
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
am unable to find the author to request permission to publish, so beware, this is not totally
my copyright. It is presented here (for free) and this pdf version of the document is my
copyright as it is part of my database of documents. If you believe the document to be under
other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

GPL .•..

Assembler

Program Manual

******************** GPL-ASSEMBLER - Program manual *******************

GFL_—ASSEMBLER
Vearsi on 2_ 1
t We3iarid 1985)

Content

Program description 2
Purpose 2
Hard- and software requirements 2
Operating instructions 2
GPL source code 3

Syntax 3
possible data formats 3

GPL commands in alphabetical order 3
Pseudo operations 6

FMT commands 7
Pseudo operations 8
Control of assembler operation 9

Input file 9
Output file 9
List file 9

Assembler principles 10
Example 10
List of error messages 11
Predefined symbols 12

******************** OPl-ASSEMBLER - Program manual *******************

Program de3sscri pti on _

GPL-ASSEMBLER Version 2.1 , Copyright 1983 by Michael Weiand
Distributed by : Elektronik Service, Linning 37, D-4044 Kaarst 2

P u r- p o s er s Assembling of GPL Programs

The program 'ASSM1/2/3' - the GPL-Assembler - reads DIS/VAR 80 input
files from diskette which have been created by means of any editor
program, for instance with the EDIT1 program of the Editor-Assembler
(named E/A later on) package.

Source files are translated into a list file and an object file. The
DIS/VAR BO list file will contain all necessary information for
documentation of your GPL program, like source code, generated object
code, symbol tables and error messages. The list file resembles very
much that created by the E/A-Assembler.

The object file (output file) is a tagged object code, D15/FIX 80 file
like the object files created by the E/A-Assembler, but will contain
only absolute data. Relocatable code as well as REFs/DEFs/Entries
cannot be generated. This is due to the fact that GPL-Loaders will not
be able to use these features.

The object files will later on have to be LOADed by means of a special
loader into EPROMs or GRAMS. The loader is not part of this package.

Hard— and ssoftwarea rerqušreamantm

T199/4A-console with Editor-Assembler command module. This implies the
need for a memory expansion and at least one disk drive. A printer
together with its peripheral (RS232/P10 etc.) ns strongly recommended.

Opeerasting insstructionss .

Copy the EDIT1 program of your E/A package to the GPL diskette. Then
insert the diskette labelled 'GPL-ASSEM' into disk drive 1 (instead of
the 'E/A-*PARTA' diskette) and plug in the Editor-Assembler command
module. The module will behave normally in all aspects.

When you select the option '?=Assemble', the new GPL-Assembler will be
loaded. The questions concerning files are answered as usual, but
there is a slight difference for the 'Options' question:

C = generation of compressed object code,
otherwise : not compressed' (cp.'COMP')

L = Generation of a list file, otherwise start
without list file (cp. 'LIST','UNL')

Sn = Generation of 'n' symbol tables
otherwise no symbol tables (cp. 'SYMB')

Pm = maximum number of assembler p 's'
otherwise 'm'=4 (cp.'PASS')

In the above codes 'n' and 'm' is a one-digit hexadecimal number
ranging from 0 to F=15.

*a******a*********a* GPL-ASSEMBLER - Program manual *******************

GPL ssosarce code

The GPL source code is of course different from the TMS9900 machine
language. The E/A-manual will insofar be of little use, although it is
important for an overview and description of the TI99/4A architecture.
For a description of the GPL language please refer to special books,
for instance the german booklet 'TI99/4A intern' by H.Martin (1985,
published by 'Verlag fuer Technik and Handwerk', Baden-Baden, Germany).

The following tables are only meant as an overview of GPL commands and
GFL syntax. This is not sufficient for writing GFL programs.

Syntax :

<SYMBOL> <OPCODE> <DATA>,<DATA>,...

<SYMBOL> : unique name of up to 32 characters
e.g. POINTER
a <SYMBOL> must start in column 1 !

<OPCODE> : xxxx = 4 significant characters as given in the
following table, e.g. ADD
or for 'Double'-Đpcodes :
Dxxxx = 5 significant characters including 'D'
e.g. DADD
an <OPCODE> must not start in column 1 !

<DATA> : Syntax depends on <OPCODE>, but can also be void.
excess <DATA> are ignored.

If any field - also the <SYMBOL>-field - begins with an asterisk '*',
the rest of the line is treated as comment.

possible <DATA>-formats :

<STRING> s Text in single quotes, e.g. 'abcdefg'
For a quote, insert two quotes! e.g. 'Sam" s'

<NAME> : <STRING> which represents a valid filename
e.g. 'DSKI.TEST-COPY'

<1MM> : a value consisting of (NUMBER)s, (SYMBOLIs and
(OPER)ators s
e.g. POINTER+1

(NUMBER) : integer value, e.g. 13
: Hexadecimal value, e.g. >AA01
: Binary value, e.g. &10100101

(SYMBOL) : name like <SYMBOL>, e.g. POINTER
: X = current GROM base address (e.g. >6000)
s $ = current address in the GROM (cp.'AORG')

(OPER) s + = Plus
s - Minus
s * = Multiply
: / = Integer Division
s (= Modulo
Note: Brackets are not allowed! No operator pre-
cedence, but strict left-to-right calculation.
e.g. 1+3*4 gives 16 !

<SP> s like <IMM>, but the result must be within
>8300 to >B3FF (ScratchPad-RAM addresses)

******************** GPL-ASSEMBLER - Program manual *******************

<S>/<D> : Source / Drain ("General address"="gas")
can be one of the follwing forms,
indicating the type of memory (RAM/ROM,VDP,GRĐM)
and address mode (direct, indexed, indirect)

IMM : Immediate value (cp. <IMM>)
NOTE a ONLY VALID IN <S> Source '!!!
e.g. BACK >20

@IMM : direct RAM/ROM, e.g. CLR @>8300
*IMM = indirect to/from RAM/ROM into RAM/kOM

e.g. CZ *FAC (the value from FAC is read as an
address in RAM/ROM where the value is read)

V@IMM : VDP direct, e.g. V@0
V*IMM s VDP indirect by RAM/ROM, e.g. V*PADFTR

(the value from PABPTR in RAM/ROM is read as an
address in VDP)

@IMM(@SP) s direct in RAM/ROM, indexed by a scratchpad value
e.g. @>0001(@FAC)
(the value at FAC is read, >0001 is added ans the
result is an address in RAM/ROM)

*IMM(@SP) s indirect in RAM/ROM, indexed by a scratchpad value
e.g. *>0001(@FAC)
(like above, but the result is an address in RAM/ROM
where the final address is fetched.)

V@IMM(@SP) s like @IMM(@SP), but the result is in VDP memory!
V*IMM(@SP) : like *IMM(@SP), but the result is in VDP memory!

<MOVES> s the MOVE command accepts as source data the <D>
values and the following s

G@IMM : direct GROM/GRAM
e.g. G06000

G@IMM(@SP) , like @I1*l(@SP), but the result is in GROM memory!

<MOVED> : the MOVE drain data is similar to <MOVED>, but
permits VDP registers as well:

AIMM s VDP register direct (number IMM = U to 7)
e.g. *7

******************** GFL-ASSEMBLER - Program manual *******************

©PL commainda in a*1 p ab mat i cal or- dear

Note: (D) means: the command is available as 'word' or
'Double' command. Otherwise, bytes are accessed.
e.g. ADD 1,@FAC adds a byte value to @FAC

DADD 1,@FAC adds a word value to @FAC,@FAC+1

(DMASS <D>
(D)ADD <S>,<D>

ALL <IMM>
(D)AND <S>,<D>

B <IMM> * IMM is a GROM address
BACK <IMM>
BR <IMM> * IMM is a GROM address in the current GROM
BS <IMM> * IMM is a GROM address im the current GROM
CALL <IMM> * IMM is a GROM address
CARR

(D)CASE <D>
(D)CEQ <S>,<D>
(D)CGE <S>,<D>
(D)CGT <S>,<D>
(D)CH <S>,<D>
(D)CGE <S>,<D>
(D)CLOG <S>,<D>
(D)CLR <D>

COIN <S>,<D>
COL <IMM> * FMT command
COL+ <IMM> * FMT command
CONT

(D)C1 <D>
(D)DEC <D>
(D)DECT <D>
(D)DIV <S>,<D>

EX <S>,<D>
EXEC
EXIT
FEND * FMT command
FETC <D>
FOR <IMM> * FMT command
FMT
ST
H
HCHA <IMM>,<IMM> * FMT command
HOME * DCLR @YPT
HSTR <IMM>,<D> * FMT command
HTEX <IMM>/<STRING> * FMT command

(D)INC <D>
(D)INCT <D>

I/O <S>,<D>
(D)INV <D>

MOVE <S>,<MOVES>,<MOVED>
(0)MUL <S>,<D>
(DINES <D>
(D)OR <S>,<D>

OVF
PARS <IMM>
POP <D>
PUSH <D>
RAND <IMM>
ROW <IMM> * FMT command
ROW+ <IMM> * FMT command
RTM

******************** GPL-ASSEMBLER - Program manual *******************

RTNB
RTNC
RTGR
SCAN
SCRO <S> * FMT command

(D)SLL <S>,<D>
(D)SRA <S>,<D>
(D)SRC <S>,<D>
(D)SRL <S>,<D>
(D)ST <S>,<D>
(D)SUB <S>,<D>

SWOR <S>,<D>
VCHA <IMM>,<IMM> * FMT command
VTEX <IMM>/<STRING> * FMT command
XML <IMM>

(D)XOR <S>,<D>

Pseudo commands

BYTE <IMM>,<1MM>,...
COMP <IMM>
COPY <NAME>
DATA <IMM>,<IMM>,...
END
EQU <IMM>
1DT <STRING>
LENS <1MM>
LIST
LIST <NAME>
OBJE <1MM>
OFFS <IMM>
PAGE
PASS <IMM>
STRI <STRING>
SYMB <1MM>
TEXT <STRING>
TITL <STRING>
UNL
VAR <IMM>

******************** bF'L-HbbkMbLth - program manual k*k**k***k**kll*kkkk

FMT commands

Some GPL commands are applicable only within the 'formatted display'.
This mode ist entered with the FMT command. FEND, if not used for
finishing a FOR-command, will switch to 'normal' GPL mode again.
Normal commands are not allowed within the FMT block !

Note : <CNT> is an <IMM>-value of 1 to 32

COL <CNT> * Column <CNT>
COL+ <CNT> * advance column by <CNT>
FEND * finishes previous FOR-Loop
FEND * finishes FMT, if no FOR-Loop is pendant
FOR <CNT> * repeats the following commands up to

* FEND <CNT> times
HCHA <CNT>,<IMM> * display CHAR(IMM) <CNT> times

* horizontally
HSTR <CNT>,<D> * Display string of length <CNT>, which

* is stored at address <D>
HTEX <STRING> * display <STRING> horizontally

* max. length is 32 characters
HTEX <IMM>,<IMM>,....

* display CHAR(IMM) ... horizontally
ROW <CNT> * Row <CNT>
ROW+ <CNT> * advance row by <CNT>
SCRO <S> * get new screen offset at <S>
VCHA <CNT>,<IMM> * display CHAR(IMM) <ENT> times

* vertically
VTEX <STRING> * display <STRING> vertically

* max. length is 32 characters
VTEX <1MM>,<IMM>,....

* display CHAR(IMP) ... vertically

Example of an FMT command block:

FMT * Start FMT
FOR 3 * Repeat 3 times
HTEX 'HELLO' * display 'HELLO' horizontally
ROW+ 2 * advance row by 2
FEND * finish FOR-Loop
FEND * finish FMT

Another example can be found on the diskette (TEST-COPY).

**************s***** GFL-ASSEMBLER - Program manual *******************

Psea Lad o comm Jan dss

The following assembler commands will create data structures, not
executable GPL codes

BYTE <IMM>,<IMM>,... * lmax.16 values)
* stores values <IMM> as bytes
e.g. BYTE 1,2,3,4,5

DATA <IMM>,<IMM>,...
* like BYTE, but words are stored.
e.g. DATA >AA01,0,0,POINTER

TEXT <STRING> * stores <STRING) of ASCII-values.
e.g. TEXT 'ASSEMBLER'

STRI <STRING> * like TEXT, but the generated code
* will be preceded by the length byte.
e.g. STRI 'GPL HELP'

A symbol value can be assigned not only by giving it the address value
of the instruction which it precedes. The following statements will
assign constants to any <SYMBOL>t

SYMBOL! EOU <IMM> e,g. ID EMU >AA01
SYMBOL2 EOU <STRING> e.g. BLANK EOU ' '
SYMBOL3 VAR <IMM> e.g. STEP VAR 2
SYMBOL3 VAR <STRING> e.g. STEP VAR '0'

SYMBOL1 will get the value of <IMM>. SYMBOL2 will be assigned the
value of the first two bytes of <STRING> or of >00xx if the string
length is 1. SYMBOL3 is the same as SYMBOL!, but the VAR statement
disables error messages for 'Multiple Symbols' and 'New Symbol value'.
Thus you can assign different values to a symbol which is important if
you want to use them as input or output variables from 'Macro'-type
COPY-files.

Be cautious using recursive <IMM>-values since these may result in
unstable values which will cause the assembler to retry endlessly.

e.g. s START EQU STARTt1 1!!!)

This condition can be avoided using the PASS pseudo command or the
P-option of the assembler.

******************** GPL-ASSEMBLER - Frogram manual *******************

Control of a s s em b l e r o p e r a t i o n

Inout file :

COPY <NAME> * insert file <NAME> into the source
* code. Be cautious not to create loops!

END * Stop assembly of source code.
PASS <1MM> * new value <IMM> for the maximum pass

* count. Default value = 4
> This command overrides the assembler
* option 'P' with the same meaning !

Putout file :

COMP <IMM> * if <IMM> is 0, the object code is
* 'not compressed', else compressed.
* Default : compressed
> This command overrides the assembler
* option 'C' with the same meaning !

OBJE <NAME> * Open new object file <NAME>
> This command overrides the assembler
* input 'OBJECT FILE' !

OFFS <1MM> * <IMM> is a 'load offset' value, i.e.
* the generated addresses are offset
* from the calculated values by <IMM>
* This can be used by special loaders.
* Default = 0

IDT <STRING> * <STRING> is a new ID-field within
* the object file. Default = 'GFL-ASSM'

List file s

LIST " * (Re)starts list file generation
* same meaning as the 'L'-option

LIST <NAME> * Open new list file <NAME> and start
* list file generation.
> This command overrides the assembler
* input 'LIST FILE' !

LENG <IMM> * <IMM> is the lines/page value
* Default = 66

PAGE * generate page break
SYMB <IMM> * Indicate symbol tables to be generated

* the <IMM> value is coded bit by bit
* i.e. the following values have to be
* added for each table desired:
* 1 = new symbols, in alphabetical order
* 2 = new symbols, sorted by value
* 4 = predefined symb., in alphabetical order
* 8 = predefined symb., sorted by value
> This command overrides the assembler
* option 'S' with the same meaning !

TITL <STRING> * <STRING> is the new listing header line
UNL * Stop list file generation.

> This command overrides the assembler
* option 'L' !

arse*******s*s GPL-ASSEMBLER - Program manual ****************a**

Ae;sseamblmr principleeea

The GPL ASSEMBLER had to be designed to cope with varying code length
depending on the symbol values. This means that addresses can change
from pass to pass, making a 2-pass assembly impossible.

Therefore an 'endless-pass' assembler had to be written which will stop
assembly only if no more changes in symbol values are encountered. The
last pass will generate object and list files.

Any error is therefore classifed as follows:
- warnings (no influence on generated code)
- Retry (may be better next time)
- Fatal (no meaningful code can ever be expected)
After fatal errors no object file will be generated !

During each pass the following information is displayed :

- Pass number and current error state (correct, retry, aborted)
< Current Input and Copy file(s)
> Current Output file(s)
- Error messages togehter with the row number in the current input or

copy file (restarts with 1 in each copy file!)
the list of error messages is given below.

- total error state in case of aborted assembly.

The messages are only Informative till the last pass. You don't have
to note all the messages passing by for the first p

List file generation is postponed till the last pass. An object file s
i will also be generated In this pass if the error state is 'correct'.

Eacasmplse

On the GPL ASSEMBLER diskette you will find a working example for a
command module type GPL program. The files TEST... are accessed in
the following way:

INPUT FILE s DSKI.TEST-INPUT
OBJECT FILE : DSKI.TEST-OUTPT
LIST FILE : DSKI.TEST-LIST
OPTIONS : L S5 P4

Note: the input file TEST-INPUT will COPY the file TEST-COPY twice.
You can of course use other filenames, like PIO for you list file, if
you wish to.

******************** GPL-ASSEMBLER - Program manual *******************

Error melt .agtoss

Adress Error (Fatal)
Invalid address syntax

Adress Mode Error (Fatal)
Invalid address mode (not allowed for this command)

Adress not even (Warning)
Warning: an uneven load address has been generated
which your loader might not accept!

COMP ignored !! (Warning)
the COMP command cannot change the COMP mode of
an object file when data have been written to it.

Copy File Error (Fatal)
any file error on the Copy file

Default changed (Warning)
Warning: the value of a predefined symbol has been
altered. see list below!

Fatal Error (Fatal)
error state which means 'abort assemblation'

File Error (Fatal)
any input file error

FMT missing (Fatal)
you have used FMT commands without previous FMT

FMT not complete (Fatal)
you have used normal commands within FMT

Format Error (Fatal)
address mode error within FMT

"gas" error (Fatal)
general error in <S>/<D> data ("general address")

Invalid Label (Warning)
a label syntax is incorrect

Invalid Mnemonic (Fatal)
a command could not be recognized

Invalid Numeric (Fatal)
a number could not be decoded

Multiple Symbols (Fatal)
you tried to redefine a symbol

New Symbol value (Retry)
a symbol value has changed since the last pass

No Object File (Warning)
Warning: there is no object file for your data

Object File Error (Fatal)
any file error on the object file

Out of Range (Fatal)

a value is out of range (in most cases tSP>)
Parameter Error (Fatal)

missing parameter data
Print File Error (Warning)

any list file error
String Error (Fatal)

invalid string syntax (missing ')
Symbol Table full (Fatal)

no more room for new symbols
Syntax Error (Fatal)

any other syntax error
Too many ! (FMT) (Fatal)

wrong <CNT> value
Too many passes (Fatal)

the maximum number of passes has been exceeded
Undefined Symbol (Fatal)

you referenced an undefined symbol

******************** GPL-ASSEMBLER - Program manual *******************

Predefined symbols

Symbol Table M4 (Def,alpha)
0034 ACCTON 835C ARG 0032 ATN 0036 BADTON 0038 BITREV
0012 CFI 0014 CNS 002C COS 0010 CSN 8372 DATSTK
0001 DIVZER 0003 ERRIOV 0006 ERRLOB 0005 ERRNIP 0002 ERRSNN
0004 ERRSOR 0028 EXP 834A FAC 0006 FADD 000A FCOMP
0009 FDIV 0008 FMUL 836C FPERAD 0007 FSUB 0038 GETSPACE
0022 INT 0010 LINK 0018 LOCASE 002A LOG 8370 MEMSIZ
003D NAMLNK 8300 PAD 0024 PWR 0012 RETURN 0008 SADD
000F SCOMP 000E SDIV 8375 SON 002E SIN 000D SMUL
84u0 SOUND 0026 SOR 000C 5SU8 837C STATUS 10016 STCASE
8373 SUBSTK 0030 TAN 0007 TRIGER 004A UPCASE 836E VSPTR
0001 WRNOV 837F XPT 837E YPT

gataesir

tics

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

