As you are now the owner of this document which should have come to you for free, please

consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. | give my time for free, but it costs me money to bring this document to you.

You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. |
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any

mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at

the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

| put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.






IMPORTANT NOTICES

Texas Instruments Reserves the right to make changes at any time in
order to supply the customer with the best possible product.

TI cannot assume . responsibility for any circuits shown or represent
that they are free from patent infringement.

Copyright, Texas Instruments Incorporated, 1981



el el el
e o
AN WN

NN NNNDN

AN B WN

W T Db b s W

"« o a »
« .
N

e e L
* o e e
N DN N
* o
w N

W NW WWw Www ww www

TABLE OF CONTENTS

1.0 INTRODUCTION

General

Board Configuration
General Specifications
Reference Documents
Numerical Representations
Glossary

2.0 INSTALLATION

General

Required Equipment

Power Supply

Space and Environmental Requirements
Unpacking

Hookup

3.0 OPERATION

General
Verification
Power-up/Reset
Sample Programs
Sample Program 1
Sample Program 2
Troubleshooting Techniques
Test Equipment Requirements
Procedures
Visual Checks
Static Checks
Dynamic Checks

4.0 THEORY OF OPERATION

A U b W N =

W WW W wWw WwWwW wWww



AN BEWNNNNDDNDNDN -
> WN -

NP e

[ T - S
] L I )
[ ] e [ ]
W N =

. ®
= O 0N

N~ O

I - A -
L[] L]
N =

(SR MG NG G, N G, |
e o o o
WWWWwwWwnN -
* o e
W N

« o o
¢« o o
W~

(SO RO, 0]
wwww

5.3.14

General
Major Internal Signals
System Buses
Address Bus
Data Bus
CRU Bus
Control Bus
Auxiliary Control Signals
Clock Oscillator _
RESET Logic
Device Select Logic
Memory
General-Purpose Memory Sockets
Personality Plugs
Dedicated Read/Write Memory (RAM)
Sockets .
Serial Communication Ports
EIA Interface
TTY Interface
Memory And CRU Address Map Changes
Wait State Logic
External Instruction Logic
Single-Step Logic
Prototype Area

5.0 EVMBUG INTERACTIVE MONITOR

General

User Memory

EVM BUG Commands
Execute Under Breakpoint (EXB)
Inspect/Change CRU (IC)
Dump Memory (DM)

Dump Memory To Digital Cassette/Paper
Tape (DMC)

Execute Command (EX)
Find Data Command (FD)
Hexadecimal Arithmetic (HEX)
Load Memory From Cassette or Paper
Tape (LMC)
Inspect/Change Memory (IM)
Inspect/Change User WP, PC, and
ST Registers (IR)
Execute In Single Step Mode (SS)
Toggle Null Flag (TNF)
Inspect/Change User Workspace
Registers (IWR)
Assembler Commands: (XA, XAE, XRA, XCL)

11

|

N N N N N N N . Y S
|
== O~ O U D1 D W

(VS =

£-3
|

[a

(S

4-16
4-20
4-20
4-20
4-21
4-22
4-23
4-24



5.3.14.1

5.3.14.2

CNGNC NS EE RS
[ N ] (] [ ] . [ ]
B B W W
L) . L] . .
W -
W
[ ] [ ]
> W

gt ot n
. o
. o

~ U

(S -3

[ . . o * @ e @ [
s o L[] L] . [ ] [ ]
e e

[ ] L] . . . L]

S B W N

WWNNNDNDDNDNDNDN -

.
|

. . o
ww W

A O AN AN N
.
W N

e @ L] . . L] L]
N NN ooy U e Bae bR

e o L] L) . L]

AU W+

o e o o o
. LY
N =

AN NN A AN A AN N
WN =

L] L]
. L]

Execute Assembler With New Symbol

Table: (XA)

Execute Assembler With Existing Symbol

Table: (XAE)
Execute Reverse Assembler: (XRA)

Execute Communications Link: (XCL)

User-Accessible Utilities

Write One Hex Character to Terminal (XOP 8)
Read Hex Word From Terminal (XOP 9)

Write Four Hex Characters To
Terminal (XOP 10) -

Echo Character (XOP 11)

Write One Character To Terminal (XOP 12)
Read One Character From Terminal (XOP 13)

Write Message To Terminal (XOP 14)
EVMBUG Error Messages

SYMBOLIC ASSEMBLER

General
TS 9995 Symbolic Assembler Listing
Listing Format
Location Counter
Assembled Object Code
Label Field
Op Code Field
Operand Field
Comment Field
Labels and Comments
Dollar Sign To Indicate "At This
Location™
Expressions

Cancel Source Statement Being Input
Translate Characters Into ASCII Code

Using Single Quotes
Assembler Directives
AORG Directive
BSS Directive
DATA Directive
END Directive
EQU Directive
TEXT Directive
Assembler Action
Operation
Calling The Assembler
Exiting To The Monitor
Entering Instructions
Label Field
Opcode Field
Operand Field

I1T

1
Bl WW WW WW W

AN A AN AN YO
|

A O
|
(S RO It -

o\?\ A A A A O
[ | | | i

1
o e i OO0 O OV DN

W wWww ww NN O

AN AN NN
|



AN NN
“« o
“«
AN

OWONdId
L[]

e @ . L[] e o e o [ N e o
. [ ] [ 3 [ ]
N
. L]
N =

N NN NNNNNNNNN
L] L[] L[] L]
N wWwhN-

b B B W WW W N

~
L[]
w

@ 00
e o o e
NN DN
°« o
N

.
w

00 00 00 0O
[ ] L ] .
wwN

. L] L]

W N e

N L[] L]
w N

. o e o
B oD W Ww WWw
. s e ®

© o W
L]
N

8.4.3

The Comment Field
Concluding The Instruction
Examples

Brrors

Pseudo-Instructions

7.0 EIA COMMUNICATIONS LINK

General
System Description
System Requirements
Host System Redquirements
Hardware Requirements
Software Requirements
Terminal Requirements
Communications Link Usage
Starting The Link
Terminal Mode
Command Mode
Returning Control To EVMBUG Monitor
Link Use Without Cassette Or Paper Tape
Support
Sample Software Development Session

8.0 PROGRAMMING

General
Programming Considerations
Program Organization
E“xecuting ™S 9995 Programs On The
TMS 9995 EVM
Required Use Of RAM In Programs
Programming Environment
Hardware Registers
Workspace Pointer Register (WP)
Program Counter Register (PC)
Status Register (ST)
Address Space
Vectors (Interrupt and XOP)
Workspace Registers
Linking Instructions
BL (Branch and Link) Instruction
BLWP (Branch & Load Workspace Pointer)
Instruction
RTWP (Return With Workspace Pointer
Instruction

v

6-13
6-14
6-14
6~-16
6-18

i
O O~ ~JO O b BN

~N NN N NN NN NN
| 1 |

= O

o

0@
|
ww =

o 00 W MO VX VP ©
RN
O N~ OO T D
[omy

o]
|

[

w

@
|
[
N -9



« ¢« o =
. . o
[S L -3

[ ] . L] .

L] ] . [ ]
NN N
[ ] L] L)
N

e o . @ L N e o
e » . e @
== NN
L[] ] . .
N N

WO DWODOLODOLOODODOODOOOOOWPO MW
. L[]

= = O WO OOV INANNUTUVNUL UL D
-

WN O

QEEO0 W

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Bk B B B NN

e
|

AUV W N N

N

XOP (Extended Operation) Instruction
Linked-Lists
Communications Register Unit (CRU)
CRU Addressing
CRU Bit Address and Register 12
CRU Instructions
CRU Multibit Instructions
CRU Single-Bit Instructions
Dynamically Relocatable Code
Programming Hints
Interfacing Wwith EVMBUG
Program Entry and Exit
I/0 Using Monitor XOPs
Character 1/0
Hexadecimal I/0
Interrupts and XOPs
Interrupt and XOP Linking Areas
Interrupt Linking Areas
XOP Linking Area
TMS 9995 Interval Timer Interrupt Program
Move Block Following Passing of Parameter
Block-Compare Subroutine
Using Main and Auxiliary TMS 9902s For 1I/0

APPENDICES

Object Record Format

ASCII Code

Binary, Decimal and Hexadecimal Numbering Systems
TMS 9995 EVM Schematics

T™S 9995 Microcomputer

TMS 9995 Instruction Set

Sample Programs

LIST OF ILLUSTRATIONS

TMS 9995 Evaluation Module..

TMS 9995 Evaluation Module Configuration.
Power Supply Hookup.

Terminal Hookup.

T™S 9995 EVM System Block Diagram.
TMS 9995 Control Signals.

TS 9995 EVM RESET Logic.

T™S 9995 Device Select Logic.

TS 9995 EVM System Memory Map.

General-Purpose Socket Jumper Logic.

\Y

8-15
8-15
8-17
8-17
8-17
8-19
8--19
8-21
8-22
8-26
8-27
8-27
8-27
8-27
8-28
8-30
8-30
8-30
8-36
8-39
8-43
8-44
8-46

e tlrj? aw >
b e e

R N N N L Ll o
|
— O O N W

= o



Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figqure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

WNFNFR&WN Y0
¢ WNH O o o

O 0O © O 0 O WO I~1AUVTWUOT U1 Db Db

O~y Ui
e o o o

NI UL WN

UTOYV o D D bW
¢« o o o

General-Purpose Sockets and Personality Plugs.
Personality Plugs.
Dedicated RAM lLogic.
Serial Communications Port Logic.
Wait State Logic.
External Instruction Logic.
Single-Step Logic
System Memory Map.
CRU Bits Inspectd By IC Command.
Load Tape Cassette
Tape Write-Protect Tabs.
Sample Assembler Listing.
T™S 9995 Evaluation Modul.
Typical System Configuration.
Source Listing.
Status Register.
Example of Separate Programs Joined
By Branches To Absolute Addresses.
Branch and Link Subroutine.
Linked-List Example.
CRU Address In Register 12 vs Address Bus Lines.
TMS 9995 CRU External Instruction Timing.
STCR Instruction.
Addition of Displacement & R12
Contents To CRU Bit Address.
Example of Program Coding Added
To Make (Coding) Relocatable.
Examples of Non-relocating Code
And Self-Relocating Code.
Interrupt Sedquence.
Six-Word Interrupt Linking Area.
Seven-Word XOP Interrupt Linking Area.
Example of Code To Run TMS 9995 Interval Timer.
Move Block of Bytes Sample Routine.
Compare Blocks Of Bytes Sample Subroutine.
Sample Program To Converse Through Main
And Auxiliary TS 9902s,

LIST OF TABLES

Supply Voltage Operational Limits.

™S 9995 EVM Signals.

TMS 9995 EVM Control Bus Signals.

T™S 9995 EVM Auxiliary Control Signals.
Select Line Address Assignments.

Jumper Connections.

CRU Address Map.

External Instructions.

EVMBUG Commands.

Command Syntax Conventions.

VI

4-12
4-14
4-16

4-17
4-21

I 1
NN
> W

11 Lo
N =O

[
N WW N = N

OO N
|

o]
[
[

mmhhhhbh?w
{ |
B W O AW R

UL
N o



Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

[eeleolieolioclNeoTo Mo BENIEN RN IEN NG, WS, |

N
NN B WN B WN B W

User-accessible Utilities.

EVMBUG Error Messages.

Host System Cable Requirements.

Summary Of Communications Link Commands.
Summary Of Communications Link Error Messages.
Baud Rate Selection Parameters.

Assembler Directives Used In Examples.
Register Reserved Applications.

TMS 9995 EVM Board Predefined CRU Addresses.
Alternate Programming Conventions.
Preprogrammed Interrupt and User XOP Trap Vectors
Interrupt and User XOP Linking Areas.

ASRFLAG Values.

VII

U
[~ I )

WO P O™ O~ J~ gl \n
i1 11
B W WN RO DO I BN N

LI
NN Y N



SECTION 1
INTRODUCTION

1.1 GENERAL

The TMAM 6095 Evaluation Module (EVM) is a self-contained,
single-board microcomputer system. It is intended for use as a vehicle
to provide low cost evaluation capability for the TMS 9995
microcomputer hardware/software systems. Throughout this document, the
evaluation module will be referred to as the TMS 9995 EVM.

The TMS 9995 EVM contains firmware that enables programs to be
assembled, edited, and executed. A powerful symbolic assembler also
provides reverse assembly capability. The module will support 24K
bytes of firmware without hardware expansion. Wait states are
individualy selectable for each memory device.

EIA PORT 1
(TERMINAL EIA PORT 2 1oLE
CONNECT) (AUXILLIARY}

e

i

=
SO = —

{6} ‘

s R 1 —

PROTOTYPE
PORT (10}

RANDOM

o
o
LOGIC
AREA
(5)-——7
== POWER BREADBOARD
= =] y ’ BREA
= =] BUSES
Fas
(8)—-—— <> - Lo 2
I -
341 PROTOTYPE
(3) el i3 PORT (10}
t9) ——o xif U
[ (a) 1)
n n
+o o O = B
/4 \ \
6 MHz
MICROPROCESSOR RESET  LpvsTAL

SWITCH  £oR cLOCK

FIGURE l-1. TMS 9995 EVALUATION MODULE.



The system”s features include:

A debug monitor

A symbolic assembler

- A reverse assembler

- Two EIA RS-232C data communication 1link ports providing
interfa to a 1local terminal and to a host system for
upload/download capability.

- Three user-configurable 28-pin memory sockets that will
suport most "by 8" memory devices, 1i.e., 8K - 64K
ROMs /EPROMs, "by 8" RAMs, and bi-polar PROMs.

-~ The TMS 9995 microcomputer with 256 bytes of on-chip RAM.

- 1X Bytes of external RAM populated on the board.

- 12 kilobytes of EPROM containing the supplied firmware. In
addition, up to 64K of EPROM may be obtained by populating
the three general-purpose sockets with "by 8" TMS memory
devices.

- A large prototyping area providing ample room for
breadboarding with TMS 9995 systems.

- 12 MHz crystal-controlled clock.

- Manual reset switch.

- Most signals are available at the edge of the prototyping
area. Provision for off-board expansion is possible using

dual ribbon cable connectors.

n addition to the basic TMS 9995 Evaluation Module, the following
)ptions are available:

- Power Supply Unit, part number TM990/519

.«2 BOARD CONFIGURATION



' PORT 2

'HOST COMPUTER: | £1a pso3ac
(DX 990/10, T
FS990/4, TMS 9995
PDP-11/70, ' " EVM BOARD
IBM 370, | EVM BUG
NOVA, i . MONITOR
* UNIVAC 1108 T
"HOST SYSTEM | ... ETC) E
UTILITIES | ]
: PORT 1
USER . USER
TERMINAL 1 TERMINAL 2

FIGURE 1-2. TMS 9995 EVALUATION MODULE CONFIGURATION.

Jumper Plug: allows the selection of the type of terminal
to be used withthe EVM. A 3-prong plug. If prongs 1 and 2
are connected, a teletype terminal may be used; if prongs

2 and 3 a connected, an RS232C/EIA-type terminal may be
used.

Jumper Plug: enables/disables automatic first wait state.
If prongs 1 and 2 are connected, enables; if 2 and 3 are

connected Wait states are disabled.

General-purpose memory sockets: 28 pin.

1-3



4. Corresponding Personality Plugs: connects appropriate
signals to the corresponding general-purpose memory
socket. '

5. Jumper Plugs (6): J1, J2, and J3 plugs determine how the
memory signal to the general-purpose memory sockets is
generated., and J4, J5, and J6 plugs either enable or
disable a Wait state for the corresponding general-purpose
memory socket.

6. The Universal Asynchronous Communications Controller
(UARTS): provides interface between the processor CRU and
the EIA ports.

7. Memory Decode PROMs; determine the memory map.

8. On-board Random Access Memory (RAM): 1K bytes.

9. Buffers for on-board RAM.

10. Two prototype ports, which allow the user to connect
other peripheral equipment (i.e., audio cassette, VDT,

additional terminals, etc.) by means of a wrap-post header
ribbon cable.

1.3 GENERAL SPECIFICATIONS
Board Dimensions: 8.5" x 11"
Memory Size:
RAM: 1024 bytes (1K) on board; 256 bytes in the TMS 9995.

EPROM: 6X, expandable to 24K by populating the general-purpose
memory sockets with TMS 2564 EPROMs.

Clock Rate: 3 MHz
Baud Rates: Variable, dependent upon type of terminal being used.
1.4 REFERENCE DOCUMENTS

The following is a list of documents that will provide supplementary
information for the TMS 9995 EVM user:

1-4



- TMS 9900 Family System Development Manual, part number
LCC4400

- TMS 9995 Microcomputer Data Manual, part number MP021

1.5 NUMERICAL REPRESENTATIONS

For the purposes of delineating between decimal, hexadecimal and
binary number in this manual, hexadecimal numbers are preceeded by a

greater-than sign: (>). Decimal number are unsigned. Binary number are
so noted.

EXAMPLE:
>0000 HEXADECIMAL
1234 DECIMAL

1101 (Binary) BINARY

1.6 GLOSSARY

The following are definitions of terms used with the T™™S 9995 EVM.

Absolute Address: the actual memory address in quantity of bytes.
Memory addressing is usually represented in hexadecimal from >0000 to
>FFFF.

Alphabetic Character: A to Z. On dual-printed keys, the character
printed on the lower half of the key.

Alphanumeric Character: letters, numbers, and associated symbols.

ASCII Code: a seven-bit code used to represent alphanumeric characters
and control characters.

Assembler: the program that translates assembly language source
statement into machine usable object code.

Assembly Languadge: mnemonics which can be interpreted by an asembler
and translated into an object program.



Bit: (Binary DI set) the smallest part of a word; it has a value of
either 1 or 0.

Breakpoint: a memory address where a program is intentionally halted.
This is a program debugging tool.

Byte: eight bits.

Carry: a carry occurs when the most-significant bit overflows in an
arithmetic operation; i.e., when the resultant cannot be contained in
only 16 bits. Same as an overflow.

Central Processing Unit (CPU): the "heart" of the computer.
Responsibilities include instruction access and interpretation,

arithmeitc functions, and I/O memory access. The CPU is contained in
the TMS9995 microcomputer.

Command Scanner: a set of instructions in the debug monitor which
takes the user’s input from the terminal and searches a table for the
proper program to execute the command.

Context Switch: a change in the program execution environment.
Includes the new program counter (PC) value and the new workspace
pointer (WP). Usually caused by an interrupt subroutine call.

CPU: see Central Processing Unit.

Effective Address: a memory address resulting from the interpretation
of an instruction; required for the execution of that instruction.

EIA: The acronym as used in this manual signifies a RS232-B or C,
serial interface and implies use of the standard 25 connector as
specified by the Electronic Industries Association.

EPROM: see Read Only Memory.

Hexadecimal: a numerical notation in the base 16. In this manual,
denoted by ">" preceeding a number.

Indexed Addressing: the effective address is the sum of the contents
of an index register and a displacement.

1-6



Indirect Addressing: a method of cross referencing in which one memory
location (the indirect address) contains the address for the desired
operand. The actual address is the contents of the indirect address
register. '

Interrupt: an externally dgenerated context switch in which the new
work- space pointer (WP) and program counter (PC) values are obtained
from one of four interrupt vectors in memory addresses >0000 to >0012,
or the non-maskable interrupt (NMI) vector at address >FFFC. The old
PC, WP and status register (ST) values are saved so that a return to
the context prior to the interrupt can be made.

I/0: input/output. I/0 lines are the signals which connect an external
device to the data lines of the TMS9995.

Least Significant Bit (LSB): the bit having the smallest value in a
byte or word (smallest power of base 2); represented by the right-most
bit.

Loader: a program that places one or more absolute or relocatable
object programs into memory.

Machine Language: binary code that can be interpreted by the CPU.

Monitor: a program that assists in the real-time aspects of program
execution, such as operator command interpretation and supervisor call
execution. Sometimes called the Supervisor.

Most Significant Bit (MSB): The bit having the 1largest wvalue in a
byte. Represented by the left-most bit.

Numeric Character: numbers 1-10. On dual-printed keys, the character
printed on the lower half of the key.

One”s Complement: binary representation of a number in which the
negative of the number is the complement or inverse of the positive
number (all ones become zeroes and vice-versa). The most significant
bit (MSB) is one for a negative number and zero for positive number.
Two representations exist for zero: all ones or all zeroes.

Op Code: binary operation code interpreted by the CPU to execute an
instruction.

1-7



Overflow: an overflow occurs when the result of an arithmetic
operation cannot be represented in two”s complement, i.e., in 15 bits
plus the sign bit. Same as a carry.

Parity: the means for checking validity of a series of bits, usually a
byte. 04dd parity means an odd number of bits; even parity means an
even number of logic one bits. A parity bit is set to make all bytes
conform to the selected parity. If the parity is not as anticipated,
an error flag can be set by software. The parity jump instruction can
be used to determine parity.

Program Counter (PC): a hardware register that points to the next
instruction to be executed.

PROM: Programmable Read Only Memory. See Read Only Memory.

Random Access Memory (RAM): memory that can be written to as well as

read from (vs read only memory). Usually loses its contents when power
is turned off.

Read Only Memory (ROM): memory that can only be read from (can”t
change the contents). Some can be programmed (PROM) using a PROM

programmer. Some PROMs can be erased (EPROMs) by exposure to
ultraviolet light.

Source Program: programs written in mnemonics that can be translated
into machine language by an assembler.

Status Register (ST): a hardware register that reflects the outcome of
a previous instruction and the current interrupt mask.

Supervisor: see Monitor.

Utilities: routines used by different parts of the program to perform
the same functions.

Wire-OR: externally connecting separate circuits/functions so that the
combination of their outputs results in an "OR” function.

Word: sixteen bits or two bytes.

1-8



Workspace Pointer (WP): a hardware register that contains the memory
address of the beginning of the workspace area; points to Register 0.

Workspace Register Area: sixteen words, designated registers 0 to 15,
located in RAM for use by the executing program.

XOP: Extended Operation. A software generated context switch. Can be
considered as a system jump table.

1-9



SECTION 2
INSTALLATION
2.1 GENERAL

This section provides instructions for the installation of the basic
T™S 9995 Evaluation Module.

The following paragraphs will enable the user to determine the power,
space, and environmental requirements for the TMS 9995 EVM.

2.2 REQUIRED EQUIPMENT

- T™S 9995 EVM Board, part number 1603162

- Power Supply Cable, part number 991747
- ™ 990/519 Power Supply, part number 991748
- Terminal: EIA RS-232 or 20ma current loop compatible TTY

2.3 POWER SUPPLY

The TM 990/519 power supply is plugged into a standard AC wall outlet.
Fig. 2-1 shows how to connect the TM 990/519 power supply to the TMS
9995 EVM by means of the power-connect cable supplied with the board.
The connections on each end of the cable are positively keyed and
prohibit misconnection to the power supply. Furthermore, this cable is
wired "one-for-one", and either end may be connected to the power
supply or the board.

2.4 SPACE AND ENVIRONMENTAL REQUIREMENTS

The TMS 9995 EVM setup requires adequate space on a flat,
non-conductive horizontal surface. The space must allow room on the
side for cable connections and placement of the power supply, space to
the rear for placement of the terminal cable, and clearance to the
front for user access to both the module and the terminal. If desired,
space should also be provided for placement of an oscilloscope. The
workspace provided must be free of any material that could block the
ventilation louvers on the underside of the terminal.

2-1



Environmental requirements are the same as for any microprocessor
system: a reasonably open, air conditioned area. Air temperature

should not exceed 80 degrees Farenheit; humidity, 80 percent.

FUSE \

+
—

W |

i
g
0

0
p = 3y

— EHiem 30

0

= =

0

=l Ll
q |

o
0
8.

LR

+

FIGURE 2-1. POWER SUPPLY HOOKUP.

2.5 UNPACKING

Lift the T™S 9995 EVM from its carton and remove the protective
wrapping. Check for shipping damage. If any damagde is found, notify
your TI distributor.

Verify that the following components are included:

- TMS 9995 EWM



- Power-connect Cable

2.6 HOOKUP

l.

Attach Power-connect cable to EVM module and power supply,
as shown in Fig. 2-1.

NOTE: If using a power supply other then the TM990/519,

the user should remove one connector from the cable and

attach the proper connector or plugs for the power

supply to be used. The power cable conductors are color
coded as follows:

+5V - Red
+12v - White
-12v - Green
Ground - Black

Connect terminal cable to EVM module, as shown in Fig. 2-2,
below.

Plug power supply line into any properly grounded AC wall
outlet.

CAUTION

Be very careful to apply correct voltade
levels to the TMS 9995 EVM. ‘Texas
Instruments assumes no responsibility
for damage caused by improper wiring or
voltage applications by the user.

2-3



s B aggg e @m
= Biem eE=°

+

i
g

o

w |

0

[

”EZEEZ;EOE: s I )
S =t

——

-

i
o

= e
Du [zeman]i}

=

(= —

o

e

FIGURE 2-2.

S

TERMINAL HOOKUP.




SECTION 3

OPERATION

3.1 GENERAL

This section contains a system check-out procedure to verify that the

system is operational; and presents error and system malfunction

correction procedures, and basic operating procedures.

3.2 VERIFICATION

Verify the following conditions before applying power:

Power is connected to correct pins on Pl connector.

Terminal cable 1is between P2 connector (NOT P3) and
terminal.

Jumpers are in correct positions:

and location
and location
and location
and location
and location
and location
and location
and location

- J1l joins location
- J2 joins location
- J3 joins location
- J4 joins location
- J5 joins location
- J6 joins location
- J7 joins location
- J8 joins location

N NN RN
WNWWwWwNIN W
e o

The baud rate and communications mode are correctly set at
the terminal; terminal is ON LINE.

3.3 POWER UP/RESET

Apply power to the EVM and the data terminal.

Activate the RESET switch. This activates the EVMBUG
monitor.

Press the "A" key on the terminal. EVMBUG measures the
time of the start bit and determines the baud rate. To
account for different terminals used, a carriage return
time of 200 ms is provided for all baud rates at or slower
than 1200 baud.



EVMBUG prints the EVMBUG banner message:

EVMBUG Rl.n (n represents version number)
MON ?

This 1is a request to input a command to the EVMBUG
scanner. Commands are explained in detail in Section 5.
The instruction set for the TMS 9995 EVM assembler is
defined in Section 6.

NOTE: If control is lost during operation, return control
to the EVMBUG monitor by repeating steps 2 and 3.

3.4 SAMPLE PROGRAMS

The following sample programs can be used immediately to test the EVM.

3.4.1 Sample Program 1

This

sample program uses the EVMBUG commands Inspect Memory (IM),

Inspect Registers (IR), and execute (EX).

1'

2.

Enter the IM command with a hex memory address of >EDO0O.

Enter the following values into memory. After typing each
value, press the space bar. Pressing the space bar opens and
displays the next memory location.

Location Enter Value Assembly Language Comments
EDOO 2FA0 XOP @ EDOS8,14 PRINT MESSAG!
EDO2 EDO8
EDO4 0460 B @ 0080 GO TO EVMBUG
EDO6 0142
EDO8 4849 TEXT “HI” MESSAGE
EDOA 0D0A DATA 0DOA CR/LF
EDOC 0700 DATA 0700 BELL/END

Enter a carriage return to escape the IM command. As a result,
the monitor will display a question mark.

Use the IR command to set the program counter (PC) to the value
ED00. The wuser must first space through the workspace pointer
(WpP) before the PC is displayed.

3-2



4, TUse the EX command to execute the program.

5. The message "HI"™ will print on the printer, followed by a

carriage return, line feed, and a bell. Your terminal printout
should resemble the following:

ERROR 4

MON? IM EDOO
EDOO=F17D 2FAQ
EDO2=1DS7 EDOS8
EDO4=1DFS 0460
EDOS6=FD4D 0080
EDO3=D9DD - 4847
EDOA=DCBF ODOA
EDOC=D1EB 0700
MON7? IR ’

WECOO

=0244 EDOO
MON? EX

HI

MON?

6. Control will then be returned to the monitor. You can re-
execute your program by repeating steps 3 and 4.

3.4.2 Sample Program 2

Using steps 1 to 5 above, enter and execute the following program

which has been assembled by the optional T™ 990/402 1line-by-line
assembler.



EVMBUG K1.0
XA EDOO

MON?
EDOO
EDOZ
EDO4
EDCS
EDO8
EDOA
EDOC
EDOE
ED10
ED1Z2
ED14
ED14
ED13
ED1A
EDIC
ED1E
EDZO
ED22
ED24
EDZ6
EDZ3
EDZA
eEDzC
ED2ZE
ED30
ED32
MON?

You can re-execute your program by repeating steps 3 and 4 above

ZFA0

EDOS
0460
0030
434F
4AE4A7
5241
5455
4C41
5449
AF4E
S3ZE
2059
4755
5220
5052
4F47
241
4020
S74F
5248
532
000D
0707
0700

B @30080

TEXT . “CONGRATULATIONS. YOUR PROGRAM WORKS !

XOP @>EDOS. 14

DATA 20707
DATA. 20700
CEND 0000

3.5 TROUBLESHOOTING TECHNIQUES

The following

troubleshooting a malfunctioning TMS 9995 EVM module.

paragraphs

3-4

outline

suggested

procedures

for



3.5.1 Test Equipment Requirements

In order to perform the necessary procedures, the user must have
access to the following test equipment:

- Oscilloscope, preferably dual-trace, triggered sweep
- 10X oscilloscope probes

- VOM meter

Additional equipment which the user may find helpful includes:

- Logic Probe

- Logic Analyzer

It 1is suggested that the user review the theory of operation of the
EVM, Section 4, before proceeding with the troubleshooting procedures.

3.5.2 Procedures

Visual checkand static check procedures are described in the paragraphs
that follow.

3.5.2.1 Visual Checks

Probably the greatest source of board problems is shorts between
signals caused by foreign objects and/or solder bridges between

adjacent solder joints. Inspect both sides of the board carefully and
remove any shorts observed. Also, brush both sides of the board with a

soft dry brush (such as a drafting brush)to sweep away any loose
objects which were missed in the visual inspection.

Check the jumper connections; make sure all ICs are seated properly.

3.5.2.2 Static Checks

With power applied to the board, measure the three primary supply
voltages and compare the measured values to the operational limits as

listed in Table 3-1. A convenient place to access those voltages is at
the left edge of the prototype area.



SUPPLY

+5v
+12v

-12v

TABLE 3-1. SUPPLY VOLTAGE OPERATIONAL LIMITS.

LIMITS
MIN MAX

4.5 5.5
11.64 12.36

-11.64 -12.36

CHECK
AT

+5 line
+12 line

-12 line

CURRENTS

2A

.25A
.18Aa



SECTION 4

THEORY OF OPERATION

4.1 GENERAL

This section presents the theory of operation of the TMS 9995
Evaluation Module. Information from the following manuals may be used
to supplement material in this section:

- TMS 9995 Microcomputer Data Manual (MP021)

- TMS 9900 Family System Design Handbook (LCC4400)

- TMS 9902 Asynchronous Communications Controller
Data Manual (MP004)

- TTL Data Book, Second Edition (LCC41l12)
- TTL Data Book, Second Edition Supplement (LCC4162)
- Bipolar Microcomputer Components Data Book (LCC4270)

- The MOS Memory Data Book (LCC4782)

Figure 4-1 shows the major function blocks of the TMS 9995 EVM.
Included are the processing, memory and I/0O portions of the system,
along with the primary signal buses.

Major features of the TMS 9995 EVM are EPROM and RAM memories, two TMS
9902 EIA serial communication ports, and a prototyping area. These
features are discussed in the following paragraph.

The TMS 9995 microcomputer is the central processing unit (CPU) of the
EVM. The capabilities of the CPU include:

- Memory, CRU and general bus control

- Instruction acquisition, interpretation, and execution

- Timing of most control signals and data

- General system initialization



A detailed description of the TMS 9995, its signals, buses, and their
operation is given in Appendix E and also in the TMS 9995
Microcomputer Data Manual. Also covered in the aprendix and manual are
details of the TMS 9995 on-chip RAM, Decrementer (timer/event

counter), flag register, and interrupt controller.

RESET

SWITCH
TMS 9995 SINGLE-
2we PROCESSOR Lsgé:’c
cLOCK
CRYSTAL /\ /\
gl [ Lot
w
(SELECT 14 [ < < g >
WAIT DECODE g & ]
STATE LOGIC 1< o
—1 PrROM AD-AS 2
— 3
-4
o
Q

{MEM-SELECT)|
1-3)

PERSONALITY

PLUG .
- - PORT 1
\/

AB-AT
EPROM — <:>
MEMORY

TAVA

AN

\/

USER
PROTOTYP?

<]

LT

RAM DATA @
— 0
(RAM-SELECT) MEMORY <:> BUFFER o —
L el
«
{SELECT 7&8) I
—
—3 —
| PORT 2 I
(SELECT 5&6} SYSTEM I/O PORTS
:> m 2)
TMS 9902 TMS 9902
RS232 TTY RS$232
TERMINAL TERMINAL

I USER

KEYBOARD/DISPLAY ] l DOWNLOAD

FIGURE 4-1. TMS 9995 EVM SYSTEM BLOCK DIAGRAM.

4-2



4.2 MAJOR INTERNAL SIGNALS

The signals used by TMS 9995 EVM logic are listed in

system lines
Appendix D.

can

TABLE 4-1.

SIGNAL

(Address Bus)

A0-A2
A3-A5
A6-A9
Al0-Al4
Al5/CRUOUT

(Data Bus)
DO0-D2
D3-D7

(CRU Bus)

CRUIN
Al5/CRUOUT

CRUCLK
(Control Bus)

MEMEN-
DBIN-
WE-
READY

(Auxiliary Controls)

INT1-
INT4-/EC-
HOLD-

IAQ
HOLDA-

also

Table 4-1.

be traced by referring to the schematics in

TMS 9995 EVM SIGNALS.

FUNCTIONAL DEVICE CONNECTION

Address Decode ROM

Address Decode ROM, all EPROM personality plugs

RAM, EPROMs
9902s, RAM, EPROMs

Al5 only (in address mode) : RAM, EPROMs

All memory devices, external instruction decode

logic (DO = MSB)
All memory devices (D7

LSB)

CRU input line, TMS 9902s

CRUOUT only (in CRU mode): CRU output line,
T™S 9902s

CRU clock, TMS 9902s

Address decode logic

RAM output buffer, personality plugs

Personality plugs, RAM input buffer, RAM

Wait state logic, processor, Reset logic (if
jumpered)

Processor,
Processor,
Processor,
Processor,
Processor,

prototyping
prototyping

prototyping
prototyping
prototyping

area
area

area
area

area

All



Most of the signals are inputs to or outputs from the TMS 9995
microcomputer. (See Figure 4-2) Timing and other information
concerning the signals are given in Appendix E and also in the TMS
9995 Microcomputer Data Manual.

_1 b xtan reseTl 2
2 ov|—Z=
-t XTAL2/CLKIN 3
CLKOUT f——
2240 oainfpZ 1 3
2]a 2 m - SELEN-
2 PV 741508
las
B
2l
i AB K| 19
2l Dog—12.99
2l i BT A vt
N Py p2f-2_02 A ' MEMENBUF-
Z a0 o222 D
2 lan pa 124 7407 ::o
37 a2 ps 825 A
2= Ll pef-3—26 /1 sV
B tan p7 j4-2L
28 _Yatsicructk  memen o2
B i 2L
24 o intasec. Vec b1l 45 v S s
28 oo 1aQ/HOLDA |1£ yzz L taa
23 _dcruin g3t 2 12 741508
74LS14 0] u1e 2 HOLDA
TMS 9995 9 74L508
2
1 Juiz we
781532
10

2
1
DO 12 3 m- CRUCLK
- O
D1 3% 0

74L810
74L502

FIGURE 4-2. TMS 9995 CONTROL SIGNALS.
4.2.1 System Buses

The four major buses are subdivided by function in Table 4-1. The bus
lines can also be traced by referring to the schematics in Appendix D.

4.2.1.1 Address Bus

The 16-line address bus consists of lines A0 through AlS5/CRUOUT. AO
through Al4 are normally used for addressing memory. On-board, the
address lines are routed to the address decoding PROM which selects
onboard memory if the address presented lies within the limits of the
memory map programmed into the PROM.



4.2.1.2 Data Bus

The data bus consists of eight bidirectional lines which are routed to
and from the TMS 9995, the general-purpose memory sockets, the RAM

sockets, and the prototype area. DO is the most significant bit, and
D7 is the least significant bit.

4.2.1.3 CRU Bus

The three lines in the CRU bus are CRUIN, CRUCLK, and Al5/CRUOUT. Also
used by CRU devices are address lines A0 to Al4, logic 2zero on data
bus lines DO, D1 and D2, and MEMEN-.

The TMS 9995 performs a CRU operation by putting the CRU address on A0
through Al4, 1logic 2zero on each of D0-D2, logic one on MEMEN-, and
either strobing in the addressed bit on CRUIN or by supplying the data

bit on Al5/CRUOUT and a pulse on WE-/CRUCLK-. (Note that CRUCLK is
obtained by gating WE-/CRUCLK- with MEMEN-.)

4.2.1. Control Bus

A brief explanation of the functions of each control bus signal is
given in Table 4-2.



SIGNAL

MEMEN-

DBIN-

READY

ACTIVE

STATE

Low & High

Low

Low

High

TMS 9995 CONTROL BUS SIGNALS.

GROUP

Memory/CRU

Memory

Memory

Memory/CRU

4.2.2 Auxiliary Control Signals

PURPOSE

Indicates address on address
bus is for memory (MEMEN-=0)
or CRU (MEMEN-=1). Also used
to demultiplex WE-/CRUCLK-
and IAQ/HOLDA.

Shows state of TMS 9995 data
bus: low is input to 9995;
high is output.

Strobe to memory devices for
writing data to memory. WE-
is obtained by gating WE-/
CRUCLK- with MEMEN-.

Tells 9995 to finish memory,
CRU, or external instruction
cycle. Wait states are
generated by pulling the 1line
low.

SEE APPENDIX E FOR DETAILS OF THE ABOVE OPERATIONS.

A brief explanation of the function of each auxiliary control signal
is given in Table 4-3.

4-6



SIGNAL

INT1-

INT4-/EC-

HOLD~

IAQ

HOLDA

TABLE 4-3. TMS 9995 EVM AUXILIARY

ACTIVE
STATE

High

High

4.3 CLOCK OSCILLATOR

The TMS 9995 EVM utilizes the on-chip clock oscillator of the TMS 9995
system clock signal CLKOUT. A 3 MHz CLKOUT clock is

generated using the 12 MHz fundamental frequency crystal connected to
the TMS 9995. This CLKOUT frequency is the machine state frequency of

to gener

the TMS 9

ate the

995.

4.4 RESET LOGIC

GROUP

Interrupt

Interrupt

Processor
Activity

Processor
Activity

Processor
Activity

CONTROL SIGNALS.

PURPOSE

User defined: requests
interrupt of 9995.

User defined: requests
interrupt of 9995.

Requests 9995 to give

up control of address
and data buses, WE-/

CRUCLK~ and DBIN-.

Signifies this memory
cycle to be an instruc-
tion fetch (MEMEM = 0).

Acknowledges that 9995
has given up control of
address and data buses,
WE-/CRUCLK-, and DBIN-
(MEMEN = 1).

RESET initializes the EVM system and causes the following to occur:

- Clears I/0 devices

- Clears single-step logic

= 1Inhibits memory-write and CRU operations until RESET

4-7



is released

- Sets TMS 9995 Status Register interrupt mask to 0000 (Binary)

- Gets RESET interrupt vector for the TMS 9995, which activates th
EVMBUG monitor.

- Decides if Auto First Wait State generation will be used or not
(See paragraph 4.9)

RESET is caused by:

- Power-up

- Activating the RESET switch on the EVM

The RESET logic is shown in Figure 4-3.

C1
39 74LS14 74LS814 7407

Too

RESET

urr
TMS 9995

FIGURE 4-3. TMS 9995 EVM RESET LOGIC.



4.5

Decoding of addresses to generate

DEVICE SELECT LOGIC

select

signals

for

the

on-board

memory and CRU devices is accomplished with two 745188 32x8-bit PROMs,
the TMS 9995 addresses

as shown

in

assigned to each select line.

A5

A4

A3

A2

Al

A0

TMS 9995
ADDRESS

ASSIGNMENT

0000-03FF
0400-07FF
0800-0FFF
1000-17FF
1800-37FF
3800-7FFF
8000-EBFF
ECO0-EFFF
FOOO-FFFF

Figure 4-4. Table 4-4 1lists
—
19} abA por{! SEtLT/ 3 T ar—eo—— 15V

23] AP° po3 = SEL41/ 2 T v !

ADD  DO4[— i — amn—g |

%] Ave  DOs e e !

bos|8__SEL6—4 8 —t |

EL7-4 9!

15 1% oo7 ; :ELS/ 107 w—y

d53 DO8 4 i mr— |

_____ .|

U15
745188 22K
. A5 10 [ \on  potft__SEL1
N A4 M | ao8 Doz |-2__SEL2
N A3 2 | aopc pospS—SEL
A2 3 | Abb  Dosl_t _ SEL4—A
Al 14 | e Dosl5__SEL5
pos]_6__SEL6
u22 u14 po71_7__SEL7A
A0 1 2 15 | 9 SELS—
N E>c d3 DOg p———
74L514
745188
FIGURE 4-4. DEVICE SELECT LOGIC.
TABLE 4-4. SELECT LINE ADDRESS ASSIGNMENTS.

PROM

BIT

PATTERN

ED
DD
FD

FB
F7
BF
7F
FE
FF

SELECT LINE

SEL5/SEL2
SEL6/SEL2

SEL2

SEL3
SEL4

SEL7
SELS8

SEL1l



4.6 MEMORY

The TMS 9995 EVM has three general-purpose memory sockets that can "be
used for most "by 8" memory devices, i.e., 8K to 64K ROMs/EPROMs, "by

8" RAMs and bipolar PROMs. It also has two sockets for 1Kkx4 RAMSs.
Memory devices supplied by TI are configured according to the memory

map shown in Figure 4-5.

>0000

D EPROM
fmaug —

A on-chip ram

" ADDRESS SPACE /
AVAILABLE FOR
EXPANSION.

N\ \EVMBUG WORKSPACE, AN
3 S A
 COMM. LINK/ASM WORKSPACE |
-ECG4 N COMM. LINK/ASM RAM N\

N N\
SYMBOL TABLE

USER RAM

////

-F000

AN
W55,

rose [/ WixoeUnk arer /) /)

ADDRESS SPACE
AVAILABLE FOR
EXPANSION.
>FFFA

rere L2 i vecTorioechemenTeR /2 /7]

FIGURE 4-5. TMS 9995 EVM SYSTEM MEMORY MAP.



4.6.1 General-Purpose Memory Sockets.

The general-puyrpose memory sockets (U8, U9, Ul0) are able to utilize
the many "by 8" memory devices through the personality plugs (U3, U4,

U5) and jumpers J1 - J6. The logic associated with the general-purpose
sockets is shown in Figures 4-6 and 4-7.

: 14
E -
Z ]
C “»
£
2
- 3 RAMSEL—
SEL1 o) .
74532 .
Q
13 20) MEMSEL1—
SEL2— ¢ 11 12
u13 1 a5
>——'1TD 1 13 v 3
74532 741532 1
—°\ MEMORY DECODE SELECTS
5 6 2 2 MR U oELEL 1S MEMSEL2-
SEL3— 4 "
u13
s oy :
32
748 7410532 1
—0
) MEMSEL3—
SEL4 19 8 9 20—
- o J3
jus 0] u2)e 3
74532 741532
J4 J5 J6
™\ 7\ @)
+5V 1 22030122?3‘51?2?3 3
- M 4 6 WAITEN
u17
5
WAIT STATE ENABLES 74LS10

FIGURE 4-6. GENERAL-PURPOSE SOCKET JUMPER LOGIC.



s

TMS 2532 JL-35 T™S 2516 JL

22 (24) A Do_(19) 17 = 22 (24) A8 DO (19) 17
23 (35) A D1 (18] 18] - :: 23 (25) A7 1 (i8) 16 |
T3 A b2 (1) 15] oo T 6] A8 D2 (17) 15

7 {8 A9 4 ND3 1T 14| o2 AT @ A9 D3 (16) 14
[3 5) A0 8 Blge U ASIETTE AW T6) 13
T ® AN N5 U e ¢ alie An 05 (13) 11 ]
oA ] Nemmw]® AT 710
[ .Y b7 (11 9] 43 A13 A4 \D7 9
7 @) AR oy L AZI5To) Al T
e A 128) :;‘T'(___‘m) ATS 5V [
71 23] 71 03) { ‘
70 (22] 26 7a] V¢ o T I (26) 24
13 i’“ a4 12f ol (8 12
78 (201] [ 18 (20 |
(20) PD/FCN '_"‘(2) J = 27

(]

sV BV BV
A3 1 h A3 1 4] NA3 1 4
2 2 2
e} 12 1}
5 10 15 15 10
ad| 135 s ST us o \ae | T Tie] us
171 PERSONALITY 17] PERSONALITY 17} pERSONALITY
A5 22 PLUG 3 NAs PLUG 3 A5 22 PLUG 3
Z 23 23
0—1—;' TYPE il Tvre 79
[]70] 4 20 4
T 1 i
& & a
A3 A3 [ AA3 [
AL 18 A AL 7 18 \A4 7 18
AS AS 8 A5 8
WE- ) LRE 9
11 13 71 13 07 12
G =1 [ [
MEMSEL!- 12 ] 1] H
4 x|L £
" WE- .
DBIN-
MEMSEL2 -
MEMSEL3-
A

FIGURE 4-7. GENERAL-PURPOSE SOCKETS AND PERSONALITY PLUGS.

Each general-purpose memory socket has one personality plug and two
jumper plugs associated with it (e.g., general-purpose socket U8:
personality plug U3, and jumpers Jl and J4). The personality plugs
route the appropriate signals to the memory device used.



Jumpers Jl, J2 and J3 determine if the MEMSEL signal is to be
generated directly from a SEL signal gated with MEMENBUF-, or if the
MEMSEL signal is to be first gated with SELEN-. (Since MEMSEL is used
to generate the chip select for the memory device, certain RAMs may

require the additional timing information provided by SELEN- to avoid
data bus conflicts.)

Jumpers J4, J5 and J6 provide for either one Wait state or no Wwait
states. See paragraph 4.9.

4.6.2 Personality Plugs

The wiring of the personality plugs for most of the more popular "by
8" memory devices is shown in Figure 4-8. Table 4-5 indicates the
jumper connections for these devices.



DEVICE TYPE: TMS 2508,

TMS 2516,
TBP 2852708
1 312
ug 311
[ \:10
16 o]
17 s
18] sk
19:\:6
20(Q Ds
o I -
22 3
=g D2
2 s}
/
TYPE I

DEVICE TYPE: INTEL 27161,
INTEL 2716-2

130 D12
g D
15 Do
16:/:9
70 Ds
13Q 7
19:\:6
mc\:ls
2] Da
2200} 3
230 D2
24(] D1
/
TYPE IV

DEVICE TYPE: TMS 4016

130 D12
14 s R
15 D10
1s:/:9
17(:/:3
18(] 37
190 D
mc\:ls
Fil = a )
22 3
20 sk
[ 1
)P
TYPE VI

FIGURE 4-8.

DEVICE TYPE: TMS 2532-350

13( D12
1 3 11
15 10
1sc/ Bo
170 «
18 » b
wc\:e
2(] = H
21C\'J4
2 3
znQ D2
243 : . s}l
/
TYPE Ii

DEVICE TYPE: INTEL 2732A

13 12
1] Dn
15} D10
1sc/:s
17(] Ds
18 D7
190 D6
20:\:5
2] s 1)
22 3
230 » k]
24 D1
/
TYPEV

DEVICE TYPE: MOSTEK 4801

13 12
1 1
150 10
16 9
17 8
180 7
190 [
20 5
Fils a
22 3
230 2
20 1

TYPE VIH

4-14

DEVICE TYPE: TMS 2564

13 (312
uc\:n
15 D10
1s:/:9
17¢ .'.I_B
18 =}
19(:\:6
20 Ds
2 4

22 3
=0 2
zac/pl

-

TYPE I

DEVICE TYPE: INTEL 2764

.13 12
ug - w Bl
15 00
18:/99
170 s
18 7
19 D
ZOC\: 5
[l = sl
22 3
f<le 2
24 1

J/
TYPE Vi

DEVICE TYPE: TBP 285166

1 12
14 = R
15 10
180 9
170 De
13:/:7
19 (3 Ds
20 . Ds
21C\:4
20 3
zac/ 2
20 g1
J/

TYPE IX

PERSONALITY PLUGS.



TABLE 4-5. JUMPER CONNECTIONS.

DEVICE JUMPER JUMPER

PART MEMORY Jl,2,3 J4,5,6 PERSONALITY
NUMBER TYPE CONNECTION CONNECTION PLUG

T™MS 2508 EPROM 1-2 2-3 TYPE I
T™S 2516 EPROM 1-2 2-3 TYPE I
TBP 2852708 PROM 1-2 1-2 TYPE I
TMS 2532-35 EPROM 2-3 2-3 TYPE II
T™™S 2564 EPROM 1-2 2-3 TYPE IIT
INTEL 2716-1&2 EPROM 1-2 2-3 TYPE IV
INTEL 2732A EPROM 1-2 2-3 TYPE V
INTEL 2764 EPROM 1-2 2-3 TYPE VI
TMS 4016 RAM 2-3 2-3 TYPE VII
MOSTEK 4801 RAM 2-3 1-2 TYPE VIII
TBP 285166 PROM 1-2 1-2 TYPE IX

4.6.3 Dedicated Read/Write Memory (RAM) Sockets

The dedicated RAM sockets provide 1K bytes of fast, no wait state RAM.
The RAM consists of two 1Kx4 devices in U6 (MS Nybble) and U7 (LS
Nybble). The dedicated RAM logic is shown in Figure 4-9. RAMSEL-
signal generation is shown in Figure 4-6.



7415541 NLCIR B DU L
N S E yraea u
NICIEEEY oy vz & a7 o3P
NO2 4},s va [l s b
K03 5las  yald EXTIFR Y i

YR S NESIIEN I
N PV I NEESFRON PO |
NDE B a7 v7 12z A1z 7 A2
R PURRAT \%:;—:-IM us
[ ] — M W
8o 2148 H
1
M\

3] G2 A
\A5 5§
Ades we
RAMSEL - 49}:{2!45 H
MEMSEL1— ‘

—p MEMSEL-
DBIN

MEMSEL2
> MEMSEL3

FIGURE 4-9. DEDICATED RAM LOGIC.

I/0 to the RAM is buffered at Ul and U2 (either by two 74LS540s or by
tw 741S541ls) in such a manner that when RAMSEL and WE- are present at
the buffer, data from the data bus is passed to the RAM through Ul
(input) . When RAMSEL and DBIN- are present, data is passed to the data
bus through U2 (output).

Note that DBIN- will be asserted while MEMEN- is low during a read
cycle. In the same manner, WE- will also be asserted while MEMEN- is
low. A chip select will not occur during a write cycle until after WE-
drops. This is to prevent fast RAMs (which sample WE- as soon as they
are selected) from sampling WE- before it goes low during a write
cycle.

4.7 SERIAL COMMUNICATION PORTS

Two serial communication ports are provided on the TMS 9995 EVM. Both
of these ports will support EIA RS232 communication, and one of them
(Port 1) can also optionally support TTY communication.

The logic for the two ports is shown in Figure 4-10. Selection of one
of the two TMS 9902 Asynchronous Communications Controller CRU devices
is by SELS5- or SEL6- (See Figure 4-4.). The CRU address map of the TMS
9995 EVM is shown in Table 4-6.

4-16



TMS 9902

A10 1 s CRUIN
ATl A 13 : CRUIN 9902AINT—
3 1 AZ350 5W TRIN
At2 N izl NT i TTYXM P24
A3 1 flcw
an 1 2V —o 330 TIYACVRIN _ oo
A15/CRUQUT 3 8| ohoout | i -2V > P13
CRUCLK 15
CRUCLK
CLKOUT 16
- ST 1 uz3 AST2907
RS232RCVA 'g"ct{m : RIN T —» P15
nz+——~b&h_——‘J o G
2 ND .p
5‘ Rs232 75189 DSR  xout - P11
7% 8 L_(i'ﬂ__, P17
BV —gqvce RTS RS232XMTA -
+12V o)_. l_"‘ vss » P13
nvncvl1
DCDA » P13
TMS 9902 R14
NC Al 4 4 33K CTSA
§ " U26 N +12V —¢ v » P16
SRTIPLLL. N ¥ Y B NN 1 ?;ﬁ DSRA )
3 )
. 75189 :23 :f 52 INT »> P18
LA 10 ss: GND __ o P21
A58 GND__
CRUGLK 15 | GRUOUT b r27
L
CLKOUT __ 16 :ERUC"';‘ i}
Rs232RCVE 2 "Cyzs SEL6- Hder il
P22 4—hod 31 rin A3k
. o 3 - . A crss
NC 745718 2 2 3 R > P25
9% 028 DSk xout I 33
p220 ¢ 2128 10 +5v% vee s 75188 v DSAB o 26
75189 r vsS RTS D-—l RS232XMTB_ . o
9 [} DCDB
+5V u2s » P28
‘ ry e
75188

FIGURE 4-10. SERIAL COMMUNICATIONS PORTS.

4-17



CRU
ADDRESS

(HEX)

TMS 9995 EVM CRU MAP

FUNCTION

0000
0002
0004
0006
0008
000a
000C
000E
0010
0012
0014
0016
0018
001A
001c
001E
0020
0022
0026
0028
002a
002C
002E
0030
0032
0034
0036
0038
003a
003c
003E
003r

0400
0402
0404
0406
0408
040A
040C
040E

SERIAL I/O
PORT A
(TMS 9902)

PORT A

SERIAL I/O
PORT B
(TMS 9902)

INPUT

RBRO
RBR1
RBR2
RBR3
RBR4
RBR5
RBR6
RBR7

0
RCVERR
RPER
ROVER
RFER
R¥FDB
RSBD
RIN
RBINT
XBINT

0
TIMINT
DSCINT
RBRL
XBRE
XSRE
TIMERR
TIMELP
RTS
DTR
CTS
DSCH
FLAG
INT

RBRO
RBR1
RBR2
RBR3
RBR4
RBR5
RBR6
RBR7

OUTPUT

DATAOO
DATAO1
DATAO2
DATAO3
DATAO4
DATAOQS
DATAO6
DATAQ7
DATAOS8
DATAO9
DATALQ
LXDR
LRDR
LDIR
LDDATA
TSTMD
RTSON
BRKON
RIENB
XBIENB
TIMENB
DSCENB
NOT USED

NOT USED
RESET

DATAQOO

DATAOL
DATAO02

DATAO3
DATAO4

DATAOS
DATAO6

DATAQO7

TABLE 4-6. CRU ADDRESS MAP (Page 1 of 2).



TMS 9995 EVM CRU MAP (Continued)

CRU

ADDRESS (HEX) FUNCTION INPUT OUTPUT
0410 0 DATAO8
0412 RCVERR DATAO9
0414 RPER DATA10
0416 ROVER LXDR
0418 RFER LRDR
041a RFDB LDIR
041c RSBD LDDATA
041E RIN TSTMD
0420 SERIAL I/O RBINT “RTSON
0422 PORT B XBINT BRKON
0424 (TMS 9902) 0 RIENB
0426 TIMINT XBIENB
0428 DSCINT TIMENB
042a RBRL DSCENB
042¢ XBRE NOT USED
042F XSRE
0430 TIMERR
0432 TIMELP
0434 RTS
0436 DTR
0438 CTS
043a DSCH
043C FLAG NOT USED
043E PORT B INT RESET
1EEO FLAG FLAGO FLAGO
1EE2 REGISTER FLAGL FLAG1
1EE4 (CRU INPUT FLAG2 _ FLAG2
LEE6 AND OUTPUT) FLAG3 . FLAG3
1EES8 FLAG4 FLAG4
1EEA FLAGS FLAGS
1EEC FLAG6 FLAG6
1EEE FLAG7 FLAG7
1EF0 FLAGS FLAGS
1EF2 FLAGY FLAGY
1EF4 FLAGA FLAGA
1EF6 FLAGB FLAGB
1EF8 FLAGC FLAGC
1EFA FLAGD FLAGD
1EFC FLAGE FLAGE
1EFE FLAGF FLAGF
1FDA MID FLAG MID FLG MID FLG

TABLE 4-6. CRU ADDRESS MAP (Page 2 of 2).

4-19



4.7.1 EIA INTERFACE

Both serial communication ports are capable of supporting EIA
communications. The two EIA links utilize one 75188 1line driver and
one 75189 1line receiver. 1In addition to handling receive-data and
transmit-data signals, each TMS 9902 inputs the Data-Terminal-Ready
(DTR) signal from its respective connector. Also, each port provides a
Data Carrier-Detect (DCD) signal for the connector terminal via the

Request—~-To-Send (RTS) and Clear-To-Send (CTS) signal outputs of each
TMS 9902.

4.7.2 TTY Interface

Port 1 has the additional <circuitry to enable it to support TTY
communication. A transistor and 560-ohm resistor form the transmit
loop for the 20-mA current 1loop, TTY interface. The transistor
conducts current while the line driver connected to its base is at a
mark state. As the line driver goes to the space state, the positive
voltage output is clamped to ground through the signal diode on the

transistor base, thereby turning off the transistor and current loop.
See Figure 4-10.

The receive circuit consists of a line receiver which monitors the
receive 1loop formed by the TTY transmit circuitry and the two supply

resistors. The values of these resistors is such that during a mark
state, the input to the line receiver is held very close to -12 volts.

When the TTY transmit circuitry cuts the loop, the receiver input is
pulled up to +12 volts. :

NOTE: the TTY Jumper J8 must be plugged so that the line receiver can
monitor the loop voltage. Plug one and two for TTY; plug two and three
for EIA. DO NOT connect an EIA terminal when Jumper 8 is plugged for
TTY.

4.8 MEMORY AND CRU ADDRESS MAP CHANGES.

The memory and/or CRU address map can be changed by the user by

substituting user-programmed PROMs for the TI-supplied 74S188s in the
address select decoder sockets (Ul4 and Ul6). Unprogrammed 745188

PROMs are available from your Texas Instruments distributor.

CAUTION

When planning a memory or CRU map, or
when using any device in the
prototyping area (such as a 2148 or
2114), the devices on the 9995 EVM

4-20



must not overlap in address space
either with each other or with
devices in the prototyping area.
On-board devices MUST be mapped into
unique locations, and no other
prototyping area devices may respond
to addresses intended for an
originally provided on-board device.

4.9 WAIT STATE LOGIC

The TMS 9995 microcomputer can dgenerate Wait states for off-chip
memory cycles, off-chip CRU cycles, and external instruction cycles.
The TMS 9995 also has an Automatic First Wait State Generation
feature. (See Appendix E or the TMS 9995 Microcomputer Data Manual for
detailed information concerning Wait states)

The TMS 9995 EVM has logic to optionally generate a single Wait state
only for memory cycles. The Wait state can be inserted into all
off-chip memory cycles by invoking the Automatic First Wait State
Generation feature i.e., Jumper J7 connected between posts El and E2.
Optionally, the Wait state can be inserted into a memory cycle to any
of the general-purpose memory sockets (See paragraph 4.6.1l). The Wait
state logic of the EVM is shown in Figure 4-11.

+B5V

R4

o—N
R3 E3 C 4o
820 y21 E2 5V
RESET-
F
WAITEN 7407 AFWS
u22 +5V
Q 8
CLKOUT
74L514 10
PRE
12 9
D | R
U22 Q NC
1
SELEN- ! 10 u20 13 u21
o
1 12 13N\ 12
74L814 u17 READY
1 CLK Q L__.Czj l/
CLR : 74LS10 7407
139 741574

FIGURE 4-11. WAIT STATE LOGIC.



4.10 EXTERNAL INSTRUCTION LOGIC

The external instructions are those which, when executed by the TMS
9995, <cause a code to be output on DO-D2 and WE-/CRUCLK- to become
active. The external instructions and a description of their operation
on the EVM are listed in Table 4-7. The external instruction logic is
illustrated in Figure 4-12.

TABLE 4-7. EXTERNAL INSTRUCTIONS.

INSTRUCTION OPCODE DO D1 D2 DESCRIPTION

IDLE 0340 0 1 0 Suspend processor until
an interrupt occurs.
Lights the Idle LED.

RSET 0360 0 1 1 Zeroes TMS 9995 inter-
rupt mask, generates
pulse for user-defined
logic.

CKON 03a0 1 0 1 Generates pulse for
user-defined logic.

CKOF 03co 1 1 0 Generates pulse for
user-defined logic.

LREX 03E0 1 1 1l Causes NMI- (single-
step function).



+5V

7415138
D2
1 YO
D1 2
——eed B Y1
DO
3 |C Y2
4
WE-/CRUCLK- ———01 G2A Y3
MEMENBUF- ——6 G1 Y4
Y5
u2s Y6
Y7
G28

FIGURE 4-12. EXTERNAL INSTRUCTION LOGIC.

IDLE causes the TMS 9995 to suspend operation. It is, in essence, a
HALT instruction. A RESET, NMI, or other interrupt terminates the idle
state. When in an idle state, the Idle LED is lit.

The LREX instruction is used by the single-step capability of EVMBUG.
See paragraph 4.11.

4.11 SINGLE-STEP LOGIC

The EVMBUG monitor utilizes the LREX external instruction in
conjunction with the 1logic shown in Figure 4-13 to perform
single-stepping. LREX causes a non-maskable interrupt (NMI) to be
presented to the TMS 9995 after two Instruction Acquisition or IDLE
pulses. This means that the NMI interrupt occurs after two
instructions are executed following the LREX. EVMBUG uses this to

4-23



perform single step by executing an LREX, followed by an RTWP to exit’
the monitor and return to the user instructions. After one user'
instruction is executed, the NMI interrupt is active. NMI then traps
back to the monitor.

LREX-
_ EXTNMI-

NMI- R10
47K
1 5 b
2 CLR 5 12 CLR " 2 CLR s|

+5V——D Q D Q D Q 5V

u20 u27 u27

3 6
CLK Q -s—NC A1) CLK Q LNC ——J CLK Qp— NC

PRE PRE PRE

3
2 2 10
741874 741574 249 741874
DLE 8 m' 10 I 7 T T RESET-
s - g

% 741502 4 1AQ OR IDLE

= 6 Juis +
1AQ

74LS802

FIGURE 4-13. SINGLE-STEP LOGIC.

4.12 PROTOTYPE AREA

Capabilities of the TMS 9995 EVM may be expanded by means of the
prototype area, which provides room for breadboarding of TMS 9995

systems. Most of the signals previously discussed are provided at the
edge of the prototyping area for this purpose.

Two plugs, P4 and P5, located at the right side of the prototype area
on either side of the power bus plug, permit the expansion of
prototype capabilities off the EVM board. Off-board devices are
connected to the EVM by means of a wrap-post header ribbon cable.

4-24



SECTION 5

EVMBUG INTERACTIVE DEBUG MONITOR

5.1 GENERAL

This section provides a description of the commands and subroutines
available in the TMS 9995 EVM Debug Monitor (EVMBUG), including syntax
conventions user-accessible utilities, and EVMBUG error messages.

EVMBUG is a debug monitor which provides an interactive interface
between the user and the TMS 9995 microcomputer. It is supplied by the
factory contained in one 2532-35 and one 2516 EPROM.

Initialization of the EVM Debug Monitor is described in Section 3.

5.2 USER MEMORY

The memory provided in the TMS 9995 microcomputer consists of RAM
(read/write memory) and ROM (read only memory). The RAM is for user
programs, while the ROM contains the monitor and assembly programs.
The monitor program provides keyboard commands, 1/0 programs, and
other user utilities.

Figure 5-1 shows the memory map for the TMS 9995. Interrupt and XOP
instructions extend from >0000 to >007F. EVMBUG monitor workspaces
extend from >0080 to >1800. If the assembler is used, the symbol table
begins at >EC64. Four bytes are used for each 1label; the number of
labels that are used will determine the beginning address for user
RAM. As an example, if 50 labels are used, 200 bytes will be needed
for for the 1label table. The end of the label table will be >EC64 +
>C8 (>ED3C). Note that 200 = >C8. Therefore, the start of the
permissible user RAM in this case would be >ED3C.

NOTE: >FOFC thru >FOFF of the address space is available for
exXpansion.



>0000

FIRMWARE
>1800
4’ . ADDRESS SPACE ;
AVAILABLE FOR
EXPANSION.
1 >EC00

“NEVMBUG WORKSPACE N\, \

I SCOMM. LINK/ASM WORKSPACE '\

- SEcs4

N\, YCOMM. LINK/ASM RAM  \|

>F000

SFoao

NN\ \}
SYMBOL TABLE

USER RAM

USER RAM

yd
/ / / WixopLnkaren / / /S

FOFC

, ADDRESS SPACE

| AVAILABLE FOR
— © EXPANSION.
SFFEA

:EEFE# [/ '/ / NMi VECTOR/DECREMENTER / /

FIGURE 5-1.

5-2.

SYSTEM MEMORY MAP.

[0 errom
_BOARD RAM

/] uP ram



5.3 EVMBUG COMMANDS

The EVMBUG commands are described in subsequent paragraphs. Table 5-1
summarizes these commands. Table 5-2 presents the syntax conventions

used in command definitions.

TABLE 5-1. EVMBUG COMMANDS

SEE
SECTION
INPUT: NUMBER:
M 5.3.9
DM 5.3.3
iw 5.3.13
EX 5.3.5
EX 5.3.1
SS 5.3.11
IM 5.3.8
DM 5.3.4
ic 5.3.1
IR 5.3.10
FD 5.3.6
HE 5.3.7
TN 5.3.12
XA 5.3.14.2
XA 5.3.14.1
XR 5.3.14.3
XC 5.3.14.4

5-3

RESULTS:

Inspect/Change Memory

Dump Memory

Inspect/Change User Workspace
Registers

Execute User Program

Execute User Prog. To Breakpoint

Execute Single Step

Load Memory From Digital Cassette
(ASR 733)

Dump Memory to Digital Cassette
(ASR 733)

Inspect/Change CRU

Inspect/Change Hardware Register
(pC, WP, ST)

Find Data In Memory (Byte/Word)

Hex Arithmetic

Toggle Null Flag (For ASR 733)

Execute Assembler With Existing
Symbol Table

Execute Assembler With New Symbol
Table

Execute Reverse Assembler

Execute Communications Link



TABLE 5-2. COMMAND SYNTAX CONVENTIONS.

CONVENTION
SYMBOL

WP

PC

ST
caps

< >
[ ]
{1}
(CR)

(LF)
RO,R].. ¢R15

ExXcept where

EXPLANATION

Current User Workspace Pointer contents

Current User Program Counter contents

Current User Status Register contents

Other items in capitol letters are to be
entered literally

Items to be supplied by the user. The term
within the angle brackets is a generic term

Optional item. May be included or omitted at
the user”s  discretion. ‘

One of several optional items
the brackets must be chosen.

Carriage Return

Space Bar

Line Feed

Registers zero to fifteen

shown inside

NOTE

otherwise

indicated, all numeric

output is assumed to be hexadecimal; the last four

digits input will be the
numerical
by making the last four digits the correct
than

mistaken

If fewer

value used. Thus, a
input can be corrected merely
value.
are input, they are

four digits

right-justified.

5-4



5.3.1 Execute Under Breakpoint (EXB)

SYNTAX:
EXB[{“,}<address>]<(CR)>

This command is used to execute instructions up to the specified
stopping address. When the stopping address is reached, WP, PC, and ST
register contents are displayed and control is returned to the monitor
command scanner. Program exXecution begins at the address in the PC
(set by using the IR command). Execution terminates at the address
specified in the EXB command, and a banner is output showing the
contents of the hardware WP, PC, and ST registers, in that order.

The address specified must be in RAM and must be the address of an
instruction. The breakpoint is controlled by a software interrupt, XOP
15.

An XOP instruction takes the place of the instruction at the address
specified. When this replacement is executed, the original instruction
assumes its original place. If the XOP is not executed, or another EXB
is specified before the XOP is executed, then .the XOP will not be
replaced with the original instruction or will be replaced with the
wrong instruction.

If no address is specified, the EXB command defaults to an EX command,
where execution continues with no halting point specified.

EXAMPLE: EVMBUG R1.0
MON? IR

W=EC16 _

P=02EZ ED10

MON? EXB ED30

BP EC16 - ED30 C600
MON?

5.3.2 Inspect/Change CRU (IC)

SYNTAX:
IC{“,}<CRU address>{“,}<count><(CR)>

This command reads the number of bits specified by "count", beginning
at the specified CRU address, and displays them, right-justified, in a

5-5



l6-bit hexadecimal number. Up to 16 CRU bits may be displayed. "CRN
address" is a 16-bit number stored in register twelve. (See Append]
F.)

The corresponding CRU output bits may be altered following input bit
display by keying in desired hexadecimal data, right-justified.

A carriage return following data output forces a return to the command
scanner. A minus sign (-) or a space reads and displays the data
again.

Note well: the effective software CRU address is double the hardware
CRU bit address. This is demonstrated in Fig. 5-2, in which >100 is
specified in the command in order to display values beginning with CRU
bit >80.

21C 100,7
0100=007F
VALUE DISPLAYED
ol1l2|3]4|5|617B19110111|12|13i14l15/
>007F
\ — 4
v 7 BITS
ZERO FILLED REQUESTED 80 CRU BIT
81 '
82 (
83
84
85
86
FIGURE 5-2. CRU BITS INSPECTED BY IC COMMAND.
EXAMPLES:

(1) Examine eight Port 2 CRU input bits. CRU address is >400.

EVMBUG R1.0
MON? IC 400,8
0400=007F
MON?



(2) Check changes in the CRU Port 1 input buffer which result from
typing commands on the terminal.

EVMBUG R1.0
MON? IC 0.4
0000=000D
0000=0000 -
0000=000D
0000=0000
MON?

(3) Check the contents of the TMS 9995 Flag Register (Flag 0-15)

EVMBUG R1.0
MON? IC 1EEQ
LEEO=7FEQ

(4) Using the CRU, configure the TMS 9995 Decrementer as an Event
Counter and start decrementing.

19
EVMBUG K1.0s
MON? IC LEEO
LEEO=7FEO =
1EEO=0003
MON™

(5) Check the contents of the MID Flag register on the TMS 9995

EVMBUG R1.0
MON? IC 1FDA
LFDA=FFFE
MON?

5.3.3 Dump Memory (DM)

SYNTAX:
DM [<start address>[{~,}<stop address>]]

Memory is displayed, beginning and ending at the <start address> and

<stop address> respectively, if specified. Each line of output begins
with the address of the first memory word displayed on the line. Eight



memory words follow on each line.

If no addresses are given, EVMBUG displays the contents of location
>0000 and then returns control to EVMBUG.

If a <start address> is supplied, but no <stop address>, all memory
locations from the <start address> to the end of memory will be output
on the terminal before control returns to EVMBUG.

Supplying both a start and a <stop address> will cause a memory dump
from the <start address> through the <stop address>.

Memory dump can be terminated at any time by typing any character on
the keyboard.

EXAMPLE:

EVMBUG R1.0
MON? DM EDZO,ELDZ0

EDZ0O=0588 10FY 2F20 EE38 04C1 ZEC3 06C3 0283
ED30=0020
MON?
5.3.4 Dump Memory To Digital Cassette/Paper Tape (DMC)
SYNTAX:

pMc{",}<start address>{",}<stop address>{",}<entry address>{",}

This command causes computer memory to be copied to digital cassette
or paper tape. The memory image 1is stored 1in non-relocatable 990
object format. Object record format is explained in Appendix A. The
block of memory stored begins at <start address> and ends at <stop
address>. The <entry address> parameter is for use by the "LMC"
command to initialize the program counter when the memory block is
restored from cassette or paper tape to computer memory. Once these
parameters are entered, the monitor will display the letters "IDT."
The user then enters an IDT ' (program identifier) of up to eight
characters FOLLOWED BY A SPACE OR CARRIAGE RETURN.

temem e —— MONITOR PROMPT
v .
IDT=<program name|[ ]1<{(CR)>>

5-8



NOTE

Termination given after IDT is a space bar or
carriage return. Some other termination will
cause the instruction to function incorrectly.

After the IDT prompt is answered, the monitor will display the prompt
"READY Y/N". When you have readied the cassette or paper tape punch,
enter "Y". 4

4=======- MONITOR PROMPT

READY Y/N <Y>

EXAMPLE: Dump To Cassette:

The terminal is assumed to be a Texas Instruments 733 ASR or
equivalent. The terminal must have automatic device control (ADC) ;
this means that the terminal recognizes the four tape control
characters DCl, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the "READY
Y/N" query:

(1) Load a cassette in the left (Cassette 1) transport
(Figure 5-3).

(2) Place the transport in RECORD mode.
(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load, it
may be write protected. The write protect hole is on
the bottom right side of the cassette (Figure 5-4).
Cover it with the tab provided with the cassette,
then repeat Steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/
LINE switches must be in the LINE position.



(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY Y/N" dquery with a “Y”; the "Y" will
echo.

CAPSTAN TAPE SIDE UP

TAPE SIDE UP CAPSTAN
:/ ' REEL ROTOR
“~

CASSETTE PUSH

TRANSPORT

DOOR
CASSETTE TRANSPORT
DOOR FORWARD TO
CLOSE.

WRITE TABS (ON BOTTOM) CASSETTE RETAINERS
REEL ROTOR
(A) (B)

FIGURE 5-3. LOAD TAPE CASSETTE.



/— TAPE SIDE UP

\
o O
[ [ Tr]

"\— WRITE TAB FOR SIDE 2 —/
WRITE TAB FOR SIDE 1

FIGURE 5-4 TAPE WRITE PROTECT TABS.

EXAMPLE: Dump To Paper Tape:

The terminal is assumed to be an ASR 33 teletypewriter. The following
steps should be completed carefully to avoid punching stray
characters:

(1) Enter the command:

DMC<start address>{“,}<stop address>{", }<entry address>
{~,}1DT=<name>{", } READY Y/N<¥>

Do not answer the "READY Y/N" query yet.
(2)  Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT
the several times, placing rubouts at the beginning
of key tape for correct-reading/program loading.

(4) Turn off the paper tape punch, and reset the teletype
mode to LINE. (This is necessary to prevent punching

5-11



stray characters.)

(5) Turn on the punch and answer the "READY Y/N" dquery
with “Y*. The Y will not be echoed.

(6) Punching will begin. Each file is followed by sixty
rubout characters. When these characters appear
(identified the constant punching of all holes),
the punch must be turned off.

5.3.5 Execute Command (EX)

SYNTAX:
EX (CR)

The EX command causes task execution to begin at current values in the
Workspace Pointer and Program Counter.

5.3.6 Find Data Command (FD)

SYNTAX:
Fp{",}<start address>{",}<stop address>{",}<value>

The contents of memory locations from <start address> to <stop
address> are compared to <value>. The memory addresses whose contents
equal "value" are printed out.

If the termination character of <value> is a minus sign, the search
will print the addresses of all bytes from <start address> to <stop
address> whose contents are the rightmost byte in <value>. 1If the
termination character is a carriage return (CR), then the search will
print the addresses of all words from <start address> to <stop
address> whose contents are <value>.

EXAMPLE:

MON? FD E0O,EFO 400
OE40 o
OE74

5-12



OR MON? FD EO0.EFO 4~
OEO1 L
OE1Z
OEZ30
OE3Z
OE40
OESA
OESC
OE74
OEBC
OEC6
OEDZ
OED&
OEEC
MON?

5.3.7 Hexadecimal Arithmetic (HEX)

SYNTAX:
HEX{", }<number 1>{", }<number 2><(CR)>

The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

EVMBUG R1.0
MON? HEX 200,100
H1+H2=0300 H1-H2=0100

MON?
5.3.8 Load Memory From Cassette Or Paper Tape (LMC)

SYNTAX:
mc{”, }<bias><(CR) >

Data in 990 object record format (defined in Appendix A) is loaded
from paper tape or cassette into memory. <Bias> is the relocation bias
(starting address in RAM). Its default is >0. Object code saved using
the DMC command, however, is invariably restored using the relocation
bias <starting address> specified for that command. Both relocatable
and absolute data may be loaded into memory with the LMC command.
After data is loaded, the module identifier (See Tag 0 in Appendix A)

is printed on the next line.



LOAD FROM CASSETTE: (ASR 733):
The 733 ASR must be equipped with Automatic Device Control (ADC). The
following procedure is carried out prior to executing the LMC command:

(1) Insert the cassette in one of the two transports on
733 ASR.

(2) Place the transport in the PLAYBACK mode.
(3) Rewind the cassette.
(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER
LOCAL/LINE switches to LINE.

(6) Set the TAPE FORMAT switch to LINE. ILoading will be at
1200 baud.

(7) Execute the ILMC command: LMC{A,}<(CR)>
LOAD FROM PAPER TAPE: (733 teletype)

Prior to executing the LMC command, place the paper tape in the Reader
and position the tape so the reader mechanism is in the Null field
ahead of the file to be loaded. Enter the load command. If the 733ASR
has ADC, the reader will begin to read from the tape. If the 733ASR
does not have ADC, turn on the reader, and loading will begin.

Each file is terminated with 60 rubouts. When the Reader reaches this
area of the tape, turn it off. The loader will then pass control to
the command scanner.

The User Program Counter (P) is loaded with the entry address if a
l-tag or a 2-tag is found on the tape.



EXAMPLE:

EVMBLUG R1.0
MOMN? LMC EDOQ
RERDY Y-N
TEST

MON?

5.3.9 Inspect/Change Memory (IM)

SYNTAX;
IM{", }<start address><(CR)>

Memory Inspect/Change "opens" a memory location, displays it, and
gives the option of changing the data . in the 1location. The
Inspect/Change memory address directs a display of memory contents
from the <start address> each time the space bar is pressed. Each line
of output consis of the address of the data word followed by the data
word itself. A termination character causes the following:

(1) If a carriage return, control is returned to the command
scanner.

(2) If a space, the next memory location is opened and
and displayed.

(3) If a minus sign (-), the previous location is opened and
displayed. '

If a hexadecimal value is entered before the termination character,
the displayed memory location is updated to the value entered.

EXAMPLES:

EVMBUG R1.0
MON? IM EDOO
EDOO=02E0
EDO2=EEAQA4
EDC4=0200
EDO6=000A
MON?



5.3.10 Inspect/Change User WP, PC, and ST (Hardware) Registers: (IR)

SYNTAX:
IR< (CR) >

The wuser Workspace Pointer (WP), Program Counter (PC), and Status
Register (ST) are inspected and changed with the IR command. The
output letters WP, PC, and ST identify the values of the three
principal hardware registers passed to the TMS 9995 microcomputer when
an EXB, EX, or SS command is entered. WP points to the workspace

register area, PC points to the next instruction to be executed, and
ST is the Status Register contents.

The termination character causes the following:

® A carriage return causes control to return to the
command scanner.

® A space causes the next register to be opened.
Order of display is: WP, PC, ST.

EXAMPLES:

(1)

EVMBUG K1.0
MON7? IR

W=EC1& 100
p=0ZE2 DOO
MON?

(2)

EVMEBUG KR1.0-
MON> IR

W=EC16
P=0ZEZ
S=D600
MON?

5-16



5.3.11 Execute In Single Step Mode: (SS)

SYNTAX:
SS<(CR) >

This command executes one instruction, then returns control to the
monitor.

Each time the SS command is entered, a single instruction is executed
at the address in the Program Counter, then the contents of the
Program Counter, Workspace Pointer, and Status Regiser (after
execution) are printed out. Successive instructions can be executed by

repeated SS commands.

EXAMPLE : EVMBUG R1.0
MON? IR
W=FOCA
P=FOEC EDOC
§=2201
MON? SS = EDB6  EDO4 2201
MON? SS EDB6  EDOS  C20t
MON~ SS EDB6  EDOA  C201
zgzz S5 EDB&  EDOC  C2ot

> S8 EDB& :

MON? ED10 €601

NOTE

Incorrect results are obtained when the
SS instruction causes execution of an
XOP instruction in a user program. (SEE
Appendix E.) To avoid these problems,
the EXB command should be used to
execute any XOP“s in a process, instead
of the SS command.

5.3.12 Toggle Null Flag: (TNF)

SYNTAX:
TNF

The TNF command is used to alert EVMBUG that the terminal being used
is a 1200 baud terminal which is not a Texas Instruments” 733 ASR
(e.g., a 1200 baud CRT). To revoke the TNF command, enter it again.



USE:

TNF is used only when operating with a true 1200 baud peripheral
device. TNF is NEVER used when operating at other baud rates.

In EVMBUG, the baud rate 1is set by measuring the width of the
character “A” input from a terminal. When an “A” of 1200 baud width is
measured, EVMBUG is set up to automatically insert three nulls for
every character output to the terminal. These nulls are inserted to
allow correct operation of the TMS9995 with Texas Instruments” 733ASR
data terminals.

5.3.13 Inspect/Change User Workspace Registers: (IWR)

SYNTAX:
IWR{",} [<register number>]<(CR)>

The IWR command is used to display the contents of all workspace
registers or to display one register at a time, while allowing the
user to change the register contents. The workspace begins at the
address in the workspace pointer.

The IWR command, followed by a carriage return, causes the contents of
the entire workspace to be printed. Control is then passed to the
command scanner.

The IWR command followed by a register number in hexadecimal and a
carriage return, causes display of the specified register®s contents.
The user may then enter a new value into the register by entering a
hexadecimal value. The following are valid termination characters,
whether or not a new value is entered:

) A space causes display of the next register.
) A minus sign causes display of the previous register.

) A carriage return gives control to the command scanner.



EXAMPLES:

(1)

EVMEUG - R1.0
MONT WK

RO=0000 KR1=0000 R2Z=0AFS R3=0000 R4=4AREY
R8=0001 R9=0142 RA=4AREY RB=04AC RC=0000
MON?

RS=0A00 R&=0006 R7=ELCOE
RO=ECO0 RE=0E7A RF=%000

(2) pumpls  K1.0
MONY TWR 2
R3=0ZEZ 100

R4=CHO1
RS=EC33 3S00F
R&=02R3 0
MON7?

5.3.14 Assembler Commands: (XA, XAE, XRA, XCL)

5.3.14.1 Execute Assembler With New Symbol Table: (XA)

SYNTAX:
Xa{",}<assembly address><(CR)>

The XA command clears the existing symbol table and allows the user to
establish a new symbol table.

MONT XA EDOO

EDOG

5.3.14.2 Execute Assembler With Existing Symobl Table: (Xa)

SYNTAX;
XAE{",}<assembly address><(CR)>

5-19



The XAE command assembles using the existing symbol table.

EvMBLW R1.0
MON™” XAE EDOO
EBOOQ

5.3.14.3 Execute Reverse Assembler: (XRA)

SYNTAX:
XRA{",}<start address>{",}<end address><(CR)>

This command allows the EVM user to inspect any memory location and
see the menemonic representation of its contents. The program
effectively recreates a source listing from the object code stored in
memory by printing the memory address, memory data, instruction
mnemonic, and operands.

EVMBUG KR1.0

MON7? XRA EDOO EDO4

EDOO F6BB SOCH #R11+,.R10

EDOZ 9AAR3 CB @>02ZA3(R3) ., @FFD7D(R10)

MON?

5.3.14.4 Execute Communications Link: (XCL)

SYNTAX:
XCL< (CR) >

5.4 USER-ACCESSIBLE UTILITIES

EVMBUG contains seven utility subroutines that perform I/O functions
as listed in Table 5-3, below. These subroutines are called through
the XOP assembly language instruction. This instruction is covered in
detail in Appendix F. Locations for XOPs 8 through 14 contain vectors
for utilities that drive the TMS 9995 terminal. XOP 15 is used by the
monitor for the breakpoint facility.

5-20



XOP

10
11
12
13
14

TABLE 5-3. USER-ACCESSIBLE UTILITIES

FUNCTION

Write One Hexadecimal Character

Read Hexadecimal Word From Terminal

Write 4 Hexadecimal Characters To Terminal
Echo Character '

Write 1 Character To Terminal

Read 1 Character From Terminal

Write Message To Terminal

(A1l characters are in ASCII Code.)

NOTES

(1) 1Initially, EVMBUG will conduct I/O through the TMS 9902
connected to Connector Pl. In this mode, >0000 1is in
EVMBUG”s R12, located at memory address >EC2E. To
change this configuration, change the contents of >EC2E
before executing the I/0 XOP. For example, to use the
the auxiliary TMS 9902 at P2, change the contents of
location >EC2E to >0400. CRU programming is discussed

in paragraph 8.5 of Section 8.

(2) The write character XOP (XOP 12) activates the REQUEST
TO SEND signal of the T™MS 9902. This signal 1is never
deactivated by EVMBUG, so that modems may be used.

(3) Most of the XOP format examples herein use a register
for the source address; however, all XOP“s cab also use
a symbolic memory address or any of the addressing
forms available for the XOP instruction.

5.4.1 Write One Hexadecimal Character to Terminal (XOP8)

FORMAT:

The least significant four bits of user register Rn are

their ASCII

XOP Rn,8

converted to
coded hexadecimal equivalent (0 to F) and output on the

terminal. Control returns to the instruction following the extended

operation.

5-21



EXAMPLE:

Assume user register 5 contains >203C. The assembly language (A.L.)
and machine language (M.L.) are shown below:

AL, XOP R5.8 SEND 4 LSB’S OF R5 TO TERMINAL

0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
MJ"IO 0 1 0 1 1 1 o o0 o0 |o0o o | 0 1 0 1‘] >2E06

Terminal Qutput: C

5.4.2 Read Hexadecimal Word From Terminal (XOP9)

FORMAT:
Xop Rn,9
DATA NULL Address of continued execu-
tion, if NULL is entered.
DATA ERROR Address of continued execu-

tion, if non-hex number
is entered.

(NEXT INSTRUCTION) Execution continued here,
invalid hex number and
terminator are entered.

Binary representation of the last four hexadecimal digits input from
the terminal 1is accumulated in wuser register Rn. (More than four
digits may be input, but only the last four are used.) The termination
character is returned in register Rn+l. Valid termination characters

are: space, minus, comma, and a carriage return. Return to the calling
task as follows:

e If a valid termination character is the only output,
return is to the memory address contained in the next
word following the XOP instruction (NULL, above).

® If a non-hex character or an invalid termination charact
is input, control returns to the memory address contained
in the second word following the XOP instruction (ERROR,
above) .

e If a hex string followed by a valid termination characte
is input, control returns to the word following the DATA
ERROR statement above.

EXAMPLE:



If the wvalid hexadecimal character string 12C 1is input from the
terminal, followed by a carriage return, control returns to memory
address >FFB6, with register 6 containing >012C, and register 7
containing >0D.

If the hex character string 12C is input from the terminal, followed
by an ASCII plus (+) sign, control returns to location >FFC6.
Registers 6 and 7 are returned to the calling program without being
altered. "+" is an invalid termination character.

If the only input form the terminal is a carriage return, register 6
is returned unaltered, while register 7 contains >0D00. Control is
returned to address >FFCO.

5.4.3 Write Four Hexadecimal Characters To Terminal (XOP1l0)

FORMAT:
Xop Rn, 10

The four digit hexadecimal representation of the contents of user
register Rn is output to the terminal. Control returns to the
instruction following the XOP call.

EXAMPLE:
Assume register 1 contains >2C46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M.Llo 0 1 0 1 1 | 1 0 1 0 [ 0 0 [ 0 0 0 1 ] >2E81

Terminal Output: 2C46
5.4.4 Echo Character (XOP 11)

FORMAT:
Xop Rn,11

This 1is a combination of XOPs 13 (READ character) and 12 (WRITE
character). A character in ASCIT code 1is read from the terminal,
placed in the 1left byte of Rn, then echoed back to the terminal.

5-23



Control returns to the instruction following the XOP after a character
is read and written. By using a code to determine a character string
termination, a series of characters can be echoed and stored at a
particular address:

CLR R2 Clear R2
LI Rl,>FEOO Set Storage Address
LOOP XOP R2,11 Echo, Using R2
CI R2,>0D00 Was Character a CR?
JEQ EXIT ' Yes, Exit Routine
MOVB R2,*R1+ No, Move Character to Stg
JMP LOOP Repeat XOP
EXIT NOP

5.4.5 Write One Character To Terminal (XOP1l2)

FORMAT':
XOP Rn,12

The ASCII character in the left byte of user register Rn is output to
the terminal. The right byte of Rn is ignored. Control is returned to
the instruction following the call.

5.4.6 Read One Character From Terminal (XOP 13)

FORMAT:
XOP Rn,13

The ASCII representation of the character input from the terminal is
placed in the 1left byte of user register Rn. The right byte of
register Rn is 2zeroced. When this utility is <called, control is
returned to the first instruction following the call only after a
character is input.

5.4.7 Write Message To Terminal (XOP14)

FORMAT:
XO0P @MESSAGE, 14

MESSAGE is the symbolic address of the first character of the ASCII

5-24



character string to be output. The string must be terminated with a
byte containing binary zeroes. After the character string is output,
control is returned to the first instruction following the call.

Assuming the following program:

MEMORY

ADDRESS OP CODE A.L. MNIMONIC
(HEX) '
EDOO 2FA0 XOP>ED00,14
EDO02 EDEO
EDO4
EDOO 5445 TEXT “TEST”
EDE2 5354
EDE4 00 BYTE 0

puring the execution of this XOP, the character string "TEST" is
output on the terminal, and control is then returned to the
instruction at location >ED0O4. TEXT is an assembler directive to
transcribe characters into ASCII code.

5 5 EVMBUG ERROR MESSAGES

Several error messages have been provided in the EVMBUG monitor to
alert the user to incorrect operation. In the event of an error, the
word “ERROR” is output, followed by a single digit indicating the
error condition.

Table 5-4 outlines the possible error conditions.



TABLE 5-4. EVMBUG ERROR MESSAGES.

ERROR CONDITION
0 Invalid tag detected by the loader
1 Checksum error detected by loader
2 Invalid termination character detected
3 | Null input field detected by dump routine
4 Invalid command entered
NOTES

ERRORS 0/1: The program load process is terminated.
If the program is being input from a 733ASR, possible
causes of the error are a faulty cassette tape or dirty
Read heads in the tape transport.

If the terminal device is an ASR33, chaf may be caught
in a punched hole in the paper tape.

TO CORRECT: 1In either case, repeat the load procedure.
ERROR 2: Invalid Termination Character. Command is terminated

TO CORRECT: Reissue the command and parameters with a
Valid termination character.

ERROR 3: Incorrect Input To Dump Command. Dump command is
terminated.

User either input a null field for start address, stop
address, or the entry address to the dump routine.

Ending address is less than the beginning address.

TO CORRECT: Reissue the dump command and input all
necessary parameters.

ERROR 4: Self explanatory.

TO CORRECT: Enter a valid command



SECTION 6
SYMBOLIC ASSEMBLER

6.1 GENERAL

This section describes the function of the TMS 9995 EVM symbolic
assembler. Also described are directions for formatting instructions
and operating the assembler.

An assembler is a program that interprets assembly language source
statements into object code. Assembler-directive commands allow the

programmer to dJenerate data words and values based on specific
conditions at assembly time.

The TMS 9995 EVM Assembler is a one-pass symbolic line assembler
designed to permit the use of comments and labels. It assembles the
instructions of the TMS 9995 as well as the pseudo instruction NOP
(which assembles as the instruction JMP $+2, and acts as a "no

operation™ or "go to next instruction"), and the following asssembler
directives:

- AORG: Absolute Origin Statement (absolute start location)

- BSS: Block of memory reserved with starting symbol
- DATA: Sixteen bits of immediate data

- END: End of program, exit to monitor

- EQU: Symbol equated to value in operand

- TEXT: String of ASCII coded characters

The assembler program is contained in EPROM, along with the rest of
the EVM firmware.



LOCATION COUNTER (HEXADECIMAL)
ASSEMBLED OBJECT- CODE (HEXADECIMAL)
LABEL FIELD
OP CODE FIELD
OPERAND FIELD
/—-—COMMENT FIELD

FE24
FE26
FE28
FE2A
FE2C

FE2E
FE30
FE32
FE34

FIGURE

2F20
FF34
04C1
2E03
06C3

0283
0020
1311
0283

EC XOP  @LF, 12 DO LINE-FEED, OR

CLR R1 CLEAR ACCUMMULATOR

X0OP R3, 11 ECHO CHAR., PLACE IT INR3

SWAPB R3 PLACE VALUE IN RIGHT BYTE
* WAS SPACE, CR, ESCAPE OR CONTROL~H PRESSED?

of R3, >0020 SPACE BAR PRESSED?

JEQ co YES, COMPARE VALUES

Cl R3, >0000 CARRIAGE RET. PRESSED?

6-1. SAMPLE ASSEMBLER LISTING.



6.2. TMS 9995 SYMBOLIC ASSEMBLER LISTING
6.2.1 Listing Format

The format of the 1listing produced by the TMS 9995 is detailed in
Figure 6-1. The elements of this listing are discussed 1in subsequent
paragraphs.

6.2.1.1 Location Counter

This is the hexadecimal number showing the location of assembled
object code.

Essentially, the value of the location counter is the address of the
corresponding object code after a program has been loaded into memory.
For example, in figure 6-1, the object code at memory address (MA)
>FE24 is >2F20; M.A. FE26 will contain the address of the location
with a label of LF when (and if) that label is defined.

6.2.1.2 Assembled Object Code

This column contains the resulting object code in hexadecimal after
the source statement has been assembled.

6.2.1.3 Label Field

The two-character field contains an alphanumeric label that identifies
the location of the source statement.

6.2.1.4 OP Code Field

This four-character field contains assembly language operaton code
mnemonics. It is separated from the label field and operand field by
one space.

6.2.1.5 Operand Field

This field contains the operands of the instruction. This field 1is
separated from the OP code and comment fields by one space.

6-3



6.2.1.6 Comment Field

Comments are placed in the 1listing by the user to assist in the
understanding of the instruction or the data flow. The comment field
begins one space to the right of the operand field.

6.3 LABELS AND COMMENTS

Labels may consist of one or two characters. The first character must
be alphabetic (but not an “R’) and a second character must be
alphanumeric. Labels may be used either as resolved (previously
defined) or unresolved (to be defined in upcoming assembly statements)
references. Labels may defined by entering them in the Label Field of
an assembler statement. Labels used as symbolic references in an
instruction that will accept both symbolic and register operands must
have an (@) sign preceeding them.

Comments can be a part of the source statement. The comment field may
include any printable character and 1is concluded by a return. A
comment line is indicated by an asterisk (*) in column one.

6.3.1 Use Dollar Sign To Indicate "At This Location"

Use the dollar ($) sign to indicate a current value of the location
counter (the location counter contains the next address at which
object will be 1loaded). If the location counter contains a value of
>EDO00, then the following comments apply as shown in the following
statements:

EDOO D1 EQU $

EDOO * Dl VALUE = LOCATION COUNTER VALUE: >EDOO
EDOO El EQU $+4

EDOO * El VALUE = LOCATION COUNTER + 4 = >ED04
EDOO Fl EQU D1

EDOO * Fl AND D1 HAVE SAME VALUE = >EDOO

EDOO 0207 LI R7,$ >ED00 TO R7

EDOG2 EDOO

EDO4 0208 LI R8,Dl >EDOO0 TO RS

ED0O6 EDOO

EDO8 0209 LI R9,$+2 >EDOA TO R9

6-4



EDOA EDOA

EDOC 020A LI R10,E1 >EDO4 TO R10
EDOE EDO4

ED10

NOTE
In EQU (equate) directives, labels must be
equated to either absolute values or defined
labels.

6.3.2 Expressions

Expressions contain addition or subtraction functions. For example:

EDOO Al EQU >200 :

EDOO * Al VALUE = >200
EDOO Bl EQU Al+8

EDOO * Bl = Al + 8 = >208
EDOO Cl EQU Al

EDOO * Cl = Al VALUE = >200
EDOO 0200 LI RO,Al >200 TO RO

ED02 0200

ED04 0201 LTI R1,Al+4 >204 TO R1

EDO6 0204

EDO8 0202 LI R2,Al+Cl >400 TO R2

EDOA 0400 ,

EDOC 0203 LI R3,Al1+Bl+Cl >608 TO R3

EDOE 0608 -

ED10 0204 LI R4,Al1-Bl >FFF8 TO R4

ED12 FFF8

ED14

6.3.3 Cancel Source Statement Being Input

If it is desired to cancel a source statement while in the process of
entering it from the keyboard, press the <ESC> key. The current
location counter contents will be displayed, waiting for new input.

This escape MUST be executed prior to entering a return after the
source statement.

6.3.4 Translate Characters Into ASCII Code Using Single Quotes

If it is desired to translate alphabetical or numerical keyboard
values in ASCII code, enclose the characters in single quotes. This is
the normal procedure for the TEXT assembler directive (paragraph
6.4.2.6); however, it can also apply in other situations. For example:



EDOO A EQU “AB”

EDOO * ASCII FOR AB = >4142
EDOO 0201 LI Rl,A LOAD >4142 IN Rl
ED02 4142

ED04 0201 LI Rl,“AB” LOAD >4142 IN Rl
EDO6 4142

EDO08 4142 Al DATA “AB” ASSEMBLE >4142 HERE
EDOA :

6.4 ASSEMBLER DIRECTIVES

The symbolic assembler recognizes six assembler directives. The
conventions used in defining these directives are defined below.

< >: Required items to be supplied by the user

[ 1: Ooptional items to be supplied by the user, i.e., for

example: [comment] = a space followed by any characters
except <ESC> or <CR>. :

EXPW: A well-defined expression (No forward references)

EXP: An expression with no forward reference, or a forward
reference only.

Symbolic addresses must be preceeded by an @ sign to differentiate
from a register number in an instruction that will accept both.

6.4.1 AORG Directive

FORMAT:
[label]l< ,><AORG>< ,><EXPW:location><CR>

The AORG directive places a value in the location counter and begins
assembly at the location specified. The location value must be 1in
decimal or hexadecimal. By default, the 1location counter for the
assembler begins at >0000 and is incremented by two (bytes) for each
word occupied by the instruction. When a label is used with the AORG
directive, it is assigned the value in the 1location counter. The
comment field is optional. If an odd value is input for the location,
the value will be decremented to an even value.



Example:

EDOO AORG >200 Begin assembling source code at location
0200 counter value of >200
EDOO AORG 200 Begin assembling source code at location
00c8 counter value of >C8
6.4.2 BSS Directive

FORMAT:

[LABEL] < ,><BSS>< ,><EXPW:no. of bytes><CR>

The BSS (block with starting symbol) directive advances the 1location
counter a quantity of bytes as specified in the directive. In essence,
it "reserves" a block of bytes starting at the location counter value;
this block will be void of object code. An optional label can be
specified to identify the first location in the block. The byte count
can be in decimal or hexadecimal.

6.4.3 DATA Directive

FORMAT:
[labell< ,><DATA>< ,><EXP>[,<EXPW>,...,<EXPW>] [comment]<CR>

This directive places 16 bit values into (successive) memory
locations. Data is placed at even address locations. Operand values
can be chained (i.e., successive 1 to 16 bit values separated by
commas) . The data directive will accept multiple operands seperated by
commas. It will also accept an unresolved reference, but ONLY as a
first operand.



Example:

EDOO FFFF DATA FFFF,1764,>BB,0,444,°AB”
ED02 06E4
EDO4 00BB \Assembles as ASCII code
EDO6 0000 for string AB
EDO8 01BC _
EDOA 4142 Assemble as >00BB,>0000
EDOC
6.4.4 END Directive
FORMAT:

[labell< ,><END>< ,>[<entry point>< ,>[comment]<CR>

This directive 1is mandatory for each program. It designates to the
assembler that this is the final input from the source program and
causes a transfer of control back to the monitor. This is the last
input to the assembler, and the only means of direct transfer from the
assembler to the monitor. When the optional 1label 1is wused, it |is
assigned the current value in the 1location counter, but forward
references to it will not be resolved. The optional load-point operand
field contains a symbol or absolute memory address specifying the
entry point (execution start) of the program. When the entry-point
operand is used, the entry point address will be placed in the Program
Counter so that the program can be executed by the EX command
immediately after being loaded.

After entry of the END directive is concluded, a number indicating the
number of unresolved labels will be displayed.

Example:
EDO2 END ST 0000
MON? ‘\\\\\Output by assembler: number of

unresolved references.

Location labeled ST is entry point
for program; places address in
program counter.



6.4.5 EQU Directive

FORMAT:
<label>< ,><EQU>< ,><EXPW><CR>

This directive assigns a value to a label for use during assembly. The
expression field can contain an absolute numeric value or expression.
Expressions are further defined in paragraph 6.3.4. This directive

allows the user to substitute easily remembered mnemonlcs for absolute
values in program source lines.

Examples:

(1)

EDOO SM EQU 1

EDOO ALLOWS USING SM FOR REGISTER 1 SUCH AS
EDOO C060 MOV @>rC00,SM MOVE QTY TO Rl

ED02 FCO0

EDO4 * INSTEAD OF @>FC00,1

EDO4 C060 MOV @>FC00,1 MOVE QTY TO Rl

EDO6 Fc00

EDOS8

(2)

EDOO IN EQU 9681

EDOO * ALLOWS THIS CONSTANT VALUE TO BE USED IN SUBSEQUENT
EDOO * SOURCE LINES

EDOO 0201 LI Rl, IN PLACE CONSTANT IN Rl

EDO2 E5D1

EDO4

(3) If IN has been previously defined, as above, the following
will result in moving the value located four bytes beyond
location IN into location OT:

ED0O €820 MOVE Q@IN+4,@0T
ED02 F004

EDO04 FOCO

EDO6

6-9



(4) A label can be equated to a string of labels being added or
subtracted (expression).

EDOO A EQU 4

EDOO B EQU 10

EDOO Cc EQU A+B

EDOO 0014 NO DATA C+A EQUALS VALUE 20
EDO?2 '

NOTE: Value of label "NO" has value equal to sum of
values of "C" and "A".

6.4.6 TEXT Directive

FORMAT:
[label]l< ,><TEXT>< ,><”“character string”>[comment]<CR>

This directive, like the Data directive, is used to generate absolute
data for program use. The DATA statement operand is interpreted as a
numerical value. The TEXT statement operand contains an alphanumeric
character string of keyboard inputs which are to be interpreted into
ASCII code. Besides keyboard characters, the user can also input
control characters (e.g., carriage return, line feed, DCl, DC2, etc.)
which are output in ASCII code via the keyboard. ASCII code is defined
in Appendix B. Character string inputs in the operand field are
enclosed in single quotes. The assembler begins all character strings
on an even boundary and places a zero byte after the last character
that can be used as a delimiter by the XOP I/0 commands. The character

string may contain any characters except the single quotes (“°) and
<ESC>.

The optional 1label field will be assigned the value in the location
counter; this value will identify the location of the first character
in the string. If the program counter is odd after the text and zero
bytes are entered, then the program counter will be incremented to an
even number.



Examples:

(1)

EDOO0 4C4F CM TEXT “LOAD TAPE, HIT<CR><LF>“

ED02 4144

EDO04 2054 (Followed by a Carriage Return
ED06 4150 and a Line feed.)
EDO08 452C

EDOA 2048

EDOC 4954

EDOE 203C

ED10 4352

ED12 3EOD

EDl14 0AO0O

ED16

(2)

EDOO 4C4F CM TEXT “LOAD TAPE, HIT <CR>.”

ED02 4144

ED04 2054

EDO6 4150

ED08 452C

EDOA 2048

EDOC 4954

EDOE 203C

ED10 4352

ED12 3E2E

ED14 0000 <~ This number will be that which was in memory before
ED16 the TEXT directive is assembled.

6.5 ASSEMBLER ACTION
The Symbolic Assembler accepts assembly language inputs from the
keyboard. As each instruction is input, the assembler interprets it,

places the resulting machine code in an absolute address and prints
the machine code (in hexadecimal) next to its absolute address.

Example:

The user enters:
ILWPI >ED20 <CR>

The following display results:

6-11



LWPI >ED20 USER INSTRUCTION ECHOED
EDOO0 >02F0 RESULTING OBJECT CODE
EDO2 >EDO2 '

6.6 OPERATION

6.6.1 Calling the Assembler

1.

In this a

Call up the monitor by activating RESET on the EVM and
pressing the "A" key.

The EVMBUG monitor prints an initialization message on the
terminal: MON? indicating that the command scanner is
available to interpret terminal inputs.

Enter either the XA or XAE command and space or carriage

return. If the XA command is used, the previous symbol
table will be cleared.

Enter the hexadecimal address at which the program is to be
assembled.

Press RETURN key. Entry to assembler is acknowledged by the
display of the address. The cursor 1is positioned to the
label entry column.

nd following examples, the underscore marks the cursor

positon within the display.

Display Enter Comments

Move RESET Switch

(CR) Monitor Entry Gained
EVMBUG
MON?

XA (SP) Assembler Called
MON? XA _

EDOO Starting Assembly Add.
MON? XA EDOO

- (CR)

EDOO

Assembler Entry Gained



6.6.2 Exiting To The Monitor

(SP) to the OPCODE column, then enter: END. Control returns to the
monitor.

6.7 ENTERING INSTRUCTIONS

Any of the 73 instructions applicable to the TMS 9995 microcomputer
can be interpreted by the Symbolic Assembler. An instruction generally
consists of four fields: Label, Opcode, Operand(s), and Comment.

6.7.1 Label Field

The label field is optional and its omission is indicated by a space.
It consists of a maximum of two characters; the first character must
be alphabetic(BUT NOT AN “R”“) and the second must be alphanumeric.
Labels may be used as either resolved or unresolved references. The
label field may be followed by one or more spaces.

NOTE: the following fields will not accept unresolved references:
register fields, shift count fields, CRU count fields, and CRU
displacement fields. Instructions containing unresolved references
should not be modified once entered until reference resolution has
occurred or errors may be created.

6.7.2 Opcode Field

Thefe should be a single space only between the opcode and the
operand(s) .

6.7.3 Operand Field

Operand fields generally consist of either: (1) one unresolved
reference label, or (2) a succession of constants and defined symbols
linked by plus and minus signs. In the case of multiple operands, a
single comma should be used between the two. The operand field should

be followed by a space if the comment field is desired, or a return if
not.

6.7.4 Comment Field

The comment field may include any printable character and is concluded
by a return.

6-13



6.7.5 Concluding The Instruction

The (CR) at the end of either the operand or the comment field
concludes the instruction. Prior to entering the return, the
instruction may be cancelled by use of the Escape <ESC> command, as
explained in paragraph 6.3.3.

6.7.6 EXAMPLES:

1. LWPI >220
—————————— Single space between mnemonic and operand

LI O
f —————————— Single comma between multiple operands

3. N1 DATA 10

T (SP) after label and opcode fields
4, DISPLAY ENTER COMMENTS
EDOO
(SP) Omit Label Field
EDOO
LWPI >220 Enter Instruction
EDOO LWPT >220_
5. INSTRUCTION TERMINATOR
LWPI >220 (A) (CR) - comment field omitted

(B) (SP) - comment field to be used

6. The following example illustrates these functions:

A. Calling the assembler (paragraph 6.6.1)
B. Enter instruction one (paragraph 6.7)

C. Enter instruction two (paragraph 6.7)
D. Exiting to the monitor (paragraph 6.6.2)



Display Enter
Set RESET Sw.
(CR)
EVMBUG
MON? _ _
XA ((SP))
MON? XA _
EDOO
MON? XA EDOO_
(CR)
EDOO
- (SP)
EDOO _
LWPI >ED20
EDOO LWPI >ED20
(CR)
EDOO 02E0
- LWPI >ED20
EDO2 ED20_
. (CR)
EDO4
(sp)
EDO4
LI 0,33
EDO 4 LI 0,33_
(CR)
EDO4 0200 _
EDO6 0021
EDO8
(SP)
ED08 _
END
EDOS8 END_
(CR)
EDO8 END 0000 _
MON?

Comments

Monitor Entry Gained

Assembler Called

Starting Assembly Address

Assembler Entry gained
Skip label field

Enter first instruction

Addresses and machine
code for first
instruction.

Skip label field.

Enter second instruction

Addresses and machine
code for second

instruction.

Skip label field
Enter END directive
First (CR)

Second (CR)

The following additional concepts apply to instruction entry:

1. Register numbers are in decimal or
decimal register numbers can be
by an R).

6-15

hexadecimal. Only
predefined (preceeded



LI R13,22
LTI >D,33

2. Jump instruction operand can be §, $+n, $-n, or M,
where n is a decimal or hexadecimal value of bytes
(+256>n>-254) and M is the value of the memory address.

JMP $+0
JMP $-2
JMP $+2
JMP >210

3. Absolute numerical values can be decimal or hexidecimal
hexadecimal. Decimal values have no prefix in an
operand. Hexadecimal values are preceded by the greater-
than sign (>).

LI R13,>33
LI R13,51

4., Where an address can be either a register or symbolic
memory location, the symbolic address is preceeded by

an at sign @ to differentiate a numerical memory
address from a register number.

MOV @sT,Rl Move ST contents to R1l
A @SM,Q>FEOO Move SM contents to M.A.>FEQQ
NOTE

Jump and immediate operand instructions
do not use the (@) sign, before a symbol.

6.8 ERRORS

Syntax errors are indicated by an “ERR” message. A displacement range
error (such as with jump instructions and single-bit CRU instructions)
will be flagged with an ERR message.

6-16



Syntax error.

EDOO
EDOO

EDOO

The instruction syntax was incorrect:

Display Enter
- (sp)
LDA
LDA ERR_
(CR)

Comments

Error message (ERR)
Use Ret and enter

the proper mnemonic.

Range error. The operand is out of range of its field.

EDOO
EDOO
EDOO
EDOO
EDOO
EDOO
EDOO
EDOO
ED02

EDO4

Display

LI

[y
-

LI
0204 LI

EDOO

Enter

(sp)

LI R44
R44_
R44 ERROR
(CR)

(sp)
LI R4,>EDOO
R4,>EDO0O

(CR) ™
R4, >EDOO

6-17

Comments

Skip Label field.

Enter first instr.

Error message.

Enter proper data.

Properly assembled
code.



3. Displacement Error. The jump instruction destination is
more than +256 or -254 bytes away.

Display Enter Comments
EDOO _
(Sp) Skip 1label field.
EDOO _
JNC $+300 Displacement plus
256 bytes.
EDOO JNC $+300_
(CR)
EDOO JNC $+300 ERROR ERROR message.
EDOO _
6.9 PSEUDO-INSTRUCTION

The assembler also interprets one pseudo-instruction. This
pseudo-instruction is not an additional instruction, but actually is
an additional mnemonic that conveniently represents a member of the
jnstruction set. The NOP mnemonic can be used in place of a JMP $+2
instruction, which is essentially a no-op (no operation). This can be
used to replace an existing instruction in memory, or it can be
included in code to force additional execution time in a routine. Both
NOP and JMP $+2 assemble to the machine code >1000.



Display Enter Comments

EDOO
(sp)

EDOO :

JMP $+2

EDOO JMP $+2

, TCcR)

ED0O 1000 _ e + Both JMPS$+2 and
NOP assemble to
the machine code

EDOO _ <-- >1000

(sp)
EDOO _
NOP
EDOO NOP_
(CR)
EDOO0 1000 _ e +

6-19



SECTION 7
EIA COMMUNICATIONS LINK
7.1 GENERAL

This section describes the use of a Software Comminications Link which
allows TMS 9995 microcomputer module to communicate with a DX 990/10
minicomputer via an EIA RS-232-C interface.

This communications 1link is primarily intended for use as a software
development aid for the programmer. It allows the programmer to create
programs on a larger, more sophisticated minicomputer, taking full
advantage of its utilities, i.e., text editor, macroassembler, linker,
etc. The resulting program can then be downloaded into the 9995EVM for
execution or debugging. The host system is needed to support the
hardware and software necessary to transfer information to an EIA port
using the ASCII character set. (See Appendix B)

EIA RS-232-C asynchronous serial transfer is used by this particular
communications 1link which enables it to communicate with terminals
that have EIA capabilities.

The EVM hardware supports two serial I/0 ports. The local port (Port
1) is jumper selectable for either RS-232-C or teletype terminals.
(See Figure 7-2) This port is controlled by a TMS 9902 asynchronous
communications channel and is the port to which the main programmer”s
terminal is connected for support by the EVMBUG monitor. The
auxilliary port (Port 2) 1is RS-232-C only and is connected via EIA
RS-232-C to the host computer.



(TERMIMAL EIA PORT 2 IDLE
CONMECT) . lAUXILLIARY) LIGHT @
\ l .
+ \ d/ *
=
Bo g iy = b e
o 2o E=3 ssassssasoassee PROTOTYPE
RANDOM = 344 4| PORT (10)
LOGIC B et *
AREA Y F
@ L o % 3
|=:7\|=: ........ : POWER BREADBOARD
== U :] H BUSES AREA
(8)———7\ e g - - .| }. ........
1]
41 pROTOTYPE
@ @ @ | porT 110
Lin -
‘9) \ y . o - L n ::-n H
]/ 1 . ) || A [
)
lnl a 0 1 2ee
+o o T 4__7/3» °
I/4 ‘ \
S MH2
MICROPROCESSOR RESET  caysTAL

SMITCH  kom cLOCK

FIGURE 7-1. TMS 9995 EVALUATION MODULE BOARD.

7.2 SYSTEM DESCRIPTION

Figure 7-2 shows a typical system configuration for utilization of the
communications link software. The TMS 9995 appears as another terminal
to the host system. The communications link allows a user at terminal
2 to interact with the host computer in exactly the same way as if it
were directly connected to the host computer. A user at either
terminal may command the host computer to execute a read or write to
the memory. This read or write to memory is executed by the host
computer as if it were reading or writing to a cassette, paper tape,
or key?oard/printer (if device support was sysgened into the host
system) .



PORT 2

HOST COMPUTER | ¢4 Rs.232-C
{DX 990/10,
FS 990/4, TMS 9995
PDP-11/70, EVM BOARD
1BM 370, EVM BUG
NOVA, MONITOR
UNIVAC 1108
HOST SYSTEM ETC.)
UTILITIES
PORT 1
USER USER
TERMINAL 1 TERMINAL 2

FIGURE 7-2. TYPICAL SYSTEM CONFIGURATION.

The communications 1link does not require any hardware changes to the
host computer, nor does the host system require any changes in device
service routines, except those changes necessary to support a 733 ASR,
ASR 33, or KSR protocol. Data transfers are accomplished using the
ASCII character set over EIA RS-232-C levels at a variety of baud
rates. Data transfers to memory are formatted in TMS 9900 object
record format (see Appendix A

The following is an example of how the communications 1link can be
implemented:

The TMSW 101T cross support package can be
installed on an already existing DEC PDP-11/70
minicomputer system. Applications software can be
created on the PDP-11/70 and assembled using the
cross support package. The resulting applications
code can then be simulated using the cross support
package, or downloaded for testing on the target
system using the EIA link. Assuming the PDP-11/70
already exists, this communications 1link allows
actual program development and test for TMS9995
software without the need for additional hardware.



Using a 990 system minicomputer allows this same opportunity without
the need for the cross support package.

7.3 SYSTEM REQUIREMENTS

7.3.1 Host System Requirements.

The communications link software is capable of communicating to a wide
variety of host computers, ranging from a TM990/101M microcomputer to
a large time-share system. The requirements which must be met - by the
host computer are supplied by most existing computers.

7.3.1.1 Hardware Requirements.

The EIA communications 1link requires at least three signals to
operate:

- Transmit Data
- Receive Data
- Signal Ground

Table 7-1 illustrates how these signals must be interconnected.

TABLE 7-1. HOST SYSTEM CABLE REQUIREMENTS.

HOST INTERFACE TMS9995 INTERFACE
Designation Pin Pin Designation
Receive Data 2 —T:><:::2 Receive Data
Transmit Data 3 — 3 Transmit Data
Signal Ground 7 — Signal Ground

These signals, along with other control signals, may be supplied by a
T™990/50 cable assembly. The other control signals are required to
perform the necessary "handshaking"” between the EVM board and the host

computer, i.e., DSR, DCD, RTS, and may vary for different host
computers.

7-4



The EVM has no baud rate limitations because the baud rate as used by
the TMS 9902 asynchronous communications channel is software selected.
However, the communications link software only allows baud rates of
110, 300, 600, 1200, 2400, 4800, 9600, and 19200. The baud rate of the
host computer must be that of the terminal connected to Port 1, if
that terminal is to be used as a remote terminal to the host system
(i.e., logon identifiers, listings, etc.) The baud rates need not be
the same to execute uploads or downloads, as the terminal is not
involved. The baud rate to the terminal on Port 1 is automatically set
by the EVMBUG monitor. The baud rate to the host computer is 1200 by
default, but may be changed by the use of the communicatons 1link "T"
command to any of the baud rates given above. (See also "T" Command,
paragraph 7.4.3.)

7.3.1.2 Software Requirements.

The host system reads and writes to the TMS 9995 EVM and terminal
combination as if they were a teletype, 733 ASR terminal, or
keyboard/printer.

Receipt of a DC2 (ASCII Punch On) places the TMS 9995 EVM into a
download mode of operation until a DC4 (ASCII Punch Off) is received.

Receipt of either a DCl (ASCII Reader On) or DLE7 (Cassette Block
Forward) command places the TMS 9995 EVM into an upload mode. This
mode is continued until a complete record is output in 733 ASR
protocol, or until the upload is complete in ASR 733 protocol. When
not in either of the above modes, any characters received on EVM Port

2 are echoed to the terminal (which may or may not be present) at EVM
Port 1.

A provision is provided to operate the communications link with a host
computer that cannot supply the DC2 and DC4 commands necessary for
downloads. This provision is described in paragraph 7.4.5 "Use Without
Cassette Or Paper Tape Support"”.

Control characters entered at EVM Port 1 are recognized at all times
by the TMS9995 EVM, with the appropriate response taken. Noncontrol
characters are ignored during uploads and downloads, but are echoed to
the host system otherwise.

To accomplish downloads, the host system is required to supply
standard = TMS 9900 machine code in object record format (see Appendix
A). The code can be either copied from storage media (magnetic tape,
disk, etc.) or actually created by the host computer. This machine
code is the same as that of the host (if the host is a 990 family
minicomputer), due to the software compatibility between all members
of the 9900 family. Cross assemblers are also available to produce TMS
9900 machine code on non-9900 family computers (IBM, DEC, etc.).

7-5



7.3.2 Terminal Requirements.

The terminal connected to Port 1 of the TMS 9995 EVM Board must be
either EIA RS-232-C or 20-mA current loop (jumper selectable), and
communicate via the ASCII character set.

The allowable baud rates are the same as those 1listed for the host
computer and are automatically set by the EVMBUG monitor. If this
terminal is intended for use as a remote terminal for the host system,
it must be the same baud rate as the host system and wuse the same
protocol. .

7.4 COMMUNICATIONS LINK USAGE

This section details how the communications 1link operates from a
user’s point of view. Table 7-2 lists the communication link commands
available to the user. The functions which require use of the Control
key are available only in the terminal mode; other functions are
available only in the command mode.

Table 7-3 1is a list of error messages which the communications link
produces under certain error conditions. Each mode is described in the
following paragraphs.

TABLE 7-2. SUMMARY OF COMMUNICATIONS LINK COMMANDS.

INPUT RESULTS

Control C Enter Command Mode

T Change Port 2 Baud Rate
D Set Download Bias

U Set Upload Limits

Q

Return To Terminal Mode

Control 2 Return To EVMBUG Monitor
Control R Initiate Download
Control T Terminate Download

7~-6



TABLE 7-3. SUMMARY OF COMMUNICATIONS LINK ERROR MESSAGES

ERROR MESSAGE MEANING

CMD ERR Invalid command entered. Reenter
the correct command code, i.e.,
T, U, D, or Q.

PARM ERR Invalid parameter entered. Reenter
a valid parameter.

CKSM ERR Checksum error occurred during
download. )

TAG ERR Invalid obj. record tag encounter
during download.

UPLD ERR Error occurred during upload attempt

or, upload end limit is smaller
than start limit or, upload aborted.:

7.4.1 Starting The Link.

On-board RAM provides one workspace area, two flags, and a 1link area
for handling the communications link software. The location of this
area is from >EC00 to >EC56.

The link is entered by executing the XCL command. At this time, the
EVM is in the terminal mode, and an entry banner: TERMINAL MODE, is
printed on the terminal. This entry banner will be printed every time
the terminal mode is reentered.

7.4.2 Terminal Mode.

Once in terminal mode, the communications link is in its active mode.
The program constantly scans both ports until a character is received
on “one or the other. It then takes the appropriate action, depending
on the character received and the function currently being executed.
Downloads, uploads, and listings can be executed under control of the
host computer and all host commands entered at the terminal are echoed
to the host computer.

If an error occurs on the EVM side of the communication link during a
download, the 1link will wait until the current input from the host
computer ceases and then output an error message. At this time, the
download may or may not be completed. This must be verified by use of
the EVMBUG monitor Inspect Memory Command. If an error occurs during
an upload, the 1link will output an end-of-file, discontinue output,
and output an error message. (See Table 7-3) These download and upload
error conditions also set the download bias to >FFFF.

7-7



7.4.3 Command Mode.

The communications link also supports a command mode of operation, 1if
a terminal is present on EVM Port 1. In this mode, commands are
entered from the terminal to:

- Change Port 2 baud rate
- Set upload limits ,
- Set bias for downloads of reloacatable object files

This mode can be entered from the terminal mode at any time (even
during up or downloads) by simultaneously pressing the Control and "C"
keys. Once in the Command mode, a question mark prompt is displayed at
the terminal.

The commands supported while in the command mode are described below.

np® COMMAND: A "T" is input to change the baud rate of Port 2. The
link will echo the "T" to the printer, followed by a space, and will
await the entry of a parameter. This parameter must be a valid decimal
digit between 1 and 8, followed by a space, comma, minus sign, or
carriage return. Otherwise, a parameter error will be generated.
According to the value entered, the baud rate of Port 2 (to the host
computer) will be set to the value indicated in Table 7-4, below. If
no parameter is entered, the baud rate will remain unchanged.

TABLE 7-4. BAUD RATE SELECTION PARAMETERS

PARAMETER BAUD
RATE RATE

19200
9600
4800
2400
1200

600
300
110

O~JANA UL WN

7-8



"D" COMMAND: A "D" is entered to set the bias of any relocatable
object code received by the downloader. The "D" will be echoed to the
printer, followed by a space. The user may then enter a valid
hexadecimal address, followed by a space, comma, minus sign, or
carriage return. This address will be the download bias until changed.
The default bias address is >ED00. If no address is entered, the
download bias will remain unchanged. The download bias only applies to
relocatable code, as any absolute code will be 1loaded wherever its
object record tags indicate.

"U" COMMAND: A "U"™ is entered to set the upload limits. The "U" is
echoed to the printer, followed by a space. The user may then enter
the upload starting address, followed by the upload ending address.
Both must be valid hexadecimal numbers, followed by a space, carriage
return, comma, or minus sign. Either or both may be omitted to leave
the corresponding upload limit unchanged. An invalid address resylts
in the printing of an error message with no change in upload limits.
Default upload limits are from >EDO0 to >EFF0 inclusive. Limits must
be reestablished before each upload, as the starting address is
changed by the uploader to equal the ending address at the end of the
upload. An error will result at any time during the upload if the
starting address is greater than the ending address. The host computer
may also set these 1limits by writing to the appropriate memory
locations (>EC50 and >EC48), using the downloader.

"O" COMMAND: To exit from the command mode back to the active terminal
mode, a "Q" must be entered. The "Q" will be echoed to the printer,
followed by the terminal mode entry banner.

7.4.4 Returning Control To EVMBUG Monitor.

The communications link execution can be terminated in the terminal
mode by simultaneously pressing the Control and "Z" keys. This returns
control to the EVMBUG monitor. The EVMBUG entry banner will be
displayed on the printer at this time.

7.4.5 Link Use Without Cassette Or Paper Tape Support.

A provision exists which allows the user to initiate and terminate
downloads from the terminal. This provision is necessary if the host
computer software does not support cassettes or paper tape. Downloads
can be accomplished by listing the object file to the TMS9995 EVM as
if it were a printer. Pressing the Control and "R" keys sets the
communication 1link to download mode. All input on Port 2 is then
transferred to the downloader instead of the terminal.

The Control “T° command allows the user to exit this download mode at
any time and to return to the terminal mode.

7-9



The Control and "T" keys must be simultaneously pressed to return to
the terminal mode. The two control Kkeys generate the required DC2
(Punch ON) and DC4 (Punch Off), which are normally generated for a
paper tape punch or cassette by the device service routine.

7.5 SAMPLE SOFTWARE DEVELOPMENT SESSION

With a terminal or TTY connected to Port 1 (See paragraph 7.3.2), and
a host computer connected by an EIA RS232-C communication link to Port
2 (See paragraph 7.4), the TMS 9995 EVM may be used for software
development. See Figures 7-1 and 7-2. '

If the 990/10 (or 990/12) has not been sysgened to include the use of
a 733 ASR terminal, then a 733 should be installed and the sysgen
executed as follows before a software session begins. Brief details of
a sysgen follow (for experienced programmers only). For full details
of sysgen, refer to the Model 990 Computer DX10 Operating System
Programming Guide, Volume V, part number 946250-9705.

SAMPLE SYSGEN:

NAME = STOl

DEVICE TYPE = ASR

CRU = >0000

ACCESS TYPE = RECORD
TIME OUT = --- SECONDS

CASSETTE TIME OUT = 3 SECONDS
CASSETTE ACCESS TYPE = FILE
CHARACTER QUEUE SIZE = 6
INTERRUPT = 6

The following 1is a sample software development session using a
DX990/10 as a host computer. This sample shows the basic steps
necessary to load the communications link and begin execution. Then
the same terminal is used as a user terminal to the DX990/10 system. A
program is created using the text editor and macroassembler. The
program listing is printed at the user terminal and the object code is
then downloaded into the TMS 9995 EVM memory. After 1logging off the
DX990/10, control 1is returned to the EVMBUG monitor and the sample
program is executed. For this example, the TMS 9995 EVM is connected
to the DX990/10 as a 733 ASR terminal.

Commands preceeded by brackets [ ] are DX10 commands to the TMS 9995
microcomputer.



TERMINAL MODE

SYSTEM COMMAND INTERPRETER — PLEASE LOG IN
USER ID: GPS072
PASSCODE:
RUNTIME TASK ID = >ZB
Ll XE
INITIATE TEXT EDITOR
FILE ACCESS NAME:

*EQOF
*EOF
# THIS IS AN EXAMPLE
#EOF !
EVMBUG EQU >0080
#EOQF - -
AORG >EDOO
#EQF
LWPI >ED40
*EOF
CLR O
*EOF
LOOP INC . QO
_. ®EOF
CI 0,2>EEQQ
#EQF .
JLT LOOP
#EOF
XoP 8MSG-14
*EQF.
B GEVMBUG
#EOF
M3G TEXT “PROGRAM EXECUTING”
*+EOF
BYTE ©
*EQF
END
#*EOF
L1 Qe
QUIT EDIT
ABORT?: NO
oUIT EDIT

OUTPUT FILE ACCESS NAME- GPS. TST
REPLACE?: YES -
MOD LIST ACCESS NAME:

£1 XMA

SAMPLE SOFTWARE DEVELOPMENT SESSION



EXECUTE MACRO ASSEMBLER
SOURCE ACCESS NAME: GPS.TST

OBJECT ACCESS NAME:  GPS.TSTO

LISTING ACCESS NAME:  GPS.TSTL

ERROR ACCESS NAME:

OPTIONS:

MACRO LIBRARY PATHNAME:

[1 WAIT |

--WAITING FOR BACKGROUND TASK TO COMPLETE--—

MACRO ASSEMBLY COMPLETE, 0000 ERRORS, 0000 WARNINGS

1 cc o
COPY/CONCATENATE
INPUUT ACCESS NAME(S): PRO.TIMERD GPS.TSTL

OUTPUT ACCESS NAME: CS03 ST17 | . oo em.
- ~REPLACE?: NG@. - - ;
MAXIMUM RECORD LENGTH: 60

— e e m mle = o~y o~

{1 cc
COPY /CONCATENATE

INFUT ACCE=S NAME(S): GPS.TSTL
auTPUT ACCESS NAME: ST17
REFLACE?: NO :
MAXIMUM RECORD LENGTH: &0

SDSMAC 3.2.0 78.274 15:41:31 THURSDAY,. MAR 19
ACCESS NAMES TABLE

S0URCE ACCESS NAME= R32USR.GPS. TST

OBJECT ACCESS NAME= R32USR.GPS. TSTUO
LISTING ACCESS NAME= R32USR.GPS. TSTL
ERROR ACCESS NAME=

OPTIONS=

MACRO LIBRARY FPATHNAME=

SAMPLE SESSION (Continued)



SOSMAC 3.2.0 78.274 15:41:31 THURSDAY, MAR 19

0001 * THIS IS AN EXAMFPLE
0002 0080 EVMBUG EGU >0080
0003 EDOO AORG >EDOOC
0004 EDOO OZEO LWPI 2ED40

EDOZ2 ED40O

0005 EDO4 04C0 CLR O

0006 EDO6H 0580 LOOP INC O

0007 EDOZ 0220 Cl 0,2EE00
EDOA EEOQOQ

0003 EDOC 11FC JLT LOOP

000%Y EDOE 2FA0 XOF eM5G, 14

ED10 EDl6

0010 ED1Z 0460 B @EVMBUG
ED14 0080

0011 ED16 SO0 MSG TEXT “PROGRAM EXECUTING”
ED17 32
ED1S8 4F
ED1% 47
ED1A 92
ED1B 41
EDiC 4D
EDLD 20
EDIE 45
EDLF 38
EDZ20 435
EDz1 4z
EDzz 55
EDZ3 54
EDz4 4%
ED2S 4E
EDz4 47

0012 EDZ27 00 BYTE ©

- 0013 - END - -
NGO ERRORS., NO WARNINGS
L1l CC )

COPY/CONCATENATE :
INPUT ACCESS NAME(S): GPS.TSTL GPS.TSTO
OUTPUT ACCESS NAME: ST17 03
REPLACE?: NO
MAXIMUM RECORD LENGTH:
L1 @
GUIT
RUNTIME TASkK ID = >5E
MON7? IR

SAMPLE SESSION (Continued)



W=0430

P=ECO0 ECO0

MON? DM EDOC ED28
EDOO=0ZEO ED40 04CO
ED10=ED16 0460 0080
ED20=4543 5554 A494E
MON? EX

MON? DM EDOO ED2S
EDOO=02E0 ED40  04CO
ED10=ED16 0460 (080
ED20=4543 5554 494E
MON? IR '

W=5554

=556C EDOO
MON? EX
PROGRAM EXECUTING

0580
5052
4700

0380
S0352
4700

0280 EEOO 11FC 2FA0

4F47 5241 4D20 4558
0003

0280 EEOO 11FC 2FAO
4F47 5241 A4D20 4558
0003

7-14



SECTION 8

PROGRAMMING

8.1 GENERAL

This section is designed to familiarize the user with programming the
TMS 9995. Explanations of the programming environment, using EVMBUG
XOPs, supporting special features of the hardware, and certain
programming practices are included. Programs are provided as examples
for the the user to analyze and follow, and possibly to combine into
the user”’s system. This section is divided into two general areas: the
first gives background information on the programming environment and
shows suggested coding practices for a variety of situations. The
second ©part gives specific program examples using special features of
the hardware.

For clarity, source listing examples in this section use assembler
directives recognized by larger assemblers, but not recognized by the
T™S 9995 Symbolic Assembler. These directives are explained in detail
in the "Model 990 Microprocessor Assembly Language Programmer”s
Guide". A synopsis of the definitions is presented in Table 8-1.



TABLE 8-~1. ASSEMBLER DIRECTIVES USED IN EXAMPLES.

Label Opcode Operand Meaning

AORG XXXX Assemble code that follows so that it is
loaded beginning at memory address XXXX
this is similar to the absolute load / re-
quest of the symbolic assembler.

DATA YYYY Place the value YYYY in this location (if
preceeded by the greater-than sign (>),
the quantity is a hex representation.

DATA LABEL If LABEL represents a memory address, the
memory address value is placed at this lo-
cation, aligned on an even address (word
boundary) .

END Signifies end of program for assembler.

AAAA EQU BBBB Wherever the symbol AAAA is found,
substitute the value BBBB.

IDT “NAME“ Program will be identified by NAME.

TEXT “ABCD123” The ASCII value of the specified
character string is assembled in
successive bytes.

Figure 8-1 is part of a source 1listing used in this section, as
assembled by TI”s TXMIRA assembler. Unless specified otherwise by
directive, the TXMIRA assembler will begin assembling code relative to
memory address >0000 (second column). When resolving an address for an
instruction, as shown at the bottom of Figure 8-1, the instruction
address operator is the same as the relative address in column two of
the listing. Thus, for the label NEXT, the address >004A is assembled,
which is the relative address within the listing. This is useful when
determining such addresses as the destination of a labelled BLWP
instruction. Note that the symbolic assembler does not use labelled
addressing, but assembles the absolute address given.



SOURCE STATEMENT NO. i
RELATIVE ADDRESS COMMENT FIELD
OBJECT CODE (ASSEMBLED SOURCE)

LABEL FIELD
OP CODE
/——‘ OPERAND

0079 0034 04C1 CLR1 CLEAR FOR DECIMAL TO HEX ROUT1
0080 0036 0207 L1 7,CKPARM PROMPT MESSAGES

0038 00BC’ :
0081 003A 0208 L1855 FIVE PROMPTS

003C 0005
0082 003E 0209 L19,CLKWP+4 REGISTER 2 ADDRESS

0040 FF3C
0083 0042 ‘2F97 LooP1 WRIT *7 PROMPT USER FOR TIME VALUE
0084 0044 2E4Q HEXI 0 GET INPUT

0085 0046 004A’ DATA NEXT, ERROR NULL, ERROR RTN ADR

0048 (¢00). 53
0086 0Q4A 042 NEXT BLWP @DECHEX DECIMAL CHARS TO BINARY
oomC 020A°
ASSEMBLED OBJECT SHOWS RELATIVE

ADDRESS OF “NEXT” AT 004A1¢

FIGURE 8-1. SOURCE LISTING.
8.2 PROGRAMMING CONSIDERATIONS.

8.2.1 Program Organization

Programs should be organized into two major areas:

- Prodecure area of executable code and data constants
(never modified)

Data area of program data and work areas whose contents
will be modified.

The executable code and constant data section can be debugged as a
separate entity, and then programmed into EPROM. The work area can be
placed at any address in RAM, and that address does not have to be
contiguous with the program code area, and can even be dynamically
allocated by a Get Memory supervisor call of some kind. Even if the



program parts are loaded and executed together, the organization -and
debug ease are enhanced.

In this programming section all example programs are coded, with one
exception, in this manner: the work area is the register set, which is
arbitrarily fixed to a RAM address. The one exception, the
Two-Terminal routine, is coded to reside entirely in RAM because the
workspace is a part of the contiguous extent of code. This method of
coding is wused in RAM-intensive systems because the operating system
need not manage workspaces as might be necessary in a system with very
little RAM.

8.2.2 Executing TMS 9995 System Programs On the TMS 9995 EVM

On the TMS 9995 EVM, all interrupt and XOP vectors are programmed, and
a linking scheme in RAM is used as detailed in subsection 8.9.

8.2.3 Required Use Of RAM In Programs

All memory locations that will be written to must be in RAM-type
memory (this is important to consider when the program is to be
programmed into EPROM. Areas to be 1located in RAM include all
registers, as well as the destination operands of Format 1
instructions and the source operands of most Format 6 instructions.

For example, in the following source lines:

MOV @>0700,@>EDOO MOVE DATA

CLR @>EDO00 CLEAR MEMORY ADDRESS

ABS @>EDO00 SET TO ABSOLUTE VALUE

INCT @>EDO0O0 INCREMENT BY TWO

] R1,@>EDOO >EDO0 - R1, ANSWER IN >EDO0O

the address >EDOO0 will be written to; thus, it has to be in RAM.
8.3 PROGRAMMING ENVIRONMENT

The programming environment of a computer is loosely defined as the
set of conditions imposed on a programmer by either the hardware or
the system software or both, and the facilities available to the
programmer because of the design of the hardware and software. The
environment in which a program resides wusually determines how that
program is coded. The following paragraphs give explanations of the
major areas of the TMS 9995 EVM from a programmer”’s point of view.
Note that all program examples given are for a full assembler (e.g.
SDSMAC) and not necessarily for the symbolic assembler. Thus 1labels
can be used for reader comprehension.



8.3.1 Hardware Registers

The T™™S 9900 family of processors are designed around a
memory-to-memory architecture philosophy; consequently, the only
hardware registers inside the processor affecting the programmer are
the Workspace Pointer (WP) Register, the Program Counter (PC)
Register, and the Status (ST) Register There are no dedicated
accumulators or general purpose registers phy31cally residing inside
the microprocessor. All manipulation of data is accompllshed by using
these three registers as described below.

8.3.1.1 wWorkspace Pointer Register (wWp)

The Workspace Pointer is the register that holds the address of a
sixteen-word area in memory: this memory area serves as a
general-purpose register set. A memory area is designated as a
workspace or general-purpose redister set by loading the address of
the first word (Register 0) of the 1l6-word space into the WP Register.
Thus, the programmer”s register set is in memory, and can be referred
to with register addressing, or if the WP value is known, with memory
addressing. The registers are simply a d area in a program with the
special privileges usually given to processor registers. This approach
has several advantages for the programmer:

1. Register save areas need no 1longer be kept in
programs, since the actual program registers are
already in memory, and are maintained by the
hardware during program linking by the use of a
special class of instructions.

2. Program debugging is greatly enhanced, since the
registers of questionable program remain intact in
memory during debugging. The debug monitor has its
own set of registers in memory, and there 1is no
question of which of many program modules has
tampered with the processor registers, since each
program in question can have its own registers.

3. Recursive, re-entrant, and EPROM resident code is
much easier to write, since program calls are
handled by special instructions and new workspace
areas, linked together by hardware, are available
for use at each program call.



4. Linked-list structuring of workspaces is
automatically done by hardware, reducing system
software overhead.

5. Very fast interrupt handling is possible, since
" only three processor registers (WP,PC,ST)rather
than a whole register set, are stored by the
hardware during the interrupt, usually by a
software instruction or routine.

8.3.1.2 Program Counter Register (PC)

The Program Counter (PC) Register holds the address of the next
instruction to be executed by the processor. As such, it 1is no
different than the PC in any other processor and is incremented while
fetching instructions, unless modified by a program branch or jump, or
during an interrupt sequence.

8.3.1.3 Status Register (ST)

The Status Register holds the processor status and is the only one of
the three processor registers which has nothing to do with memory
directly. It is divided into two parts:

(1) The status bits, which are set to
reflect the attributes of data being
handled by the processor.

(2) 1Interrupt mask, which governs the
priority structure of interrupt
processing.

The ST is organized as shown in Figure 8-2.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sTO ST §T2 S§T3 §T4 | §T5 ST6 sT7 ST8 ST9 | ST10 | ST11 | ST12 l ST13 l ST14 I ST15

L> A> EQ c ov orP X * * * OVEN * INTERRUPT MASK
L> LOGICALLY GREATER THAN ov OVERFLOW
A> ARITHMETICALLY GREATER THAN opP ODD PARITY
EQ EQUAL . : X XOP BEING EXECUTED

C CARRY 7 OVEN OVERFLOW ENABLE

FIGURE 8-2. STATUS REGISTER.
8.3.2 Address Space

The TMS 9995 microcomputer addresses 65,536 (64K) bytes of 8-bits
each. Although the data bus is 16 bits wide, and the instruction set
is mainly word (16-bit) oriented, the basic unit of address is a byte.
The actual memory architecture is 32,768 (32K) words of two bytes
each, and byte processing is accomplished within the processor after
fetching a word from memory. Because the instruction set is mainly
arithmetically oriented and usually operates on 16-bit words, view the
address space as a collection of words, each containing two bytes.

8.3.3 Vectors (Interrupt and XOP)

Interrupt and XOP vectors are located beginning with address >0000,
and extend through >007F. The first part, addresses >0000 through
>0013, contain the interrupt vectors. There are 7 prioritized
interrupts. Level 0 is the highest priority, with a vector pair at
>0000 and >0002. Level 4 is the lowest priority, with its vector pair
at >0010 and >0012. Level 0 interrupt is synonomous with the RESET
function. A vector pair consists of a workspace pointer and a program
counter, both values identifying the interrupt program environment.

Before an interrupt can occur, the processor must recognize it as
having an equal or higher priority than the interrupt mask in the
Status Register. After a valid interrupt has occurred, the interrupt
vector values are retrieved from memory, and the hardware equivalent
of a BLWP instruction takes place.

There is one additional vector pair, at >FFFC and >FFFE, for the NMI
interrupt. When signaled, this interrupt always occurs and cannot be



disabled by the Status Register interrupt mask. Note also that RESET
being 1level zero, cannot be disabled, since its Status Register
priority value of zero is always equal to or higher than any value in
the interrupt mask field.

The XOP vectors work in a similar manner. Vector location begins at
>0040 and extend through >007F.These vectors are triggered by
execution of the XOP instruction, with a number from 0 to 15. There
are no priority-setting interrupts, and XOP service routines may
freely execute other XOPs. One additional event occurs during the
vector action: the source operand of the XOP instruction is evaluated
as an address and placed in the new workspace Register ll. This
provides a parameter to the XOP routine. '

The EVMBUG monitor uses several XOPs for 1I/0 service from the
terminal; some of these are available for the user, as explained in
paragraph 8.2. In addition, the programmer may wish to program
interrupt and XOP vectors for special functions.

8.3.4 Workspace Registers

The actual workspace registers, in memory, provide general working
areas for a program. Some registers can also be used for special
purposes; these are listed in Table 8-2.

In general, Registers 2 to 10 are available for unrestricted use,

although the programmer can use the reserved registers for other
purposes if proper consideration is given.

One advantage of the workspace concept is that one program can request
an almost unlimited number of register sets, or alternatively, every
module in a program system can have at least one set of its own
registers. Programs are usually written to take advantage of the
benefits associated with program operands in registers.



TABLE 8—2. REGISTER RESERVED APPLICATIONS.

Register Application
0 Bits 12-15 ( Least significant nibble ) provide the

shift count for shift instructions coded to refer to
this register. Register 0 is also used for operands
signed multiply and signed divide instructions. This
register cannot be used for indexed addressing.

1 Used for operands of signed multiply and signed
divide instructions.

11 Holds return address following execution of a BL
instruction. During XOP service routine, it holds
the resolved memory address of argument in XOP

instructon.
12 CRU base address.
13 During BLWP, RTWP, interrupts and XOPs holds old

WP contents.

14 During BLWP, RTWP, interrupts and XOPs holds old
PC contents.

15 During BLWP, RTWP, interrupts and XOPs holds old
ST contents.

8.4 LINKING INSTRUCTIONS

These instructions are of vital interest to a programmer, since they
solve the problem of how to get in and out of a program. These
instructions are:

- B BRANCH

- BL BRANCH with return link in R11l

- BLWP BRANCH, new workspace, return link in R13 to Rl5
- RTWP RETURN, uses vectors in R13 and R14

- XOP  BRANCH, new workspace, vectors in low memory



Though not normally considered a program 1linking instruction, the
BRANCH instruction can be used to 1link programs in a specific
location, such as the start of EVMBUG. Since the Workspace Pointer is
not affected by the instruction, program systems using this convention
usually delegate the responsibility for establishing workspaces to
each program. Thus, we may have branches to various programs, as shown
in Figure 8-3. Note that each program sets up its own WP (LWPI

instruction). The AORG and EQU directives are explained in paragraph
8.1.

8 - 10



*PGMA PROGRAM *PGMB PROGRAM *PGMC PROGRAM

AORG >0800 AORG >0A00 AORG >1000
PGMB EQU >0A00 PGMA EQU >0800 PGMA EQU >0800
PGMC EQU >1000 PGMC EQU >1000 PGMB EQU >0A00
PGMA LWP{ >FF90 PGMB LWPI >FF70 PGMC LWPI >FF50

B ©PGMB \/ B @PGMC \—/ B @PGMA
B @>0080 . >

FIGURE 8-3. EXAMPLE OF SEPARATE PROGRAMS JOINED BY BRANCHES TO
BRANCHES TO ABSOLUTE ADDRESSES.

8.4.1 BL (Branch and Link) Instruction

The BL instruction is designed mainly for the calling of subprograms
with a convenient means of returning back to the calling program.
Since the processor puts the address of the next instruction in
Register 11 (it effectively transfers the PC to Rl1l) before branching,
the return path is established. To return (using the same workspace),
simply execute a B *Rll (or RT instruction).

Note, however, that only one level of subroutine call is possible if
only one workspace area is used, unless Register 11 is saved by the
first subroutine wishing to branch and link to a second routine.

8 - 11



CALLING PROGRAM FIRST LINK SECOND LINK

BL @FEQ0 FEQO LI R6,47 FDOO [od] R5,22
MOV R11,R10 B *R11
BL @>FDO00 )
-t
B *R10

FIGURE 8-4. BRANCH AND LINK SUBROUTINE.

The BL subroutine can include XOP instructions to provide special

services needed to accomplish the subroutine function, as in the
following example :

CALLING PROGRAM SUBROUTINE
RDNUM XOP R1,13 READ A CHARACTER

BL @RDNUM C1 R1,>3000 IS IT BELOW A ZERO?
: . JL RDNUM YES, GO BACK

. C1 R1,>3900 IS IT ABOVE A NINE?

. JH RDNUM YES, GO BACK

. XOP 41,12 ECHO THE CHARACTER

B *11 RETURN

The very simple routine shown above reads a character from the
terminal and checks for a decimal digit 0-9. If the character is
acceptable, it is echoed back to the terminal, and then control is
returned to the calling program. If the character is unacceptable, the
routine drops it and requests another; the bad character is not echoed
to show the user that another character must be typed.

8§ - 12



8.4.2 BLWP (Branch and Load Workspace Pointer) Instruction

This is the most sophisticated 1linking instruction. It causes a
complete program environment change (context switch), automatically
links the o0ld workspace to the new, and also preserves the old
processor status. As such, BLWP behaves in the same way as the
interrupt sequence or XOP sequence, and it is therefore possible to
vector to an interrupt or XOP service routine without actually causing
an interrupt or executing an XOP. For example, executing a BLWP @0
will vector to the RESET interrupt handler, which if EVMBUG is
resident, causes the user to set the baud rate and start EVMBUG.

The TMS 9995 is a linked-list rather than a stack machine. Programmers
used to a stack for systems programming may need some readjustment of
thinking, but the superior flexibility of linked-lists is simplified
by the fact that the programmer can move nodes around, whereas in
stack, the nodes are fixed in Last-In First-Out (LIF0Q) order. The
transition can be made easily, since the hardware completes program
linking with the execution of one instruction, and very little effort
is required on the part of the programmer.

There are two immediate possibilities to discuss in wusing the BLWP
instruction. For simple subroutine 1linking the following 1is an
example:

CALLING PROGRAM SUBROUTINE
ENTRY .
BLWP QSUBA PCSUBA . ENTRY POINT
RTWP
SUBA DATA WPSUBA WPSUBA .
DATA PCSUBA .

8 - 13



Note the double word vector pointed to by the BLWP operand, the values
of WPSUBA and PCSUBA. These two Data statements provi

addresses of

monitor,

program

and

WPSUBA

de the memory '

these vectors. The latter (PCSUBA) is the entry point,
and is well defined. However, the WP value is shown h
definition. Th
programs operating together (such as EVMBUG, possibly
a collection of application programs and subroutines),
who is responsible for managing the workspaces? If e
is responsible, then the following definition would be added
to the above subroutine:

is raises a fundamental dgquestion: if

EQU >ED70

ere without a

there are many
a user-written

ach individual

Note that this defines WPSUBA as M.A. >ED70, and ties down one area of
memory to the subroutine; no other program in the system can call this
subroutine without chancing some conflict by using the same workspace.
Thus, the memory area is reserved for one subroutine.

A second approach>is to code a value which is designated as a common

workspace

statement abov
workspace. This implies that there are now two entities:

NOTE:

(1)

(2)

e, the wvalue could be (by agreemen

The reserved workspace, which must be
carefully mapped out ahead of time so
that there is no overlap.

The common workspace (of which there may
be more than one), whose status is such
that any program can use it when it is
not already in use.

for whichever program is in control at the time. In the EQU

t) the common

The previous discussion assumes that the program code is
in EPROM. If the code is to be executed from
the program is simple: put the workspace at the

writing
end of

the program as a data area.

RAM, then

In either case, the user is responsible for partitioning his memory so
that user-defined workspaces do not overlap or interfere with EVMBUG
or the XOPs defined by EVMBUG, or with each other.

8.4.3 RTWP (Return With Workspace Pointer) Instruction

The RTWP instruction can be used to both return from a program, and to

8 - 14

{



link to a program. Because the instruction reloads the processor WP,
PC, and ST Registers from Workspace Registers 13, 14, and 15, the
contents of these registers govern where control will go. If those
registers were initialized by a BLWP instruction, then the action can
be seen as a Return; if special values are placed in these registers,
the action can be viewed as a subroutine call. Program calls are not
limited to a nesting structure, as in stack architecture, but are
generalized so that chains and even rings may be formed. The EVMBUG
monitor wuses the RTWP instruction in this manner: using the "IR"
command, the user fills EVMBUG”s registers 13, 14, and 15. Using the
"EX" command causes EVMBUG to execute a RTWP instruction using the
values in these registers.

Since the RTWP does not affect the new workspace at all, there 1is no
way for the called program to return to the caller, unless the caller
had initalized the new workspace registers before executing the RTWP.
This type of program transfer is in a "forward" direction only, and is

usually suitable only for a monitor program in a fixed location, such
as EVMBUG.

8.4.4 XOP (Extended Operation) Instruction

The XOP instruction works almost like a BLWP instruction, except that
the address containing the double-word vector area is between >0040
and >007F, and is selected by an argument of from 0 to 15, and that
register 11 of the new workspace is initialized with the fully
resolved address of the first operand of the XOP instruction. This

means that if the operand is a register, the actual memory address is
computed and placed in the new register 1l.

The XOP instruction 1is meant as a "supervisor call" or special
function operation. As such, a programmer might wish to implement
routines which perform some standard process, such as a character
string search.

EVMBUG supplies definitions for XOPs 8 through 15, leaving 0 through 7
available for the user. XOPs 0 through 7 are programmed as described
in paragraph 8.9.

8.4.5 Linked-Lists

A linked-list is a system of data organization wherein a collection of
related data, called a node, contains information which 1links it to
other nodes. A prime example is a workspace register set. It contains
16 words of data. If there are many workspaces present at one time
connected by BLWP instructions, then every register 13 will contain
the address of the previous workspace, forming a linked list. At the

8 - 15



same time, the BLWP also places the previous Program Counter value in

Register 14, providing a means of returning back to the previous
program environment.

For example, the "XE" or execute EVMBUG command uses the RTWP
instruction to begin program execution of the WP, PC and St Registers
values in current Registers 13, 14 and 15. The "IR" or Register
Inspect/Change EVMBUG command can be used to set up these registers
prior to the execute command. In the example in Figure 8-5, program
PGMA is executed using the EVMBUG "EX" command; it later gives control
to program PGMB using the BLWP command. In doing so, the processor
forges 1links back to PGMA by placing return WP, PC and ST values in
Registers 13, 14 and 15 of PGMB. Likewise, PGMB branches to PGMC with
return 1links to PGMB forged into R13 to R15 of PGMC. Each can return
to the previous program by executing an RTWP instruction, and the
processor can travel up the linked list until PGMA is reached again.

PGMA
CALL PGMB
BLWP
R13-15
PGMB
BLWP
L, CALL
PGMC
RTWP
RETURN
R13-15 LINKS TO
PGMA
PGMC
RTWP
RETURN 1315
LINKS TO )
PGMB

FIGURE 8-5. LINKED-LIST EXAMPLE.

8 - 16



8.5 COMMUNICATIONS REGISTER UNIT (CRU)

The CRU is an instruction (software) driven bit-oriented I/O interface
that 1s separate from the memory interface. The CRU of the TMS 9995
can directly address, in bit fields of one to sixteen bits, up to
32768 input bits and 32768 output bits.

8.5.1. CRU Addressing

The CRU bit address is the value as seen on address lines A0 to Al4.
These 15 lines allow addresses from 0 to 32767. In other words, the
CRU bit addressing scheme allows the user to addresss up 32768
distinct CRU entities (CRU "bits"). For example, the large address
decoder monitoring these 1lines could enable up to 32768 devices
through the Address Bus. CRU bit addresses for CRU devices on the TMS
9995 EVM are listed in Table 8.3.

TABLE 8-3. TMS 9995 EVM BOARD PREDEFINED CRU ADDRESSES.

CRU Bit Address

( Address Lines ) CRU Base Address

Function { A0 to Al4 ) (R12 Bits 0-15)
™S 9902, Main I/0 (lower half) 0000 0000
™S 9902, Main I/0O (upper half) 0010 0020
T™S 9902, Auxiliary I/0 (lower half) 0200 0400
™S 9902, Auxiliary I/0 (upper half) 0210 0420
9995 CRU Flag Register 0r78 1EF0
9995 MID Flag OFED 1FDA

8.5.1.1 CRU Bit Address And Register 12

When any of the five CRU instructions is executed, the CRU bit address
plus a displacement (TB, SBO and SBZ only) are active on address lines
A0 to Al4. This address is obtained from 15 bits of Register 12 (R12),

bits 0 through 14. Note that only 15 of the 16 bits of R12 are used,
with bit 15 ignored.

8 - 17



ADDRESS {
LINES

A3 A4 A5 A6 A7 A8 A9 A10 A1l A12 A13 Al4 <

R12 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

ZEROES CRU PORT ADDRESSED IGNORE
(CRU BIT ADDRESS)

FIGURE 8-6. CRU ADDRESS IN REGISTER 12 vs ADDRESS BUS LINES.

Because bit 15 of R12 is not used, some confusion can result while
programming. Instead of 1loading the CRU address in bits 1 to 15 of
Register 12, e.g., LI R12,>0200 to address the Port 2 TMS 9902 at CRU
address >0200, the programmer must shift the base address value one
bit to the left so that it is in bits 0 to 14 instead of bits 1 to 15.
Several programming methods can be used to ensure this correct

placement, and all of the following examples place the TMS 9902 bit
address of >0200 correctly in R12:

(1) LI R12,>0400 PLACES 200 IN BITS 0 TO 14
(2) 11 R12,>0200%*2 MULTIPLY BAS® ADDRESS BY 2 (NOT (
RECOGNIZED BY LINE-BY-LINE ASSEMBLER)
(3) LI R12,>0200 BASE ADDRESS IN BITS 1 TO 15
SLA R12,1 SHIFT BASE ADDRESS ONE BIT TO LEFT

From a programming standpoint, it may be best to view addressing of
the CRU through the entire 16 bits of R12. In this context, blocks of
a maximum of 16 CRU bits can be addressed, and in order to address an
adjacent 16-bit block, a value of >20 must be added or subtracted from
Rl12. For example, with R12 containing >0000, CRU bits >10 to >1F can
be addressed by adding >20 to R12.

8 - 18



8.5.2 CRU Instructions

The five instruction that use the CRU interface are:

- LDCR Place the CRU bit address on address lines A0 to
Al4. Load from memory a pattern of 1 to 16 bits
and serially transmit this pattern through the
CRUOUT pin of the TMS 9995. Increment the address
on A0 to Al4 after each CRUOUT transmission.

- STCR Place the CRU bit address on address lines A0 to
Al4. Store into memory a pattern of 1 to 16 bits
obtained serially at the CRUIN pin of the TMS
9995, Increment the address on A0 to Al4 after
each CRUIN sampling.

- SBO Place the CRU bit address plus the instruction”’s
signed displacement on address lines A0 to Al4.
Send a logical one through the CRUOUT pin of the
™S 9995.

- 8BZ Place the CRU bit address plus the instruction’s
signed displacement on address lines A0 to Ald4.
Send a logical zero through the CRUOUT pin of the
TMS 9995.

- TB Place the CRU bit address plus the instruction’s
signed displacement on address lines A0 to Ald4.
Sample the CRUIN pin of the T™S 9935 and place
the bit read into ST2, the equal bii of the
Status Register.

8.5.3.1 CRU Multibit Instructions

The two multibit instructions, Load Communications Register (LDCR) and
Store Communications Register (STCR) address the CRU devices by
placing bits 0 through 14 of CRU bit address Register 12 on address
lines A0 through Al4. The first operand addresses the source field or

receiving field, and the second operand supplies the length of the
operation.

If the length is coded as from 1 through 8 bits, only the left byte of
the source or receiving field takes part in the operation, and bits
are shifted in or out from the least significant bit of that left
byte. Thus, an instruction: LDCR R2,1: outputs bit 7 of R2 to the CRU
at the address derived from Register 12. An instruction : STRC R5,2:
would receive two bits of data serially and insert them into bit 7 and

8 - 19



then bit 6 of Register 5. The CRU address lines are automatically
incremented to address each new CRU bit, until the required number of
bits are transferred. In an STCR instruction, unused bits of the byte
or word are zeroed. 1In this last example, bits 0-5 are zeroed:; the
right bit is unaffected.

An LDCR loads the CRU device serially from memory. An STCR stores data
into memory obtained serially from the addressed CRU device. Figures
8-7 and 8-8 show this operation graphically.

LI R12,>200 LOAD CRU BASE ADDRESS >100 IN BITS 4 TO 14 OF R12

LDCR R5.,6 6 BITS TO CRU

0 0 ) 0 0 0 1 0 0 0 0 0 1 1 0 o | »020C

0 0 0 0 0 0 1 o 0 0 0 0 0 0 ) o | ~0200

o o0 1 1 o o | o 1 1 o [lo oo 1 o 1 | 3185

R5 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0

[ ——
IGNORE l
— 0 - CRU Address >100

—1
—2

°
.
.
vvYyy

\{
|
o

- CRU Address >105

8 BITS OR LESS — BYTE ADDRESS
9 BITS OR MORE — WORD ADDRESS
NOTE: EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.
—11

FIGURE 8-7. LDCR INSTRUCTION.



Ll

R12,>120*2

LOAD CRU BASE ADDRESS >120 IN BITS 4 TO 14 OF R12
STCR

R4,10 .

10 BITS FROM CRU TO R4

0 1 2 3 4 5 6 7 8 9 10 1112 1314 1§
60 0 o0 o0 o 1 06 0o 0 0 _ o6 |1 1 _ 0o o >020C
0O 0 6 o o o 1 0 0 1 06 _0 0 0 0 o >0240
o o 1 1 0 1 [1 o 1 oo o Jo 1 o o >3684
0 6 15
R&lojJolojojojo
' I { — 0 <CRU Address >120
ZERO FILL 1
UNUSED LEFT-SIDE BITS ¢ o o — 2
— 3
— 4
— 5
— 6
— 7

b—— 9 <—CRU Address >129

F— A

NOTES: 8 BITS OR LESS — BYTE ADDRESS
9 BITS OR MORE — WORD ADDRESS
THE MULTIPLICATION IN THE DESTINATION OPERAND (>120*2) —20C
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER.
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF

— B

— D

THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS OF ~— E
REGISTER 12. — F
— 10

FIGURE 8-8. STCR INSTRUCTION.

8.5.3.2 CRU §1Qg}e—bit Instructions

The three single-bit instructions are (1) Set Bit To Zero (SBZ), (2)
Set Bit To One (SBD), and Test Bit (TB). The first two are output
instructions, and the last is an input instruction. All three instruc-
tions have only one operand, which is an eight-bit displacement to be
added to the contents of R12 to provide the address for the desired
bit. The SBZ instruction sets the addressed bit to zero (CRUOUT of
zero), and the SBO instruction sets the addressed bit to one (CRUOUT
of one). The TB instruction reads the addressed bit (samples CRUIN)
and places it directly into bit 2 (EQ) of the Status Register for
testing with JEQ and JNE instructions.

The displacement is treated as a signed, eight-bit number, and thus,
has a range of values of -128 to +127. This number is added to the CRU

8 - 21



bit address derived from bits 0 to 14 of Register 12, and the result

is placed on the address lines. This process is illustrated in Figure
8-9.

Notice that after execution of a TB instruction, A JEQ instruction

will cause a jump, if the bit value is a one, and the JNE will cause a
jump if a zero.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X X X X fwi2

DON‘T CARE

8 9 10 11 12 13 14 15

BIT 8 SIGN

w : : : EXTENDED

SIGNED
DISPLACEMENT

ol ol o " | ADDRESS BUS

- ——— ——

SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU

OPERATIONS

FIGURE 8-9. ADDITION OF DISPLACEMENT AND R12 CONTENTS TO CRU BIT
ADDRESS.

8.6 DYNAMICALLY RELOCATABLE CODE

Most programs written for the TMS 9995 will contain references in
memory. These references are given by means of a symbolic name
preceeded by an at (@) sign. Examples are: @>EDO0 (memory address
>ED00, recognized by the LBLA) or, @SUM (recognized by a
symbol-reading assembler, not the LBLA).

8 - 22



For example, a short program, located at M.A. >0900 to >090F, adds two
memory addresses, then branches to the monitor:

0900 MoV @>090C,Rr1 MOVE VALUE AT M.A. 090C TO Rl

0904 A @>090E, R1 ADD VALUE AT M.A. 090E TO Rl
(R1=ANSW)

0908 B @>0080 RETURN TO MONITOR

090C DATA 100 FIRST NUMBER

090E DATA 200 SECOND NUMBER

In this program, a number in EPROM is moved to a register in RAM, and
another number in EPROM is added to that register (the destination of
an add must be in RAM in order for the sum to be written into it). If
it is desired to move this entire program to another address (such as
to RAM for debugging purposes to allow data changes as desired), then
the locations in the c¢ode must be changed to reflect the new
addresses. For example, to relocate the above example to start at
address >ED00, each of the addresses of the numbers must be changed
before the program can execute; otherwise, the program will try to
access numbers in M.A. >090C and >090E When they have been relocated
to M.A. >EDOC and >EDOE respectively.

For a variety of reasons, it may be advantageous to have code that is
"self-relocating™; that is, it can be relocated anywhere in memory and
execute correctly. Such "position-independent" or "dynamic-relocating"
code is of great advantage when the code 1is programmed into EPROM,
since the EPROMs can be installed in any socket, responding to any
address, and the program will still execute correctly. Such programs
are possible with the TMS 9995 EVM by merely beginning the program
with the code segment shown below (Register 10 is used in the
following examples) Thereafter, memory addresses can be indexed,
relative to the beginning of the program (using R10 at the 1Index
Register, in this case). This code is shown in Figure 8-10.

8 - 23



Memory Address Opcode/Operands Comments

0000 START LWPI FEOO RO AT M.A. FEO0O.
0004 LI R10,START LOOK AT START ADDRESS.
0008 JEQ RELOC IF NOT BIASED, NEED
RELOCATING.
Base oooa CLR R10 LOADER HAS BIAS, CLEAR
Register BASE REGISTER.
Setup 000cC JMP STARTX GO TO PROGRAM.
000w RELOC LI R10,>045B B *R11l OPCODE IN R10.
0012 BL R10 PC VALUE TO R1l.
0014 RELOCX Al R1ll,START-
RELOCX PC-10 = PROGRAM START
0018 MOV R11l,R10 PROGRAM START TO R10
001lE STARTX MOV @>021A(R10), MOVE FIRST NUMBER TO Rl.
R
Reloca- 0012 A @>001Cc(r10, ADD 2ND NUMBER TO R1,
table R2 ANSWER IN Rl.
Program 0016 B @>0080 RETURN TO MONITOR.
001a DATA 100 FIRST NUMBER.
001cC DATA 200 .SECOND NUMBER.

FIGURE 8-10. EXAMPLE OF PROGRAM CODING ADDED TO MAKE (CODING)
RELOCATABLE.

This coding first sets up a program base register which computes the
address of the beginning of the program. This is accomplished by:

- Establishing the beginning workspace register address with LWPI.

- Placing the opcode for the instruction: B *Rll in the designated
index register address (R10 above).

- Executing a branch and link to R10; this places the address of
the next instruction following BL R10 into Register 1ll; a
branch of R10 means a return indirect through R1l.

- Computing the beginning address of the program by subtracting
>10 from the address in Register 1l.

- Moving this beginning address to R10, allowing Rll to be further
used as a linking register.

- Indexing all future relocatable addresses using R10.

8 - 24



There are several considerations. Absolute addresses (e.g., beginning
of monitor at >0080) need not be indexed, and other types of memory
indexing should consider the contents of the base register; it may be
necessary t0 add the contents of the base register to another indexing
register. Also, an immediate load of an address into a register will
require that the base address in the index register be added to the
register. For example:

LI R2,>0980 ADDRESS OF VALUES IN R2
A R10,R2 ADD BASE ADDRESS

Figure 8-11 1is an example of a program that searches a table of
numbers for a value. The example shows both relocatable and
non-relocatable code for comparison. Symbolic addressing is used.

*NON SELF-RELOCATING *SELF-RELOCATING
L4 3, TABLE POINT TO TABLE #—— 3 Li 3,TABLE POINT TO TABLE
MOV  @COUNT,2 GET COUNT<———|_ A 10,3 ADD BASE REG
SEARCH C 1,%3+ (R1) IN TABLE? MOV  @COUNT(R10),R2 GET COUNT
JEQ FOUND YES C 1,3+ {R1) VALUE
DEC 2 NO, DOCK CNTR JEQ FOUND IN TABLE?
JNE SEARCH LOOK AGAIN DEC 2 NO, DEC
COUNTER
JNE SEARCH LOOK AGAIN
COUNT DATA 6 COUNT DATA 6
TABLE DATA 12,15,569,62,73,92 TABLE ‘DATA  12,15,69,62,73,92

FIGURE 8-11. EXAMPLES OF NON-RELOCATING CODE AND SELF-RELOCATING
CODE.

Great care must be taken with B, BL, and BLWP. If linking to other
modules is needed, these modules must be part of a system which is
linked together by the 1linker program (e.g., TXLINK on the FS990

8 - 25



system, for example), and all modules must be coded as
self-relocating.

When programming the EPROMs, the code must be loaded so that the
address START has the value zero, i.e., the code must appear biased at
location >0000.

8.7 PROGRAMMING HINTS

In any programming environment there are several ways to accomplish a
task. Table 8-4 contains alternate coding practices; some have an
advantage over conventional coding.

TABLE 8-4. ALTERNATE PROGRAMMING CONVENTIONS.

Conventional Alternate Alternate Code
Purpose Code Code Advantages
Compare register CI RX,0 MOV RX,RX Saves one word.
contents with 0
Increment a INCT RX C *RX+, *RX+ Saves one word.
register by 4 INCT RX
Access old MOV @N(R13),R1l N is twice the
workspace number of the
registers old register
wanted.
Swap two MOV RX,RHOLD XOR RX,RY Saves a register
registers MOV RY,RX XOR RY,RX ("RHOLD” not
MOV RHOLD,RY XOR RX,RY needed ).
Clear a CLR RX . XOR RX,RX None.
register

8 - 26



8 8 INTERFACING WITH EVMBUG

The EMVMBUG monitor provides a starting point for the programmer to
consider when looking for program examples. The monitor contains some

basic user facilities, and the wuser will probably enter and exit
programs through EVMBUG.

8.8.1 Program Entry and Exit

To exXecute a program under EVMBUG, use the "IR" and "EX" commands, as
explained in Section 5 of this manual.

Exit from a program to EVMBUG can be through: B @>0080. EVMBUG will
print the prompting question mark. Note that the power-up
initialization routine is not entered; instead, control goes directly
to EVMBUG”s command scanner.

8.8.2 I/0 Using Monitor XOPs

8.8.2.1 Character 1/0

Four XOPs deal specifically with character I/0:

- Echo Character XOP 11
~ Write Character XoP 12
- Read Character XOP 13
- Write Message X0oP 14

The echo (XOP 11) is a read character (XOP 13), followed by a write
character (XOP 12). The following code reads in a character from a
terminal. If an A or E is found, the character is written back to the
terminal and program execution continues; otherwise, the program loops
back, waiting for another keyboard entry:

GETCHR XOP R1,13 READ CHARACTER

CI R1,>4100 COMPARE R1 TO ASCII "A"

JEQ OK IF "A" FOUND, JUMP

CI R1,>4500 COMPARE Rl TO ASCII "E"

JEQ OK IF "E" FOUND, JUMP

JMP GETCHR RETURN TO READ ANOTHER CHAR
OK XOP R1,12 WRITE CHARACTER AS ECHO

8 - 27



XOP 14 causes a string of characters to be written to the terminal.
Characters are written until a byte of all zeroes is found.

XOP 13 reads one character and stores it into the left byte of a word;
the right byte is zero filled. The previous coding example could also
have been completed with the following: OK XOP R1.14

Instructions are written in uninterrupted form; thus, messages should

be grouped in a block separated from the continuous executable code.
Each message must be delimited by a byte of all zeroces:

**MESSAGES

CRLF BYTE >0D

LF BYTE >0a,>00

MSG1 TEXT “BEGIN PGMA”
BYTE 0

MSG?2 TEXT “END PGMA”
BYTE 0

MSG3 TEXT “# ERRORS (IN HEX):”
BYTE 0

MSG4 TEXT “ERROR EXP VALUE="
BYTE 0

MSGS5 TEXT “,RCV VALUE="
BYTE 0

Note in the preceeding example, that if it is desired to send a
carriage return and a line feed, use the following: XOP @CRLF,14. If
only a line feed is wanted, use: XOP @QLF,1l4.

8.8.2.2 Hexadecimal I/0

Three XOPs handle hexadecimal numbers:

- Write one hexadecimal character XoP 8
- Read a four-digit hexadecimal word X0oP 9
- Write four hexadecimal characters XOP 10

8 - 28



Using the message block in paragraph 8.8.2.1, an example code segment
might be: :

*ERROR ROUTINE

ERROR XOP @MsG4,14 START ERROR LINE
X0oP R1,10 PRINT CORRECT EXPECTED VALUE
Xop @MsGS5, 14 MORE ERROR LINE
XOP R2,10 PRINT ERRORED RCV VALUE
XOP @CRLF, 14 DO CARRIAGE RETURN/LINE FEED
XOP QLF,14 ONE MORE LF FOR DOUBLE SPACE

XOP 8 1is actually called four times by XOP 10, after positioning the
next digit to be written into the least significant four bits of the
Work Register.

The following shows how to input values to a program by asking for
inputs from the terminal:

GET XOP R4,9 CALL TO GET HEX # ROUTINE
DATA NULL, ERROR NO INPUT/BAD INPUT ADDRESSES
OK A R3,R4 ADD OLD NUMBER IN
JMP XXX CONTINUE PROGRAM
NULL LI R4,>3AF1 LOAD DEFAULT VALUE
XOP @DEFMSG, 14 PRINT DEFAULT MESSAGE
JMP OK
ERROR XOP @ERRMSG, 14 PRINT ERROR MSG
JMP GET TRY AGAIN
DEFMSG TEXT “DEFAULT USED”
BYTE 0
ERRMSG TEXT “ERROR: USE 0-9, A-F ONLY”
BYTE 0

Note that the XOP 9 routine stores only the 1last four digits typed
before the termination character (delimiter) is typed. This means if a
wrong number is entered, continue typing until four correct digits are
entered; then type a delimiter (space, carriage return, or minus
sign) . Typing fewer than four digits total (but at least one digit)
causes leading zeroes to be inserted. Typing only a delimiter gives
control to the first address following the XOP, and typing an illegal
character at any time causes control to go to the address specified in
the second word following the XOP call.

8 - 29



8.9 INTERRUPTS AND XOPs
8.9.1 Interrupt and XOP Linking Areas

When an interrupt or XOP instruction is executed, program control is
transferred using the WP and PC vectors 1located in lower memory.
Interrupt vectors are contained in memory addresses >0000 to >0013;
and XOP vectors are contained in memory addresses >0040 to >007F.
User-available interrupt and XOP vectors are preprogrammed in the
EPROM chip with WP and PC values that allow the user to implement
interrupt service routines (ISRs) and XOP service routines (XSRs).
This includes programming an intermediate linking area as well as the
ISR or XSR code.

When an interrupt or XOP is executed, it first passes control to the
vectors which point to the linking area. The 1linking area directs
execution to the actual ISR or XSR. The linking areas are shown in
Table 8-5. The linking area is designed to leave as much space free as
possible when not using all the interrupts. that 1is, the most
frequently used areas are butted up against EVMBUG area, while the
least frequently used areas extend downward into RAM.

Return from the ISR or XSR is through return vectors in R13, Rl4, and
R15 at the ISR or XSR workspace and at the linking area workspace.

How to program these 1linking areas 1is explained in the following
paragraphs.

8.9.1.1 1Interrupt Linking Areas

When one of the programmable interrupts (INT1 - INT4) is executed, it
traps to an interrupt linking area in RAM. Each linking area consists
of six words (12 bytes) as shown in Figures 8-11 and 8-12. The first
three words contain the last three registers of the called interrupt
vector workspace (R13, R1l4, and R1l5). The second three words, 1located
at the interrupt vector PC address, are intended to be programmed by
the user to contain code for a BLWP instruction, a second word for the
BLWP destination address, and an RTWP instruction code (all three
words to be entered by the user). When the ISR is completed, control
returns to this linking area”s three registers (R13-R15), then the
BLWP instruction (at the PC vector address) is executed using the M.A.
provided by the user. The BLWP instruction consists of two words, the
BLWP operator and the destination address; the destination address
points to a two-word area also programmed by the user.

8 - 30



TABLE 8-5. PREPROGRAMMED INTERRUPT AND USER XOP TRAP VECTORS.

NOTE: Interrupt 4 is used by the timers at the TMS 9902.

Memory Address. Interrupt WP PC
0000 INTO ECO00 022E
0004 INT1 FOD6 FOFO
0008 INT2 FOCAa FOEA
000C INT3 FOBE FODE
0010 INT4 FOB2 FOD2
Memory Address Interrupt WP PC
0040 XOPO FOAC FOBE
0044 XO0P1 FO9E FOBO
0048 XOP2 F090 FOA2
004cC X0P3 F082 F094
0050 XOP4 F074 F086
0054 XOP5 F066 F078
0058 XOP6 F058 FO6A
005cC XOP7 F04A FO5C

8 - 31



TABLE 8-6. INTERRUPT AND USER XOP LINKING AREAS.

MEMORY
ADDRESS 0-1 2-3 4-5 6-7 8-9 A-B C-D E-F
F050 XO0P7 XO0P7

F060 Xopr7 XOP7 XOoP7 XOoP7 XoP7 XOP6 XOP6 XOP6
F070 XOP6 XOP6 XOP6 XOP6  XOP5 XOP5 XOP5  XOP5
F080 XOP5 XOP5 XOP5 XOopr4 XOP4 Xop4 Xopr4 XOP4
F090 XO0Pr4 X0pr4 XOP3 XOP3 X0P3 X0P3 XOP3 XOP3
FOAO XOP3 X0op2 XOP2 X0OP2 X0P2 X0P2 X0P2 X0P2
FOBO XOP1 X0P1l XOP1l XO0P1 XoPl XOP1 X0rl X0pP0
FOCO X0P0 X0opP0 X0PO X0oP0 XOP0 XO0PO INT4 INT4
FODO INT4 INT4 INT4 INT4 INT3 INT3 INT3 INT3
FOEO INT3 INT3 INT2 INT2 INT2 INT2 INT2 INT2
FOFO INT1 INT1 INTL INT1 INT1 INT1

Return from the interrupt service routine. is through the RTWP
instruction (routines®s last instruction). This places the (previous)
WP and PC values at the time of the BLWP instruction (in the six-word
linking area) into the WP and PC registers. The RTWP code that follows
the BLWP instruction will now be executed, causing a second return
routine to occur, this time to the interrupted program using the
return values in R13, R14, and R15 of the interrupt link area. This is
shown graphically in Figure 8-12.

8 - 32



INTERRUPT NO. 1 FIRST REGISTER
RECOGNIZED Fooe RO " |\ WORKSPACE
£ 4 4 6WORD INTERRUPT LINK AREA
M. 0000 we
0002 PC @
0004 [ ~"FoDe |
o006 [—Foex R13 (OLD WP}
LT
R14 (OLD PC) XXXX WPYYYY .
® .
i
R15 (OLD ST) 2 / PC 222277
ALAIIIIY 2
INTERRUPT roea M /BLM, 7
VECTORS IN ‘ / ]
"/,
EPROM FOEC A XXXX ~.
% A
72 7y s h
roee A RTWe YYYY RO
® i

N
[ X X ]
A‘
©

R13 FOD6

@ R14 FOEE

R15 (OLD ST)

\
p\‘

INTERRUPTED
PROGRAM

RTWP

1,2 INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA. -
34 BLWP EXECUTED TO 2WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR} INTERRUPT SERVICE ROUTINE
§  RTWP FROM ISR TRAPS BACK TO 6-WORD LINK AREA.

RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

FIGURE 8-12. INTERRUPT SEQUENCE.



Each interrupt linking area is set up so that it can be programmed

this

as follows:

Determine the location of the linking area, as shown
by the WP and PC vectors in Table 8-4.

The PC vector will point to the last three words of
the six-word area. The user must program these three
words respectively, with >0420 for a BLWP
instruction, the address (BLWP operand) of the
2-word vector pointing to the interrupt service
routine, and >0380 for an RTWP instruction, as shown
in Figure 8-13.

At the vector address for the BLWP operand, place
the WP and PC values respectively of the interrupt
handler.

8 - 34

in

manner. In summary, each six-word linking area can be programmed



EXAMPLE USING INT1 LINKING AREA (WP = FODS, PC = FOEA)

M.A.

FOD6

FOE4

FF76

FF78

TO BE FF7A
PROGRAMMED FF7C
BY USER FE7E

FIGURE 8-13.

ja—— (ACTUAL ADDRESS OF RO OF INTERRUPT

R13 (OLD WP)

R14 (OLD PC)

USED TO SAVE RETURN VALUES

R15 (OLD ST)

{TO INTERRUPTED PROGRAM)

0420 (BLWP)

pag————— INT1 VECTOR PC ADDRESS (CONTAINS BLWP)

XXXX

l@———— ADDRESS OF 2-WORD VECTOR POINTING

0380 (RTWP)

TO WP AND PC VALUES OF ISR
—————— RETURN PC VALUE IN ISR POINTS TO THIS

RTWP INSTRUCTION

DO NOT USE RO-R12 OF THE LINKING AREA WORKSPACE,
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-

RUPT OR XOP.

NOTE

SIX-WORD INTERRUPT LINKING AREA.



Coding to program the linkage to the interrupt service routine 1is as
follows (sample only):

*PROGRAM POINTER TO INT1l SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION

AORG >FFEA INT1 PC VECTOR ADDRESS

DATA >0420 HEX VALUE OF BLWP OP CODE

DATA >EDO0 LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)
DATA >0380 HEX VALUE OF RTWP OP CODE

*PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE

(EXAMPLE)
AORG >ED00
DATA >EEOO WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)
DATA >ED04 PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

*INT1 ISR FOLLOWS (BEGINS AT M.A. >EDO04)

The interrupt service routine which begins at M.A. >ED04 will
terminate with an RTWP instruction.

8.9.1.2 XOP Linking Area

The XOP linking area contains seven two-byte words. The first, second,
and the fourth words must be programmed by the user. Each XOP vector
pair contains the pointer to the new WP in the first word, and a
pointer to the new PC in the second word. These point to the first
instruction to be executed..

In the seven-word XOP linking area, the first word is the destination
of the XOP PC vectcr. The 1last three words are the final three
registers (R13, R14, and R15) of the linking area workspace which will
contain the return vectors back to the program that called the XOP.
The third word of the seven-word area is Rll, which contains the
parameter being passed to the XOP service routine. This is shown in
Figure 8-14.

8 - 36



EXAMPLE USING XOP 2 LINKING AREA (WP = FF48, PC = FF5A)

M.A. (ACTUAL ADDRESS OF RO OF XOP2
Fogo VECTOR WP)
FOA2 0420 (BLWP) §——————— XOP2 VECTOR PC POINTS TO HERE
TOBE FOA4 YYYY @—— POINTS TO XSR WP & PC VECTORS
PROGRAMMED '
2 USER FOAG R11 (PARAMETER) |e———— XOP SOURCE ADDR.PARAMETER
FOAS 0380 (RTWP) §————— RTWP BACK TO CALLING PROGRAM
FOAA R13 (OLD WP} ‘
FOAE 120D PO) USED TO SAVE RETURN VALUES
(TO INTERRUPTED PROGRAM)
-FOAE R15 (OLD ST)

FIGURE 8-14. SEVEN-WORD XOP INTERRUPT LINKING AREA.

For example, when XOP2 is executed, the PC vector points to the BLWP
instruction shown at M.A. >F0A2 in Figure 8-14. This executes,
transferring control to the pre-programmed WP and PC values at the
address in the next word (YYYY, as shown in Figure 8-14). To obtain
the parameter passed to Rll of the vector WP (M.A. >FOA6 in Figure
8-13), use the following code in the XOP service routine:

MOV *R14+,Rl1 MOVE PARAMETER TO Rl

This moves the parameter to Rl from the old R1l1l (the old PC value in
R14 was pointing to this address following the BLWP instruction
immediately above it, effectively to R1ll), and increments the XOP

8 - 37



service routine PC value in its R14 to the RTWP instruction at M.A.
>FO0A8. Thus, an RTWP return from the XOP? service routine will branch
back to the RTWP instruction at memory address >F0A8, which returns
control back to the instruction following the XOP.

In summary, the seven-word XOP 1linking area can be programmed as
follows :

- Determine the value of the PC vector for the XOP, as
shown in Table 8-4.

- The PC value will point to the first word of the
seven-word linkage area. The user must program three
of the first four words of this area as follows:
>0420 for a BLWP instruction, the address of the
two-word vector that points to the XOP service
routine, ignore the third word, and, >0380 for an
RTWP instruction in the fourth word.

- At the address of the BLWP destination in the second

word, place the WP and PC values respectively to the
XOP service routine.

An example of coding to program the XOP linkage for XOP2, as shown in
Figure 8-14, is as follows:

*  PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA

AORG >FF5A XOP2 PC VECTOR ADDRESS

DATA >0420 HEX VALUE OF BLWP ADDRESS

DATA >FA00 LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA 0 IGNORE

DATA >0380 HEX VALUE OF RTWP CODE

* PROGRAM POINTER TO 2-WORD VECOTRS TO XOP2
* SERVICE ROUTINE (EXAMPLE)

AORG >FA00 LOCATION OF VECTORS
DATA >FB00O WP OF XOP SERVICE ROUTINE (EXAMPLE)
DATA >FAQ04 PC OF XOP SERVICE ROUTINE (EXAMPLE)

* XSR CODE FOLLOWS (BEGINS AT M.A. >FA04)

8 - 38



At the XOP service routine, the following code uses the PC return
value (in Rl4 of -the XOP service routine workspace) to obtain the
parameter in Rl11l (in the link area), as well as set the return PC

value in R1l4 (in the XOP service routine workspace) to the RTWP in the
link area:

MOV *R14+,R1 MOVE OLD R1l1l CONTENTS
TO Rl OF XOP SERVICE ROUTINE

Now, Rl4 points to the RTWP instruction in the link area. The last
jnstruction in the XOP service routine is RTWP. RTWP execution causes

a return to the 1link area, where a second RTWP executes, returning
control to the next instruction following the XOP.

8.10 TMS 9995 INTERVAL TIMER INTERRUPT PROGRAM

A Detailed discussion as to how the TMS 9995 Decrementer is configured
to act an interval timer can be found in the TMS 9995 Data Manual.

There are several possible sequences of coding that can program and
enable the 1Interrupt 3 interval timer, and since the timer has a
maximum period of 87.25 milliseconds before issuing an interrupt, the
programmer must decide whether to set the interval period in the
calling program or in the code handling the interrupt. If the
interrupt period desired is longer the 87.25 milliseconds then it may
be advantageous to reset the timer in the interrupt subroutine, which
also triggers the interrupt and returns control back to the
interrupted program. In any case, the timer must be initially set and
triggered following the general sequence below.

l. Set Flag Register CRU address for the TMS 9995 in
bits 0 to 14 of R1l2.

2. Set up the Interrupt 3 linking area.

3. Set the Status Register interrupt mask to a value
of 3 or greater.

4., Set the 9995 RAM address for the Decrementer to
the value of the interval desired (bits 0 to 15).

5. Set the 9995 FLAGl to 1 to enable the Decrementer
countdown.

8 - 39



The TMS 9995 Decrementer decrements the value set in Step 4 at the
rate of 1 every 4 clock cycles (approximately 750 K Hz with a 3 MHz
clock). The maximum interval register value of all ones in 16 bits
(65,535) takes approximately 87.25 milliseconds to decrement to zero.

The code in Figure 8-15 is an example of a code to set up and call the
™S 9995 interval timer and also the code of the interrupt handling
subroutine. Note that the calling program first clears the counting
register (RO) of the interrupt workspace, then it sets up the
interrupt masks at the 9995 after setting the CRU address of the 9995
Flag Register in Rl2. Then the calling program sets an initial value
in the timer register. Because the desired output on the terminal is a
messade every 15 seconds, the miminum 9995 decrement count program is
set up in the calling program while the interrupt handler routine is
responsible for tabulation and clearing of interrupts after they
occur. The handler keeps track of the number of intervals to determine
the 15 second count.

At the bottom of the figure is the interrupt linking area. Since all
the code in this figure is loaded as if at absolute memory address
values (using the AORG assembler directive), data statements are used
here at the appropriate memory address. This program can be loaded and
executed by placing the machine-language assembler output in the third
column at the address shown in the second column. Then execute with
the program start at memory address >ED0O.

The TMS 9995 can also be used as an event timer by starting the

counter at the beginning of an interval and reading the counter after
the event has occurred.

8 - 40



0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
ao1ls
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
003S

0036
0037

0038
0039
0040
0041
0042
0043
0044
0045
0046

ooa7

0048
0049
0050
0051

goo0

[ ]
EDOO
EDOZ
EDO4
Ef06
ELOS
EDOA
EDOC
EDOE
EC1C
ED12
ED14
EDte6
EQ18
ED1A
EDLC

EE0D
EEOO
EEOe
EEQ4
EEO6
ELO08
EEQA
EEOC
EEOE
EELC
EEL12
EEL14

FIGURE 8-15.

0060
0001
000C

FFFA
1EED

02EOQ
£ED30
0201
Fuz4
GUEQ
ED30
c801
FFFA
020C
1EEC
1E£00
0300
0003
1Dot
10FF

ED3Y
EEO4
€300
0000
0280
ooB4
1308
0580
1E01
c801
FFFA

[T L P T I YTIX v Y  F  EE R L L L L L L X T X A 2 R A 2 X 3 2 % J
THIS PROGHA® CAUSES AN INTERRUPT THROUGH INT3
EVERY 15 SECUNDS USING THt ODECREMENT COUNTER AS
An INTERVAL TIMER IN THE TMS9995, THE AORG
DIRECTIVE CAUSES THE CODE TO BE ASSEMBLED BY
THE T~S999S EVM SYSBOLIC ASSEMBLER BEGINNING
AT THE ADDRESS SPECIFIED. THIS PROBRAM CAN BE
EXECUIED BY LOADING THE PROGRAM WITH THE EVMBUG
"IM" COMMAND AND EXECUTED WITH THE “EX™ COMMAND
AT THE PC ADDRESS >ED00, LOAD OBJECT IN THE
THIRD COLUMM OF THE LISTING AT ADDRESS IN
28D COLUMA,
(L LT E TR R L L L LT R L b AR A b bl f kol oh el A o h i il

IuT 'TIMER®
T s n S e R P R P D A R D N W W YD D W T AR S P P T TR DR D AR W W R
* REGISTER EQUATES

" N A W W D A W S TP R D AW -

* A R R X X N F * X X

RO EWU 0
R1 | EnU 1
R12 EsU 12

N - - = - -

*  WORK AREA DEFINITIONS

P P P P R R L L R L R L L L L L L L L L L L ]
DECADR EwU >FFFA M,A, FOK 9995 DECREMENTER
FLAGO EwU >1tEQ 9995 FLAGO CRU ADDRESS

T . " . " W o - - -

*  PROGRAM CALLING THE INTERRUPT

K - - - " . 4 0 =

AGRG >EDO0O BEGIN ASSEMBLY AT M_A, >EDOO

LaPl >ED30 DEFINE CALLING PROG WORKSPACE ADDRE
LI R1.,>Fd24 SET R1 TO CLOCK CNT QOF 62,500

CLR a@>tD30 CLEAR INTERRUPT REG 0

MUV K1,aDECADR TRANSFER CLK CNT TO DECREMENTER ADO

Ll K12,FLAGO 9995 CRU FLAG ADDRESS IN R12

SsZ 0 CONFIG 9995 DEC AS AN INTERVAL TIME
LIMI 3 ENABLE THE 9995 INT3

ss0 1 START THE DECERMENTER (FLAG1=>1)
JrvP % LOOP HERE, WAIT FOR INTERRUPT

. - - - - - W - - - - -

* INTERRUPT SUBKOUTINE

P T T Y e P Y e L L L L LT

AGRG >EELQ0 BEGIN ASSEMBLY AT M,A, >Et00
DATA >ED3Q BLWP wP VECTOR FOR INT3
DATA >EE04 BLWP PC VECTOGR FOR INT3
START LIMI 0 DISABLE INTERRUPTS
Cl KO,180 NU INTERRUPTS = 180 = 15 SECCNDS?
Jeg  MSG YES, PRINT MESSAGE
INC RO NO, INCKREMENT THE INTERRUPT CUUNTER
S¥zZ 1 DISABLE DECERMENTER (FLAG1->0)

MUV K1,@DECADR RELUAD STARTING VALUE IN DECREMENTE

EXAMPLE OF CODE TO RUN TMS 9995 INTERVAL TIMER. (1 of

8 - 41

2)



0052

0053
0054
0055

0056
0057

0058

0059

0060

co061
0062
0063
0064
0065
0006
0067
0008

EEle
tEle
EE1A
Et1C
EE1E
EE20
EE2¢
EE24
Et26
EF28
£E£29
EE2A
Eteh
EE2C
EE2D
EE2E
EE2F
EE3O
EE31
FF32
EL33
EE34
EE3S
EE 3¢
EE37
EF3e
EE3G
EE3a

£t 3C
EE3L:
Et3E
tt3F
Ebdu
Erda2
Et a4
EE4S
EF 46
EEAT

Fant
FODE
FOED
FcEZ

NG ERKOKS,

0420
EEDO
0380

LIMLI 3 REENABLE THE 9995 INT3

Ss0 i RESTART ThHE DECREMENTER (FLAGi=>1)

RTInP RETURN TO CALLING PROGRAM AND wWAIT
485G XOP  aMTEXT, 14 WRITE MESSAGE

CLR RO RESET INTERRUPT COUNTER

B dSTART RETURHM TO START OF INTERRUPT ROUTIN

ATEXT  TEXT '15 SECONDS HAVE ELAPSED,'

DATA >0707,>0707

BYTE >D,>4,0,0

A T = PR P R T T TE T R P T R T P W MR e e

x  INTERUPT LIMK AREA PRUOGKAMMING

f N N L L L L e Y P P P LR L L L T L L

AURG >FODE BEGIN ASSEMBLY AT M,A, >FODE
DATA >0420 BLWP INSTRUCTION CODE

DATA >EEOU BLWP VECTOURS LOCATION

DaTA >0380 RTAP INSTRUCTICN CODE

ExD

MO WARNINGS

FIGURE 8-15. EXAMPLE OF CODE TO RUN TMS 9995 INTERVAL TIMER. (2 of 2)

8 - 42



8.11 MOVE BLOCK FOLLOWING PASSING OF PARAMETERS

The coding in Figure 8-16 is an example of a called subroutine that
will move a block of data from one location to another. The three
parameters of (1) Move-From-Address, (2) Move-To-Address, and (3)
Length-0f-Block, are provided to the subroutine either through
Registers 0 to 2 or by the three words following the calling program”s
BLWP instruction, or by a combination of both. The block move
subroutine first interrogates the words following the calling
program”s BLWP instruction; if a zero is found, it looks in a register
for the parameter. In Figure 8-15, the calling program provides the
Move-From and Block-Length parameters in Register, and the Move-To
parameter in the second word following the BLWP instruction.

8 - 43



Li RO >F100 MOVE-FROM ADDRESS

Li R2,125 MOVE 125 BYTES

BLWP ©@MOVBLK BRANCH TO SUBROUTINE
DATA o MOVE-FROM ADDR IN RO
DATA >F200 MOVE-TO ADDRESS
DATA 0 : BYTE COUNT IN R2

{A) CALLING PROGRAM

MVBLK DATA >FF90,MVBLK1 WP, PC OF SUBROUTINE
MVBLK1 MOV 13,12 SAVE wp
MOV *14+,1 GET “FROM” ADR
JNE MVBLK2 NON-ZERO: PARM IN-LINE
MOV *13+,1 PICK UP FROM REG INSTEAD
MVBLK2 MOV *14+,2 GET “TO” ADR
JNE MVBLKS3 PARM IN IN-LINE CODE
MoV *13+,2 GET FROM REGS
MVBLK3 MOV +14+,3 GET LENGTH
JNE MVBLK4 . IN-LINE PARM
MOV *13,.3 GET FROM REGS
MVBLK4 MOVB 14,52+ MOVE BYTE
DEC 3 ONE LESS TO GO
JNE MVBLK4 NOT DONE YET
Mov 12,13 RESTORE WP
RTWP RETURN TO CALLING PROGRAM

(B) MOVE BLOCK SUBROUTINE

FIGURE 8-16. MOVE BLOCK OF BYTES SAMPLE ROUTINE.

8.12 BLOCK-COMPARE SUBROUTINE

Figure 8-17 shows a sample block-compare subroutine which accepts
three parameters from the calling program in the same manner as the
block-move subroutine, Figure 8-15. This compare subroutine inspects
two stgings, comparing successive bytes until an unequal byte is found
or until the specified string length is exhausted. The Status Register
bits in Register 15 are updated accordingly, and the subroutine

returns to the calling routine with the altered status bits, which may
be used immediately for conditional jump.

8 - 44



The sample calling program is at the top of Figure 8-17. Note that the

conditional jumps follow directly after the

calling code, so the

calling program simply compares (through the subroutine) and jumps, in
the normal programming manner. '

CMBLK
CMBLK1

CMBLK2

CMBLK3

CMBLK4

CMBLK5

Lt

Li
BLWP
DATA
DATA
DATA
JLE
JGT

DATA
Mov
MoV
JNE
MOV
MOV
JNE
MOV
MOV
JNE
MoV
CB
JNE
DEC
JNE
STST
RTWP

R0,>100
R1,>F200
@CMBLK
0

0

100

$+10

(A} CALLING PROGRAM

>FF90,CMBLK1
13,12
*14+ 1
CMBLK2
*13+,1
*14+,2
CMBLK3
*13+,2
*14+ 3
CMBLK4
*13,3
*1+’*2+
CMBLKS
3
CMBLK4
15

(B) COMPARE BLOCK SUBROUTINE

FIRST BLOCK START ADDRESS
SECOND BLOCK START ADDRESS
BRANCH TO SUBROUTINE
START ADDR IN RO {1ST BLOCK)
START ADDR IN R1 (2ND BLOCK)
COMPARE 100 BYTES

IF LESS THAN OR EQUAL, JUMP
IF GREATER THAN, JUMP

WP, PC OF SUBROUTINE
SAVE WP
GET “A” ADR

GET IN CALLER REG
GET “B” ADR

GET FROM IN CALLER REG
GET LENGTH

GET FROM REG

LOOK AT STRINGS

FOUND UNEQUAL

ONE LESSBYTE

STILL MORE TO LOOK AT
STORE FINAL STATUS

RETURN TO CALLING PROGRAM

FIGURE 8-17. COMPARE BLOCKS OF BYTES SAMPLE SUBROUTINE.



8 13 USING MAIN AND AUXILIARY TMS 9902s FOR I/O

The EVMBUG XOP routines (XOP8 to 14) are written to accomplish input
and output through a TMS 9902. when the EVMBUG monitor is entered, the
address for all I/O is set to the main TMS 9902. Any time a user
program branches back into EVMBUG at address >0080, or when the RESET
function is activated, the CRU address is set to the main TS 9902,
However, a user program may use all of the above-mentioned XOP calls
to program the auxiliary TMS 9902 in the system by first moving the
desired R1l2 base address to location >EC28. Figure 8-18 is a sample
program wherein two serial I/0 ports are activated for conversation
with each other. Two terminals are assumed to be connected, one to EIA
Port 1 and one to Port 2, and the operators may type messages to each
other. This principle can be expanded to support any of a number of

TS 9902s. (A variety of custom line interfaces may be used with a TMS
9902.)

The write-character XOP service routine first ensures that the
Request-to-Send signal is active. This signal is not deactivated by
EMVBUG, so that modem users will retain their data carrier. If a modem
user wishes to drop the data carrier, the affected TMS 9902 must be

addressed by the user program, and then the Request-to-Send signal
deactivated through the CRU.

Only the main T™MS 9902, at CRU R12 base address >0000 is initialized
by EVMBUG; others in the syvstem must be initialized by the user. Note
the first portion of the example program shown in Figure 8-20. Part of
EVMBUG”s initialization 1is to sense the baud rate of the attached
terminal. If the baud rate is 110, 300, or 1200 baud, then the XOP
routine waits 200 milliseconds after transmitting a carriage return.
In addition, 1200 baud causes every character transmitted to be
followed by 25 milliseconds of delay time. Only at 2400 and 9600 baud
are characters transmitted without delays.

For 110, 300, and 1200 baud, the monitor ASRFLAG is set to one to
cause a “wait state” following writing of a carriage return. If the
EVMBUG I/0 XOP routines are used for the other I/0 port, the state of
the monitor“s ASRFLAG will also govern delay loops used by the
Write-Character XOP. The user should then swap out the contents of the
ASRFLAG, as listed in table 8-7.

8 - 46



*

ASRFLAG *
VALUE

Positive No.

Zero

Negative No.

TABLE 8-7. ASRFLAG VALUES.

RECOMMENDED

BAUD RATE

2400, 9600

110, 300

1200

DESCRIPTION/RECOMMENDATION

No delays. Use for CRTs, modems.

Carriage Return Delay only.
Use for hardcopy terminals.

Carriage Return and Character
padding delays. Use with "TNF"
command if termiinal is not a
TI ASR733.

ASRFLAG located in RAM at Memory Address >EC44.

8 - 47



OO0 QOO0
[nlatnied IOT  “TWOTRMC

[alnlic o e e e e e s i e e i e e . o e . 4 e 20 e e T R o e e e e . Y T S o et i e 2 S o
G004 3#* TWO TERMINAL PROGRAM EXAMFLE
0005 #* THIS ROUTINE INITIALIZES THE AUXILIARY I/0 FORT
000& #* OF THE TMS9995 MICROCOMPUTER. BOTH SERIAL
Qa7 #* PORTS ARE THEN USED IN THE CONVERSATIONAL MOLDE
000 * WITH EACH OTHER. THE FROCEDURE IS TO INSFECT
0007 # THE RECEIVE BUFFER BIT IN THE ADDRESSED TMS®202
0010 * TG SEE IF A CHARACTER HAS BEEN ASIEMEBLLLD
[aIn} ] # IN THE LJART. IF S0, IT IS ECHGED T THE
0012 3* ORIGINATING TERMINAL. AND THEN TRANSMITTEL
DOLz #* T THE OTHER TERMINAL. THEN THE OQOTHER
0014 * TERMINALIS INSPECTED FOR A CHARALCTER, ETC.
o01Ls #* 1) THE AUXILIARY TMER90Z MUST BE INITIALIZED.
001& * 2) THE OLD "ASRY“-FLAG MUST BE SAVED.
0017 # AND A NEW ONE DETERMINED FOR THE
o01s #* NEW TERMINAL (AUXILIARY PORT).
o01? * 3) EVERY WRITE OPERATION CONSISTS OF
Q020 # MOVING THE DESIRELD ADDREZS TO EVMELUG,
Q021 # AND MOVING THE DESIRED "ASR"-~FLAG T EVMBULG.
oQZz #
D023 QOGN OZEQ LWFI REGS LISE SPARE SPACE AT END OF FROG
QOOZ QORL”
0024 0004 0zZOC LI 12, 20400 ALUXILIARY FORT ADDREZS
0006 D400
0025 #* INITIALIZE AUXILIARY SERIAL FORT
00246 0003z 1DIF SEd 31 REZET TIMING DELAY
0027 000A LO00 NOF RESET TIMING DELAY
DOZE 000C 3220 LOCR @CTL.& LOAD CONTROL CHARALCTER
QOOE QOERZ .
0029 D010 LEQD 3BZ 13 BYFASS INTERVAL REGISTER
00QZ0 0012 04C0 CLR © BAUL RATE LOOF COLINTER
00231 0014 04CZ CLR 2 ASR FLAG FOR THIS FORT
0022 Q001é& IFOF T=T=SF TR 15 LOOKE AT RIN
0033 0018 L13FE JER  TSTSFP WAIT FOR USER TO TYPE SOMETHING
00Z4 001A 0520 SPLOCOF INC O UF BAUD LOOF COUNTER
0035 DOLC LFOF TR 1S RIN NOW HAS A =ZFACE:
0QZ& O0OL1E 14&FD JNE SFRLGOF DROF COUT ON A MAREK
0037 D020 0Z01 LI 1. TABLE BALID RATE TABRLE
QOZZ QOAZ”
00322 #* NOJW INSFECT BAULD RATE TABLE FOR A LOOFP
o0z9 +#* COUNT WHICH MATCHES, THE LOAD BALLD RATE.
Q040 0024 3040 BOLOOF O Qa i+ LOOK AT ATABEL LDOQF COUNT
0041 OOZ6 1202 JLE  MATCH IF < OR = WE HAVE 4 MATCH
004z 0023 0SC1 INCT 1 SKIP BAD BAUD RATE, NEXT LGOF
004%Z OOZA 10FC JMP BOLOCF Lok AT NEXT LOOF COUNT
0044 OOIZT 2311 MATCH LOCR #1,12 LOAD RAUD RATE CONTROL VALLIE
0045 QOZE COSH MOV #1,1 GET VALUE ITSELF
0046 0OD30 0231 I 1, 3>01A0 1200 BAUD *
0022 01A0
0047 D034 11032 JLT HIRATE NO, HIGHER EAUD RATE
Q04 14&£0%Z LNE BEGIN NG, LOWER BALID RATE
Q047 070z SETO 2 SET LOCAL ASR FLAG
00S0 1001 JMF BEGIN ANLD PRINT BEGIN MESSAGE
00351 20 0532 HIRATE INC 2 MARK NOQ <CR> DELAY
QOS2 #* THE AUXILIARY FPORT IS NOW LIFP., FRINT GREETING.
OS2 QO3E CSZ0  BEGIN MOV @FRTZ,@X0OPIZRU AUX, FORT ADR. TO EVMBLG
Q040 OOAD T
004 ECZ

FIGURE 8-18. SAMPLE PROGRAM TO CONVERSE THROUGH MAIN AND AUXILIARY
T™S 9902s. (1 of 3)



00OS4 0044 COED MOV RAZRFLG,Z SAVE MAIN FORT ASR-FLAG
Q0n4s6 ECA4S

Q0SS D04s CR0Z M2V 2, RASRFLG AUX. FIRT ASR-FLAG
0044 ELC44 .

OOSE 004 ZFAD XQF  G,1Z READ RY OLD INIT. CHAR.

0057 0048 ZFAC XCF  @EBGNMIG, 14 FRINT BEGIN MESSAGE
0050 O0B3”

Q052 Q052 C820 MOV  @FRT1.@XOFZRU MAIN FORT ADR TC EVMBUG
0054 QORE” .
ONSE ECZE

OUS? D058 203 MOV 3, RASRFLG MAIN FORT ASR-FLAG
QOSA EC44
On6n DOSC 2FA0 XOF @BEGNMZG. 14 FPRINT BESIN MESSAGE HERE., T2O
OOSE OOEBZ”
00&1 # THIS IS THE MAIN LOOF.
0042 #* FIRST ADODRESZ MAIN FORT., THEN THE AUXILIARY FORT
0063 OD6HD ¢330 LOOP MOV eFrRTL, 12 ADDRESS FOR MAIN FORT
0042 OO0%E“
0064 0064 1FLS TR z1 CHARALCTER TYPED HERE 7
0065 00k4L 1&60B JNE  NEXT MO, TRY OTHER PORT
On6L 0068 C8IOC MOV 12, eXOFCRU YES., GIVE ADDRESS TO EVMBIUG
006A ECZE : .
00&7 006C CBO3 MOV 3, BASRFLG MOVE ASR-FLAG
00&E EC44
o068 0070 2ECD XOoFP 0,11 READ/ECHD CHAR TO ORIGINATING
oDeT QO7Z G820 MOV @FRTZ, @XOPCRLI AUXILIARY FORT ADDRESS
a074 O0AD7
0074 ECZE
OO70 DO7S C802 MOV 2, @ASRFLG AUXILIARY PORT ASR-FLAG
007A EC44
0071 007C ZFOO XaF 0,12 WRITE CHARACTER TQ OTHER TERMINAL
0072 OQ7E CE20 NEXT MOV @PRTZ, 12 ADORE FOR AUXILIARY FPORT
0080 QDAY
0073 00EZz LFLS TE 21 CHARACTER TYPED HERE 7
0074 00=4 14ED JdNE - LOOP NC', TRY MAIN PORT
00O75 D086 Cenc MOV 12, eXO0FCRU YES, GIVE ADDRESS TO EVMBUG
Q0= ECZE
0074 003A CEN2 MOV 2, @ASRFLG MOQVE ASR-~-FLAG
QOEC EC44
0077 OOSE ZECO XO0F 0,11 REAN/ECHGOG CHAR TO ORIGINATING
0075 0070 C220 MOV @FRT1,@XOFCRU MAIN FUORT ALDRESS

009z 0O09E”
0094 ECZ2E

0079 D02 C8O3I MaV 32, RASRFLG MAIN FORT ASR-FLAG
00%S EC44
0080 Q0%A 2F00 XQF 0,12 WRITE CHARACTER TO MAIN TERMINAL
00s1 009C 10E1 JME LOOP
00s2 #[IATA AREAR
[a]aroec *
0024 0O0OQE 0000 PRTL DATA D000 MAIN PORT R1Z BASE ALDRESS
ONSS 00A0 0400 FRTZ2 DATA 0400 AUXILIARY FORT R1Z BASE ADDREZSZ
0084 EC44 ASRFLG EQU  EC44 EVMBLIG ASR FLAG ADDRESS
o0e7 ECZE XOFPCRLU EGL  ZECZE EVMBLUG XOP R1Z2 ADDRESS
gOSS 00AZ 0010 TARBLE DATA 10,234 Q4600 BAULD
00A4 O0Z4
QN7 DOAL DOE4D DATA 4G, >D0 2400 BAUD
Q0AS O0DO
Q090 DOAA DZN0 - DATA 200, 400 300 BAULD
QOAC DADO
Q091 ODAE Q400D DATA 400, 638 110 RAUD

FIGURE 8-18. SAMPLE PROGRAM TO CONVERSE THROUGH MAIN AND AUXILIARY
TMS 9902s. (2 of 3)



QORO Q&2
Q02 DOBRZ &2 COTL BYTE 62 ' P02 CONTROL
0093 O0BZ OO BGNMZG BYTE 0L, 20A, 200
DOB4 (a7}
QORS Q0
0074 GOB6 D000 REGS ODATA 0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0
OORS 0000
DORA Q000
QORC Q000
OOBE D000
OOC0 0000
QOCZ 00 00

Q04 0000
Q0CE 0000
QOCE 0000
O0CA QOO0
QOCC Q000
QOCE Q000
QOO0 D000
o002 0000
ooD4 0000
Q0e5 END
NCH ERRORZ . MNCH WARNIMGE

FIGURE 8-18. SAMPLE PROGRAM TO CONVERSE THROUGH MAIN AND AUXILIARY
™S 9902s. (3 of 3)



APPENDIX A
990 OBJECT RECORD FORMAT
A.l. GENERAL

The TMS 9995 uses the standard 990 family object record format.

The required object Code can be produced during execution of the TMS
9995 EVM assembler or on any assembler present on a 9900 host system.
This object format has a tag character for each 16-bit word of coding
which flags the 1loader to perform one of several operations.These
operations include:

- Load the code at a user-specified absolute address and
resolve relative addresses. (Most assemblers assemble a

program as if it were loaded at memory address >0000;
thus, relative addresses have to be resolved.

- Load entire program at a specific address.

- Set the program counter to the entry address after
loading.

- Check for checksum errors that would indicate a data error
in an object record.

A.2. STANDARD 990 OBJECT CODE

Standard 990 object code consists of a string of hexadecimal digits,
each representing four bits, as shown in Figure A-1, below:



TAG CHARACTERS

/ A f A A A AAAAA NS

00000SAMPROG 90040C0000A0020BC06DB000290042C0020A0024BC81BCO02A7F21AF
A0028B0241B0000BCB41B0002B0380A00CAC0052C00A2B02EQC0032B0200BOFOF7F 1DEF
AO0D6BCOAOCO0CAB04C3BC160C00CCBC1AOCO0DOBC0O72B0281B2A00A00ECB02217F151F
AOOEEB0900B06C1A0JEAB1102A00F2B0543B11F8B2C20C0032BC101B0B44BE0447F18EF
A0100BDD66B0003B0282C00A2B11EDB03407F832F

200CE0Q010C F
OCEQ010 7FCABF CHECKSUM FIELD—/

\ \—'LENGTH OF RELOCATABLE CODE

RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE)

END OF OBJECT CODE MARKER

FIGURE A-l. SAMPLE OBJECT CODE.

The object record consists of a number of tag characters, each
followed by one or two fields, as defined in Table A-l. The first
character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag
character follows the end of the field or pair of fields associated
with the preceeding tag character. When the assembler has no more data
for the record, the assembler writes the tag character 7, followed by
the checksum field, and the tag character F, which requires no fields.
The assembler then fills the rest of the record with blanks, and
begins a new record with the appropriate tag character.



TABLE A-l. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS.

TAG
CHARACTER

HEXADECIMAL FIELD
(FOUR CHARACTERS)

Length of all relo-
catable code

Entry address

Entry Address

Loc of last
appearance of
symbol

Loc of last
appearance of
symbol

Location

l.ocation

Checksum for
current record

Ignore checksum

Load address

Load address

Data

Data

SECOND FIELD

8-char program
~ identifier

None

None

6-char

6-char

6-char

6-char

None

None

None

None

None

None

symbol

symbol

symbol

symbol

MEANING

Program
start

Absolute
entry
address

Relocatable
entry
address

External
ref last
used in
relocatable
code

External
ref last
used in
abs code

Relocatable
external
definition

Absolute
external
definition

Checksum

Do not
checksum
for error

Absolute
load add

Relocatable
load add

Absolute
data
Relocatable
data



D Load bias wvalue* None Load point
specified
F None None End-of-record

G Location 6-char symbol Relocatable
symbol
definition

H Locatio~ _ 6-char symbol Absolute
symbol
definition

Tag character 0 is followed by two fields. The first field contains
the number of bytes of relocatable code, and the second field contains
the program identifier assigned to the program by an IDT assembler
directive. When no IDT directive is entered, the field contains
blanks. The 1loader uses the program identifier to identify the
program, and the number of bytes of relocatable code to determine the
1oad bias for the next module or program. The PX9ASM assembler is
unable to determine the value for the first field until the entire
module has been assembled, so PX9ASM places a tag character 0,
followed by a zero field, and the program identifier at the beginning
of the object code file. At the end of the file, PX9ASM places another

tag character zero followed by the number of bytes of relocatable code
and eight blanks.

Tag characters 3 and 4 are used for external references. Tag character
3 is used when the last appearance of the symbol in the second field
is a relocatable code. Tag character 4 is used when the last
appearance of the symbol is absolute code. The hexadecimal field
contains the location of the last appearance. The symbol in the second
field is the external reference. Both fields are used by the 1linking
loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in
the object code, with a location or an absolute zero, and the symbol
that is referenced. When the object code field contains absolute zero,
no location in the program requires the address that corresponds to
the reference (an IDT character string, for example). Otherwise, the
address corresponding to the reference will be placed in the location
specified in the object code by the linking loader. The 1location
specified in the object code similarly  contains absolute zero or
another location. When it contains absolute zero, no further 1linking
is required. when it contains a location, the address corresponding to
the reference will be placed in that address by the linking loader.
The location of each appearance of a reference in a program contains
either an absolute zero or another location into which the linking
loader will place the referenced address.



Tag characters 5 and 6 are used for external definitions. Tag
character 5 is used when the location is relocatable. Tag character 6
is used when the location is absolute. Both fields are used by the
linking 1loader to provide the desired 1linking to the external

definition. The second field contains the symbol of the external
definition.

Tag character 7 preceedes the checksum, which is an error detection
word. The checksum is formed as the record is being written. It is the
2”°s complement of the sum of the 8-bit ASCII values of the characters
of the record from the first tag of the record through the checksum
tag 7. If the tag character 7 is replaced by an 8, the checksum will
be ignored. The 8 tag can be used when object code is changed in
editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that
follows. Tag character 9 is used when the load address is absolute.
Tag character A is used when the 1load address 1is relocatable. The
hexadecimal field contains the address at which the following data
word is to be loaded. A load address is required for a data word that

is to be placed in memory at some address other than the next address.
The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is
used when the data is absolute; an instruction word or a word that
contains text characters or absolute constants, for example. Tag
character C is used for a word that contains a relocatable address.
The hexadecimal field contains the data word. The loader places the
word in the memory location specified in the preceeding load address

field, or in the memory location that follows the preceeding data
word.

To have object code loaded at a specific memory address, preceed the
object program with the D tag, followed by the desired memory address
(e.g., DFDOO).

Tag character F indicates the end of record. It may be followed by
blanks.

Tag characters G and H are used when the symbol table option is
specified with other 990 assemblers. Tag character G is used when the
location or value of the symbol is relocatable, and tag character H is
used when the location or value of the symbol is absolute. The first
field contains the location or value of the symbol, and the second
field contains the symbol to which the location is assigned.

The 1last record of an object code file has a colon (:) in the first

A-5



character position of the record, followed by blanks. This record is
referred to as an end-of-module separator record.

EXAMPLE:

Figure 5-2, Section 5 is an example of an assembler source listing and
corresponding object code. A comparison of the object tag characters
and fields with the machine code in the source listing will show how
object code is constructed for use by the loader.

SOURCE STATEMENT NO.
LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SAMPLE SDSMAC 945278 **

0001 IDT ‘SAMPLE’
002 0000 0006’ DATA  WSPACE
03 0002 OO8BA’ DATA START

0004 0004 0000 DATA O

0005 0006 WSPACE BSS 32

0006 0026 TABLE BSS 100

0007 O08A START

0008 O008A 04CC CLR 12

0009 008C 04CO CLR 0

0010 O0O08E 0202 Li 2, TABLE
0090 0026’

0011 0092 0800 MOV 0, @TABLE+2
0094 0028

0012 0096 1001 JMP $+4

0013 0098 LOOP

0014 0098 0204 LI 4,>1234
009A 1234 ‘

0015 009C 0244 ANDI 4, >FEED
009E FEED

0016 O0OAO0 DC84 MOVB 4, *2+

0017 O00A2 0205 Lt 5, >65565
00A4 = 5555

0018 O00A6 C805 MOV 5, @TABLE
00A8 0026°

0019 END

NO ERRORS

FIGURE A-2. SAMPLE ASSEMBLER SOURCE LISTING AND OBJECT CODE



NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC

GS
Us

DEL

APPENDIX B

ASCII CODE

TABLE B-l. ASCII CONTROL CODES

CONTROL

Null

Start of heading
Start of text

End of text

End of transmission
Enquiry

Acknowledge

Bell

Backspace

Horizontal tabulation
Line feed

Vertical tab

Form feed

Carriage Return
Shift out

Shift in

Data link escape
Device control 1
Device control 2
Device control 3
Device control 4 (stop)
Negative acknowledge
Synchronous idle

End of transmission bloc
Cancel

End of medium
Substitute

Escape

File separator

Group separator
Record separator
Unit separator

Delete/rubout

BINARY
CODE

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001

111

0000
0001
0010
0011

0100

0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1111

HEXADECIMAL
CODE

00
01
02
03
04
05
06
07
08
09
oA
0B
0c
0D
OE
oF
10

12
13
14
15
16
17
18
19
1A

1c
1p
1E
1F

7F



NOTE

Hexadecimal codes 01-1F can be generated using most
keyboard devices with the CONTROL (SHIFT) key pressed
while pressing another keyboard key. For example,
hexadecimal codes 01-19 can be generated on the TMS 9995
using the SHIFT key and keys A through Y respectively,
with the exception of keys V and X, which have shift
functions dedicated to display right and cancel
respectively.

TABLE B-2. ASCII CHARACTER CODES

ASCII BINARY HEX ASCII BINARY HEX
CHARACTER CODE CODE CHARACTER CODE CODE
Space 010 0000 20 100 0000 40

! 010 0001 21

! 100 0001 41
" (dbl quote) 010 0010 22

100 0010 42

@

A

B
# 010 0011 23 C 100 0011 43
$ 010 0100 24 D 100 0100 44
% 010 0101 25 E 100 0101 45
& 010 0110 26 F 100 0110 46
“(sgl quote) 010 0111 27 G 100 0111 47
( 010 1000 28 H 100 1000 48
) 010 1001 29 I 100 1001 49
* (asterisk) 010 1010 2A J 100 1010 4A
+ 010 1011 2B K 100 1011 4B
s (comma) 010 1100 2C L 100 1101 4cC
- (minus) 010 1101 2p M 100 1101 4p
. (period) 010 1110 2% N 100 1110 4E
/ 010 1111 2F o 100 1111 4F
0 011 0000 30 2 101 0000 50
1 011 0001 31 Q 101 0001 51
2 011 0010 32 R 101 0010 52
3 011 0011 33 S 101 0011 53
4 011 0100 34 T 101 0100 54
5 011 0101 35 U 101 0101 55
6 011 0110 36 \Y 101 0110 56
7 011 0111 37 1) 101 0111 57
8 011 1000 38 X 101 1000 58
9 011 1001 39 Y 101 1001 59
: 011 1010 3A Z 101 1010 5A
; 011 1011 3B [ 101 1011 5B
< 011 1100 3C 101 1100 5C
011 1101 3p 1 101 1101 5D
> 011 1110 3E 101 1110 5E
? 011 1111 3F - (underln) 101 1111 S5F



TABLE B-2.

ASCII
CHARACTER

BINARY
CODE

O 8 PARULEDTQFMO QO U'W

110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110

0000
0001
0010
0011
0100
0101
0110

0111

1000
1001
1010
1011
1100
1101
1110
1111

HEX
CODE

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

ASCII
CHARACTER

ASCII CHARACTER CODES (CONTINUED)

BINARY
CODE

by N M M €2 < Ccrin 8 Q0

111
111
111
111
111
111
111
111

111

111
111
111
111
111
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

HEX
CODE

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
)]
7E



APPENDIX C

BINARY, DECIMAL AND HEXADECIMAL NUMBERING SYSTEMS

C.l. GENERAL

This appendix covers the numbering systems which are- used throughout
this manual:

- BINARY (Base 2)

- DECIMAL (Base 10)

- HEXADECIMAL (Base 16)
C.2 POSITIVE NUMBERS

C.2.1 Decimal (Base 10)

When a numerical quantity is viewed from right to left, the fight—most
digit represents the base number to the exponent 0. The next digit
represents the base number to the exponent 1, the next to the exponent

2, then exponent 3, and so on. For example, using the base 10
(decimal) :

1,000,000
100,000
10,000
1000 100 10 1
X, XXX , X X
OR

106 - 105 104 103 102 101 100

For example, 75,265 can be broken down as follows:

c-1



75, 264

1% 2
[————4x100=4x1 = 4
6x101=6x10 = 60
2x102=2x100 = 200
5x103=5x 1000 = 5000
7x 104=7x 10,000 = +70000

75264 10

C.2.2 Binary (Base 2)

Base 10 numbers use ten digits, base 2 numbers use only 0 and 1. When

viewed from right to left, they each represent the
powers 0, 1, 2, etc., respectively, as shown below:

215 26 25 24 23 22 21 20
(32,768) eee (64) (32) (16) 8 4 (2 (M
X Y X X X X X X X

number 2 to

the

For example, Binary 11011 can be translated into base 10 as follows:

1 1 0 1 1

or, Binary 11011 equals 27.

I I;—4x20=1x1

1x2t=1x2
0x22=0x4

1x23=1x8

1x24=1x16

]

+16
2710



Binary is the language of the digital computer. For example, to place
the decimal quantity 23 into a 16-bit memory cell, set the bits to the
following:

——— o —— e — —————— — - _ Y T — " W ———— > E———-— -

which is 1 + 2 + 4 + 16

i
[ %)
w
.

C.2.3 Hexadecimal (Base 16)

Whereas binary wuses two digits and decimal uses ten digits,
hexadecimal uses 16 (0 to 9, A, B, C, D, E, and F).

The 1letters A through F are used to represent the decimal numbers 10
through 15, as shown below:

N1g Nig N1o N1
0 0 8 8
1 1 9 9
2 2 10 A
3 3 1 B
4 4 12 c
5 5 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is
a multiplier of 16 to the powers 0, 1, 2, 3, etc., as shown below:

163 162 161 160
(4096) (256) (16) (1)
X X X X

For example, >7BA5 can be translated into base 10 as follows:



7 B A b

I;———-5x160= 5x1 = 5
10x161=10x16 = 160
11x162=11x256 = 2816
7x163= 7x4096 = 28672

- 3165310

Or, >7BAS5 equals 31,653.

Because it would be awkward to write out 16-digit binary numbers to
show the contents of ‘a 16-bit memory word, hexadecimal is used
instead. Thus: :

>003E

is used instead of
0000 0000 0011 1110 (Binary)

to represent 62, as computed below:

BASE 2
1 71 71 1 1 09

[~———0x20 = 0

1x21 = 2

1x22 = 4

1x23 = 8

1x24 = 16

1x2% = 32

6210

(Note that separating the 16 binary bits into four-bit parts
facilitates recognition and translation into hexadecimal.)

c-4



0000 0000 0011 11109

O -f-
=% =
W .-

BASE 10 E1e BASE 16
6 210 3 E1g
L [
2x100 = 2 14x160 = 14
6x101 = g0 3x16t = 48
6210 6210

Table C-1 is a chart for converting decimal to hexadecimal and
vice-versa. Table C-2 shows binary, decimal and hexdadecimal
equivalents for numbers 0 to 15. Note that Table C-1 is divided into
four parts, each part representing four of the 16 bits of a memory
cell or word (bits 0 to 15), with bit 0 being the most significant bit
(MSB) and bit 15 being the least significant bit (LSB). Note also that
the MSB is on the left and and represents the highest poer of 2, and
the LSB is on the right and represents the 0 power of 2, or 1l. As
explained later, the MSB can also be used to signify number polarity
(+ or -).

To convert a binary number to decimal or hexadecimal, convert the
positive binary value, as described in paragraph C-4.



TABLE C-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
16 le 16 16
BITS 0 1 2 3 4 5 6 17 8 9 10 11 12 13 14 15
HEX DEC HEX DEC: HEX DEC HEX DEC
0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 I 1
2 8 192 1 512 1 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 6 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
C 49 152 C 3 072 C 192 C 12’
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3 584 E 224 E 14
F 61 440 F 3 840 F 240 F 15

To convert a number from hexadecimal, add the decimal equivalents for
each hex digit. For example, >7A82 would equal in decimal 28,672 +
2,560 + 128 + 2. To convert hexadecimal to decimal, find the nearest
decimal number in the above table less than or equal to the number
being converted. Set down the hexadecimal equivalent, then subtract
this number from the nearest decimal number. Using the remainder (s),
repeat this process. For example:

31,362 = >7000 + 2690 7000
2,690 = >A00 + 130 A00
130 = >80 + 2 80

2 = >2 2
>7A82



TABLE C-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS.

BINARY DECIMAL HEXADECIMAL
( >)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F
1 0000 16 10
1 0001 17 11
1 0010 18 12
1 0011 19 13
1 0100 20 14
1 0101 21 15
1 0110 22 16
1 0111 23 17
1 1000 24 18
1 1001 25 19
1 1010 26 1A
1 1011 27 1B
1 1100 28 1c
1 1101 29 1D
1 1110 30 1E
1 1111 31 1F
10 0000 32 20



C.3. ADDING AND SUBTRACTING BINARY

Adding and subtracting in binary uses the same conventions as for
decimal (i.e., carrving over in addition and borrowing in
subtraction).

Basically:

1 10 (the carry, 1, is carried to the left) ot (1 is borrowed from top left)

1 1
¥ =0+carry 1

+ 1 =0 (from above) + 1 =1 ' . + 1

_\—carry carry 1+ 1= 10——/_

1

T 1odf///—_—\\\\\\\\ 0110
" =0+ 1 carry _ 1% Borrow the 1 -1

z 0111 0111

-

=0+ 1 carry

+ 1

[ Lt—o+0=0

carry 1 + carry 1

C-4. POSITIVE/NEGATIVE CONVERSION (BINARY)

To compute the negative equivalent of a positive binary or hexadecimal
number, or interpret a binary or hexadecimal negative number (to
determine its positive equivalent), use the two”s complement of the
binary number:

NOTE

To convert a binary number to decimal, convert the positive binary
value, NOT the negative binary value, and add the sign.

Two“s complementing a binary number involves two simple steps:

c-8



1. Obtain the one’s complement of the number (1“s become 0°s;
0°s become 1°s [i.e., invert the bits] ).

2. Add 1 to the one”’s complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+29) 111 (—12) 110 (—29) 101 (—32)
101 Invert 000 Invert 001 Invert 010 Invert
+ 1 Add 1 +1 Add 1 +1 Add1 +1

110 (—22) 001 (+12) 010 {(+22) 011 {(+32)

This can be expanded to 16-bit positive numbers:

=39F616) 0011 1001 1111 0110 (39F61g = +14,83810)
1100 0110 0000 1001 Invert
.+ Add 1
=C60A16) 1100 0110 0000 1010 (C60A16 = —14,83810) Two’'s Complement
SIGN BIT (-)
And to 16-bit negative numbers:
(=C60A1g) 1100 0110 0000 1010 (C60A16 = —14,83810)
0011 1001 1111 0101 Invert
+1 Add 1
(=39F61¢) 0011 1001 1111 0110 (39F61g = +14,83810) Two’s Complement
SIGN BIT (+)



T =01

s | 2 | & } 5 + 4 A1 3 [ SR VRT )

- L) .
- FEVISIONS 6
WOLES. UMLESS OTVERWSL SPECHED: }-«‘ O, SO B G Y
L ALL CAPAGHANGE VALUES ARE ™
MICROFARADS HUMPER. CONFISRATION
ALL RESISTANCE VALUES ARE IN OWMS Jtlo;l;mn
8 ALL RESISTORS ARE .25W, 5% jzi'.'zz o
{8) SOCKETS AT POSITIONS WOWCATED Jazs ]
WRL ACCEPY EITHER 24 OR 28 PN 45:
MEMORY DEVICES 18 COMJUNC TION g6
WITH APPROPRIATE PERSONALTY PLUG ja- 12}
[B] PN FUNCTIONS SHOWN ARE FOR
THS 7332 JL-3S oMLY
oz
{§] PN FUNCTIONS SHOWN ARE FOR ’
TMS 2566 JL ONLY
[~
3PARES
le—
SH ez 212V Y12V :1 W vat
dcs 141508 1407 )
047
25v un 1
ISV
SH2 ] +5v 1907 B
€1-c26
041 3 )
) .
GND oNp
sH2 1
ce -
647
25v
sHz —i2v v _
DIAGRAM, LOGIC
TMS 9995 EVALUATION
7 I 3 n § - sons2 | g
e = [EANY e ke e, |

: T = l - :

SOILVWIHOS WAT S666SHL
a XIANdddv



*

9 @ | <
* -
°
o 0 0 b o0 0 0 0D 0 OO0 OO O OO0 OO0 OO0 B 000009 0N 000 C 00 o |
- e ®© 0 0 0 0 06 o ° o . -t
sl TEMRR® § e e o0 oo ° o & !
s ° 06 000 0 0 o o 8 |
- s o000 0 o o M
> s 0 o000 P y
[ o W 00 00 o o -
: o boo o o
il oy oo
| ° o
/—9""0
= I 1:“———90@--d
2] o VE vl ¢p N
2 W |-
Q ey GE Ty
@ Sl
3;;.",? ’; v:
= of-va
62-pd
- P2-val . |
—] rens—pagre SoP i rd
° izpg
(RN
° 2val e
B 5 1S 1240y
~—22-9g
o w’S—_——) ol-pdf
¥-Pa
um tepg 0
’ —y G-
‘"’{—mvﬁ" :_."W;s re
R s Tival :‘
-
YeHE I Ts© 1 el b
L Y 7 o ; . Ty ¢ 'd
| rers =y oo v Lo
o o -
FENG——pre o 0 9 OTM? a
€ WG ey 6 8 0 0 I o €.vu
2
5'Sr8 ——xryn® ° 000§ Iy iva
VENS eI 6o o0 0 0
° c 0005 08000
. 4 000000030 -
—e 500000000 0
M —Tryre © 06 6 09 00 o 00 0 ?
INY ! .
LT 4id Ry ?Se
WS —rrs T2 € [+
i TAge” ¢-8d
IV o—p—tagry7 ! td
-——w-c © 0 0 0 0 0 0 © ° o ?
A—-—ruvo ¢ o0 e 0 0 0 o < ?
° g § 0 0 0 0 3 0 e o0 0
—qge § e o0 20 e o}
[FH N
6 9 o 0 G e
—=r° El
——ggo § 0 00 g :
—_— o 0 ey 3
— ¢ ° —
3
¥ HS' Lad
LH v
-—v ¢
g7
vn'si L4
——3r
— —— —
s s
ti' -
v
~ mﬁ: ~
°
. e 0
o e e 0
i o ¢ e 0 o
L] o 9 0 @ 0 —
} . IREREEE
i o 29 9 0 0 0 @
! e o e ¢ 0 0 2 @ ¢
o © ¢ o @ 0 0o 0 0 O
° ° 900000000 0 «
° © 0 0 0 00 C C 0 O 000 GO0 0:00¢ 08 00 OO0 OO0 OO0 QO C OO0 00O
: :

% 1 ;




8 ! 7 1 6 1 S + 2 i 3 bodomoivg g S h ) :

-
-~ ~ 0~ T = <
x .
3 N 2
2]
A
+ u '~ ‘2‘
a4y 4 :
X 7415138
820 o §
+8v R
e~
-] RSET- L -
| - _jsW2
CHOF -
LRER~
c2z
i8, - .
of ;::‘ SET—
3 T Ay €Y 23 BESE]
< Gor Do r;uu/a‘ 712
b by L0 e cinm
- : &
e 1T N
— 2O .
D81 |- S5R— ssv £
02
2]
Y D& )SH 2.5
14574
D3 —
e U b
‘oo 200 = 01
D1 21 NEACRUCLE" gy 2
g,‘ [¥] 325 MEMENDUT - g,g ¢
03 7407
D4
os
o6
01
ok R W
T
R we i ; o
1% © 4 Q a
vss u20 4 u27 vzr | 48
£ TMS 9995 I out x & e C‘A( we
26 15v ——pb—4 18574 Mise LS. RESUI- g,
] Lot [ W o 1302 l -
R uzz o= ! 1AQ OR [OLE
i 2 il
£.I1K *-—j&—{
+5v TaLsie Waisos [ oz MO g,
h HoLDA
773 B mez
T S08
2 L
B TTES-1 4
A 3 CRUCIX 24
4202 -
1603150




8 l 7 1 s | o5 + 4 1 3 [ LU s |} M

m et
~ ~
T
&
&
re=-" '
a3 oo sELi- 3 [ F 3
As n " Dolz SEL2- 4 51 - -
suz,s,S{ A% 2SS 2o sevs & ' H | SELT
1} ool SELE- s ' S SEL8- Jau 2
Al i b ses— ] 7 0
5"“5{ (e bosfe_SELe: I ! se- Ve BAMSEL -
AQ ' porll SELI- 9y ' ez
7 stLe- ] H 4522 L e
PR 2 [ memsey - |
745188 zu;sx sei2- i W 3 ’
) 4592 Tais3z
b ——— 1o, MEMORY DICODE SELECTS SHS
P m— _ I 2 MEMSELZ-
5 o4 o) L SELI : bSrae 4, I]
4 HEos pozj2 SELZ- SELS- 413 i
3 2hoc vo3p-SELA-_J 532 TaLsa
z Lo post SELA-_] N 2 '
3 e posjs 3ELS 1 , MEMS .
uz2 14 poofe SELE- _ By 3
i Do SEL1- StLa- . Rug
(sie posjl-SELS- s % Tais32
5188 x 1 i
P
TMS 9902 WAIT STATE ENABLLS 741310
Al . . 2] crum WAL SR R
All 2k,
AR 12le, i I
w235 AR ITH wr
Al : 771304
Al8/CRUOUT 8 ruour
5L puci
3
T sy v2e +512901
[ 3emw
S4c7s
otk xourpd Sl
sov e s5v—gl
j—ivss s e =
1 | P
15108
s 9902
\A'—?—A”‘—so crum i
AU e,
1‘2 2z e
153
Ald el N
AISA RUOUTE P21
RUOUT
T p—ee
S uze \_sece- 1} UZ4 = 9902 81
&: v ' z sz
pr-z (BS2RCVED Py el 3«
5189 uc ) 2 w3 w2y " IS8_ 5 p2-g
A %e | TIUTEreE e oy £17
p2-20 (—RIRR 'Oy sov e, 75188 R PSEB_ 3 5y
15189 I 1 [ —_ RSZIZXMTE > p23
T ocps p2-8
15188




i

i

z |

=] FrnT
[ oscoo ___Jvizesjof v

N “ETRAIN )H«s
T - —TTIRAIA
— 1" - — — —xrag-— St HS
I T =TSR — 6
1 e Iz i
F E 3 - @
g I 5 —Iw
a8 kil ta8 3 0 anz o G 5T
v RELiA N P bl 5 A -
a0 i I £ L4 - TR
¢ I tn 1L 9 9Py
2 - g L a O €Y 1a # M
L 167] ’ 23 ¥ I > L b 33 - t
sf R L ™
et — ] JETIVY - - 0 38a1 — dzon o (‘I):V L] : n :
E one @Y T L2 £ on1s4 B & 4 onig I3 T v Ao 13
srwnosaia [T T avwnasadd i | T T anwnoseds firE” —{eon op—5 . ¥
) LY i — vn ¥ & 51 en W v it M
i o i rorl . IS ]
; i o0
v [+
B L . TssIN
'TL,,fi o 34 L
A+
Ly L}
ezns
—IN
&z ? nog/d e —uc:vu v HS
D 3L 7 75T;
[2IE: o o wonz o lo
&) . -
Vo) 30, L 5 R 2 1%y q’;ﬂ c‘”,;
LA O XY M nY an WV 1L bl ) v
B 512 ! & iV oL 5 |—v—phes
W {5 2 bl 1ol My—y * 59 b——v—
[ )N R i "M #7541’ V3 °
oV T3 ElY 60 id zont s id ;: Y v
v [(2X3N [3d . T L34 5 Lk B ™
w Y ? v HEN M v Hh NE—@ A g
Ry s v o s v r—o| ———=v—
LA ()2 L 2 Yo & v eI
WBIG7 WL SEVFECSISWL r——*—'v—}'tht
1 v
W]
3
L 13— jerm
———
L___w—
1 [ I oseoa .t € 1 v H S | z 1 [}




APPENDIX E

TS 9995 MICROCOMPUTER

ARCHITECTURE



1.1

1.2

2.1

INTRODUCTION

DESCRIPTION

The TMS 9995 microcomputer is a singlechip 16-bit central processing unit (CPU)} with 256 bytes of on-chip
random access memory {(RAM). A member of the TMS 9900 family of microprocessor and peripheral circuits, the
TMS 9995 is fabricated using N-channel silicon-gate MOS technology. The rich instruction set of the TMS 9995 is
based upon a unique memory-to-memory architecture that features multiple register files resident in memory.
Memory-resident register files allow faster response to interrupts and increased programming flexibility. The inclu-
sion of RAM, timer function, clock generator, interrupt interface, and a flexible flag register on-chip facilitates
support of small system implementations.

All members of the TMS 9900 family of peripheral circuits are compatible with the TMS 9995, Providing a per-
formance upgrade to the TMS 9900 microprocessor, the TMS 9995 instruction set is an opcode-compatible super-
set of the TMS 9900 processor family.

KEY FEATURES

. 16-Bit instruction word

° Memory-to-Memory architecture

L 65,536 byte/32,768 word directiy addressable memory address space

L Minicomputer instruction set including signed multiply and divide instructions
L] Multiple 16-word register files (Workspaces) residing in memory

L 256 bytes of on-chip RAM

L] Separate memory and interrupt bus structures

L 8-Bit memory data bus

L 7 prioritized hardware interrupts

L 16 software interrupts {XOPS)

] Programmed and DMA 1/0 capability

L Serial 1/0 via communication register unit {CRU)

L On-chip time/event counter

] On-chip programmable flags {16)

L4 Macro instruction detection (MID) feature

L Automatic first wait state generation feature

L Single 5-volt supply

L 40-pin package

L N-Channrel silicon gate MOS technology

L On-chip clock generator

ARCHITECTURE

MEMORY ALLOCATION

The basic word of the TMS 9995 architecture is 16 bits in length. These 16 bits are divided into 8-bit bytes for
external memory in the manner shown in Figure 1. A word s, therefore, defined as two consecutive 8-bit bytes in
memory. All words (instruction opcodes, operand addresses, word-length data, etc.) are restricted to even address
boundaries, i.e., the most significant half, or 8 bits, resides at an even address and the ieast significant half resides at
the subsequent odd address. Any memory access involving a full word that is directed by software to utilize an odd
address will result in the word starting with this odd address minus one to be accessed.



MSB

OR
SIGN
BIT
EVEN ADDRESS 0 1 2 3 4 5 6 7
WORD
FORMAT
00D ADDRESS 8 9 10 " 12 13 14 15
(ODD ADDRESS =
EVEN ADDRESS + 1) LS8
Ms8
OR
SIGN
8T LS8
1
EVEN ADDRESS [¢] 2 3 4 5 6 7 BYTE
FORMAT
00D ADDRESS ] ) 2 3 4 5 6 7

FIGURE 1 — WORD AND BYTE FORMATS

The instruction set of the TMS 9995 allows both word and byte operations. Byte instructions may address either
byte as necessary. A byte access of this type will not affect the other byte of the word involved since the other
byte will not be accessed during the execution of the byte instruction.

The TMS 9995 memory map is shown in Figure 2. Shown are the locations in the memory address space for the
Reset, NMi, other interrupt and XOP trap vectors, and the dedicated address segments for the on-chip RAM and
the on-chip memory-mapped /0.

0000
we
000t LEVEL O tRESET)
0002 VECTOR
PC
0003
0004
0005 LEVEL 1
INTERRUPT
0008 VECTOR
0007
0008
i LEVEL 7 & LEVEL 3
X INTERRUPT
. VECTORS
000F
2010
LEVEL 4
0018
INTERAUPT
0012 VECTOR
0013 EXTERNAL
(OFF CHP
0014 GENERAL USE Moeutf:: !
R MEMORY ADDRESS ADDRESS
o03F SPACE SPACE
0040
[ro 2] xOPO
0042 VECTOR
0043
0044
XOP1 XOP14
: VECTORS
0078
007C
0070 XOP15
007€ VECTOR
007F
0080 GENERAL USE
P < MEMORY AD
ORESS SPACE
EFFF

GENERAL USE INTERNAL ION-

INTERNAL ;NT:RNAL CHIP) MEMORY

Ram apoREsseEsf ° 2 ADDRESS SPACE
GENERAL USE
MEMORY ADDRESS

FOFB

FOFC EXTERNAL (OFF

CHIP} MEMORY

NOTE:

. SPACE ADDRESS SPACE
e W\“ oecmem gg.‘;i;;:t

Al
Feec W/////// """ e Coue! WEMORY
FFFD ;/%///;5/ c:c'Toa ‘RNA‘;E“NAl ADORESS SPACE
FEFE
I 7777777000000 ___

Addresses are byte addresses in hex

FIGURE 2 — TMS9995 MEMORY MAP

2



2.2 TMS 9995 ORGANIZATION

The block diagram of the TMS 9995 is shown in Figure 3. A flow chart, representative of the TMS 9995 functional
operation, is shown in Figure 4,

8
e 00-07
RAM
.8
' —"\__r
ADDRESS SWAP MICROCODE
oy
ROM
.| DECOOE ._.{ DECREMENTER T“'—__ MUX
CRUIN cRU e~ —» ‘
A15/CRUOUT /‘l - CONTROL L o MA, PC, WP, n MICRO
AND CONTROLLER
{ TEMPORARY -———
REGISTERS
AO-AT4 <} [ FLAG REG l \
Y CONSTANTS f
INTEANAL
INTERRUPT v 4
LATCH CRU ux
INPUTS j~e— AESET
| LATCH lf - ' TEMP REG 8 INTERRUPT  [@== NMI
CONTROL .
{ ALU @ iNT1
VAEMEN e bo— iNT4/EC
J— —1 ¥
e e}
BBiN 1 |
/ >— HIF LATCH
WE/CRUCLK CONTROL SHIFT REG [ ¢
- = = - >
|AQ/HOLDA @ LoGIC ; l
READY e . L
T — [ STATUS REG. },_‘__ | e xTALS
cLock
}—— XTAL2 /CLKIN
GENERATOR
l—e CLKOUT

FIGURE 3 — TMS9995 BLOCK DIAGRAM




RESET ACTIVE CAUSES
IMMEDIATE ENTRY HERE

1
3 x RUCTION START EXECUTION OF NEW
ETCNUNSE'N(T‘- :«NESV: P(LZJ ° ] INSTRUCTION (IF REQUIRED,
NEW PC LOADED HERE)

i

PC2 . PC ]

INSTRUCTION

XOP OR BLWP
INSTRUCTION
»

NMy

LEVEL 127

OR 4 INTERRUPT

REQUEST
)

ALL
AREQUESTS
MASKED BY INTEH
RUPT MALNK
T128TY

)

LOCK IN PENDING
INTERRUPT REQUIESTS

l FETCH NEXT INSTRUCTION I
1
l PC2 - PC l

COMPLETE EXECUTION GF
CUHRENT INSTRUCTION
(WHITE RESULTS IF ANY)

UNMASYED
INTERRUIPY

HEQUIEST
PENDING

OVERFEOW
ENABLED (ST10 4
ANO 512'.‘ $11°,

Y

I SETMIDFLAG TO ONE I
A r

A

VECTOR @ 00004g.
NEW INTERRUPT
MASK = 0000

VECTOR @ 00086,

PC-2—-PC

i

FIGURE 4 — TMS9995 FLOW CHART

- l—‘ NEW INTERAUPT pe—d_ PCr2—PC_J—el [ ReaDNEWWP )
MASK = 0001 l
NMi v VECTOR @ FFFCg,
REQUEST NEW INTERRUPT
3 OLD WP -
MASK = 0000 NEW WR13
7 !
OLDPC
NEW WR14
LEA 1
LEVEL 1 v VECTOR @ 000416, ¢ ,N,RE,L‘E“:ELL
REQUEST NEW INTERRUPT [~} INTERRUPT
> MASK = 0000 REQUEST LATCH 5T - NEWWR15
“ !
NEW INTERAUPT
LEVEL 2 ety
M v VECTOR @ 000846, ST12ST15
AeouEsy NEW INTERRUPT
N MASK - 0001
4 | CLEAA ST7ST11 I
CLEAR LEVEL 3
LEVEL 3 Y VECTOR@000C16] o  INTERNAL
REQUEST NEW INTERRUPT INTERAUPT
) MASK + 0002 REQUEST LATCH
N
EAR LEVEL 4
VECTOR @ 001046, CLINTERNAL
NEW INTERRUPT =89 INTERRUPT
MASK = 0003 REQUEST LATCH
MID
INTERRUPT

TRAP JUST
TAKEN
?

CLEAR. STO-ST76,
FLAGO, FLAG)Y,
THE MID FLAG,
AND ALL INTER-
NAL INTERRUPT
REQUEST LATCHES

1

RESET
TRAP JUST
TAKEN




2.21

2.2.2

2221

2222

Arithmetic Logic Unit

The arithmetic logic unit (ALU) is the computational component of the TMS 9995, It performs all arithmetic and
logic functions required to execute instructions. The functions include addition, subtraction, AND, OR, exclusive
OR, and complement. A separate comparison circuit performs the logic and arithmetic comparisons to control bits
0 through 2 of the status register. The ALU is arranged in two 8-bit halves to accommodate byte operations. Each
half of the ALU operates on one byte of the operand. During word operand operations, both halves of the ALU
function in conjunction with each other. However, during byte operand processing, results from the least significant
half of the ALU are ignored. The most-significant half of the ALU performs all operations on byte operands so that
the status circuitry used in word operations is also used in byte operations.

Internal Registers

The following three (3) internal registers are accessible to the user (programmer):
] Program Counter (PC).

L Status Register (ST)

] Workspace Pointer (WP)

Program Counter

The program counter (PC) is a 15-bit counter that contains the word address of the next instruction following the
instruction currently executing. The microprocessor references this address to fetch the next instruction from
memory and increments the address in the PC when the new instruction is executing. If the current instruction in
the micropracessor alters the contents of PC, then a program branch occurs to the location specified by the altered
contents of PC. All context switching {see Section 2.2.2.3.2) operations pius simple branch and jump instructions
affect the contents of PC.

Status Register

“The status register {ST) is a fully implemented 16-bit register that reports the results of program comparisons, indi-
cates program status conditions, and supplies the arithmetic overflow enable and interrupt mask level to the inter-
rupt priority circuits. Each bit position in the register signifies a particular function or condition that exists in the
microprocessor. Figure 5 illustrates the bit position assignments. Some instructions use the status register to check
for a prerequisite condition; others affect the vaiues of the bits in the register; and others load the entire status
register with a new set of parameters. Interrupts also modify the status register. The description of the instruction
set later in this document details the effect of each instruction on the status register (see Section 3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sTO
L>

sti | st2 | sta | sta | svs | ste | st7 | sva | svo | smio | svia | ST2 | §T13 l sT14 I sT1S

- - OV -
A> EQ o} ov op X EN INTERRUPT MASK

*NOTE: ST7, ST8, ST9, and ST11 are not used in the TMS9995, but still physicaily exist in the register. These bits couid therefore be used as
flag bits, but software transportability should be kept in mind when doing so as these bits are defined in other 9900 microprocessor
family and 990 minicomputer family products.

L> Logical Grester Than [of :  Carry Out X :  XOP In Progress
A> Arithmetic Greater Than ov :  Overflow OV EN :  Overflow Interrupt Enable
EQ Equal/TB Indicator OoP :  Parity (Odd No. of Bits)
FIGURE 5 — STATUS REGISTER BIT ASSIGNMENTS
2.2.23 Workspace

The TMS 9995 uses blocks of memory words called workspaces for instruction operand manipulation. A work-
space occupies 16 contiguous words in any part of memory that is not reserved for other use. The individual
workspace registers may contain data or address, or function as operand registers, accumulators, address registers,
or index registers. Some workspace registers take on special significance during execution of certain instructions.
Table 1 lists each of these dedicated workspace registers and the instructions that use them. Figure 6 defines the
workspace registers that are allowed to be used as index registers.

5



TABLE 1 — DEDICATED WORKSPACE REGISTERS

REGISTER NO. CONTENTS . USED DURING
0 Shift count (optional) Shift instructions (SLA, SRA,
SRC, and SLC)
Multiplicand and MSW Signed Muitiply
of result
MSW of dividend and Signed Divide
quotient
1 LSW of resuit Signed Multiply
LSW of dividend and Signed Divide
remainder
1 Return Address Branch and Link Instruction (BL)
Effective Address Extended Operation (XOP)
12 CRU Base Address CRU instructions {SBO, SBZ, TB,
LDCR, and STCR)
13 Saved WP register Context switching (BLWP, RTWP,
XOP, interrupts)
14 Saved PC register Context switching (BLWP, RTWP,
XOP, interrupts)
15 Saved ST register ‘ Context switching (BLWP, RTWP,
XOP, interrupts)

WORKSPACE REGISTERS
0

1

DATA
OR 8
ADDRESSES

INDEX 10
CAPABILITY »

12

13

14

15

NOTE: The WP register contains the address of workspace register zero.

FIGURE 6 — WORKSPACE REGISTERS USABLE AS INDEX REGISTERS



22231

22232

Workspace Pointer

To locate the workspace in memory, a hardware register called the workspace pointer {WP) is used, The workspace
pointer is a 16-bit register that contains the memory address of the first word in the workspace. The address is
left-justified with the 16th bit (LSB) hardwired to logic zero. The TMS 9995 accesses each register in the work-
space by adding twice the register number to the contents of the workspace pointer and initiating a memory re-
quest for that word. Figure 7 illustrates the reiationship between the workspace pointer and its corresponding
workspace in memory

WORKSPACE POINTER WORKSPACE WORKSPACE
(wp) ADDRESS REGISTERS
/ WP + 004g —————— 0
wp
WP +021¢g ——————— 1
WP + 0446 —————————— 2
WP + 061¢g E—————— 3
MICROPROCESSOR ADDS
WORKSPACE POINTER E
————
{WP) TO TWICE THE WP+ 0816 4
REGISTER NUMBER TO
DERIVE ACTUAL WP + 0A1g . 5
REGISTER ADDRESS
WP +0Cyg ————————— 6
WP + 0E1g —_—— 7
< WP + 1016 ——— 8
WP + 121 —_— 9
WP + 1416 t——————l 10
WP + 1616 ——————— 11
NOTE: All memory word addresses are even. WP + 184¢ ——— 12
WP + 1A16 —————————— 13
WP +1Cyg ———— 14
\ WP + 1516 ————tn—— 15

FIGURE 7 — WORKSPACE POINTER AND REGISTERS

For instructions performing byte operations, use of the workspace register addressing mode {see Section 3.2) will
result in the most significant byte of the workspace register involved to be used as the operand for the operation.
Since the workspace is also addressable as a memory address, the least significant byte may be directly addressed
using any one of the general memory addressing modes.

Context Switching

The workspace concept is particularly valuable during operations that require a context switch, which is a change
from one program environment to another, as in the case of a subroutine or an interrupt service routine. Such an
operation using a conventional multi-register arrangement requires that at least part of the contents of the register

7



23

2.3.1

23.1.1

2.3.1.11

file be stored and reloaded using a memory cycle to store or fetch each word. The TMS 9995 accomplishes this
operation by changing the workspace pointer, A context switch requires only three store cycles and two fetch
cycles, exchanging the program counter, status register and workspace pointer. After the switch, the workspace
pointer contains the starting address of a new 16-word workspace in memory for use in the new routine. A corre-
sponding time saving occurs when the original context is restored. Instructions in the TMS 9995 that result in a
context switch include: Call subroutine (BLWP), Return from Subroutine (RTWP) and the Extended Operation
{XOP) instruction. All interrupts also cause a context switch by forcing the TMS 9995 to trap to a service sub-
routine.

TMS 9995 INTERFACES

Each TMS 9995 system interface uses one or more of the signals from one or more of the signal groupings given in
the pin description list in Section 3. Each interface is described in detail in the following paragraphs.

TMS 9995 Memory Interface

The signals used in the TMS 9995 interface to system memory are shown in Figure 8.

AQ-A14, A15/CRUOUT

)

¥ 1 MEMORY SYSTEM

N D0-D7 \ AND/OR DMA
k )h CONTROLLER
| Y
MEMEN
>
TMS9995 DBIN o
WE/CRUCLK
e — READY IAQ/HOLDA AND
AQ HOLD ARE NOT
/HOLDA REQUIRED FOR
SIMPLE MEMORY
< HOLD SYSTEMS BUT WiLL

BE USED BY DMA
CONTROLLERS

FIGURE 8 — TMS9995 MEMORY INTERFACE

External Memory Address Space

The details of memory accesses that are external to the TMS 9995 (off-chip accesses) are given in the following
paragraphs. (See Figure 2 for the addresses that are in the external memory-address space.)

Memory Read Operations

To perform a memory read operation, the TMS 9995 first outputs the appropriate address on A0-A14 and A15/
CRUOUT, and asserts MEMEN. The TMS 9995 then places its data bus drivers in the high impedance state, asserts
D_BIT\I-, and then reads in the data byte. Completion of the memory read cycle and/or generation of Wait states is
determined by the READY input as detailed in Section 2.3.1.3. Timing relationships of the memory read sequence
are shown in Figure 9. Note that MEMEN remains active (low) between consecutive memory operations.



AC-A14, A15/CRUOUT X Q X @ X
®

| _
v CGD—i—-é:
| | |
MEMEN lh / "
-l I I o
| | L
. T\ '
WE/CRUCLK 1 |
t )
| | | \
| | |
avoron —— @ | &
IAQ/HOLDA
| | T
L A /]
A 4 2
MEMORY READ MEMORY READ
NO WAIT STATE ONE WAIT STATE

NOTES:

OO

2.3.1.1.2

Valid address
In input mode (drivers @ High-2Z)
Memory Read Data must be vaiid at CLKQUT edge indicated

1AQ/HOLDA will only be asserted during memory read cycles if an instruction opcode is being read {timing shown is for an instruc-
tion fetch from external memory —, i.e., two consecutive byte reads).

FIGURE 9 — TMS9995 MEMORY READ CYCLE

Although not explicitly shown in Figure 9, reading a word (two 8-bit bytes) frcm external memory requires two
memory read cycles that occur back-to-back {a Hold state request will not be granted between cycles). If an
instruction directs that a byte read from external memory is to be performed, only the byte specifically addressed
will be read (one memory read cycle). External words are accessed most-significant (even) byte first, followed by
the least-significant (odd) byte.

During memory read cycles in which an instruction opcode is being read, IAQ/HOLDA is asserted as shown in
Figure 9. Note that since an instruction opcode is a word in length, IAQ/HOLDA remains asserted between the two
byte read operations involved when an instruction opcode is read from the external memory address space.

Memory Write Operations

To perform a memory write operation, the TMS 9995 first outputs the appropriate address on A0-A14 and A15/
CRUOUT, and asserts MEMEN. The TMS 9995 then outputs the data byte being written to memory on pins DO
through D7, and then asserts VVE/CRUCLK. Completion of the memory write cycle and/or generation of Wait
states is determined by the Ready input as detailed in Section 2.3.1.3. Timing relationships of the memory write
sequence are shown in Figure 10, Note that MEMEN remains active (low) between consecutive memory operations.



23.1.13

CLKOUT l l l | I I ‘ I
[

I
AO-A14, AIS/CRUOUT X o
|
0007 — e ::X [©)

J-
o)
<

5
"

MEMEN

DBIN

|
o~
—

-

|
WE/CRUCLK | \____/—_—L , \
—
: I |
1AQ/HOLDA + @ !L %
\ A P
R A 4
MEMORY WRITE MEMORY WRITE
NOTES: NO WAIT STATE ONE WAIT STATE

@ Valid address
@ Valid memory write data
@ 1AQ/HOLDA will never be asserted during a8 memory write cycle

FIGURE 10 — TMS9995 MEMORY WRITE CYCLE

Writing a word {two 8-bit bytes) to external memory requires two memory write cycles that occur back-to-back.
(A Hold state request will not be granted between cycles.) If an instruction directs that a byte write to external
memory is to be performed, only the byte specifically addressed will be written (one memory write cycle), External
words are accessed most-significant (even) byte first followed by the least-significant (odd) byte.

Direct Memory Access

The TMS 9995 Hold state allows both external devices and the TMS 9995 to share a common external memory.
To gain direct memory access {DMA) to the common memory, the external device first requests the TMS 9995 to
enter a Hold state by asserting (taking low) the HOLD input. The TMS 9995 will then enter a Hold state following
completion of the cycle (either memory, CRU, external Instruction, or internal ALU cycles) that it is currently
performing. Note, however, that a Hold state is not entered between the first and second byte accesses of a full
word in the external memory address space, and a Hold state is not entered between the first and second clock
cycles of a CRU cycle.

Upon entry of a Hold state, the TMS 9995 puts its address, data, D_BIN, and E/CRUCLK drivers in the high
impedance mode, and asserts |IAQ/HOLDA. The external device can then utilize these signal lines to communicate
with the common memory. After the external device has completed its memory transactions, it releases HOLD,
and the TMS 9995 continues instruction execution at the point where it had been suspended. Timing relationships
for this sequence are shown in Figure 11.



ANY NUMBER L_

OF COMPLETE
jcixourcyeies|
cLxout __—"___—l_-—I_—L - —L___J_———l____r—
L ® | |
AG-A14, A1S/CRUOUT x VALID ADDRESS ﬁl £ & |
L | ' A
x VALID WRITE DATA ,\ ©) _5 § ' : (:
MEMEN -'g\ : r I :‘—_ —
pein ! I “l ® ‘e ! N—
' | R [ I
|
T\ [T\ ©) (¢ ' —
WE/CRUCLK | . £ ¢ .

HOLD ; ; \ .
{¢
| e
i £ ¢
1AQ/HOLDA | J ? \_____—.'
] ]
| — ] \ J \ W
ng - o
MEMORY WRITE, NO WAIT HOLD STATE NEXT CYCLE {(MEMORY,
STATES © CRU, EXTERNAL INSTAUCTION

OR INTERNAL ALU CYCLE)
NOTES:

@ Cycle before the hold state could have been memory (with any number of wait states), CRU, external instruction, or internal ALU

@ HOLD must be valid at last low-to-high CLKOUT transition of a cycie for next low-to-high CLKOUT transition to begin a8 hold
state

@ in high-impedance mode {output drivers)
(8) Next cycle will begin after first low-to-high CLKOUT transition at which HOLD is high

FIGURE 11 — TMS9995 HOLD STATE

To allow DMA loading of external memory on power-up, the TMS 9995 does not begin instruction execution
after a Reset state until HOLD has been removed if HOLD was active (low) at the time RESET was taken from
low to high RESET released).

External devices cannot access the internal {on-chip) memory address space of the TMS 9995 when it is in the
Hold state.

Since 1AQ (instruction Opcode Acquisition) and HOLDA (Hold Acknowledge) are multiplexed on a single signal,
. IAQ/HOLDA, this signal must be gated with MEMEN using external logic to separate |AQ and HOLDA. When
MEMEN = 0, IAQ/HOLDA can indicate |1AQ, and when MEMEN = 1, iAQ/HOLDA can indicate HOLDA.

23.1.2 Internal Memory Address Space

Access of the internal {on-chip) memory address space is transparent to the TMS 9995 instruction set. That is,
operands can be read from and written into locations in the internal memory space simply by using the appro-
priate addresses via any of the addressing modes in the TMS 9995 instruction set, and instructions can even be
executed from the internal memory space by loading the appropriate address into the program counter of the
TMS 9995.

1



23.1.2.1

2.3.1.2.2

The TMS 9995 indicates to the external world when these internal memory address space accesses are occurring
by asserting the same signals used for accessing external memory {see Figure 8) in a manner very similar to an ex-
ternal memory address space access. There are a few differences in these cycles, however, and these differences
are detailed in the following paragraphs. '

When performing an internal memory address space access;ﬁthe TMS 9995 outputs the same signals that it would
for an external memory space access, with the same timing {see Figures 9 and 10) except for the following:

(1) A single cycle (read or write) is output as both internal bytes are accessed simultaneously. (Externally, it
appears as though a single byte memory access cycle to an internal address is occurring.)

{2)  The cycle always has no Wait states, and the READY input is ignored by the TMS 9995 (see Section 2.3.2.3).

(3) During read cycles, the data bus (D0-D7) output drivers are put in the high-impedance mode. During write
cycles, the data bus outputs non-specific data.

During read cycles to the internal memory address space, the TMS 9995 does not make the read data available to
the external world. If an instruction is executed from the internal memory address space, |IAQ/HOLDA is still
asserted, but only during the one read cycle shown externally while the full word is read internally,

When in a Hold state, external devices are not able to access the internal memory address space.

Internal RAM

The 256 bytes of internal random-access read/write memory {RAM), the memory addresses of which are shown
in Figure 2, are organized internally as 128 16-bit words. Since the TMS 9995 has 16-bit internal data paths, two
8-bit bytes are accessed each time a memory access is made to the internal RAM.

Byte accesses are transparent to the internal RAM. That is, when an instruction addresses a byte in the internal
RAM, the TMS 9995 will: (1) read the entire word but only use the byte specifically addressed for a read opera-
tion and, (2} only write to the specifically addressed byte and not alter the contents of the other byte in the word
during a write operation.

Decrementer (Timer/Event Counter)

Accessible via one of the word addresses (see Figure 2) of the internal memory-mapped |/0O address space is the de-
crementer. The on-chip decrementer lagic can function as a programmable real-time clock, an event timer, or as an
external event counter. A block diagram of the decrementer that is representative of its functional operation {but
not necessarily representative of its specific logic implementation) is shown in Figure 12.

PULSE GENERATED WHEN
LEVEL 3 INTEARUPT
CONTEXT SWITCH IS TAKEN

16 81T INTERNAL
DATA PATH

INTEANAL CLOCK
{MACHINE STATE

u PULSE GENERATED
FREQUENCY)

DURING RESET

STARTING COUNT INTERRUPT SEQUENCE
STORAGE

REGISTER (16 BITS)

CLEAR
FLAGQ =g FLAGY
DECREMENT 4
8Y ONE LEVEL 3 INTERRUPT
o DECREMENTING REQUEST LATCH
*45 YNCHRON! REGISTER INPUT
116 8ITS) M
—— COUNT =0 ouTeuT
INT4/EC
LEVEL3
INTERR|
TO INPUT OF LEVELS NTERRUPT

:D—o INTERNAL INTERRUPT 16 :‘:;:::::‘i REQUEST
REQUEST LATCH
CRU INPUT DATA FOR CRU

ADDRESS OF FLAG] IN
FLAG REGISTER

.NOTE: FLAGO and FLAG1 are bits in the Flag Register

FIGURE 12 — DECREMENTER FUNCTIONAL BLOCK DIAGRAM

12



23.1.3

The decrementer is configured as either a timer or an event counter using bit FLAGO of the internal Flag register,
The decrementer is enabled/disabled using bit FLAG1 of the internal Flag register. {See Section 2.3.3.2.1 for de-
tails of the Fiag register and accessing the bits in it.) When FLAGOQ is set to zero, the decrementer will function as
a timer. When FLAGO is set to one, the decrementer will function as an event counter. When FLAGH1 is set to
zero, the decrementer is disabled and will not be allowed to decrement and request level 3 interrupt traps. When
FLAGTH is set to one, the decrementer is enabled and will decrement and nd request level 3 interrupt traps. |t should
be noted that when the decrementer is configured as a timer, INT4/EC will be usable as an external interrupt
level 4 trap request, When the decrementer is configured as an event counter, INT4/EC is the input for the “‘event
counter” pulses, and an interrupt level 4 trap request input is no longer available externally or internally.

The general operation of the decrementer is as follows. FLAGO of the Fiag register is first set to select the desired
mode of operation. The desired start count is then loaded into the Starting Count Storage Register by performing
a memory write of the count word to the dedicated internal memory mapped /O address of the decrementer.
(This also loads the Decrementing Register with the same count.) The decrementer is then enabled and allowed to
start decrementing by setting FLAG1 of the Fiag Register to one. {Both FLAGO and FLAG1 are set to zero when
the TMS 9995 is reset. (See Section 2.3.2.1.1.} When the count in the Decrementing Register reaches zero, the
level 3 internal interrupt request latch is set (see Section 2.3.2.2.3}, the Decrementing Register is reloaded from the
Starting Count Storage Register, and decrementing continues. Note that writing a start count of 00001g to the
decrementer will disable it.

When configured as a timer, the decrementer functions as a programmable real-time clock by decreasing the count
in the Decrementing Register by one for each fourth CLKOUT cycle. Loading the decrementer with the appro-
priate start count causes an interrupt to be requested every time the count in the Decrementing Register reaches
zero. The decrementer can also be used as an event timer when configured as a timer by reading the decrementer
(which is accomplished by performing a memory read from the dedicated internal memory mapped |/O address
of the decrementer) at the start and stop points of the event of interest and comparing the two values. The dif-
ference will be a measurement of the elapsed time.

When configured as an event counter, operation is as previously discussed except that each high-to-low transition
on INT4/EC will cause the Decrementing Register_to decrement. These INT4/EC high-to-low transitions can be
asynchronous with respect to CLKOUT. Note that INT4/EC can function as a negative edge-triggered interrupt by
loading a start count of one,

The decrementer should always be accessed as a full word {two 8-bit bytes). Reading a byte from the decrementer
does not present a problem since only the byte specifically addressed will be read. Writing a single byte to either of
the bytes of the decrementer will result in the data byte being written into the byte specifically addressed and
random bits being written into the other byte of the decrementer.

Wait State Generation

Wait states can be generated for external memory cycles, external CRU cycles and external instruction cycles for
the TMS 9995 using the READY input. A Wait state is defined as extension of the present cycle by one CLKOUT
cycle. The timing relationships of the READY input to the memory interface and the CRU interface signals are
shown in Figure 13. Note that Wait states cannot be generated for memory cycles that access the internal memory
address space or for CRU cycles that access the internal CRU address space, as the READY input will be ignored
during these cycles.

The Automatic First Wait State Generation feature of the TMS 9995 allows a Wait state to be inserted in each ex-
ternal memory cycle, regardless of the READY input, as shown in Figure 13. The Automatic First Wait State
Generation feature can be invoked when RESET is asserted. If READY is active (high) when RESET goes through
a low-to-high transition, the first Wait state in each external memory cycle will be automatically generated. If
READY is inactive {low) when RESET goes through a low-to-high transition, no Wait state will be inserted auto-
matically in each external memory cycle. There is a one and one-half CLKOUT cycle time minimum setup time
requirementon READY before the RESET low-to-high transition. The recommended external circuitry for invoking
or inhibiting the Automatic First Wait State Generation feature is shown in Figure 14. Note that this feature does
not apply to internal memory address space accesses, external instruction cycles, or any CRU cycles. Wait states
cannot be generated during internal ALU/other operation cycles. The READY input is ignored during these cycles.

13



MEMORY CYCLES:

R I I N S B

CLKOUT

4

F_

VAR —— TN

19 © 0] Q.

w \ / \
A4 v
NOWAIT
T ONE WAIT STATE, AUTOMATIC ONE WAIT STATE, AUTOMATIC
STATES FIRST WAIT STATE FEATURE FIRST WAIT STATE FEATURE
NOT ACTIVE ACTIVE

CRU CYCLES AND EXTERNAL INSTRUCTION CYCLES:

wor [ l‘ — o I I 1T
o \__7 N\ v

WE/CRUCLK
1]

Ho) i® i@
READY d V

A4

ONE WAIT STATE
{AUTOMATIC FIRST WAIT STATE
FEATURE DOES NOT APPLY
TO CRU CYCLES)

NO WAIT STATES

NOTES:
\)) First sample time of READY in cycle

@ Second sampie time of READY in cycle. Additional wait states can be generated by keeping READY low at this and subsequent

sample times.

X XXX denotes ‘‘don’t care’’

FIGURE 13 — WAIT STATE GENERATION FOR EXTERNAL
MEMORY, EXTERNAL CRU CYCLES, AND
EXTERNAL INSTRUCTION CYCLES

Vee Vee
FROM
MEMORY
FROM Ly

READY - : MEMORY > b READY

4 7407
TMS9995 { TMS9995

L RESET REQUEST

RESET (TTL RISE/FALL > & RESET

TIMES)

I 74L814

(a) INHIBITING AUTOMATIC FIRST
WAIT STATE, R-C POWER-UP RESET

(b} INHIBITING AUTOMATIC FIRST
WAIT STATE, TTL-SPEED
RESET REQUEST

vee
19
FROM
MEMORY "~ ¢ READY
SYSTEM

TMS9995

PP NP LA
WA

L o

(c} INVOKING AUTOMATIC FIRST
WAIT STATE (RESET CAN BE
R-C POWER-UP OR OTHER-
WISE)
FIGURE 14 — EXTERNAL CIRCUITRY FOR INVOKING/INHIBITING
AUTOMATIC FIRST WAIT STATE GENERATION FEATURE

14



2.3.2 TMS 9995 Interrupts

The TMS 9995 implements seven prioritized, vectored interrupts, some of which are dedicated to predefined func-
tions and the remaining are user-definable. Table 2 defines the source {internal or external), assignment, priority
level, trap vector location in memory, and enabling/resulting status register interrupt mask values for each interrupt.

TABLE 2 — INTERRUPT LEVEL DATA

VECTOR MASK VALUES MASK VALUE
PRIORITY LOCATION TO ENABLE AFTER ::K!IJNG SOURCE AND
LEVELS (Memory ACCEPTING THE INTERRUPT ASSIGNMENT
{In Order of Priority) Address, THE INTERRUPT (ST12 THRU ST15)
in Hex) (ST12 THRU ST15)
. 0 o 0000 046 thru Fqg 0000 ) External: Reset
{Highest Priority) {see Note 1) (RESET Signat)
0008 O1g thru F 1
MID 16 v 716 000 Internal: MID
{see Note 2) (see Note 1) (see Note 2)
External: User-
016 thru F1g . —
NMI FFFC 0000 defined (NM
{see Note 1)
Signat)
External: User-
1 0004 116 thru F1g 0000 defined (INT1
Signal)
2 0008 21g thru Fyg 0001 Internal:
(see Note 2) (see Note 3) {see Note 2) Arithmetic Overflow
’ i
3 000C 316 thru F1g 0002 Interna
Decrementer
External: User-
4 0010 446 thru Fyg 0003 defined {INT4/EC
Signal; see Note 4).

NOTES:

-

Level 0, MID, and NMI cannot be disabled with the Interrupt Mask.

2. MID and Level 2 use the same trap vector and change the Interrupt Mask to the same value.

3. Generation of a Level 2 request by an Arithmetic Overflow condition (ST4 set to 1) is also enabled/disabled by bit ST10 of the
Status Register,

4, INT4/—E—6 is not an input for Level 4 interrupt trap requests (Level 4 is not usable) when the Decrementer is configured as an
Event Counter.

The TMS 9995 will grant interrupt requests only between instructions (except for Level 0 Reset), which will be
granted whenever it is requested, i.e., in the middie of an instruction). The TMS 9995 performs additional func-
tions for certain interrupts, and these functions will be detailed in subsequent sections. The basic sequence that
the TMS 9995 performs to service all interrupt requests is as follows:

(1)

(2)
(3)

(4)

Prioritize all pending requests and grant the request for the highest priority interrupt that is not masked by
the current value of the interrupt mask in the status register or the instruction that has just been executed.
{See Section 4.5 for these instructions.)

Make a context switch using the trap vector specified for the interrupt being granted.

Reset ST7 through ST11 in the status register to zero, and change the interrupt mask (ST12 through ST15)
as appropriate for the level of the interrupt being granted.

Resume execution with the instruction located at the new address contained in the PC, and using the new WP.
All interrupts will be disabled until after this first instruction is executed, unless: (a) RESET is requested, in
which case it will be granted, or (b) the interrupt being granted is the MID request and the NM]| interrupt is
requested simultaneously (in which case the NMI request will be granted before the first instruction indicated
by the MID trap vector is executed.)

18



2.3.2.1

23.2.11

This sequence has several important characteristics. First of all, for those interrupts that are maskable with the
interrupt mask in the status register, the mask will get changed to a value that will permit only interrupts of higher
priority to interrupt their service routines. Secondly, status bit ST10 (overflow interrupt enable) is reset to zero by
the servicing of any interrupt so that overflow interrupt requests cannot be generated by an unrelated program
segment. Thirdly, the disabling of other interrupts until after the first instruction of the service routine is executed
permits the routine to disable other interrupts by changing the interrupt mask with the first instruction. (The ex-
ception with MID and NMI is explained in Section 2.3.2.2.1.) Lastly, the vectoring and prioritizing scheme of the
TMS 9995 permits interrupts to be automatically nested in most cases. If a higher priority interrupt occurs while
in an interrupt service routine, a second context switch occurs to service the higher priority interrupt. When that
routine is complete, a return instruction (RTWP) restores the saved context to complete processing of the lower
priority interrupt. Interrupt routines should, therefore, terminate with the return instruction to restore original
program parameters.

Additional details of the TMS 9995 interrupts are supplied in the following pa'ragraphs.

External Interrupt Requests

Each of these interrupts is requested when the designated signal is supplied to the TMS 9995.

Interrupt Level 0 (RESET)

interrupt Leve! O is dedicated to the RESET input of the TMS 9995. When active (low), RES_E_I causes the
TMS 9995 to stop instruction execution and to inhibit {take to logic level high) MEMEN, DBIN, and WE/CRUCLK.
The TMS 9995 will remain in this Reset state as long as RESET is active.

When RESET is released (low-to-high transition), the TMS 9995 performs a context switch with the Level O inter-
rupt trap vector (WP and PC of trap vector are in memory word addresses 000015 and 00021g, respectively.)
Note that the old WP, PC and ST are stored in registers 13, 14, and 15 of the new workspace. The TMS 9995 then
resets all status register bits, the internal interrupt request latches (see Sections 2.3.2.1.3 and 2.3.2.2.3 for details
of these latches), Flag Register bits FLAGO and FLAG1 (see Section 2.3.3.2.1 for details of the Flag Register),
and the MiD Flag (see Section 2.3.3.2.2). After this, the TMS 9995 starts execution with the new PC.

If HOLDA is active (high) due to HOLD being active {iow) when__R__E_S_ET becomes active, RESET will cause
HOLDA to be released (taken low) at the same time as MEMEN, DBIN, and WE/CRUCLK are taken inactive
{high). HOLD can remain active as long as RESET is active and HOLDA will not be asserted. If HOLD is active
when RESET is released (low-to-high transition), HOLDA will be asserted before the RESET context switch occurs
and the TMS 9995 will remain in this hold state until HOLD is released, This RESET and HOLD priority scheme
facilitates DMA loading of externai RAM upon power-up.

Timing relationships of the RESET signal are shown in Figure 15,

Release of the RESET signal is also the time at which the Automatic First Wait State function of the TMS 9995
can be invoked {see Section 2.3.1.3).

16



_’l ANY NUMBEROF |
. CLKOUT CYCLES
cLKOUT I' l [ ] l 1' I l l l
i 0] ] H 1 : (v H :
POOTCIROIOIOX o ; T\
: I ; : I TR ;
BT SISO T T\
i Y ! !
WE/CRUCLR i kR i '
le) | © @
RESET
L/ ——
@ ® TN rETon
WP OF RESET

VECTOR)

NOTES:
@ Dan’t care XX X indicates that any type of TMS9995 cycle can be taking place
(2) RESET is sampled at every high-to-low CLKOUT transition

@ RESET is required to be active {low) for a minimum of two sampies to initiate the sequence. The context switch would begin one
CLKOUT cycle after () it RESET were inactive (high) at ) .

The context switch using the Reset trap vector begins one CLKOUT cycle after RESET is sampled as having returned to the inactive
(high} level.

FIGURE 15 — TMS9995 RESET SIGNAL TIMING RELATIONSHIPS

2.3.2.1.2 Non-Maskable Interrupt (NMI)

The NMI signal is the request input for the NMI level interrupt and allows ROM loaders, single-step/breakpoint/
maintenance panel functions, or other user-defined functions to be implemented for the TMS 9995. This signal
and its associated interrupt level are named “LOAD’’ in previous 9900 family products.

NMI being active {low) according to the timing illustrated in Figure 16 constitutes a request for the NMI level
interrupt. The TMS 9995 services this request exactly according to the basic sequence previously described, with
the priority level, trap vector location, and enabling/resulting status register interrupt mask values as defined in
Table 2. Note that the TMS 9995 will always grant a request for the NMI level interrupt immediately after execu-
tion of the currently executing instruction is completed since NMI is exempt from the interrupt-disabling-after-
execution characteristic of certain instructions and also the current value of the interrupt mask.

It should also be noted that the TMS 9995 impiements four bytes of its internal RAM at the memory address of
the NMI vector. This allows usage of the NMI level in minimum-chip TMS 9995 systems. It also requires, however,
that this vector must be initialized, upon power-up, before the NMI level interrupt can be requested.

17



ANY NUMBER OF
CLKOUT CYCLES
_
b_l B R L ||
- \\\/// [ LS/ // 77
) 7\ /7 \w /
@ \ 4 v Vv
INTERNAL INTERNAL CONTEXT SWITCH AND
CYCLE CYCLE NMI SUBROUTINE
(WOULD HAVE
BEEN AN 1AQ
IF NM! HAD

NOT OCCURRED}

NOTES:
(1) NWMi is sampled at every high-to-low CLKOUT transition

@ To be rocoqmud NMI must be active {iow) at the end of an instruction. Since mstructnons are variable in length, the minimum
active time for NM1 is variable according to the instruction being executed. Shown by @ is the last possible time that TMI must
be recognized at or by before execution of the next instruction wiil commence. The NMI context switch begins three CLKOUT
cycies after exacution of the current instruction is complete.

@ After an NMI context switch sequence has been initiated, NMI| can remain active {low) indefinitely without causing consecutive

NMi trap requests. To snable another N™ I trap request, NMi must be taken inactive (high) and be sampled at least once at the
inactive level.

FIGURE 16 — TMS9995 NMi SIGNAL TIMING RELATIONSHIPS

2.3.2.1.3 Interrupt Levels 1 and 4 (INT1 and INT4/EC)

The INT1 and INT4/EC signals are the request inputs for the Lev_ei1 and Level 4 interrupts, respectively. (Note
that if the decrementer is configured as an event counter, INT4/EC is no longer a Level 4 interrupt request input
however. See Section 2.3.1.2.2). Levels 1 and 4 are maskable, user-definable interrupts.

The W and W/'E'E interrupt inputs can accept either asynchronous pluses or asynchronous levels as input
signals. An internal interrupt request latch stores the occurrence of a pulse. A block diagram of the TMS 9995
internal logic for these request latches that is representative of their functional operation (but not necessarily
representative of their specific logic implementation) is shown in Figure 17. Note that with this implementation
only a single interrupt source is allowed if the input signal is a pulse, but multiple interrupt sources can be
wired-ORed together provided that each source supplies a level as the input signal. (The levels are then removed
one at a time by a hardware/software mechanism activated by the interrupt subroutine as each interrupting source
is serviced by the subroutine.)

PULSE GENERATED PULSE GENERATED WHEN
DURING RESET CONTEXT SWITCH FOR
INTERRUPT SEQUENCE ASSOCIATED INTERRUPT
1S TAKEN
LEVEL 1 or
LEVEL 4 INTERRUPT
REQUEST
CLEAR
SYNCHRONIZER
INTT, RISING EDGE
INT4/EC INPUT TRIGGERED ouTPUT INPUT ouTPUT
@ LATCH
CRU INPUT DATA
FOR CRU ADDRESS
OF FLAG2 or
FLAG4 IN FLAG
NOTES: REGISTER

A separate latch and svnchvomzcr is implemented for Levei 1 (INT1) and Level 4 (INTA/EC) For Level 1, the input shown here is
directly from the INT1 pin. For Level 4 the input shown here is from the gating shown in Figure 12,

FIGURE 17 — FUNCTIONAL BLOCK DIAGRAM OF INTERNAL
INTERRUPT REQUEST LATCH

18



23.2.2

23.2.21

2.3.2.2.2

The TMS 9995 services each of these requests exactly according to the basic sequence previously described with
the priority levels, trap vector locations, and enabling/resulting status register interrupt mask values as defined
in Table 2. Each internal interrupt request latch will get reset when the context switch for its associated interrupt
level occurs.

Internally Generated Interrupts

Each of these interrupts is requested when the designated condition has occurred in the TMS 9995,

Macro Instruction Detection {MID) Interrupt

The acquisition and attempted execution of an MID interrupt opcode will cause the MID level interrupt to be re-
quested before execution of the next instruction begins (MID interrupt opcodes are defined in Section 4.5.15). In
addition to reauesting the MID level interrupt, the MID flag is set to one "1’ {see Section 2.3.3.2.2). The
TMS 9995 services this request exactly according to the basic sequence previously described, with the priority
level, trap vector location, and enabling/resulting status register interrupt mask values as defined in Table 2. Note
that the TMS 9995 will always grant a request for the MID level interrupt since MID is not affected by the interrupt
mask and is higher in priority than any other interrupt except for Level 0, Reset. If the NM! interrupt is requested
during an MID interrupt context switch, the MID interrupt context switch will be immediately foliowed by the
NMI interrupt service sequence before the first instruction indicated by the MID interrupt is executed. This is done
so that the NMI! interrupt can be used for a single-step function with MID opcodes. Servicing the MID interrupt re-
quest is viewed as ‘‘execution’’ of an MID interrupt opcode. NMI allows the TMS 9995 to be halted immediately
after encountering an MID opcode.

1t should also be noted that the MID interrupt shares its trap vector with Level 2, the Arithmetic Overfiow inter-
rupt. (See Section 2.3.2.2.2.) The interrupt subroutine beginning with the PC of this vector should examine the
MID Flag to determine the cause of the interrupt. If the MID Flag is set to /1, an MID interrupt has occurred, and
if the MID Flag is set to "'0’’, an Arithmetic Overflow interrupt has occurred. The portion of this interrupt sub-
routine that handles MID interrupts should always, before returning from the subroutine, reset the MID Flag
to 0",

The MID interrupt has basically two applications. The MID opcodes can be considered to be illegal opcodes. The
MID interrupt is then used to detect errors.of this nature. The second, and primary application of the MID inter-
rupt, is to allow the definition of additional instructions for the TMS 9995. MID opcodes are used as the opcodes
for these macro instructions. Software in the MID interrupt service routine emulates the execution of these instruc-
tions. The benefit of this implementation of macros is that the macro instructions can be implemented in micro-
code in future processors and software will then be directly transportable to these future processors.

Note that the TMS 9995 interrupt request processing sequence does create some difficulties for re-entrant usage of
MID interrupt macro instructions. In general, to avoid possible errors, MID interrupt macro instructions should
not be used in the NMI and Level 1 interrupt subroutines, and should only be used in the Reset subroutine if
Reset is a complete initialization of the system.

Arithmetic Overflow Interrupt

The occurrence of an arithmetic overflow condition, defined as status register bit 4 {ST4) getting set to one (see
Table 7. for those conditions that set ST4 to one), can cause the Level 2 interrupt to be requested. Note that this
request will be granted immediately after the instruction that caused the overflow condition. The TMS 9995 ser-
vices this request exactly according to the basic sequence previously described with the priority level, trap vector
location, and enabling/resulting status register interrupt mask values as defined in Table 2.

In addition to being maskable with the interrupt mask, the Level 2 overflow interrupt request is enabled/disabled
by status register bit 10 (ST10), the Arithmetic Overflow Enable Bit (i.e., ST10 = 1 enables overflow interrupt re-
quest; ST10 = 0 disables overflow interrupt request). If servicing the overflow interrupt request is temporarily
overridden by servicing of a higher priority interrupt, the occurrence of the overflow condition will be retained in
the contents of the status register, i.e., ST4 = 1, which is saved by the higher priority context switch, Returning
from the higher priority interrupt subroutine via an RTWP instruction causes the overflow condition to be re-
loaded into status register bit ST4 and the overflow interrupt to be requested again (upon compietion of RTWP
instruction). The arithmetic overflow interrupt subroutine must reset ST4 or ST10 to zero in the status word
saved in register 15 before the routine is complete to prevent generating another overflow interrupt immediately
after the return. :

19



2.3.2.2.3

233

It should also be noted that the Level 2 arithmetic overflow interrupt shares its trap vector with the MID inter-
rupt. Section 2.3.2.2.1 describes how the interrupt subroutine beginning with the PC of this vector can determine
the cause of the interrupt.

Decrementer Interrupt

The occurrence of an interrupt request by the decrementer (see Section 2.3.1.2.2) will cause the Level 3 internal
interrupt request latch to get set. This latch is similar to those for Levels 1 and 4 in that it is reset by servicing a
Reset interrupt or when the context switch for its associated interrupt level occurs (Figure 17).

The Level 3 internal interrupt request latch being set constitutes a request for a Level 3 interrupt, and the
TMS 9995 services this request exactly according to the basic sequence previously described with the priority
level, trap vector location, and enabling/resulting status register interrupt mask values as defined in Table 2.

Communication Register Unit Interface

The TMS 9995 accomplishes bit 1/0 of varying field width through the use of the Communications Register Unit
(CRU). In applications demanding a bit-oriented 1/0 interface, the CRU performs its most valuable act: transferring
a specified number of bits to or from memory and a designated device. Thus, the CRU is simply a linking
mechanism between memory and peripherals.

Acting as a shift register, the CRU is a separate hardware structure of the TMS 9995 microprocessor. This structure
can serially transfer up to 16 bits of data between the CPU and a specified device in a single operation. The
32768-bit CRU address space may be divided into any combination of devices, each containing any number of
input or output bits. When given the bit address of a device, the CRU can test or modify any bit in that unit.
Several consecutive addresses can be occupied by a device. These CRU applications are controlled by single and
multipie-bit 9995 instructions.

Single-bit instructions facilitate the testing or modification of a particular bit in a device. The device in which a
bit is to be tested (TB), set to zero (SBZ), or set to one (SBO) is designated by the sum of the value in Register 12
and an 8-bit signed displacement value included as an operand of that instruction. Details of these instructions are
given in Section 4.5.7.

Multiple-bit instructions control the serial transfer of up to 16 bits between memory and peripherals. The device
with which communication is to take place is addressed by Register 12. The memory address to or from which
data is to be transferred, as well as the number of bits to be transferred are included as operands of the multiple-
bit instruction. Details of these instructions are given in Section 4.5.6.

The signals used in the TMS 9995 interface to the CRU are shown in Figure 18. The CRU address map is shown
in Figure 19,

AG-AIL

MEMEN

CRU
DEVICES

>
>

oy
-

CRUIN

ATSICAUOUT

READY

!

NOTE:
DO-D2 sre used 1o distinguish between CRU and external instruction cycles. If externail instructions are no: used in 2 system DO D2
are not necessary in the CRU intertace.

FIGURE 18 — TMS9995 CRU INTERFACE

20



—— - ————— ——
4 GENERAL USE EXTERNAL (OFF-
> 4 > CRU ADDRESS CHIPj CRU
SPACE ADDRESS SPACE
1EDE
—— e ——————
1EEQ FLAGO
16€2 FLAGY
1EE4 FLAG2
1EEE FLAG3
1EE8 FLAG4
1EEA FLAGS
JEEC FLAGS
1EEE FLAG? FLAG - INTERNAL (ON-
® REGISTER > CHIP) CRU-
FLAGS ADDRESS SPACE
1EFO
JEF2 FLAGS
1EF4 FLAGA
1EF§ FLAGB
1EF8 FLAGC
1EFA FLAGD
1EFC FLAGE
FLAGF
weee L D
1F00 | GENERAL USE EXTERNAL (OFF-
< < CRU ADDRESS CHIP) CRU
SPACE ADDRESS SPACE
1FD8
————————————— INTESRNAL (ON-
1FDA MID FLAG > cuiricay
—————————————— ADDRESS SPACE
1FDC
S GENERAL USE EXTERNAL (OFF-
< P CRU ADDRESS CHIP) CRU
SPACE ADDRESS SPACE
FFFE
S

These hex addresses are the software base addresses and are obtained by placing the 15-bit Address Bus CRU bit address
in a 16-bit field, left-justifying the 15 bits in the field, and serting the LSB of the field to zero.

NOTE:

FIGURE 19 — CRU ADDRESS MAP

The concept of “CRU space” is the key to CRU operations. An ideological area exists in which peripheral devices

reside in the form of an address. The CRU space is this ideological area; it has monotonically increasing bit

addresses. Each bit represents a bistable 1/O point which can be read from or written to. CRU address space and

memory address space are independent of each other. Memory space is byte-addressable, and CRU space is bit-

addressable. Therefore, a desired device is accessed by placing its software base address in Register 12 and exercis-
. ing the CRU commands.

CRU nomenclature is built around the four address types involved in its operation. The software base address,
hardware base address, address displacement, and CRU bit address interact to link memory to peripherals in
bit-serial communication via the CRU.

The software base address consists of the entire 16 bits of R12. in R12, the programmer loads twice the value of
the CRU hardware address of the device with which he wishes to communicate. Because only bits 0 through 14
of Register 12 are placed on the address bus, the programmer needs to shift the hardware base address left one
position (equivalent to multiplying by two).

Bits O through 14 of Register 12 form the hardware base address. For the single-bit instructions, thé hardware

base address is added to the address displacement to obtain the CRU bit address. For multiple-bit instructions the
hardware base address is the CRU bit address.

21



23.3.1

External CRU Devices

To input a data bit from an external (off-chip} CRU device, the TMS 9995 first outputs the appropriate address on
AO0-A14. The TMS 9995 {eaves MEMEN high, outputs logic zeroes on D0-D2, strobes m, and reads in the data
bit on CRUIN. Completion of each CRU input cycle and/or generation of Wait states is determined by the READY
input as detailed in Section 2.3.1.3. Timing relationships of the CRU input cycle are shown in Figure 20.

wor LML UL LML
S o Gl Ca— Ca— g C X
s GRS CRNN ) = X

MEMEN

—mmlen ol .- -

r

o

e Y ey [FEgy P EpE—

C
.

:

1

WE/CRUCLK

gk

- .-
- § -l

l/

i
[)
[}
]
[]
1
)
3
[]
[
[]
]
]
]
]
1

A15/CRUOUT l @
!
]
]
]

r

N nbe It

S O R MU .-
e

1]
X _ X e A
g ! H i ')
v! ; v' - V! '
I ! —\ f—<
CRUIN WJQLV ! J‘@‘, ‘(4), L@ )
v \'4
CRU INPUT, BIT ADDR. n BIT ADOR. n+1 CRU INPUT,
SINGLE 81T, OATABITH DATA BIT n+1 SINGLE BIT,
NO WAITS \ /- ONE WAIT STATE
NOTES: \ 4
N CRU INPUT,
@ Valid Address SUCCESSIVE BITS,
@ DO0-D2 each output logic zero NO WAITS

@ Non-specific output bit .
(@ cRU input bit must be valid on CRUIN at CLKOUT edge indicated

FIGURE 20 — TMS9995 CRU INPUT CYCLE

To output a data bit to an external (off-chip} CRU device, the TMS 9995 first outputs the appropriate address on
AO-A14. The TMS 9995 leaves MEMEN high, outputs logic zeroes on D0-D2, outputs the data bit on A15/
CRUOUT, and strobes WE/CRUCLK. Completion of each CRU output cycle and/or generation of Wait states is
determined by the READY input as detailed in Section 2.3.1.3. Timing relationships of the CRU output cycle are

shown in Figure 21,

For multiple-bit transfers, these input and output cycles are repeated until transfer of the entire field of data bits

specified by the CRU instruction being executed has been accomplished.

22



CLKOUT —J U

L
C
CI

&

|
. © Y

00-D2 :.-x @ ) x:::

..-'%J---

Yo

--éﬁ_-

- '>@<',-.
g

1

o

WE/CRUCLK \ ’ L} \
!
!
[

=

|

Xe A

|
A15/CRUOUT ® j
X
. ' ®
W

CRU OUTPUT,
SINGLE BIT,
NO WAITS
NOTES:

@ Valid address
% DO0-D2 each autput logic zero

' 1
i ! '
@ . )
\ 7\ /
A v

BIT ADDR. n 81T ADDR. n+t

DATABITn DATA BIT n+1
\ /

v
CRU OUTPUT,
SUCCESSIVE BiTS,
NO WAITS

Valid CRU output bit for address being output

@ Don’t care

2.3.3.1.1 Single-Bit CRU Operations

The TMS 9995 performs three single-bit CRU functions: Test Bit {TB), Set Bit to One (SBO), and Set Bit to Zero
(SBZ). The SBO instruction performs a CRU output cycle with logic one for the data bit, and the SBZ instruction
performs a CRU output cycle with logic zero for the data bit. A TB instruction transfers the addressed CRU bit

FIGURE 21 - TMS9995 CRU OUTPUT CYCLE

>t

B
e

%

7
~

\ 4
CRU OUTPUT
SINGLE BIT,
ONE WAIT STATE

from the CRUIN input line to bit 2 of the status register (bit ST2, the EQUAL bit).

The TMS 9995 develops a CRU bit address for the single-bit operations from the CRU base address contained in
workspace register 12 and the signed displacement count contained in bits 8 through 15 of the instruction. The dis-
placement allows two’s complement addressing from base minus 128 bits through base plus 127 bits. The base
address from WR12 is added to the signed displacement specified in the instruction and the result is placed onto

the address bus. Figure 22 illustrates the development of a single-bit CRU address.

23



MS8. O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 LSB

WR12*

|
|

——— l
|
|

8 9 10 11 12 13 14 15,
SIGNED
DISPLACEMENT

A\ Y5

BIT 8 SIGN

EXTENDED {}

ADDRESS BUS

\ -/
*Bit 15 of WR12 not used \4

EFFECTIVE CRU BIT ADDRESS

FIGURE 22 — SINGLE BIT CRU ADDRESS DEVELOPMENT

2.3.3.1.2 Muitiple Bit CRU Operations

The TMS 9995 performs two multiple-bit CRU operations: store communications register (STCR) and load com-
munications register (LDCR). Both operations perform a data transfer from the CRU-to-memory or from memory-
to-CRU as illustrated in Figure 23. Although the figure illustrates a fuil 16-bit transfer operation, any number of
bits from 1 through 16 may be involved.

CRU INPUT BITS CRU OUTPUT BITS

N —_
| ' N
N+1 i |
l N+1
| INPUT (STCR;}
I |
| |
| |
I 0 1 MEMORY WORD 14 | 15 i
| |
i |
Ni1a | OUTPUT (LDCR) I
| | N+14
N+15 l |
. N+15

N = BIT SPECIFIED BY CRU BASE REGISTER (WR12}

FIGURE 23 — LDCR/STCR DATA TRANSFERS

24



2332

2.33.2.1

23.3.2.2

234

The LDCR instruction fetches a word from memory and right shifts it to serially transfer it to CRU output bits. If
the LDCR involves eight or fewer bits, those bits come from the right-justified field within the addressed byte of
the memory word. If the LDCR involves nine or more bits, those bits come from the right-justified field within
the whole memory word. Register 12, bits 0 through 14, defines the starting bit address. When transferred to the
CRU interface, each successive bit receives an address that is sequentially greater than the address for the previous
bit. This addressing mechanism results in an order reversal of the bits; that is, bit 15 of the memory word (or bit 7)
becomes the lowest addressed bit in the CRU and bit 0 becomes the highest bit in the CRU field.

A STCR instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer, the
transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the operation in-
volves from nine to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set
to zero. When the input from the CRU device is complete, the iowest addressed bit from the CRU is in the least-
significant bit position in the memory word or byte.

Internal CRU Devices

Access of internal {on-chip) CRU devices is transparent to the TMS 9995 CRU instructions. Data can be input from

and output to the bits of the internal CRU devices simply by using the appropriate CRU addresses to access these
bits.

The TMS 9995 will indicate to the external world when these internal CRU bit accesses are occurring by asserting
the same signals used for accessing external CRU devices (see Figure 18). The timing of these signals for internal
CRU input and output cycles will be identical to the timing for external CRU input and output cycles (see
Figure 20 and 21) except that during internal CRU cycles, the READY input is ignored, i.e., Wait states cannot be
generated, and, during internal CRU input cycles, the TMS 9995 will ignore the CRUIN input signal. The internal
bit being input will not be available to the external world on CRUIN,

The functional characteristics of the internal CRU devices are described in the foliowing paragraphs.

Fiag Register

Accessible via CRU input and output instructions that are executed to dedicated internal CRU bit addresses (see
Figure 19) is the internal Flag Register. The 16-bit Flag Register contains both predefined TMS 9995 systems
flags and user-definable flags as detailed in Table 3. The predefined system flags are the configuration bit for the
Decrementer, the Decrementer enable bit, and the internal interrupt request latch CRU inputs. Note that CRU out-
put operations to the internal interrupt request latch Fiag addresses will not cause these latches to be either set or
reset. These Flag bits are input only and allow the presence of these interrupt requests to be detected when the
occurrence of the interrupts themselves is inhibited by the value of the interrupt mask in the status register.

MID Flag

Accessible via CRU input and output instructions that are executed to a dedicated internal CRU bit address (see
Figure 19) is the MID Fiag. The MID Flag is set to one by a MID interrupt, and reset to zero by the software of
the MID interrupt routine (see Section 2.3.2.2.1). Note that setting the MID Flag to one with a CRU instruction
will not cause the M1D interrupt to be requested,

External Instructions

The TMS 9995 has five external instructions (see Table 4) that allow user-defined external functions to be initiated
under program control. These instructions are CKON, CKOF, RSET, IDLE, and LREX. These mnemonics, except
for IDLE, relate to functions implemented in the 890 minicomputer and do not restrict use of the instructions to
initiate various user-defined functions. Execution of an IDLE instruction causes the TMS 9995 to enter the ldle
state and remain in this state until a request occurs for an interrupt level that is not masked by the current value of
the interrupt mask in the status register. {Note that the Reset and NMI interrupt levels are not masked by any
interrupt mask value.) When any of these five instructions are executed by the TMS 9995, the TMS 9995 will use
the CRU interface {see Figure 18) to perform a cycle that is identical to a single-bit CRU output cycle (see
Figure 21) except for the following: (1) the address being output will be non-specific, {2) the data bit being output
will be non-specific, (3) a code, specified in Table 4, will be output on D0-D2 to indicate the external instruction
being executed. Note that completion of each external instruction andfor generation of Wait states is determined
by the READY input as detailed in Section 2.3.1.3.

25



IADCHE S5 L A LG BFCISTIFARIT.NEFIBLTINNS

BIT CRU BIT DESCRIPTION
ADDRESSY
FLAGO 1EEQ Setto0: Decrementer configured as
Interval Timer.
Setto 1:  Decrementer configured as
Event Counter.
FLAG1 1EE2 Setto 0: Decrementer not enabled
Setto 1: Decrementer enabled (will
decrement and can set in-
ternat latch that requests a
level 3 interrupt).
FLAG2 1EE4 Level 1 Internal |nterrupi Request
Latch CRU Input {Input-only).
0: Levei 1 request not present
1:  Level 1 request present
FLAG3 1EE6 Level 3 internal Interrupt Request
Latch CRU Input (Input-only).
0: Level 3 request not present
1:  Level 3 request present
FLAG4 1EE8 Level 4 Internal Interrupt Request
Latch CRU Input {Input-only).
0: Level 4 request not present
1:  Level 4 request present
FLAGS 1EEA
FLAG6 1EEC
FLAG7 1EEE
FLAGS 1EFO
FLAGO 1EF2
FLAGA 1EF4 User Defined
FLAGB 1EF6
FLAGC 1EF8
FLAGD 1EFA
FLAGE 1EFC
FLAGF 1EFE

t These hex numbers are those obtained by placing the 15-bit Address Bus CRU address in a 16-bit field, left justifying the 15 bits in the fieid,
and setting the LSB of the field to zero,

TABLE 4 — TMS 9995 EXTERNAL INSTRUCTION CODES

CODE DURING CYCLE
INSTRUCTION oo
Do D1 D2

CRU:

SBO, SBZ, TB, 0 0 0

LDCR or STCR
IDLE 0 1 0
RSET 0 1 1
CKON 1 0 1
CKOF 1 1 0
LREX 1 1 1

26



When the TMS 9995 is in the Idle state, cycles with the Idle code will occur repeatediy until a request for an inter-
rupt level that is not masked by the interrupt mask in the status register occurs.

A Hold state can occur during an Idle state, with entry to and return from the Hold state occurring at the idle code
cycle boundaries. {See Section 2.3.1.1.3 for details of entry to and return from the Hold state.)

235 TMS 9995 Internal ALU/Other Operation Cycles

When the TMS 9995 is performing an operation internally and is not using the memory, CRU, or external instruc-
tion interfacesT or is not in the Hold state, the TMS 9995 wiil, for as many CLKOUT cycles as needed, do the
following with its interface signals:

(1) Output a ron-specific address on AO-A14 and A15/CRUOUT

(2) Output non-specific data on D0-D7

{3} Output logic level high on MEMEN, DBIN, and WE/CRUCLK

{4) Output logic level low on IAQ/HOLDA, and

() Ignore the READY and CRUIN inputs,

The HOLD input is still active, however, as the TMS 9995 can enter a Hold state while performing an internal
ALU/other operation. Also, all interrupt inputs are still active.

T Internal memory space and internal CRU device accesses are defined as using the memory and CRU interfaces,

21



APPENDIX F

TS 9995 MICROCOMPUTER

INSTRUCTION SET



4.1

TMS 9995 INSTRUCTION SET

DEFINITION

Each TMS 9995 instruction performs one of the following operations:

L Arithmetic, logical, comparison, or manipulation operations on data
L Loading or storage of internal registers {program counter, workspace pointer, or status)
L Data transfer between memory and external devices via the CRU

® Control functions

ADDRESSING MODES

The TMS 9995 instructions contain a variety of available modes for addressing random memory data, e.g., pro-
gram parameters and flags, or formatted memory data (character strings, data lists, etc.). These addressing modes
are:

L] Workspace Register Addressing

o Workspace Register Indirect Addressing

L Workspace Register indirect Auto Increment Addressing

° Symbolic (Direct) Addressing

L Indexed Addressing

L Immediate Addressing

L Program Counter Relative Addressing

° CRU Relative Addressing

31



The following figures graphically describe the derivation of effective address for each addressing mode. The applica-
bility of addressing modes to particular instructions is described in Section 4.5 along with the description of the
operations performed by each instruction. The symbols following the names of the addressing modes (R, *R, *R+,
@LABEL or @TABLE (R) are the general forms used by TMS 9995 assembilers to select the addressing modes for
register R.

4,21 Workspace Register Addressing, R

Workspace Register R contains the operand

REGISTERR

(PC )t INSTRUCTION p—=_g (WP)+2R—»§ OPERAND

The Workspace Register addressing mode is specified by setting the two-bit T-field {Tg or Tp} of the instruction
word equal to 00.

4.2.2 Workspace Register Indirect Addressing, *R

Workspace Register R contains the address of the operand.

REGISTER R

(PC) ety INSTRUCTION j——u (WP)+2R——sf ADDRESS OPERAND

The Workspace Register Indirect addressing mode is specified by setting the two-bit T-field (Tg or Tp) in the
instruction word equal to 01,

4.23 Workspace Register Indirect Auto Increment Addressing, *R+

Workspace Register R contains the address of the operand. After acquiring the address of the operand, the con-
tents of Workspace Register R are incremented,

REGISTER R

(PC)—ot INSTRUCTION |—» (WP}+2R——4 ADDRESS OPERAND

1(BYTE)
or 2 (WORD)

The Workspace Register Indirect Auto Increment addressing mode is specified by setting the two-bit T-field {Tg
or Tp) in the instruction word equal to 11.

32



424 Symbolic {Direct) Addressing, @LABEL

The word following the instruction contains the address of the operand.

(PC) —o INSTRUCTION

(PC)+2—1 LABEL ST, OPERAND

The Symbolic addressing mode is specified by setting the two-bit T-field (Tg or Tp) in the instruction word equal
to 10 and setting the corresponding S or D field equal to 0.

4.25 Indexed Addressing, @TABLE (R}

The word following the instruction contains the base address. Workspace Register R contains the index value. The
sum of the base address and the index value results in the effective address of the operand.

REGISTER R

{pc) —of INSTRUCTION > (WP}+2R = INDEX VALUE

FFECTIVE
OPERAND

ADDRESS

(PC}+2— TABLE

The indexed addressing mode is specified by setting the two-bit T-field (Tg or Tp} of the instruction word equal to
10 and setting the corresponding S or D field not equal to 0. The value in the S or D field is the register which con-
tains the index value.

4.2.6 Immediate Addressing

The word following the instruction contains the operand.

(PC) memmegd INSTRUCTION

(PC) + 2 —pn OPERAND

4.2.7 Program Counter Relative Addressing

The eight-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and
added to the updated contents of the program counter. The result is placed in the PC,

JUMP INSTRUCTION

PROGRAM COUNTER OP CODE Disp p—t 2 = DISP

ADDRESS —T—A NEXT MEMORY WORD




4238 CRU Relative Addressing

The eight-bit signed displacement in the right byte of the instruction is added to the CRU base address (bits 0
through 14 of workspace register 12), The result is the CRU address of the selected CRU bit.

INSTRUCTION
(PC) ¢ OP CODE DiSP
0 7 8 15 CRU BIT
REGISTER 12 ADDRESS
(WP)+2-1 2 comsmereip CRU BASE ADD
0 . 14 15

43 DEFINITION OF TERMINOLOGY

The terminology used in describing the instructions of the TMS 9995 is defined in Table 6.

4.4 STATUS REGISTER MANIPULATION

Various TMS 9995 machine instructions affect the status register. Figure 5 shows the status register bit assignments,
Table 7 lists the instructions and their effect on the status register.

45 INSTRUCTIONS

45.1 Dual Operand Instructions with Multiple Addressing for Source and Destination Operand
General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: OP CODE 7 8 [ To ] D Ts [ s J

If B = 1, the operands are bytes and the operand addresses are byte addresses. If B = 0, the operands are words and
the 1.SB of the operand address is ignored.

The addressing mode for each operand is determined by the T-field of that operand.

TgorTp SorD ADDRESSING MODE NOTES
00 0,1...18 Workspace register 1
01 0,1...15 Workspace register indirect
10 0 Symbolic 4
10 1,2...15 Indexed 2.4
11 0,1...15 Workspace register indirect 3
auto increment

NOTES: 1. When a workspace register is the operand of a byte instruction {bit 3 = 1), the left byte (bits O through 7) is the
operand and the right byte (bits 8 through 15) is unchanged,
2. Workspace register § may not be used for indexing.
3. The workspace register is incremented by 1 for byte instructions {bit 3 = 1) and is incremented by 2 for word instruc-
tions (bit 3 = 0).
4. When Tg = T = 10, two words are required in addition to the instruction word, The first word is the source operand
base address and the second word is the destination operand base address.

A



TABLE 6 — DEFINITION OF TERMINOLOGY

TERM DEFINITIONS

8 Byte Indicator (1 = byte; 0 = word)
Cc Bit Count

D Destination address register

DA Destination address

ioP Immediate operand

LSB (n) Least-significant (right most) bit of (n)
MSB (n) Most-significant {left most) bit of (n)
N Don’t care

PC Program Counter

Result Result of operation performed by instruction
S Source address register

SA Source address

ST Status register

STn Bit n of status register

O Destination address modifier

T8 Source address modifier

w Workspace register

WRn Workspace register n

(n) Contents of n

a—b ais transferredto b

Ini Absolute value of n

+ Arithmetic addition

— Arithmetic subtraction

AND Logical AND

OR Logical OR

- |

Logical exclusive OR
Logical compiement of n

Arithmetic multiptication

35




TABLE 7 — STATUS REGISTER BIT DEFINITIONS?

CONDITION TO SET BIT TO 1, OTHERWISE

MOV, MOVB, NEG,
ORI, S, S8, DIVS,
MPYS, INC, INCT,
INV, SLA, SOC,
SOCB, SRA, SRC,
SRL, STCR, szZC,
SZCB, XOR

INSTRUCTION SET TO 0 FOR INSTRUCTION LISTED.
BIT NAME AND/OR
INTERRUPT ALSO, THE EFFECT OF OTHER
INSTRUCTIONS AND INTERRUPTS
STO Logical C,CB 1f MSB (SA) = 1 and MSB (DA) =0, or
Greater 1f MSB (SA) = MSB (DA) and MSB of
Than [(DA) — {SA)] = 1.
Cl If MSB (W) = 1 and MSB of IOP =0, or
if MSB (W) = MSB of IOP and MSB of
[1OP — (W)] =1..
ABS, LDCR if(SA)#0
RTWF If bit {0) of WR15is 1
LST If bit {0) of selected WR is 1
A, AB, Al, ANDH, 1f result # Q
DEC, DECT, Li,
MOV, MOVB, NEG,
ORI, S, SB,
DIVS, MPYS, INC,
INCT, INV, SLA,
SOC, SOCB, SRA,
SRC, SRL, STCR,
SZC, SZCB, XOR
Reset Interrupt Unconditionally sets status bit to 0
All other instructions Do not affect the status bit (see Note 1)
and interrupts
ST1 Arithmetic C,CB 1f MSB (SA) = 0 and MSB (DA) =1, or
Greater If MSB (SA) = MSB {DA) and MSB of
Than [(DA) — {SA)] =1,
[od] 1 MSB (W)} =0and MSB of IOP =1, or
if MSB (W) = MSB of |OP and MSB of
[10P — (W)] = 1.
ABS, LDCR I1f MSB (SA) =0 and {SA) # 0
RTWP If bit (1) of WR15is 1
LST If bit (1) of selected WR is 1
A, AB, Al, ANDI, If MSB of result = 0 and result # 0
DEC, DECT, LI,

Reset interrupt

Unconditionally sets status bitto O

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

See Table 6 for definitions of terminclogy used in this table.

36




TABLE 7 — STATUS REGISTER BIT DEFINITIONS {(Continued)

CONDITION TO SET BIT TO 1, OTHERWISE

INSTRUCTION SET TO 0 FOR INSTRUCTION LISTED.
BT NAME IN::I:!/::PT ALSO, THE EFFECT OF OTHER
INSTRUCTIONS AND INTERRUPTS
ST2 Equal C,CB If (SA) = (DA)
Cl If (W) =10P
coc If (SA) and (DA) = 0
CcZC if (SA) and (DA) =0
TB {f CRUIN = 1 for addressed CRU bit
ABS, LDCR If (SA)=0
RTWP 1f bit (2) of WR15is 1
LST If bit (2) of selected WR is 1
A, AB, Al, ANDI, If result =0
DEC, DECT, LI,
MOV, MOVB, NEG,
ORL, S, SB, DIVS,
MPYS, INC, INCT,
INV, SLA, SOC,
SOCB, SRA, SRC,
SRL, STCR, SZC,
SZCB, XOR
Reset interrupt Unconditionally sets status bit to 0
All other instructions Do not affect the status bit (see Note 1)
and interrupts
ST3 Carry A, AB, ABS, Al, If CARRY OUT =1
DEC, BECT, INC,
INCT, NEG, S, S8
SLA, SRA, SRL, If last bit shifted out = 1
SRC
RTWP If bit (3) of WR15is 1
LST Hf bit {3} of selected WR is 1
Reset Interrupt Unconditionally sets status bit to 0
All other instructions Do not affect the status bit {see Note 1)
and interrupts
ST4 Overflow A, AB 1f MSB (SA) = MSB (DA) and MSB
of result # MSB {DA)
Al If MSB (W) = MSB of IOP and MSB
of result # MSB (W)
S, S8 1f MSB (SA) = MSB (DA} and MSB
of result # MSB (DA)
DEC, DECT If MSB {SA) = 1 and MSB of resuit=0
INC, INCT 1f MSB (SA) = 0 and MSB of result = 0
SLA If MSB changes during shift
DIV 1f MSB (SA) = 0 and MSB (DA) = 1, or if
MSB (SA) = MSB (DA) and MSB of
[(DA) — (SA)] =0
DIVS If the quotient cannot be expressed as a
signed 16 bit quantity (80004 is a valid
negative number)
ABS, NEG If (SA} = 80001¢
RTWP If bit (4) of WR15is 1
LST If bit (4) of selected WR is 1

Reset Interrupt

Unconditionally sets status bit to 0

All other instructions

and interrupts

Do not affect the status bit (see Note 1)

37




TABLE 7 — STATUS REGISTER BIT DEFINITIONS (Conciuded)

CONDITION TO SET 81T TO 1, OTHERWISE

aIT NAME INS::;}/(;TF:ON SET TO 0 FOR INSTRUCTION LISTED.
ALSO, THE EFFECT OF OTHER
INTERRUPT ,_
INSTRUCTIONS AND INTERRUPTS
ST5 Odd CcB8, MOVB If (SA) has odd number of 1's
Parity LDCR If 1 < C < 8and (SA) has odd number of 1's.

1fC=0o0r9 < C < 15, does not affect the

status bit.

STCR If 1 < C < 8 and the stored bits have an odd
number of 1s. 1f C =0 or 9 < C < 15, does
not affect the status bit.

AB, SB, SOCB, If result has odd number of 1's.

SZCB

RTWP If bit {5) of WR15is 1

LST If bit (5} of selected WR is 1

Reset Interrupt Unconditionally sets status bit to O

All ather instructions Do not affect the status bit (see Note 1)

and Interrupts

ST6 XOP XO0P if XOP instruction is executed
RTWP if bit (6) of WR15is 1
LST 1 bit (6) of selected WR is 1
Reset Interrupt Unconditionally sets status bit to O
All other instructions Do not affect the status bit (see Note 1)

and interrupts

ST7 Unused RTWP If corresponding bit of WR15is 1
ST8 Bits LST i1f corresponding bit of selected WR is 1.
ST9 - XOP, Any Unconditionally sets each of these status
and interrupt bits to 0
ST11 All other instructions Do not affect these status bits (see Note 1)
ST10 Arithmetic RTWP 1f bit (10) of WR is 1
Overflow LST if bit (10) of selected WR is 1
Enable XOP, Any Unconditionally sets status bitto 0
Interrupt
All other instructions Do not affect the status bit (see Note 1)
ST12 Interrupt LIMt If corresponding bit of 1OP is 1
ST13 Mask RTWP If corresponding bit of WR15is 1
ST14 LST 1f corresponding bit of selected WR is 1.
and RST, Reset and Unconditionally sets each of these status
ST15 NMI Interrupts bitsto O
All other interrupts 1fST12 — ST15 = 0, no change

tf ST12=ST15 # 0, set to one
Less than leve! of the interrupt trap taken
All other instructions Do not affect these status bits (see Note 1)

DTE 1: The X instruction itself does not affect any status bit; the instruction executed by the X instruction sets status bits as defined foi
that instruction,



45.2

OP CODE | B RESULT STATUS
MNEMONIC MEANING COMPARED BITS DESCRIPTION
01 213 TOO AFFECTED
A 1 0 10| Add Yes 0-4 (SA) + (DA) — (DA)
AB 1 0 1 1 | Add bytes Yes 0-5 (SA) + (DA) = (DA)
c 1 0 0 |0| Compare No 0-2 Compare (SA) to (DA) and set
appropriate status bits
c8 1 0 0 | 1] Compare bytes No 0-25 Compare (SA) to (DA) and set
appropriate status bits
S 0 1 1 |0} Subtract Yes 0-4 (DA) — {(SA) — (DA)
sSB 0 1 1 | 1] Subtract bytes Yes 0-5 {DA) — (SA) — (DA)
sOC 1 1 1 | 0| Setonescorresponding Yes 0-2 {DA) OR (SA) —» (DA)
socs8 1 1 1 {1.] Setonescorresponding bytes Yes 0-2,5 {DA) OR (SA) = (DA)
SZC 0 1 O | O] Setzeroescorresponding Yes 0-2 {DA) AND (SA) - (DA}
szcB 0 1 0 | 1] Setzeroes corresponding bytes Yes 0-2,5 {DA) AND (§A) — (DA}
MoV 1 1 00 Move Yes 0-2 (SA) — (DA)
MOVB 1 1 0 | 1] Movebytes Yes 0-25 (SA) — (DA)

Dual Operand Instructions with Muitiple Addressing Modes for the Source Operand and Workspace Register
Addressing for the Destination

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: OP CODE Ts S
The addressing mode for the source operand is determined by the Tg field.
Ts S ADDRESSING MODE NOTES
00 0,1...15 Workspace register
01 0,1...15 Workspace register indirect
10 4] Symbolic
10 1,2...15 Indexed 1
1 0,1...15 Workspace register indirect auto increment 2

NOTES: 1,

Workspace register 0 may not be used for indexing.
2. The workspace register is incremented by 2.




453

OP CODE RESULT STATUS
MNEMONIC MEANING COMPARED 8ITS DESCRIPTION
12345 TOO AFFECTED
coc 0 0 0 0]Compare ones No 2 Test (D) to determine if 1's are in each bit
corresponding position where 1’s are in (SA). if so, set ST2,
czc 0 0 0 1 |Compare zeroes No 2 Test {D) to determine if O’s are in each bit
corresponding position where 1’s are in {SA). If so, set ST2.

XOR 0 1 0 1 0|Exciusive OR Yes 0-2 {DA) @ (SA)— (D)

MPY 0 1 1 0| Multiply No - Multiply unsigned {D) by unsigned (SA} and
place unsigned 32-bit product in D {most-
significant) and D+1 (least-significant). {f WR15
is D, the next word in memory after WR15 will
be used for the least significant half of the
product. ’

DIV 0 1 1 1} Divide No 4 If unsigned (SA) is less than or equal to unsigned
(D), perform no operation and set ST4. Otherwise,
divide unsigned (D) and (D+1) by unsigned (SA).
Quotient — (D), remainder — (D+1). If D = 15,
the next word in memory after WR15 will be
used for the remainder.

Signed Multiply and Divide Instructions

General

3 4

5 6 7 8 9 10 1 12 13 14 15

Format:

OP CODE

The addressing mode for the source operand is determined by the Tg field.

Ts S ADDRESSING MODE NOTES

00 0,1...15 Workspace register 1

01 0,1...15 Workspace register indirect 1

10 0 Symbolic 1

10 1,2...18 Indexed 1,2

11 0,1...15 Workspace register indirect 1,3
auto increment

NOTES: 1. Workspace registers 0 and 1 contain operands used in the signed mulitiply and divide operations.
2. Workspace register 0 may not be used for indexing,
3. The workspace register is incremented by 2,

40




OP CODE RESULT STATUS

MNEMONIC MEANING | COMPARED BITS DESCRIPTION
01 2 3 45 6 7 8 9 TOO0 AFFECTED
MPYS 0 0 O 0 0 0 0 1 1 1] Signed Yes 0-2 Multiply signed two's com-
Multiply plement integer in WRO by

signed two's complement
integer (SA) and place signed
32-bit product in WR0 (most-
significant) and WR1 least-

significant.
DIVS 0 0 0 0 0 0 0 1 1 Q] Signed- Yes 0-2,4 If the quotient cannot be ex-
Divide pressed as a signed 16 bit

quantity {8000 (hex) is a valid
negative number), set ST4,

Otherwise, divide signed, two's
complement integer in WRO
and WR1 by the signed two’s
compiement integer {SA) and
place the signed guotient in
WRO and the signed remainder
in WR1. The sign of the quo-
tient is determined by algebraic
rules. The sign of the remainder
is the same as the sign of the
dividend and | REMAINDER!

< I DIVISORI|
454 Extended Operation (XOP) Instruction
General 0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
Format:: 0 0 1 0 1 1 D Ts S

The Tgand S fields provide multipie mode addressing capability for the source operand, When the XOP is executed,
the foliowing transfers occur:

(401 + 4D) ——————» (WP)
(421 + 4D) — = (PC)
SA—{new WR11)

{old WP) ~—————=»(new WR13)
{old PC)—— (new WR14)

(old ST) == {(new WR 15)

After these transfers have been made, ST is set to one, and ST7, ST8, ST9, ST10 {Overflow Interrupt Enable),
and ST11 are all set to zero.

The TMS 9995 does not service interrupt trap requests (except for the Reset and NMI Requests) at the end of
the XOP instruction.

41



455 Single Operand Instructions

General

Format:

4 5

10 11

12 13 14 15

OP CODE

Ts

The Tg and S fields provide multiple mode addressing capability for the source operand.

OP CODE RESULT STATUS
MNEMONIC MEANING | COMPARED BITS DESCRIPTION
3 4 5 8 9 TO ZERO AFFECTED
B 0O 0 1 0 1 { Branch No - SA - (PC)
BL 0 0 1 1 0 | Branch No - (PC}) — (WR11); SA — (PC)
and link
BLWP 0o 0 1 0 0 | Branch No - {SA} — (WP); (SA + 2) — (PC);
and load {old WP) — (new WR13});
workspace {old PC) — (new WR14);
pointer (old ST) = (new WR15);
The TMS 9995 does not ser-
vice interrupt trap requests
{except for the Reset and NMI
Requests) at the end of the
BLWP instruction.
CLR o 0 1 1 1 Clear No - 0 — (SA)
Operand
SETO 0 0 1 0 0| Setto No - FFFFqg — (SA)
ones
INV 0 0 1 0 1| !nvert Yes 0-2 (SA) — (SA)
NEG 0 0 1 0 0 | Negate Yes 04 ~{SA) = (SA)
ABS 0 0 1 0 1 | Absolute No 04 1{SA)!— (SA)
value*
SWPB 0o 0 1 1 11} Swap No — {SA), bits O thru 7 — {SA)
bytes bits 8 thru 15; (SA),
bits 8 thru 15— (SA),
bits O thru 7.
INC 0 0 1 1 0| Increment Yes 04 {SA) + 1 — (SA)
INCT 0 0 1 1 1] Increment Yes 04 {SA) + 2> (SA)
by two
DEC o 0 1 0 O] Decrement Yes 04 (SA) — 1 — (SA)
DECT 0 o0 1 0 1| Decrement Yes 04 (SA) ~ 2 (SA)
by two
X** o 0 1 1 0|} Execute No - Execute the instruction
at SA.

Operand is compared to zero for status bit.
** |f additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words
will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (1AQ) will not be true wl:\en the

TMS 9995 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed,

42



45.6 CRU Multiple-Bit Instruction

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE (o Ts S

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be transferred. The CRU base
register (WR12, bits O through 14) defines the starting CRU bit address. The bits are transferred serially and the
CRU address is incremented with each bit transfer, although the contents of WR 12 are not affected. Tg and S pro-
vide multiple mode addressing capability for the source operand. If eight or fewer bits are transferred (C = 1
through 8), the source address is a byte address. If nine or more bits are transferred (C = 0, 9 through 15}, the
source address is a word address. If the source is addressed in the workspace register indirect auto increment mode,
the workspace register is incremented by one if C = 1 through 8, and is incremented by two otherwise. If the
source is addressed in the register mode, and if the transfer is eight bits or 'less, bits 8 - 15 are unchanged.

OP CODE RESULT STATUS
MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 TOO0 AFFECTED
LDCR 0 0 1 1 0 0 Load Yes 0-2,5* Beginning with
communication LSB of {SA),
register transfer the
specified number
of bits from (SA)
to the CRU.
STCR [} 0 1 1 0 1 Store Yes 0-2,65* Beginning with
communication LSB of (SA),
register transfer the
specified number
of bits from the
CRU to (SA).
Load unfilied bit
positions with 0,

*STS is affected only if 1 < C < 8.

45.7 CRU Single-Bit Instructions

General 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Format: OP CODE SIGNED DISPLACEMENT

The signed displacement is added to the contents of WR12 (bits 0-14) to form the address of the CRU bit to be
selected.

43



OP CODE . STATUS
MNEMONIC MEANING BITS DESCRIPTION
0 1 2 3 4 5 6 7 AFFECTED
SBO 0 0 o] 1 1 1 0 1 Set bit to - Set the selected
one output bit to 1.,
SBZ 0 0 0 1 1 1 1 0 Set bit to - Set the selected
zero output bit to 0.
TB [v] 0 0 1 1 1 1 1 Test bit 2 If the selected
CRU input bit =
1,set ST2; if the
selected CRU in-
put =0, set ST2
=0.
45.8 Jump Instructions
General 4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Format: OP CODE SIGNED DISPLACEMENT

Jump instructions cause the PC to be loaded with the value selected by PC relative addressing if the bits of ST are
at specified values, Otherwise, no operation occurs and the next instruction is executed since the PC points to the
next instruction. The signed displacement field is a word count to be added to PC. Thus, the jump instruction has
arange of —128 to 127 words from memory-word address following the jump instruction.

No ST bits are affected by jump instructions.

OP CODE
MNEMONIC MEANING ST CONDITION TO LOAD PC
0 1 2 3 4 5 6 7
JEQ 0 0 0 1 0 0 1 1 Jump equal ST2=1
JGT 0 4} 0 1 4] 1 o] 1 Jump greater than STt =1
JH 0 0 ¢} 1 1 0 1 1 Jump high STO=1andST2=0
JHE 1 4] Jump high or equal STO=10rST2=1
JL 1 1 Jump low STO=0andST2=0
JLE 1 0 Jump low or equal STO=0orST2=1
JLT 1 o] Jump less than ST1=0and ST2=0
JMP 1 0 Jump unconditional Unconditional
IJNC 1 4] Jump no carry ST3=0
INE 1 0 Jump not equal ST2=0
JNO 1 1 Jump no overflow ST4=0
JOC 1 1 Jump on carry ST3=1
JOP 1 1 Jump odd parity STS =1




45.9 Shift Instructions

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Format: [ ) OP CODE l Cc l w ]

1f C = 0, bits 12 through 15 of WRO contain the shift count. If C = 0 and bits 12 through 15 of WRO = 0, the shift

count is 16.
OP CODE RESULT STATUS
MNEMONIC MEANING COMPARED BITS DESCRIPTION
[+] 1 2 3 4 5 6 7 TOO AFFECTED
SLA 0 0 o] 0 1 0 1 0 Shift left Yes . 04 “Shift (W) left.
arithmetic Fill vacated
bit positions
with 0.
SRA 0 0 0 0 1 0 0 o} Shift right Yes 0-3 Shift (W)} right.
arithmetic Fill vacated bit
positions with
original MSB
of (W).
SRC 0 s} o] 0 1 0 1 1 Shift right Yes 0-3 Shift {W) right.
circular Shift previous
LSB into MSB.
SRL 0 0 0 4] 1 0 0 1 Shift right Yes 0-3 Shift (W) right.
logical Fill vacated bit
positions with
0's.

4.5.10 Immediate Register Instructions

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
General OP CODE l (o] l W
Format: 10P
OP CODE ' RESULT STATUS
MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1t 2 3 4 5 6 7 8 9 10 TOO AFFECTED
Al 0 0 0 0 0 0 1 0 O 0 t Add immediate Yes 04 (W) +10P — (W)
ANDI 0 0 0 0 0 0 1 0 0 1 0 AND immediate Yes 0-2 (W) AND 10P - (W)
Cl 0 0 0 0 0 O 1T 0 1 0 0 Compare imme- Yes 0-2 Compare (W) to
diate {OP and set appro-
priate status bits.
L1 o 0 0 0 0 0 1 0 O 0 0 Load immediate Yes 0-2 0P — (W)
ORI o ¢ 0 0 0 0 t 0 O 1 1 OR immediate Yes 0-2 (W) OR (0P — (W)

4h



45.11 Internal Register Load Immediate Instructions

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15
General OP CODE 0 0 0 0 0
Format: 10P
OP CODE
MNEMONIC MEANING DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10
Lwpr 0 0 0 0 0 4] 1 0 1 1 1 Load workspace IOP = (WP}, no ST bits
pointer immediate affected,
LIMI 0 0 0 0 0 0 1 1 0 C 0 Load interrupt {OP, bits 12 thru 15~
mask ST12 thru ST15.

45.12 Internal Register Load and Store Instructions
General 0 1 2 3 4 5 6 8 9 10 1" 12 13 14 15
Format: OP CODE W J
OP CODE STATUS
MNEMONIC MEANING BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9 10 1" AFFECTED
STST 0 0 0 0 0 0 1 0 1 1 0 0 Store status - {ST) — (W)
Register
LST 0 ¢} 0 0 0 0 0 0 1 0 o] 0 Load status 0-15 (W) - (ST)
Register
STWP 0 0 0 0 0 0 1 0 1 0 1 4] Store work- - (WP) — (W)
space pointer
LWP 0 0 0 0 0 o] 0 o] 1 o] 0 1 Load work- - (W) — (WP)
space pointer
45.13 Return Workspace Pointer (RTWP) Instruction
General 0 1 2 3 4 5 6 8 9 10 IR 12 13 14 15
Format: 0 0 0 g 0 0 1 1 0 0 0 0 0 0 ¢}

The RTWP instruction causes the following transfers to occur:

(WR15)+(ST)
{WR14) »(PC)
(WR13) »(WP)

46




45.14 External Instructions

General 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14

Format: [ OP CODE

15
o |

External instructions cause three data lines (DO through D2} to be set to the levels described below, and the WE/

CRUCLK line to be pulsed, allowing external control functions to be initiated.

OP CODE STATUS
MNEMONIC MEANING BITS DESCRIPTION DATA BUS
1] 2 3 4 5 6 9 10 AFFECTED DO | D1 | D2
IDLE 0 0O 0 0 0 1 1 0 Idle - Suspend TMS 9995 L H L
instruction execution
until an unmasked
interrupt level
request Occurs.
RSET 0 0 0 0 0 1 1 1 Reset 12-15 Set ST12-ST15 L H H
to zero.
CKOF 0 0 0 0 0 1 1t 0 User defined — - H H L
CKON 0 0 0 0 o0 1 0 1 User defined - - H L H
LREX 0 0 0 0 o 1 1 1 User defined - - H H H
45.15 MID Interrupt Opcodes

The instruction opcodes that will cause an MID interrupt request (see Section 2.3.2.2) are {hex numbers):

0000-007F 0301-033F

00AQ-017F 0341-035F

0210-021F 0361-037F

0230-023F 0381-039F

0250-025F 03A1-03BF
0270-027F 03C1-03DF
0290-029F 03E1-03FF
02B0-02BF 0780-07FF
02D0-02DF 0COQ-OFFF
02E1-02FF

4.6 INSTRUCTION EXECUTION

4.6.1 Microinstruction Cycle

Each TMS 9995 instruction is executed by a sequence of machine states {microinstructions) with the length of
each sequence depending upon the specific instruction being executed. Each microinstruction is completed in one
CLKOUT cycle unless Wait states are added to a memory or CRU cycle. (Also, each external memory space access
of a word and each external CRU cycle requires at least two CLKOQUT cycles but will be accomplished with a
single microinstruction).

a1



4.6.2

4.6.3

Execution Sequence

The TMS 9995 incorporates an instruction prefetch scheme which minimizes, and in some cases eliminates, the
time required to fetch the instruction from memory. Without the prefetch, a typical instruction execution
sequence is as follows:

(1) Fetch instruction

{2) Decode instruction

(3) Fetch source operand, if needed

(4) Fetch destination operand, if needed

(5) Process the operands

(6) Store the results, if required

The TMS 9995 makes use of the fact that during Step 5 the memory interface is not required; therefore, the fetch
of the next instruction can be accomplished in this time. This instruction is then decoded during the state(s) that
is(are) required to store the results of the previous instruction, which creates even more execution overlap. Table 8

illustrates the case of maximum efficiency for an Add instruction {instruction opcodes and operands are iocated
in the internal RAM), Note that it effectively takes only four machine states to perform all six steps.

TABLE 8 — EXECUTION SEQUENCE EXAMPLE

STEP :;C;i MEMORY CYCLE INTERNAL FUNCTION
1 Fetch Instruction Process Previous Operands
2 1 Write Results ) Decode Instruction
3 2 Fetch Source
a4 3 Fetch Destination
5 4 Fetch Next Instruction Add
6 Write Results Decode Instruction

It should be noted that the instruction prefetch scheme employed by the TMS 9995 can cause self-modifying
software to execute incorrectly. Incorrect execution will result when an instruction is supposed to generate the
opcode of the very next instruction to be executed. {The TMS 9995 will begin the fetch of the opcode of the
next instruction before the currently executing instruction stores the results of its execution.}

TMS 9995 Instruction Execution Times

Instruction execution times for the TMS 9995 are a function of:

{1) Machine state time, tc2.

(2) The location of the instruction opcode (internal or external memory).

(3) The location of the workspace and the operand(s) (internal or external memory).
(4) Addressing mode used where operands can be fetched via multiple addressing modes.

(5) Number of Wait states introduced, as appropriate.

48



Table 9 lists the number of clock cycles required to execute each TMS 9995 instruction for various combinations
of on-chip/off-chip location of instruction opcodes, operands, and workspace. (Other combinations can be ex-
tropolated from the ones listed.) For instructions with muitiple addressing modes for either or both operands,
Table 9 lists CLKOUT cycles and associated off-chip memory accesses with all operands addressed in the work-
space register mode. To determine the total number of CLKOUT cycles and associated off-chip memory accesses
required for other addreSsing modes, the appropriate values from Table “A’" (Table 10) are added to the base
amounts for that instruction.

The total execution time for an instruction is:

T = tc2 [C1+C2+ W (XM1 + XM2)]
where
T = total instruction execution time
te2 = CLKOUT cycle time
C1 = base CLKOUT cycles

C2 = additional CLKQUT cycles for operand address
derivation (values in Table’’A’’ are for one
operand only)
= number of Wait states per off-chip (byte length) memory cycle
XM1 = base off-chip {byte length) memory cycles
XM2 = additional off-chip (byte length) memory cycles
for operand address derivation (values in Table A"’
are for one operand only)

=
I

1}

Several examples are listed in Table 11.

49



TABLE 9 — INSTRUCTION EXECUTION TIMES

- Opcodes &
Immediate
Opcodes & Operands Off
immediate Chip; Source —
INSTRUCTION Operands Off Operand Off
Opcodes & Chip; All Other | Chip; Destination Opcodes & Operand
All Operands Operands On Operand On All Operands Address
On Chip Chip Chip Off Chip Derivation
® O]
c1 XM1 c1 XM1 Cc1 XM1 c1 XM1 Source | Dest
A 4 0 5 2 6 4 8 8 A A
AB 4 0 5 2 5 3 5 5 A A
ABS 3 0 4 2 6 6 6 6 A -
Al 4 0 6 4 6 4 8 8 — —
ANDI 4 0 6 4 6 4 8 8 -
B 3 0 4 2 4 2 4 2 A —
BL 5 0 6 2 7 4 7 4 A -
BLWP 11 0 12 2 14Q@ 8® 17 12 A -
C 4 0 5 2 6 4 7 6 A A
CB 4 0 5 2 5 3 5 4 A A
C) 4 0 6 4 6 4 7 6 — -
CKOF 7 0 8 2 8 2 8 2 — -
CKON 7 0 8 2 8 2 8 2 - —
CLR 3 o] 4 2 5 4 ] 4 A -
cocC 4 0 5 2 6 4 7 6 A —
czC 4 0 5 2 6 4 7 6 A —
DEC 3 0 4 2 6 6 6 6 A —
DECT 3 0 4 2 6 6 6 6 A -
Div (ST4 is set) 6 0 7 2 8 4 10 8 A -
DIV (ST4 is reset}® 28 0 29 2 30 4 34 12 A -
DIVS (ST4 is set) 10 0 11 2 12 4 36 8 A -
DIVS (ST4 is reset)@ 33 0 34 2 35 4 39 12 A -
IDLE@ 7+21 0 8+21 2 8+21 2 8+21 2 - —
INC 3 0 4 2 6 6 6 6 A -
INCT 3 o] 4 2 6 6 6 6 A -
INV 3 0 4 2 6 6 6 6 A -
JUMP (All Jump Instructions) 3 0 4 2 4 2 4 2 - -
LDCR (C=0) 41 0 42 2 43 4 44 6 A -
LDCR (1<C<15) 9+2C 0 10+2C 2 11+2C 4 1242C 6 A -
L 3 0 5 4 5 4 6 6 - -
Limi 5 0 7 4 7 4 7 4 - —
LREX 7 0 8 2 8 2 3 2 - -
LST 5 0 6 2 6 2 7 4 - -
LWP 4 0 5 2 6 2 6 4 — -
LWPI 4 0 6 4 6 4 6 4 — —
MOV 3 0 4 2 5 4 6 6 A A
MOVB 3 0 4 2 4 3 4 4 A A
MPY 23 0 24 2 25 4 28 10 A -
MPYS 25 0 26 2 27 4 30 10 A -
NEG 3 0 4 2 6 6 6 6 A -
ORI 4 0 6 4 6 4 8 8 - —
RSET 7 0 8 2 8 2 8 2 — -
RTWP 6 0 7 2 70 2Q 10 8 - -
S 4 0 5 2 6 4 8 8 A A
SB 4 0 5 2 5 3 5 5 A A
SBO 8 0 9 2 9 2 10 4 - -

50




TABLE 9 ~ INSTRUCTION EXECUTION TIMES (Concluded)

Opcodes &
immediate
Opcodes & Operands Off
Immediate Chip; Source
INSTRUCTION Operands Off Operand Off
Opcodes & Chip; All Other | Chip; Destination Opcodes & Operand
Ali Operands Operands On Operand On All Operands Address
On Chip Chip Chip Off Chip Derivation
® 0)
C1 XM1 C1 XM1 C1 XM1 C1 XM1 Source | Dest
SBZ 8 0 9 2 9 2 10 4 - =
SETO 3 0 4 2 5 4 5 4 - -
SHIFT (C+#0) 5+C 0 6+C 2 6+C 2 8+C 6 - -
SHIFT (C=0, Bits 12-15 of WRO=0) 23 0 24 2 24 2 27 8 - -
SHIFT (C=0, Bits 12-15 of WRO=N#0) | 7+N 0 8+N 2 8+N 2 114N 8 - -
SOC 4 0 5 2 6 4 8 8 A A
sSOCB 4 0 5 2 5 3 5 5 A A
STCR (C=0) 43 0 44 2 46 6 47 8 A =
STCR (1<C<8) 19+C 0 20+C 2 22+C 6 23+C 8 A -
STCR (9<C<15) 27+C 0 28+C 2 30+C 6 31+C 8 A -
STST 3 0 4 2 4 2 5 4 - -
STWP 3 0 4 2 4 2 5 4 — -
SWPB 13 0 14 2 16 6 16 6 A -
szc 4 0 5 2 6 4 8 8 A A
SZCB 4 (¢] 5 2 5 3 5 5 A A
T8 8 0 9 2 9 2 10 4 — -
X® 2 0 3 2 4 4 4 4 A —
XoP 15 0 16 2 180 6® 22 14 A -
XOR 4 0 ) 2 6 4 8 8 A —
Interrupt Context Switch {For any
interrupt, including Reset, NMI, MID, 14@® o® 17@® 6® 170 6® 200 120 - -
and overflow)
NOTES:
@ Additional cycles to be added, if appropriate, are listed in @ Trap vector off chip; Naw workspace on chip.
Table "*A’ (Table 11). @ Registers for register-only instructions are on chip (Shift

@ Execution time is dependent upon the partial quotient after
each clock cycle during execution. Clock cycles shown are
for worst-case operands.

@ Will remain in ldle state unti) an unmasked interrupt re-
quest occurs {I = number of CLKOUT cycles until request
occurs).

@ Execution time shown does not include execution time of
instruction at source address,

instructions, STST, LST, STWP, LWP) and registers for
instructions where an additional register is required are on-
chip (Al, ANDI, BL, CI, LDCR, LI, OR!{, SBO, S82, STCR,
T8, Shift instructions).

Workspace on chip

Trap vector on chip; New workspace on chip (NM! only)
Trap vector and New workspace on chip

@e9

51



TABLE 10 — OPERAND ADDRESS DERIVATION (TABLE “A")

Workspace Registers,

Workspace Registers

Workspace Registers

Workspace Registers,

Base Address For On Chip; Base Off Chip; Base Base Address For
Index-Addressed Address For Iindex- Address For Index- Index-Addressed
ADDRESSING MODE Operands, And Addressed Operands Addressed Operands Operands, And
Symbolic (Direct) And Symbolic (Direct) And Symbolic (Direct) Symbeolic {Direct)
Addresses On Chip Addresses Off Chip Addresses On Chip Addresses Off Chip
Cc2 XM2 c2 xXM2 c2 XM2 Cc2 XM2
WR 0 0 0 0 0 0 0 0
(Tsor Tp = 00)
WR Indirect
ndirec 1 0 1 0 2 2 2 2
(Tgor Tp =01)
WR Indirect
Auto Increment 3 0 3 0 5 4 5 4
(Tgor Tp=11) '
Symbolic
(TgorTp=10, 1 0 2 2 1 o 2 2
SorD=0)
Indexed
{Tgsor Tp =10, 3 0 4 2 4 2 5 4
SorD#0)

52




£S

TABLE 11 — INSTRUCTION EXECUTION TIME EXAMPLES

Opcodes, base addresses for
index-addressed operands,
symbolic (direct) addresses,
workspace registers, symbolic
{direct) operands, and index-
addressed operands all on chip.

Opcodes, base addresses for
index-addressed operands,
and symbolic (direct) addresses
off chip; workspace registers,
sy_nTl;BTiz {direct) operands, and
index-addressed operands on chip.

Opcodes, base addresses for
index-addressed operands,
symbolic {direct) addresses,
workspaca registers, symbolic
(direct) operands, and index-

addressed operands all off chip.
Total élock

EXAMPLE Total Clock Total Clock
Cycles Cycles Cycles
C1| XM1|C2| XM2] OWait | TWait |C1| XM1|C2 | XM2| OWait | 1Wait |C1| XM1 ] C2 |XM2| 0Wait | 1Wait
States State States State States State
Off Chip { Off Chip Off Chip} Off Chip Off Chip{ Off Chip

MOV R1, R2 3 0 0 0 3 3 4 2 0 0 4 6 6 6 0 0 6 12
MOV R1, *R2 3 0 1 0 4 4 4 2 1 0 5 7 6 6 2 2 8 16
MOV R1, *R2+ 3 0 3 0 6 6 4 2 3 0 7 9 6 6 5 4 1" 21
MOV Rt, @LABEL 3 0 1 0 4 4 4 2 2 2 6 10 6 6 2 2 8 16
MOV R1, @TABLE (R2) 3 0 3 0 6 6 4 2 4 2 8 12 6 6 5 4 11 21
MOV *R2+, @LABEL 3 0 4 0 7 7 4 2 5 2 9 13 6 6 7 6 13 25
MOV @LABEL1, @LABEL2| 3 0 2 0 5 5 4 2 4 4 8 14 6 6 4 4 10 20




APPENDIX G

SAMPLE PROGRAMS

This appendix contains listing of programs that can be 1oaded_ into
memory or reassembled into memory for demonstration or entertainment

purposes. These listings are commented to provide ancillary data and
explain the individual pregramming techniques. Assembly listing format
is as follows:

SOURCE STATEMENT NO. '
/ RELATIVE ADDRESS COMMENT FIELD
éEjECT CODE (ASSEMBLED SQURCE!
— LABEL FIELD
OP CODE
OPERAND :
¥ /ﬁ ¥

0079 0034 04C1 CLR 1 CLEAR FOR DECIMAL TO HEX ROUT1
0080 0036 0207 LI 7,CKPARM PROMPT MESSAGES

0038 00BC’
0081 003A 0208 L85 FIVE PROMPTS

003C 0005
0082 003E 0209 L1 9,CLKWP+4 REGISTER 2 ADDRESS )

0040 FF3C
0083 0042 2F97 LOOP1 WRIT *7 PROMPT USER FOR TIME VALUE
0084 0044 2E40 HEXIO GET INPUT.
0085 0046 004A’ DATA NEXT, ERROR NULL, ERROR RTN ADR

0048 00%g’
0086 004A 042 NEXT BLWP @DE EX DECIMAL CHARS TO BINARY

o0RC 020A°

\\ \ ASSEMBLED OBJECT SHOWS RELATIVE

ADDRESS OF “NEXT" AT 004A1g



The code can be reassembled and loaded with the LMC EVMBUG command, or
the change memory command (IM) can be used to insert assembled object
code at the memory addresses shown in the listing.(beginning at >EDO0O,
program start). The assembled object code is listed in column 3 of the
listing, opposite the corresponding memory address in column 2. It is
important that the programs be entered at the addresses noted, or that
proper consideration be given to the labelled addresses which have
been assembled into absolute addresses relative to the beginning of
the program (address >ED00)> This consideration is important when
entering the code using the enter memory (IM) command with program
start not at address >ED)).

If the code is to be loaded beginning at an address other than >EDOO
as a program start address, it must be refigured to the new program
bias. For example, if the program was to be loaded beginning at >ECO00,
labelled addresses must be decreased by >100 (>ED00 - >EC00 = >100).
Note that jump instructions create a displacement value and not a
memory address; thus; jump instructions using labels are not affected
by a new program start address.

At the back of each listing is a cross-reference of labels and number
of the source statement in which they are used (column one of the
listing contains source statement numbers.)

If the Line-By-Line Assembler (LBLA is used, an absolute address must
be substituted for labelled addresses. These hexadecimal values are in
the first column of the cross-reference table of labels.

G.2 MASTERMIND GAME

The printout generated during program execuion of the Mastermind game
is presented below to illustrate how the game is played. The object of
the game is to identify in proper sequence the digits making up a five
digit number. Only the numbers 1 through 8 may be selected for each
digit. The program returns an "O" for each digit entered that is part
of the five digit number. The program returns an "X" when the required
digit is placed in its proper position. The user must identify the
number within 12 attempts to win the game.



MAZTERMIND. L GUEST MHHMHM M=1-2 12 TRIEZ
YO GET w FOR A MATCH. O FOR A HIT

11111

Slzzez 4

L31223 00
' - CONTROL-H CAUSES ENTRY TO BE IGNORED, ALLOWS ENTRY REPEAT

1.
4..41
1.

WMIHHER!  H=£d47=

1
e

1.

2. -

3. 0

4. 0oo

s. F00

= -— CR RESTARTS PROGRAM

MAZTERMINAD. . GUEZS MHHMHM H=1-2 15 TRIES
vOw SET W FOR A MATCH. O FOF A HIT

—r

1.

c. -

S, 0o

4, s

5. =00

L “—— — ESCKEY RETURNS CONTROL TO MONITOR



MMIND

G001 0000
DOGZ 0000
Q003
0004
QoS
D00A
o007

[ala B!
aoil
Q0L
[#19 NIpe]
014
O01s
Q014
0017
[BISR R

ELO0

004z
004 EQOO
0044 ENOG
ENOZ
004S ERoa
ELO&
O0nas EDOR
Q047 EDGE
[ nielal
0043 gpoc
004 EDOE

EDLO
0052 E0IO

ELNlZ
D052 EDLG
G054 ENL4

EDiz
Q0SS E01A

SEMAC 3.2.0 7E.274 200 29: 24 TUESDAY, MAR 17, 19281,

QO03
0004
[alvlnisd
000&
0007
OO

OZED
ED0D&
ZFR0
EEOC

co4%

D207
O1FD
ap

i

T

=TA

MO0

#*
MOt

FAGE Q002

IDT “MMINL-

k.3 # 1 # #* # 3t it 4 #* # #* 4 4
THIS FROGRAM FLAYS MASZTERMIND ON THE TMS99995 MICRO-
COMPUTER. THE OBJECT (OF THE GAME IS T0O GUESS,. BY
LOGICAL DEDUCTION,. A S-DIGIT NUMBER GENERATED BY THE
COMPUTER. THE COMPUTER U . ONLY THE DIGITS 70 2. you
HAVE 12 GUESZES TO ACCOMPLIZH THIS., THE COMPUTER WILL
INDICATE A CORRECT DIGLT GUESSED BY A LETTER O AND
INDICATE THE DIGIT IS CORRECTLY FPLACED WITH THE
S-DOIGET NUMBER WITH THE LETTER X. OTHER RULES THAT AFFLY

- A CARRIAGE RETURN RESTARTZ THE GAME
— AN ESCAFE KEY INFUT RETURNS YO TO THE MONITOR
CONTROL H EEY ALLOWES YouU TO SCRAF FREZENT LINME OF
ENTRIES AND REENTER NEW LINE
HIZ GAME 1% EMBILLED TO BE LOADED AT M.A. ZEDOC BY
SE BO THE AORG ASSEMBLER DIRECTIVE. THIES FROGRAM CAN BE
EMBLELD BY THE LELA AT THE ADDRESZES SHOWN IN COLLUMM
TWI OF THE LISTING. CORRESFONDING OBJECT COLDE FOR THOSE

ADDRESZES IS SHOWN IN COLUMN THREE.,  GOOD LUCE!
B - 4 +# 3 k3 # . 3 - i ¥ E:3 3 +# #* E:d 3t
EG) O NO. OF GUEZZES
1 RANDNIOM NOQ. ARRAY ADDREZS
z RANDCM NOL COMPUTATION LSE
Z RANDOM NO, CZOMPUTATION LSE
Eqlt 4 10 CONSTANT FOR DECIMAL COMPUTATION
EQU = CONTAINS ASITI X~
SEQL & CONTAINS AZII-. 707 e -
g 7 ADDRESS OF XS & 072 BUFFER
ECl =
Eot @ RANDIOM NI, ARRAY ADLR
EQl 10 RANDIM NCOL ARRAY ADDR
gou 11 RANDOM NOQ.
EQL 1z AsCII LT
Ef) 13 CAET QLT CHARAC
ACRIG FEDDO LOAD AT M.AL =EDOO
Ei3 3 i E3 3t 3t ;3 3t 3 E:3 # -3 3 k-3

FROCEDURE AREA OF EXECUTARLE CODE

3 3t +# 3t it 3 k:d i -3 H# kg 3t Eid 3
RT

LWFT W3 SET WORKZSPACZE FOINTER

XOF  @RULES, 14 FRINT RINES

XOF  @CRLF, 14 FRINT CR-LLF

LR RO COUNTS 12 GUESSES

MV FP.R1 R1 FPOINTS TO RANDOM ARRAY
COMPFUTE RANDOM NUMBER, MOVE TO LLOCATION NM
O

LI R, 507 COMFPUTE RANDOM NUMBER

MFY RI11.RZ
Al Rz, 221

MOV REL.RILL



MMINL SOSMAC Z.2.0 72,274 20:25: 24 TUESDAY. MAR 17, 1921,
FAGE 0003

0054 #  CAUSE RANDOM DIGITZ TGO BE IN RANGE 1-2
0057 EDIC 0933 SRL R3,5
005s EDIE i AR R1Z.R= MAKE AZCII. RANGE 1-%2
009y ERZO DC4AZ MOVER R3.#R1+ FUT IN RANDOM ARRAY
0040 EDZE S281 [ R1.R10 TEZT FoOR END OF LOOF
0061 EDZ4 1AFS L MOL1O OO UNTIL Ri=R1G
0042 #
0063 #  [DETERMINE NUMBER 0OF UFCOMING GUEESS
Q044 #  FPRINT UPCOMING GUEZS NUMBER TO PROMPT UZER
O0ES # .
Q0LL MOLS
D087 OSE0 INC RO [ S+
#  ZLEAR ARRAY THAT HOLDS ASCII X-= 35
#  IF CONTROL H FRESSED, 2TART HERE
Q070 EDZE CO87 RESTRT MOV R7.RZ XOR ADDR TO RZ
0071 EDZA D4FZ CLR  #RZ+ *
-Q072 EDZC 04Fz2 . CLR #RZ+ #*
0073 EOZE Q402 CLR  #R2 #*
Q074 #  COMVERT GUESS NUMBER FOR QUTFUT
0075 EDZ0 COR0 MOV RO.RZ GUESS NOL TG R2Z
Q074 EDZZ 04C1 CLR R1
0077 ED34 3C44 - DIV R4.R1 : DIVIDE R1RZ BRY 10
0078 ELDRE Q&C1 SWFE R1 GQUOTIENT IN LEFT BYTE
Q077 ED28 FO3St SOCB RL,RE MERGE QUATIENT % REMAINDER
0020 EDZA JEG MOZO FUT IN SPACE IF FIRST DIGIT=0
Q031 Z0EC Q262 ORI RZ, 3030 MAEE ASCII DIGITS
EDZE 20X
0082 EDL4D MOZ0
00332 £D40 ORI  RZ2720320 - MAKE ASCII SPACE % LDIGIT
ED4: Z H‘
Q0E4 ZDad4 CHOz MOV RZ, RGCD FUT IN FRINT BUFFER
ELd s
onzs Engs 2 XOF  @GUESND, 14 FRINT GLESZS NUMBER
El4A
ki d
H#
#  INFUT CHARACTER 2 TEST FOR COLUMN MATCH
3#
MOV RY,RE RANDOM NUMBER ADDR LN R2
MV R7.R1 X % O BUFF ADDR IN R1
LI RZ: INPUT INFUT BUFER ADDR IN RZ
CLR RiZ CLEAR BIT MAF OF CAZT OUT CTHARACTER
MO0 E
READ DIIGIT
* WAz OF CONTROL-H KEY FREZZEDT
CAR. RET. ENTERELD™
JdEG START YEZ, REZTART 1GAME
b (a4 R, 21ROO EZCAFE KEY ENTERED™
EDGO
Q160 EDAZ JES MONITR YES, RETURN T2 MONITOR
Glol ED&G oI R, 20200 COMTROL~H FREZIEDT
EDGE
0102 EDAR JEE RESTRT YEZ, RESTART THIS EMTRY
0102 ED&A CR FZ.R1Z . IS NOL. LESZ THAM 17
0104 EDAC L YES, READ ANDOTHER
010S ELAE s 15 NO, GREATER THAN &7
EL7O
0106 ED7TZ JEFJ M MOZ0 YEZ, READ ANOTHER



MMINL

0107
Q103
O10%
0110
o111
0112
o111z
0114
Q115
Glié
0117
o1is
011w

01320
0121
0122

0123

o124

—~e
-

012
0124

e

Envé

ED%& 2

ED7E

L EDYA

ED?C
EDYE

L3S EDAQ
21346 EDAD

0141
314z
0143
ala4q
014%
0144
0147
0145

014%
0150
0151
G152
0153

01%4

2155

0154

EDAZ
Enng

10B&
QL0
QOE0

OZ02

EESA

Enad
EDAG
ELDAS C20%5
EDAA OWRD
EDAL
EDAT QBID
EDAE 7EOZ
EDED 120%
EDBZ 1404
EDE4 DC4sL
EDEE OZ4D
EDRS 30010
EDRA RBOCE
ELBLC
EDRC =285
EDEE
EDCO
ELDCO
EDCZ
EDNC4

EDCA 2
EDCE E
EQCA

4

MO SHD

MO4S

#*

MONITR

TEST

I A

MOS0

MOS2

MOSS

MOS7

MO&EQ

C &3.2.0 78.274

XCiF

I3 DIGIT

R
JNE
ZWFR
MOVE
INC

MIVE
SRC
o

L
[
JL
XCF

Xap

XoP

IME

FOR
LT

MOVE
SEC
MOV
=RL

SRO
R
i
INE
MOVE
CRT

AR

» TR
. e

20

RZ. 12

A MATCH AN
R, #RS+
MO40

RZ

RS, #R1+
R1Z

R3, #RI4+
Riz.1
RZ,R10
MOZ0

R, XOBR+S
MOS0

exXoBF, 14

CWINNER, 14

@NUMBER, 14

MOOS
@:0080

R, R&
R1z, 11
R13.1
R, #RE+
MOS7
Mos7

Rz RE

RE,R10Q

MOSS
Rz, INFUT+S

MOSZ
@XCEF. 14

ROy

>

28 TUES

N,
D

DAY, MAR 1

IN RANGE,

7,

ECHD

IN RIGHT COLUMNY

DIGIT IN RITH COLUMN

NG,
YES,

PUT

CHAR

1981. -

FAGE 0004

IN CHAR BUFFER

PUT BINARY O IN MSE OF Rz
FUT AN X IN THE X0 BUFFER
MAP CAST QUT CHAR

ZERO OR CHAR TO INFUT BUFFER

FLIT
FIFT
NC,
YEZ,

NG,

BIT IN MAF
H NUMBER I
REAL ANDTH

I3

NFUT?
ER

NO WINNER YET

GUESS
X0 BUFFER FLLLT

YES, PRINT X0 BLFF {(ASZ X7Z)

FRIN

FRIN

T WINNER

T NUMBER

FLAY ANOTHER GAME

RETU

INPL

RN TCO MONI

T BUFFER

TaR

SZTART IN RZ

TEST BYTE FROM INFUT BUFFER

BYTE
R2 F

FOSITION CAST QLT

CAST OUT
QINTS TO W

IF
ORE
H

MAF

TEST FOR CAST QUT CHAR

OOES
IF
IF N
N H
MAF

SPOIL COMPARIZON,

BYTE MATC
AST OUT, M
oT EQUAL,
IT, FUT O
CAST COUT

[

H WIZRE
as7
MOS7
TIN XO
HAR

TEST FOR LAST DIGIT

IF L

(il 5

ARRAY

BUFFE

DD ANOTHER LDIGIT

EQUAL TO ZERD
ARRAY

R

FINISH LOOF

LAST DIGIT IN INPUT EUFFER?

N,
YEZ,

TWEL

0o NEXT DI
FRINT XO

VE GUESSEZD

GIT
BLIFF

MALE™



MMIND

013

015%

2140
o161
01632
14z
01464
0145
01&4
Q167

01462
Q149
’

0170

0171
0172
01732
0174
0175
017&
0177
017¢
0179
0120

i3] =

0137

0120

0171

EDCC
EDCE
EDDC
Ennz
EDD4

EDD&
EDLE
ELDDA
EDDC
EDDE

EDEO

EDRE1L
EOEZ
EDEZ
ELE4
ELEA
EDES3
ELEA
EDELC
ETEE
ELFO

2 EIFZ

EDF4
EDFé
EDF7
ELF3
EOFS

EDFA
EDFB
EDFC
EDFD
EDFE
EEOQO
EEOZ

EEO4
EEQS
EEGA
EEOS
EEGA

Z EEOLC

EEOC

S EEOE

EEOF
EEL1CQ
EELL
EEL:
EEL3

Qo0C
1AAR
2FAD
EE&A
10EQ

D000
QOO0
QOO0
D00
Q00A

5&

20

4F

20
EEOQ6
QOO0
EDFE
EEQ=
4955
Z100
[a]als]s]

OLoA
QAVO0
2E
ZE
07

00

=0
20
4E
20
QOO0
[aInTaly]
QOG0

20
i)
Q000
Q000
Q00

aDoA
40
41

=

=4
4%

[0
e

I.2.0 78.274 20:25:24 TUESDAY. MAR 17, 1921,
b MOLS N, MORE GUESSES REMAIN
XOF  @SORRY, 14 YES, PRINT S0RRY
JMP MO4S FRINT NUMBER FIR FLAYER
# # * * * # * #* * * * % #*
#
# DATA SECTION
*.
* i * 3# # 3#* # * #* W#* # # #*
#  WORESFACE
WE DATA 0,0,0,0 RO-R3E
DATA 10 R4 CONVERSION CONMSTANT
TEXT "X - ~ RE& . .
TEXT "0 ~ Ré&
DATA XOB R7
DATA. O- : - -R&
DATA R®
DATA R10Q
DATA R11-RANDCM NUMBER SEED
DATA 2100 R12Z
DATA O R13-CAST OUT CHAR MAF
#*
#  TEXT STATEMENTS
*
#  LLINE NUMBER 0QF THIS GUESE
GLIESNG DATA >0DOA TR, LINE FEED
SCD DATA $-% CONVERTED SUESS NUMBER
TEXT “..~
BYTE 7.0 BELL/STOF
#  RANDOM NUMBER OF COMPUTER IN ASCII
NMLUMBRER TEXT -~ N=~
NN DATA 0,0,0
# X735 AND O3 BUFFER SHOWING HITS & MISIES
XCEF TEXT < SFACES FOR FPRINTING
X0B DATA 0,0,0
#  RULES OQUTPUT AT BEGINNING OF GAME
RULES

DATA »0OLOA
TEXT “MASTERMINLDC.

FAGE

QoOs



MMIND

0188

01?7
Q1w8

EEZZ

EEZ4°

EEZS
EEZ24
EEZT7
EEZS
EEZ%
EEZA
EEZER
EEZC
EEZD
EERZE
EEZF
EE30

SHSMAC 2.2.0 78.274

4L
49
4E
44
ZE
2E
47

bt

238

20

31

=4
=
sl

4%
a5
0DOA
4F
]

47

TEXT 7. .GUESS NNNNN

DaTA HOD0A
TEXT ~“yQu

GET X FOR

20:25:24 TUESDAY, MAR 17, 1981.

N=1-% 12 TRIEE”

A MATCH,

7 FOR A HITS

PAGE

[s1pIT



MMIND

EES1
EESE
EETZ
EES4
EESE
EESé
EEZ7
0199 EESR
Q200

0201 EESA
EESC
EESE

0204 EE6B

0205 EE4A

EE&F
Q206 EETO
EE71
0207 EE7Z
EE7Z
EE74
EE7S

SDSMAC 3.2.0 78.274 . 20:25:24 TUESDAY,

sz
20
41

20

[ahy}

Q000

D000
20
20
a7

BYTE

0

# BUFFER OF NUMBERS INFUT

INFUT  DATA

*
WINNER TEXT

49

3E
4E
45

Q0
00
(s3]
OA
00
00

EDCGD

BYTE

SORRY TEXT

BYTE

ZRLF BYTE

END
N WARNINGSE

Dy,0,0

WINNER -

21,0

SORRY

0, 3

FL AL 0.0

MAR 17,

1281,

PAGE 0007



G.3 HIGH-LO GAME

the
and objectives. The program generates
have unlimited guesses to find the n
above average, average, Or a turkey, d
are needed to solve the problem.

YL FEOO

GilE=S

TR LOAD AND EXECUTE PROGRAM
W=FFEU
F=012z FEOO
“E
CAH YO0 GUEZT MY HUMEER w0 TO 99947
IMFUT A HUMEER & PREZZ THE =FPRCE ERA
SO0 TOO LOWs TREY AGAIMHYE
Fon TOO LOWs TREY HGAHIMHLS
ann TOO HIGHs TRY AGAIHY
=250 TOO LOWs TEY HEAIHYE
TOO HIGHs TEY AGHIMNY

-

a number between 0 and 999.

umber , but you can be an expert
epending upon how many gJuesse

TOO HIGH: TEY AGAIN
TOO HIGHs TRY AGHINS
CORFECT! vOU“FE AEOYE AYERAGE

—CONTROL H PRESSED TO IGNORE ENTRY

BECRIUZE IT TOOK 00 02 TRIES®

CAM 00 GUEZZ MY MUMEBER <0 TO 29337

INFUT A HUMEER % FREZZ THE ZFACE EAF.

SO0 TOO LOWs TEY RAGHIMHLS

gy TOO HIGH: TEY AGAIN?

£51 TOO HIGHs TREY AGHIMH

575 CDPPECT! vOU'FRE AN EXFERT  EECAUZE IT TOOE vOU 04 TRIESS
CAM YOU GUEZE MY MUMEER o0 TO 23307

IMFUT A HUMEBER 2 FREZZ THE ZFACE EAR.

B TOO HIGHs TEY ARGAIH?

SO0

TOO HIGH

TRY BOHIM! «—— —  CRPRESSED TO START NEW GAME

CHH O vOU GUEZI MY HUMEER 0 TO 99307
INFUT A HUMEEFR = FREZZ THE ZFACE EAFR.
SO TOO HIGH. TREY AGAHIN?

400 TOO HIGHs TEY AGAIM!

200 TOO0 HIGHs TRY AGAING

c i TO0 HIGHs TEY

AGATHY -

~—-——=—=--~ ESC PRESSED TO RETURN TO MONITOR

printout of this game in execution (below) illustrates game rules
You

§



GUESS

0001
D002
QOO0
oong
[alslnis
[RInTaTa)
0007
QU032
[sInlnl
O0n1o
[BINE ]
DolE
001z
0nig
oS
0014
0017
0012
0oL
Q020
0021
0022
O0Z3
00Z4

Q027 EDOO
[WIkped=

slaey

* EROO

ELOZ
0033 EDO4
ELiOA

ELiON
S 2RO
EDOE

=S EDIO
EDZ
QOIw
Q040
00al
oG4z
0043
Qn44
o045
QG4
0047 EDLS
G043 &
[laYid]
DOS0

0051
GOSZ
QST =
0054

QUSS

ELD02 3

000
Q001
000z
QOO2
onos
o0n
GOOA
Q00T

02E0
EEA4
Q200
00

ZFAD
ELRQ

" 2DSMAC 2.Z2.0 78.274 - 20:22:07 TUESDAY. MAR 17, 1981,

FAGE QO0Z

+# * 5 3+ 3#* +* ¥* -3 +* +* 3 3 3+ * +* k-3
#  THIZ GUESSING GAME CAN BE RUN ON A TM 990/1XX MICRO-
#  COMPUTER WITH 422 (Z1RO) WORDES OF USER AVAILAERLE
#  RAM MEMORY. IT IS WRITTEN TO BE LOADED AT M.A. ZEDOO
# AND CAN BE ASSEMBLELD AT THAT ADDRESS LISING THE LEBLA
#  0OR BY LOADING THE OBJECT (COLUMN Z) AT THE MEMORY
#  ADDRESSES (COLUMN ). THE OBRJECT OF THIS FROGRAM 15 TO
#  GUEST WHICH NUMBER THE COMFUTER HAS GEMERATED, AND TG
#* L THIS WITHOUT BECOMING A TURKEY. FOLLOWING RULES AFFLY
3+ - ZTARRIAGE RETURN BRINGS YOU T MONITOR
* - ESCAFE KEEY BRINGS Yous TGO MONITOR
# ~ CONTROL-H KEY IGNORES THIS ENTRY
#* — SFACE EEY CONTINLUES GAME
# GOaD LUCK.,
3 it 3# +* #* #* * 3 ++ #* H kid +#* 3 #* 3+
IODT “GUESS”
# REGISTER ESUATES
RO Ecl O TENS MULTIPLIER
R1 EQu 1 GUEZS NO. ACCUMULATOR
RZ EQiy 2 MULTIPLY ANSWER
R2 EQU 2 ENTERED DIGIT
R& EQU € CONTAINS COMPUTER S NUMBER
R? EQLL 2 NO. TRIES/10
R10O EQt 10 NO. TRIEZ
R1Z EQL 2 CRU ADDRESS (TMS2902)
#  QRIECT CODE AT ABSOLUTE ADDREZS BEGINMNING WITH EDOO
AQORG FEDOO
#* # # * #* 3t 3t # 3+ #* . W #* +#* 3%+ +#+
# FROCEDURE AREA: EXECUTABRLE CODE
+* 4+ L 4 1t HH 3 #* i+ 3t 3+ # 3H # 3#* 1
#  INITIALIZE REGISTERZ
START  LWFI WSF SET WORKSFACE FOINTER
LI RO, 10 RO = TENS MULTIFLIER
CLR  R? R = NQO. OF TRIEZ
CLRORILG RiQ = NGO, TO TRIEZ
LI R1Z, 30 M= 2 TRU ADDR,
#  DUTPUT QFENING MESSAGE
XOF  @MESS1, 14 OFENING MESSAGE
#  THIS ROUTINE IS A NUMBER SENERATOR THAT GENERATES
# A NUMBER FIZRM O TO 29% BASED ON THE TIME TGO REZPOND T TH
#  OFENING MESSAGE.  IT CHECKS A RIT AT THE TMS 2902 ZERIAL
# INTERFACE THAT ZSIGNIFIES THAT A DIGIT HAZ BEEN RECEIVED F
#  THE TERMINAL IN RESFONSE T THE OPENING MESZAGE. RECEIFT
#  THIZ DIGIT MEAMZ A NUMEBER IS BEING GUESSED. WHILE WAITIN
#  FOR THIZ FIRST NUMBER, RE IS CONTINUDUZLY INCREMENTED FRO
# O TO 999,
MEWNDT CLR R& TGO CONTAIN COMJUFPUTERSS NO,
INCND  THR DIGIT RECEIVELD™
B YES, ECHD CHARACTER
cI N, IMCREMENTED TO 3997
JERD NEWNO JES. CLEAR TO O, REZTART
INC  RZ NGO, INCREMENT N, IN RE
JMP INCNO LOOF, RECHECE FOR DIGIT INFUT

AFTER FIRST DIGIT I3z ENTERED.
READ IN GUESSES

COMUFUTER = NOL IS IN RE.
AND CONVERT THESE TO THEXADECIMAL. =UM

e

G-11



GUESS SDEMAC 2.2.0 72,274 Z0:22:07 TUESDAY. MAR 17, 1921.
FAGE 0003
QOS5 #  FOR COMPARISON TO COMPLUTERS NO. IN R2.  AS NEW NUMEBER
Q057 # IS5 READ, QLD VALLE IS MULTIFLIED BY 10 AND NEW VALUE
005 #  ADDED TO PRODUCT TO KEERP COMULATIVE TOTAL OF DIGITS
[aln}t) # ENTERED.
D00 EDZ4 ZF20 ECHDO  XOP  @LFCR, 12 DO LINE~-FEED, CR
EDZ24 EE3SR
Q061 EDER 0401 ECHOZ CLR R CLEAR ACCUMMULATOR
0042 EDZA ZECT  ECHOL | XOF R3S, 11 ECHD CHAR., FLACE IT IN RZ
Q0A3 EDZC OLC3 SWFB R3I FLACE VALUE IN RIGHT BYTE
00&4 # WAS SPACE, CR. ESCAFRE OR CONTROL-H FRESZEDT
Q06T EDZE I R, 20020 SPACE BAR
EL=C
004ad E00 JEGY CIOMPRE YEZ, COMFARE VALLES
QO&7 ELZ4 [y RES 0000 CARRIAGE RET. FRESSEDY
E0R&
o0ss EDNZS 1ZER JEQ START YEZ, REZTART FROGRAM
C00&T EDEA 0283 [994 RZ, >Q01R ESCAPE PRESSEDT
ED3C GOLIB
0070 EDZE 1309 JEZ MONITR YES, RETURN T3 MOMITOR
0071 ED4Q [ 4 RE, 0008 WAS CONTROL-H PRESSELD?
EDd4Z 0003
0072 EPp44 13EF JER - ECHUOO DO LFCR, RESTART GUESS
0072 ED4L 0243 ANDI RZ, 0Q00F NO, SAVE O-% LIGIT ONLY
E04S DOOF
0074 ED4A 240 MPY RO,R1 FREVIQUS NO, X10
OO7% EDAC ADCE A RZ.RZ NEW N, + AROGVE FRODUCT
Q074 ED4E CO43 MoV 2 R1 ANZSWR TO ACZCUMMULATIOR
0077 EDSO 10QEC JMP O ECHOL GET NEXT DIGIT
DO72 EDSZ 0460 MONITR E @030 - G0 TO MONITOR
EDE4 0020
QO79 #  COMPARE NUMBERS INFUT TO COMFUTER- S NUMEER
00z0 ERSs 05z COMFRE INC R10 INCREMENT NOZ, GUESZED
o081 EpSg 23Z0t s R1.R& COMPARE TO COMPUTER-S NO.
002z EDSA 1102 JLT O LOW NCO. I% LESS THAT COMFUTER-Z
2 EDSC HIGH N}, IS MORE THAT COMFUTER S
ENSE : EDLAL NOL s CORRECT VALUE
# MEZAGE FOR TOO HIGH, T LOW
ZFAC Lol XOF @M, 1 d TOG=LOW MEZZAGE
T ZE04
10OEL JME O BECHOZ GET NEXT NUMBER
L ED&s ZFAD HIGH XOF  @HIGHM, 14 TOO-HIGH MEZSAGE
EDAB EELE
EDGA 1ODE JMP ECHOZ GET NEXT NUMEER
#  CORRECT NUMEER WAZ GLUEZZED
#  FIND OUT HOW MAaNy TRT WAZ USED AND O JUTRUT MESSAGE
Z ED&C Z ECUAL XOF @CURECT, 14 CORRECT GUEZS MESTAGE
EDGE
o093 ED70 [N R10.7 TRY COUNT GREATER THAN 77
EN7Z
aow4 g07a HET O el YEZ, THECK AGALN
QO ELT74 XOF @SEVEN, 14 NC, D O-7 TRIEZD MEZZAGE
EO7E EESS
o076 ED7A LOOE AME COUNT G0 GET COUNT
007 ED7C QZEA 1 R10,% TRY-CIOLINT GREATER THAN 27
ED7E Q009
; JAGT  &+3 YEZ, CTHECK AGAIN
XOF  @NINE, 14 N D 2-% TRIES MESZAGE
0100 & JAME COUNT G GET COUNT
0101 [} F10, 1% TRY-COUNTER GREATER THAT 127

G-12



GUESS

EDSA

0z EDsC
: EDSE

104
0105

0106
0107
Q108

3109

0110
0111
o112

0113

0114
0112
0116
0117
0113
11y

0120

En90
ED?Z
ELiz4
EDRA

ED9S
ELPA
ED®C
EOvE
ELAG
EDAZ
EDA4
EDAS
ELAS
EDAA
EDAC
EDAE

EDERD
EDRZ
EDBS
EDRS
ELRA
ELE7
EDR2
ELRY
ELEBA
ELEER
EDRC
ELED
ELEE
ELERF
EOCa
EDC1
EDC2
ETCZ
EDC:4
EnCS
Enca
ELiC7
EDCE
EDCY
EDCA
ETICE
[ ain{m
ELChD
EQCE
ELCF
EDD
EDD1
EDDZ
EDLz
EDng
EDDS

[an]s)s]
15332
ZFAD
EEAE
1002
ZFao
EE77

Qe
AZEY
C80A
EE®&
2ZFAD
EEZ1
10A3

OAOD
DADA
473
41
4E

20:22:07

JGT 6+3
XOF  @THIRTN, 14
JMP COUNT
XOF  @TURKEY. 14
# IF CORRECT NUMBER FOUN
COLUNT DIV RO.R?
ORT R¥.>0030
ORI OR1I0O, 00320
SWFR R9
A R¥:R10
MOy R1Q,eMUMBER
XOP @CNT. 14
JMP START
+# #* +# * +* #* +*
# DATA AREA: DATA STATEM
3#* * * #* +* 3 ¥+
#  MESZAGES
MEZZ1 DATA ZOAOL, -0A0A
TEXT “CAN YOI GUEZD

TUESDAY. MAR 17, 1981,

FAGE Q004

YES,
N,

OUTFUT TURKEY MESSQGE
DO 10-12 TRIES MESSAGE

GO GET COUNT
OUTPLT 12 (TURKEY) MESSAGE

D, QUTPUT NO. OF TRIES
DIVIDE TRY-NCQ. BY 10
OR IN 30 FOR ASCII NO.

OR IN 320 FOR ASCIT NOL

REMAINDER IN LEFT BYTE
2-DIGIT DECIMAL IN R10O
MOVE GTY TO MESSAGE

OUTPUT NO. OF TRIES

GO TO BEGINNING OF FROGRAM

* #* # # #* * * *
ENTS, TEXT STATEMENTS, ETC.
# # # * #* * # #*

o

MY MNLUMBER (0O T 9%9)% -



[

UES

E
o

0121
01z

EDDA
Enn7
EQns
ELLA
=ELDDR
ELMC
Ennn
ELDE
EDDF
ELDEG
ELEL
ELEZ
EDE3
EDE4
EDES
EDES&
EDE7
EDES
EDE?
EDEA
EDER
ETEC
EDED
ELEE
EDEF
EDFO
EDF1
EDFZ
EDF3
ELF4
EDFS
ETF &
EDF7
ELFZ
ShFE
EDFA
TFE
EDFC
ZOFD
ELFE
ELFF

= OEEDO

EEOZ
EEO4
EEGE
EEQT7
EEO=
EEQOY
EECA
EEOR
EEOr
EEQD
EEQE
EEOF

-EE10

EE1]

EE1Z
EELZ
EE14
EELS

S[OSMAL

=F
20
OAOH
4%
4E
=0
=4
20
41
20
4E
4L
4z
45
52
20

26

=t

=0

anon
QOO0
2020
S
aF
4§
20

4c

3.2.0 78.274 2

LOWM

DATA
TEXT

D:2Z:107 TUESDAY,

INFUT A NUMEER %

DATA 0A0D, O

DATA
TEXT

0T

STO0

L,

LINE FEELD.
FRESS

LIME FEED,

MAR 17,

R
THE

[

[OUELE SPACE

TRY AGAINM' !~

1%81.

SFACE EBAR.

END MES

PAGE QOOS



GUESS

0124

0127

0123

el

DY )

& i

EELA
EELT
EEL=
EELw
EE1A
EELC
EELE
EE2C
EEZ1
EEZZ
EEZ2
EEZ4
EE2S
EEZ&
EE27
EEZS
EE2Y
EE=
EEZ|
EEZC
EE2D
EEZE
EEZF
EEZD
EEZ1
EEZZ
EE32
EER4
EE24
EE23
EEZA
EE3C
EEZE
EE4D
EE4Z
EE43
EE44
CE4S
CE44
£E47
EE4%Z
EE4%
EE44
EE4R
EE4C
EE4D
EE4E
EE4F
EESO
FES1
EESZ
FES3
EES4
EESS
EES4
EEST
EES3
EEZ%
EE=A
EETE

)]

49
4E
21
21
QROD
0000
2020
54
4F
4F
20
4
49
47
ag
20
20
S4q
32
5%

20

41

47
41
49
4€
21
OAGD
QD00
OAOD
00
0707
a707

2020

DSMAC '3.2.0 78.274

OATA >0A0O, 0 LLINE FEED., CR,
HIGHM DATA 2020 TWO ZFACES

TEXT T3 HIGH, TRY AGAIN!-

DATA >0R/OD,0 LINE FEED., CR,
LFCR DATA 0OACDH LLINE FEELD, CR

RYTE O END OF MEZSAGE
CORECT DATA »0707,30707 BELLES

DATA 2020 SPACES

TEXT “CORRECT ! YOURTRE

BYTE © END OF MESSAGE

SEVEN  TEXT

“AN EXFERT

20:22:07 TUESDAY. MAR 17, 1981,

END MSIG

ENDO MSG

PAGE 0004



GUESS SDEMAC 2.2.0 78,274 Z0:22:07 TUESDAY, MAR 17, 1981,
FAGE 0007

[al¥] BYTE @
41 NINE TEXT “ABOVE AVERAGE

EE4C 20
0132 EESD 00 BYTE 0O
0140 EELE 41 THIRTN TEXT “AVERAGE
EE&F Sé
EE70O 4%
EE71 a2
EE7Z 41
EE7Z 47
EET74 =
EE7S Z0
0141 EE74 Qn EYTE O
0142 EE77 41  TURKEY TEXT “A TURKEY
EE7& Z0
EE79 =4
EE76& =5
EE7E =
EE7C 4k
EE7D 45
EETE =%
ZETF 0

G4z
3] da

BEOAE LT Toon vy

mom Moy Mt

e

)

20
G300 NLUMEEFR DATA o
o0 EYTE 20 FLACE ASCTI NI, HERE

ol4as
a1de =




GUESS SPSMAC Z.2.0 720274 20:22:07 TUESDAY. MAR 17, 1921.
FAGE Q008

0147 EEZ% =4 TEXT “TRIEZ!~
EEYQ Sz
EESE L:3%
EE®C 45
EE®D Ic
EE7E 21
0145 EESF a7 BYTE 7,7.7,0 BELLS (ASCII 07)
EEAD o7
EEAL 7
EEAZ 00
0149 EEAS WaF EVEN WORKSFACE START (RO LOC)
0150 ENL
ND ERRORS, NO WARNINGS

G-17



ADC

ADDRESS BUS

ADDRESS SPACE

ADDRESSING

ALLOWABLE BAUD RATES
ALPHABETIC CHARACTERS
ALTERNATE PROGRAMMING CONVEN
AORG

AORG DIRECTIVE
ARCHITECTURE

ASCII CODE

ASRFLAG

ASRFLAG VALUES

ASSEMBLED OBJECT CODE
ASSEMBLER ACTION
ASSEMBLER COMMANDS
ASSEMBLER DIRECTIVES
ASSEMBLER-DIRECTIVE
ASSEMBLERS

ASSIGNS

AUDIO

AUTOMATIC CONTROL DEVICE
AUXTLIARY CONTROLS
AUXILIARY TMS

BAUD RATE SELECTION PARAMETERS
BELL

BIAS

BIDIRECTIONAL BUSES

BINARY DECIMAL AND HEXADECIMAL NUMBERS

BIPOLAR PROMS

BIT-ORIENTED I/0

BL

BRANCH AND LINK INSTRUCTION
BLOCK-COMPARE

BLOCK-LENGTH

BLOCK-MOVE

BOARD CONFIGURATION
BRACKETS

BRANCH AND LINK SUBROUTINE
BRANCH TO ABSOLUTE ADDRESSES
BRANCHING

BREADBOARDING

BRIDGES

BSS DIRECTIVE

BUFFER

BUSES

CALLING THE ASSEMBLER

CANCEL SOURCE STATEMENT BEING INPUT

CAPABILITIES
CARRIER

INDEX

5-9,5-14
4-3,4-4,4-6,8-17,8-18
4-21

1-6,4-4

7-6

1-5,6-4,6-13

8-26

6-1,6-6,8-2

6-6

E-1

1-5,6-5,B-1

8-46

8-47

6-3

6-11

5-19

6-6,8-1,8-2

6-1

7-5,8-1

6-9

1-4

5-9,5-14

4-3
5-21,8-46,8-48,8-49,8-50
7-8

3-2,3-3
5—13,7—6,7-7,7—8,7-9,8;22
1-5,1-6,1-7,4-8,5-22,5-25
1-2,4-1,4-10

8-17

8-11

8-11

8-44

8-43

8-44

1-2

5-4,7-10

8-12

8-11

6-5
4-1,4-24,7-
8-46

PAGE 1



CARRIER-DETECT
CARRY

CASSETTES

CHAF

CHAINS

CHARACTER 1/0
CHECK-0QUT
CHECKSUM
CIRCUITRY
CIRCUITS
CLEAR-TO-SEND
CLEARANCE

CLKOUT

CLOCK OSCILLATOR
COMMAND MODE
COMMAND SCANNER
COMMAND SYNTAX
COMMENT FIELD
COMMUNICATIONS
COMMUNICATIONS
COMMUNICATONS
COMPARE BLOCKS
CONCLUDING THE
CONDUCTORS
CONFLICTS
CONNECTIONS
CONNECTORS
CONSTANTS
CONTENTS TO CRU BIT ADDRESS
CONTROL BUS

CONTROLLER

CONVENTIONS

CONVERSATION
CORRECT-READING

COUNTDOWN

CPU
CRU
CRU
CRU
CRU
CRU
CRU INSTRUCTIONS

CRU MULTIBIT INSTRUCTIONS
CRUCLK

CRUIN

CRUOUT

CRYSTAL

CURRENTS

CURSOR

DATA BUS

DATA DIRECTIVE
DATA-TERMINAL-READY

DBIN

DEBUG MONITOR

CONVENTIONS

LINK USAGE
REGISTER UNIT

OF BYTES SAMPLE
INSTRUCTION

ADDRESS MAP

ADDRESSING

BIT ADDRESS AND REGISTER
BUS

PAGE

4-20
1-6,1-8
7-9
5-26
8-15
8-27
3-1
5-26,7-7
4-20
1-8

4-2
2-1

[ e |

4-13
2-1,3-5,4-13,4-15
1-2

6-13,8-3

8-22

4-3,4-5,4-6
1-4,4-1,4-2,4-16
5-4,8-10

8-46

5-11

8-39

1-6,1-7,4-1

8-17
4-16,4-18,4-19,4-20
8-17

8-17

4-3,4-5
6-16,8-17,8-19
8-19

6-12

4-3,4-5,4-6,4-13,4-16,8-7
6-7,6-10

4-20

4-3,4-6,4-7,4-16
5-1,5-5,5-8,5-9,5-17,5-20,5-25

2



DECODER

DECREMENTER :

DEDICATED ACCUMULATORS
DEDICATED RAM LOGIC

DEDICATED READ-WRITE MEMORY RAM
DELAYS

DELIMITER

DEVICE SELECT LOGIC

DIODE

DISPLACEMENT

DISPLACEMENT ERROR

DM

DOLLAR SIGN TO INDICATE "AT THIATION®
DOUBLE-WORD

DOWNLOADER

DUAL-TRACE

DUMP MEMORY
DUMP MEMORY TO DIGITAL CASSETTE

DYNAMIC

DYNAMIC-

CHECKS
RELOCATING

DYNAMICALLY RELOCATABLE CODE
ECHO CHARACTER XOP

EDITOR

EIA COMMUNICATIONS LINK

EIA INTERFACE

END DIRECTIVE ,
END-OF-FILE ¢
ENTERING INSTRUCTIONS

ENTRY-POINT

ENVIRONMENTAL REQUIREMENTS

EPROMS

EQU DIRECTIVE B
EQUIPMENT :
EVMBUG COMMANDS

EVMBUG ERROR MESSAGES

EVMBUG INTERACTIVE COMMANDS

EVMBUG MONITOR

EX
EXAMPLE
EXAMPLE
EXB
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE
EXECUTE

EXITING

OF PROGRAM CODING ;
OF SEPARATE PROGRAMS JOINE

ASSEMBLER WITH EXISTING SYMBOL TABLE
ASSEMBLER WITH NEW SYMBOL TABLE
COMMAND

COMMUNICATIONS LINK

IN SINGLE STEP MODE

REVERSE ASSEMBLER

UNDER BREAKPCINT

TO THE MONITOR

EXPRESSIONS

EXTERNAL INSTRUCTION LOGIC
EXTERNAL INSTRUCTIONS
FACILITIES

FD

PAGE 3

1-8,4-3,4-10,8-23
1-4,2-
5-1,5-25

4-20,8-17

4-2,5-7,8-39,8-40

8-5
4-15,4-16
4-15
8-46,8-47
6-10,8-29
4-9
4-20
6-18
8-21,8-22
5
6 -
8-

LI B

(8]

~N N
(8,
|
w
-
L1 01 WOoOirgnw N

)
—— W
w v v

PR NND®

()]
! ]
o
-
()]

2-

ul—‘
Q0w
NI AWRHI POV T N

[}
N 1 N ) NN N ]
L RNAWAOWOMNOOWSNNO PRPONINWHIOONIO TN

1
3-2

[& 2 ¥ IV

5-1,5-5,5-8,5-9,5-17,5-20,5-25

5-12
8-24
8-11
5-5

5-3
5-3,5-9
5-12
5-20
5-17
5-20
5-5
6-13,6-14
6-5,6-9
4-22,4-23
4-22
8-4,8-27
5-12



FETCHING 8-6,8-7

FIND DATA COMMAND 5-12
FIRMWARE 1-1,1-2,6-1
FIRST-0UT 8-13
FLAGA 4-19
FLAGB 4-19
FLAGC 4-19
FLAGD 4-19
FLAGE 4-19
FLAGF 4-19
FLAGS 7-7
FLEXIBILITY 8-13
FORMATTING 6-1
GATING 4-5,4-6
GENERAL SPECFICATIONS 1-4
GLOSSARY 1-5
GREATER-THAN 1-5,8-2
GROUND 2-3,4-20,7-4
HALT 4-23
HALTING 5-5
HANDBOOK 4-1
HANDLER 8-13,8-34,8-4

HANDSHAKING 7-4
HARDCOPY 8-47
HARDWARE 5-16,7-1,7-3,7-4,8-1,8-4
HARDWARE REGISTERS 5-16,8-5
HEADS 5-26
HE X 5-13
HEXADECIMAL ARITHMETIC 5-13
HEXADECIMAL I/0 8-28
HINTS 8-26
HOLD 4-3,4-7
HOLDA 4-3,4-6,4-7
HOOKUP 2-2,2-3,2-4
HOST SYSTEM CABLE REQUIREMENTS 7-4
HOST SYSTEM REQUIREMENTS 7-4
HUMIDITY 2-2
I1/0 USING MONITOR XOPS 8-27
1AQ 4-3,4-6,4-7
IC 5-5
IDENTIFIERS 7-5
IDLE 4-22,4-23
INCREMENTS 8-37
INDEXED ADDRESSING 1-7
INDEXING 8-24,8-25
INSPECT CHANGE CRU 5-5
INSPECT CHANGE MEMORY : 5-15
INSPECT CHANGE USER WORKSPACE 5-2,5-18
INSPECT CHANGE USER (WP) (PC) (ST) 5-16
INSTALLATION 2-1
INSTRUCTON 8-9
INTERFACING WITH EVMBUG 8-27
INTERRUPT AND XOP LINKING AREAS 8-30
INTERRUPT SEQUENCE 8-6,8-13,8-33

PAGE 4



INTERRUPTS AND XOPS 8-9,8-30

JUMPER CONNECTIONS 3-5,4-13,4-15
JUMPER PRONGS ' 1-3
KEYING 5-6
LABEL FIELD 6-3,6-4,6-10,6-13,6-14,6-15,6-16,6-17,6-18
LABELED ADDRESSING 8-2
LABELS 5-1,6-1,6-4,6-5,6-8,6-10,6-13,8-4
LABELS AND COMMENTS 6-4
LDCR INSTRUCTION 8-20
LED 4-22,4-23
LENGTH-OF-BLOCK 8-43
LEVELS , 2-3,7-3
LINK USE WITHOUT CASSETTE OR PAPER TAPE 7-9
LINKAGE 8-36,8-38
LINKED-LIST 8-6,8-13,8-15,8-16
LINKED-LISTS 8-13,8-15
LINKER 7-1,8-25
LINKING INSTRUCTIONS 8-9
LINKS . 4-20,8-13,8-15,8-16
LISTING FORMAT 6-3
LISTINGS 7-5,7-7
LOAD MEMORY FROM CASSETTE OR PAPER TAPE 5-13
LOAD TAPE CASSETTE 5-10
LOAD-POINT 6-8
LOADER 1-7,5-14,5-26,8-24
LOCATION COUNTER 6-3,6-4,6-5,6-6,6-7,6-8,6-10
LOGGING 7-10
LOGIC 4-7,4-9,4-11,4-16,4-21,4-22,4-23,4-24
LOGON 7-5
MACHINE-LANGUAGE 8-40
MACROASSEMBLER 7-1,7-10
MAJOR INTERNAL SIGNALS 4-3
MALFUNCTION 3-1
MASKS 8-40
MEMORY AND CRU ADDRESS MAP 4-20
MEMORY-WRITE 4-7
MESSAGES 5-1,5-25,5-26,7-6,7-7,8-28,8-46
MODEM ' 8-46
MODEMS 5-21,8-47
MODES 7-5
MODULES 8-5,8-25,8-26,5-9,5-17,5-20,5-25
MOVE-FROM-ADDRESS 8-43
MOVE-TO-ADDRESS §-43
MOVING 6-9,8-24,8-46
NIBBLE 4-15,8-9
NODES 8-13,8-15
NON-MASKABLE INTERRUPT : 1-7,4-23
NON-RELOCATABLE CODE 5-8,8-25
NUMERICAL REPRESENTATIONS 1-5
OBJECT RECORD FORMAT 5-8,5-13,7-3,7-5
ONE-PASS 6-1
ONES 1-7,8-40
OP CODE FIELD 6-3
OPCODE 4-22,6-13,6-14,8-2,8-24



OPCODE FIELD
OPERAND FIELD
OPTIONS
ORGANIZATION
OSCILLATOR
OSCILLOSCOPE
OUTLINES
OVERFLOW
OVERHEAD
OVERLAP
PADDING

PAPER TAPE
PARITY
PARTITIONING
PATH

PATTERN
PERSONALITY PLUGS
PHILOSOPHY
PIN

PINS

PLANNING
PLAYBACK
PLUGS

PORTS
POSITIONING
POSTS

POWER SUPPLY
POWER UP RESET
POWER-CONNECT
POWER-UP
PRE-PROGRAMMED

PREPROGRAMMED INTERRUPT AND USER XOP'S

PRINTOUT
PRIORITY-SETTING
PROCEDURE

PC

PROGRAM COUNTER REGISTER
PROGRAM ENTRY AND EXIT
PROGRAM ORGANIZATION
PROGRAMMING

PROGRAMMING CONSIDERATIONS
PROGRAMMING ENVIRONMENT
PROGRAMMING HINTS
PROMPTING

PROMS

PRONGS

PROTOCOL

PROTOTYPE AREA
PROTOTYPING
PSEUDO-INSTRUCTION
PULSE

PULSES

QUERY

QUEUE

PAGE

6-13

6-3,6-4,6-8,6-10,6-13

. 1-2

8-3,8-4,8-15

4-7

2-1,3-5

5-25

1-6,1-8

8-6

4-21,8-14

8-47

5-8,5-11,5-13,5-14,7-9

1-8

8-14

8-11

4-9,8-19
1-4,4-3,4-11,4-12,4-13,4-14
8-5

1-3,7-4,8-19

3-1

4-20

5-9,5-14
1-4,4-11,4-12,4-13,4-14,4-15
4-1,4-16,4-17,4-20,7-1,8-46
: 8-29

4-21

1-2,2-1,2-2,2-3

3-1

1-8,4-9,4-10,4-20

1-3

7-3,7-5,7-6
3-5,4-5,4-24
4-1,4-3,4-20,4-21,4-24
6-18

4-5,4-22

4-23
5-9,5-10,5-11,5-12
7-10



RAM 1-8,4-3,4-5,4-15,4-16,5-1,8
RAM-INTENSIVE | 8-
RAM-TYPE 8
RAMS 1-2,4-10,4-13,4-1
RE-ENTRANT

RE-EXECUTE

READ ONE CHARACTER FROM TERMINAL 5-2
READY 4-3,
REAL-TIME
RECEIVE-DATA 4-2
REFERENCE DOCUMENTS 1-
REFERENCING 1
REGISTER ADDRESSING ' 8-
REGISTER RESERVED APPLICATIONS 8
REGISTERS g- -

w 00

REQUEST-TO-SEND -
REQUESTS 4
REQUIRED EQUIPMENT

REQUIRED USE OF RAM IN PROGRAMS
RESERVES

RESET 3-1,4-7
RESET LOGIC 4-3,4-7
RESISTORS

RETURNING CONTROL TO EVMBUG MONITOR

REWIND 5-
ROM 1-8,4
ROMS 1-
RTHP

RETURN WITH WORKSPACE POINTER

RUBOUT 5-11
SAMPLE ASSEMBLER LISTING

SAMPLE PROGRAMS 3-2,3-3,7-10,8-46,8-48,8-49,
SAMPLE SOFTWARE DEVELOPMENT SESSION 7-10,
SAMPLES

SAMPLING

SAVES

SCANNER

SCHEMATICS

SEARCHES

SELECT LINE ADDRESS ASSIGNMENTS
SERIAL 1/0 PORTS 7-

SESSION 7-10,7-11,7-1
SETUP | 2-
SHIFT 6-13,8-
SHIPPING

SHORTS

SIGNALS 4-3,4-4,4-6,
SIGNS 2
SINGLE QUOTES 6-5,6-10
SINGLE-STEP LOGIC 4-23
SKIP 6-15,6-17,6-18
SOFTWARE REQUIREMENTS 7.5
SOURCE LISTING 5-20,8-1,8-2,8-3

0o Co 0O OO
1
(I — = e I

(AT BV e
- W
o Do v
I Nt N R_RAREOYON I
II\)D—‘T\)’—'mII—')—lI—”—‘IHII\)I '

oooooo\loo 1 CoO 0 P
[ eI |

=
I
—
(o))
-

1

t =

|

w O

OOCO\lm De w

(o2 |
-

[y
[~ R~ NS |

||-—-r\)b—-4>|r\)|

AWM

PAGE 7



SPACE AND ENVIRONMENTAL REQUIREMENTS
STACK

STARTING THE LINK
STATIC CHECKS

STATUS REGISTER

STCR INSTRUCTION
STROBE

STROBING

SUBPROGRAMS
SUBROUTINES
SUBSTITUTING
SUBTRACTING
SUBTRACTION

SUCCESSION

SUMMARY OF COMMUNICATIONS LINK COMMANDS
SUMMARY OF COMMUNICATIONS LINK ERRORS
SUPERVISOR

SUPPLY VOLTAGE OPERATIONAL LIMITS
SWITCHES
SYMBOL-READING
SYMBOLIC ADDRESSING
SYMBOLIC ASSEMBLER
SYMOBLS

SYNOPSIS

SYNTAX

SYNTAX ERRORS

SYSGEN

SYSTEM BUSES

SYSTEM DESCRIPTION
SYSTEM MEMORY MAP
SYSTEM REQUIREMENTS
TAB

TABS

TABULATION

TAG

TAGS

TAPE

TAPE WRITE-PROTECT TABS
TARGET

TASK

TECHNIQUES
TELETYPEWRITER
TEMPERATURE

TERMINAL HOOKUP
TERMINAL MODE

TERMINAL REQUIREMENTS
TERMINAL XOP
TERMINATION CHARACTERS
TEST EQUIPMENT

TEXT DIRECTIVE

THEORY OF OPERATION
TIME-SHARE

TIMING

TMS9995 ARCHITECTURE

PAGE 8

5-8,5-11,5-13,5-14

2-1
8-13,8-15
7-7
3-5,3-6
8-6,8-7
8-20,8-21
4-6

4-5

8-11
5-1,5-20,8-14
4-20

8-24

6-5

6-13

7-6

7-17
1-7,1-8,8-3,8-15
3-6
5-9,5-14
8-22

8-25
6-1,8-1
5-19

8-1

5-4
6-16,6-17
7-10

o
]
[y
o
-

v o
NINNN D OONOINN P

5-13,5-26

(& 217

[ el | [
WHRWOWONOEROEMNN A

5-12,5-22,8-26
3-4

5-11

2-2

2-4

’7-6,7-7,7-8,7-9,7-10

7-6

5-20,5-21,5-22,5-23,5-24

5-22

3-5

6-10,6-11

3-5,4-1

7-4
3-6,4-1,4-4,4,1

E-1



TMS CONTROL SIGNALS
TMS EVALUATION MODULE

TMS EVM AUXILIARY CONTROL SIGNALS

TMS EVM RESET LOGIC

TMS EVM SIGNALS

TMS EVM SYSTEM BLOCK DIAGRAM
TMS EVM SYSTEM MEMORY MAP

TMS INTERVAL TIMER INTERRUPT PROGRAM

TMS SYMBOLIC ASSEMBLER LISTING

TNF

TO MAKE CODING RELOCATABLE
TOGGLE

TOGGLE NULL FLAG
TRANSISTOR

TRANSITION

TRANSLATE CHARACTERS INTO ASCII CODE

TRANSMISSION
TRANSMIT-DATA
TRANSPORT

TRAPS

TRIGGERED
TROUBLESHOOTING
TROUBLESHOOTING TECHNIQUES
TTY

TTY INTERFACE
TURNING

TXLINK

TXMIRA

UARTS

UNPACKING
UPLOADER

UPLOADS
USER-ACCESSIBLE
USER-AVAILABLE
USER-CONFIGURABLE
USER-DEFINED
USER-PROGRAMMED
USER-WRITTEN
USERS

USING MAIN AND AUXILIARY TMS
UTILITIES
VARIATIONS
VECTORS INTERRUPT AND XOP
VENTILATION
VERIFICATION
VERIFY

VISUAL CHECKS
VOID

VOLTAGE

VOLTAGES

WAIT STATE LOGIC
WAITING

WAITS
WAVEFORMS

PAGE

9

1-1,1-2,1-3,2-1,4-1,

[~ R I =~

o0~
= PO W

(&5]

]

W

-
NNPANWOONWRO NN A~

(oo BE~Wé R No oS,
[« T R N R A R e B |
N
g wo

8-1
4-20
5-9,5-14,5-26
4-24,8-30
3-5,8-8,8-39
3-4,3-5
3-4
2-1,4-16,4-20,7-10
4-20
4-20

7-5,7-
5-1,5-20,5-2

8-46
1-8,5-1,5-20,5-21,7-1
3-6

~N
[}
N
-

N
]
w
w
1
(@]

.4

9

(e 0]
[ |
grw
-
(oo oo ln~}
Wl 11wl SYwwwmMrne

I PN N
YN OO N O s



WIRE-OR

WIRING

WORKSPACE POINTER REGISTER
WORKSPACE REGISTERS

WORKSPACES

WP

WRAPPING

WRITE MESSAGE TO TERMINAL XOP
WRITE ONE CHARACTER TO TERMINAL
WRITE CHARACTER

XCL

XRA

XOP EXTENDED OPERATION INSTRUCTION
XOP LINKING AREA

PAGE

10

1-8

2-3,4-13

8-5
5-3,5-18,8-8,8-15
5-1,8-4,8-6,8-10,8-14,8-15
8-5

2-2

5-24

5-24

8-46

5-20

5-20

8-15

8-36,8-38



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263

