Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AIR PUBLICATION
 116U-0514-16

POWER SUPPLIES (ADVANCE TYPE PM 21)

BY COMMAND OF THE DEFENCE COUNCIL
T.Dunntt
(Ministry of Defence)

Modular Stabilised Power Supplies PM21 - PM28

Instruction Manual

Modu/ar Stabilised Power Supplies PM21 - PM28

Instruction Manual

ADVANCE INDUSTRIAL ELECTRONICS

A DIVISION OF ADVANCE ELECTRONICS LIMITED
RAYNHAM ROAD, BISHOPS STORTFORD, HERTS, ENGLAND
Telephone: BISHOPS STORTFORD 2118 Telegrams: ATTENUATE ILFORD
Manual Part No. 50273

CONTENTS

SECTION Introduction 4
SECTION 2 Specification 5
SECTION 3 Operation 7
3.1 Installation 9
3.2 A.C. supply 11
3.3 Resetting the Output Voltage 12
3.4 Resetting the Overload Cut-out 13
3.5 Unit Connections 14
3.6 Parallel and Series Operation 14
3.7 Operation with other Power Supply Units 15
$3.8 \quad$ Four Terminal Sensing 16
SECTION 4 Circuit Description 4.1 General 18
4.2 Supply Rectification and Smoothing 19
4.3 Voltage Control 19
4.3(a) 4 to 7 V units 19
4.3(b) 8 to 50 V units 20
4.4 Overload Cut-out 21
4.5 Constant Current Switch-on 21
4.5(a) 4 to 7 V units 22
4.5(b) 8 to 50 V units 22
SECTION 5 Maintenance
5.1 Access to Components 24
5.2 Replacement Servicing 24
5.3 Fault Finding 24
SECTION 6 Component Lists and Circuit Diagrams
SECTION $7 \quad$ Guarantee and Service Facilities 37
Fig. 2 Fixing Centres 7
Fig. 3 Transformer Primary Connections for 110 V 9
Fig. 4 Transformer Primary Connections for 240 V 10
Fig. 5 Parallel Operation 15
Fig. 6 Four Terminal Sensing 16
Fig. $7 \quad$ Four Terminal Sensing (parallel) 16
Fig. 8 Functional Diagram 18
Fig. 9 Output Voltage Plotted Against Output Current 23
Fig. 10 Circuit Diagram PM21-28 36

CONTENTS

Table 1 Fixing Centre Data 8
Table 2 Transformer Primary Connections $100-125 \mathrm{~V}$ 9
Table 3 Transformer Primary Connections 200-250V 10
Table 4 11 Fuse RatingsTable 5
Voltage Adjustments:
PM21, PM24, PM27 13
Table 6 Voltage Adjustments:
PM21, PM25, PM28 14
Table 7 Permissible Lead Length for 4 -Terminal Sensing 17
Table 8 Fault linding Chart 25

The range of modular Stabilised Power Supplies PM21-28 provide d.c. outputs from 4 to 30 V in 1 V steps at current ratings up to 5A and has two output channels A and B. Both channels are energised from a common a.c. input circuit.

The power supplies are constructed on the modular principle so that various units may be easily assembled or boxed together to form a 19 inch rack panel assembly, if desired.

The output voltage of each unit is preset by making the appropriate internal connections during manufacture, but a front panel control allows adjustment of the output voltage 0.5 V either side of the nominal setting. Stabilisation of the output voltage against variations in the a.c. supply is better than 1000 to 1 (or 2 mV whichever is the greater) and is effected by a closed loop, automatic voltage control circuit employing series regulator transistors. All units have an output impedance of less than 0.25Ω at 100 kHz . A four terminal sensing network is provided to compensate for the external output lead resistance if necessary.

The circuit incorporates a Zener diode with particular temperature characteristics that help to minimise the effects of changes in ambient temperature on unit performance. The use of silicon semiconductors throughout permits the operation of the modular power supplies at ambient temperatures up to $+60^{\circ} \mathrm{C}$. A protection device prevents damage to the series regulator transistors in the event of excessive overload current and automatically resets when the overload is removed.

Input Voltages

$100,105,110,115,120,125 \mathrm{~V}$ a.c.
$200,210,220,230,240,250 \mathrm{~V}$ a.c.
All $\pm 10 \%$ and at a frequency of $48-450 \mathrm{~Hz}$.

Output Voltage, Current and Resistance

Output voltage, resistance and current are cross-referenced vertically and horizontally in tabular form below. The output resistance (given in brackets in the voltage column) is less than the specified figure.

	D.C. Output Voltage	
	$\begin{gathered} \hline 4 \mathrm{~V} \\ \text { to } \\ 15 \mathrm{~V} \\ (2 \mathrm{~m} \Omega) \end{gathered}$	$\begin{gathered} 15 \mathrm{~V} \\ \text { to } \\ 30 \mathrm{~V} \\ (4 \mathrm{~m} \Omega) \end{gathered}$
Output Current		
$0-1 \mathrm{~A}$	PM21	PM22
$0-3 \mathrm{~A}$	PM24	PM25
0-5A	PM27	PM28

All voltages may be preset at any 1 V increment and adjusted $\pm 0.5 \mathrm{~V}$ by means of a front panel control. (Minimum voltage obtainable is 4.V)

Output Ripple

Less than 1 mV peak to peak at full load.

Output Stability Against $\pm \mathbf{1 0 \%}$ Change of Input Voltage

Greater than $1000: 1$ or 2 mV whichever is the greater.

Temperature Coefficient

Less than 0.02% per degree C.

Operating Temperature Range

$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ambient.

Output Impedance

Less than 0.25Ω at 100 kHz .

Protection

Overload current protection with automatic resetting. Set to operate at $115 \%(\pm 2 \%,-)$ of full load. Short circuit current limited to $10-20 \%$ of full load current.

NOTE All circuit references of chassis mounted components in channel B of a PM unit are prefixed with a 1 . Where necessary, these references are given in brackets.

3.1 Installation

The power supply modules are secured in position by four or six fixing screws. The fixing centre data for all units is given in Table 1 and Fig. 2.

4 OR 6 6-32 UNC TAPPED HOLES

4 OR 6 10-32 UNF TAPPED HOLES

Fig. 2 Fixing Centres

Table 1 Fixing Centre Data

Type	A		B	C	D	E		F		G		H
	in	cm.	in. cm.	in. cm.	in cm.	in	cm.	in.	cm	in		in. cm.
PM21	4/1	1207	12.54	- -	$\begin{array}{ll}71 / 4 & 18.42\end{array}$	$2^{19} 93$	7. 39	2	5.08	-	-	$\begin{array}{ll}514 & 13.3\end{array}$
PM22	$4{ }_{4}$	12.07	1254	- -	71148	$4^{1 / 64}$	10.85	2	5.08	-	--	$5!413.3$
PM 24	$4{ }_{4}$	12.07	12.54	- -	$71 / 4$	7	17. 78	2	5.08	-	-	$5^{1} 4133$
PM25	43	12.07	$21 / 265.24$	$5^{15 / 32} 13.89$	$10^{15 / 16} 27.78$	$4^{17 / 64}$	10.85	3	7.62	51/16	38. 26	$9^{1 / 16} 23.02$
PM 27	4\%	12.07	21/16, 5.24	$5^{15 / 32} 1213.89$	$10^{15 / 1627.78}$	417/64	10.85	3	7.62	51/6	38. 26	$91 / 102302$
PM28	4\%	12.07	21/4, 5.24	$\begin{array}{lll}515 / 32 & 13.89\end{array}$	$10^{5 / 16} 27.78$	7	17.78	3	762	$51 / 2$	38. 26	$\begin{array}{llll} \\ 9 \\ \frac{1}{16} & 23 & 02\end{array}$

3.2 A.C. Supply

NOTE The live side of the mains is connected to the A terminal block and the neutral side to the B terminal block. The second terminal on each block is used for the earth connection.

Verify that the connections to the primary of supply transformer T1 corresponds to the voltage of the local supply, and that the supply fuse FS1 is correct for the unit in use (see Table 4).

The primary connections of T 1 should be paralleled when the local supply is 100 to 125 V . Fig. 3 shows the connections for a 110 V supply, and Table 2 gives the connections for supplies between 100 and 125 V .

Fig. 3 Transformer Primary Connections for 110V

Table 2 Transformer Primary Connections 100-125V

Supply	Neutral	Line	Neutral Link Between	Line Link Between
100 V	0	100	$0-0$	$100-100$
105 V	5	100	$5-5$	$100-100$
110 V	0	110	0	$110-110$
115 V	5	110	$5-5$	$110-110$
120 V	0	120	$0-0$	$120-120$
125 V	5	120	$5-5$	$120-120$

When a 200 to 250 V supply is available, the primary connections of T1 should be made in series. Fig. 4 shows the series connections to be made for a 240 V supply, and Table 3 gives the connections for supplies between 200 and 250 V .

Fig. 4 Transformer Primary Connections for 240 V .

Table 3 Transformer Primary Connections 200-250V

Supply	Neutral to Inner Tag	Line to Outer Tag	Diagonal Link Between
200	0	100	0-100
210	5	100	5-100
220	0	110	0-110
230	5	110	5-110
240	0	120	0-120
250	5	120	5-120

Table 4 Fuse Ratings (Up to 10A must be H.R.C. type) Size ' O '

Power Supply	Fuse Rating $200-250 \mathrm{~V}$	Fuse Rating $100-125 \mathrm{~V}$
PM21	2 A	3 A
PM22	3 A	5 A
PM24	5 A	7 A
PM25	7 A	10 A
PM27	7 A	10 A
PM28	7 A	12 A

3.3 Resetting the Output Voltage

The unit is adjusted in the factory to provide the voltage indicated on the serial number panel, with a further $\pm 0.5 \mathrm{~V}$ control available on the SET O/P VOLTS control, if it is required to change the output voltage from the factory preset value, proceed as follows:
(1) Switch off the a.c. supply.
(2) Set up the connections on the terminal panel of the supply transformer to obtain the required output voltage in accordance with the information provided in Tables 5 and 6. Replace R26 (R126) and R27 (R127) at the bottom of the printed circuit board with resistors of the value stated in the appropriate table. On 4-7V units, R 26 (R 126) or $\mathrm{R} 32(\mathrm{R} 132$) are replaced.

NOTE The unstabilised d.c. supply will be approximately 10 V higher than that indicated on the transformer tagboard.
(3) With reference to Fig. 10 and Fig. 11 (Fig.12), ensure that the following terminals on the terminal panel are linked.
(a) 4 and 5 DC LINK.

(b) 6 and $7+$ to +)
(c) 8 and $9-$ to -S$)$
DCO

NOTE If these links are not made, the unit will not stabilise correctly.
(4) Connect a voltmeter between the +s and -s terminals 6 and 9 respectively.
(5) Plug the printed circuit board into the extension unit (Part No. 19014 available as an optional extra) and plug the extension unit into the printed board connector on the power supply.
NOTE The extension board is unnecessary if there is side access to the unit.
(6) Adjust the SET O/P VOLTS control R V21 (RV121) on the terminal panel to the mid-position.
(7) Switch on the a.c. supply.
(8) Adjust the SET VOLTS control RV2 on the printed circuit board until the voltmeter indicates the required voltage.
NOTE If the output voltage has been altered, it will be necessary to adjust the setting of the automatic overload cutout, using the procedure detailed in Section 3.4.
If a change of voltage range from 4 to 7 V or 8 to 15 V is made on the 4 to 15 V units (or vice versa), it will be necessary to change the printed circuit board. (See Sect. 5.2 for Part No.).

3.4 Resetting the Overload Cut-Out

Having checked the output voltage and readjusted, if necessary, proceed as follows:
(1) Rotate the SET CURRENT control RV1 on the printed circuit board to the fully clockwise positions.
CAUTION: IN THIS CONDITION THE CUT-OUT IS INOPERATIVE
(2) Connect a suitable ammeter and an adjustable load between terminals 7 and 8 and carefully adjust the load until the ammeter indicates that the unit is delivering its maximum rated output current.
(3) Rotate RV1 counter-clockwise until the output voltage starts to fall, and then rotate the control a small amount in the clockwise direction.
(4) Decrease the load resistance slowly and verify that the maximum load current availabie for any value of load resistance is between 113% and 117% of the maximum rated output current. Readjust RV1 if necessary, to obtain this figure.
NOTE If the cut-out setting is too low, say 110%, the voltage regulation at full load may be affected. If the cut-out setting is too high, say 120%, the series regulator transistors may overheat when the unit is on overload at $+60^{\circ} \mathrm{C}$ ambient temperature.

3.5 Unit Connections

Tables 5, 6 and 7 show the connections that should be made between the various secondary windings of T1, and the values of R26 (R126) and R27 (R127) that should be inserted to obtain the required output voltage. These resistors are located on the terminals of the printed circuit board edge connector.

TABLE 5 Voltage Adjustments
PM21, PM24, PM27.

R26, (R126), R32, (R132), type TR $5 \pm 5 \%$ Electrosil.
\oplus Connections shown in first line of table are common for output voltages $4,5,6$ and 7 .

TABLE 6 Voltage Adjustments
PM22, PM25, PM28.

Volts Out	Connections										Resistor Values	
	Rect. (1)	Transformer								Rect. (2)	$\begin{gathered} \mathrm{R} 26 \\ \Omega \end{gathered}$	$\begin{aligned} & \mathrm{R} 27 \\ & \Omega \end{aligned}$
		-12	${ }^{2}+$	$-5+$		$-1^{2}+$		$-1+$				
15		\rightarrow			\bullet		\rightarrow			\rightarrow	$1.8 \mathrm{~K}^{\varnothing}$	330*
16		-			\rightarrow				\rightarrow	\rightarrow	$2.2 \mathrm{~K}^{\varnothing}$	390*
17		\bullet			\rightarrow					-	$2.2 \mathrm{~K}^{\text {¢ }}$	390*
18		-			\cdots				-	-	$2.7 \mathrm{~K}^{\varnothing}$	470^{+}
19		-	-			\cdots	-		\rightarrow	\bullet	$2.7 \mathrm{~K}^{\varnothing}$	470^{+}
20		\bullet	*			\cdots	-			-	$3.3 \mathrm{~K}^{\varnothing}$	560^{+}
21		-	\bullet						\bullet	\rightarrow	$3.3 \mathrm{~K}^{\phi}$	560^{+}
22		-	-							\bullet	$3.3 \mathrm{~K}^{\phi}$	680**
23		\bullet	-					\bullet	-	\rightarrow	$3.9 \mathrm{~K}^{\phi}$	680**
24		\bullet				-	\cdots			\longrightarrow	$3.9 \mathrm{~K}^{\phi}$	680**
25		-	-			\bullet		\cdots	-	\rightarrow	$3.9 \mathrm{~K}^{\phi}$	820**
26				\bullet					\rightarrow	\bullet	$4.7 \mathrm{~K}^{++}$	820**
27		-	*	\bullet	-					\bullet	$4.7 \mathrm{~K}^{++}$	820**
28		-	-	\bullet				\bullet		\bullet	$4.7 \mathrm{~K}^{++}$	820**
29		\rightarrow		\bullet		-	-			\square	$4.7 \mathrm{~K}^{++}$	1K **
30		-		\bullet		\bullet	\cdots	\bullet	-	\longrightarrow	$5.6 \mathrm{~K}^{++}$	1K **

Resistor type TR5
Resistor type TR6
** Resistor type W21
$\pm 5 \%$ Electrosil
$\pm 5 \%$ Electrosil
$\pm 5 \%$ Welwyn

3.6 Parallel and Series Operation

Modular power units can be operated in parallel up to a maximum of five units and should be connected as shown in Fig.5. For best voltage regulation the terminals labelled " P " on the front panels should be connected together and four terminal sensing used, but this is not essential. (See Fig.7)

Fig. 5 Parallel Operation

It is also possible to operate modular power supply units in series under certain conditions which are listed below:
(1) If necessary, set up each unit separately as detailed in paragraphs 3.3 and 3.4 to the required operating conditions.
(2) Power modules of the same current rating only can be used.
(3) A diode, of the same current and voltage rating as the power module, must be connected across $E A C H$ power module output. (Positive end of diode to positive terminal of PM).
(4) To reset the cut-out, switch off the supply and load; switch on again.
(5) The number of modules connected in series is limited to a maximum of 250 V DC.

3.7 Operation with other Power Supply Units

When power modules are used in conjunction with other power supplies of opposite polarity. Provision must be made, as in 3.6
(3) above, to protect the power module against reverse voltage conditions. The diode used must be of sufficient rating to carry the fault current generated.

3.8 Four Terminal Sensing

Where long external output leads are used four terminal sensing is provided to enable the load voltage regulation of the power supply to be maintained at the load connections. The two links between the $+\mathrm{ve} \mathrm{O} / \mathrm{P}$ and the +ve sense and the $-\mathrm{ve} \mathrm{O} / \mathrm{P}$ and the -ve sense terminals should be removed and connections made as shown in Fig. 6. These output connections should be run together and a decoupling capacitor, similar to C22 in the power supply, connected at the load terminals if the high frequency output impedance is to be maintained. Parallel connection should be made as shown in Fig.7.

Fig. 6 Four terminal sensing

Fig. 7 Four terminal sensing (parallel)

The maximum permissible voltage drop in the external leads when using four terminal sensing is 0.5 V total in both leads i.e. 0.25 V in each lead +ve and -ve or 0.5 V in one supply lead with a negligibly low resistance earth return. The total permissible length of lead for 0.5 V drop is listed in Table 7 for various wire sizes and current ratings. Note that this is the total permissible loop length "go"and return" and that the power supply can only be situated at half this distance from the load for a two wire +ve and -ve lead system.

Table 7 Permissible lead length for 4-terminal sensing

Wire	Lead Length (feet)		
	PM21 \& 22	PM24 \& 25	PM27 \& 28
	$1 / 0076$	19	-
$14 / 0076$	38	13	-
$23 / 0076$	60	20	-
$40 / 0076$	-	68	12
$70 / 0076$	-	-	31
$110 / 0076$	-	-	58
$162 / 0076$	-	-	-

NOTE The operation of the A channel and the B channel in the power supply are identical; accordingly, they are not described separately.

4.1 General

The description in the following paragraphs applies to the whole range of modular power supplies. Differences in the basic circuit, which enable the power supplies to provide the various output voltages and currents listed in Section 2, may be determined by examination of Tables 5 to 6 in Section 3 and the component lists and circuit diagrams provided in Section 6.

The circuit of the transistor power module consists of six main sections as shown in Fig.8. These provide rectification and smoothing of the a.c. supply, regulation, automatic control of the output voltage and protection of the regulator transistors against overload. With the exception of the transformer, each section is duplicated in the unit for the B channel.

Fig. 8 Functional Diagram

4.2 Supply Rectification and Smoothing (Figs.10,

The $100-250 \mathrm{~V}, 48-450 \mathrm{~Hz}$ a.c. input is applied to the appropriate section of the primary winding of T1 through the supply input adjusting links and FS1. Secondary windings on T1 (marked V1, V2, V3, and V4 on the circuit diagram) provide a.c. voltages, which are combined, rectified and smoothed to provide the appropriate input voltage to the regulator for the correct stabilised output voltage. These are connected according to the voltage rating of the particular unit (see Tables 5 to 6 of Section 3). In this way, a drive voltage of the desired amplitude is obtained for the bridge rectifier MR21. The full-wave output from MR21 is smoothed by C21, R21 acting as a bleed resistor, and is applied through the D.C. LINK to the collectors of the regulator transistors VT21 and VT22. This link should be removed if remote control of the output is required, by means of a fuse, switch or relay contact.
Further secondary windings on T1 provide a 45 V supply which is half-wave rectified by MR6 and smoothed by C4, and a $15 \mathrm{~V}-0-15 \mathrm{~V}$ supply which is full-wave rectified by diodes MR1 and MR2, and smoothed by C1. Zener diodes MR3 and MR7 provide 6.2 V and 30 V d.c. supplies for use in the voltage control and automatic cutout circuits.

4.3 Voltage Control

(a) 4 to 7 V Units (Fig. 10 lower part of circuit) Voltage control of the 4 to 7 V units is achieved using a control amplifier comprising a long tailed pair (VT3 and VT4). In this circuit, Zener diode MR5 and diode MR8 and R15 provide a temperature stable reference voltage source. R14 is the common emitter load, and R4 is the collector load for the stage output. The reference voltage which is the difference voltage of MR5 and MR8 is applied to the base of VT3. MR5 is connected to the output voltage line via R 26 (R 126) which is selected such that the current flowing into MR5 is approximately 20 mA .

A portion of the output voltage of the unit is applied to the base of VT4 via the potentiometer chain RV21 (RV121) (SET OUTPUT VOLTS) RV2 and R11. Any variation of the output voltage causes the base of VT4 to go more positive (or negative) with respect to the emitter which causes the transistor to draw more (or less) current. This in turn causes a change in the bias voltage applied via VT1 to the regulator transistors VT21 (VT121) and VT22 (VT122) which together with VT1 form a compound emitter follower stage. This change in bias voltage effectively changes the collector-emitter resistances of VT21 (VT121) and VT22 (VT122) and causes the

Diode MR9 connected to terminal ' P ' on the front panel, effects automatic 'slaving' of control amplifiers when power supply units are connected in parallel. If the ' P ' connections on parallel power supplies are connected together, the power supply set to the highest voltage takes control. This is because the sensing transistor VT4 in each of the control amplifiers in the other parallelled supplies senses a high voltage at its input terminal and conducts heavily. As a result, MR9 is reversed biased and isolates the voltage control amplifier from the regulator transistors. This method has the advantage that all the parallel power supplies have a common drive voltage and therefore share the load current equally which is not possible without the ' P ' connection.
(b) 8 to 50 V Units (I ig. 10 upper part of circuit) Part of the output voltage of the unit is applied to the base of transistor VT3, which is supplied from terminal 6 on terminal block TB1(TB2), via RV21 (RV121) (SET O/P VOLTS), R27 (R127) and RV2,, Zener diode MR5 provides a reference potential at the emitter of VT3 R 26 (R 126) is selected according to the output voltage rating so that approximately 5 mA flows in MR6 At this current value the temperature coefficient of the zener diode compensates for that of the base-emitter junction of VT3 and prevents the signal developed across the collector load R4 being affected by changes in temperature.
The potential VT3 collector is applied to the base of VT1. VT1 forms a compound emitter follower with the regulator transistors VT21 (VT121) and VT22 (VT122) and controls the voltage drop across them, thereby controlling the voltage at the output terminals. If the output voltage shows a tendency to rise, for example, the increase is detected in the base-emitter circuit of VT3 and the resulting increase in collector current causes the potential on the base of VT1 to fall. This effectively increases the emitter-collector resistances of VT21 (VT121) and VT22 (VT122) and lowers the output terminals.

Diode MR 8 connected to terminal ' P ' on the front panel, effects automatic 'slaving' of control amplifiers when power supply units are connected in parallel. If the ' P ' connections on parallel power supplies are connected together, the power supply set to the highest voltage takes control. This is because the sensing transistor VT4 in each of the control amplifiers in the other parallelled supplies senses a high voltage at its input terminal and conducts heavily. As a result, MR8 is reversed bias and isolates the voltage control amplifier from the regulator transistors. This method has the advantage that all the parallel power supplies have a common drive voltage and therefore share the load current equally which is not possible without the ' P ' connection.

4.4 Overload Cut-Out (Fig. 10)

The regulator transistors are protected from damage due to the flow of excessive currents during overload. This protection is provided by the circuit containing VT2.
A reference voltage is produced at the junction of R7 and R10 by the current flowing through R5, R7, R10, and RV1 and can be varied by adjusting RV1 to SET CURRENT control. A further reference voltage is applied to the emitter of VT2 by the current flowing through R6 and R8.
A voltage proportional to the current drawn by the load is developed across R22 (R122) and is supplied in opposition to the voltage across R7 and R8 via MR4 and R23 (R123) to the base of transistor VT2, In units where more than one resistor forms R22 (R122) the average voltage is obtained by equivalent number of adder resistors. R23 (R123). The diode, MR4, provides thermal compensation for the characteristics of the base-emitter junction of VT2.
As the load current increases and passes the full load rating for the module, the point is reached where the voltage across R22 (R122) exceeds the reference voltage across R7 and R8 by an amount sufficient to start VT2 conducting. When this occurs, VT2 draws current through R4 and the unit changes over from constant voltage operation to constant current operation with control transferring from VT3 (or VT4) to VT2. Formerly the potential on VT1 base was controlled by the output voltage, but now the potential provided by the current flowing in R22 (R 122) is compared with the reference potential across R 7 and R8. The potential on the base of VT1 is adjusted automatically to obtain steady working conditions.
Further increase in load current therefore causes a reduction in the output voltage, but since the potential across R 7 and R10 also falls when this occurs, the current reference voltage is reduced and to maintain equilibrium the voltage across R22 (R122) must also fall, which can only be brought about by a reduction in the load current flowing. For any load, a point of equilibrium will be reached and as the load is reduced the voltage will fall as shown in Fig.9. At zero output volts (short circuit), since the reference voltage across R7 is nearly zero, the load current is determined by that part of the reference voltage across R8.

4.5 Constant Current Switch-on

A circuit is incorporated which prevents 'lock-out' during in
switch-on when two or more power supplies are connected in
series or have common loading. This circuit is operative only during switch-on and clamps the current reference voltage at a level which holds the output current at approximately 115% of full load current for approximately 200 ms . This also allows the power supply to switch on into a non-linear, or lamp load, of short time constant. The power supply therefore switches on in a constant-current mode which prevents 'lock-out' from occurring. The recommended maximum lamp load should not exceed approximately 80% of the maximum output power of the power supply.
(a) 4 to 7 V Units (Fig. 10 lower part of circuit). An auxiliary negative voltage is generated by the half-wave rectifier MR 10 and smoothed by R16 and C5. This voltage provides current for the 2.7V Zener diode MR11 and the CR timing circuit R20 and C6. Resistor R18 discharges C6 on switch-off. When the power supply is switched on, the voltage across C6 is zero and transistor VT5 is held in conduction by R19. This clamps the junction of R10 and RV1 at -2.7 V , with respect to the positive output line. This voltage maintains approximately the same current through R7 that would result if the output voltage was at its normal level. The output current is therefore limited to approximately 115% of full load current instead of the normal short-circuit current level of 15% of full load current. The voltage across C6 increases until at approximately 200 ms after switch-on it is large enough to turn off VT5. When this happens, the current protection reverts to its normal reentrant mode and VT5 then has no further effect on the action of the power supply. Diode MR12 protects VT5 if RV1 is set to zero ohms at switch-on.
(b) 8 to 50 V Units(Fig. 10 upper part of circuit). An auxiliary negative voltage is generated by the half-wave rectifier MR9 and smoothed by R14 and C5. This voltage provides current for the 6.2V Zener diode MR10 and the CR timing circuits R 18 and C6. Resistor R16 discharges C6 on switch-off. When the power supply is switched on, the voltage across C6 is zero and transistor VT4 is held in conduction by R17. This clamps the junction of R10 and RV1 at -6.2 V , with respect to the positive output line. This voltage maintains approximately the same current through R 7 that would result if the output voltage was at its normal level. The output current is therefore limited to approximately 115% of full load current instead of the normal short-circuit current level of 15% of full load current. The voltage across C 6 increases until at approximately 200 ms after switch-on it is large enough to turn off VT4. When this happens, the current protection reverts to its normal
re-entrant mode and VT4 then has no further effect on the action of the power supply. Diode MR11 protects VT4 if RV1 is set to zero ohms at switch-on.

OUTPUT CURRENT (\%)

(Fig. 9 Output Voltage Plotted Against Output Current)

COMPONENT LIST AND CIRCUIT DIAGRAMS SECTION 6

5.1 Access to Components

All components, except those mounted on the printed circuit board are accessible after removing the front panel (held by fixing screws) and detaching the heat sink assemblies from the side bars. Access to the components on the printed circuit board under operating conditions may be obtained by removing the board and connecting it to the socket in the unit via the extension board (Advance Part No. 19014).

5.2 Replacement Servicing

The voltage control boards used in the PM21-28 are as follows:-
(a) 4 to 7 V boards \quad Advance Part No. 23497
(b) 8 to 50 V boards Advance Part No. 23498

Extension board Advance Part No. 19014
NOTE:- Early versions of the PM21-28 units were fitted with board Part No. 22607 \& 22093 respectively. These are identical in circuit to the Part Nos. quoted but were fitted with high stability carbon resistors instead of the present metal-oxide resistors.

5.3 Fault Finding

Determine the state of the output voltage on load and proceed as outlined in Table 8. The procedure for channel B in a PM unit is identical to that for channel A .

Table 8 Fault Finding Chart

No Output	Fuse blown MR 21 open circuit DC. Link open circuit VT21 open circuit P.C. board out of socket or faulty	Change fuse Change MR21 Replace Link Change VT21 Replace with new assembly
If output voltage has been changed	Wire on transformer output link open circuit Wire on PC connections open circuit especially pin 12	Re-make joint Re-make joint
Low Output	MR21 partially open circuit D.C. Link high resistance + ve or - ve sensing link open circuit P.C. board faulty	Change MR21 Tighten screws Replace link Replace with new Assembly
If output voltage has been changed	D.C. output taps on transformer incorrectly adjusted Cutout operating incorrectly Incorrect adjustment of RV2 or R27 R26 open circuit or incorrect value	Readjust taps Reset RV1 Readjust or replace R27 Replace R26
High unstabilised output.High ripple	VT21 short circuit VT22 short circuit Printed board faulty	Change VT21 Change VT22 Replace with new assembly
If output voltage has been changed	R27 open circuit RV2 or R27 setting incorrect	Change R27 Reset RV2 or change R27

PRINTED CIRCUIT BOARD
 (Assy. No. 23497)
 FOR 4 to 7 V MODULES

Resistors (5\% Electrosil TR5 unless specified)

R1	33		19132
R2	470		18713
R3	270		19141
R4	33K		18705
R5	1 K		19338
R6	2.7 K		18771
R7	1K		19338
R8	56		19135
R9	10		19339
R10	2.2 K		18699
R11	220	CGS CR 1-5	22969
R12	1 K		19338
R13	4.7 K		18706
R14	1 K		19338
R15	560		18774
R16	100		18702
R17	2.7 K		18771
R18	12K		19145
R19	10K		18703
R20	39 K		19147
RV1	10K	Plesxy MP	2262
RV2	500	Welw n P25	18917

Capacitors

$\mathrm{C1}$	$40 \mu \mathrm{~F}$	25 V Mullard	20107
C 2	$0.01 \mu \mathrm{~F}$	400 V Mullard	802
$\mathrm{C4}$	$16 \mu \mathrm{~F}$	64 V Mullard	22723
C5	$12.5 \mu \mathrm{~F}$	25 V Mullard	22724
C6	$12.5 \mu \mathrm{~F}$	25 V Mullard	22724

Diodes

MR1	Texas 1S923	3560
MR2	Texas 1S923	3560
MR3	Zener, STC. ZF6•2	4032
MR4*	Mullard 0A200	1874
MR5	Zener, 2•7 Volt	21002
MR6	Texas 1S923	3560
MR7	Zener, STC. ZF30	4812
MR8*	Mullard 0A200	1874
MR9*	Mullard 0A200	1874
MR14*	Mullard 0A200	1874
MR11	Zener, 2•7 Volt	21002
MR12*	Mullard 0A200	1874

Transistors

VT1
RCA 2N3053 4039
VT2 \dagger
Fairchild A1670 . 4015
VT3 \dagger
Fairchild A1670
4015
VT4 \dagger
Fairchild A1670
4015
VT4 \dagger
Fairchild A1670
4015

* Alternative. Texas 1 S920 Part No. 2542
\dagger Alternative. Texas 2S745A Part No. 2083
PRINTED CIRCUIT BOARD
(Assy. No. 23498)FOR 8 to 50V MODULES

Ref.	Value	Description	Part No.
Resistors (5\% Electrosil TR5 unless specified)			
R1	33		19132
R2	470		18713
R3	270		19141
R4	33K		18705
R5	1K		19338
R6	2.7K		18771
R7	1K		19338
R8	56		19135
R9	10		19339
R10	5.6 K		18717
R11	270	CGS CR1.5	22970
R12	1 K		19338
R13	4.7 K		18706
R14	100		18702
R15	2.7K		18771
R16	39K		19147
R17	10K		18703
R18	39K		19147
RV1	33K	Plessey MP	4852
RV2	100	Welwyn P25	17754
Capacitors			
C1	$40 \mu \mathrm{~F}$	25 V Mullard	20107
C2	$0.01 \mu \mathrm{~F}$	400 V Mullard	802
C3	$8 \mu \mathrm{~F}$	64 V Mullard	22722
C4	$16 \mu \mathrm{~F}$	64 V Mullard	22723
C5	$12.5 \mu \mathrm{~F}$	25 V Mullard	22724
C6	12. $\mu \mathrm{F}$	25 V Mullard	22724
Diodes			
MR 1	Texas 1	923	3560
MR2		Texas 1S923	3560
MR 3		Zener, STC ZF 6.2	4032

COMPONENT LISTS AND CIRCUIT DIAGRAMS SECTION 6

Ref.	Value	Description	Part No.
MR4*		Mullard 0200	1874
MR5	Zener	STC ZF 6.2	4032
MR6		Texas 1S923	3560
MR7	Zener	STC ZF 30	4812
MR8		Texas 1S923	3560
MR9		Texas 1S923	3560
MR10	Zener	STC ZF 612	4032
MR11*		Mullard 0A200	1874
Transistors			
VT1		RCA 2N3053	4039
VT2 \dagger		Fairchild A1670	4015
VT3 \dagger		Fairchild A1670	4015
VT4 \dagger		Fairchild A1670	4015

* Alternative. Texas 1S920 Part No. 2542
\dagger Alternative. Texas 2S745A Part No. 2083

COMPONENT LISTS AND CIRCUIT DIAGRAMS SECTION 6

For two-channel PM power supplies, two circuit references are given (except for components in the common a.c. input circuit). Channel A circuit reference is given first.

PM 21 MODULES

Ref. Value Description Part No.

Resistors (5\% Electrosil TR5 unless specified)			
R21	R121	2.7 K	
R22	R122	1	$\pm 5 \%$
R23	R123	Link	
R24	R124	1.5 K	
R25	R125	1.5 K	18771
R26	R126	See table 5	239
R27	R127	See table 5	18709
R28	R128	100	18709
R29	R129	Link	
R30	R130	100	
R31	R131	100	
RV21	RV121	100	Colvern Potentiometer

Capacitors

C21	C121	1800	40V Elect. Sprague	22710
C22	C122	$500 \mu \mathrm{~F}$	40V Elect. Mullard	3102
C23	C123	$0.1 \mu \mathrm{~F}$	$160 \mathrm{~V} 10 \%$ Mullard	804
C24	C124	$0.1 \mu \mathrm{~F}$	$160 \mathrm{~V} 10 \%$ Mullard	804

Diodes

MR21 MR121 \quad Bridge Rectifier 19725

Transistors

VT21 VT121
RCA 402504224
VT22 VT122
RCA 402504224

Miscellaneous

T1
1 S1
$200-250 \mathrm{~V}$
$101-125 \mathrm{~V}$

Transformer MT539
Fuse:-
Belling Lee 2A L693 13041
Belline I ee 3A L693 12699

PM22 MODULES				
Resistors (5\% Electrosil TR5 unless specified)				
R21	R121	4.7K	Electrosil TR6	27108
R22	R122	1	$\pm 5 \% \mathrm{CGS} \mathrm{VPF} 4$	239
R23	R123	Link		
R24	R124	2.7 K		18771
R25	R125	2.7 K		18771
R26	R126	See tab		
R27	R127	See tab		
R28	R128	100		18702
R29	R129	Link		
R30	R130	100		18702
R31	R131	100		18702
RV21	RV121	100	Colvern Potentiometer	633
Capacitors				
C21	C121	$850 \mu \mathrm{~F}$	75V Elect. Sprague	22716
C22	C122	$500 \mu \mathrm{~F}$	40 V Elect. Mullard	3102
C23	C123	$0.1 \mu \mathrm{~F}$	160V 10\% Mullard	804
C24	C124	$0.1 \mu \mathrm{~F}$	160V 10\% Mullard	804
Diodes				
MR21	MR121		Bridge Rectifier	19725
			Pirelli WO2	
Transistors				
VT21	VT121		RCA 2N3055	3813
VT22	VT122		RCA 40250	4224
Miscellaneous				
T1			Transformer	MT540
FS1			Fuse:-	
200-250V			Belling Lee 3A L693	12699
$100-125 \mathrm{~V}$			Belling Lee 5A L693	638

PM24 MODULES

Ref. Value Description Part No.
Resistors (5\% Electrosil TR5 unless specified)
R21 R121 8.20 Electrosil TR6 27109
R22 R122 $0.27 \quad \pm 5 \%$ RWV4-J 18003
R23 R123 Link31

COMPONENT LISTS AND CIRCUIT DIAGRAMS

R24	R124	1.5K	18709
R25	R125	1.5K	18709
R26	R126	See table 5	
R27	R127	See table 5	18702
R28	R128	100	18702
R29	R129	Link	18702
R30	R130	100	
R31	R131	100	
RV21	RV121	100	Colvern Potentiometer

Capacitors

C 21	C 121	$6400 \mu \mathrm{~F}$	40V Elect. Sprague	22708
C 22	C 122	$1250 \mu \mathrm{~F}$	25V Elect. Mullard	19215

C23 C123 $\quad 0.1 \mu \mathrm{~F} \quad 160 \mathrm{~V} 10 \%$ Mullard 804

C 24	C 124	$0.1 \mu \mathrm{~F}$	160 V
10%	Mullard	804	

Diodes

MR21 MR121

Bridge Rectifier	17763
Texas 1B40K20	

Transistors

VT21 VT121 RCA RCA 2N3055 3813
VT22 VT122 RCA 40250 4224
Miscellaneous
T1
FS1
200-250V
$100-125 \mathrm{~V}$

Transformer	MT542
Fuse:-	
Belling Lee 5A L693	638
Belling Lee 7A L693	13040

PM25 MODULES
Resistors (5\% Electrosil TR5 unless specified)
R21 R121 $\quad 1.5 \mathrm{~K} \quad \pm 10 \%$ CGS VPF $10 \quad 4806$
R22 R122 $2 \times 0.56 \pm 5 \%$ RWV4-J 18005
R23 R123 2x10 19339
R24 R124 2.7K 18771
R25 R125 2.7K 18771
R26 R126 See table 6
R27 R127 See table 6
Ref. Value Description Part No.
R28 R128 2x100 18702R29 R129 Link
R30 R130 100 18702
R31 R131 $100 \quad 18702$
RV21 RV121 100 Colvern Potentiometer 633
Capacitors
C21 C121 3900 F F 7V Elect. Sprague 22714
C22 C122 $\quad 800 \mu \mathrm{~F} \quad 40 \mathrm{~V}$ Elect. Mullard 2799
$\mathrm{C} 23 \quad \mathrm{C} 123 \quad 0.1 \mu \mathrm{~F} \quad 160 \mathrm{~V} 10 \%$ Mullard 804
$\mathrm{C} 24 \quad \mathrm{C} 124 \quad 0.1 \mu \mathrm{~F} \quad 160 \mathrm{~V} 10 \%$ Mullard 804
Diodes
MR21 MR121 Bridge Rectifier 17763
Texas 1B40K 20
Transistors
VT21 VT121 RCA $2 \times 2 \mathrm{~N} 3055$ 3813
VT22 VT122 RCA 40250 4224
Miscellaneous
T1FS1200-250V$100-125 \mathrm{~V}$
Transformer MT543
Fuse:-
Belling Lee 7A L693 13040
Belling Lee 10A L693 4227
PM27 MODULES
Resistors (5\% Electrosil TR5 unless specified)
R21 R121 $270 \quad \pm 10 \%$ CGS VPF 10 4804
R22 R122 $2 \times 0.33 \pm 5 \%$ CGS VPF4 2158
R23 R123 2×10 19339
R24 R124 1.5K 18709
R25 R125 1.5K 18709
R26 R126 See table 5
R27 R127 See table 5
R28 R128 2x100 18702
R29 R129 LinkR30 R130 10018702
R31 R131 100 15702
RV21 RV121 100 Colvern Potentiometer б 63

COMPONENT LISTS AND CIRCUIT DIAGRAMS SECTION 6

	Capacitors				
	C21	C121	$12000 \mu \mathrm{~F}$	40V Elect. Sprague	22501
	C22	C122	$2000 \mu \mathrm{~F}$	25 V Elect. Mullard	4847
	C23	C123	$0.1 \mu \mathrm{~F}$	160V 10\% Mullard	804
	C24	C124	$0.1 \mu \mathrm{~F}$	160V 10% Mullard	804
	Diodes				
	MR21	MR 121		Bridge Rectifier Semtech SC BA2	22721
	Transistors				
	VT21	VT121		RCA $2 \times 2 \mathrm{~N} 3055$	3813
	VT22	VT122		RCA 40250	4224
	Miscellaneous				
	T1			Transformer	MT545
	FS1			Fuse:-	
	200-2			Belling Lee 7A L693	13040
	100-1			Belling Lee 10A L693	4227
	PM28 MODULES				
	Resistors (5\% Electrosil TR5 unless specified)				
	R21	R121	470	$\pm 10 \%$ CGS VPF 10	4805
	R22	R122	4x0.68	$\pm 5 \%$ RRC LG75	4261
	R23	R123	4×10		19339
	R24	R124	2.7 K		18771
	R25	R125	2.7 K		18771
	R26	R126	See table 6		
	R27	R127	See table		
	R28	R128	4×100		18702
	R29	R129	Link		
	R30	R130	100		18702
	R31	R131	100		18702
	RV21	RV121	100	Colvern Potentiometer	633
	Ref.		Value	Description	Part No.
	Capacitors				
	C21	C121	69,00 $\mu \mathrm{F}$	75 V Elect. Spraque	22712
	(22	C122	$2500 \mu \mathrm{~F}$	40V Elect. Mullard	4848
	C23	C123	$0.1 \mu \mathrm{~F}$	$160 \mathrm{~V} 10 \%$ Mullard	804
34	C24	C124	$0.1 \mu \mathrm{~F}$	$160 \mathrm{~V} 10 \%$ Mullard	804

COMPONENT LISTS AND CIRCUIT DIAGRAM SECTION 6

Diodes		
MR21 MR121	Bridge Rectifier Semtech SCBA2	22721
Transistors		
VT21 VT121	RCA 4x2N3055	3813
VT22 VT122	RCA 40250	4224
Miscellaneous		
T1	Transformer	MT546
FS1	Fuse:-	
Belling Lee 7A L693	13040	
$100-1250 \mathrm{~V}$	Belling Lee 12A L1055	21184

Diodes
MR21 MR121

RCA 4x2N3055 3813
RCA 402504224

Transformer

13040
Belling Lee 12A L1055
21184

This instrument is guaranteed for a period of one year from its delivery to the purchase, covering the replacement of defective parts other than tubes, semiconductors and fuses. Tubes and semiconductors are subject to the manufacturers' guarantee.

We maintain comprehensive after sales facilities and the instrument can, if necessary, be returned to our factory for servicing. The Type and Serial Number of the instrument should always be quoted, together with full details of any fault and the service required. The Service Department can also provide maintenance and repair information by telephone or letter.

Equipment returned to us for servicing must be adequately packed, preferably in the special box supplied, and shipped with transportation charges prepaid. We can accept no responsibility for instruments arriving damaged. Should the cause of failure during the guarantee period be due to misuse or abuse of the instrument, or if the guarantee has expired, the repair will be put in hand without delay and charged unless other instructions are received.

OUR SALES, SERVICE AND ENGINEERING DEPARTMENTS ARE READY TO ASSIST YOU AT ALL TIMES.

Fig. 10 Circuit Diagram PM21-28

