Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by the Henlow Signals Museum, believed to be out of copyright. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time!

Colin Hinson
In the village of Blunham, Bedfordshire.

A Catalina of Coastal Command on Atlantic Patrol
Short Stirling homeward bound from Europe

The finest name far on Record!

TURNER LAYTON Rolleo Rolling Along
Question and Answer
$-\quad$ - FB 2859 stion and Answer NELSON EDDY Water Boy; Short'nin' Bread DB 2099 MONTE REY

CATAPULT INSTRUCTION

A Fleet Aif Arm pilot instructor
tells the prospective pilot and obsertells the prospective pilot and obser-
ver what's what and points out the salient points of this aircraft, the Kingfisher, on board H.M.S. Pegasus.
H.M.S. Pegasus was originally named H.M.S. Pegasus was originaly named seaplane carrier during the 1914.18 war. It is now used as a catapult raining ship.
The aircraft is lowered for in-
tructional purposes-instructional sor both aircraft and catapult crews. Note the bomb-racks, V.P. airscrew and Royal Navy painted aft of the
dind
.She's off." The real thing this
time. Here are the catapult operators at the controlling levers. Few people can really imagine what a
(continued on page 3 of cover) Almost a million copies are already in circulation.

COMPREHENSIVE GUIDE TO

 AERONAUTICAL TRAINING"ENGINEERING OPPORTUNITIES" is probably the most widely-read book amongst those who are interested in Engineering and Technical Instructions

The book outlines over 150 home study courses in all branches of Engineering, including Aeronautics, Aeroplane Design, Aero Engines, Aircraft and AeroEngine Inspection, Air Navigation, Meteorology, Wireless, etc., etc.

R.A.F. MATHIS.

We are coaching hundreds of prospective Aircrews in Mathematics and Mechanics up to R.A.F. standard. This special course can commence from very first principles where necessary. Full details are given in our handbook.

Our Courses are approved by the Royal Aeronautical Society, and all instruction is supplied under a "Satisfaction or refund of fee" guarantee.
The guide will be found particularly useful to Cadets who wish to prepare rapidly for advancement in the R.A.F. and to A.T.C. Officers who desire to increase their technical knowledge for instructional purposes.
The Handbook will gladly be sent FREE and post free on request. We shall also be
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 199 SHAKESPEARE HOUSE, I7/I9 STRATFORD PLACE, LONDON, W.I

THE B.IE.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

(A A ग्या GAZETE

Edited by Leonard Taylor

The Spirit of

 the Air
Training Corps

$\mathbf{S}^{O M E O N E}$ in the course of heaving banded Headquarters of the Air Training Corps used the words "happily defunct." A vast effort in matters of organisation and administration, of training, equipment men and women, Service and civilian, who men and women, Service and cill hours and with their sole aim the good of the Corps. Certainly mistakes were made. Not every venture can turn out profitably - but
Corps owes much to its first servants.
Headquarters A.T.C., Stanmore, may be
defunct, but every member of those Headdefunct, but every member of those Head-
quarters can be happy, for he or she set an example from which the magnificent spirit of the Air Training Corps sprung. 1 am proud to see wher the growing handispirit survives in spite of the growing handi-
caps of a long war, and it is well that it hould be so. The R.A.F. relies on the Air Training ff the fortitude and keenness of officers, instructors and cadets did not overcome the difficulties of war-lime condics whom we exist to serve. Our difficulties, as our dangers, are less ays, I am sure, meet

The Call-wp

THE recent announcement about the call-up of the 18 -year-old made to me about the position of A.T.C cadets
Many who have recently registered with the "eighteens" have been the Service for which they have expressed a preference-and if so when. Others who fear that perhaps they may not be able to make
aircrew standards are wondering if their A.T.C. training is going to aircrew standards are wondering if their A.T.C. training is going to
be wasted by possible drafting into the Army. I have therefore thought it desirable to clarify the position in so far as I am able
to do so. o do so.
All cadets who are volunteers for aircrew, provided they have been
passed medically fit for aircrew duties and heve reached the mental standard, will, in due course, be able to start their aircrew training. The R.A.F.'s need for aircrews is increasing day by day becoming a pilot, navigator, flight engineer, radio maperatorle of becoming a pilot, navi
gunner will be wanted.
I know that there is a period of waiting at the present time after attestation and before being called up for full-time service. It highly satisfactory to know that this is indeed the case, and that we
have a reserve still to call upon. For remember this, that the side have a reserve still to call upon. For remember this, that the side
with the best-trained reserves will, in the end, win the battle. That is why towards the end of a long war it is so important that we should be able to put men into the air who have had a long apprenticeship
and are well grounded in the duties that they will be required to and are wel
undertake.
For this reason it is most important that as many as possible of
you endeavour to become leading cadets. This means that you will you endeavour to become leading cadets. This means that you will
have obtained your Proficiency Certificate, and provided that your services are satisfactory during your initial training with the Royal services are satisfactory during your initial training with the Royal
Air Force you are automatically ensured of an aircrew grading test. As well as those training for aircrew duties, there are, of course,
many who are preparing for ground-crew duties, or on account of eyesight or other reasons are unable to be accepted for aircrew eyesight or other reasons are unabie to be accepted for airctew.
Again, for those who are able to reach the proficiency standard there are vacancies in skilled ground trades. Here, however, unlike the
aircrew position, women and older men are frequently able to underaircrew position, women and older men are frequently able to under-
take many ground duties in the Royal Air Force, thus releasing take many ground duties in the Royal Air Force, thus releasing
younger men for more active work or combatant duty. For this reason only a limited number of recruits for ground duties can be accepted from the younger age-classes.
Those who have undergone instruction in the Air Training Corps themselves for full-time service. It may well be that some who have trained for aircrew duties find themselves unable to be accepted on
account of colour-blindness, or because of some other reason which, account of colour-blindness, or because of some other reason which,
while preventing them from flying, in no way debars then from while preventing them from fying, in no way debars them from
fighting. I know that many of those so placed do not want to apply for ground-crew duties with the Royal Air Force, but want to fight.
Naturally, they are disappointed when they find they are unable to Naturally, they are disappointed when they find they are unable
become aircrew and feel that perhaps their Air Training Corps work become aircrew and feel that perhaps their Air Training Corps wo
has been wasted. There need be no fear on that account, because all the work done in the Air Training Corps is particularly applicable fo
the Royal Corps of Signals or for the armoured divisions, and cadets the Royal Corps of Signals or for the armoured divisions, and cadet
may rest assured that those who have given good service with the Air may rest assured that those who have given good service with the Air
Training Corps will find that they are at a definite advantage should they desire to enter either of these units of the Army
Cadets need never fear that anything they have achieved in the Air
Training Corps is in any way a waste of time. Their Certificates Training Corps is in any way a waste of time. Their Certificates o
Service will be attached to their airmen's papers and will follow them through their career in the Service, and then when they are discharged the fact that they have given of their spare time in the hour of thei
country's need will be of help to them when peace returns and they again enter industry.
Wwhakefils

lage can now house as good a load of Thembs as the "14" had passenger load. The wing span of the Hudson is 65 ft
6 in., and an aspect ratio of 7.79 gives it excellent lifting and flying qualities. The elevators are interesting, because they not
only have a greater travel upwards, but only have a greater travel upwards, but
also a greater area. This is made possible by a small flap (normally resting on top of the fuselage) which is raised by the
upgoing elevators, and so forming one upgoing elevators, and so forming one
continuous control surface in the "up" position. This assists take-off considerably. The upward travel of the elevators is 14 inches and only six inches down.
Surprisingly for a modern twin-rudder Surprisingly for a modern twin-rudder either direction, namely, 30 degrees, so either direction, namety,
no differential rudder mechanism is fitted,
as on most modern twin rudders.

Cable Control

The Hudson is interesting from its wide use of cable control, at a time when cable operation seems to be falling into negiect.
The whole of the engine controls and the flying controls are cable-operated. The bomb doors are cable-operated from a single hydraulic jack, while the Fowler
flaps are also cable-operated by one flaps are also
hydraulic jack.
The Hudson has a single cranked control column, but provision is made for
another should it be necessary. An automatic pilot is a standard fitment. De-icing
is done by pulsating rubber boots along the leading edges, a method not favoured
now, though it seems effective enough on now, though it seems effective enough on
the Hudson. The hydraulic system is hig,
and operates bomb doors, brakes, flaps and operates bomb doors, brakes, flaps
and undercarriage. and undercarriage.
In an emergency
In an emergency the cabin door, which
contains the rubber dinghy, can be jetticontains the rubber dinghy, can be jetti-
soned. The rear gunner escapes through the door aperture; the pilot, navigator
and radio operator through the detachand radio operator through the detach-
able cockpit roof. There is also an extra escape through an emergency exit in the side of the fuselage opposite the cabin
door.

Slots and Flaps
At the tips of the wings are fixed slots designed to prevent wing-tip stall, which might occur on a finely tapered wing. The
slots are cut into the wing itself, and slots are cut into the wing itself, and
come into operation at a fixed angle of attack. By far the most interesting part of the
ockheed Hudson, and retained on the Lockheed Hudson, and retained on the
Vega Ventura, is the Fowler flap. This is operated by a single hydraulic jack and a complicated series of puileys and cables passing inside the bulbs seen at the trail-
ing edges of both the Ventura and the Hudson. These flaps are of the split type, and with an area of $107 \frac{1}{4}$ square feet
take up nearly twenty per cent of the take up nearly twenty per cent of the
total wing area, a useful additional lifting surface for loaded take-offs. So the

Hudsons of Coastal Command on patrol. Since the war began these aircraft have flown millions of miles to protect shipping. Fowler flap is not merely an air brake creasing wing area, the second where the There are ten tracks in all, five to each
ar steepening the gliding angle, but also
an auxiliary wing which increases the normal wing area for take-off with big loads. This means that the flap has to be
moved well back behind the trailing edge,
a mechanical problem of extreme difficulty leverly solved by the use of rollers running inside metal tracks and pulled by The Fowler flap has three positions.
The first position is at 30 degrees for in-
creasing provides an air brake at about 80
flap peres,
degn the third where the whole flap area extends behind the trailing edge at about 60 degrees. When the pilot
wishes to lower the flaps, he sets the con-

trol lever to the predetermined angle, the hydraulic jack draws the cables over the
pulleys (in the bulbs) and pulls the flaps along the metal tracks. The grooved metal tracks in which the flaps are moved
look rather like curved railway lines. The Vega Ventura, successor to the Hudson.

Armament

The Hudson is fitted with an electrically operated Boulton and Paul gun turret with a wide arc of fire between the twJ
rudders. There are two Browning .303 machine-guns firing forward, and two aft from the retractable "scoop," Two Wright Cyclone engines give a total of over 2,000 h.p. The construction, though exception-
ally sturdy, is the conventional stressed skin, flush riveted to formers and stringers. The wings have a front and rear spar
and stamped-out ribs. The bomb compartment is spacious, as the deep fuselage indicates. The bomb doors are opened
and shut by a double-acting hydraulic jack and a series of cables. In fact, the
Hudson can be called a cable-operated aeroplane.
Young Brother Coming On
Young brother coming On
Soon we hearing more about
the Lockheed Vega Ventura, a development of the Hudson and powered with two 2,000-h.p. Pratt \& Whitney Double Wasp engines. The Ventura incorporates
many of the features that have made the Lockheed Hudson one of the most out standing American aeroplanes of this war

N one can understand the conduct of knowledge of weograuhy. It is basiict to all
trat strategic thought. Many modern weapons
and all vehicles of communication are designed to overcome geographical handi-
caps; in this respect caps; in this respect the aeroplane has a
unique significance. In airmanship specialised geographical knowledge is essential. Global War
President Roosevelt has called this a
"global war." The term indicates that the

When is a straight line not the shortest distance between two
points ? When it is drawn on a Mercator projection. The shortest
struggle is taking place on a curved surface. (Relative to the Lancasters of
Britain, the Fortresses bombing Japanese shipping off the Solomon Islands and New Guinea fly inverted.)
To study the geog
of this war the geographical complexity but if you must use a map do no map; Mercator projection, with its great distortion of the areas and shapes of the land masses-get an azimuthal equal-area
projection or a gnomonic projection of the

World; unsuitable for general navigation
these projections give a better picto hese projections give a better pictorial
outline of the land masses but remember that some distortion is inevitable when portraying by any method the planof paper.
The Con geographycise Oxford Dictionary defines surface, form, physical features, earth's and political divisions, climate, productions, population, etc." Not all, these are
important to the pilot of an aircraft. The
aspect of geography which is of great works of man-cities, industrial to the factories, docks, railways, roads, canals, navigabbe rivers (as distinct from nonnavigable streams, bridges, irrigation
works. These are things which man has works. These are things which man has imposed, upon the physical features of the
earth, and they are striking landmarks to earth, and they are striking landmarks to
all aircrews. They are subject to change especially in war. Think of the diversion of the Yellow River, which now follows a

route is a great circle shown as a a curved bine on the Mercator
projection, but as as asraight ine on a gnomonic proiection.

Polves into navigation and cartography. Physical features, climate
and natural divisions require special study Political divisions, productions and populations are affected by war, and so cannot
properly be regarded as a standard subject. (What, for example, is the precise effect of the war upon the populations of
China and the Ukraine?

The Works of Man
The definition just
quoted ignores one
different course from the one taken before the Japanese attack upon China, due o the Chinese breaking the dykes to mpede the advance of the invader. Con-
ider the changes that have come upon sider the changes that have come upon
the industries of Western Europe since the war began-new buildings built, plants
shifted, workers transmigrated. In Central shifted, workers transmigrated. In Central
Africa new roads have been hewn through Africa new roads have been hewn through
jungle, the ports of French Equatorial Africa have been and are being continu-

SO IT CAN BE DONE!

IN 1924 (or thereabouts) I took a minor pleasant episode. At the time I was ation adjutant. An offcer reported fo aty. I asked for his log book. He saii ying officer to make, because if there ne thing he takes care not to lose it is his log book. However, I asked for his in short, this officer had no documentary evidence whatever to show that he wa ntitled to wear the wings that he sported nusual state of affairs to the C.O. who nstructed me to obtain from the officer oncerned particulars as to where and

He Just Flew
In due course I was handed one of the most incredible documents it has ever been my lot to read. I own frankly that
I put the writer down in my mind as a
by W. E. Johns
with us. I spoke to several old pilots in the mess, and their opinions differed only It was a difficult position, and I retired to think the matter over.
Penguin Progression
I knew, of course, that the earliest
pilots had taught themselves to fy for the simple reason there were no instruc-
tors. I had also watched French tors. I had also watched French embryo
pilots teaching themselves to fly in air craft with wings so clipped that they could not get off the ground. Having
made themelves proficient with these made themselves proficient with these penguins, they passed on to a type that
had a normal ceiling of about ten feet. And so they went on, by degrees, to orthodox aeroplanes. But none of these
training types was to be compared with training types was to be compared with a
Snipe, which had the inherent vice of all

and back. In this line of thought I was not alone, for the view was shared by The upshot of it all was this budding He was sent to an F.T.S. for training. Subsequently he appeared with wings that had been acquired in the manner ap-
proved by the Air Council, but even then proved by the Air Council, but even then
he would often boast that he had taught himself to fly. I should say that I have heard of other
cases of alleged self-training, but this was the only one that came to my personal notice. For years I have been satisfied in my mind that no man without air experience could take a modern aeroplane off
the ground and put it down again without the ground and put it down again without
bending something. Apparently I have been wrong. If the newspapers are to be
believed, it has just been done. For three believed, it has just been done. For three
half-crown wagers, one Peter Lancaster, aged sixteen, stepped into a Tiger Moth, the property of the R.A.F., took it up to
2,000 feet, stayed there for 25 minutes, 2,000 feet, stayed there for 25 minutes,
and then returned it intact to terra firma. It takes a bit of believing, but there it is.

Homework

Later, after he had paid for this most joyous joyride, Peter is alleged to have
stated that he had read many books on stated that he had read many books on
flying, and made models with surcess. As I read that a frightful picture sprang into my mind's eye. It was a picture of what the sky-and the earth-would look like
if every youth who had read books on flying, and made models with success, decided that he could, in fact, fly the
full-sized article. There are quite enough things dropping out of the heavens without making matters worse.
Let us be fair. Peter's show was, from Let us be fair. Peter's show was, from
one angle, a good one. But any intelligent one angle, a good one. But any intelligent
person must take a poor view of it. After all, he wasn't just risking his own neck. He might have killed a lot of people. He might have bumped into a hangar and Regarded from that aspect, the show was definitely not so good. I deplore that it might create the impression that flying is easy-that every cadet could fly, without training, if he had the necessary
nerve. Well, you may be able to fly, but nerve. Well, you may be able to fly, but
it is much better to have someone with it is much better to have someone with
you, who knows he can fly, when you
decide to find out. decide to find out.
 2.-Large numbers of
Vought-Sikersky F4U-1
Corsir Corsair shipboard
fighters are now serving
in the US. Navy fighters are now serving
in the U.S. Navy. Top speed quoted as $366 \mathrm{~m} . \mathrm{p}$.
at 16,500 feet.
3.-The Martin B-26B or Marauder fast medium bomber
4.-Vought - Sikorsky XPBS-1, experimental
flying-boat powered with flying-boat powered with
four 1,050-h.p. Pratt \& Whitney Twin Wasp engines. There are bow
midship and stern gun midship
turrets.

The Handley Page Hampden, which did good work at the beginning of the war.
Heavier and higher, faster and ded. As there is not even sufficient space path has to poke his head out into the frend of the modern bomber. Each of these factors has a marked effect upon the work and working conditions of our Taircews. ncrease in size of aircraft greatly helps him. This can perhaps be illustrated best by a comparison between two actual types -the Hampden, which performed such valiant serviee in the early days of the
war, and the more modern Handley Page product, the Halifax.
The navigator's position in the Hampden is excellent for all-round vision, bu extremely cramped. He sits on a small
circular-topped stool at a glorified cardtable which folds down from the side of he aircraft. To rest his weary back
chill night slipstream in order to get a
star-sight. These improvements in aids to stro-nav. in more modern aircraft are a logical reaction to the increase in opera-
tional flying heights.

Greater Heights

During night attacks on Germany in 1940 aircraft approached and bombed than at present. There are two main easons for this. Their operational ceiling was lower and enemy opposition was much less intense. The latter consideration is no reflection upon the courage of present-day bomber crews. It is quite
obvious that flak should be avoided when its avoidance will not affect the operaits avoidance will who continually and tions. A pilot who continually and
needlessly jeopardises his aircraft and

WAYS by Donald W. Seager.
 ered, for example, mean that heavier fying clothing must be worn, and this makes movement inside the aircraft more venience of oxygen tubing. These disadvantages are somewhat offset by the lack of bumpiness during high-altitude flight. cadets might attempt writing a navigator's log, in legible handwriting, whilst wearing hree pairs of gloves.
Faster Work Required
The air navigator of 1943 will have to be considerably speedier in his calcula-
tions than his counterpart of 1940 .

Planes Explained
By Roger Tennant (Diagrams by J. H Clark). Argus Press. 1/-. 88 pages A most interesting, accurate and useful book which should be of great help in aircraft recognition. The author brings recognition features to life by explaining
the history, purpose and aerodynamic effects of the varied arrangements of fuselage, wings and other parts. Everyone who is keen on aircraft recognition
should study this book well.

Oddentification
By Wren. The Aeroplane-Temple Press $2 /-64$ pages. $6 \frac{1}{4}^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$. known aircraft cleverly emphasising re cognition features. Accurate details but bad verses.
Relay Races
(March 1941.) By Robert Fyfe. Craig
${ }^{\&}$ Wilson. 63 pages. $77_{\frac{3}{4}} \times 5 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$
Descriptions with diagrams of a large number of varied relay races suitable for
nuniors and seniors. juniors and seniors.

为 (2)

The Observer's Book on Aircraft Instruments
(1942.) By W. J. D. Allan. Allen \&
Unwin. $2 / 6 . \quad$. 02 pages. $6 \frac{2}{2}_{\prime \prime} \times 4^{\prime \prime}$ Diagrams. A useful handbook dealing with the usual
instruments, and in addition giving interinstruments, and in addition giving inter-
esting details of the Cathode-Ray Compass, the Sun Compass and the Astro Compass, which we do not remember having seen in recent instrument hand-

Aircraft Comparisons
 Real Photographs. 9 d. 16 pages. A well-illustrated leaflet dealing with some of the varied sub-varieties of with fire, Hurricane, Master, Harvard and Battle.
Elementary Navigation
By C. Barrington Gyford, B.Sc. Long.
mans Green. $1 /-.48$ pages. $7^{\prime \prime} \times 4 \mathbf{y}^{\prime \prime}$. mans Green. $1 /-.48$ pages. $7^{\prime \prime} \times 4 \frac{3^{\prime \prime}}{\prime \prime}$
Diagrams.
A useful pocket-sized book for those new A useful pocket-sized book for those new
to the subject.

General Mathematics

Book 2. By Leonard Turner. Edward
Arnold.
$5 /-287$ pages Diagrams. ${ }^{5 /-} 287$ pages. $7 \frac{1}{4}^{\prime \prime} \times 4 \frac{3^{\prime \prime}}{4}$ Chapters on logarithms, slide rule, equations, geometry and mensuration, loci, trignometry and vectors. Concise bu
adequate explanations. Exercises and answers. Axplanations. Exercises and book for budding engineers, and of use also to navigators
Air Navigation
(November 1942.)
Nelson \& S S 5". Diagrams. 175 pages. . $7 \frac{1}{4}{ }^{\prime \prime}>$ Did you know that the term "pitot-head" the eighteenth century employed an in-
strument on the eighteenth century employed an in-
strument on the same principle as that of

The first transport glider to be made by the Ford Motor Company. Designed to carry

the airspeed indicator for measuring the
speed of rivers? That and other useful peed of rivers? Thar and other useful
facts, figures and exercises on navigation will be found in this manual.
The Use of Air Power
The Use of Air Power
By Flight. Lieut. V. E. R. Blunt.
Thorsons. $8 / 6.169$ pages. $8 \frac{1_{2}^{\prime \prime}}{2} \times 5 \frac{1}{1 "}^{\prime \prime}$ No pictures. Although the immediate concern of cadets is technical mastery of their various
trades, those who aspire to high rank may trades, those who aspire to high rank may
like to give some thought to strategy and tactics, about which so much nonsense is
spoken and writen. This is an up-to-date spoken and written. This is an up-to-date
book, in which the theories of pre-war book, in which the theories of pre-war
writers are shown to have been confirmed or refuted by war experience. The author may sometwies seem to be labouring his
points, and not everyone will agree with points, and not everyone will agree with
the conclusions he reaches. But the book is thought-provoking and should help the reader to get a proper perspective view of e various war operations.
Elementary Aero Engines
By H. C. Russell. Allen \& Unwin.
73 pages with ding Here is a good little book. for those who, although not training as aero-engine fitters, would like to know something about the engines they are going to con-
trol, or at least to hear and see. It does not describe the detailed action of yarious types of engines, but gives a plain out-
line of the working of ine of the working of aero engines in
general, with some hints as to their proper management.
Navigation for Aircrews
Part 1. (August 1942.) By John E. C.
Gliddon Gliddon and Edward C.
University of London Press. $2 /-. \quad 64$ pages. $7 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 4 \frac{3^{\prime \prime}}{}$. Diagrams An attractive and exercises introduction to

The Link trainer in action at an operational training unit of the R.A.F. Army Co-operation Command

Men and women at work on the centre section of a Halifax

Curtiss SB2C-1 Helldiver
OF THE UNITEI NATIONS

CUIRIISS

Thericic paptums

A fine shot of a Walrus being catapulted from H.M.S. Pegasus, Fleet Air Arm training ship

The Martin Baltimore, medium bomber, which played a great part in the Middle East operations

Aerobiographies-by C. G. Grey 0SWALD SHORT

O $\begin{aligned} & \text { SWALD SHORT was the youngest of } \\ & \text { the three Short brothers, to whom }\end{aligned}$ wact that we have been ahead of the world with our sea-flying aircraft. And to Oswald Short particular credit belongs,
because, after the death of his eldest because, after the death of his elde in the history of aviation, he took hold of the business and built it up to a size o which his brother would have bee supremely proud Brothers were the official balloon-maker to the Aero Club of Great Britaiñ, and they made balloons in the arches under way, as it then was, near the Dogs' Home at Battersea. They started to make aero planes early in 1909 , and were the agent the first men who ever flew.
Horace Short, about whom a big book ought to have been written, had been fo
several years before 1909 the rigt several years before 1909 the right-hand
man of the Honourable Sir Charles Parman of the Honourable Sir Charles Par-
sons in the development of the steam turbine, a form of power plant which ha revolutionised steam power on land and production of that amazing little boat the Turbinia, which shook the navies of the world when it appeared suddenly an Review in 1897. But that is another story. As soon as he saw the immense future of aircraft Horace Short quitted turbine then, his next brother Eustace and youn Oswald were making balloons. And a that time Oswald was very much the kid much.
The first Short aeroplanes were built on a bit of swamp land called Leysdown, on
the Isle of Sheppey. But in 1910 the Shorts, and the Aero Club's flying-ground moved to Eastchurch, right in the middl
of the island, where Mr. Frank McClea (now Sir Francis) had bought a large tract
of land and given it practically free of of land and given
charge to the club.

Seaplanes for Sailor
There the Short brothers built the first floatplanes for the Navy, and they buil
the first machines to fly off ships in Europe-Glenn Curtiss had already don so in the States
With the outbreak of war in 1914 the Short business grew colossally. They
moved in 1916 to Rochester the outbreak of this war in 1939 they had two enormous factories, one by the river and one on an aerodrome.
big job of building airships at Cardington near Bedford, as well as their gigantic

Sea plane work,
Horace Short died. Eustace Short wa by profession and
temperament an artist, and took little
part in the business. part in the business.
So the whole burden devolved on young Oswald. Things wer going so well the
that the real test his courage did no come until after th Armistice in 1918
when all orders fo aircraft for th R.A.F. were cut off as if by a guillotine

Planning for Peace All aircraft work down flat. Many o them went out
business and thei
owners pouched their profits. But not so
Oswald Short. Oswald Short.
When the end of the war seemed in
sight he began to make plans future. He wisely saw that in spite of the popular enthusiasm for our gallant young air fighters there was going to be mighty
little flying after the war. So he organlittle flying after the war. So he organ-
ised the factory for the building of barges and motor-boats and watercraft generally It was a brilliant idea, because his men
were used to working on combined metal were used to working on combined metal
and timber, and his tools and shops could tackle that job.
Then he started making bodies fo
omnibuses. His biggest customers wir omnibuses. His biggest customers were
the London General Omnibus Co. Ltd. now the London Passenger Transport Board. Also, he built bus bodies for provincial bus companies all over the
country: That was another stroke of country.
genius.
Work for Everyone
Three or four years after the war, when everybody was hard up and things were
going very badly, Oswald Short told me woith justifiable pride that at no time since the war had there been fewer men on the
payroll of Short Bros. than on Armistice Day.
But in spite of these diverse activities Oswald never forgot his aeroplane work He spent his profits largely on experi-
mental work In 1919 Short Bros, built the first all-metal, stressed-skin aeroplane in the world. They were already building flying-boats when the war ended, and they
went on developing them. All the time went on developing them. All the tima
between wars the R.A.F. has always had Short flying-boats "on charge. His brother Eustace, who had taken to
ying as a hobby after the war, died suddenly in a miniature floatplane which had been built for him. He alighted safely stopped his engine, and then nothing happened. When a boat went out to see what was the matter, they found Eustace dead in the cockpit.
Aircraft for Attack
The fiying-boat side of the business developed so well that when Mr. George Woods Humphery, managing-director of Imperial Airways Ltd., decided to run a yilng-boat service to ndia, and event
ally to Australia, he chose Short Bros. Ltd. to build what came to be known as the Empire Boats-by far the finest airraft of their class in the world. Before he war the Service version of the Empire
Boat had already been produced, called he Sunderland.
Everybody who reads the Air Ministry communiqués knows what magnificent work the Sunderlands and the Stirling
bombers have done during this war bombers have done during this war.
Oswald Short, who designed the first allmetal, stressed-skin aircraft, still takes an. active part in all design work, and we owe o his foresight and intelligence all the four-engine bomber, which can carry eight tons of bombs at about $300 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., is the frm's latest product to become publicly nown
Mr. Arthur Gouge, who is and general manager and chief designer has been responsible for the technical development of these great aircraft. To him also the R.A.F. owes much gratitude

how huch of the heavens CAN YOU SEE?

THE obvious answer to the question . asked in the title of this articies is but this leads us to two more questions: What exactly do we mean by the "hori-
zon"? and What part of the heavens is zon"? and What part of the heavens is
visible from a given place at any one time?

Che Horizo

Fig. 1 shows a very large man standing on a very small earth. It is clear that he
can see anything which lies on the side of the lines OA and OB away from the earth. In Fig. 2 a rather smailer giant is the fact that his eyes are nearer to groundlevel the lines OA and OB more near

 in Fig. 1. These two cases obviously do not correspond actual fact since with in climb a high mountain or go for a flight in a stratosphere aircraft our eyes are only a
very short distance above the very short distanc
with its diameter (sompered 8,000
miles). Therefore miles). Therefore, for all practicyal
purposes we can regard our eyes purposes we can regard our eyes as
being actually on the surface of the earth, so that the line AOB separating What is visible and invisible to our obser-
ver (now reduced to a man of normal ver (now reduced to a man of normal
stature) becomes in fact a straight line (Fig. 3). Of course, the observer can look all
around him (instead of only to the north around him (instead of only to the north
and to the south, as the illustration seems to indicate), so that the boundary between the seen and the unseen is really not a line, but a flat surface. This is known as "the
plane of the horizon," and can best be plemonstrated by placing a flat sheet of paper on a globe; anything situated on the opposite side of the paper from the globe
will be visible to an observer situated at will be visibe to an observer situated at
the point where the paper touches the globe; everything else will be "below the horizon.

The "Celestial Sphere"
The various stars are at vast distances
from the earth-some so far away tha from the earth-some so far away that
their light takes thousands of years to reach us, and others nearer whose ligh arrives in a few years only (the light of
the sun, which takes only about eight minutes to reacl the earth!). However, for convenience we
regard all the stars as being at the same distance from the earth, so that we car picture them as being painted on the in
side surface of an enormous hollow globe side surface of an enormous hollow globe
at the centrie of which our earth lies. This
globe is called the "Celestial Sphere", (to globe is called the "Celestial Sphere" (to
distinguish it from the earth, or "terrestrial" sphere). It has an axis which is a
prolongation of the earth's own axis, proongyation of the earth's own axis, a
North Pole, a South Pole, and an Equator which divides it into northern and southern hemispheres. Fig. 4 shows the
Celestial Sphere with part cut away to reveal the earth inside it. It can be seen that the North and South Poles of the Celestial Sphere lie vertically above the
earth's North and South Poles respec tively, whilst the Celestial Equator lies in the same plane as the earth's Equator.
Now, we have said that the stars are at Now, we have said that the stars are a
immense distances from the earth, so tha the Celestial Sphere is really of almos infinite size, and therefore to be in a

> ELESTIAL SPHERE
must be represented as a microscopic pinpoint. This has been done in Fig. 5, and
our line AOB of Fig. 3 has become a line passing through the centre of the circle
which represents the Celestial Sphere which represents ine Celestial Sphere, ing that an observer can look all around him, this line actually represents a flat which is the centre (O) of the Celestial Sphere and which divides the latter into two equal parts.
We have now
We have now answered part of our
original question: From a given place you original question: From a given place you
can always see exactly half of the Celestial Sphere--that is, half of the entire heavens-at any moment. Thus all the
stars to be left of the line AOB in Fig. 5 are visible to an observer situated at the same spot on the earth's surface as the observer of Fig. 3
Having found
Having found that one-half of the
heavens is always visible, the next point to settle is: Which half? This will be dealt with in a further article

AIR TEASERS

by Mulsert Plillips

1. Three fighter-pilots named Airworthy,
Battleboy and Chaser have collectively
shot down exactly one hundred enemy
planes.

Wishing to find out their several shares boy and Chaser had between them shot down 14 more planes than Airworthy, and (2) that Airworthy's score would
have been double Chaser's sore have been double Chaser's score had
worthy shot down one plane more.

How many planes has each of

> How many planes has three accounted for?
2. Looking at a map the other day, I discovered that the four searchlight posts,
W, X,Y, Z, are all situated on the circumference of the circle of which WY is one
diameter. diameter.

It is 65 miles, as the crow fies, from W to Y , and 60 miles from X to Y . The
distance between Y and Z exceeds by 14 distance between Y and Z exceeds by 14
miles the distance between W and X .

How far is it from W to Z ?
3. In the local park there is a circular pond 400 yards in diameter. A swimmer
diving in at the northernmost point of the pond, and swimming due south,
reaches raft A after swimming 150 yards.

If he now swims due west until he comes

south
raft B.
How far are the two rafts from one another?
4. Trying out a new aeroplane, a pilot flew the three "legs" of a triangular
course. The three "legs" were equal in course. The three "legs" were equal in
length (i.e. the course was an equilateral triangle), but owing to wind conditions, etc., the pilot's speeds were:
For the first leg For the second leg
the third leg . . . $360 \mathrm{~m} . \mathrm{ph}$.
What was his averag
the entire course?
5. For storing petrol, Group Captain Cubitt had made two cubical containers

feet (i.e. no fractions), and the difierence in capacity between the larger tank an What were their respective capa
(Answers on page 22

JUMBLED NAMES
Here is a new type of puzzle devised by Hubert Phillips. In each sentence below, the letters of two or more consecutive words jumbled together give the name, of the makers' na
shown above.
. The pilot can put the supercharger in op gear, but if he overdoes it he may damage the engine.
A Hudson in Iceland stood on the tarmac waiting to take off for Atlantic arol.
Once you get your Spitfire's guns on the target you
tating results.
There is no need to freeze up or panic if your engine stops. Just put her rose down and make up your mind quickly where to land
The pilot admitted that a Roc, able
though it was to deal with a Ju. 87 . was no match for the Fw. 190.
6. Cadets should take a pride in thei appearance.
In Africa we sometimes have to barter oil for water.
8. The engine is all right, sir, except fo her ten cams, which need replacement

HE term "work" is used in
prongineering ofo a force denote thet the
the distance which its point of the distance which its point of
application moves in the line of
action of the force action of the force. If the of force is ex-
pressed in pounds weight and the distance
 which can be measured on a brake. The lost h.p. is the h.p. necessary to
overcome the friction losses, drive the

cylinders and the exhaust gases out. Hrake h.p., the indicated h.p.
the obtained which is the h.p. is obtained, which is the h.p. ob-
tained at the piston crown. The term "petrol h.p." is sometimes used. and
refers to the h.p. available in the fuel in refers to the h.p. available in the fuel in
the form of heat units, but of which only about
h.p.
The power of an engine varies as the depends pressure, which in turn depends upon the compression
ratio and the volumetric effici-
ency.* It also varies as the ency.* It also varies as the
square of the bore, and directly square opiston speed, which in
as the disn and the r.p.m. The B.H.P varies again as the mechanical efficiency. For the
purpose of rating automobile engines
the Royal Automobile Club established was assumed that the was assumed that the
mean effective pres sure was 90 lb . per sq. in, 75 mer cent and the piston The R.A.C. formula then B.H.P. $=\frac{\mathrm{D}^{2} \mathrm{n}}{25}$ where D is the bore in
inches and n the number With improved design. values were much exceeded, so that values were much exceeded, so that
engines were referred to as, for example, engines were referred to as, for example,
on the R. Which means a 14 h.p. rating
a formula, but the engine on the R.A.C. formula, but the engine
actually develops 45 b.h.p. on the brake, more than three times its rating. *These terms were explained in a previous
article entitled $"$ "ngine Terms."

INSWERS TO PIZZLES

1. This is a simple simultaneous equaLet the 3 puessork). respective scores be a, b and c planes.
Then (i) $a+14=b+c$
$\therefore 2 c-1+14=b+$
$\therefore 2 c-13=b=1$
But (iii) $a+b+c=10$
(iii) $a+b+c=100$
i.e. $2 c-1+c+13+c=100$
$\therefore 4 c=88$
$\because \begin{array}{ll}\because c=88 & \text { and } c=22 \\ \text { whence } b=35 & \text { and } a=43\end{array}$
Sirworthy has bagged 43 planes, Battle-
2. The solution
nown propositions: (i) the angle subtended by the diameter (ii) the square on the hypotenuse of a right-angled on triangle is is equal to the
res sum of the squares on the other two
sides.
auxiliaries, and to overcome the pumping
$65^{2}-60^{2}=625=25^{2}$
\therefore it is 25 miles from W to X
\therefore it is 3 miles from YY to Z
But $65^{2}-39^{2}=2704=52^{2}$

Hence from W to Z is 52 miles.
3. This looks difficult, but in fact it is very simple. A glance at the diagram will show that, after leaving the first raft, the
swimmer traverses two sides of a rectangle, one diagonal of which is a radius of a rectangle are equal.
Hence the distance from A to B is 200
yards. There is " " catch" bere, The pit's 4. There is a "catch" here. The pilot's
average speed is not $260 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. average speed is not 260 m.p.h.
The pilot flies an equal number of miles at 180,240 and $360 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
Hence he flies an equal number of
miles in $\frac{1}{180}, \frac{1}{240}$, and $\frac{1}{360}$ hours And his average time per mile is
$\frac{1}{3}\left(\frac{1}{180}+\frac{1}{240}+\frac{1}{360}\right)$ hrs. $=\frac{1}{240}$ hrs.
Thus his average speed is 240 m.p.h. 22
5. This is a more difficult puzzle, be-
cause at first blush it is not easy to see
how one should set about solving it. Let the sides of the two tanks be respectively x feet and y feet.
Then

Then $x^{3}-y^{3}=1685$

i.e. $(x-y)\left(x^{2}+x y+y^{2}\right)=1685$
Now the

Now, the only factors of 1685 are 1,5 ,
337, 1685 Hence $(x-y)=1$ or 5 Suppose $(x-y)=1$ Then $\left(x^{2}+x y+y^{2}\right)=1685$
Then $(x-y)^{2}=1$
Then $(x-y)^{2}=1$
i.e. $x^{2}-2 x y+y^{2}=1$
i.e. $x^{2}-2 x y+y^{2}=1$
Whence $3 x y=1684$

But this is impossible $\because 1684$ is not
divisible by 3 Hence $(x-y)=5 ;\left(x^{2}+x y+y^{2}\right)=337$ Hence $(x-y)=5 ;\left(x^{2}+x y+y\right)$
Now $(x-y)^{2}=25$
is $\left(x^{2}-2 x y+y^{2}\right)=25$ $\begin{aligned} &\left(x^{2}-2 x y+y\right) \\ & \text { whence } 3 x y=312 \\ & \text { ie } x y=104\end{aligned}$
t follows that $x=13, y=8$
The respective capacities of the two tanks
are thus 2197 cubic ft. and 512 cubic ft

CODES AND CIPHERS

by John Sinclair
$\mathbf{I}_{\text {to }}^{\mathrm{F}}$ a secrete message is to be transmited 1 to some distant point wireless telegraphy, submarine-cable circuits, tele-
printer lines or telephone lines may have to be employed. Unfortunately these to interception, and are not wholly in themselves secret.
Code and Cipher
Consequently, in order to keeps our
good intentions from and cipher systems have ben devised and cipher systems have ineen eneveral word are represented by one or more letters Cipher systems are usually devised by rearranging letters and numerals. Cipher
systems, because they follow orderly rules, can often be solved by a process known as analysis, though a great deal of practice and patience are needed be-
fore the art of deciphering enemy messages has been acquired.
Cipher systems fall into two main groups. The first group are known as
transposition systems; the second are called substitution systems. In the case of transposition systems, the letters of a plain language (Pl) messag
are arranged in some orderly manner to produce a new text, which on inspection appears quite unintelligible. In substitution systems the letters or groups o
letters are replaced by substitute char acters which may be either letters or numerals. Substitution ciphers are very difficult to "break" (the phrase "breaking a cipher" means finding the key, usually
by analysis, to an enemy cipher system).
Code Systems
During the last war code systems were
used by the pilots naissance aircraft for conveving informa tion to the artillery engaged on counter the Clock Code-enabled a pilot to give with reasonable accuracy the position of each "burst" in relation to the target.
For example, a shot which fell 50 yards due north of the target was recorded as A12-the letter A indicating the approximate distance from the centre of the tar-
get and the numeral 12 indicating its get and the numeral 12 indicating its
direction. A shot falling 200 yards due east of the target would have been signalled as C3. Registering by means of the telegraphy, the pilot being in communication with the ground wireless station attached to the battery co-operating in Other codes were used by
for giving weather reports. For example UL FR UD meant that the weather was U nfit for Line work (trench strafes), F it
for R econnaissance observation (troop movements), but unfit for counter-battery
$\stackrel{\text { work. }}{\substack{\text { Single letters } \\ \text { or pairs of letters were }}}$
used to pass orders from the aircraft to
the guns; for example, the letter G gave the guns; for example, the letter G gave
the order for the battery to open fire, whilst the signal MQ meant "wait." fire Special code signals were used to con-
vey details of snap targets, such as small groups of infantry or a column of motor transport. Really "hot", targets were reported by means of a special signal
known as an "LL" cail. Believe me "Jerry" got "L" when our batteries opened up on these choice targets! The International " Q code" as used by
and and ship stations provides another example of a simple code system. By the use of this code a ship operator is able
to convey the intelligence of a compara tively long message by sending only three letters. Every Q signal begins with the initial letter Q, hence the name " Q code."
The foilowing are only three of the very large number of Q signals in general
use: QRA? What is the name of your QRB? station? $\begin{aligned} & \text { How far approximately }\end{aligned}$ you from my station? QRD? Where are you bound for Replies are given by repeating the ap propriate signal and adding the desired information. As an example, suppose the
s.s. Cadet is in mid-Atlantic, bound for s.s. Cadet is in mid-Atlantic, bound for
New York from, say, Liverpool, and is in wireless communication with the North Foreland land station. The ship's
 Liverpool."
The 0.
The Q Code has been internationally recognised and is used by all marine
operators. For this reason it cannot be classed as a secret code, although, as will
be seen, it fulfis one of the chief purposes be seen, it fulfils one of the chief purposes
of ail code systems-it enables us to "say of ail code syst,
a lot quickly."
Radio amateurs-there were nearly
100.000 of them before te 100,000 of them before the war-use the
Q Code and other similar codes for con veying information. One great advantage gained by the use of these internationally recognised codes is that the recipient need
have no knowledge of the spoken language of the person with whom he is in "conversation."
During the years before the war I
"conversed" in the Morse code with conversed in the Morse code with know no word of spoken English, our conversations being carried on by means

One further example of the use of code
systems is to be found in the commercial systems is to be found in the commercial
codes, in which code words represent business phrases. If you look at the note-headings used by many of the large commercial firms you will find a
reference to the cable address of the firm
and the code it uses. Customers who wish telegraph orders or instructions can, munications to a few words.
During the present war many different code systems have been used and deve-
loped, but the majority are based on the principle of representing several words by principle of representing several wo
one or more letters and numerals. Cadets training as wireless operators
will already have "rubbed shoulders" with well-known R.A.F. code known as the "X Code."
Cipher Systems
Cipher systems lend themselves to much ngenuity. For example, most readers iphers such as these:

ABCDEFGHIJKLM NOPQRSTUVWXYZ A simple form of transposition cipher in
which the letters of the alphabet are
arranged in sequence.

ABCDFGHILNRTW YZEQJKOMPSUVX $\xrightarrow{\text { letters are mixed. }}$
HUDSONABCEFGI JKLMPQRTVWXYZ
 serted and the remaining letters of the
alphabet follow in the usual order.
Transposition systems have the disadvantage that frequently occurring letters
like " E " provide useful clues to the system. If two coupled letters are substiuted for one in the plain text, this disadvantage can be diminished, since each
letter can be represented by 26 different letter can be repr
two-letter groups.
As the varying lengths of words might provide a clue, ciphered messages are usually divided
or more letters.
Syko
Syko is a transposition-type cipher
which has been developed by the R.A.F. wich has been developed by the R.A.F.
or conveying secret intelligence by means or conveying secret intelligence by means
of wireless telegraphy. The word "Syko" has presumably been coined from the first syllables of phonetic pronunc,
the words "Cipher" and "Code." he words "Cipher" and "Code." by the R.A.F. for preparing Syko messages are quite different from those we have been
discussing here, but-and this is an important point-practice in preparing messages of the Syko type can be obtained
by following the suggestions made in this ay ficle. article.
In the Syko system a plain-text letter may be represented by a large number of
different cipher letters or numerals. different cipher letters or numerals.
Furthermore, the cipher groups used for any one day are never employed again, which means that even if the enemy cap-
tured a Syko card it would be of no use tured a Syko cara it would

B00ST OR MANIFOLD PRESSURE GAUGE

T HE boost gauge, or, as the Americans itted to an aircraft. It shows at a glance the absolute pressure in the induction system of a supercharged engine. The
power developed by such an engine is mainly dependent upon this factor. The boost pressure is the additional, forced,
or synthetic pressure which is superor synthetic pressure which is super-
imposed on that of the atmosphere. What we require to know is the sum total of both pressures combined in the induction
system; so the expression "manifold system; so the expression "manifold
pressure gauge". fills the need rather better than the familiar term "boost gauge., Nevertheless, it will be convenient to con-,
tinue to refer to it as the "boost gauge," tinue to refer to it as the "boost gauge,
this having become a standard term in most technical journals.
When an aeropiane is flown to great altitudes the efficiency of the engine is
seriously impaired owing to the reduced pressure of the atmosphere. To overcome this difficulty a supercharger is employed; that is to say, air is forced
into the induction system, by means of a

A.-American.

Fig.
pump, at a pressure above that of the
surrounding atmosphere. By this means maximum power can be maintained in spite of altitude. This system may also be used to increase the power of engine while running on the ground.
Some limit must be fixed to the am of pressure that can safely be imposed by such means, or damage to the engine may result. Because of this, and in order that
we may be kept informed of what is taking place, the "boost," or "manifold," gauge is fitted.
Definitions
In English machines boost pressure is
defined in "pounds per square inch" defined in "pounds per square inch"
above or below standard sea-level atmospheric pressure. For instance two pounds dial of the gauge), assuming atmospheric pressure to be, say, 15 lb . per sq. in., two pounds indicated positive boost would be 17 in . per sq. inch. By this
arrangement it will be seen that readings arrangement it will be seen that readings
can be taken direct from the instrument can be taken direct from ine instrument

by C. Tarley

pheric pressure. The American system mercury," The calibrated in "inches o confused.
Estimated rould
1000 feet of altitud represents a fall of approximately $\frac{1}{2} 1 \mathrm{lb}$ per sq. in. of atmospheric pressure. S
at 20,000 feet if an English boost indicated 5 lb . per sq. in., the actual pressure supplied by the supercharger would be about 15 lb ., as the indicated pressure pressure at mean sea-level; and we shall already have lost 10 lb . due to altitude We have already seen that part of the this deficiency. On the American manifold pressure gauge normal atmospheric pressure (see A and B, Fig. 1), consequently 5 lb . positive boost will be registered as 40 in. of mercury. Again using approximat

assume that $1 \mathrm{in}$. of mercury represents
1,000 feet of altitude. What takes place at 20,000 feet will, of course, be the same as given for the English gauge, but expressed in different terms.
Automatic Control
In addition to changes due to altitude, tions of temperare fuctuates with variis a complication. But a modern Tevise incorporated in the engine (power unit) relieves the pilot of anxiety in connection with these alternations. It is known as
"automatic boost control." Briefly, automatic boost control. Briefy, drical housing. This is connected to the induction chamber by a pipe-line. One nalve; the box is connected to a pisto leeds a servo-motor. A decrease of air pressure will allow the box to open; this causes a movement of the servo-moto control, and so restores the balance. It might appear that this convenient device would render the presence of
undoubtedly is, we still need to have
some means of checking the performance some means of checking the performance
of the engine to make certain that every thing is in good working order. It is particularly necessary for the ground testmg of engines, and
during the period of A during the period of
take-off, when the engine is called upon
to develop its to develop its maxi-
mum effiort (which mum effort (which
however, must only be permitted for a specified period),
and, of course, when and, of course, when
the aircraft is flying at great altitudes. So important is
this matter of boost this matter of boost
or manifold pressure that a special builtin, two-way, change-
over cock is incorover cock is incor
porated in the pipeporated in the pipe-
lines to enable the
ing of take a read 2. ing of port or starboard engine on eithe
of the two instruments provided. Nor mally there is a gauge for each engine, but should one become damaged during
fight, or be suspected of inaccuray flight, or be suspected of inaccuracy, a
check can be made by switching over to the alternative instrument.

Pictorial Crossword Solution

Competition The London Naval Centre for " Y " Entries is organising a competition open to 10 cadets from each Air Training Corps unit in the London and South-Eastern Regions. The 20 suc-
cessful candidates will be given free travelling warrants to Lee-on-theSolent, where they will spend a day going over the Royal Naval Air
Station, with the possibility of a flight in a Service aircraft, conditions per in a
mitting. All details may be obtaine
from your Commanding Officer.

The Flying Instrument Board. Gyro instruments have been made to appear bolder in this
${ }^{T}$ HE so-called "blind-flying instrul ments" are as useful in clear weather supply the pilot with more beccurate information as to speed, height, direction and altitude than can be provided outside the
cockpit and with less fatigue for the pilot. A turn made by using the rate-of-turn more accurate than is possible without this valuable instrument.
The artificial horizon provides a visual
reference for level flight far more dereference for level fiight far more dehigh altitudes an artificial horizon indicator is essential.
The direction indicator, number five on
the panel, is another flying instrumen the panel, is another flying instrument
which is used constantly in clear as well which is used constantly in clear as well
as bad weather. This instrument is not a compass in the sense that it indicates

direction in relation to a fixed point on the earth, as does the magnetic compans,
but is used in conjunction with the but is used in conjunction with the magnetic compass. The great advantage
of the direction indicator is its more sensitive reaction to slight changes of
direction, i.e. yawing direction, i.e. yawing.
To set the instrument, the aircraft must
first be put on the aerial compass course frst be put on the aerial compass course,
then the caging knob at A, Fig. 1, is pressed and turned until the lubber line (LL) indicates the required heading in
degrees at the card (C). The pilot then degrees at the card (C). The pilot then
steers by keeping the lubber line at the appropriate number of degrees on the appropriate number of degrees on the
card (C), checking up with the compass ne to time.
The direction indicator is not affected
during acceleration or turning, like the during acceleration or turning, like the
compass, but will indicate every change of direction, however slight. In this
respect it is the most useful directional respect it is the most
reference the pilot has.
Each of the three flying instruments just considered is controlled by a gyroscope which provides the necessary reference in his flying attitudes.
Fig. 2 shows the gyroscope (R) mounted universally in two rings-(E) the gimbal ring and (F) the outer ring. The gimbal
ring is governed by the inertia of the gyroscope, while the outer ring is attached to the aircraft structure at (D) and moves with it. In the direction indicator the
gyro is mounted as shown at Fig. 2 . gyro is mounted as shown at Fig. 2.
Imagine the aircraft to be moving in the direction of the axis (A), then any change of direction of the aircraft a around the
axis (A2) of the outer ring will not affect axis (A2) of the outer ring will not affect
the directional reading of the gyroscope.

Thus the rotor (R) provides a directional reference (A) independent of the aircraft
heading and with such a high degree of accuracy that any change of direction will
immediately show itself in a difterence in immediately show itself in a difference in
direction between the rotor and its ring direction between the rotor and its ring
(E) and the aeroplane and its ring (F). This difference is read off at the lubber instrument (Fig. 1). When fiying by the direction indicator,
he lubber line appears to be stationary, the lubber line appears to be stationary,
while the card (C) seems to move. This while the card (C) seems to move. This inner gimbal and is governed by the rotor, while the aeroplane and the lubber line move round the card, which is
stationary. It is an illusion, just as the apparent movement of the sun round the earth is an illusion. The scale of the
instrument is graduated every five degrees, instrument is graduated every five degrees,
and numbered every 30 . This is divided by ten, so 30 degrees reads 3 , 60 degrees reads 6 , and so on. (R) To turn the rotor (R), the air is sucked pipe leading to a suction pump or the outside venturi tube. As air is sucked rushes into it at the other (at N 1). In doing so it is directed other to the vanes of the rotor through the nozzle (N, Fig. 2),
so turning the rotor like a water wheel

Fig. 2.
or air turbine. The average speed of the gyro rotor is 10,000 r.p.m. A rotating peculiarity called "precession." This is
illustrated by put illustrated by pressing the finger at P.
which does not cause the ring (E) to move away, but forces the gyroscope to move in the direction of the arrow (B)
round D. Even the slightest friction in the bearings of the rotor axis will set in a small force sufficient to cause the gyro o precess about the direction axis (A), thus causing a slight tendency to stray
which is periodically checked by the turn indicator and the compass. The secret of all gyroscopic instruments is that the otating gyro maintains a fixed direction ence, or flying datum, from which to measure the slightest change about any of the three axes. Skill in instrument flying
needs knowledge of the instruments and a quick reaction to their indications.

flight mecilanic's calculations

The ground may thank thing for jobs on you do
not need to bother about maths. You not need to bother about maths. You
may not-in a non-technical job; but if may not-in a non-technical job; but if
you hope to become a flight mechanic,
fitter, instrument repairer, or any of the fitter, instrument repairer, or any of the
other tradesmen working on aeroplanes other tradesmen working on aeroplanes,
you will find that a working knowledge of some calculations is not only desirable
but absolutely necessary if you expect to but absolutely necessary
progress in your trade.
progress in your trade.
The calculations you need to know are not very advanced; but you must understand them thoroughly and be able to
apply them quickly and acurately apply them quickly and accurately. Only
straightforward arithmetic is used. Of course, if you have a knowledge of logs.
and trig. you will find it useful; but if and trig. you will find it useful; but if
you can measure accurately, use and conyou can measure accurately, use and con-
vert vulgar and decimal fractions, measure angles in degrees, and employ simple formule without tying yourself in knots,
you will have gone a step on the road to you will have gone a step on the road to

Measuring
Everyone imagines that they can measure, but engineering measurements rough-and-ready sort
The steel rule used is more accurate ted on all four edges. I have seen that confuse beginners. It should not. A ommon arrangement of scales is: Sixand metric. You can recognise each scale and metric. You can recognise each scale
by counting the number of divisions in an inch; but that should not be necessary,

by P.W. Blandforol as there is a figure near the first
mark indicating the number (A) An engineer does not usually accuracy of the end of his rule It nay have become worn or damaged; and in any case it is easier to measure accurately often works from the on an end, so he also holds the rule edgewise on the work, to avoid "errors of parallax"-meaning that he gets the graduations close down to he job, so minimising any errors that
might creep in if his eye was not exactly over the mark (B).
Often dimensions have to be set off
with dividers, instead of direct from the with dividers, instead of direct from the
rule. Again the end of the rule is avoided, e.g. three inches being taken from one inch to four inches (C).

Fractions

Micrometers and verniers are used for measuring to finer limits than are possible by a Service fitter are graduated in tents fortieths, and thousandths of an inch. Tables for converting the usual sixteenth to decimals are available; ordinary rub are not to hand a man with only a hazy knowledge of arithmetic may be stumped Actually, it is a simple problem to conput a decimal point after the figure on top and imagine an unlimited supply of noughts after it. Then divide by the figure at the bottom, e.g. $\frac{1}{8}=1.000 \div 8$, or $8 \frac{11.000}{.125}$

Developments
In repair work a fitter may be called upon to make a sheet-metal patch. Some and the patch may have to be cut to siz and drilled before bending.
bend stretches and the inside contracts. bend stretches and the inside contracts.
Somewhere between the two there must
be a layer which does neither, and simply
remains the same length as it was before ending. This is called the "neutral axis," and on sheet metal lies halfway through
the thickness (D). All calculations are made on the neutral axis. The length of the piece is divided
up into straights and curves, which are up into straights and curves, which are
calculated separately. As a simple calculated separately. As a simple
example, take the right-angled patch with
radiused radiused corner (E). For calculations this
would be divided into three parts. The would be divided into three parts. The
point where the straight section changes point where the straight section changes
to a curved is in line with the centre of
the curve (F). Therefore the straight portions measure

$\mathrm{X} \quad 4 \mathrm{in} .-1$ | X | $-4 \mathrm{in} .-1 \mathrm{in}$. |
| ---: | :--- |
| Y | $($ radius $)$, i.e. 3 in |
| i.e. 4 in. | | As the length of curve has to b measured on the neutral axis, the radius

used is 1 in + half of $\frac{1}{s}$ in used is 1 in. + half of $\frac{1}{8}$ in. i.e. $\frac{1}{10}$ in.
Now, if this were a complete circle, the length around the curve would be $2 \pi x$
1 in in. As the angle is 90 degrees, $1 \frac{1}{1}$ in. As the angle is 90 degrees, the
length Z is length Z is $\frac{9.0}{85 j}$ or $\frac{1}{4}$ of $2 \pi \times 1 \frac{1}{8}$ in. If the
angle had been anything else it would angle been treated in the same way, i.e. divided by 360 and multiplied by the circumference of a complete circle on the
neutral axis. The complete length of the development is $\mathrm{X}+\mathrm{Y}+\mathrm{Z}$.
I hope that these few example have I hope that these few example have
shown you that it is not only the flying shown you that it is not only the flying
man who has to manipulate figures: the man who has to manipulate figures: the top in his trade must also prove his ability

Jumbled Names Solutions

AIR CADETS . . .
Can you spare a penknife? a cake soap? and some other small comfort for
the gallant men of the Red Army? The are fighting in desperate conditions this winter; simple necessities will make their sufferings a little easier. Show your
iendship for Soviet youth by sending friendship for Soviet youth by sending
your parcel with British Youth's Gift to the Red Army Write for details to
RED ARMY PARCELS,
Anglo-Sovie Youth Friendship Alliance
(see page 21)

1. Beaufighter-"gear but if he" (2). 2. Consolidated-"Iceland stood" (6)
2. Airspeed-"see rapid" (3).
3. Caproni-"or panic" (1).
4. Albacore-"A Roc able" (8)
5. Rapide-"a pride" (5).
6. Liberator-"barter oil" (4).
7. Manchester-"her ten cams" (7).
(First number refers to sentence, second

AIRCRAFT RECOGNITION CALENDAR

$\begin{gathered} 6 \\ 6 \\ \hline \end{gathered}$						
Avadnıvs	人Valy	AVOS8nHi	Avasinasm	avasanil	AVANOW	AVanns

IRIUM in Pepsodent defeats dull teeth!

Irium is only a secret while you keep your mouth shut. The moment you smile your teeth sparkle as only Pepsodent can make them! Irium is Pepsodent's newly discovered cleansing miracle-it dissolves surface stains, keeps your mouth scrupulously clean and fresh. Change to Pepsodent Tooth Paste or Tooth Powder. See how quickly your teeth look brighter

PEPSODENT Tooth Powder

TAKE
old tubes BACK TO
tHE SHOP

This
Chis national figure is still the symbol of all that is best in Tobaceo manufacture - Rlayer's Navy Cut-a name justly famous for excellent and dependablequality

