TM 990/101M CPU board
can be connected to an EIA compatible output device such as a TI
Model 810 line printer. The second port is only written to, never
read from. The baud rate of the second port is initialized via the
BAUD statement (see paragraph 5.8.4) and output to it is controlled
via the UNIT statement (see paragraph 5.8.3). Baud rates available
and connection techniques are the same as for the main port (see
paragraphs 2.2.5 and 2.3.6.2).

2-37

FUNCTIONAL DESCRIPTION

SECTION III

GENERAL PROGRAMMING INFORMATION

3.1 GENERAL

This section contains general programming information about the POWER
BASIC language. General language features such as syntax, editing
commands, and error listings will be presented.

3.2 BASIC LANGUAGE

The POWER BASIC language is composed of commands and statements.
Commands are used to list, edit, save, load, execute, and debug the
user's BASIC programs. Commands begin with the command name (or the
first three letters of the command name) and are executed immediately
upon entry. Statements in POWER BASIC programs are designed to
perform a task or solve a problem. Statements begin with a line
number and may be displayed and modified by using POWER BASIC
commands. The user may abort the command or statement entered by: 1)
NOT using the carriage return key at the end of the line, but
backspacing and retyping the line; or 2) striking the ESCAPE key.

3.3 POWER BASIC PROGRAM

A POWER BASIC program consists of one or more lines, each uniquely
identified by a line number in the range 0 to 32,767, and each
containing at least one POWER BASIC statement of the form:

<line number><POWER BASIC statement>

More than one statement may appear on a single line by separating the
statements with a double colon (::).

<line number).'(statement 1>::(statement 2>::

The last statement on a line must be totally contained on that line
(it cannot be continued on the next line), and terminated with a
carriage return character.

POWER BASIC will generate automatic line number prompts for the user
to facilitate simple program statement entry. Auto-line numbering is
initialized to begin at statement number 10 and generates an increment
value of 10 between subsequent statement numbers.

3-1

To initiate auto-line numbering when generating a program, the user
should either:

• Enter a line feed character as the first character of the line
(to which POWER BASIC responds with line number 10), or

• Enter the first (starting) statement number and the associated
statement and terminate the line with a line feed entry.

In both cases, the use of a line feed entry at the end of a statement
(rather than the more commonly used carriage return) will result in
line numbers being generated automatically in increments of 10 after
each statement is terminated (entered). To terminate auto-line
numbering, enter a carriage return at the end of the statement.

POWER BASIC programs are executed beginning with the lowest numbered
line and proceeding with the next numbered line until directed
otherwise by a control statement, or until the last statement on the
last line is executed. An example of a POWER BASIC program to compute
the sum of the squares of two numbers is given below.

10 LET X=3
21 LET Y=4
33 LET Z=X*X+Y*Y
40 PRINT Z
57 STOP

The POWER BASIC line number also is used to associate program editing
activities with a particular statement line in the program.

3.4 SOURCE STATEMENT FORMAT

3.4.1 Character set

The character set for POWER BASIC is the upper and lower case alphabet
A-Z; numbers 0-9; and special characters 1"#$%&'([])*:=4+;,.?/.
Non-printable control characters may be specified by enclosing the hex
representation of the character within angle brackets. For instance,
a form feed, (ctrl)L, is specified by "<00", a bell, (CTRL)G, by
"<07>". Note that Evaluation BASIC does not support direct output of
non-printable ASCII control characters.

3.4.2 Line number field

The line number field is the first field of any program line and is a
decimal integer between 1 and 32,767 inclusive. This field, which

3-2

starts in the first print position, must not contain any embedded
blanks and must be followed by at least one blank.

3.4.3 Statement field

The statement field follows the line number in a program line and
contains one or more POWER BASIC statements separated by double colons
(::). Each statement is comprised of a POWER BASIC keyword followed
by a number of constants and/or variables separated by POWER BASIC
operators. All keywords must be entered in upper case.

3.4.4 Tail remark

The tail remark is separated from the statement field by an
exclamation point (!) and can be used for source statement
documentation. All characters following the exclamation point are
treated as a remark and are not executed.

3.5 EDIT MODE COMMANDS

To aid in program writing and debugging, an advanced editor is
contained in POWER BASIC. The editor uses the following special
control characters:

CR
(ln)(ctrl)E
(ctrl)F
(ctrl)H
SPACE
RUBOUT
(ctrl)Dn
(ctrl)In

Enter edited line
Display line for editing
Forward space cursor
Backspace cursor
Space or remove character
Backspace and remove character
Delete n characters*
Insert n blanks*

*Not supported by Evaluation BASIC

The phrase "(ctrl)" indicates that the user holds down the control key
while depressing the key corresponding to the character immdediately
following. For example:

"(ctrl)H"

means depressing the "H" key while holding down the key marked "CTRL"
or "CTL". The character is not echoed on the terminal nor is it
stored in the input buffer. All illegal control characters are echoed
as a bell and otherwise ignored.

All characters displayed are entered no matter where the cursor is
located when a CARRIAGE RETURN or LINE FEED key is depressed.

3-3

An additional feature allows editing program lines that have
previously been entered. The form is:

(statement number) (ctrl)E

The line will be displayed with the cursor remaining at the end of the
line. Any editing as described above may then be done.

The following examples illustrate the character insertion and deletion
features of Development BASIC. Editing features, "(ctrl)Dn" and
"(ctrl)In", are not supported by Evaluation BASIC. The cursor position
is designated by "".

Entering "10(ctrl)E" results in:

10 A(J-1):SQR(B(1)+B(1,2))_

Note that the second argument is missing from the first B array.
Enter nine control H's to backspace to the offending location,

10 A(J-1)=SQR(B(1)+B(1,2))

and follow with (ctrl)I2. POWER BASIC will reply with,

10 A(J-1)=SQR(B(1_)+B(1,2))

after which the second argument can be entered and followed by a
CARRIAGE RETURN to enter the edited line. If it is discovered later
that a third argument of the square root is required, instead of
retyping the line, enter:

10 (ctrl)E

and the computer will respond with:

10 A(J-1)=SQR (B(1,1)+B(1,2))_

Then enter one (ctrl)H followed by (ctrl)I7. The computer responds:

10 A(J-1)=SQR (B(1,1)+B(1,2)_

Enter the desired characters and press the CARRIAGE RETURN or LINE
FEED key. The CARRIAGE RETURN enters line 10 into the program and
returns to the keyboard mode, while the LINE FEED enters line 10 and
prompts with the next sequential line number (line 20). The
"(ctrl)Dn" operator is the reverse operation of the "(ctrl)ln"
operator. For example:

3 -4

30 (ctrl)E

will display statement 30, which has an error.

30 REM CALCULATE SUB TOTATALS_

Entering 4 (ctrl)H's yields

30 REM CALCULATE SUB TOTATALS

Entering (ctrl)D2 yields

30 REM CALCULATE SUB TOTALS

which is the desired result. Complete the editing of this line by
entering a CARRIAGE RETURN.

Evaluation BASIC: The (ctrl)ln and (ctrl)Dn features are not
supported by Evaluation BASIC.

3.6. CONSTANTS

3.6.1 Hexadecimal integer constants

A hexadecimal integer constant is a decimal digit optionally followed
by one to four hex digits followed by the letter H with no embedded
blanks. A hex constant cannot begin with the letters A-F. In these
cases they must begin with a zero. If more than four digits are
given, only the right-most four digits are actually used. Valid
combinations are OH to OFFFFH.

Evaluation BASIC: Note that hexadecimal constants are not supported
by Evaluation BASIC.

3.6.2 Decimal integer constants

A decimal integer constant is any integer between -32768 and 32767
inclusive.

3.6.3 Decimal real constants

A decimal real constant is a, numeric value with a decimal fraction.
The number can have no more than 11 significant digits in Development
BASIC, or 7 significant digits in Evaluation BASIC, and may not be
larger than 10 or have a negative exponent less than 10- . Real
numbers may be expressed simply as a number followed by a decimal
fraction, or may also have an exponent assumed to be a multiplier of
10 to that power. (Ex. 123.4 is equivalent to 1.234E2; 0.0000123 is
the same as 1.23 E-5.)

3-5

3.6.4 String constants

A string constant is a string of characters enclosed within single or
double quotes. Paired double quotes can be used to enclose single
quotes and vice-versa. (Example: 'THIS IS A STRING', "SO'S THIS".)
Non-printable characters may be included in string constants by
enclosing their hex equivalent within angle brackets. (See Character
Set, Paragraph 3.4.1). Actually, any character, printable or
non-printable, may be included in a character constant. If you want
both single and double quotes in a constant, single quotes could be
represented as "<27>" or double quotes as "Z22>". POWER BASIC stores
the constant exactly as it appears in the code, and interprets numbers
between angle brackets only when printing them, or when reading them
from a DATA statement (see Paragraphs 5.7 and 5.8). Angle brackets are
NOT interpreted during assignment or comparison. Thus, the constant
'DON<27>T` will print out DON'T (five characters) but is kept as a
string of eight characters. If a program requires the compact form
for comparisons (i.e., looking for a specific combination of
characters in a source string), it is necessary to read the test
string from a DATA statement or build it through concatenation of the
individual characters.

For example:

$TST = 'DON' + %39 $TST = $TST + "T"

will place the desired five character string into the variable $TST.
The % operator enables the Evaluation BASIC user to insert
nonprintable ASCII character codes into string constants for output by
inserting the decimal ASCII code following the % symbol into the
character string. For additial information refer to Section 5.8.2.

Numbers enclosed within angle brackets WILL be interpreted when
printed. So if it is necessary to print out the statement "A>t" (A is
not equal to B), the angle brackets must be considered non-printable
characters and specified as "A0d><3E>B" (only the left bracket (0 is
non-printable so that "Aad>B" is valid and will produce the same
results).

Evaluation BASIC: Note that direct output of ASCII characters is not
supported by Evaluation BASIC.

3.7 VARIABLES

POWER BASIC supports simple numeric variables, numeric array
variables, simple string variables, and string array variables. The
two numeric variable formats are used extensively in POWER BASIC
statements and arithmetic operations, while the two string variable
formats are used extensively for string-character manipulation and

3-6

output. Note that if any POWER BASIC numeric variable is referenced
by a BASIC statement or command and the variable has not been
previously defined, it will result in a "UNDEFINED VARIABLE" error.
Also note that if any string variable is referenced and has not
previously been defined, the string variable will be defined as a null
string. "POWER BASIC will allow approximately 140 distinct variables.
Any attempt to define more than this will result in a "TOO MANY
VARIABLES" error message."

3.7.1 Simple variables

Names for simple numeric variables must begin with a capital letter
(A-Z) and may be followed by one or two capital letters or a number in
the range 0-127. Names for variables may not be the same as POWER
BASIC key words or the beginning of the same, (i.e., SIN is not a
valid name nor is LIS since it is the same as the first three
characters in the command LIST).

Examples:

Valid names: A, ABC, CAT, AO, A123.

Invalid names: ABS (function name), A.B (non-letter), A130
(number out of range), AB1 (only 1 letter in letter number
combinations) 12B (first character must be letter), ABCD (too
long).

3.7.2 Numeric array variables

The same rules given for formation of simple numeric variable names
apply to numeric array variables, with the additional specification
that numeric array variables must appear in a DIM statement which is
executed before the first reference to the variable (see DIM
statement, Section V, paragraph 5.3). Numeric array variables must
always appear with a subscript. The subscript distinguishes an array
variable from a simple variable of the same name; i.e., PRINT A and
PRINT A(0) refer to two completely separate variables. When keying in
a reference to an array variable, either parenthesis or square
brackets may be used. (Both become square brackets internally and are
subsequently printed as square brackets.)

3.7.3 Simple string variables

Simple string variables follow the same rules given for simple numeric
variables with the added specification that the reference must be
preceded by a dollar sign ($). Internally, string data is
stored left-justified and delimited by a null character (a zero byte).

3-7

Characters are normally represented as 8-bit ASCII (normal 7-bit ASCII
with the 8th bit set to zero). If the 8th bit is set to one, the
interpreter will treat the character the same; however, a character
with the 8th bit on is NOT equal to the same character with the 8th
bit off! All strings are terminated by a null character. A simple
variable in Evaluation BASIC is composed of 32 bits, or 4 eight-bit
bytes. Thus, a maximum of three characters should be stored in a
simple string variable of Evaluation BASIC; longer strings should be
stored in string arrays (dimensional string variables) as explained
below. Any operation which attempts to place more than the maximum
number of characters in a string variable will result in overwriting
of data immediately following the string variable. Note that
Development BASIC supports simple variables which are 48 bits or 6
eight-bit bytes in length. Simple variables in Development BASIC can
therefore contain a maximum of five characters terminated by a null.

3.7.4 String array

The same rules given for the formation of numeric array variables
apply to string array variables with the added requirement that the
name must be preceded by a dollar sign ($). The dollar sign, however,
is omitted when defining array variables with the DIM statement. If
the array is multi-dimensional, the data is stored internally with the
right-most subscript varying most rapidly.

The 48-bit Development BASIC stores 6 bytes maximum per array element.
This is important if you wish to store a series of names longer than
five characters in an array. For example, the array A is dimensioned
by the statement, DIM A(2,1). The names "RHINOCEROS", "ELEPHANT",
and "GIRAFFE" would be internally stored as:

$A(0,0) : RHINOC(EROS) $A(0,1) : EROS
$A(1,0) : ELEPHA(NT) $A(1,1) : NT
$A(2,0) : GIRAFF(E) $A(2,1) : E

The data in the second column of the array is also output when
printing $A(0,0),$A(1,0), or $A(2,0) since a string is delimited by a
null character. Since the string in the first column does not contain
a null, BASIC continues on to the second column or until it finds a
null. If that null is overwritten by placing something else there,
unexpected results may occur. For example, by executing A(0,1) =
A(2,0), and then printing $A(0,0), the result would be
"RHINOCGIRAFFELEPHANT".

One additional characteristic of string array variables is that
individual bytes in the variable may be referenced by specifying the
byte index after the subscript. The first byte of a string is
referenced by an index value of 1, and the index limit extends to the
last character of the string. A semicolon is used to delimit the

3-8

index from the subscript in this case. Example: $A(0,0;4) is "N" --
the fourth letter in RHINOS in the above example.

Note that the following example on the 32-bit Evaluation BASIC
functions in the same manner as the above example, except that the
elements are smaller (4 bytes maximum per array element).

DIM A(2,2)
$A(0,0) : RHIN(OCEROR) $A(0,1) : OCER (OS) $A(0,2) : OS
$A(1,0) : ELEP(HANT) $A(1,1) HANT $A(1,2) :
$A(2,0) : GIRA(FFE) $A(2,1) FFE $A(2,2)

3.7.5 Reserved variables

Evaluation BASIC supports a multi-partition user program area. Both
terminals may access their separate partition or both partitions may
be assigned to a single terminal. In order to facilitate
communication between these partitions, a set of common variables has
been designated. These variables are contained in an array named COM
consisting of ten elements (0-9) and must be referenced as a
dimensioned variable (COM(0)-COM(9)). These variables are reserved
and should be used for inter-partition communications only. These
command variables differ from other variables used in BASIC
application programs because the common variables are not deleted when
the "NEW" statement is executed as are all other user defined
variables. For additional details on the multi-partition feature of
Evaluation BASIC, refer to Section II, paragraph 2.9. Note that
Development BASIC does not support a multi-partition user program
area, therefore the variables COM(0) through COM(9) are not reserved
variables of Development BASIC and are not predefined array variables.
Caution should be used in generating POWER BASIC programs on
Development BASIC using variables COM(0) through COM(9) and then
transporting these programs to Evaluation BASIC where COM(0) through
COM(9) are used to perform additional functions.

3.7.6 Variable storage

The following paragraphs will explain the internal variable storage
structure used by POWER BASIC. This will be helpful when accessing
variables of BASIC from a "CALLed" assembly language subroutine,

3.7.6.1 Number array storage. Arrays of numbers are stored in memory by now
with each number (element) occupying 4 bytes in Evaluation BASIC and 6
bytes in Development BASIC. The storage of singly and doubly
dimensioned arrays are illustrated in the diagrams that follow.
Larger dimensioned arrays are stored in a similar manner.

3-9

Single dimensioned array A with 3 elements starting at Hex address
E80016

E800 E800 A(0)
E802 E802 A(0)
E804 A(1) E804
E806 E806
E808 A(2) E808 A(1)
E80A E80A

E80C
E80E A(2)
E810

EVALUATION BASIC DEVELOPMENT BASIC

Doubly dimensioned array B with 3 rows (first subscript) and 2 columns
(second subscript) starting at hex address F20016

F200 B(0,0) F200
F202 F202 B(0,0)
F204 B(0,1) F204
F206 F206
F208 B(1,0) F208 B(0,1)
F20A F20A
F20C B(1,1) F20C
F20E F20E B(1,0)
F210 B(2,0) F210
F212 F212
F214 B(2,1) F214 B(1,1)
F216 F216

F218
F21A B(2,0)
F21C
F21E
F220 B(2,1)
F222

EVALUATION BASIC DEVELOPMENT BASIC

As can be seen from the examples above, the address of an element in a
singly dimensioned arrays is:

ARRAY BASE + 4 • (SUBSCRIPT) EVALUATION BASIC
ARRAY BASE + 6 ' (SUBSCRIPT) DEVELOPMENT BASIC

3 —10

00 "C"

"B"
US"

"A"
"I"

e.g., A(1) in the previous lines would be:

E800 + 4 * 1 = E804 EVALUATION BASIC
E800 + 6 * 1 = E806 DEVELOPMENT BASIC

while the address of an element of a doubly dimensioned array element
is:

ARRAY BASE + 4 * (MULTIPLER*SUSCRIPT1 + SUBSCRIPT2) EVALUATION BASIC
ARRAY BASE + 6 * (MULTIPLER*SUBCRIPT1 + SUBSCRIPT2) DEVELOPMENT BASIC

Where the multiplier is the maximum value of the second subscript + 1.
For instance, B(1,0) above would be:

F200 + 4 * (2*1+0) = F208 EVALUATION BASIC
F200 + 6 * (2*1+0) = F20C DEVELOPMENT BASIC

3.7.6.2 Strings and string array storage. Strings are stored one ASCII
character per byte, and are terminated with a null byte. Evaluation
BASIC variables are 4 bytes in length, while Development BASIC
variables are 6 bytes in length. The examples below show the string
storage format.

"BYE" stored in string variable $A at Hex address F00018:

F000 "B" nye,. F000 "B" nye,
F002 "E" 00 F002 "E" 00

F004 X X

EVALUATION BASIC DEVELOPMENT BASIC

"BASIC" stored in DEVELOPMENT BASIC starting at hex address F020 16:

F020
F022
F024

Strings may be empty or they may have any length up to their
declared maximum. Care must be taken that strings of lengths larger
than specified maximum are not placed into simple string variables, or
other variables may be written over.

3-11

Strings may also be stored in dimensioned string variables, in which
case each element has the same maximum length as a simple variable.
The example below illustrates the storage of a string array $A having
3 elements and containing the string "POWER BASIC", starting at hex
address EA0016'

$A(0) EA00 ttprt "0" $A(0) EA00 npit "0"
EA02 "Wit "E" EA02 "E"

$A(1) EA04 111111 t10,11 EA04 "R" nyi

EA06 "B" "A" $A(1) EA06 "B" "A"
$A(2) EA08 !1St, 1111Itt EA08 "S" "I"

EAOA "C" 00 EAOA "C" 00
$A(2) EAOC X X

EAOE X X
EA10 X X

EVALUATION BASIC DEVELOPMENT BASIC

If the string of the above example were output using the "PRINT"
statement, the following strings would result.

"PRINT $A(0), $A(1), $A(2)" in Evaluation BASIC will result in

POWER BASIC R BASIC SIC

"PRINT $A(0), $A(1)" in Development BASIC will result in:

POWER BASIC BASIC

3.7.7 Variable format and accuracy

Any variable may contain an ASCII character string, a. number, or both.
Variable contents are completely program context dependent.
Floating-point quantities in POWER BASIC are represented in either 32
or 48 bits, and are termed short and long, respectively. Evaluation
BASIC utilizes the 32-bit representation, while Development BASIC uses
the 48-bit representation. In either case, the first bit in position
0 represents the sign of the number: 0 for positive numbers, 1 for
negative numbers. The bits in positions 1-7 are the characteristic,
or exponent, coded in excess-64 notation. The remaining bits of the
floating-point number, either in positions 8-31 in Evaluation BASIC or
in positions 8-47 in Development BASIC, contain the mantissa or
fractional portion of the floating-point number. The fraction is
always recorded as a positive number; negative floating point numbers
are not represented in complement form. The binary point of the
fraction is understood to be just before bit position 8.

3-12

A floating-point number is represented by its fraction times a power
of 16, with its sign attached to the result. The exponent indicating
the power of 16 by which the fraction is multiplied is coded in the
characteristic. The characteristic is 64 greater than the exponent.
Excess-64 notation perm 4p repwentatio1 of a 4ge range of
magnitudes, roughly from 16-uato 164°' (or 10-'' to 10""). Evalua-
tion BASIC utilizing 32-bit floating point representations provides
approximately 7 digits of accuracy, while the 48-bit Development BASIC
provides approximately 11 digits of accuracy.

Evaluation BASIC Floating-Point Format:

S Characteristic 6-hex digit fraction

Development BASIC Floating-Point Format:

S Characteristic 10-hex digit fraction

Examples:

The pattern

0
••••••••

1000000 10000000 00000000 00000000

sign characteristic fraction

Includes a characteristic of 64
0. The fraction is (binary) .
Therefore, since the sign bit
number represented is +0.5'160=
The pattern

(hex 40) and therefore an exponent of
1000 , or 2-1-, or decimal 0.50.

of 0 denotes a positive number, the
0.50.

01010100

54

00000000

00

00000000

00

1 1000001

C1

Includes a characteristic of 65 and therefore an exponent of 1. The
fraction is .010101 = 2-2+2-4+243. The sign bit of 1 denotes a
negative number, so the quantity represented is -(2-2+2'4+2-6) * 161 =
-(22+20+2-2Y = -(4+1+0.25) = -5.25.

3 -13

Integer quantities in POWER BASIC are represented in 32 bits, with
zeroes in bit positions 0 through 15 followed by the two's complement
16-bit integer in bit positions 16 through 31.

Evaluation & Development BASIC Integer Format:

00000000 00000000 two's complement integer

POWER BASIC will store a numeric quantity as either a floating point
or integer value, dependent upon the magnitude of the quantity. If
the number can be represented as a 16-bit two's complement integer,
it will be stored in integer format; otherwise it will be stored in
floating-point format.

The following example program will demonstrate the internal integer
and floating point formats used in POWER BASIC. The program requests
user input by prompting with a question mark(?). The user may then
enter any numeric value followed by a carriage return. The value will
be displayed as a 32-bit integer with the first 16 bits zero, or as a
48-bit floating-point value. Note that the BIT function is not
supported by Evaluation BASIC.

10 INPUT A;
20 PRINT TAB(20)
30 FOR I=1 TO 48
40 IF 1=2 THEN PRINT " ', ;

50 IF 1=9 THEN PRINT " It;

60 PRINT #"0" BIT[A,I];
70 NEXT I
80 PRINT
90 GOTO 10

RUN
? 1. 0 1000001 0001000000000000000000000000000000000000
? 1 0 0000000 0000000000000000000000010000000000000000
? 1.5 0 1000001 0001100000000000000000000000000000000000
? 123456789012 0 1001010 0001110010111110100110010001101000010100
? (ESC) Key
STOP AT 10

3 -14

3.8 OPERATORS AND EXPRESSIONS

An expression is a list of variables and constants separated by
operators. There are three types of POWER BASIC operators and
expressions: arithmetic, logical, and relational.

3.8.1 Arithmetic operators

The following is a list of the valid arithmetic operators:

• addition
subtraction

• multiplication
division

n exponentiation
• unary plus

unary minus.

Evaluation BASIC: Note that Evaluation BASIC supports exponentiation
to integer powers only. If a non-integer exponent is used, the
fractional portion is truncated, and the value is raised to the
integer power.

Development BASIC: Note that Development BASIC supports exponentia-
tion to any floating point quantity. Both positive and negative
exponents are valid. However, since Development BASIC uses logarithms
to calculate the exponentiation, only positive quantities may be
raised to a given power.

EXPONENTIATION: There exists a difference in the exponentiation
function as implemented in Evaluation POWER BASIC (TM990/450) and
Development POWER BASIC (TM990/451). In Evaluation POWER BASIC, this
function is implemented by multiplying the number by itself "N" times
where "N" is the power to which the number is to be raised. This is
possible since only integer powers are supported. In Development
POWER BASIC, the exponentiation function is implemented through the
use of logarithms to allow exponentiation to a non-integer power. The
result of this difference is that for a given exponentiation, the
products may vary.

EVALUATION
43 = 8

DEVELOPMENT
213 = 7.9999999999 +/- .00000000001

3.8.2 Arithmetic expressions

An arithmetic expression is any valid sequence of numbers, variables,

3-15

properly balanced, no two numbers or variables can be adjacent, and no
two binary operators can be adjacent).

For example:

An expression may consist of a single operand:

8
SIN(A)

A sequence of operands may be combined by arithmetic operators:

A*B-W/Z

Any expression may be enclosed in parentheses and considered to be a
basic operand:

(X+Y)/Z
(A+B)*(C-D)

Any expression may be preceded by a plus or minus sign:

+X
-(A+B)
-AWTAN(-A))112)

3.8.3 Logical operators

The logical operators do "bit-wise" operations on integers. They
consist of the following:

LNOT (unary) l's complement of integer
LAND (binary) Bit wise AND of two integers
LOR (binary) Bit wise OR of two integers
LXOR (binary) Bit wise exclusive OR

Evaluation BASIC: The logical operators are not supported by
Evaluation BASIC.

3.8.4 Logical expressions

Logical expressions are similar to arithmetic expressions. They both
consist of variables, constants, parenthesis, and operators. The
primary difference is that the operators are different for logical
expressions. The logical operators perform a bit-wise logical
operation on the operand(s).

3-16

For example, if A = OAAAAH (hex "AAAA"), and B=05555H (hex "5555") and
C = OBBBBH, (hex "BBBB"), then

LNOT (A) would equal "5555"
A LAND B would equal 0
A LOR B would equal 'FFFF'
A LXOR C would equal '1111'

3.8.5 Relational operators

The relational operators are all binary operators that operate on two
arithmetic expressions. They return values of 1 (TRUE) or 0 (FALSE).
Relational operators consist of the following:

exactly equal
== approx equal (plus or minus 9.5 E-07

less than
<= less than or equal to

greater than
>= greater than or equal to
<> not equal

The approximately equal (+4-) relational operator returns a TRUE value
when the absolute value of the difference between the two values is
less than or equal to 9.5 E-07.

3.8.6 Boolean operators

The boolean operators are designed to work on the resultant TRUE or
FALSE conditions set by the relational operators. However, they may
also operate on variables within the program, in which case a zero
value is considered False and a non-zero value variable is considered
to be True. The boolean operators return values of 1 (True) or
0 (False).

Boolean operators consist of the following:

NOT (UNARY) Returns a TRUE value if expression evaluates to
FALSE (non-zero); otherwise, returns a FALSE value.

AND (BINARY) Returns a TRUE value if both expressions evaluate to
TRUE (non-zero); otherwise, returns a FALSE value.

OR (BINARY) Returns a TRUE value if either expression evaluates
to TRUE (non-zero); otherwise, returns a FALSE
value.

Evaluation BASIC: The approximately equal (==) and the boolean
operators NOT, AND and OR are not supported by Evaluation BASIC.

3 -17

3.8.7 Boolean and Relational expressions

Boolean and relational expressions are formed according to the
following rules:

A Boolean or relational expression may consist of a single element:

NOT(A)
X03.14159

Single elements may be combined through the use of the Boolean
operators AND and OR to form compound expressions such as:

A AND B
X OR Y

Any expression may be enclosed in parentheses and regarded as an
element:

(T OR S) AND (R OR Q)

3.8.8 Expression evaluation

Expressions are evaluated left to right if the operators are of equal
precedence, and there are no parentheses. If there are parentheses in
the expression, the sub-expression within the innermost parentheses is
evaluated first. Not all operators have equal precedence - operands
which are operated on by an operator of high precedence are evaluated
before operations of low precedence.

The precedence of operators is:

1. Expressions in parentheses
2. Exponentiation and negation
3. *,/
4. +,-
5. <=,<>
6. >=,‹

7. ►>
8. ==,LXOR
9. NOT,LNOT
10. AND,LAND
11. OR,LOR
12. (:) ASSIGNMENT

3.9 MULTIPLE STATEMENTS "::"

A double colon (::) terminates a POWER BASIC statement and can
therefore be followed by another statement on the same line. This

3-18

saves memory, speeds execution and also allows for better program
segmentation. A common divisor program using multiple statement lines
is illustrated below:

Example:

10 PRINT " A"," B"," C","GCD"
20 READ A,B,C
30 X=A:: Y=B:: GOSUB 200
40 X=G:: Y=C:: GOSUB 200
50 PRINT A,B,C,G:: GOTO 20
60 DATA 32, 384, 72
200 Q= INP (X/Y):: R=X-QTY
210 IF R=0 THEN G=Y :: RETURN
220 X=Y:: Y=R:: GOTO 200

All POWER BASIC statements may be preceded and followed by a double
colon in multiple statement lines with the exception of the NEXT,
DATA, and REM statements. The NEXT statement should not be preceded
by another statement (i.e., should be the first statement of the
line), the REM statement should not be followed by any statements on
the same line, and the DATA statement should not be preceded or
followed by any statement on the same line.

3.10 KEYBOARD MODE

POWER BASIC executes statements in either "execution" mode or
"keyboard" mode. In keyboard mode, statement numbers are not entered,
only one line is executed at a time, and control is returned to the
user after its execution. This line may contain multiple statements
properly separated by a double colons.

The system recognizes two kinds of input: statements and commands.
See Section IV for Basic Commands and Section V for Basic Statements.
One and only one command may be executed per line with no statements
on the line.

In execution mode, the program counter moves through the program
executing statements. Execution mode is entered by RUN, CONTINUE, or
GOTO and returns to keyboard mode after any error, STOP, when all
statements have been executed, or when the escape key is entered.

The following examples illustrate one line calculations in keyboard
mode. Note that ";" is equivalent to PRINT. The user must terminate
each entry line with a carriage return and POWER BASIC will print the
result. In the examples below all POWER BASIC responses are
underlined for clarity.

3-19

PRINT 12*12; 144
;1/3;3'9; 0.3333333 27
;4*ATN1; 37ITTM--
;SIN(ATN1770.7071068 1.414214
;EXP1;COS(4*ATN1); 2.71828 -
;3'34/23,9 -4+2 ,̂(3+5); 252.0084
I=1:: K=2:: PRINT I+Kf-3------

A FOR/NEXT loop can be executed in keyboard mode only if entered on
one line, but the loop cannot be ESCaped from.

The following types can only be executed in keyboard mode. They can
only be entered one command per line and cannot be entered in a
program:

CONTINUE PROGRAM
LIST RUN
LOAD SAVE
NEW SIZE

3.11 ERRORS AND ERROR LISTING

The first run of new program may be free of errors and give the
correct answers. But it is much more common that errors will be
present and will have to be corrected. Errors are of two types:
errors of form (syntax, arithmetic, structure, or grammatical errors)
which prevent the running of the program, and logical errors in the
program which cause the computer to produce either the wrong answers
or no answers.

Errors of form cause the error code and statement number in which the
error occurred to be printed, and program execution stops. Logical
errors are often much harder to uncover, particularly when the program
gives answers which seem to be nearly correct. In either case, after
the errors are discovered, they can be corrected by changing lines, by
inserting new lines, or by deleting lines from the program. A line is
changed by typing it correctly with the same line number; a line is
inserted by typing it with a line number between those of two existing
lines; and a line is deleted by typing its line number and pressing
the carriage return key. A line can be inserted only if the original
line numbers are not consecutive numbers. For this reason, most
programmers will start out using line numbers that are multiples of
five or ten to leave space for the inevitable changes and corrections.

Corrections can be made at any time before or after a run. Since the
computer sorts lines (and arranges them in order), a line may be
retyped out of sequence. Simply retype the offending line with its
original line number. If, after examining a program the errors are not
obvious and there are no grammatical errors, carefully select and
insert temporary PRINT statements to see if the machine is computing
what you wanted.

3 -20

POWER BASIC displays error code numbers corresponding to the
appropriate error message to indicate which error has occurred. This
is the case for the TM 990/450 Evaluation BASIC as well as the
TM 990/451 Development BASIC. However, Development BASIC utilizing
the TM 990/452 Development BASIC Enhancement EPROM set provides the
capability of displaying the error message itself rather than the
error code number for all errors generated by the Development BASIC
package. Note that if this expansion EPROM set is not present in the
Development BASIC system, all errors will be displayed as an error
code number only.

POWER BASIC reports all errors using basically two formats. The first
format displays the error code of error message and the statement
number where the error occurred according to the following format(s):

*ERROR XX AT YYYY
XXXXXXXXX AT YYYY

where:

XX is the error code or error message
YYYY is the statement number

This error format is displayed whenever errors are encountered during
program execution, and program execution will be terminated at the
offending statement. The error format displays the statement line in
which the error occurred. The offending statement line or other
segments of the program may then be edited to correct the reported
error.

The second format displays only the error code or error message when
an error occurs. These type of errors are detected during keyboard
mode statement execution, during statement or command entry, or during
program LOADing from cassette. They indicate that the most recently
entered statement or command, on the most recently LOADed statement is
in error. If the error is an error of syntax (i.e., something is
wrong with the statement itself, typically a typing error, an
omission, or an unrecognizable statement), the error is first output,
followed on the next line by a repeat of the preceeding satement or
command with the cursor positioned at the offending character. If a
syntax error is detected during program LOADing, the error is output
and the offending statement is output on the next line, but no cursor
positioning is performed. If an error other than syntax occurs
during command or keyboard statement execution, only the error is
output. Any syntax errors may then either be corrected and the
statement or command executed again, or the LOADing operation may be
continued or repeated (see the LOAD command of Section 4, paragraph
4.4)

3-21

The following error codes and error messages may be issued by the
POWER BASIC package:

CODE ERROR MESSAGE

1 = SYNTAX ERROR
2 = UNMATCHED PARENTHESIS
3 = INVALID LINE NUMBER
4 = ILLEGAL VARIABLE NAME
5 = TOO MANY VARIABLES
6 = ILLEGAL CHARACTER
7 = EXPECTING OPERATOR
8 = ILLEGAL VARIABLE NAME
9 = ILLEGAL FUNCTION ARGUMENT
10 = STORAGE OVERFLOW
11 = STACK OVERFLOW
12 = STACK UNDERFLOW
13 = NO SUCH LINE NUMBER
14 = EXPECTING STRING VARIABLE
15 = INVALID SCREEN COMMAND
16 = EXPECTING STRING VARIABLE
17 = SUBSCRIPT OUT OF RANGE
18 = TOO FEW SUBSCRIPTS
19 = TOO MANY SUBSCRIPTS
20 = EXPECTING SIMPLE VARIABLE
21 = DIGITS OUT OF RANGE (<0(12)
22 = EXPECTING VARIABLE
23 = READ OUT OF DATA
24 = READ TYPE DIFFERS FROM DATA TYPE
25 = SQUARE ROOT OF NEGATIVE NUMBER
26 = LOG OF NON-POSITIVE NUMBER
27 = EXPRESSION TOO COMPLEX
28 = DIVISION BY ZERO
29 = FLOATING POINT OVERFLOW
30 = FIX ERROR
31 = FOR WITHOUT NEXT
32 = NEXT WITHOUT FOR
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 = UNNORMALIZED NUMBER
35 = PARAMETER ERROR
36 = MISSING ASSIGNMENT OPERATOR
37 = ILLEGAL DELIMITER
38 = UNDEFINED FUNCTION
39 = UNDIMENSIONED VARIABLE
40 = UNDEFINED VARIABLE
41 = EXPANSION EPROM NOT INSTALLED
42 = INTERRUPT W/0 TRAP
43 = INVALID BAUD RATE
44 = TAPE READ ERROR
45 = EPROM VERIFY ERROR
46 = INVALID DEVICE NUMBER

3 -22

3.12 RESET AND LOAD FUNCTION OPERATION

The RESET function is used to initiate the Power-up initialization
sequence of POWER BASIC as explained in Section 2, paragraph 2.4.2.
This function may also be used at any time during the execution of the
POWER BASIC application program. The RESET function is actuated by
activating the RESET switch near the corner of the TM 990/100M or
TM990/101M microcomputer board,and performs the following operations
in POWER BASIC.

The RESET function automatically sizes and clears the systems RAM area
starting from memory location FFDC16 and checks sequential memory
locations down through memory location 400016 until a write/read
mismatch is detected. (Note that POWER BASIC detects the resulting
"hole" in the memory map when a TM 990/100M microcomputer board is
being used and continues sizing and clearing memory from F00016 on
down.) All of the detected RAM area is then allocated to POWER BASIC
to be used for system overhead and user program area. The lower
bounds of RAM may later be changed by using the optional address
parameter of the NEW command of Development BASIC (see Section 4,
Paragraph 4.5).

POWER BASIC then performs the auto-baud sequence to initialize the
serial I/O interface from terminal communications. POWER BASIC waits
for the user to enter the "A" key (or carriage return) on the terminal
device and then measures the time of the start bit, determines the
baud rate, and initializes the TMS9902 to this baud rate.

Next it initializes all POWER BASIC pointers at their beginning,
essentially performing the NEW command.

In Development BASIC, the initialization sequence then restores the
UNIT flag to a value of 1, that is, it directs all output to Port A on
the microcomputer board (for additional information refer to the UNIT
statement of Section 5, paragraph 5.8.3).

POWER BASIC then outputs the following message:

TM 990 BASIC REV X.n.m
•READY

where:

X = language level
n = the release number
m = the revision number

3 -23

POWER BASIC is then intialized and awaits user keyboard input.

Therefore,, it can be seen that restarting POWER BASIC by using the
RESET switch results in the user's BASIC program being destroyed - an
unacceptable consequence in many situations. For this reason,
Development BASIC provides the capability of performing a "warm start"
procedure which will not destroy the user's program. This is
performed by using the LOAD function of the TM 990/100M or TM 990/101M
microcomputer boards.

The LOAD function is actuated by setting the RESTART.B signal on
connector P1 to a logic ZERO, or more commonly by activating a
push button switch configured between the signal RESTART.P and GROUND
on the TM 990/510 card chassis. When the LOAD function is activated
it causes a trap to the WP and PC values at memory locations FFFCIond
FFFE16, respectively. The LOAD function performs the following
operations in Development BASIC.

The LOAD function restores the UNIT flag of Development BASIC to a
value of 1, that is, it directs all output to Port A of the
microcomputer board. (For additional information refer to the UNIT
statement of (Section 5, paragraph 5.8.3).

Next, POWER BASIC outputs the banner message:

TM 990 BASIC REV X.n.m
'READY

where:
X = language level
n = the release number
m = the revision number

POWER BASIC then awaits user keyboard inputs to edit, list, or execute
the user's BASIC application program.

3-24

SECTION IV

BASIC COMMANDS

4.1 GENERAL

POWER BASIC programs are created, executed, and debugged through
interation with the BASIC system. The system recognizes two kinds of
input: statements and commands. BASIC commands direct and control
system functions which include initiating computer operation, storing
data, and listing programs. Commands cause immediate computer
interaction thereby allowing operator control. Statements perform a
sequentially assigned programmed task. Any command may be entered
once BASIC has been initialized. An error message is generated when
an improper or illegal entry is attempted.

Commands are in the form of a keyword which may be abbreviated to the
first three letters. For example:

LIST

can be entered as

LIS

4.2 CONTINUE COMMAND

Form:

CONtinue

The CONTINUE command transfers control to the next statement of the
BASIC program. (The RUN command always starts at the first line.)

When the RUN command is entered, program execution begins at the first
line and continues until a break condition occurs. The CONTINUE
command may be used to continue execution after a break.

The program will stop or break when the user enters the ESCape key
during program execution, a STOP or END statement is encountered, or
an error occurs within the program.

If execution was halted by an error or the 'escape' key, then the
interrupted line will be re-executed by "CONTINUE". If execution was
halted by a "STOP" statement, "CONTINUE" will execute the following
line. It is not possible to "CONTINUE" past an "END" statement.

Evaluation BASIC: The CONTINUE command is not supported by Evaluation
BASIC.

4-1

4.3 LIST COMMAND

Forms:
LIST

<line - number) LIST

The LIST command displays all or any portion of the current program.
Entering only the command forces the entire program to be listed. By
entering a line number, specific portions of the program can be
listed. The line number specifies the starting line number where
listing of the program is to begin. The starting line number need not
be an existing line number. POWER BASIC will begin listing at the
first line number greater than or equal to the starting line number
and terminate listing at either the last line number of the program or
when the user enters the ESCape key.

Example:

LIST

results in a listing of an entire program, while

100 LIST

lists all the lines from 100 through end of program, inclusive.

4.4 LOAD COMMAND

When a user program has been properly "SAVEd" on cassette, the LOAD
command loads the user program from cassette into memory.

Forms:

LOAD
LOAD <exp>

Development BASIC supports both forms of the LOAD command, while
Evaluation BASIC supports only the first form.

Loading a BASIC program into memory inserts only those BASIC
statements with statement numbers on the cassette and will not affect
BASIC statements already in memory having different statement numbers.
Any statements in memory which have the same statement number as the
program on cassette will be overwritten when the cassette is loaded.

The LOAD command without an expression, or with an expression value of
zero, will result in the user's BASIC program being loaded from the
733 ASR digital cassettes. To load a program from digital cassette,

4-2

the transport must be readied and in the playback mode before the
LOAD command is executed. Reference Section 2, paragraph 2.8 for
details on 733 ASR cassette transport loading and operation. Should
any error occur during program loading from 733 digital cassettes, the
offending statement will be printed on the terminal device along with
the appropriate error messages and the statement number where the
error occurred. When an error occurs, the loading procedure is
terminated and POWER BASIC returns to the keyboard mode. The user
must then manually stop the cassette transport in Evaluation BASIC or
subsequent errors will result when attempting to load a program while
POWER BASIC is not in the "load mode". Development BASIC
automatically stops the cassette transport on an error. Note that all
statements on the cassette tape prior to the occurrence of the error
will have been successfully loaded and need not be entered again. The
remainder of the statements on the cassette may be loaded by again
entering the "LOAD" command after manually stopping the cassette
transport. When loading is complete, the 733 ASR cassette drive stops
and the user must strike the ESCape key on the keyboard to return to
the keyoard mode in Evaluation BASIC. When loading of a SAVED digital
tape is complete in Development BASIC, it automatically returns to the
keyboard mode and awaits command/statement entry. Program listing,
editing, and execution may then proceed.

The LOAD command with an expression value of 1 or 2 will load the
program from audio cassette drive #1 or #2, respectively. To load a
program from audio cassette, the tape drive must be readied and in the
playback mode before the LOAD command is executed. Reference Section
2, paragraph 2.8.2 for details on audio cassette drive setup and
operation. Note that the audio cassette device service routines of
POWER BASIC reside in the TM 990/452 Development BASIC Enhancement
Software Package as presented in Section 1, paragraph 1.3. Attempts
to execute the "LOAD 1" or "LOAD 2" commands without the Development
BASIC Enhancement EPROM set installed in the system will result in an
ERROR 41 (EXPANSION EPROM NOT INSTALLED).

NOTE

The audio cassette device service routines cannot be
interrupted during loading of a program since each bit of
the data bytes has a specified minimum and maximum pulse
width for reliable data storage and retrieval. Therefore,
all interrupts are masked at the CPU whenever a LOAD is
being performed to device 1 or 2. This implies that the
real-time clock of POWER BASIC will not be updated for the
entire LOAD process. This time period can accumulate to a
significant amount. Therefore, the real-time clock is
stopped and zeroed when the LOAD process from audio cassette
is begun to emphasize the resulting clock innaccuracy.

4-3

When loading from audio cassette, the "PROGRAM ENABLE" LED on the
TM 990/302 board is turned on and off at the beginning and end of each
record as it is read by Development BASIC.

If a tape read error or checksum error occurs during loading from
audio cassette, the loading procedure is terminated and POWER BASIC
returns to the keyboard mode, stopping the audio cassette drive. If
an error occurs during translation of the "loaded" statement, the
offending statement will be printed on the terminal device along with
the appropriate error message and the statement number where the error
occurred. The loading procedure will then be terminated and the audio
cassette drive must manually be stopped by the user. Note that all
statements on the cassette tape prior to the occurrence of the error
will have been successfully loaded and need not be entered again. If
an error occurs the user may attempt to re-read the entire audio
cassette or read the remainder of the casssette. When loading is
complete, the audio cassette drive stops and POWER BASIC returns to
the keyboard mode for command/statement entry.

At any time during program loading from either audio or digital
cassettes, the user may terminate the loading process by entering the
ESCape key. In Evaluation BASIC, the 733 ASR digital cassette will
automatically be stopped by POWER BASIC. POWER BASIC will then return
to the keyboard mode for command/statement entry.

All statements which were read before the entry of the ESCape key will
successfully be loaded into POWER BASIC.

The LOAD command with an expression value greater than 2 will result
in the expression being interpreted as a memory address. Typically,
the expression is entered as a hexadecimal memory address constant.
The form of the LOAD command with an address parameter is used by
Development BASIC to ititialize the internal pointers of POWER BASIC
to reference a BASIC application program residing in EPROM at the
specified memory address. Also the pointers to the user RAM area are
set to the lower RAM address detected by BASIC or as set by the "NEW
OAdres4>" command, to provide a larger area for BASIC application
program variable and array storage. The BASIC application program
would previously have been stored into EPROM using the PROGRAM command
at the specified memory address corresponding to the starting address
at which these EPROMs were placed in the memory map of Development
BASIC. After execution of the "LOAD address" command, the user may
list and execute the BASIC program referenced by the address. Note
that the user may not perform any program editing of this program
since it resides in EPROM and cannot be modified once stored in
EPROM. If editing of a BASIC program in EPROM is attempted,
unpredictable results may occur. Also the user must verify that the
specified address is a valid EPROM application starting address or
unpredictable results will occur. The user may execute severe "LOAD
<address>" commands to sequentially access multiple EPROM application
programs; however only the most recently "loaded" EPROM application is
accessable and executable by POWER BASIC.

4-4

4.5

The user may return to the development mode of POWER BASIC which
permits new program entry, editing, and debug by entering the NEW
command. Reference Section 4, paragraph 4.5 for additional
information of the NEW command.

Examples:

LOAD (LOAD program from 733 ASR digital cassette)
LOAD 0 (LOAD program from 733 ASR digital cassette)
LOAD 2 (LOAD program from audio cassette drive #2)
LOAD 05000H (Initialize pointers to application program

in EPROM residing at hex address 5000)

Evaluation BASIC: The LOAD command with an expression or memory
address parameter is not supported by Evaluation BASIC.

NEW COMMAND

Forms:

NEW
NEW <addres0>

The NEW command without an address deletes the current user program
and clears all variable space, pointers, and stacks. POWER BASIC
responds with "'READY" and awaits the entry of new BASIC programs.
The programs may be retrieved later if they have been SAVED.

The form of the NEW command with an address parameter is used by
Development BASIC to limit the amount of RAM memory which can be used
by the POWER BASIC system for interpreter overhead and user program
area. When POWER BASIC is initialized during power-up, it
automatically sizes and clears the system RAM area starting from
memory location FFDC16 checking sequential memory locations down
through memory location 400016 until a write/read mismatch is
detected. All of the detected RAM area is then allocated to POWER
BASIC to be used for interpreter overhead and user program area. Under
some circumstances, it,may not be acceptable for POWER BASIC to use
all available contiguous RAM. In some applications it may be required
to reserve a specific block of RAM area for use by the application.
For example, a small area of RAM is required for the subroutines and
all assembly language interrupt handlers. For this reason, the NEW
command with the address parameter was introduced. The lower bound of
RAM memory is set to the specified address, and all POWER BASIC
pointers are initialized to correspond to this new memory
configuration. Therefore an area of RAM can be reserved for
application use from the specified address on down toward memory
address 400016. Care must be taken when specifying the address, to be
sure that RAM actually does exist at the specified address and that
RAM is contiguous from that address up to high memory,or unpredictable
results may occur. The user must also be sure that the software which

4-5

uses the free area does not overlap past the specified address. In
addition to setting the lower memory bound, the NEW command also
deletes the current user program, and clears all variable space,
pointer, and stacks. (Note that the PROGRAM command of Development
BASIC uses an additional 8 bytes below the specified lower bound RAM
memory address for pointer storage during EPROM programming.)

Examples:

NEW
NEW OE800H

Evaluation BASIC: The form "NEW <addresd>" is not supported by
Evaluation BASIC.

4.6 PROGRAM COMMAND

Form:

PROgram

The PROGRAM command is used to activate the EPROM Programmer Package
of Development BASIC. This package is used to program the user's
application into TMS2716 EPROMs for future execution. The PROGRAM
command is not supported by Evaluation BASIC. Also note that the
PROGRAM command resides in the TM 990/452 Development BASIC Software
Package Enhancement EPROM set as presented in Section 1.1.3. Attempts
to execute the PROGRAM command without the Development BASIC
Enhancement EPROM set being installed in the system will result in an
ERROR 41 ("EXPANSION EPROM NOT INSTALLED") error.

The PROGRAM command programs the entire POWER BASIC application
program currently in user memory into the TMS2716 EPROM; tt programs
all internal application program pseudo-code, including variable
definition table, statement location table, and internal statement
pseudo-code. It does not program the "source" code as input by the
user or as displayed by the LIST command.

The EPROM set programmed with the user's application is completely
relocatable, and may be placed anywhere within the vacant address
space of Development BASIC.

After programming the application into EPROM, the "LOAD <addres4>"
command will initialize BASIC to permit user access to the program in
EPROM. The user may list and execute the program in EPROM; however,
attempts to edit the program will result in erratic operation.

When programming the BASIC application program into EPROM, the user
has the option to enable or disable immediate application program
execution after system power-up and initialization. The power-up and

4-6

execute feature is stored as the first word of the EPROM set being
programmed with the users application. In addition, the EPROM set
must be placed at address location 300016 if the option is to be used.
Note that the TM 990/452 Development BASIC Enhancement Software
Package EPROM set also resides at location 300016 and must be removed
if the power-up option is to be used. If the power-up option is not
to be used, the application EPROMs may be placed at any other vacant
location within the memory of Development BASIC. The power-up and
execute word at location 3000 16is tested whenever the hardware RESET
switch of the microcomputer board is operated. If the correct bit
pattern is read from location 300016, the user's BASIC application
program residing at 300016 will immediately begin execution. If the
correct bit pattern is not detected, Development BASIC will be
initialized to the keyboard mode, display the banner message, and
await user keyboard input.

The SIZE command will display the "PRGM" size of the current user
application program including overhead. This indicates the number of
bytes that will be programmed into the EPROM set when the PROGRAM
command is issued. If the user has a large application program which
is to be stored into EPROM, and there is concern about the large size
of the program, the user may remove all REMark statements and tail
remarks(!) from the application program. Removing even a few remark
entries will result in an appreciable reduction in the program size
since each character of a remark entry consumes a byte of program
storage. Also, many unnecessary variables may be stored in the symbol
table of POWER BASIC during application program development. These
variables have no meaning in the application program. For this
reason, it is recommended that the user perform a SAVE, NEW, LOAD
command sequence prior to programming the application into EPROM. The
SAVE command will detranslate and store the application program on
either digital or audio cassette (the extraneous variables are not
saved on the cassette). The NEW command will then delete the user
application program, and clear all variable space, pointers, and
stacks. The LOAD command will retrieve the application program from
cassette. All extraneous variables will have been removed from the
symbol table, and the application program will be ready to be
programmed into EPROMs.

Prior to entering the PROGRAM command, the user should verify that the
TM 990/302 Software Development Board and the TM 990/514 EPROM
Personality Module are properly configured for TMS2716 programming.
Refer to Section 2, paragraph 2.10 for detailed information on the set
up of the Software Development Board and EPROM Personality Module, as
well as programming power supply configuration.

When the PROGRAM command is entered, POWER BASIC responds with the
following prompt and awaits user input.

RUN?

The "RUN" parameter specifies whether activation of the RESET switch

4-7

of the microcomputer board will a) initialize Development BASIC to the
keyboard mode awaiting user keyboard input, or b) enable immediate
execution of the applicaton program in EPROM. A "Y" response will
enable immediate execution of the application program in EPROM upon
power-up, a "N" response will result in POWER BASIC being initialized
to the keyboard mode upon activation of the RESET switch, and an
ESCape (or BREAK) key response will exit the EPROM programmer and
return control to the POWER BASIC executive. Any other response will
result in the prompt being reissued. (Recall that to utilize the
automatic power-up and run option, the application EPROMs must reside
at memory address 300016 in the final system in addition to a positive
response to the "RUN?" prompt.

Upon entry of a valid response, POWER BASIC will respond with the
following prompt and await user input.

MOUNT EPROM
EPROM READY? _

The user shoud verify that the EPROM module is properly configured and
that the TMS2716 EPROM is correctly installed. The user should enter
a "Y" response when the EPROM is ready to be programmed. If the user
enters the ESCape (or BREAK) key, Development BASIC will exit the
EPROM programmer and return to the keyboard mode, awaiting BASIC
command/statement input. Any response other than the ESCape" or "Y"
entry will result in the prompt being reissued.

Upon entry of the "Y" response, the EPROM personality card is verified
as being correct for use in TMS2716 programming. If the personality
card is of incorrect type or is configured incorrectly, the "EPROM
READY?" prompt is again output. If this occurs the user should again
verify that the EPROM is mounted correctly and that the correct
personality card and switch settings are being used. After correcting
the problem, enter the "Y" response once again.

If the correct EPROM configuration is setup, the programming and
verification of the EPROM is performed. When programming begins,
POWER BASIC outputs the following message:

PROGRAMMING

Programming will continue until the entire BASIC application program
in memory has been stored into EPROM. When programming is complete,
program verification is begun and the following message is output:

VERIFYING

If the programming and verification procedures are successful, POWER
BASIC will issue the following response:

MEM BYTE = XXXX

4-8

Where "XXXX" is the memory byte which was programmed into the current
EPROM and is either the phrase "HIGH" or "LOW", representing bits 0-7
or bits 8-15 of the programmed EPROM, respectively.

Programming of the current EPROM is now complete, and POWER BASIC will
issue the following prompt if additional EPROMs are required to store
the user's application.

MOUNT EPROM
EPROM READY? _

The PROGRAM command will perform all the byte selection and memory
partitioning for the EPROMs until the entire application has been
programmed. The above prompt indicates that POWER BASIC is ready to
program the next portion of the user's application. The user should
remove the current EPROM and insert the next EPROM for programming. As
the EPROMs are programmed and removed they should be clearly labeled
with their relative memory address and byte designators. This will
avoid confusion when inserting them into the memory map of the
Development BASIC system.

When programming of the application is complete, POWER BASIC will
issue the following response and return to the keyboard mode to await
user command/statement entry.

PROGRAMMING COMPLETE
'READY

A typical sequence of prompts and user responses are shown below for
an user's application requiring two TMS2716 EPROMs. All user entries
are underlined.

PROGRAM
RUN? Y

(mount 1st EPROM)
EPROM READY? Y
PROGRAMMING -
VERIFYING
MEM BYTE = HIGH

MOUNT EPROM
EPROM READY? Y
PROGRAMMING -
VERIFYING
MEM BYTE = LOW

PROGRAMMING COMPLETE
'READY

(enter command)
auto-run option on) MOUNT EPROM

(enter "Y" when ready)

(bits 0-7 programmed)

(mount 2nd EPROM)
(enter "Y" when ready)

(bits 8-15 programmed)

(returns to keyboard mode)

4-9

If the verification procedure detects an error where the memory
contents do not match the EPROM contents, POWER BASIC will issue the
response:

VERIFY ERROR!
MOUNT EPROM
EPROM READY?

When a verification error occurs, POWER BASIC resets all pointers to
the beginning of the defective EPROM and awaits the "Y" response to
the "EPROM READY?" prompt. The user should remove the TMS2716 EPROM
from the programmer and replace it with another erased EPROM. When
ready, enter the "Y" response, and the program segment where the error
occurred will be programmed again into the new EPROM.

NOTE

The PROGRAM command is designed to program the entire user
application currently in memory from the beginning to the
end, performing all byte and EPROM boundary partitioning.
Note that an intermediate starting point cannot be specified.
For this reason the user typically should not exit the EPROM
programmer when a verification error occurs unless the entire
EPROM set is to be reprogrammed.

The sequence below illustrates the procedure, prompts, and user
responses when an application is programmed and a programming error
occurs. All user entries are underlined.

Program
RUN? N
MOUNT EPROM
EPROM READY? Y
PROGRAMMING —
VERIFYING
MEM BYTE = HIGH

MOUNT EPROM
EPROM READY? Y
PROGRAMMEING —
VERIFYING
VERIFY ERROR!

MOUNT EPROM
EPROM READY? Y
VERIFYING —
MEM BYTE = LOW

PROGRAMMING COMPLETE
'READY

(enter command)
(auto-run option off)
(mount 1st EPROM)
enter "Y" when ready)

(bits 0-7 programmed)

(mount 2nd EPROM)
(enter "Y" when ready)

(verification error)

(mount new EPROM)
(enter "Y" when ready)

(bits 8-15 programmed)

(return to keyboard mode)

4-10

Note that the PROGRAM command may be aborted at any point during
programming or verification of the POWER BASIC application program by
entering the ESCape (or BREAK) key. When the ESCape key is entered,
programming is terminated, the following message is output, and POWER
BASIC returns to the keyboard mode to await user command/statement
entry.

PROGRAMMING TERMINATED
*READY

Evaluation BASIC: The PROGRAM command is not supported by Evaluation
BASIC.

4.7 RUN COMMAND

Form:

RUN

The RUN command clears all variable space, pointers, and stacks and
directs the system to begin execution of the current BASIC program at
the lowest line number. The command

RUN

will execute the user's POWER BASIC program currently program
currently in RAM.

4.8 SAVE COMMAND

Forms:

SAVE
SAVE <exp.>

The SAVE command writes the source form of the entire POWER BASIC
program currently in memory to the cassette device specified by the
expression. The program remains in memory after the SAVE and can be
deleted by the NEW command. The program may later be retrieved by the
LOAD command at some future date.

The SAVE command without an expression, or with an expression value of
zero, will result in the user's BASIC program being stored on the 733
ASR digital cassette. Reference Section 2, paragraph 2.8.1 for
details on 733 ASR digital cassette transport loading and operation.
At any time during program saving to digital cassette, the user may
terminate the SAVE process by entering the ESCape key.

The SAVE command with an expression value of 1 or 2 will save the

4-11

4.9

program audio cassette drive #1 or #2, respectively. Reference
Section 2, paragraph 2.8.2 for audio cassette transport loading
operation. Note that the audio cassette device service routines of
POWER BASIC reside in the TM 990/452 Development BASIC Enhancement
Software Package as presented in Section 1, paragraph 1.1.3 attempts
to execute the "SAVE 1" or "SAVE 2" commands without the Development
BASIC Enhancement EPROM set installed in the system will result in an
ERROR 41 (ROM installed).

NOTE

The audio cassette device service routines cannot
be interrupted during the saving of a program since
each bit of the data bytes have a specified minimum
and maximum pulse width for reliable data storage
and retrieval. Therefore, all interrupts are
masked at the CPU whenever a SAVE is being
performed to device 1 or 2. This implies that the
real-time clock of POWER BASIC will not be updated
for the entire SAVE process. This time period can
accumulate to a significant amount. Therefore, the
real-time clock is stopped and zeroed when the SAVE
process (to audio cassettes) is begun to emphasize
the resulting clock innaccuracy.

Entering a SAVE command with an expression value other than 0, 1 or 2
will result in an ERROR 16 (INVALID DEVICE NUMBER).

Examples:

SAVE (SAVE to 733 ASR digital cassette)
SAVE 0 (SAVE to 733 ASR digital cassette)
SAVE 2 (SAVE to audio cassette drive #2)

Evaluation BASIC: The SAVE command with expression parameter is not
supported by Evaluation BASIC.

SIZE COMMAND

Form:

SIZE

The SIZE command monitors memory usage by listing the current program
size, variable space allocated, and the free memory in bytes. The
size command lists the memory usage in hexadecimal bytes. The PRGM
size is the current user program size including overhead. This

4-12

indicates the number of bytes that will be programmed into EPROM if
the PROGRAM command of Development BASIC is used. The required
overhead of Development BASIC results in a minimum PRGM size of 18
bytes.

Example:

SIZE
PRGM: 012H BYTES
VARS: OH BYTES
FREE: 07DCH BYTES

4-13

SECTION V

BASIC STATEMENTS

5.1 GENERAL

This section discusses the POWER BASIC program statements. Statement
formats are presented and their uses are described.

During BASIC program execution, control may pass to any statement.
Some statements have no effect on the program when encountered and are
called nonexecutable; all others are called executable:

Statements form the basis of all functional POWER BASIC programs.
Each statement of a BASIC program may occupy ony one line; however,
numerous statements may appear on each line when delimited by a pair
of colons (::).

BASIC statements are divided into the following categories:

• Remarks

• Demension Declarations and Specifiers

• Function Definition

• Assignment

• Control

• Input/Output

• Interrupt Processing

• CRU Base Assignment

• Time of Day

• Randomize Number Seed

• Program Escape/Noesc

• External Subroutine

Table 5-1 briefly describes each statement.

5-1

STATEMENT 1 FUNCTION I USE

REM Comment Line Program documentation/explanation

DIM Size Specifier Dimensions strings, vectors, and
matrices

DEF Function Definition Defines a statement function

LET Assignment Evaluates expressions and assigns
value

GOTO Control Transfers unconditionally

IF Control Conditionally executes statement(s)
on TRUE condition

ELSE Control Conditionally executes statement(s)
on FALSE condition

GOSUB Control Transfers to BASIC subroutine

RETURN Control Returns from BASIC subroutine

POP Control Removes top return address from
GOSUB stack

ON Control Computed GOTO or GOSUB

FOR Control Defines top of loop and loop
parameters

NEXT Control Delineates loop scope

ERROR Control Transfers on error condition

STOP Control Stops program

END Control Stops program

READ Internal Input Reads from internal data block

DATA Internal Input Defines internal data block

TABLE 5-1. POWER BASIC STATEMENTS

5-2

RESTOR

INPUT

PRINT

TAB

UNIT

BAUD

IMASK

TRAP

IRTN

BASE

TIME

RANDOM

ESCAPE/
NOESC

CALL

Internal Input

I/O

I/O

I/O

I/O

I/O

Interrupt Processing

Interrupt Processing

Interrupt Processing

CRU Base Assignment

Time of Day

Set Random Seed

Program Escape/
No Escape

External Subroutine

Resets internal. READ to first data
block element

Reads from terminal

Prints on output device

Formats output into columns

Designates print output device

Designates baud rate of I/O device

Sets interrupt mask

Assigns interrupt level to sub-
routine

Returns from interrupt subroutine

Sets the CRU base address

Sets, displays, or stores the 24-
hour time of day clock

Sets the seed of the pseudo random
number generator

Enables or disables the escape key
to interrupt program execution

Transfers to external subroutine

STATEMENT 1 FUNCTION USES

TABLE 5-1. POWER BASIC STATEMENTS (cont'd.)

5.2 COMMENT OR REMARK (REM) STATEMENT

Form:

<line number> REM <text>

The REM statement is used to insert remarks (comments) in a program.
REM may contain any textual information. It has no effect when
encountered in execution; however, its line number may be used as the

5-3

argument of a GOTO or GOSUB statement. Tail remarks may also be
inserted into a program by separating the remark field from the
statement field by an exclamation point (I). For additional
information on tail remarks, refer to Section 3.4.4.

Examples:

10 REM THIS IS A COMMENT
100 REM CHECK FOR X=0

5.3 DIMENSION STATEMENT

Dimension declarations are used to specify the size attributes for
subscripted variables within the program.

Form:
<line number> DIM <var(dim[,dim]...)

DIM <var(dimE,dimj...) CP *.

The DIM statement dynamically allocates user variable space for array
variables. Dimensioned (array) variables must be declared by the DIM
statement before the variables are used. Once dimensioned, attempts
to redimension an array variable to a larger array size will result in
an error message, and attempts to redimension to a smaller size will
be disregarded.

Array sizes are specified by indicating the maximum subscript values
in parentheses following the array name. Subscripts of dimensioned
variables may be any numeric quantity including constants, simple
variables, other dimensioned variables, or even function calls. If a
floating point value is returned for the subscript value, only the
integer portion will be used in the dimension statement. The number
of dimensions and the dimension size for the array declaration is
limited only by the user's available memory. An error will occur if
the dimensioned variable requires more variable space than is
currently available in the user's partition. Dimensioned variables
always use the 0 subscript as the first element in the array.

Examples:

10 DIM A(10),B(10,20)
100 DIM A1(10,B1(20,30),B15(10,10,10)

DIM CAT(C,D),DOG(SQR(N),3,F)

The first statement allows for the entry of an array of 11 elements
(0-10) into A, and of an array of 11 x 21 elements into the two
dimensional array, B. The two remaining statements dimension arrays
in a similar manner.

5-4

String variables must be dimensioned as numeric variables, e.g., $A
must be dimensioned as A(10), not $A(10). Thereafter, the dimensioned
numeric variable may be referenced as a string variable by preceding
the variable with a dollar sign ($). The string array A dimensioned
above should be referenced as $A(0) through $A(10).

Examples:

20 DIM CAT(10),DOG(8)

This statement defines CAT to be a one dimensional array with 11
elements and defines DOG as a one dimensional array of 9 elements.
Hereafter, these arrays may be considered as string arrays by
referencing the variables via $CAT(0) through $CAT(10) and $D0G(0)
through $DOG(8).

Strings are stored one character per byte with a null character used
to terminate the string. Hence, simple string variables and single
array elements which are 6 bytes in length (4 bytes long in Evaluation
BASIC) can contain up to five characters (3 characters in Evaluation
BASIC). Dimensioned string variables can contain up to the number of
elements times 6 minus 1 characters in Development BASIC and 4 times
the number of elements munus 1 in Evaluation BASIC. Therefore, the
dimensioned string variable $CAT can contain up to 65 characters in
Development BASIC and 43 characters in Evaluation BASIC.

5.4 FUNCTION DEFINITION

The DEF statement defines a user function. The defined functions are
executed only when the function is referenced.

Forms:

<line number> DEF FN <letter> = <expression>

<Line number> DEF FN <letter>(parm11,parm23[,parm3]) :(expression>

where:

parameters are single alphabetic letter dummy variables
expression is any valid POWER BASIC expression.

The DEF statement may appear anywhere within a BASIC program and the
defined functions may be used in any expression. That is, once
defined, the functions may be used in the same way as the built-in
mathematical functions explained in Section 7. When the function is
referenced, the expression is evaluated and the parameters, if any,
are replaced by the arguments given in the reference. Within the

5-5

expression the parameters may appear only as numeric variables. The
user may define functions using up to three dummy parameters. All
(dummy) parameters may only be single character variables in the
function definition. However, when calling the function the user may
use any valid POWER BASIC variable (either simple or dimensioned) to
replace the dummy variables of the called function.

The expression may include any combination of intrinsic functions,
other user-defined functions, or may involve any other variables in
addition to the ones used in the argument of the calling function.
Parameter names are dummy (local) variables of the defined function,
and have no meaning outside of the function definition.

The use of the DEF statement is limited to those functions whose
expression may be evaluated within a single BASIC statement.

The name of the defined function must be three letters, the first two
of which must be FN followed by a single letter; e.g., functions FNA
through FNZ may be defined by the user. The same letter which defined
the function may also be used as a parameter of the function as shown
below.

Example:

20 DEF FNA(X,Y)=X/Y+5
30 DEF FNB = A/B + C-15
40 DEF FNC(I,J) = I*K/J + FNB - FNA(I,J)
50 DEF FND(N) = N*N/2
60 DEF FNI(I,J) = I*J/SQR(I)

Evaluation BASIC: The DEF statement is not supported by Evaluation
BASIC.

5.5 VARIABLE ASSIGNMENT

5.5.1 LET statement

The LET statement assigns a value to a variable where the variable is
set equal to an expression consisting of variables and/or constants
separated by operators. The variable being evaluated may appear
within the expression. The newly calculated value of the variable
replaces the old value.

5-6

In POWER BASIC the letters LET may be omitted from the statement so
only an equation appears. The LET statement may have either of the
following forms:

<line number> LET <variable> 7 <expression>
LET <variable> = <expression>

<line numbe4><variable> = <expression>
<variable> = <expression>

where

variable is a string variable, numeric scalar variable, or array
element.

The assignment statement assigns an expression value to a variable.
Both variable and the expression must be either string or numeric.
The following examples illustrate the assignment statement. Note that
this is not a meaningful POWER BASIC program.

A=5
B=10
LET C=A+B

10 LET X=1
20 LET $A(2)=$C+"NOW"
30 LET Q2(L)=Q2(L+1)+3
40 LET H=6
50 D=5
60 F=A/B+3
100 LET Z[I,j]= 3#X-411Y
120 $AB="STOP"

5.6 CONTROL AND COMPUTED TRANSFER STATEMENTS

BASIC statements are executed sequentially unless altered by control
statements. Control may be accomplished by an unconditional branch,
subroutine branc, computed branch, or loop.

5.6.1 Unconditional GOTO statement

When the computer encounters a GOTO statement, it jumps to the program
line number specified in the statement. The program executes the
statement at the specified line number and continues in sequence with
the statements that follow.

5 -7

Form:

<line number> GOTO <line number>
GOTO <line number>

The "GOTO" statement must be entered without any embedded blanks. If
the GOTO statement is not preceded by a line number, program execution
begins at the line number specified immediately after the GOTO
statement.

Examples:

GOTO 200 Begins execution at statement 200
100 GOTO 140 Transfers control to statement 140

The following program illustrates the GOTO statement:

20 INPUT A
30 GOTO 50
40 STOP
50 PRINT A
60 GOTO 40

The program execution sequence is line numbers 20, 30, 50, 60 and 40
where execution stops.

5.6.2 Conditional IF-THEN-ELSE statement

The IF-THEN-ELSE statements provide capability for conditional
execution of program statements.

5.6.2.1 IF-THEN statement. The IF statement alters sequential execution of
the program depending on the state of the specified condition.

Forms:

<line number> IF <expression> THEN <BASIC statement(s)>
IF <expression> THEN <BASIC statement(s)>

<line number> IF <expression>0elation><expression> THEN <BASIC statement(s)>
IF <expression><relatiori>.0xpression> THEN <BASIC statement(s)>

<line number> IF <strin0<relatior1><string> THEN <BASIC statement(s)>
IF <stringelation><string> THEN <BASIC statement(s)>

<line number> IF <string> THEN <BASIC statement(s)>
IF <string> THEN <BASIC statement(s)>

<line number> IF <strir?g><relation><strin>‹,expression> THEN <BASIC statement(s)>
IF <string><relation><string>‹,expressiorTHEN <BASIC statement(s)>

5-8

The condition may be any variable, numeric expression, relational
expression, logical expression, string variable, string relational
expression, or function which can evaluate to a zero or non-zero
value. Two expressions or strings are compared according to the given
relation and a true or false condition results. If the second string
is followed by a comma, the expression following the commma indicates
the number of characters to be compared. If only a single expression
or string is given, the condition is considered false if the
expression is zero or the string is null; otherwise, it is considered
true.

If the condition is true, the statement(s) following the THEN clause
on the same line will be executed. If the condition is false, the
statement on the line following the IF-THEN statement will be the next
statement executed. Any POWER BASIC statement or statements
(including GOTO's and other IF-THEN statements) may immediately follow
the THEN clause. They cannot extend to the next statement line
because statement execution continues at the next statement line when
a false condition occurs. The IF and THEN clauses must appear on the
same statement line.

Examples:

20 IF A=0 THEN GOTO 100
30 IF SQR(J) =4 THEN K=J*J/I: :PRINT J,K
40 IF 1+2 THEN PRINT I
50 IF $A=$B THEN PRINT $A
60 IF $A THEN $B=$A
70 IF CRU(11) THEN CRU(12)= 1 ::GOTO 200
80 IF $A=$B,3 THEN GOTO 200 (compares first three characters

of $A and $B)

5.6.2.2 ELSE statement. The ELSE statement enables conditional execution of
POWER BASIC statements depending upon the true or false condition of
the last executed IF statement.

Form:

<line number> ELSE <BASIC statement>

IF-THEN statements set the ELSE flag to indicate the true or false
condition of the last executed IF-THEN statement. Subsequent ELSE
statements use the ELSE flag to determine whether the statement(s)
following the ELSE are to be executed. When the IF condition is true,
the THEN clause will be executed and all subsequent ELSE statements
will not be executed. When the IF condition is false, the THEN clause
will not be executed and all subsequent ELSE statements will be
executed. The ELSE statement must not be placed on the same statement

5-9

line as the preceding IF-THEN statement because when the IF condition
is false, no further statements on the IF-THEN line will be
executedand execution will continue with the next statement line. The
ELSE flag remains set to the true or false condition until the next
IF-THEN statement is executed at which time the flag is cleared and
set to the new true or false condition. Several ELSE statements may
appear between each IF-THEN statement, and each of these will be
executed between each IF-THEN statement; they will be executed when
they are encountered if the last executed IF-THEN statement resulted
in a false condition. If a true condition resulted, each of these
statements will be skipped. An ELSE statement always uses the last IF
statement executed as its reference regardless of where it physically
lies within the POWER BASIC Program. This enables blocks of
statements to be conditionally executed or skipped.

Example:

The following program computes the function and prints the result:

Statement of function:

for X<1, f=ABS(X),
for 1< =X <2, f=SQR(X),
for 2< =X, f=ABS(X)-SQR(X)

Program solution:

10 IF X<1 THEN F=ABS(X)
20 ELSE IF X<2 THEN F=SQR(X)
30 ELSE F=ABS(X)-SQR(X)
40 PRINT X,F

Evaluation BASIC: The ELSE statement is not supported by Evaluation
BASIC.

5.6.3 Subroutine (GOSUB, POP, AND RETURN) statements

BASIC programs may contain internal BASIC subroutines. An internal
subroutine is a sequence of BASIC statements performing a well-
defined function or operation within the POWER BASIC program. Three
types of statements govern access to a subroutine: a GOSUB statement
for entry into the subroutine, a POP statement for exiting nested
subroutines, and a RETURN statement for return to the calling program.

Forms:

<line number> GOSUB <line number>
<line number> POP
<line number). RETURN

An internal POWER BASIC subroutine may be invoked from any point
within the program by using a GOSUB statement which specifies the
entry point of the subroutine as a line number. Execution of the

5-10

10 X = 2

20 GOSUB 90

30 X = X+Z .m1

90 Z = 2*X-1

100 X = X/Z

110 RETURN

FIGURE 5-1. GOSUB Example

GOSUB statement pushes the address of the statement immediately
following the GOSUB statement onto the GOSUB stack for return, and
passes execution to the specified line number.

A RETURN statement placed in the subroutine is an exit point from the
internal POWER BASIC subroutine. A RETURN statement should be placed
at each logical end of all subroutines. The RETURN statement causes
execution to resume at the first statement following the GOSUB
statement that transferred to the subroutine. During this transfer,
the top return address is removed from the GOSUB stack. All
subroutines should be exited only via a RETURN statement so the top
return address will always be removed from the GOSUB stack.
Unpredictable results occur if a subroutine is exited in any other
fashion.

In Figure 5-1 GOSUB 90 involves statements on line numbers 90 (start
of subroutine), 100, and 110 (end of subroutine). If a GOSUB
statement is used, the subroutine it branches to must contain at least
one RETURN statement. The example illustrates the simplest use of
GOSUB and RETURN. The arrows indicate the flow of control in the
program.

Subroutines may be nested by a subroutine containing a call to another
subroutine (the inner subroutine is called a nested subroutine).

Subroutines may be nested up to 20 levels in Development BASIC (10
levels in Evaluation BASIC). A return address (first line number
after the call) must be stored for each GOSUB statement until that
statement is executed. The program in the following example contains
nested subroutines and shows the actual execution sequence. Each
GOSUB to a subroutine must be accompanied by at least one RETURN
statement per exit path. The nested program and execution sequence of
the example demonstrate entry to and exit from a subroutine.

5-11

LIST
10 PRINT "ROOTS OF QUADRATIC EQUATIONS"
20 PRINT
30 REM - ENTER COEFFICIENTS A,B,C OF A*X*X+BilX+C
40 INPUT "COEFFICIENTS A= ";A;" B= ";B;" C: ";C
50 GOSUB 100
60 REM - RESTART OR END PROGRAM?
70 INPUT "MORE DATA (1:YES, 0=N0)? "%1;N
80 IF NO0 THEN GOTO 20
90 STOP

100 REM - CALCULATE S=B*B-4*A*C
110 S=B^2-4*A*C
120 REM - COMPLEX ROOTS?
130 IF S(0 THEN GOSUB 200 !COMPLEX ROOTS
140 ELSE GOSUB 300 !REAL ROOTS
150 PRINT !OUTPUT BLANK LINE
160 RETURN

200 REM - CALCULATE COMPLEX ROOTS
210 Q=SQR(ABS(S))
220 R1=-B/(20A) !REAL PART
230 R2=Q/(2*A) !IMAGINARY PART
240 PRINT "ROOTS (COMPLEX): ";R1;" + OR -";R2;" I"
250 RETURN

300 REM - CALCULATE REAL ROOTS
310 IF S=0 THEN Q=0
320 ELSE Q=SQR(S)
330 R1=(-B-Q)/(2*A) !ROOT 1
340 R2=(-B+Q)/(2°A) !ROOT 2
350 PRINT "ROOTS (REAL): ";R1;", ";R2
360 RETURN
would produce the following results:

RUN
ROOTS OF QUADRATIC EQUATIONS

COEEFICIENTS A= 2 B: 1 C: -1
ROOTS (REAL): -1, 0.5

MORE DATA (1=YES, 0=N0)?

COEFFICIENTS A= 1 B= 4 C= 6
ROOTS (COMPLEX): -2 + OR - 1.414214 I

MORE DATA (1=YES, 0=N0)? 0

STOP AT 90

5-12

The following example shows the execution sequence of the previous
example. Note that all returns are performed via RETURN statements.

Execution sequence:

10 PRINT "ROOTS OF QUADRATIC EQUATIONS"
20 PRINT
30 REM - ENTER COEFFICIENTS A,B,C OF A*X*X +B*X+C
40 INPUT "COEFFICIENTS A= ";A;" B= ";B;" C= ";C
50 GOSUB 100

100 REM - CALCULATE S= B*8-4*A*C
110 S= 8̂ 2-4*A*C
120 REM - COMPLEX ROOTS?
130 IF S(0 THEN GOSUB 200 !COMPLEX ROOTS
140 ELSE GOSUB 300 !REAL ROOTS

300 REM - CALCULATE REAL ROOTS
310 IF S=0 THEN Q=0
320 ELSE Q=SQR(S)
330 R1= (-8-Q)/(2*A) !ROOT 1
340 R2= (-B+Q)/(2*A) !ROOT 2
350 PRINT "ROOTS (REAL): ";R1;", ";R2
360 RETURN

150 PRINT !OUTPUT BLANK LINE
160 RETURN

60 REM - RESTART OR END PROGRAM?
70 INPUT "MORE DATA (1-YES, 0=N0)? "%1;N
80 IF N<>0 THEN GOTO 20
20 PRINT
30 REM - ENTER COEFFICIENTS A,B,C OF A*X*X+B*X+C
40 INPUT "COEFFICIENTS A= ";A;" B= ";B;" C= ";C
50 GOSUB 100

100 REM - CALCULATE S= B*B - 4*A*C
110 S=B^2-4*A*C
120 REM - COMPLEX ROOTS?
130 IF S<0 THEN GOSUB 200 !COMPLEX ROOTS

200 REM - CALCULATE COMPLEX ROOTS
210 Q= SQR(ABS(S))
220 R1 = -B/(2*A) !REAL PART
230 R2= Q/(2*A) !IMAGINARY PART
240 PRINT "ROOTS (COMPLEX): ";R1;" + OR -";R2;" I"

150 PRINT !OUTPUT BLANK LINE
160 RETURN

60 REM - RESTART OR END PROGRAM?
70 INPUT "MORE DATA (1=YES, 0=N0)? "%1;N
80 IF N<>0 THEN GOTO 20
90 STOP

5-13

A RETURN statement must not be encountered unless a GOSUB statement
has been executed.

"Remembering" all the return points by saving them on the GOSUB stack
and never removing them can exhaust the available GOSUB stack area.
The following program, which calculates NI illustrates this problem;
its use requires that N return points be remembered.

10 INPUT "N= ";N
20 GOSUB 100
30 PRINT N,N1
40 STOP

100 N3=N
110 N2=0
120 N1=1
130 GOTO 160
140 N3=N3-1
150 GOSUB 160
160 IF N3>1 THEN GOTO 140
170 N2=N2+1
180 N1=N1*N2
190 RETURN

The POP statement removes the top most previous return address from
the GOSUB stack. It does not perform a return transfer to the calling
routines. Execution continues at the statement following the POP
statement in the internal subroutine. The POP statement is useful for
exiting nested subroutines as the following example demonstrates.

10 REM - MAIN PROGRAM
20 GOSUB 100 ! CALL GET DATA
30

100 REM - SUBROUTINE GET DATA
110 GOSUB 200 ! CALL GET NUMBER
120

190 GOTO 100 ! GET NEXT DATA SEQUENCE

5-14

200 REM - SUBROUTINE GET NUMBER
210

250 REM - NUMBER FOUND?
260 IF NUM THEN RETURN ! IF NUMBER - RETURN
270 REM - NO MORE NUMBERS
280 POP ! REMOVE MOST RECENT RETURN ADDRESS
290 RETURN

In this example, the main program calls subroutine 100 which in turn
calls subroutine 200 until there is no more data. Subroutine 200
exits with a RETURN when data is found; a POP then RETURN when there
is no more data. Program execution then continues at line 30.

Evaluation BASIC: The POP statement is not supported by Evaluation
BASIC.

variable}
THEN {GOT ON

O

<expression> GOS

rariable>
THEN I

GOT
ON

O

<expression> GOS

5.6.4 ON statement

<line number> line number>,(line

UB)line number>,<Iine number>,...

ON statements select the target transfer line number of a GOTO or a
GOSUB from a list of statement numbers. The statement number list
contains a statement number for each expected value of the expression
or variable. The selection is based on the value of the expression or
variable truncated to an integer. If the expression value is 1, the
first line number in the list is selected. If the value is 2, the
second will be executed, and so forth. The GOTO or GOSUB statement
will be executed transferring control to that line. If the expresson
value is less than one or greater than the number of statement numbers
in the list, the transfer is not made and execution simply continues
with the next statement.

Examples:

10 ON J+1 THEN GOTO 15, 20, 35, 46, 70

5-15

When J is equal to 3, J+1 is equal too, and the fourth statement
number (46) is executed next. Similarly, J values of 0, 1, 2, and 4
result in jumps to statement numbers 15, 20, 35, and 70, respectively.

110 ON X+3 THEN GOSUB 20, 40, 80, 300
120 ON (A+5)/Z THEN GOTO 10, 30

When X is equal to -1, the second statement number (40) is executed
next. When X is less than -2 or greater than +1, a transfer is not
made and line 120 will be the next statement executed. When (A+5)/Z
is equal to 2, the second statement number (30) is executed next and
so forth. If the expression evaluates to a non-integer value, only
the integer part is used to determine the appropriate branch point.

Evaluation BASIC: The ON statement is not supported by Evaluation
BASIC.

5.6.5 FOR/NEXT loops

FOR and NEXT statements indicate the start and end of an instruction
block that is to be repeatedly executed as a set. One variable takes
on different values within a specified range; this variable is often
used in the computation or evaluation contained in the instruction
block. The FOR statement names the variable and stepping values of
that variable and also specifies its initial and final values. The
NEXT statement closes the program loop.

The FOR statement may have either of the following forms:

<line numbeti> FOR <variable> = <expression> TO <expression>
FOR <variable>. = <expression> TO <expression>

line number> FOR <variable> = <expression> TO <expression> STEP <expression>
FOR <variable> = <expression>. TO <expression> STEP <expression>

where
variable is a simple numeric scalar variable
expression is a valid POWER BASIC numeric expression

The NEXT statement has the form:

<line number> NEXT <variable>
NEXT <variable>

where

variable is a simple numeric variable

5-16

The simple variable of the NEXT statement must be the same as the FOR
statement variable at the beginning of the loop.

Specification of the STEP value is optional and usually omitted. If
omitted, a value of +1 is used. The step value may be any constant,
variable, or expression which evaluates to a positive or negative
value. Negative step intervals can be used to decrease the value of
the FOR variable from one pass through the loop to the next. By using
a step value of -1, the FOR variable can be made to decrease by
integer values during successive loop interactions.

Examples:

100 FOR X=0 TO 3 STEP D
200 NEXT X
300 FOR X4=(17+COS(Z))/3 TO 3*SQR(10) STEP 1/4
400 NEXT X4
500 FOR X=8 TO 3 STEP -1
600 FOR J=-3 TO 12 STEP 2
700 NEXT J
800 NEXT X

Note that the step size may be a variable (D), an expression (1/4), a
negative number (-1), or a positive number (2). In the example with
lines 300 and 400, successive values of X4 will be .25 apart in
increasing order. In the next example, the successive values of X
iterations through the loop, J will take on values -3, -1, 1, 3, 5, 7,
9, and 11.

If expressions are used to specify the initial, final or step-size
values, they will be evaluated only once when the FOR loop is entered.
Changing any of the values (either the step, initial or final values)
within the FOR loop does not affect the number of times the sequence
is executed with the exception of the control variable. The control
variable is assigned to the initial values when the FOR statement is
entered and is incremented (if the STEP value is positive), or
decremented (if the step value is negative) after each repetition of
the loop sequence. The last repetition of the loop sequence is when
the control variable is equal to the final value. When exiting the
loop in this manner, the control variable is incremented (or
decremented) one step value beyond the final value.

A pre-check is performed so that if the initial value is greater than
the final value in the case of positive STEP values, the loop sequence
will not be executed. Likewise, if the initial value is less than the
final value and the STEP value is negative, the loop sequence will not
be executed.

The control variable may be changed within the body of the loop and
the latest value of the variable will be used in the exit test;

5-17

however, this programming practice is not recommended.

The statement "50 FOR 1=2 TO -1" without a negative step size results
in the body of the loop not being executed, and execution proceeds to
the statement immediately following the corresponding NEXT statement.
The NEXT statement must be the first item in a line for this feature
to work properly.

The loop continues to be executed as long as the condition:

(step value)*(control variable)((step value)*(end value)

remains true. If the condition:

(step value)*(start value)>(step value)*(end value)

is true when the FOR statement is first encountered, the loop will not
be executed.

When the loop is being executed, the control variable is first set to
the initial value and if the end criterion is not true, the loop is
executed. The control variable is then incremented by the step value
each time the NEXT statement is encountered and executed. The loop
terminates with the control variable equal to the last value used in
the loop plus the step value.

Example:

10 FOR I=1 TO 4 STEP 2

•

80 NEXT I
90 PRINT "I=";I
RUN
I= 5

The NEXT statement closes the FOR loop. When it is encountered, the
step value is added to the control variable. If the control variable
has not gone beyond the end value, control will be returned to the
first statement following the FOR which opened the loop. The control
variable of the loop to be closed must be specified by the NEXT
statement. It is possible to place the FOR and NEXT statements on the
same statement line; however, remember that statement lines are
autonomous. Therefore, this type of loop structure cannot be
interrupted by using the escape key since keyboard sampling is
performed only between statement lines.

Also, FOR/NEXT statements on a single line or in separate statement
lines will cause an error to result if, during the initial pre-check,

5-18

the initial value has exceeded the final value. For example,

20 FOR I=10 TO 1::NEXT I

will result in a FOR W/0 NEXT error (ERR=31).

FOR loops may be nested; i.e., one FOR loop may contain another which
may contain a third, etc. If nested, however, they should not use the
same control variable. When two loops are nested, one must be
completely contained within the other. Overlapping is not permitted.
The following structure is correct:

10 FOR I=1 TO 2
20 FOR J=1 TO 2
30 FOR K=1 TO 2

80 NEXT K
90 NEXT J
100 NEXT I

while the next two structures are incorrect:

10 FOR I=1 TO 2
20 FOR J=1 TO 2

80 NEXT I
90 NEXT J

10 FOR I=1 TO 2
20 FOR I=1 TO 2

80 NEXT I
90 NEXT I

(WRONG, loops may not overlap)

(WRONG, nested loops may not have the same
control variable.)

The following program illustrates nesting:

LIST
10 REM AREA OF A TRIANGLE
20 FOR B=6 TO 9
30 FOR H=11 TO 13 STEP 0.5
40 A=B'H/2
50 PRINT B,H,A

5-19

60 NEXT H
70 NEXT B
80 STOP

This program prints the base, height, and area of triangles with bases
6, 7, 8 and 9, and heights 11, 11.5, 12, 12.5, and 13. All
combinations are printed: 20 sets of data for the four bases and-five
height values.

All values of the variable in the inner loop are cycled through while
the variable in the outer loop is set to its first value. The outer
loop variable is then set to its second value and the inner loop is
cycled through again. The program runs through each outer loop value
this way.

Nesting of FOR/NEXT loops is permitted to a level of 10 in
Development BASIC and 5 for Evaluation BASIC.

It is legal to transfer control from within a loop to a statement
outside the loop, but it is never advisable to transfer control into a
loop from outside. The next two examples illustrate both of these
situations.

Valid transfer out of a loop:

20 FOR I=1 TO N
30 X=X+2*I
40 IF)01000 THEN GOTO 100
50 NEXT I

Invalid transfer into a loop:

20 GOTO 50
30 FOR I=1 TO N
40 X=X*2*I
50 Y=Y+X/2
60 NEXT I

(WRONG, 50 is inside a loop)

However, it is permissable to call a subroutine from within a loop and
then return from the subroutine back into the loop. The following
example illustrates repetitive calling of a subroutine from inside a
loop.

5-20

Example:

10 FOR I=1 TO N
20 X=2*I-1
30 GOSUB 150
40 Z=Z+Y
50 NEXT I

150 IF X(>12 THEN GOTO 180
160 Y=248
170 RETURN
180 Y=200+4•X
190 RETURN

5.6.6 ERROR statement

The ERROR statement specifies a subroutine that will be called via a
GOSUB whenever any POWER BASIC error occurs.

Form:

<line number> ERROR <line number>
ERROR <line number>

The ERROR statement enables the user to trap to an internal error
processing routine on the occurrence of any error. When an ERROR
statement has been executed and an error occurs, control passes to the
specified line number via a GOSUB statement. The statement number
where the error occurred will be placed on top of the GOSUB stack; if
the error is recoverable, a RETURN statement will resume execution at
that same statement when the error is corrected. If the error is
unrecoverable and control will not be transferred back via a RETURN,
it is good programming practice to execute a POP statement to remove
the line number from the top of the stack. This practice avoids
unnecessary cluttering of the stack, which may cause unpredictable
results. After the error trap, the system function SYS(1) will
contain the error code number and SYS(2) will contain the statement
number in which the error occurred. These are necessary for
processing in the error handler subroutine.

Once an error is encountered and causes transfer to the error handler
subroutine, the ERROR statement flag is cleared, and future errors
will not be trapped unless an ERROR statement is again executed. When
an EMIR statement has been executed and an error occurs, the
automatic printing of the error code is suppressed.

5-21

Example:

10 ERROR 1000

1000 IF SYS(1)=10 THEN PRINT "STORAGE OVERFLOW"::STOP
1010 IF SYS(1)=23 THEN RESTOR::RETURN (rewind data file)
1020 ELSE PRINT "ERROR=" SYS(1):: STOP
1030 RETURN

Statement 100 designates the subroutine starting at statement 1000 to
be the error handling subroutine. When an error occurs, control is
transferred to statement 1000, and the error number is first tested
for "storage overflow". If "storage overflow" is not the error, it is
tested for the "read out of data" error number. If this is true, the
data is restored to its beginning and control returns to the statement
in which the error occurred. If this still was not the error, the
error number is output and execution stops.

Evaluation BASIC: The ERROR statement is not supported by Evaluation
BASIC.

5.6.7 STOP statement

The STOP statement terminates program execution at the logical end of
the program. There may be one or more STOP statements in a POWER
BASIC program, and they may appear anywhere within the program.

Form:
<line number* STOP

The system displays the line where program execution terminated.

Example:
900 STOP

STOP AT 900

5.6.8 END statement

The END statement marks the end of a program and terminates program
execution.

Form:
<line number> END

The END statement functions just as the STOP statement. It may appear

5-22

as any statement within the program.. The system displays the
statement number where program execution terminated.

Example:

70 END
STOP AT 70

5.7 INTERNAL INPUT STATEMENTS

READ, DATA, and RESTOR statements are used in the following forms:

1<nuimeric variable>
<line number> READ ,

(string variable>

<expressiori>
(line number> DATA <String variable>

1 (string constant>

1

(numeric variable)

,.
(string variable>

I

<xpression>
(string variable>
(string constant>

• •

(line number> RESTOR

<line number> RESTOR <line number>

POWER BASIC permits definition of a list of data items containing both
strings and numbers within the program. Entries in this list are
defined by DATA statements and accessed sequentially by READ
statements. The RESTOR statement is used to move to a specific point
within the list or to the beginning of the list.

5.7.1 DATA statement

The DATA statement contains a list of data items separated by commas.
Each item in the list is either a string constant or an expression
which evaluates to a numeric constant. String constants must be
enclosed in quotes.

Example:

10 DATA 5, 3.14159,"DOE,JOHN",4*ATN(1)

A program may contain any number of DATA statements with no
restriction on their placement within the program; however, they are
typically placed together in a data block near the beginning or end of

5-23

the program. The data list will contain all of the data items from
all DATA statements in the same order they are written in the program.
DATA statements have no effect when encountered during execution.

5.7.2 READ statement

The READ statement assigns values from the internal data list to
variables or array elements. The first READ statement executed
normally starts with the first item in the data list. Reading of data
items continues sequentially unless a RESTOR statement is executed.
An error (*ERROR 23 at XXXX) is generated when a READ statement re-
quests the next value with the data block exhausted of data.

The READ statement specifies a list of variables or array elements
whose values are to be assigned from the data list as shown below:

50 READ X, Y, A(5,X), $B,$C(Y)

The examples below illustrate use of the DATA and READ statements:

10 READ A,B,C,D
20 H=A*B*C*D
30 PRINT A,B,C,D,H
40 READ E,F,G
50 H=E*F*G
60 PRINT E,F,G,H
70 DATA 2,3,5,7,11,13,17
80 STOP
RUN
2 3 5 7 210
11 13 17 2431

The data in this example is supplied in one DATA statement, but is
used in two READ statements at two different locations in the program.
When the program encounters the first READ statement, it searches for
the lowest-numbered DATA statement (which may occur before or after
the READ statement). The program takes numeric values from the DATA
statement in sequence associating them with READ statement variables
in sequence. In the example, A is assigned the value 2, B the value
3, C the value 5, and D the value 7. The program establishes access to
the next data value (11), so it may be assigned to the first variable
encountered in the next READ statement. Line 20 is computed, and the
newly-introduced variable H is assigned its computed value. The next
READ statement at line 40 introduces three new variables. The DATA
statement continues to supply data from line 70 at the pre-established
access point, so the new variables E, F, and G take on the values 11,
13, and 17. A new value for H is computed in line 50. The statement
that follows prints the new values for E, F, G, and H.

5-24

The user must match numeric variables in the READ list to numeric
expressions in the data list. Similarly, the user must match string
variables in the READ list to string constants or string variables in
the data list. An error will result if this convention is not
followed.

Example:

10 READ A,B,$CAT
20 LET C=A+B
30 PRINT A,B,C,$CAT
40 DATA 2,3,"TEXT"
50 STOP
RUN
2 3 5 TEXT

5.7.3 RESTOR statement

The RESTOR statement is used to move either to a specific point in the
data list, or to the beginning of the list. A RESTOR statement
without an argument resets the pointer to the beginning of the first
DATA statement.

A RESTOR with an argument resets the pointer to the line number
specified. The line number specified must exist but need not be the
line number of a DATA statement. The next sequential DATA statement
will be used.

Example:

70 RESTOR (restores to the beginning of the data list)
80 RESTOR 20 (restores to the first DATA statement at or beyond

line 20)

The following example program illustrates the use of RESTOR:

10 DATA 14,16,18
20 READ I,J,K
30 PRINT I,J,K
40 RESTOR
50 READ X,Y,Z
60 PRINT X,Y,Z
70 END
RUN
14 16 18
14 16 18

5-25

The RESTOR statement in this program resets the DATA pointer and
transfers control to the READ statement in line 50 which then obtains
data from line 10 (even though the READ statement in line 20 has used
the same data). If the RESTOR statement was omitted, POWER BASIC
would print an error message indicating a lack of data for the
variables in the READ statement at line 50.

If the following statement is added to the example program between
lines 40 and 50:

45 DATA 2,24,26

The statement at line 50 would still cause the values 14, 16, and 18
to be printed. The RESTOR statement at line 40 results in data being
obtained from line 10 rather than from line 45.

If a program has no DATA or READ statements, the use of the RESTOR
statement does not affect the program.

5.8 TERMINAL I/O STATEMENTS

Terminal I/O Statements consist of an INPUT statement to allow
keyboard input from a terminal and a PRINT statement which prints
values of expressions in an output list on the output device.

5.8.1 INPUT statement

The INPUT statement is used for keyboard input from an interactive
terminal into variables of the BASIC program.

Form:

dine number> INPUT <variablq> {;} <variable) {;}

The INPUT statement performs as a READ statement with the exception
that it accesses the numeric constants and strings from the external
keyboard instead of from internal DATA statements. It provides all
translation from character data to the internal formats of the POWER
BASIC system and thus assigns input values to the variables or array
elements specified in the input list. All characters are echoed as
they are entered. The INPUT statement is extremely versatile and
provides a means to 1)input numbers only, 2) input character strings,
3) detect control characters, 4) prompt with character strings, 5)
specify maximum number of input characters, 6) specify exact number of
input characters, 7) suppress carriage return/line feed, and 8)
suppress prompting.

Input variables may be entered in a list separated by carriage

5-26

returns. Numeric data may be represented as decimal integers,
floating point, exponential, or hexadecimal values. There should be no
embedded spaces within numeric values and all spaces preceding or
following numeric data are ignored. For string data input, the
string consists of all characters after the prompting character and up
to (but not including) the end of the input (carriage return). The
string includes all entered blanks and quotes.

The INPUT statement prompts the user with a question mark (?) for
numeric only inputs, and a colon (:) for character inputs. If an
illegal number is entered in response to the question mark prompt, the
computer will respond with a double question mark (??) and wait for
correct input. The computer will continue to prompt until the user
has entered all data requested.

In the following examples, a carriage return is represented by (CR)
and all user responses are underlined.

Examples:

40 INPUT X
50 INPUT $A, $B
60 INPUT $Y,Z
70 PRINT X, $A, $B, $Y,Z
80 STOP

RUN
?256 (cr)
:CAT T;tY :DOG (er)
:HI (cr) ?80A (cr) ??80 (or)
AT" CAT DOG HI 80

STOP AT 80

In the program, statement 40 outputs a question mark waiting for
numeric input. The user enters the number "256" followed by a carriage
return which terminates the INPUT statement of line 40. The variable
X is assigned the value of n258.1, Next it prompts with a colon
awaiting character string input. The user enters "CAT" followed by a
carriage return. The computer immediately prompts with a colon
awaiting the next string input. The user enters "DOG" and a carriage
return which terminates this input line. The computer then prompts
with a colon and the user inputs "HI" and a carriage return. Next, the
computer prompts with a question mark and the user incorrectly enters
"80A", an illegal numeric value. Therefore, the computer responds
with a double question mark and awaits correct input. The user enters
"80" followed by a carriage return which terminates the INPUT
statement. Statement 70 is then executed and outputs the values read
into the variables.

5-27

An INPUT statement can be combined with a PRINT statement to prompt
user response as follows:

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z
40 STOP

RUN
YOUR VALUES OF X, Y, AND Z ARE? 50 (cr) ?60 (cr) ?70 (cr)

STOP AT 40

Since user prompting for data input is required in most applications,
the INPUT statement has been designed to permit string constants to be
embedded in the INPUT statement for direct prompting output. The
string constants must be enclosed by quotation marks. There may be any
number of string constants within the INPUT statement separated from
input variables and other string constants by commas or semicolons.

The above example may be performed as follows:

20 INPUT "YOUR VALUE OF X IS", X, " Y", Y, " Z", Z
30 STOP

RUN
YOUR VALUE OF X IS? 1 (cr) Y? 2 (cr) Z? 3 (cr)

STOP AT 30

Similarly for string input:

10 DIM N (5)
20 INPUT "WHAT IS YOUR NAME", $N 0
30 PRINT "YOUR NAME IS ";$N 0
40 GOTO 20

RUN

WHAT IS YOUR NAME: JOHN (cr)
YOUR NAME IS JOHN
WHAT IS YOUR NAME:

A semicolon may be used to perform input formatting. If a semicolon
is placed at the end of an INPUT statement line, the carriage
return/line feed is suppressed after processing the INPUT statement as
the example below illustrates:

10 INPUT "INPUT X", X;
20 PRINT " X SQUARED="; X*X
30 INPUT "INPUT Y", Y

5-28

40 PRINT "Y CUBED="; Y*Y*Y
50 STOP

RUN

INPUT X?12 (cr) X SQUARED= 144
INPUT Y?3 (EFT-
Y CUBED= 2T

STOP AT 50

In line 10 the semicolon is present at the end of the INPUT statement;
therefore, the carriage return/line feed is suppressed after entering
the constant 12 so that "X SQUARED= 144" can be output on the same
line. In line 30 a semicolon is not present so the carriage
return/line feed is performed.

When the semicolon is placed before an assignment variable in the
INPUT list, the automatic prompting of a question mark or colon is
suppressed. The user may then perform his own prompting in the POWER
BASIC Program by using PRINT statements or placing character strings
in the INPUT statement.

Example:

5 DIM N(3)
10 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?", $N (0)
20 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?"; $N (0)
30 STOP

RUN

WHAT IS YOUR EMPLOYEE NUMBER?: 1234 (cr)
WHAT IS YOUR EMPLOYEE NUMBER?1214---(TFT-

STOP AT 30

In line 10, the INPUT Statement prompted with a colon (:). In line 20
no prompt was issued.

The user may limit the number of characters which can be entered from
the keyboard for both numeric and string variable assignments by using
the # or % operators in the INPUT statement. Use of the # operator
will specify the maximum number of characters which can be entered
from the keyboard. Use of the % operator will specify the exact
number of characters which must be entered. The scope of both WW-#.
and % operators extend through the entire INPUT line.

5-29

Forms:

<line number> INPUT <f> expression {;} variable tl

<line number) INPUT <%> expression 1 variable tl

When using the # operator, the user may enter any number of characters
less than the specified maximum by ending the input sequence with a
carriage return. The user cannot enter more than the specified
maximum number. When the maximum number of characters have been
entered POWER BASIC stops accepting keyboard input, assigns the value
just entered, and automatically continues to the next sequential
statement or INPUT statement parameter.

Use of the % operator requires that an exact number of characters be
entered. POWER BASIC waits for the exact number of specified
characters to be entered and then continues to the next sequential
statement or INPUT statement parameter; no carriage return (cr) is
required at the end of user INPUT. If the user attempts to enter less
than the specified number of characters by ending the input sequence
with a carriage return, POWER BASIC will ignore the carriage return
and continue to wait until the number of characters specified have
been entered.

Examples:

10 REM THE MAXIMUM NUMBER WHICH CAN BE ENTERED IS 999
20 INPUT #3, A, B
30 STOP

RUN
?512 ?900

STOP AT 30

10 PRINT "ENTER PHONE NUMBER (XXX -XXX -XXXX)";
20 INPUT %3;A,"-";B,"-",%4;C
30 PRINT "YOUR PHONE NUMBER IS";A;"-";B;"-";C
40 STOP

RUN

ENTER PHONE NUMBER (XXX-XXX-XXXX)123-456-1234
YOUR PHONE NUMBER IS 123-456-1234

STOP AT 40

In the first example the user may enter any numbers which do not
require more than three keystrokes. The range would be limited to

5-30

-99 to 999. In the second example the user is requested to enter his
telephone number in the format XXX-XXX-XXXX. The % symbols require
the user to enter exactly the required amount of numbers. The user
enters 123. The computer places the number in variable A and outputs
a "-". The user enters 456, and the computer places the number in
variable B and outputs a "-". The user enters 1234 to complete the
sequence. Statement 30 then prints the user's phone number using the
variables of the INPUT list.

The user may detect any invalid input or control characters which are
entered during both numeric and string variable assignment by using
the question mark (?) operator in the INPUT list.

Form:

<line number> INPUT <?><line numberi440ariable>{;}

The "?" operator specifies the line number to which control is
transferred via a GOSUB statement if a control character or invalid
input is encountered during input. The SYS(0) function will return
the control character encountered. SYS(0) will be equal to -1 if
there was an invalid input. Otherwise, SYS(0) will equal the decimal
equivalent of the control character. This feature is useful for
transferring control to internal subroutines by using the INPUT
statement. For example, to the user who requires additional
information for the input of data, (control) H can be used to transfer
to a routine which outputs a HELP message.

Example:

10 INPUT ? 100,N
20 PRINT N

•
•
•

100 REM SUBROUTINE TO PROCESS (control) H INPUT
110 PRINT "USER INPUT ASSISTANCE"

RUN
? (control) H
USER INPUT ASSISTANCE

5-31

In line 10 if the user enters a numeric value, it will be entered in
the variable N; or if the (control) H key is entered, the subroutine
at statement 100 will be executed and output the instructions for user
input.

Evaluation BASIC: The % and ? operators are not supported by
Evaluation BASIC.

5.8.2 PRINT statement

The PRINT statement causes the values of all expressions in the list
to be printed on the output terminal. Commas and semicolons are used
to separate expressions and provide for print formatting.

Form:

{PRINT)
line number expression {:} expression {:} ...

PRINT)

; expression {:} expression {:}

The expression list may contain any numeric variable, numeric
expression, string variable, string constant, or any ASCII code which
is to be output to the terminal device.

String constants may be printed directly by inserting them in the
PRINT statement expression list. String variables are printed by
having the variable name preceded with the dollar sign designator.
The following example illustrates the output of string constants and
string variables.

100 DIM N(10)
110 $N(0)= "POWER BASIC."
120 PRINT "THE NAME OF THE LANGUAGE IS ";
130 PRINT $N(0)
140 STOP

RUN

THE NAME OF THE LANGUAGE IS POWER BASIC.

STOP AT 140

The PRINT statement may be used to directly output ASCII codes to the
terminal device. The hexadecimal ASCII code must be enclosed in angle
brackets, (e.g., <00) and may be placed anywhere with string
constants or predefined string variables appearing within the PRINT
statement expression list. Only the low order 7 bits of the

5-32

hexadecimal code will be output to the device. Evaluation BASIC does
not support the direct output of ASCII characters.

Example:

10 PRINT "GO TO THE NEXT LINE <OA><OD> AND CONTINUE PRINTING!"

would generate

GOTO THE NEXT LINE
AND CONTINE PRINTING

Evaluation BASIC does not support direct (0) entry of control
characters; however, any ASCII character can be inserted into string
variables with the use of the $ operator. The $ operator places the
single byte value of the succeeding expression into the specified
character string. The byte value to be inserted into the string
represents the decimal equivalent of an ASCII character. Hexadecimal
ASCII character codes may be entered in Development BASIC by using the
proper hexadecimal notation (e.g., $A40AH$ODH$OH). Byte value
insertion should always be terminated with a null (zero byte)
insertion (e.g., $0AH$041H$OH). ASCII codes may be concatented to
character strings; however, character strings may not be concatenated
to ASCII codes in character assignments. For example, $A=$B + "YES" +
$10$13 is a valid character assignment, while $A=$B + $10$13 + "NO" is
an illegal character assignment. These string variables can then be
output with the PRINT statement. The following example program
illustrates this procedure.

LIST
10 DIM A(10)
20 $B410$13$0 !(10=LINE FEED, 13=CARRIAGE RETURN)
30 $A(0)="GOTO THE NEXT L1NE"+$B+"AND CONTINUE PRINTING!"
40 PRINT $A(0)
50 STOP

would generate,

GO TO THE NEXT LINE
AND CONTINUE PRINTING!

To facilitate rapid statement entry in the edit mode, a semicolon (;)
may be used in place of the word "PRINT" in any PRINT statement. Upon
statement entry, the semicolon is internally translated to the "PRINT"
code. Thereafter, listing of the statement will result in output of
the word "PRINT." For example"

10 PRINT I,J
20 ;X,Y,Z
30 ; 'THE SEMICOLON WILL LIST AS "PRINT"'
LIST

5-33

10 PRINT I,J
20 PRINT X,Y,Z
30 PRINT 'THE SEMICOLON WILL LIST AS "PRINT"'

In its simplest form, the expressions in the output list are separated
by commas. In this form, an output line is divided into five
15-character print fields starting in columns 1, 16, 31, etc. A comma

following an expression in a list is a signal to advance to the next
field. Expressions separated by commas are output one expression per
print field. This enables output lines to be formatted into five left
justified columns within the field. Expressions may occupy more than
one field, in which case the comma following the expression in the
PRINT list advances the print output to the next blank field. Note
that when more than five expressions are included in the output list
separated by commas, the terminal device should be of the type which
buffers the characters and automatically generates a carriage
return/line feed when its buffer is full to obtain the correct five
column output. If the terminal device does not perform in this
manner, output values may be lost at the end of output lines, and the
five column output format may be skewed. Printing will continue in as
many lines as are required to complete the output list. When the
entire output list has been printed, a carriage return/line feed is
automatically inserted after the last print item. Subsequent printing
begins on the next line. For example, the following statements:

10 X=7
20 $NAM = "PAUL"
30 PRINT X, X+2, X+4
40 PRINT "GEORGE", "HARRY", $NAM

would generate

7 9 11
GEORGE HARRY PAUL

The automatic carriage return/line feed at the end of a PRINT
statement may be suppressed by placing a comma at the end of the
output list. Subsequent printing will begin in the next field of the
same line. For example:

10 X = 7
20 $NAM="PAUL"
30 PRINT X, X+2, X+4
40 PRINT "GEORGE", "HARRY", $NAM

would generate

7 9 11 GEORGE HARRY
PAUL

Note that most terminals automatically generate a carriage return and

5-34

line feed as occurs in the following example:

10 FOR I=1 TO 14
20 PRINT I,
30 NEXT I
40 STOP

RUN

1 2 3 4 5
6 7 8 9 10
11 12 13 14

STOP AT 40

More compact printing can be achieved by using semicolons rather than
commas as expression separators. When followed by a semicolon,
numbers in the output list will print in as many characters as
required to print the numbers of the expression plus one blank space
added on the left. However, strings in the output list will print in
exactly the end of an output list,the last item will print in a short
field as just described, and subsequent printing will begin
immediately after that field. For example:

10 51=95
20 S2=87
30 S8=92
40 PRINT "SCORES AND NAME:";S1;S2;
50 PRINT S3; "JOE DOE"

would generate

SCORES AND NAME: 95 87 92 JOE DOE

Another example:

10 FOR I=1 TQ 14
20 PRINT I ;
30 NEXT I
40 STOP
RUN
1 2 3 4 5 6 7 8 9 10 11 12 13 14

STOP AT 40

Note that both semicolons and commas may be used to separate
expressions in any PRINT statement and that the print position of the
next expression will depend on the separator (semicolon or comma) used
to delimit the expressions. The following example illustrates the use
of both delimiters in a single PRINT statement.

5-35

10 H=98
20 L=60
30 A=79
40 PRINT "HIGH= ";H,"LOW= ";L,"AVERAGE= ";A

would generate

HIGH= 98 LOW= 10 AVERAGE= 79

A PRINT statement without an expression list is a valid statement.
Execution of this statement results in the output of one blank line,as
the example following illustrates.

10 PRINT "THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND"
20 PRINT
30 PRINT
40 PRINT "HERE!"

would generate

THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND

HERE!

Evaluation BASIC: The ability to directly output hexadecimal ASCII
codes (e.g., <OA>) is not implemented in Evaluation BASIC. However,
the $ operator may be used to perform this function as explained
earlier in this section. It will insert the byte code corresponding
to the decimal value of the expression following the $ operator.

Example:

10 $A=$10$0 !LINE FEED (0A)=10
20 PRINT $A

5.8.2.1 Print formatting. The PRINT statement may be used to specify the
exact print format for the output of numeric expressions. The pound
sign (#) within a PRINT statement followed by a hexadecimal formatting
character or a decimal formatting string provides this capability.
Print formatting is not supported by Evaluation BASIC.

Print formatting using the formatting string for decimal numeric
output is supported by Development BASIC only when the TM 990/452
ENHANCEMENT SOFTWARE PACKAGE EPROM set is installed in the system as
presented in Section 2, Paragraph 2.3.2. Execution of PRINT statement
utilizing this option without the Development Support option EPROM set
being installed will result in an "EXPANSION EPROM NOT INSTALLED"
error.

5-36

Forma:

(line number> PRINT <1><exp>{;}

PRINT <1> <exp> {;}

<line numbest* PRINT <#,><exp>f;
•

PRINT <#,><exp,{;}

<line number> PRINT <#;><exp>0

PRINT </;> <exp> {;} • • • •
•

PRINT <f><string constant><expression> •••

<line number* PRINT (#> (string variableXexpression> :1
jli

PRINT (#>(string variable><Sxpressiori>14

The formatting function may appear anywhere within the parameter list
of the PRINT statement. The parameters within the PRINT statement are
separated by commas or semicolons as explained in the PRINT statement
(paragraph 5.8.2). A separator appearing at the end of the parameter
list will force subsequent printing to continue on the same line just
as in the PRINT statement.

A format designator (#) followed by a semicolon, comma, or space is
used to output hexadecimal values in either byte, word, or free
format, respectively. These format specifiers convert to hexadecimal
the numeric constant, variable or expression immediately following the
specifier. The scope of the hexadecimal format specifier is for the
first constant, variable, or expression only and not for the entire
line as in the case of print formatting using a string image.
Subsequent values will be printed in free format decimal
representation.

The "#;" specifier converts the value and outputs the hexadecimal
result as a single byte with no preceding or trailing blanks or zeros
and without the "H" character. Only the least significant byte will
be output for values which require more than one byte for their
hexadecimal representation.

The "#," specifier converts the value and outputs the hexadecimal
result as a full word (two bytes) with no preceding or trailing blanks
or zeros and without the "H" character. The least significant two
bytes will be output for values requiring more than one word for their
hexadecimal representation.

The "#" specifier by itself converts the value and outputs the result

<line number) PRINT <#><string constant><expression>t}
•

5-37

in hexadecimal free format representation. The hexadecimal result
occupies as many digit positions as required to print the number. It
is preceded with a zero (0) and followed by the "H" character.

The following examples illustrate hexadecimal output formatting. The
user will terminate the entry line with a carriage return. POWER
BASIC outputs are designated by underlining.

PRINT #;1;" ";#,1;" "; #1 01 0001 01H
PRINT #;31;" ";#,31;" "; #31;" 11 ;31 1F 7507F 01FH 31
LET A=106
PRINT #;A;" ";#,A;" ";#A;" ";A 6A 006A 06AH 106

Numeric decimal formatting is designated within a PRINT statement
parameter list by a print format specifier (#) followed by a format
constant or string variable. The format string may be either a string
constant enclosed in quotes which directly contains the formatting
string, or a string variable which has prevously been assigned the
formatting string.

The format string indicates the final printed image of how the numeric
expressions specified within the PRINT statement parameter list are to
be output. Fields are reserved for printing numeric data by forming
output images of the printed results. Special characters are used
within the format string to indicate these results.

Several formatting strings may be interspersed within a single PRINT
statement parameter list. Numeric output values use the last defined
print format in that statement line for their output. Exit from a
PRINT statement line resets the formatting flag with subsequent
numeric values printed in free format. That is, the range of print
formatting is limited to the print statement line in which it is
located. Subsequent PRINT statements each require their own print
format specifier (#) and string.

Text to be output may be interspersed within the formatting string so
long as it contains none of the special characters used for print
formatting.

The special characters used in the formatting string are shown in
Table 5-2.

When using print formatting, floating point numeric values are rounded
to the number of decimal places specified by the format string. A
formatting error occurs if a numeric value is inconsistent with the
specified formatting string or if the integer portion of a value
requires more digits than specified by the format string. This is
indicated to the user by filling the entire output field with
asterisks (*).

The following paragraphs and examples explain the use of formatting
characters. In these examples single quotes (') are embedded within
the format field so the actual printed results can be shown more

5 -3 8

CHARACTER FUNCTION EXAMPLE

Decimal point specifier
Translates to decimal point
Suppressed if before signi-
ficant digit

9 Digit holder
0 Digit holder or forces zero
$ Digit holder & floats $
S Digit holder & floats sign
E Sign holder after decimal
K Digit holder before decimal

& floats on negative
, number
7 Appears after decimal if

negative

PRINT #"999.99"25.32; p25.32
PRINT #"999^00"1000; W10.00
PRINT #"99,999.99"100; bbb100.00

PRINT #"9999"123; J6123
PRINT #"9999.999".234;)9560.234
PRINT #"$$$.99"8; %$8.00
PRINT #"SSS.99" -6; X-6.00
PRINT #"990.99E" -150.75;150.75-
PRINT #"<<<.00>" 500;500.00

PRINT #"<X.00>7 -50; 50.00

clearly. In practice these quotes typically would not be used. The
user who has Development BASIC may execute these examples from the
keyboard by entering the example through the final semicolon (;),
inclusive, and then terminating the entry line with a carriage return.
POWER BASIC will respond with the formatted results output between the
quotes.

The "9" and "0" formatting characters are used as digit holders. The
period (.) character specifies the decimal point position on output.

PRINT #"'99'" 5;'5'
PRINT #"999.00"25.32;' 25.32'
PRINT #"'99.0'" 15.575;'15.6'
PRINT P1'99.0" 101.250/*****

The "0" formatting character also forces a zero if a non-significant
digit is output at that position.

PRINT #"999.00"28;' 28.00'
PRINT #"990.00".153;' 0.15'
PRINT #"'990.000'".75;' 0.750'
PRINT #"'990.000'" 1047.23;*********
PRINT P1'000-00-000," 3021; '000-03-021'

TABLE 5-2. FORMATTING STRING CHARACTERS

5-39

The "A" formatting character translates to a decimal point upon output
wherever it is located in the format field. For example, this is
useful when performing monetary calculations in pennies and then
translating the results to dollars and cents on output.

PRINT #"999400"200;' 2.00'
PRINT #"999^00"2532;' 25.32'
PRINT #"999N00"12000;'120.00,

The comma (,) formatting character inserts a comma in the output
numeric value; however, it is suppressed if there are no significant
digits to the left of its position in the output value. Typically, it
is used to separate groups of three decimal digits, (e.g., 1,000 and
1,000,000).

PRINT #"'99,990.00'"3529.87; ' 3,529.87'
PRINT et/49,990.00'n 903; ' 903.00'
PRINT #"99,990.00'"10.2333;' 10.23'
PRINT #"99,990.00"100256.7201**********

The dollar ($) sign formatting character is used to output the dollar
sign with the numeric output value. It is a digit holder and also
"floats" to the position immediately to the left of the most
significant digit of the output value.

PRINT #"'$$$.00'"25.32;'$25.32'
PRINT #"$$$.00".50;' $.50'
PRINT #"$$$.00"100;'100.00,
PRINT #"$$$.00"1000;********
PRINT #"$,$$$.00"1.52; ' $1.52'
PRINT #"$$,$$$.001" 9536; '$9,536.00'

The "5" formatting character is used to output a signed numeric value.
A minus sign (-) is output for a negative number and blank for a
positive number. The "S" character is a digit holder and "floats" the
sign of the numeric value to the position immediately to the left of
the most significant digit of the output value.

PRINT #"'SSS0.00'" 208.79; ' 208.79'
PRINT #"'SSS0.00'" -20.79; ' -20.79'

If the user attempts to output a negative number without using the "S"
formatting character, the number will be output as a positive number.

The "E" formatting character is used to output a signed numeric value
with the sign appearing to the right of the decimal point. It
functions only as a sign holder and is not a digit holder.

5-40

PRINT #"990.00E" 32.253; ' 32.25 '
PRINT #"990.00Et"-32.253; 7 327Ti=r
PRINT #"990.00E" -.50; 0.50-'

The "<" and ">" formatting characters are used in another form of
outputting negative numbers. They typically are used together in the
formatting string. The "<" character is a digit holder and appears
before the decimal point. The ">" character appears after the decimal
point and is only a sign holder. On the output of a negative number
both the "<" and ">" characters are output with the string. The "<"
character will float on a negative number to the position immediately
to the left of the most signficant digit of the output value. The w>"
character will appear at its position to the right of the decimal
point on a negative number. When outputting a positive number,
neither the "<" nor ">" character will be output in the string.

PRINT #"'<((,<<<.00>" 1250; ' 1,250.00 '
PRINT #"<<<,<<(.00>" -1250; ' <1,250.00)'
PRINT #"<<(.00,'" .20; ' .20 '
PRINT #"<*(.00>"-0.2; ' <.20>'

The following sample program further illustrates the results of print
formatting. When this program is executed the user is requested to
enter a numeric value and formatting string. POWER BASIC then
outputs the number using the user supplied print formatting string.

100 DIM F(5)
110 INPUT "INPUT NUMBER"N" FORMAT4F(0)
120 PRINT "'"#$F(0);N"'"
130 GOTO 110

RUN
INPUT NUMBER? 1 FORMAT: 999,990.99

1.00'
INPUT NUMBER? 123456 FORMAT: 999,990.99
'123,456.00'
INPUT NUMBER? 529728761 FORMAT: 000-00-0000
'529-72-8761'
INPUT NUMBER? 2335.34 FORMAT: $$$,$$$,$$$.99E

$2,335.34 '
INPUT NUMBER? -234.56 FORMAT: SSSSS.99
t -234.56'
INPUT NUMBER? -2335.34 FORMAT: $$$,$$$,$$$.99E

$2,335.34-t
INPUT NUMBER? 1234556 FORMAT: 999,999

INPUT NUMBER? 123 FORMAT: <<< ,<<0.99>
123.00'

INPUT NUMBER? -1234 FORMAT: <<<,<(0.99>
t 1,234.00 '

5-41

Evaluation BASIC: Print formatting is not supported by Evaluation
BASIC.

Development BASIC: Note that decimal print formatting utilizing a
formatting string is supported by Development BASIC only when the
TM 990/452 Enhancement Software Package EPROM set is installed in the
system.

5.8.2.2 TAB. Output formatting can also be controlled by use of the TAB
function.

Form:

TAB (<expressimi>)

The expression in the TAB function specifies the horizontal column
position where the print item following the TAB will begin printing.
The TAB function may contain any expression as its argument. The
expression is evaluated and its integer portion used. If the result
is greater than the line size, the specified print item will be
printed on the next output line. If the column specified by the
integer part of the expression has already been passed in the current
print line, the TAB function will be ignored and the print item will
be output at the current position in the print line. The TAB function
may be used to format output into columns on the output device.

Examples:

10 PRINT "BIG"; TAB(20);"SPACE"

will generate

BIG SPACE

while:

10 PRINT TAB(20); "SPACE";TAB(1);"BIG"

will generate

SPACEBIG

In the first example, the string "BIG" is output starting in column
1. The TAB function advances the printer to column 20 and outputs the
string "SPACE". In the second example, the TAB Function advances the
printer to column 20 and outputs the string "SPACE". The TAB (1)
attempts to return the printer to column 1 in the print line. Since

5-42

that column position has already been passed, the string "BIG" is
output immediately following "SPACE" (the current position on the
print line).

Note that the printing of tabs in the keyboard mode is not supported.

5.8.2.3 Summary - PRINT statement rules. The PRINT statement may contain
the following elements any number of times and in any sequence within
the expression list. The only restriction is that no two expressions
(exp) may appear together without a separator between them. Valid
separators are a comma (,), a semicolon (;), or a pound sign (#). An
expression is defined as any arithmetic combination of numeric
constants, variables, or functions. For example, PRINT 3+5 2*SQR(A),
is an illegal statement.

<00>
Oar>
<$var>
" string "
TAB

May not appear together without a separator
between them.

Separators

Most users insert redundant semicolons (;) and parenthesis within the
expression list of PRINT statements to facilitate readability and
clarity. However, the experienced user may eliminate many of these
redundant characters to save memory area and increase the speed of
interpreter execution.

The following examples show the typical format of a PRINT statement:

100 PRINT "A=";A;"B=";B
110 PRINT A;TAB(10),;"HI";#"999.99";A;TAB(25);B
120 PRINT 25;$B;"STRING";B
130 PRINT $A;$B
140 PRINT B;$A;C

These statements could be altered to:

100 PRINT "A="A"B="B
110 PRINT A TAB 10 "HI"#"999.99"A TAB 25;B
120 PRINT 25 $B "STRING" B
130 PRINT $A $B
140 PRINT B $A;C

5 -43

The following examples illustrate invalid PRINT statement expression
lists:

100 PRINT A B 25
110 PRINT 250 SQR(A)
120 PRINT $A B 15
130 PRINT 5'SQR(A) A*B/C

These statements must be written as:

100 PRINT A;B;25
110 PRINT 250; SQR(A)
120 PRINT $A;B;15
130 PRINT 5*SQR(A);A*B/C

These techniques should ony be used in programs which will never be
read by other than expert POWER BASIC programmers. Saving space and
time at the expense of program clarity may cost more in the long run
than you are willing to pay.

5.8.3 UNIT statement

The UNIT statement designates the device or devices to which all
subsequent printed output will be sent.

Forms:

<line number). UNIT <expression>
tINIT <expression>

The expression may be any numeric constant, variable, or expression
which is evaluated and its integer portion used. The UNIT statement
is used in conjunction with Development BASIC using a TM 990/101M
microcomputer board. The UNIT statement directs all printed output to
either or both of the serial interfaces present on the TM 990/101M.
Note that the TM 990/100M microcomputer board has only one serial I/O
port, and therefore the UNIT statement of Development BASIC will only
affect the output to port A of this board.

The unit number assignments are as follows:

UNIT SERIAL I/O PORT

1 SERIAL PORT A (CRU = 008016)
2 SERIAL PORT B (CRU = 018016)
3 SERIAL PORTS A & B

All output will be directed to the device on the selected I/O port,
including LIST output, BASIC command/statement output, and all program

5-44

generated output. The serial ports will remain selected for output
until a subsequent UNIT statement is encountered.

Examples:

100 UNIT 1 (directs output to PORT A)
200 UNIT 3 (directs output to PORTS A & B)

Evaluation BASIC: The UNIT statement is not
BASIC.

supported by Evaluation

5.8.4 BAUD statement

The BAUD statement is used to set the baud rate of the serial I/O
port(s) in either the program or keyboard mode.

Forms:

line number BAUD expression 1 , expression 2
BAUD expression 1 , expression 2

The BAUD statement will initialize the TMS9902 Asynchronous
Communications, port A or B (as specified by expression 1) to the baud
rate specified by expression 2.

Expression 1 will be evaluated and its integer portion will be used.
A zero value for expression 1 will select port A (CRU address of 80)
of the TM 990/100M or TM 990/101M microcomputer board, while a non-
zero value will select port B (CRU address of 180) of the TM 990/101M
microcomputer board.

Expression 2 will be evaluated and its integer portion will be used.
The table below presents the valid range for expression 2 and the
corresponding baud rates.

Expression
Value

Baud
Rate

0 19,200
1 9600
2 4800
3 2400
4 1200
5 300
6 110

5-45

Examples:

BAUD 0,4 (in keyboard mode)
10 BAUD 0,0
20 BAUD 1,2

Evaluation BASIC: The BAUD statement is not supported by Evaluation
BASIC.

5.9 INTERRUPT PROCESSING

Three statements are supplied for interrupt processing using a BASIC
language subroutine. These statements have the following form:

<line number> IMASK <expression>
<line number> TRAP <expression> TO <line number>
<line number> IRTN

The IMASK statement allows the user to control the interrupt mask of
the processor. The TRAP statement associates an interrupt level with
the statement number entry point for the interrupt processor
subroutine written in BASIC. The user will return from this
subroutine with the IRTN statement.

Note: The TM990/100M microprocessor has an onboard jumper (J1) which
enables TMS9902-generated interrupts to be routed to the interrupt 4
line of the TMS9901. This interrupt route must not be used with POWER
BASIC. This jumper musebe set to P1-18 positions specified in Table
2-3).

Similarly, the°E1-E2-E3 jumper on the TM990/101M board must be set to
the E1-E2 position as specified in Table 2-2.

Evaluation BASIC: Interrupt processing is not supported by Evaluation
BASIC.

5.9.1 IMASK statement

The IMASK statement is used to control the interrupt mask of the
TMS9900 microprocessor. The TMS9900 microprocessor employs 16
interrupt levels with the highest priority level being 0, and the
lowest 15. Level 0 is reserved for the RESET function; all other
levels may be used for external devices. The external levels may also
be shared by several device interrupts, depending on system
requirements. Since the reset sequence at power-up sets the interrupt
mask to zero, the appropriate interrupt mask must be set before any
interrupts will be acknowledged.

Note that if the current level is less than 3, setting of the system
time by using the TIME statement will result in the interrupt mask

5-46

being set to level 3. Likewise, if the real time clock is being used
(located at interrupt level 3), and if the mask is subsequently set to
less than 3, the clock interrupts will no longer be acknowledged and
real time will be destroyed.

All interrupts before they reach the TMS9900 CPU are first masked by
the TMS9901 Programmable Systems Interface. To prevent unwanted
interrupts from being acknowledged, the user must appropriately set
the interrupt mask of the TMS9901 to select all interrupt levels which
are to be processed. This is performed via the CRU interface using
the BASE, CRB, and CRF POWER BASIC statements.

Examples:

10 IMASK 15 ! SET MASK TO 15
20 IMASK OEH ! SET MASK TO 14
30 A=OAH ! SET A TO 10
40 IMASKA ! SET MASK TO VALUE OF A

Evaluation BASIC: The IMASK statement is not supported by Evaluation
BASIC.

5.9.2 TRAP statement

The TRAP statement is used to define the entry point of the interrupt
subroutine for a given interrupt level. POWER BASIC interrupt service
routines may be used to service interrupts 4 through 15.

Note that if the interrupt vectors have been modified to allow the use
of an assembly language interrupt processor (see Section 5.9.4), the
range of interrupt levels which a POWER BASIC routine is permitted to
service may be reduced from the range referred to previously. The
range will be modified so that BASIC interrupt routines may only be
used to service interrupts of lower priority that the lowest priority
assembly language routine.

Specifying an out of range trap level will produce a run-time error.
This process ensures that all assembly language interrupts have a
higher priority than those handled by POWER BASIC.

The "level", which must be in range, may be any valid POWER BASIC
expression whose integer portion is used and whose value is masked to
the least significant 4 bits.

The line number specifies the entry point for the interrupt servicing
routine.

The TMS9900 microprocessor continuously compares the incoming
interrupt code with the microprocessor's interrupt mask. The mask is
set to allow interrupt of level 0 through 3, interrupts serviced by
assembly language accessed directly through the interrupt vectors and

5-47

those interrupts of higher priority than those serviced by assembly
language routines, to be recognized immediately. These interrupts are
serviced upon recognition.

Interrupts of other levels (i.e., those serviced by a BASIC routine)
are recognized and serviced at the end of the currently executing
BASIC statement line. At the end of each BASIC statement line, BASIC
adjusts the microprocessor's interrupt mask to allow these interrupts
to be recognized and serviced by the microprocessor in order of
priority.

Note that interrupt levels 0 (RESET) and 3 (clock) are reserved and
should not be serviced by the TRAP statement.

Examples:

10 TRAP 5
20 TRAP OEH
30 A=200
40 B=OCH
50 TRAP B TO A

TO 500
TO 100

ASSIGN LEVEL 5 TO LINE 500
ASSIGN LEVEL 14 TO LINE 100
SET LINE
SET LEVEL
ASSIGN LEVEL 12 TO LINE 200

Evaluation BASIC: The TRAP statement is not supported by Evaluation
BASIC.

5.9.3 IRTN statement

The IRTN statement is used to return from an interrupt servicing
processor. IRTN is the last statement and terminates the interrupt
servicing processor. It will restore the program environment existing
when the interrupt was taken, and will return control to the previous
routine at the point at which the interrupt occurred.

Examples:

190 IRTN ! RETURN FROM INTERRUPT LEVEL PROCESSING

Evaluation BASIC: The IRTN statement is not supported by Evaluation
BASIC.

5.9.4 Assembly language processors

There are times when it may be necessary or advisable for the
interrupt processor to be written in assembly language. This may be
accomplished in two ways in POWER BASIC. The first is to use the TRAP
statement and the CALL statement to access the assembly language
routine. The second is to modify the interrupt transfer vectors for
the desired interrupt level so that an interrupt will transfer to the
assembly language routine directly.

Low-order memory, addressed as 0 through 3F, is reserved for the
transfer vectors used by the interrupts. When an interrupt request at

5-48

an enabled level occurs, the contents of the transfer vector
corresponding to the level are used to enter a subroutine to serve the
interrupt.

The reserved memory locations are shown in Interrupt Level Data table
(Table 5-3). Two memory words are reserved for each interrupt level.
The first of the two words for a given level contains an address that
is placed in the WP when the interrupt is requested and enabled. The
second contains the entry point of the interrupt subroutine for that
level; its contents are placed in the PC.

TABLE 5-3. INTERRUPT LEVEL DATA

Interrupt
Level

Vector Location
(Memory Address

In Hex)
Device

Assignment

Interrupt Mask
Values to Enable
Respective Interrupts

(ST12 thru ST15)

(Highest
priority) 0 00 Reset 0 through F•

1 04 External device 1 through F
2 08 External device 2 through F
3 OC Clock 3 through F
4 10 External device 4 through F
5 14 External device 5 through F
6 18 External device 6 through F
7 1C External device 7 through F
8 20 External device 8 through F
9 24 External device 9 through F
10 28 External device A through F
11 2C External device B through F
12 30 External device C through F
13 34 External device D through F
14 38 External device E and F

(Lowest
priority) 15 3C External device F only

*Level 0 can not be disabled.

5-49

To install an assembly language interrupt processor, the user must
create a data set containing the contents of the low memory EPROM set
(U42 and U44). The transfer vector for the desired interrupt level
must be modified to reflect the new workspace pointer and the new
entry point for the interrupt routine. A new EPROM set must then be
programmed from this data set. This new EPROM set will replace the
original set and should be mounted in the EPROM sockets on the
processor board (U42 and U44). The EPROM set containing the user's
interrupt handler must then be mounted at the desired address.

All assembly language interrupt processors must supply their own
workspaces, therefore RAM must be allocated for this purpose. During
power up reset, POWER BASIC will automatically size all available
contiguous RAM from hex FFFE16 on down for its own use. Consequently,
the user must either supply a non-contiguous RAM area for the
workspaces or must use the memory option of the NEW command to
deallocate the required RAM after auto sizing.

If the workspace area is allocated by the NEW command, it must be done
each time that POWER BASIC is restarted and prior to the entry of a
BASIC application program.

Note that interrupts serviced by assembly language processors are
handled transparent to POWER BASIC; that is, a) the transfer to the
interrupt service routine is external to the POWER BASIC processor
(POWER BASIC has no knowledge an external interrupt has occurred), and
b) the transfer is made immediately upon receiving the interrupt
(current BASIC statement execution is not completed before
transferring). For these reasons all assembly language interrupts
must have a higher priority than those handled by POWER BASIC; it is
acceptable for an assembly language processor to interrupt a POWER
BASIC interrupt processor but the reverse should never be allowed to
occur.

Since assembly language interrupts are processed immediately and the
POWER BASIC environment prior to the interrupt is not saved, it is not
advisable to use the Floating Point XOPS of POWER BASIC in the
assembly language processor.

5.10 BASE STATEMENT

The BASE statement sets the CRU base address for subsequent CRU
operations.

Form:

<line number;› BASE <expression>
BASE <expression>

The BASE statement evaluates the expression and sets the CRU base
address to the result for use by the CRB and CRF functions. The CRB
function addresses bits within +127-128 of the evaluated base

5-50

address. The CRF function transfers bits using the evaluated base
address as the starting CRU address.

The CRU provides a maximum of 4096 input and output lines that may be
individually selected by a 12-bit address. The 12-bit address used by
the CRU instructions is actually located in bits 3 through 14 of a
workspace register. The evaluated expression of the BASE statement is
loaded into the entire 16-bits of this workspace register. Therefore,
the BASE expression should evaluate to twice the actual (physical) CRU
base address desired since only bits 3 through 14 are used. The least
significant bit of the BASE expression value is ignored for CRU
operations. Therefore, all expressions should evaluate to an even
number. The range of valid expressions is from 0 to 8190 (hexadecimal
1FFE).

Examples:

10 BASE 64
20 CRF(0)=-1
30 BASE 100
40 CRB(-1)=0

Statement 10 sets the CRU BASE address to 64
and statement 20 outputs a 16-bit -1 value.
BASE address to 100 (physical address of 50,
CRU bit displaced -1 from the base (physical

(physical address of 32),
Statement 30 sets the CRU
and statement 40 sets the
address of 49) to zero.

5.11 TIME STATEMENT

The TIME statement is used to set, display,
of-day clock.

Forms:

<line number> TIME <exp>,<exp>,<exp>
TIME <exp>,<exp>,<exp)

<line number> TIME <string variable>
TIME <string variable>

<line number> TIME
TIME

or store the 24 hour time-

The TIME statement is used with the expression list to set and start
the time of day clock. The form of the expression is as follows:

TIME HH,MM,SS

where

H = hours, M = minutes, S = seconds

The clock is set up as a 24-hour clock with times ranging from
00:00:00 to 23:59:59. Initialization of the clock is valid at any

5-51

point in the program. Its value may also be reinitialized at any
point.

Examples:

TIME 10,27,30 (in keyboard mode)
TIME 3,5,0 (in keyboard mode)

10 TIME 21,8,15

The second form of the TIME statement enables storing the current time
of day in a string variable. This is useful for recording occurrence
time of significant events in a user's application program.

Example:

10 DIM T(3)
20 TIME 11,4,0

100 TIME $T(0)
120 PRINT $T(0)
130 STOP

RUN
11:04:37
STOP AT 130

The time of day may be directly displayed at any point within the
program. It may also be displayed from the keyboard when in idle mode
by using the third form of the TIME statement. The time of day will
be displayed in the following format:

HH:MM:SS

Note that when the user executes a SAVE or LOAD on audio cassette in
Development BASIC (SAVE 1 or 2, or LOAD 1 or 2), all interrupts are
masked at the CPU because the audio cassette software cannot be
interrupted since each byte has specified minimum and maximum bit
times for reliable data storage and retrieval.

This implies that the real-time clock will not be updated for the
entire LOAD or SAVE process. This time period can accumulate to a
significant amount, therefore the real-time clock is stopped and
cleared when using audio cassettes to emphasize the resulting clock
inaccuracy.

5-52

Examples:

TIME 9:31:23 (in keyboard mode)
10 TIME 11,4,0

100 TIME
110 STOP

RUN
11:04:37

STOP AT 110

5.12 RANDOM STATEMENT

The RANDOM statement randomizes the seed for the pseudo-random number
generator.

Forms:

<line number> RANDOM <expression>
RANDOM <expression>

The RANDOM statement is used in conjunction with the RND function.
The RND function returns the next number in the random number
sequence. It returns this value when requested and replaces it with
the next random number. The RANDOM statement is used to change the
random number seed and therefore the sequence of pseudo-raddom
numbers.

The random seed is set to a constant value when POWER BASIC is first
initialized so that the RND variable will always return the same
sequence of numbers to facilitate program debugging. After the
debugging phase, the RANDOM statement may be used to alter this
sequence.

The RANDOM statement is used to set the seed to a specific or
arbitrary value. The expression is evaluated and the result used as
the seed of the random number generator. The expression may be any
valid POWER BASIC expression. The evaluated expression must be within
the limits of -32768 and 32767 or a fix error will result. The
sequence of numbers generated by a specific seed value will always be
the same. This is useful for debugging and testing an application
program with a predetermined seed value. Arbitrary seed values may be
generated by the user by using combinations of variables and functions
(including the RND function) within the expression.

5-53

Examples:

10 RANDOM 220
20 RANDOM RND
30 RANDOM RND • MEM(X)

Evaluation BASIC: The RANDOM statement is not supported by Evaluation
BASIC.

5.13 ESCAPE AND NOESCAPE STATEMENTS

The ESCAPE and NOESC statements provide capability to enable or
disable the escape key to interrupt program execution.

Forms:

(line number> ESCAPE
<line number> NOESC

The ESCAPE statement enables the terminal device escape (or break) key
to interrupt program execution. When the escape key is struck program
execution terminates upon completion of the current statement line.
Keyboard sampling during the RUN mode is performed only between
statement lines. Caution should be observed when certain statement
constructions are used. For example, the FOR and NEXT statements
should not appear in the same statement line, because a statement line
is autonomous. Once the FOR/NEXT line begins execution, it cannot be
interrupted by using the escape key. It can be interrupted only if
the end condition of the FOR/NEXT loop is met, or if the user
reinitializes the system via the reset switch on the CPU board.

The NOESC statement disables the terminal device escape (or break) key
from interrupting program execution.

The ESCAPE statement is used during program development and debug.
The NOESC statement is used for time critical application programs or
in a production environment where it is disadvantageous for the user
to interact with POWER BASIC in a non-program controlled mode.

Examples:

10 ESCAPE
10 NOESC

Evaluation BASIC: The ESCAPE and NOESC statements are not supported
by Evaluation BASIC. The terminal device escape key is always enabled
in Evaluation BASIC.

5-54

5.14 CALL STATEMENT

The CALL statement allows the user access to assembly language
subroutines. The user may pass up to 4 parameters to the subroutine
although only 1 is requred.

Forms:

<line number!) CALL <string-constantMaddress>[,(yar>1 ,<var>2,<var>3,
Oar>4]

<var4,>4)
CALL <atring-constant>,<eddreslat>1 ,<var>2,<va03,

where:

string constant is the entry point name of the assembly language
subroutine

address is the hexadecimal address at the assembly language
subroutine

var 1, var 2, var 3, and var 4, are the parameters of the
subroutine

String constant is the entry point name of the assembly language
subroutine being called. The hexadecimal address is the location in
memory at which the assembly language routine resides. A string
constant must be entered to execute a CALL statement, although only
the "address" is usedby Development BASIC. A string constant
maintains transportability of the CALL statement to Configurable
BASIC.

If the parameter is passed as a value (that is, without parentheses),
it will be converted into a 16-bit two's complement integer. If
passed by address (that is,enclosing it in parentheses), no conversion
takes place, and the value must be interpreted as a two word integer
or three word floating point value beginning at the address passed in
the register. Reference Section 3.7.6 for detailed information on
internal variable formats.

Assembly language routines may only use Registers 4,5,6 and 7 of the
POWER BASIC workspace. Therefore all assembly language routines must
supply their own workspaces (typically by executing a BLWP as the
first statement of the assembly language routine), and require a RAM
area to be allocated for this purpose. During Power-up RESET, POWER
BASIC will automatically size available contiguous RAM for its own use
from the top of memory (FFFE) down until a write/read sequence results
in a mismatch. The user must either supply non-contiguous RAM for
the workspace, or use the memory option of the NEW command to
deallocate the required RAM after auto-sizing. Note that if the

5-55

workspace area is allocated by the NEW command, the NEW command must
be executed each time that POWER BASIC is powered up or re-initialized
(via the RESET switch) and prior to the entry of a BASIC application
program

For example:

CALL "SAMPLE", 0E00011, A, (B)

will result in a branch and link to the subroutine "SAMPLE" location
B000 (hex) with the value of A (converted to 16 bit two's complement
integer) passed in R4 and the address of the variable B is passed in
R5.

Evaluation BASIC: The CALL statement is not supported by Evaluation
BASIC.

5-56

SECTION VI

CHARACTER STRINGS

6.1 GENERAL

ASCII character strings are stored in the same variables as are other
POWER BASIC variables. Variables are designated as containing
character strings by program content or semantics. Any variable or
array may contain ASCII characters and, in fact, may be filled with
ASCII characters and numbers at the same time. String variables are
designated by preceding the variable name with a dollar sign.
Otherwise, the variable is treated as a number. ASCII characters are
stored in contiguous memory locations with a null character
terminating the string. You must ensure (with a DIM statement) that
enough memory for a string variable has been set aside to store all
the characters or other contiguous variables may be destroyed. The
following formula indicates the number of ASCII characters you may
store in any variable or array:

Development BASIC
Number of characters = 6 x (number of variable elements) - 1

Evaluation BASIC
Number of characters = 4 x (number of variable elements) - 1

Examples:
I1 6 x 1 - 1 = 5 (Development BASIC)
I1 4 x 1 - 1 = 3 (Evaluation BASIC)
A(10) 6 x 11 - 1 = 65 (Development BASIC)
A(10) 4 x 11 - 1 = 43 (Evaluation BASIC)
N(10,5) 6 x (11 x 6) - 1 = 395 (Development BASIC)
N(10,5) 4 x (11 x 6) - 1 = 263 (Evaluation BASIC)

6.2 CHARACTER ASSIGNMENT

When a string assignment is made the actual characters are moved to
the new variable.

Form:

$ VAR = <$VAR>
$ VAR = "(character string"

Characters are transferred one by one until

Examples:

10 $I1="YES"
20 $JO=$J1
30 $N(4,0) = "CHARACTER STRING"

a null byte is found.

6-1

A character string is referred to as <$VAR> and implies either a
literal string or a dollar sign preceding a variable. $<VAR>
implies a character only of the form dollar sign preceding a variable.

ASCII comparisons of the following form are valid:

IF <$VAR> <ELATION> <$VA1> THEN <BASIC STATEMENT>

Examples:

100 IF $11="Y" THEN GOTO 500
110 IF $N(I,0) =$N(J,0) THEN GOSUB 600

An ASCII variable may appear in a READ statement if the corresponding
DATA statement entry is also an ASCII variable or an ASCII string.
When data types do not match you receive an error at the line number
of the READ statement.

Example:

10 READ $N(0),A,B,$Z(0)
20 STOP
30 DATA "STRING DATA", 12345,A11104N(0)

In this example, $N(0) receives the character string "STRING DATA",
the variable A receives the number 12345, and B the number 123450.
Finally, the ASCII variable $Z(0) receives the same string as $N(0).

A dimensioned string variable can have a byte index into the character
string by following the subscripts with a semicolon and the byte
displacement. The range of the index is from 1 through the last byte
of the ASCII string. $A(0;1) is equivalent to $A(0).

Example:

10 DIM A(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 PRINT $A(0)
40 PRINT $A(0;1)
50 PRINT $A(0;10)
60 STOP

RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
JKLMNOPQRSTUVWXYZ

STOP AT 60

6-2

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $8(0)=0(0:10)
40 $A(0;2)=$B(0;2)
50 PRINT $A(0), $B(0)
60 STOP

RUN
AKLMNOPQRSTUVWXYZ JKLMNOPQRSTUVWXYZ

STOP AT 60

6.3 CHARACTER CONCATENATION

Strings are concatenated by using the "+" operator.

Form:

$<VAR> = <$VAR> <OAR> +...

Concatenation operations may be chained together and the final string
will automatically be terminated with a null by POWER BASIC.

Example:

10 DIM A(10), B(10)
20 $A(0)="ABCDE"
30 $A(0)=$A(0)+"FG"+"HIJK"
40 PRINT $A(0)
50 STOP

RUN
ABCDEFGHIJK

STOP AT 50

The following example results in a phenomenon called "CHOO-CH00". It
is caused because a null cannot be found.

10 $A(0)="ABCD"+$A(0)

POWER BASIC will detect this situation and terminate the string
assignment by inserting a null when a previously stored value is
again being selected for storage.

6-3

6.4 CHARACTER PICK

Characters can be picked from one variable into another by using the
assignment operator.

Form:

WAR> = OVAII> , <EXP>

The expression is evaluated and the resulting number specifies the
number of bytes to be assigned. The string is then terminated with a
null. Note that if the expression evaluates to a non-positive value,
no character pick will occur.

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;4),6
40 $B(0;5):$A(0),1
50 PRINT $B(0)
60 STOP

RUN
DEFGAI

STOP AT 60

6.5 CHARACTER REPLACEMENT

Character replacement is very similiar to character pick with the
exception that a null is not placed at the end of the string.

Form:

WAR)= OVAR:>;1M0

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;4),6
40 $B(0;5)=$A(0);1
50 PRINT $B(0)
60 STOP

RUN
DEFGAI

STOP AT 60

6-4

6.6 CHARACTER INSERTION

Characters can be inserted into a string variable by using the
slash (/) operator.

Form:

$ <VAR> =/ OVA*

The string is inserted without a null.

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFG"
30 $A(0:4)=/"..."
40 PRINT $A(0)
50 STOP

RUN
ABC...DEFG

STOP AT 50

Evaluation BASIC: Note that character insertion is not supported by
Evaluation BASIC.

6.7 CHARACTER DELETION

Characters are deleted from a string variable by using the same divide
operator followed by an expression.

Form:

$ VAR = / EXP

The evaluated expression indicates the number of characters to be
deleted.

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $A(0;5)= /10
40 PRINT $A(0)
50 STOP

6-5

RUN
ABCDOPORSTUVWXYZ

STOP AT 50

Evaluation BASIC: Character deletion is not supported by Evaluation
BASIC.

6.8 BYTE REPLACEMENT

Individual bytes may be altered by using the numeric equivalent of an
ASCII character along with the "%" operator.

Form:

WAR> = %<EXP>

The evaluated expression specifies the byte code to replace in the
string variable. Byte replacements may be chained together.

Example:

10 DIM A(10),B(10)
20 $A(0)=565%66%0
30 PRINT $A(0)
40 STOP

RUN
AB

STOP AT 40

6.9 CONVERT ASCII CHARACTER TO NUMBER

A character string may be converted to a number by using the
assignment operator along with an error variable.

Form:

<VAR> = <$VAR) , <VAR>

The delimiting character is placed in the first byte of the error
variable. Hence, the conversion routine was successful in converting
the whole string if a null was the resulting delimiter.

Example:

10 N="1234",E
20 N1="12DE",E1
30 PRINT N,$E
40 PRINT N1,$E1
50 STOP

6-6

RUN
1234
12 D

STOP AT 50

Evaluation BASIC: ASCII to number conversion is not supported by
Evaluation BASIC.

6.10 CONVERT NUMBER TO ASCII CHARACTER

A number can be converted to a string simply by assigning the number
to a string variable.

Form:

$ <var> = <exp>

The string will properly be terminated with a null.

Example:

10 DIM A(10),B(10)
20 $A(0)=4*ATN(1)
30 $B(0)= SQR(2)
40 PRINT $A(0), $B(0)
50 STOP

RUN
3.141592 1.414213

STOP AT 50

Formatted conversions can also be made by preceding the expression
with the formatting operator "#" and a string. The form is:

$<VAR> = # OVA* , <EXT>

The same formatting rules are followed as given under print
formatting. (See paragraph 5.8.2.1).

Example:

10 DIM A(10),B(10)
20 $A(0)=#"999,990.99",1234
30 $B(0)=4" , .00 ",-1234
40 PRINT $A(0),$B(0)
50 STOP

RUN
1,234.00 1,234.00

STOP AT 50

6-7

Evaluation BASIC: Numeric to character conversion is not supported by
Evaluation BASIC.

6.11 STRING LENGTH FUNCTION

The length of a string variable is returned by using the LEN function.

Form:

LEN (<$VAR>)

A zero is returned if the string is the null string.

Example:

10 DIM A(10),B(10)
20 $A(0)=""
30 $B(0)="ABCDEFGUIJKLMNOPQRSTUMVWYZ"
40 PRINT LEN($A(0)),LEN($B(0))
50 STOP

RUN
0 26

STOP AT 50

Evaluation BASIC: The string variable length is not supported by
Evaluation BASIC.

6.12 CHARACTER SEARCH FUNCTION

To search for a given string, use the SRH function.

Form:

SRH (($VAR>, <$VAR>)

The function returns the character position indicating where the
first string is located in the second string. If the search is
unsuccessful, a zero is returned.

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)="ZYXWVUTSRQPONMLKJIHGFEDCBA"
40 S1=SRH("EFG",$A(0))
50 S2=SRH("EFG",$B(0))
60 PRINT S1,S2
70 STOP

6-8

RUN
5 0

STOP AT 70

Evaluation BASIC: The search function is not rupported by Evaluation
BASIC.

6.13 CHARACTER MATCH FUNCTION

When looking for character agreement, the MCH function can be used to
return the number of characters which are the same for two strings.
Form:

MCH (OVAR) , <$VAR>)

A zero is returned if a match is not found.

Example:

10 DIM A(10),B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ0
30 PRINT MCH("ABCDXYZ",$A(0)),MCH("BC",$A(0;2))
40 STOP

RUN
2

STOP AT 40

Evaluation BASIC: The character match function is not supported by
Evaluation BASIC.

6.14 ASCII CHARACTER CONVERSION FUNCTION

The ASC function returns the ASCII decimal numeric value of the first
character of the specified string variable.

Form:

ASC (WAR))

The ASC function is the inverse of the byte replacement operator (%),
i.e., $A = %ASC($A).

The following example takes the upper case string in the variable
$A(0) and converts it to the lower case string in the variable $B(0)
using the ASC function to obtain the decimal ASCII code for the
character conversions.

6-9

Example:

10 DIM A(10),B(10)
20 INPUT "INPUT STRING", $A(0)
30 FOR I=1 TO LEN ($A(0))
40 $C4A(0a),1
50 D=ASC($C)
60 IF D=020H THEN $8(0;I)=%/40
70 ELSE $B(0;I)=%(D+020H)%0
80 NEXT I
90 PRINT $A(0)
100 PRINT $B(0)
110 GOTO 20

RUN
INPUT STRING: UPPER CASE TO LOWER CASE
UPPER CASE TO LOWER CASE
upper case to lower case
INPUT STRING

Evaluation BASIC: The ASCII character conversion function is not
supported by Evaluation BASIC.

6-10

SECTION VII

POWER BASIC FUNCTIONS

7.1 GENERAL

POWER BASIC includes several predefined mathematical, string, and
miscellaneous functions. A function is called by using the
following form in any statement where a variable may be used:

function name (argument)

where

function name is a three-letter name
argument may be an expression or variable.

The specified function of the argument replaces the function name in
the statement in which it is used. Functions may be used instead of,
or in combination with, variables in almost all POWER BASIC
statements such as: assignment, PRINT, IF, FOR, ON, DEF, etc.

7.2 MATHEMATICAL FUNCTIONS

Paragraphs (7.2.1 through 7.2.10) describe the mathematical functions
and their associated forms provided by POWER BASIC.

7.2.1 Absolute value function (ABS)

The absolute value function (ABS) obtains the absolute value of a
positive or negative number. The argument entered following the
function name is the variable name or numeric value for which the
absolute value is required. The function returns a non-negative
argument unaltered and returns the absolute value of a negative
argument.

Example:

10 INPUT X
20 PRINT SQR(ABS(X))
30 STOP

Evaluation BASIC: The ABS function is not supported by Evaluation
BASIC.

7.2.2 Arctangent function (ATH)

The argument entered following the function name is the ratio
representing a tangent function. The function returns the corre-
sponding angle in radians. Multiply the number of radians by
180/3.14159265 (Pi) to obtain the angle in degrees.

7-1.

Example:

10 INPUT X
20 D = ATN(X)*(180/3.14159265)
30 PRINT D
40 STOP

Executing the above example produces:

? 5.9246
80.41951

Note: This function is contained in the Enhancement package of
Development POWER BASIC. Attempting to invoke this function in
Development BASIC without the Enhancement package mounted will result
in a run time error.

7.2.3 Sine and cosine functions (SIN)(COS)

The argument entered following the function name represents an angle
in radians. When the angle is measured in degrees, multiply the
number of degrees by 3.14159265 (Pi) /180 to obtain the angle in
radians. The function determines the quadrant corresponding to the
argument and returns the function value.

Example:

10 INPUT N
20 PRINT SIN(N);COS(N);
30 STOP

Executing the above example produces:

? 1.25
0.9489849 0.3153215

7.2.4 Exponential function (EXP)

The argument entered following the function name is an exponent of e
(the base of natural logarithms). The function returns the value of e
raised to the power specified in the argument.

Example:

10 INPUT E
20 PRINT EXP(E)
30 STOP

7-2

Executing the previous example produces:

? 25
7.20049E+10

Evaluation BASIC: The EXP function is not supported by Evaluation
BASIC.

7.2.5 Integer part function (INP)

The integer part function (INP) returns the signed integer portion of
the argument. The INP function is useful in modular arithmetic and
for correcting errors resulting from truncation or rouding of
functions. The argument entered following the function name is the
value for which the integer portion is required.

Example:

10
20
30
40
50
60

INPUT Y
IF INP(Y/2)
PRINT "Y IS
STOP
PRINT "Y IS
STOP

Y/2 THEN GOTO 50
AN EVEN NUMBER"

AN ODD NUMBER"

Executing the previous example produces:

? 75
Y IS AN ODD NUMBER

7.2.6 Logarithm function (LOG)

The argument entered following the function name is the value for
which the natural logarithm (base e) is required. The function
returns the natural logarithm of the argument. Attempts to find the
logarithm of a non-positive argument will result in an error.

Example:

10 INPUT L
20 PRINT LOG(L)
30 STOP

Executing the above example produces:

$ 5280
8.57168

Evaluation BASIC: The LOG function is not supported by Evaluation
BASIC.

7-3

7.2.7 Square root function (SQR)

The square root (SQR) function returns the square root value of the
specified argument. The argument entered following the function
returns the square root of the argument. An error message (*ERROR 25
AT XXXX) is produced if the argument is negative.

Example:

10 INPUT K
20 PRINT SQR(K)
30 STOP

Executing the above example produces:

? 2
1.414214

7.3 STRING FUNCTIONS

The string functions described in Paragraphs 7.3.1 through 7.3.4 may
be employed in POWER BASIC programming.

7.3.1 ASCII character conversion function

The ASCII character conversion (ASC) function returns the decimal
ASCII numeric value of the first character of the specified string
function. For additional details, refer to Section 6, paragraph 6.14.

Example:

10 $A="8"
20 B=ASC [0]
30 $04B=020
40 D=ASC DC-1
50 PRINT $A,B,SC,D
60 STOP

RUN
B 66 b 98

STOP AT 60

Evaluation BASIC: The ASC function is not supported by Evaluation
BASIC.

7-4

7.3.2 Length function (LEN)

The length (LEN) function returns the number of non-null characters
starting at the evaluated address. The argument of the LEN function
must be specified as a string by either the $ or "string constant"
operators. For additional details, refer to Section 6, paragraph
6.11.

Example:

10 $I="ABC"
20 J=LEN($I)
30 K=LEN("ABCDEFGHIJKLMNOP")
40 PRINT J,K
50 STOP

Executing the above example produces:

3 16

Evaluation BASIC: The LEN function is not supported by Evaluation
BASIC.

7.3.3 Character match function (MCH)

The character match function (MCH) returns the number of characters to
which the two strings agree. A value of zero indicates no match. For
additional details, refer to Section 6, paragraph 6.13.

Example:

10 $C="ABCD"
20 M=MCH("AB",$C)
30 PRINT M
40 STOP

Executing the above example produces:

2 (RESULT)

Evaluation BASIC: The MCH function is not supported by Evaluation
BASIC.

7-5

7.3.4 CHARACTER SEARCH FUNCTION (SRH)

The search (SRH) function returns the character position of string 1
in string 2. A character position of zero indicates an unsuccessful
search. For additional details, refer to Section 7, Paragraph 6.12.

Example:

10 $C = "ABCD"
20 S= SRH ("BC",$C)
30 PRINT S
40 STOP

Executing the above example provides:

2 (RESULTS)

Evaluation BASIC: The SRH function is not supported by Evaluation
BASIC.

7.4 MISCELLANEOUS FUNCTIONS

The miscellaneous functions described in paragraphs 7.4.1 through
7.4.4 are supported by POWER BASIC.

7.4.1 CRU SINGLE BIT FUNCTION (CRB)

A CRU bit, addressed relative to a base displacement, is either read
or stored according to program context. The displacement ranges from
-128 to +127. (Refer to Section 5, paragraph 5.10 for details on the
BASE statement.) The function returns a 1 if the CRU bit is set, and
a 0 if not set. Likewise, the selected CRU bit is set to 1 if the
assigned value is non-zero and to 0 if the assigned value is zero. For
example:

CRB(10)=0

will clear the tenth bit relative to the base, while

CRB(11)=1 or CRB(11)=345

will set the eleventh bit on. Also,

IF CRB(5) THEN J=4

7-6

will set J=4 if the fifth bit is 1.

7.4.2 CRU FIELD FUNCTION (CRF)

The specified number of bits are transferred to or read from the CRU
starting at the address set by the BASE statement. (Refer to Section
5, paragraph 5.10 for details on the BASE statement.) The specified
number of bits ranges from 0 to 15. If zero, all 16 bits will be
transferred. For example:

CRF(0) = -1

transfers 16 bits (hex 'FFFF') to the CRU address specified by the
BASE statement. While,

VAL=CRF(8)

reads 8 bits from the CRU base address and stores the result in VAL.

7.4.3 KEY FUNCTION (NKY)

The key function (NKY) conditionally samples the keyboard in run time
mode. When the argument is zero the decimal value of the last key
struck is returned and the key register is reset. A value of zero is
returned if none of the keys were struck. If the argument is
non-zero, the argument is compared with the last key struck. If they
are the same, a value of 1 is returned and the key register is reset.
Otherwise, a value of 0 is returned. For example,

I = NKY(0)

returns the last key struck, or a 0 if none of the keys were struck;
while

IF NKY(041H) THEN PRINT "A"

prints "A" if the last key entered was "A". The argument value is
expressed in decimal.

7.4.4 SYSTEM INTERROGATION (SYS) FUNTION

The system interrogation function (SYS) obtains system parameters
generated during program execution. For example,

A = SYS(0)

returns the control character entered during either numeric or string
variable assignment when using the question mark (?) operator of the
INPUT statement. (Refer to the INPUT statement, Section 5, paragraph
5.8.1.2.)

A = SYS(1)

7-7

returns the ERROR code number when an error is encountered and is used
with the ERROR statement of Section 5, paragraph 5.6.6.

A = SYS(2)

returns the statement number in which the error occurred and is used
with the ERROR statement of Section 5, paragraph 5.6.6.

Evaluation BASIC: The SYS function is not supported by Evaluation
BASIC.

7.4.5 DELTA TIME (TIC) FUNCTION

The delta time (TIC) function samples a real time clock and returns
the current TIC value minus the expression value. For example:

T = TIC(0)

obtains current time, and

D = TIC(T)

calculates elapsed time since the time stored in the variable T (i.e.,
TIC (T) = TIC (0) - T.

The TIC function utilizes the real time clock of the TMS9901,
programmed to generate an interrupt (or TIC) every 40 milliseconds
(1/25th of a second) when the system clock rate is at 3MHz.

The following example will output the ASH code "07" corresponding to
the bell on the terminal once each second.

LIST
10 TIME 0 I THIS WILL START THE CLOCK
20 $B47%0! THIS IS THE CODE FOR CONTROL 'G' (BELL)
30 A=TIC(0)
40 IF TIC(A) < >25 THEN GOTO 40
50 PRINT $B
60 GOTO 30

7-8

7.4.6 MEMORY MODIFICATION (MEM) FUNCTION

The memory modification (MEM) function reads or modifies a memory
location (byte) as specified by the argument. For example:

M = MEM(OFFOOH)

reads the byte from location hex "FF0", while

MEM(OFFOOH) = 15

stores a decimal 15 (hex "F") at location hex "FF00".

Hexadecimal constants are not supported by Evaluaiton BASIC;
therefore, all arguments must be in decimal form. When addressing
memory in decimal notation the memory will be addressed as follows:

Decimal
address

Hexadecimal
address

0 0000
1 0001

• •

32767 7FFF
32768 8000

65534 FFFE
65535 FFFF

Example:

M = MEM (65280)

reads the byte from location hex FF00, while

MEM (65520) = 25

stores a decimal 25 at location hex FFFO.

7-9

7.4.7 BIT MODIFICATION (BIT) FUNCTION

The, bit modification (BIT) function reads or modifies any bit within
a variable. The function returns a 1 if the bit is set and a 0 if not
set. Likewise, the selected bit is set to 1 if the assigned value is
non-zero, and to zero if the assigned value is zero. For example:

IF BIT(A,1) THEN PRINT "ON"

prints "ON" if bit 1 of variable A is on; while

BIT (A,2)=1 or BIT (A,2)=750

turns "on" the second bit of variable A.

Refer to Section 3, paragraph 3.7.7 for an application of the BIT
function.

7.4.8 RANDOM NUMBER (RND) FUNCTION

The random number function (RND) is used to generate a psuedo random
number between 0 and 1. For example:

PRINT RND

would return a random number like

.2113190

Refer to the RANDOM statement paragraph 5.12 for additional
information.

7.4.9 MEMORY WORD MODIFICATION FUNCTION (MWD) FUNCTION

The memory word modification function reads or modifies a memory word
as specified by the argument. For example:

M=MWD(OFFOOH)

reads the word from location hex "FF00", while

MWD(OFFOOH)= 256

stores a decimal 256 (hex "100") in the memory word at location hex
"FF00".

Evaluation BASIC: The MWD function is not supported by Evaluation
BASIC. Development BASIC: The MWD function is only supported by
release D.1.8 and later revisions.

7-10

APPENDIX A
ERROR CODES

The following error codes may be issued by the POWER BASIC Executive

CODE ERROR MESSAGE

1 = SYNTAX ERROR
2 = UNMATCHED PARENTHESIS
3 = INVALID LINE NUMBER
4 = ILLEGAL VARIABLE NAME
5 = TOO MANY VARIABLES
6 = ILLEGAL CHARACTER
7 = EXPECTING OPERATOR
8 = ILLEGAL FUNCTION NAME
9 = ILLEGAL FUNCTION ARGUMENT
10 = STORAGE OVERFLOW
11 = STACK OVERFLOW
12 = STACK UNDERFLOW
13 = NO SUCH LINE NUMBER
14 = EXPECTING STRING VARIABLE
15 = INVALID SCREEN COMMAND
16 = EXPECTING DIMENSIONED VARIABLE
17 = SUBSCRIPT OUT OF RANGE
18 = TOO FEW SUBSCRIPTS
19 = TOO MANY SUBSCRIPTS
20 = EXPECTING SIMPLE VARIABLE
21 = DIGITS 044 OF RANGE (00 of digits<12)
22 = EXPECTING VARIABLE
23 = READ OUT OF DATA
24 = READ TYPE DIFFERS FROM DATA TYPE
25 = SQUARE ROOT OF NEGATIVE NUMBER
26 = LOG OF NON-POSITIVE NUMBER
27 = EXPRESSION TOO COMPLEX
28 = DIVISION BY ZERO
29 = FLOATING POINT OVERFLOW
30 = FIX ERROR
31 = FOR WITHOUT NEXT
32 = NEXT WITHOUT FOR
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 = UNNORMALIZED NUMBER
35 = PARAMETER ERROR
36 = MISSING ASSIGNMENT OPERATOR
37 = ILLEGAL DELIMITER
38 = UNDEFINED FUNCTION
39 = UNDIMENSIONED VARIABLE
40 = UNDEFINED VARIABLE
41 = EXPANSION EPROM NOT INSTALLED

A--1

42 = INTERRUPT 1,1/0 TRAP
43 = INVALID BAUD RATE
44 = TAPE READ ERROR
45 = EPROM VERIFY ERROR
46 = INVALID DEVICE NUMBER

A-2

APPENDIX B

STATEMENT AND COMMAND SUMMARY

This Appendix contains a summary of all POWER BASIC statements and
commands for the Development and Evaluation BASIC Software Packages.
An explanation preceded by an asterisk (*) indicates the statements
and commands which are not supported by Evaluation BASIC.

B-1

EDIT MODE COMMANDS

An advanced editor is contained in POWER BASIC to aid in program
writing, editing, and debugging. The editor uses the following
special control characters. Note that the phrase "(ctrl)" indicates
that the user holds down the control key while depressing the key
corresponding to the character immediately following.

SYNTAX EXAMPLE/EXPLANATION

(CR)

Enter last line typed into program source.

(CR)

(ctrl)In (ctrl)I4

*Insert n blanks.

(ctrl)Dn - (ctrl)D4

*Delete n characters.

(ctrl)H (ctrl)H

Backspace 1 character.

(ctrl)F (ctrl)F

Forward space 1 character.

ln(ctrl)E 100(ctrl)E

Display source line indicated by line number (1n) for
editing.

(ctrl)T (ctrl)T

Toggle from one partition to the other partition.
(Only in Evaluation BASIC).

(esc) Cancel input line or break program execution.

(Rubout)
or (DEL) Backspace and delete character.

B-2

COMMANDS

POWER BASIC commands direct and control system operations. Commands
cause immediate computer interaction thereby allowing operator
control. Commands may only be entered one per line and may not be
entered into a BASIC program. POWER BASIC commands may be
abbreviated to the first three letters of the command name, and all
letters must be entered in upper case.

SYNTAX EXAMPLE/EXPLANATION

CONtinue CONTINUE

*Execution continues from last break.

<in> LIST LIST

List the user's POWER BASIC program.
in LIST - Will list from specified line number
through end of program or until the ESCape key is
entered.

LOAD LOAD

Reads a previously recorded POWER BASIC program from
733 ASR digital cassette.

LOAD exp LOAD 2

*Reads a previously recorded POWER BASIC program from
audio cassette drive no. 1 or no. 2.

LOAD <addres0› LOAD 05000H

*Configures POWER BASIC to execute BASIC programs
stored in EPROM at the specified address.

NEW NEW

Clears current user program, variables, pointers,
and stacks, and prepares for entry of new program.

B -3

SYNTAX EXAMPLE/EXPLANATION

NEW <addre0> NEW 0A000H

'Sets the lower RAM memory bound used by POWER BASIC
after auto-sizing at power-up.

PROgram PROGRAM

'Program current POWER BASIC application program into
EPROM.

RUN RUN

Begin program execution at the lowest line number.

SAVE 'SAVE

Records a POWER BASIC program onto 733 ASR digital
cassette.

SAVE <exp> SAVE 1
'Records a POWER BASIC program on audio cassette drive
no. 1 or no. 2.

SIZE SIZE

Display current program size, allocated variable
space, and available memory in bytes.

B-4

STATEMENTS

POWER BASIC statements form the basis of all BASIC programs.
Statements are typically entered into a program with line numbers and
are executed when the RUN command is entered. Statements may also be
entered in the keyboard mode without a line number and they will be
executed immediately. POWER BASIC statements may occupy only one
line; however, numerous statements may appear on each line when
delimited by a pair of colons (::). All letters of BASIC statements
must be entered in upper case.

SYNTAX EXAMPLE/EXPLANATION

in BAUD <expl> <,exp2>
BAUD 0,5

*Sets the baud rate of the serial I/O port(s).

In BASE <(exp)> BASE (256)

Sets CRU base for subsequent CRU operations.

in CALL Otring-constang>, <subroutine addresi), Gvar1][,var23[,var 3]
Gvarig CALL "SUB1", ODEOOH,A,(B)

*Transfers to assembly language subroutines. If
variable is contained in parenthesis, then address
will be passed; otherwise, the value will be passed.
Parameters are passed in R4, R5, R6, and R7. Return
address is contained in R11.

<exp> <exP>
In DATA)(string-constants , 1<string-constan

DATA 1, 4*ANT(1), "HI"

Define internal data block for access by READ state-
ment.

in DEF .FN<x>[(<arg1)] [,arg23E,arg33)3 = <Op>

DEF FNA (X,Y)=(3'X+Y)/Y

*Defines user arithemetic function

B-5

SYNTAX EXAMPLE/EXPLANATION

In DIM <varndim , 3

DIM A(10), DOG(5,10,10)

Allocates user variable space for dimensioned or
array variables.

In ELSE
statement(s) ELSE GOTO 1000

•When most recently executed IF condition is false,
all subsequent ELSE statements are executed;
otherwise, the ELSE statement line is ignored.

in END END

Terminates program execution and returns to key-
board code.

in ERROR In ERROR 1000

*Specifies a subroutine that will be called via a
GOSUB statement when an error occurs.

In ESCAPE ESCAPE

*Enables the escape key to interrupt program
execution.

In NOESC NOESC

*(see NOESC statement)

In FOR <sim-vari>=<exp> TO <exp> STEP <exP>

FOR I.7.1 TO 20 STEP 2

The FOR statement is used with the NEXT statement to
open and close a program loop. Both identify the
same control variable. The FOR statement specifies
the control variable and assigns the starting,
ending, and optionally stepping values.

B-6

SYNTAX EXAMPLE/EXPLANATION

In NEXT(pim -vex> NEXT I

•(see NEXT statement)

In GOSUB In GOSUB 2000

Transfer program execution to an internal BASIC
subroutine beginning at the specified line number.

in POP POP

•(see POP statement)

In RETURN RETURN

4/(see RETURN statement)

In GOTO in GOTO 300

Transfer program execution to the specified line
number.

In IF condition THEN statement(s)

IF I=0 THEN I:J::GOTO 200

Causes conditional execution of the statement(s)
following THEN. Statements following THEN execute
on TRUE condition.

In ELSE
statement(s) ELSE A=SQR(J)::GOTO 250

•(see ELSE statement)

In IMASK level IMASK 8

•Set interrupt mask of TMS9900 microprocessor to
specified level.

B-7

SYNTAX EXAMPLE/EXPLANATION

in TRAP <level>
TO O.r0 TRAP 9 TO 1000

*(see TRAP statement)

In IRTN IRTN

*(see IRTN statement)

)(num-var> 4,1 <num-var> /i ...
In INPUT <string-va ; (string-var

INPUT I, $B

Places numeric and string values entered from the
keyboard into variables in the INPUT list.

in [LET] 4rar>
= (exp> LET A=B*4

Evaluates and assigns values to variables or array
elements. The LET is optional.

In NEXT
pim-var> NEXT I

Delimits end of FOR loop. the sim-var must match
the FOR control variable.

In NOESC NOESC

*Disable ESCape key to disallow a program break.

GOTO
In ON <exT› THEN IGOSUB010[,ln]

ON I THEN GOTO 100,200,300
ON J THEN GOSUB 500,600,700

*Case statement used to transfer program execution
via a GOTO or GOSUB to the line number specified by
the expression.

B-8

SYNTAX EXAMPLE/EXPLANATION

In POP POP

'Removes from the GOSUB stack the last pushed
return address without an execution transfer.

In PRINT
<exp> [,expJ.... PRINT A,B, $NAM

Print (without formatting) the evaluated expressions
to the terminal device.

In RANDOM <exp> RANDOM 4*MEM(OFDOOH)

*Set the seed of the random-number generation to the
evaluated expression.

<num-var> , rnum-vary I]
In READ 1<string-4ar>1 <string-vae>

READ A4B,C(0),$D(0)

Assigns values from the internal data list to
variables or array elements.

In REM <text> REM comment lines for documentation. Inserts
comment lines into program.

In RESTOR RESTOR
RESTOR 40

RESTOR without a parameter resets pointer to begin-
ning of DATA sequence, while RESTOR with a parameter
resets pointer to specified line number.

In RETURN RETURN

Return from BASIC subroutine and remove top address
from GOSUB stack.

B-9

In STOP STOP

Terminate program execution and return to keyboard
(edit) mode.

In TIME <exP>,<Px0,<Mx0

TIME 11,24,30

Start the 24-hour time-of-day clock and set the time
to the specified expressions values.

in TIME TIME

Output the clock time as MR:MN:SD to the terminal
device.

In TIME
<String -vari> TIME $A(0)

Stores current clock time into specified string
variable.

In UNIT 4,4 UNIT 3

*Designate the device(s) to receive all printed
output.

B-10

FUNCTIONS

POWER BASIC provides several predefined mathematical, string, and
system functions which simplify program entry and development. Any
POWER BASIC function may be used in any statement where a variable may
be used. A function is called by using "function name
(argument)", where the function name is the three-letter name and the
argument maybe any expression or variable. The specified function of
the argument replaces the function name in the statement in which it
is used.

SYNTAX EXAMPLE/EXPLANATION

ABS (4(exii.>) A=ABS(B)

*Absolute value of expression

ASC (<string>) B=ASC($A)

*(see ASCII Character Conversion Function under
STRINGS)

ATN (<exp>) A=ATN(1)

Arctangent of expression.
(expression in radians)

BIT Rvar),
<exp>) A=BIT (B,I)

*Reads bit specified by expression within the
specified variable. Returns a 1 if bit is set
and a 0 if not set.

BIT (‹var),4uM1:>=<PxP2,>)

BIT (C,6)=1

*Modifies bit specified by expl in specified
variable. Selected bit is set to 1 if assigned
value (exp2) is non-zero and the zero if the
assigned value (exp2) is zero.

COS (<exp>) A=COS(B)
Cosine of expression.
(expression in radians)

B-11

SYNTAX EXAMPLE/EXPLANATION

CRB (<exp>) A=CRB(-1)

CRB ((exp1>)
=<exp2)

Reads CRU bit as selected by the CRU hardware
base = exp. Exp is valid over range -127
thru 128.

CRB(-4)=0

Set or reset CRU bit as selected by CRU hardware
base = exp1. If exp2 is non-zero, the bit will be
set, else reset. Exp1 is valid for -127 thru 128.

CRF ((exp1)) A=CRF(4)

Read n CRU bits as selected by CRU base where exp
evaluates to n. Exp is valid for 0 thru 15. If
exp=0, 16 bits will be read.

CRF ((exp1>)=
<expZ) CRF(5)=OFH

Output exp1 bits of exp2 to CRU lines as selected
by CRU BASE. Exp1 is valid for 0 thru 15. If
exp1=0, 16 bits will be output.

EXP (<expl0 A=EXP(B)
•Raise the constant e to the power of the
expression.

INP ((exp)) A=INP(B)

Return the signal integer part of the expression.

LEN ((string)) A=LEN($13(0))
See String Length Function under STRINGS)

LOG (‹exp)) A=LOG(B)

*Return natural logarighm of the expression.

B-12

SYNTAX EXAMPLE/EXPLANATION

MCH (Cstring 1>,<string 2>) M=MCH(SA,SB(0))

*(see Character Match Function under STRINGS)

MEN (<exP>) A=MEM(OFFOOH)
A=MEM(65280)

Read byte from user memory at address specified
by exp. Only decimal values may be used by
Evaluation BASIC (valid integer range of 0 to
65535).

MM4,(‹exp1))= exp2
MEM(OBOH)=OFH
MEM(176)=15

Store byte exp2 into user memory at address
specified by exp1. Only decimal values may be
used by Evaluation BASIC (valid range of 0 to
65535).

MWD(exp) A=MWD(OFFOOH)
A=MWD(65280)

EXP

MWD(expl)=exp2 MWD(176)=15
STORE word EXP2 into user memory at address
specified by EXP1.

NKY (exp)

RND

SIN ((exp>)

A=NKY(0)

IF NKY(65) THEN PRINT "A"

Conditionally samples the keyboard in run-time
mode. If exp=0, return the decimal value of last
key struck and clear key register. (Zero is
returned if no key was struck). If exp 0,
compare last struck key with decimal value of exp.
If they are the same, a value of 1 is returned
and the key register is reset, if not equal then
return a O.

A=RND

Returns a random number between 0 and 1.

A=SIN(B)

Sine of the expression (exp in radians).

B-13

EXAMPLE/EXPLANATION

A=SQR(B)

Square root of expression.

S=SRH(0413(0))

a(See Character Search Function under STRINGS).

A=SYS(2)

*Obtain system parameters generated during program
execution. The exp values and corresponding
system parameters are as follows:

SYS(0)=Input control character
SYS(1)=Error code number
SYS(2)=Error line number

SYNTAX

SQR (<ex0))

SRH (4tring),
<stringg>)

SYS (<exp>)

TIC (<exp>) T1=TIC (0)
T2=TIC(T1)

Returns the number of time TICs less the
expression value. One TIC equals 40 milliseconds
(1/25 second). One TIC equals 40 milliseconds
(1/25 second).

B-14

STRINGS

String variables in POWER BASIC are designated by preceding the
variable name with a dollar sign ($). ASCII character strings are
stored in contiguous memory byte locations with a null character
terminating the string. Hence, simple string variables in Development
BASIC which are 6 bytes in length can contain up to 5 characters
(Evaluation BASIC has 4 byte variables, so only 3 characters can be
entered per simple string variables). Dimensioned string variables in
Development BASIC may contain up to the number of elements times 6,
less one character, while Evaluation BASIC dimension variables may
contain up to the number of elements times 4, less one character.
Also, dimensioned string variables may have a byte index following the
subscript(s) to indicate a byte position within the specified string.
This is indicated by following the subscripts with a semicolon and the
byte displacement (e.g., $A(0;5)).

FUNCTION/SYNTAX EXAMPLE/EXPLANATION

ASCII Character
Conversion Function
ASC ((string-var>) ASC($A(0))

•Convert first character of string to
decimal ASCII Numeric representation.

Assignment
<string -var> $A(0)=B(0)

<string -vari>=1<string -constant> $A(0)=B(0;5)

Store string into string-var ending
string with a null.

Character Match Function
MCH ((stringt>,<String2,>)* A=MCH("HI",$B(0))

*Return the number of characters to
which the two strings agree.

Character Search Function
SRH (<5tring0,<String>) A=SRH ("BC, "ABCD")

*Return the position of stringl in
string2. Zero is returned if not
found.

B-15

FUNCTION/SYNTAX

Concatenate
)<string-var>

(string-va <string-oonstan +

Convert to ASCII
(string-var>=<exp
(string-vO)= kistring>,,,q0'

Convert to Binary
<var1>z(strine>,<Var2)

Deletion
(string -var>= /(exp)

Insertion
string-var)

(string-var>=/Pstring-constant>1

EXAMPLE/EXPLANATION

string-vary
string-constant+

$A(0)4A(o)+"END"

Concatenate specified string
variables or string constants.

$N(0)=N
$N(0)=#"99,990.99",TX

*Convert exp to ASCII character
string ending with a null.
#String specifies a formatted
conversion.

N="1234",E
N=$A,E

*Convert string into binary equi-
valent. Var2 receives the de-
limiting non-numeric character in
the first byte.

$A(0;3)=/2

Delete exp characters from string
var.

$A(0;3)=/"HI"

Insert string into specified
position in string variable.

B-16

FUNCTION/SYNTAX EXAMPLE/EXPLANATION

String Length Function
<string-vai> L=LEN($A(0))

<num-var>=LEN(<string-constant> L=LEN "ABC"

Return the length of string up
to terminating null.

Pick
<String-var47

<string-varl = <string-constant* , $1=$A(0;2),3
(exP) $J="ABCDE",3

Pick exp number of characters
from string2 into string-varl
ending string with null.

)0tring-var>
<string-var,>7 <String-constant2> ; $B(0;2)=$A(0);1
<exp> $B(0;2)="...";2

Replace exp number of characters
of string-varl with string2.

B-17

Replace

INPUT OPTIONS

The following options are available for use with the INPUT statement
to provide the POWER BASIC user with enhanced terminal input
capability. For additional details on their use, refer to the INPUT
statement, Section 5, paragraph 5.8.1.

SYNTAX EXAMPLE/EXPLANATION

<string-var> INPUT $A

Prompt with colon and input character data.

INPUT A,B

Delimit expressions for multiple inputs

INPUT ;A
INPUT A;

Suppress prompting if before variable, or CR LF if
at end of line.

#exp INPUT #1"Y or N"$I

Specify a maximum of exp characters to be entered.

%exp INPUT % 11"CODE"C

*Requires entry of exactly exp number of characters.

"? In INPUT ?100;A

*Upon an invalid input or entry of a control charac-

number (1n). SYS(0) will be equal to -1 if there
was an invalid input. Otherwise, SYS(0) will equal
the decimal equivalent of the control character.

"STRING" INPUT "YES or NO?";$A

Prompt with string and then get input. Equivalent
to:
PRINT "YES or NO?";::INPUT;$A

B-18

OUTPUT OPTIONS

POWER BASIC provides the following options for use with the PRINT
statement. They provide powerful print formatting capability for all
user output directed to the terminal and/or auxiliary device (see UNIT
statement). For additional information on these formatting options,
refer to Section 5, paragraph 5.8.2.1.

SYNTAX EXAMPLE/EXPLANATION

PRINT A;B
PRINT A;

Delimits expressions or suppresses CR LF if at
end of line.

PRINT A,B

Tab to next print field.

TAB (<0x0>)

string

#<exp>

#,<exp>

#;<exp>

PRINT TAB (50);A

Tab to column specified by exp.

PRINT "HI";$A(0)

'Print string or string-var.

PRINT # 123

'Print exp as hexadecimal in free format.

PRINT#,50

'Print exp as hexadecimal in word format.

PRINT #;A

'Print exp as hexadecimal in byte format.

B-19

SYNTAX

hex value

#string

EXAMPLE/EXPLANATION

PRINT "<OD><OA)"

*Direct output of ASCII codes.

PRINT #"99.00"123

•Print under specified format where:

PRINT #"9999"I

*9 = digit holder

PRINT #"000-00-0000"SS

*0 = digit holder or force 0

PRINT #"$$$$,$$$.00"DLR

*$ = digit holder and floats $

PRINT #"SSS.0000"4*ATN1

*S = digit holder and floats sign

PRINT #"<<<.00> "I

*<>= digit holder and float on negative
number

PRINT #"990.99E"N

*E = sign holder after decimal

PRINT # "990.99"N

. = decimal point specifier

B-20

SYNTAX EXAMPLE/EXPLANATION

PRINT #"990.00"N

•, = suppressed if before significant digit

PRINT #"999,990 00"/

OA= translates to decimal point

PRINT #"HI=99"/

*Any other character is printed.

B-21

GENERAL INFORMATION

SPECIAL CHARACTER

The following characters have a special meaning when encountered in
program statement lines:

CHARACTER USE

Statement separator when entering multiple
statements per line.

Tail remark indicator used for comments after
program statement.

Equivalent to "PRINT" statement

ARITHMETIC OPERATIONS

A=B Assignment

A-B Subtraction

B+B, $A+$B Addition or string concatenation

A*B Multiplication

A/B Division

Exponentiation

-A Unary Minus

+A Unary Plus

*LOGICAL OPERATIONS

The logical operators perform "bit-wise" operations on the operand(s).
The operands are converted to 16-bit integer quantities before the
operation, and the results .of the operations are similarly 16-bit
values.

LNOT A * l's complement of integer

A LAND B * Bit wise AND.

A LOR B * Bit wise OR.

A LXOR B * Bit wise exclusive OR.

B-22

RELATIONAL OPERATORS

The relational operators are binary operators that operate on two
arithmetic expressions. They return values of 1 (TRUE) or 0
(FALSE).

A=B TRUE if equal, else FALSE.

A==B *TRUE if approximately equal (+1E-7), else
FALSE

A<B TRUE if less than, else FALSE.

A< =B TRUE if less than or equal, else FALSE.

A>B TRUE if greater than, else FALSE.

P-=B TRUE if greater than or equal, else FALSE.

AOB TRUE if not equal, else FALSE.

* BOOLEAN OPERATORS

The boolean operators are designed to work on the resultan TRUE (1) or
FALSE (0) conditions set by the relational operators. However they
may also operate on variables within the program, in which case a zero
value variable is considered FALSE (0) and a non-zero value variable
is considered to be TRUE (1). The boolean operators return value of 1
(TRUE) or 0(FALSE).

NOT A *TRUE if zero, else FALSE

A AND B *TRUE if both non-zero, else FALSE.

A OR B *TRUE if either non-zero, else FALSE.

B-23

OPERATOR PRECEDENCE

1. Expressions in parentheses
2. Exponentiation and negation
3. *,/
4. +,
5. <=,<>
6. >2,> T. e,>
8. =2,LXOR
9. NOT,LNOT
10. AND,LAND
11. OR,LOR
12. ASSIGNMENT

B-24

ERROR CODES

POWER BASIC displays error code numbers corresponding to the
appropriate error messages listed below. This is the case for the
TM 990/450 Evaluation BASIC package and for the TM 990/451 Development
BASIC package. However, Development BASIC utilizing the TM 990/452
Development BASIC Enhancement Software Package EPROM set will display
the error message itself in place of the error code number for all
errors generated by the Development BASIC package.

CODE ERROR MESSAGE

1 = SYNTAX ERROR
2 = UNMATCHED PARENTHESIS
3 = INVALID LINE NUMBER
4 = ILLEGAL VARIABLE NAME
5 = TOO MANY VARIABLES
6 = ILLEGAL CHARACTER
7 = EXPECTING OPERATOR
8 = ILLEGAL FUNCTION NAME
9 = ILLEGAL FUNCTION ARGUMENT
10 = STORAGE OVERFLOW
11 = STACK OVERFLOW
12 = STACK UNDERFLOW
13 = NO SUCH LINE NUMBER
14 = EXPECTING STRING VARIABLE
15 = INVALID SCREEN COMMAND
16 = EXPECTING DIMENSIONED VARIABLE
17 = SUBSCRIPT OUT OF RANGE
18 = TOO FEW SUBSCRIPTS
19 = TOO MANY SUNSCRIPTS
20 = EXPECTING SIMPLE VARIABLE
21 = DIGITS OUT OF RANGE (00 of digits<12)
22 = EXPECTING VARIABLE'
23 = READ OUT OF DATA
24 = READ TYPE DIFFERS FROM DATA TYPE
25 = SQUARE ROOT OF NEGATIVE NUMBER
26 = LOG OF NON-POSITIVE NUMBER
27 = EXPRESSION TOO COMPLEX
28 = DIVISION BY ZERO
29 = FLOATING POINT OVERFLOW
30 = FIX ERROR
31 = FOR W/0 NEXT
32 = NEXT W/0 FOR
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 = UNNORMALIZED NUMBER
35 = PARAMETER ERROR
36 = MISSING ASSIGNMENT OPERATOR
37 = ILLEGAL DELIMITER

B-25

CODE ERROR MESSAGE (cont.)

38 = UNDEFINED FUNCTION
39 = UNDIMENSIONED VARIABLE
40 = UNDEFINED VARIABLE
41 = EXPANSION EPROM NOT INSTALLED
42 = INTERRUPT 14/0 TRAP
43 = INVALID BAUD RATE
44 = TAPE READ ERROR
45 = EPROM VERIFY ERROR
46 = INVALID DEVICE NUMBER

B-26

APPENDIX C

SAMPLE PROGRAMS

This Appendix consists of two sample programs (sine wave and word
puzzle).

C-1

C.1 SINE WAVE

This sample program demonstrates the use of the TAB function. It will
plot a sine wave given input from the user.

LIST
5 INPUT "HOW MANY CHARACTERS PER LINE ON YOUR TERMINAL ";M
10 INPUT "MAGNITUDE"A;" PERIOD"B;" #STEPS"C
15 PRINT
20 FOR I=1 TO C
30 PRINT TAB (INP(M/2)+A*SIN(I/B));""
40 NEXT I
50 STOP

RUN
HOW MANY CHARACTERS PER LINE ON YOUR TERMINAL? 80
MAGNITUDE? 38 PERIOD? 3 STEPS? 30

*
*

*
*

*

*

STOP AT 50

*

*

a

C -2

RUN
HOW MAY CHARACTERS PER LINE ON YOUR TERMINAL ? 80
MAGNITUDE? 30 PERIOD? 4 STEPS? 25

*

*

STOP AT 50

C -3

C.2 WORD PUZZLE

This sample program demonstrates character array manipulation. It
will hide up to twenty one user-selected words in an array of random
letters.

100 DIM A(22,5),N(20,7),C(6)
110 $C(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1000 REM INIT ARRAY
1010 FOR I=0 TO 22:: FOR J=1 TO 23
1020 $A(I,O;J)=" "
1030 NEXT J:: NEXT I
1100 REM ENTER DATA
1110 FOR N=0 TO 20
1120 INPUT $N(N,0)
1130 IF $N(N,0)="":: GOTO 1150
1140 NEXT N
1150 N=N-1 !GET NUMBER OF NAMES
1200 REM FIT INTO ARRAY
1210 FOR 1=0 TO N
1220 TRY=O !NUMBER OF TRYS
1230 TRY=TRY+1
1240 IF TRY-INP(TRY/100)*100=0:: PRINT TRY"TH TRY TO FIT $N(I,0)
1250 IF TRY 500:: GOTO 1210 !START AGAIN
1260 R=INP(RND*22):: R1-R
1270 C=INP(RND*22)+1:: C1=C
1280 0=INP(RND*8)+1
1290 IF 0=1:: R0=-1:: CO=0
1300 IF 0=2:: R0=-1:: CO=1
1310 IF 0=3:: R0=0:: CO=1
1320 IF 0=4:: R0=1:: CO=1
1330 IF 0=5:: R0=1:: CO=1
1340 IF 0=6:: R0=1:: C0=-1
1350 IF 0=7:: R0=1:: C0=-1
1360 IF 0=8:: R0=-1:: C0=-1
1370 FOR J=1 TO 19
1380 $L4N(I,00),1 !GET LETTER
1390 IF $L="":: GOTO 1500
1400 $L14A(R,O;C),T !LOOT AT ARRAY
1410 IF $L1=" ":: GOTO 1430
1420 IF $L $L1:: GOTO 1230 !FIT FAILED, TRY AGAIN
1430 R=R+RO:: C=C+CO !MOVE TO NEXT
1432 IF R -1:: IF R 23:: IF C 0:: IF C 24:: GOTO 1440
1436 IF $N(1,00+1) "":: GOTO 1230
1440 NEXT J
1500 N(I,5)=R1:: N(I,6)=C1:: N(I,7)=0 !SUCCESS!! SAVE POSITION
1510 FOR K=1 TO J-1 !DO ACTUAL MOVE
1520 $A(R1,0:C1)4N(I,O;K):1:: R1=R1=R0:: C1=C1+CO
1530 NEXT K

C-4

1540 NEXT I
1550 INPUT "DO YOU WANT TO SEE THE ANSWERS?"%1;%I
1560 IF $I="Y":: GOSUB 2000:: GOSUB 3000
1800 REM FILL IN PUZZLE
1810 FOR I=0 TO 22;; FOR J=1 TO 23
1820 $L4A(I,O;J),1
1830 IF " "=$A(I,00),THE$A(I,O,J)=4C(0;INP(RND*26)=1);1
1840 NEXT J:: NEXT I
1850 GOSUB 2000
1860 STOP
2000 REM PRINT ARRAY
2005 PRINT :: PRINT
2010 FORI=1 TO 49:: PRINT "*";:: NEXT I :: PRINT
2020 FOR I=0 TO 22:: PRINT "* ";:: FOR J=1 TO 23
2030 $L4A(I,O;J),1:: PRINT $L" ";
2040 NEXT J:: PRINT "*":: NEXT I
2050 FOR I=1 TO 49:: PRINT "*";:: NEXT I:: PRINT
2060 RETURN
3000 FOR I=0 TO N
3010 PRINT $N(I,O) TAB 20;N(I,5)+1;N(I,6);N(I,7)
3020 NEXT I
3030 RETURN

RUN
: POWER BASIC
: TEXAS INSTRUMENTS
: COMPUTER
: MICROPROCESSOR
: TERMINAL
: CASSETTE

DIGITAL
• RAM
: EPROM

DO YOU WANT TO SEE THE ANSWERS?Y

C - 5

*

*

*
*
*
*
*

W
DIGITAL E

R R

*

P
0

T
E

E
P
R
0
M

*

* 0 T X R
* S E B A E
* S R A R A M S T
* E M S U
* C I I P
* 0 C N N M
* R A S 0
* P L T C
* 0 R
* R U
* C ET TESSAC M
* I E
* M N

POWER BASIC
TEXAS INSTRUMENTS

4
7

14
15

6
5

COMPUTER 16 16 2
MICROPROCESSOR 21 3 1
TERMINAL 9 6 5
CASSETTE 19 13 7
DIGITAL 7 2 3
RAM 11 10 3
EPROM 4 18 5

C -6

* SAUBEHNHFLSWRGKTRVUDCLI*
* LAQVHWFERDFSRUYVVXYHSVA*
* CGDEMRTUYKUIEBNQEOQSEDZ*
* XRERTLIABJORVTPAMEKCD 0 H*
* BPHISHFNGJGFDOIMXPDUHKF*
* RGUPEHIUSLPOWYCJVRUVQWL*
* ODIGITALUDIEJJTJBOQCPQY*
* CZREDPCCJFRPDYERMMDNCAI*
* YSORCTIDEDACNJXQRYYBE X R*
* HISDEECWBISHHVATAKYUSEJ*
* FOSAMRKABRAMXKSOMNABTII*
* JJEIXMSWHNGCXBNXMMDULPN*
* TACACIHGUOYBGHIDMXPBNXO*
* WAOYCNGYVMISIONHAMGPYTM*
* EIREEAETVTRTIYSAODUPXYJ*
* YCPMNLKTHBPGEYTCLDEKF I 0*
* XFOXXFEFAGAXYIRXUZXGAQS*
* SYRSSGEIEBOSOMUEKPFLGHF*
* YGCXQETTESSACOMTVXJGXRS*
* PAIXGUMSVDTOOFEOCTTXGCW*
* ZFMJWIJTFQLOTXNIKOKEEXO*
* LZHCTDPBCHVRPGTGKRFMZ AL*
* GJOQQWLPYWDLSFSGOTUTNBX*

STOP AT 1860

C -7

APPENDIX D

FLOATING POINT PACKAGE

D-1

D.1 INTRODUCTION

The POWER BASIC Floating Point package is a single accumulator
Floating Point Processor. It includes the common operations of
addition, subtraction, multiplication and division. Also provided are
utilities to load, store, scale, normalize, clear, float and negate.

D.2 SYNTAX

XOP SYNTAX:

[LABEL] y..XOP raf.. GA,OP,g.. comment

For clarity in explanation, the XOPS will be defined as follows:

DXOP LOADF,O
DXOP STORE,1
DXOP FADD,2
DXOP FSUB,3
DXOP FMUL,4
DXOP FDIV,5
DXOP SCALE,6
DXOP NORMAL,7
DXOP CLEAR,8
DXOP NEGATE,9
DXOP FLOAT,10

D.3 FLOATING POINT FORMAT AND ACCURACY

Detailed information on the format and accuracy of floating point
numbers may be found in Section 3.7.7.

D.4 Paragraphs D.4.1 through D.4.7 describe the utilities provided by the
floating point package.

D.4.1 LOAD

XOP 0 (LOAD) will load FPAC (Floating Point Accumulator) with the 6
byte number addressed by the operand.

Example:

LOADF @FP1 or XOP @FP1,0

D-2

FP1 DATA >4110>0000,>0000

Will load FPAC with the contents of FP1.

D.4.2 STORE

XOP 1 (STORE) will store FPAC at the 6 byte location addressed by the
operand.

Example:

STORE @FP2 or XOP @FP2,1

FP2 BSS 6

Will transfer the contents of FPAC to FP2.

D.4.3 SCALE

XOP 6 (SCALE) will adjust the exponent of FPAC to the value of the
operand.

Example:

SCALE @C4A or XOP @C4A,6

•

C4A DATA >4A00

Will adjust FPAC so the exponent becomes)4A.

D.4.4 NORMALIZE

XOP 7 (NORMALIZE) will adjust FPAC such that the first hex digit of
the fraction is non-zero.

Example:

NORMAL 0 or XOP 0,7

Will normalize FPAC.

Note that the operand has no significance.

D -3

D.4.5 CLEAR

XOP 8 (CLEAR) will zero FPAC.

Example:
CLEAR 0 or XOP 0,8

Will zero FPAC.

Note that the operand has no significance.

D.4.6 NEGATE

XOP 9 (NEGATE) will negate FPAC by changing the first bit. If FPAC is
zero, it will remain zero.

Example:

NEGATE 0 or XOP 0.9

Will Negate FPAC.

Note that the operand has no significance.

D.4.7 FLOAT

XOP 10 (FLOAT) will float the second word of FPAC into a floating
point number. This word is a 16-bit 2's compliment integer.

Example:

CLR RO
LI R1,100
CLR R2
LOADF RO
FLOAT 0
STORE @FP100

OR XOP 0,0
OR XOP 0,10
OR XOP @FP100,1

FP100 BSS 6

Will load FPAC with a decimal 100, convert it to floating point and
store it in FP100 .

Note that the operand has no significance.

D-4

D.5 Paragraphs D.5.1 through D.5.5 describe the mathematical operators of
the floating point package. All operators are required to be
normalized and the result will be normalized and returned in the
floating point accumulator (FPAC). If the result is zero, it is
returned as a true zero (i.e., all zeros as opposed to a floating
point zero, 4000, 0000, 0000).

D.5.1 XOP 2 (ADDITION) will add the 6 byte number addressed by the operand
to the FPAC and place the results in FPAC.

Example:

FADD @C10 OR XOP @C10,2

C10 DATA >41A0, >0000, >0000

Will add the contents of C10 to FPAC and place the results in FPAC.

D.5.2 SUBTRACTION

XOP 3 (SUBTRACTION) will subtract the 6 byte number addressed by the
operand from the FPAC and place the results in FPAC.

Example:

FSUB @C10 OR XOP @C10,3

C10 DATA >41A0, >0000, >0000

Will subtract the contents of C10 from FPAC and place the results in
FPAC.

D.5.3 MULTIPLICATION

XOP 4 (MULTIPLICATION) will multiply FPAC by the 6 byte number
addressed by the operand and place the result in FPAC.

Example:

FMUL @C10 OR XP @C10,4

C10 DATA >41A0, >0000, >0000

D-5

Will multiply the contents of FPAC by the contents of C10 and place
the results in FPAC.

D.5.4 DIVISION

XOP 5 (DIVISION) will divide FPAC by the 6 byte number addressed by
the operand and place the result in FPAC.

Example:

FDIV 010 OR XOP 010,5

C10 DATA >41A0, >0000, >0000

Will divide the contents of FPAC by the contents of C10 and place the
results in FPAC.

D.5.5 EXAMPLE

For example, the equation

A=B+CID

Would become:

LOADF #C OR XOP #C,0
FMUL ND OR XOP 0,4
FADD NB OR XOP 0,2
STORE IA OR XOP #A,1

A BSS 6
B DATA >4110, >0000, >0000
C DATA >4118, >0000, >0000
D DATA >4118, >0000, >0000

D-6

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204

