Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

POWER SUPPLIES

 (ADVANCE TYPE PM44-56)by Command of the defence council TrDunntt.
(Ministry of Defence)

High Reliability Power Supplies PM44-56

Instruction Manual

Raynham Road Bishops Stortford Herts

Telephone 0279-55155
Telex 81510
SECTION 1 INTRODUCTION 5
SECTION 2 SPECIFICATION 6
SECTION 3 OPERATION 9
3. 1 Installation, Dimensions, Weights 9 and Power Dissipations
3.2 AC Supply and Preliminary Checks 11
3.3 Resetting the Output Voltage 14
3.4 Resetting the Overload Protection 15
3.5 Resetting the Overvoltage Protection 20
3. 6 Unit Connections 20
3.7 Programming Current and Voltage 21
3.8 Parallel and Series Operation 23
3.9 Operation with other Power Supply Units 25
3.10 Four-terminal Sensing 25
SECTION 4 CIRCUIT DESCRIPTION 31
4.1 General 31
4.2 Supply Rectification and Smoothing 31
4.3 Series Regulator 32
4.4 Bridge Reference Source 32
4.5 Stabilisation of Auxiliary Supply 32
4.6 Voltage Control Bridge 33
4.7 Voltage Control 33
4.8 Current Control Bridge 33
4.9 Current Control 36
4.10 Mode of Operation 37
4.11 Overvoltage Protection 38
4.12 External Programming 38
SECTION 5 MAINTENANCE 40
5.1 Access to Components 40
5. 2 Replacement Servicing of 40 Printed Circuit Boards
5.3 Fault Finding 40
5.4 M T B F 42
SECTION 6 COMPONENT LIST AND 43ILLUSTRATIONS
SECTION 7 GUARANTEE AND SERVICE FACILITIES 47
TABLES
Table 1 Fixings, Dimensions, Weights and 9
Dissipations
Table 2 Transformer Primary Connections 100-125V 12
Table 3 Transformer Primary Connections 200-250V 12
Table 4 Fuse Ratings 13
Table 5 Constant Current Mode Ratings 0-15V 17
Table 6 Constant Current Mode Ratings $0-30 \mathrm{~V}$ 13
Table 7 Constant Current Mode Ratings 30-50V 19
Table 8 Voltage Adjustments $0-15 \mathrm{~V}$ Units 27
Table 9 Voltage Adjustments $0-30 \mathrm{~V}$ Units 28
Table 10 Voltage Adjustments $30-50 \mathrm{~V}$ Units 29
Table 11 Permissible Lead Lengths 30
Table 12 Fault Finding Chart 40
ILLUSTRATIONS
Fig. 1 Typical Modular Power Supply 4
Fig. 2 Dimension Diagrams 9
Fig. 3 Transformer Primary Connections 110 V 11
Fig. 4 Transformer Primary Connections 240 V 12
Fig. 5 Parallel Operation 23
Fig. 6 Parallel Units with Overvoltage Circuits 24
Fig. 7 Four-terminal Sensing 26
Fig. 8 Four-terminal Sensing (Parallel) 26
Fig. 9 Functional Diagram of Power Unit 30
Fig. 10 Current Control Circuit 34
Fig. 11 Output Voltage plotted against Output Current 35in Re-entrant Mode
Fig. 12 Circuit Diagram and Component List 43

This new range of Modular Power supplies, PM44-56, marks a radical departure from accepted attitudes in commercial power supply design.

The range provides pre-set output voltages in the range $0-50 \mathrm{~V}$ in current ratings of $1,3,5,10 \mathrm{~A}$ and 20 A with very extensive facilities and a high degree of reliability.

Facilities available include the selection of various output characteristics, such as constant current operation, by means of internal links, external programming and optional built in SCR overvoltage protection.

Particular emphasis has been placed on a high specification, rugged mechanical construction and long-life components. As a result of this attention it is possible to quote estimated MTBF figures for each individual unit.
-10,000:1 Stability

- Re-entrant protection with constant current optional
- Programmeable on Voltage and Current
- MTBF estimated not less than 25,000 hours

Low Voltage Units for Integrated Circuits. The range of Modular Power Supplies PM16-20 consists of units having a fully variable output of 0 to 7 V with a choice of current ratings from 1 to 20A. They have been specifically designed to meet the requirements of Integrated Circuit Technology with particular reference to very high reliability, and incorporate a new protection circuit to safeguard both the power supply and the load. This range offers the Integrated Circuit user a power supply to satisfy most applications.

INPUT VOLTAGE
$100,105,110,115,120,125,200,220,230,240,250 \mathrm{~V} \pm 10 \% 48-450 \mathrm{~Hz}$

LINE REGULATION
Less than $\pm(0.001 \%+30 \mu \mathrm{~V})$ for $\pm 10 \%$ AC line variation at any specified tap.

LOAD REGULATION
Less than $(0.02 \%+1 \mathrm{mV})$ for a no load to full load swing

RIPPLE

Less than $400 \mu \mathrm{~V}$ pk-pk,(typically $250 \mu \mathrm{pk}-\mathrm{pk})$
TEMPERATURE CO-EFFICIENT
Less than $(0.015 \%+200 \mu \mathrm{~V})$ per ${ }^{\circ} \mathrm{C}$

OUTPUT IMPEDANCE

Less than 0.25Ω at 100 kHz . Typically less than 0.1Ω at 100 kHz .

RECOVERY TIME
For a full load step change the output voltage will recover in approximately 20μ seconds to within 10 mV of regulation Band.

OVERLOAD PROTECTION

Re-ent rant overload protection which is variable from 15% to 105% at full load current by a potentiometer on the front panel. At switch-on the protection may be set to operate at constant current for a period of 200 m seconds after which it reverts to re-entrant operation. This facility is optional and may be selected by an internal link but is not available below 4 volts output.

OVERVOLTAGE PROTECTION

Optional

Overvoltage protection is by means of a high speed SCR crowbar with fuse. The trip voltage may be varied by potentiometer or programming resistors. This facility is an optional extra which can be built into the unit if required.

TEMPERATURE RANGE

-10° to $+60^{\circ} \mathrm{C}$

INSULATION

Floating output must not exceed $\pm 250 \mathrm{~V}$ DC from ground. Input tested 500 V DC live to ground, and live to output greater than 10 M ohms.

CONSTANT CURRENT OPERATION

Optional
All units can be operated in the constant current mode at reduced ratings. Further details can be found on Graph 2 Section 3 and Tables 5 to 7.

PROGRAMMING

External programming of both voltage and current by means of external resistors, is possible and is restricted to operation within the re-entrant characteristic, or within the constant current restrictions if operating in this mode. Further details of this form of operation can be found in Section 3.

PROGRAMMING RESISTANCES

$$
\begin{aligned}
& \text { VOLTAGE MODE } 100 \Omega / \text { volt } \pm \frac{1}{4} \% \\
& \text { CURRENT MODE } 100 \Omega / 100 \% \text { of output current } \pm 3 \% \text { for re-entrant } \\
& \text { current mode } \\
& \quad \begin{array}{l}
1050 \Omega / 100 \% \text { of output current } \pm 3 \% \text { for constant } \\
\text { current mode }
\end{array}
\end{aligned}
$$

OUTPUT VOLTAGES AND CURRENTS
Output Voltage Output Current

	IA	3A	5 A	10A	20 A
$0-15 \mathrm{~V}$	PM44	PM47	PM50	PM53	PM56
$0-30 \mathrm{~V}$	PM45	PM48	PM51	PM54	-
$30-50 \mathrm{~V}$	PM46	PM49	PM52	PM55	-

Output Voltages factory pre-set in 1 V increments and variable by $\pm 0.5 \mathrm{~V} \min$ by a potentiometer on the front panel.

FACTORY FITTED OPTIONS

Extra
SUFFIX 'X' Alternative PC board assembly to give (0.005\% $+50 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ temperature Co-efficient fitted instead
of standard $(.015 \%+200 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ temperature co-efficient.
SUFFIX 'Y' The Power Unit will be set to operate in constant current mode at the ratings in Tables 5,6 and 7 instead of standard re-entrant mode.
SUFFIX 'Z' An SCR overvoltage protection circuit will be fitted within the Power Unit normally set to 10% or 1 volt (whichever is greater) above the nominal output voltage.

3.1 INSTALLATION

Dimension	Dimension
Diagram A	Diagram B

Fig. 2 Dimension Diagrams
Table 1 Fixing Centre Data, Dimensions, Weights and Dissipations

Overall Dimensions and Weights								
Type	Height A in cm		Width B in cm		Length C in $\quad \mathrm{cm}$		Weight	
PM44	$5 \frac{1}{8}$	13.0	$3 \frac{9}{32}$	8.3	51	13.0	4	1.8
PM45	$5 \frac{1}{8}$	13.0	$4 \frac{31}{64}$	11.8	$5 \frac{1}{8}$	13.0	6	2.7
PM46	$5 \frac{1}{8}$	13.0	$3{ }_{3}{ }^{2}$	8.3	$9 \frac{1}{4}$	23.5	8	3.6
PM47	$5 \frac{1}{8}$	13.0	$3{ }^{3}$	8.3	$9 \frac{1}{4}$	23.5	8	3.6
PM48	$5 \frac{1}{8}$	13.0	$4 \frac{41}{64}$	11.8	$9 \frac{1}{4}$	23.5	11	5.0
PM49	$5 \frac{1}{8}$	13.0	$7 \frac{3}{8}$	18.7	$9 \frac{1}{4}$	23.5	15	6.8
PM50	$5 \frac{1}{8}$	13.0	$4{ }^{\frac{5}{8}}$	11.8	$9 \frac{1}{4}$	23.5	11	5.0
PM51	$5 \frac{1}{8}$	13.0	$7 \frac{3}{8}$	18.7	9 ${ }^{1}$	23.5	17	7.7
PM52	$5 \frac{1}{8}$	13.0	$4 \frac{5}{8}$	11.8	$15 \frac{1}{16}$	38.2	21	9.5
PM53	51	13.0	$7 \frac{3}{8}$	18.7	914	23.5	17	7.7
PM54	51	13.0	$7 \frac{3}{8}$	18.7	1510	38.2	35	15.9
PM55	5 ${ }^{\frac{1}{8}}$	13.0	$9 \frac{1}{8}$	23.2	$15 \frac{1}{16}$	38.2		20.0
PM56	$5 \frac{1}{8}$	13.0	91 ${ }_{8}$	23.2	$15 \frac{1}{16}$	38.2	44	20.0

Table 1 Fixing Centre Data, Dimensions, Weights \& Dissipations (Cont)

Fixing Centres								
Type	$\begin{aligned} & \mathrm{D} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \mathrm{E} \\ & \text { in } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbf{F} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \mathbf{G} \\ & \text { in } \end{aligned}$	cm
PM44	$4 \frac{3}{4}$	12.07	1	2.54	-	-	31	7.94
PM45	$4 \frac{3}{4}$	12.07	1	2.54	-	-	318	7.94
PM46	$4 \frac{3}{4}$	12.07	1	2.54	-	-	$7 \frac{1}{4}$	18.42
PM47	$4 \frac{3}{4}$	12.07	1	2.54	-	-	$7 \frac{1}{4}$	18.42
PM48	$4 \frac{3}{4}$	12.07	1	2.54	-	-	$7 \frac{1}{4}$	18.42
PM49	$4 \frac{3}{4}$	12.07	1	2.54	-	-	$7 \frac{1}{4}$	18.42
PM50	$4 \frac{3}{4}$	12.07	1	2.54	-	-	71 ${ }^{4}$	18.42
PM51	$4 \frac{3}{4}$	12.07	1	2.54	-	-	$7 \frac{1}{4}$	18.42
PM52	$4 \frac{3}{4}$	12.07	$2 \frac{1}{16}$	5.24	5315	13.89	$10{ }_{16}$	27.78
PM53	$4 \frac{3}{4}$	12.07	1	2.54	-	-	71 ${ }^{1}$	18.42
PM54	$4 \frac{3}{4}$	12.07	$2 \frac{1}{16}$	5.24	$5{ }_{3} 15$	13.89	1015	27.78
PM55	$4 \frac{3}{4}$	12.07	$2 \frac{1}{16}$	5.24	$5{ }^{15}$	13.89	1015	27.78
PM56	$4 \frac{3}{4}$	12.07	$2 \frac{1}{16}$	5.24	$5 \frac{15}{32}$	13.89	10, ${ }_{16}$	27.78
Type	$\begin{aligned} & \mathrm{H} \\ & \text { in } \end{aligned}$	cm	$\begin{aligned} & \mathrm{J} \\ & \text { in } \end{aligned}$	cm	$\begin{aligned} & \mathbf{K} \\ & \text { in } \end{aligned}$	cm	$\begin{aligned} & \mathrm{L} \\ & \text { in } \\ & \hline \end{aligned}$	cm
PM44	$2{ }^{2}$	7.39	$1{ }^{\frac{1}{2}}$	3.81	-	-	21	5.40
PM45	417	10.85	112	3.81	-	-	28	5.40
PM46	23	7.39	2	5.08	-	-	$5 \frac{1}{4}$	13.3
PM47	232	7.39	2	5.08	-	-	$5 \frac{1}{4}$	13.3
PM48	46	10.85	2	5.08	-	-	51	13.3
PM49	7	17.78	2	5.08	-	-	$5 \frac{1}{4}$	13.3
PM50	417	10.85	2	5.08	-	-	$5 \frac{1}{4}$	13.3
PM51	7	17.78	2	5.08	,	-	$5 \frac{1}{4}$	13.3
PM52	438	10.85	3	7.62	$5 \frac{16}{6}$	12.86	916	23.02
PM53	7	17.78	2	5.08	-	-	5 $\frac{1}{4}$	13.3
PM54	7	17.78	3	7.62	$5 t_{6}$	12.86	918	23.02
PM55	$8 \frac{3}{4}$	22.23	3	7.62	$5{ }_{6}$	12.86	91	23.02
PM56	$8 \frac{3}{4}$	22.23	3	7.62	5tb	12.86	916	23.02

Power Dissipations at Maximam Input Voltage

Unit	Max Full Load	Max Overload	Unit	Max Full Load	Max Overload
PM44	12 W	13 W	PM50	50 W	60 W
PM45	15 W	20 W	PM51	65 W	105 W
PM46	20 W	33 W	PM52	90 W	155 W
PM47	30 W	35 W	PM53	95 W	130 W
PM48	45 W	60 W	PM54	130 W	200 W
PM49	60 W	95 W	PM55	180 W	310 W
			PM56	190 W	260 W

3.2 AC SUPPLY

Verify that the connections to the primary of supply transformer T1 corresponds to the voltage of the local supply, and that the supply fuse FS1 is correct for the unit in use (see Table 4)

The primary connections of T1 should be paralleled when the local supply is 100 to 125 V . Fig. 3 shows the connections for a 110 V supply, and Table 2 gives the connections for supplies between 100 and 125 V .

Fig. 3 Transformer Primary Connections for 110V

Table 2 Transformer Primary Connections 100-125V

Supply	Neutral	Line	Neutral Link Between	Line Link Between
100 V	0	100	$0-0$	$100-100$
105 V	5	100	$5-5$	$100-100$
110 V	0	110	$0-0$	$110-110$
115 V	5	110	$5-5$	$110-110$
120 V	0	120	$0-0$	$120-120$
125 V	5	120	$5-5$	$120-120$

When a 200 to 250 V supply is available, the primary connections of T1 should be made in series. Fig. 4 shows the series connections to be made for a 240 V supply, and Table 3 gives the connections for supplies between 200 and 250 V .

Fig. 4 Transformer Primary Connections for 240 V
Table 3 Transformer Primary Connections 200-250V

Supply	Neutral to Inner Tag	Line to Outer Tag	Diagonal Link Between
200	0	100	$0-100$
210	5	100	$5-100$
220	0	110	$0-110$
230	5	110	$5-110$
240	0	120	$0-120$
250	5	120	$5-120$

Table 4 Fuse Rating (fuses up to 10A must be HRC type)

Power Supply	FS1 				200-250V	FS2	

[^0]
3.2.1. PRELIMINARY CHECKS

Before the line supply is connected to the unit, ensure that the correct fuses are fitted as specified in Table 4. Check that the following terminal links on terminal block TB2 (mounted on the front panel) and TB3 (mounted on the left-hand side of the unit) are in position.
(1) 1 and 2 on TB2 (DC LINK)
(2) $3(+8)$ to 4 on TB2) DC output
(3) $6(-8)$ to 5 on TB2)
(4) 1 and 2 on TB3 (External programming of current)
(5) 4 and 5 on TB3 (External programming of voltage)

NOTE If these links are not made the unit will not operate satisfactorily.

When the preliminary checks have been completed, connect the line supply to the following terminals on TB1.

Line to 1
Neutral to 2
Ground to 3
3.3 RESETTING THE OUTPUT VOLTAGE
(a) SETTING THE OUTPUT VOLTAGE

The unit is adjusted in the factory to provide the voltage indicated on the serial number panel, with a further $\pm 0.5 \mathrm{~V}$ control available on the SET O/P VOLTS control positioned on the front panel. The following conditions should be observed.
(1) The SET OUTPUT CURRENT control on the front panel should be fully clockwise.
(2) The level of output voltage does not exceed the trip level of the overvoltage protection circuit (when fitted).
(b) TO CHANGE THE OUTPUT VOLTAGE
(1) Connect a voltmeter across terminals $3(+s)$ and $5(-s)$ on TB2.
(2) Adjust the transformer taps on the secondary of T1 and R110, R111, R117, R118 and (R50 and R57 if fitted), as shown on tables 8,9 and 10 .
(3) Switch on the AC Supply.
(4) Adjust the SET OUTPUT VOLTS control to obtain the exact output level required.
(c) EXTERNAL PROGRAMMING OF OUTPUT VOLTAGE (see Section 3.7)

3.4 RESETTING THE OVERLOAD PROTECTION

(a) The current re-entrant limit level is determined by the SET OUTPUT CURRENT control on the front panel. The control can be set to any value of current within the range 15% to 105% of the maximum rated current of the unit, provided that the correct value of R110 and R111 has been fitted.

Graph 1 Output Voltage Plotted Against Output Current
To set the output current rotate the SET OUTPUT CURRENT control fully clockwise. Switch on the AC supply.

Connect an ammeter and adjustable load between terminals 4 (+) and $5(-)$ on TB2, and carefully adjust the load until the ammeter indicates the unit is delivering the required current.

Adjust the SET OUTPUT CURRENT control counter clockwise until the output voltage starts to fall, and then rotate the control a small amount clockwise.

Decrease the load resistance slowly and verify the maximum load current available.

NOTE As the output current setting is reduced so the maximum short circuit current is reduced proportionately, as shown on Graph 1.
(b). TO OPERATE THE POWER SUPPLY IN CONSTANT CURRENT MODE
Remove the link between terminals 20 and 21, and 18 and 19 on the

AUX PC Board, and fit an external programming resistor between terminals 2 and 3 on TB3 having first removed the link between terminals 1 and 2. The maximum nominal currents allowable are shown on Tables 5, 6 and 7.

NOTE At no time must the current exceed the limit shown on Graph 2.
For currents other than those shown on Tables 5, 6 and 7 calculate programming resistor values as per specification, Section 2.

Graph 2 shows limits to output current in constant I mode
(c) CONSTANT CURRENT SWITCH ON

To remove the 200 mS constant current switch on facility, remove the link between the terminals 20 and 21 on the AUX PC Board.

Table 5 Maximum Current in Constant Current Mode

With Output Volts set to	Nominal Output Current (Max)				
	PM44	PM47	PM50	PM53	PM56
1	1.0 A	3.0 A	5.0 A	10 A	20 A
2	1.0	3.0	5.0	10	20
3	1.0	3.0	5.0	10	20
4	.83	2.9	4.1	8.3	16.6
5	.74	2.2	3.7	7.4	14.8
6	.62	1.9	3.1	6.2	12.4
7	.57	1.7	2.8	5.7	11.4
8	.54	1.6	2.7	5.4	10.8
9	.50	1.5	2.5	5.0	10.0
10	.48	1.4	2.4	4.8	9.6
11	.45	1.4	2.2	4.5	9.0
12	.42	1.3	2.1	4.2	8.4
13	.40	1.2	2.0	4.0	8.0
14	.39	1.2	1.9	3.9	7.8
15	.37	1.1	1.8	3.7	7.4

Table 6

With Output Volts set to	Nominal Output Current (Max)			
	PM45	PM48	PM51	PM54
	1.0 A	3.0 A	5 A	10 A
2	1.0	3.0	5	10
3	1.0	3.0	5	10
4	1.0	3.0	5	10
5	1.0	3.0	5	10
6	1.0	3.0	5	10
7	1.0	3.0	5	10
8	.90	2.7	4.5	9
9	.82	2.5	4.1	8.2
10	.77	2.3	3.8	7.7
11	.72	2.2	3.6	7.2
12	.68	2.0	3.4	6.8
13	.65	1.9	3.2	6.5
14	.61	1.8	3.0	6.1
15	.58	1.7	2.9	5.8
16	.57	1.7	2.8	5.7
17	.55	1.6	2.7	5.5
18	.52	1.6	2.6	5.2
19	.51	1.5	2.5	5.1
20	.50	1.5	2.5	5.0
21	.47	1.4	2.3	4.7
22	.44	1.3	2.2	4.4
23	.43	1.3	2.3	4.3
24	.42	1.3	2.1	4.2
25	.40	1.2	2.0	4.0
26	.39	1.2	1.9	3.9
27	.38	1.1	1.9	3.8
28	.37	1.1	1.8	3.7
29	.36	1.1	1.8	3.6
30	.35	1.0	1.7	3.5

Table 7

With Outpu Volts set to	Nominal Output Current (Max)			
	PM46	PM49	PM52	PM55
30	.52 A	.16 A	2.6 A	5.2 A
31	.51	1.5	2.5	5.1
32	.50	1.5	2.5	5.0
33	.49	1.5	2.4	4.9
34	.48	1.4	2.4	4.8
35	.47	1.4	2.4	4.7
36	.46	1.4	2.3	4.6
37	.45	1.3	2.3	4.5
38	.44	1.3	2.2	4.4
39	.43	1.3	2.2	4.3
40	.42	1.3	2.1	4.2
41	.41	1.2	2.1	4.1
42	.40	1.2	2.0	4.0
43	.39	1.2	2.0	3.9
44	.38	1.1	1.9	3.8
45	.38	1.1	1.9	3.8
46	.37	1.1	1.9	3.7
47	.37	1.1	1.9	3.7
48	.36	1.1	1.8	3.6
49	.36	1.1	1.8	3.6
50	.35	1.0	1.8	3.5

3.5 RESETTING THE OVERVOLTAGE PROTECTION (IF FITTED)

(1) Having checked that the overload protection is working, connect a voltmeter from terminal $4(+)$ to terminal $5(-)$ on TB2.
(2) Set the overvoltage control (RV50) mounted on the Overvoltage Board to the maximum setting - fully clockwise.
(3) Set the output voltage by rotating the SET OUTPUT VOLTS control RV101 or by using the external voltage programming facility to the required overvoltage level. (See external voltage programming, Section 3.7).
(4) Slowly turn RV50 counter-clockwise until the overvoltage circuit operates. Operation is evident by a reduction to approximately 1 V on the voltmeter.
(5) Reduce the output voltage by varying the programming resistor to give approximately normal voltage.
(6) Switch off the AC supply, and the switch on again, to reset the circuit.
(7) Increase the output voltage by slowly increasing the programming resistor. This will check the operation of the circuit at the level indicated on the voltmeter.
(8) Remove the External programming resistor.
(9) Check the output voltage setting.

3.6 UNIT CONNECTIONS

Tables 8,9 and 10 show the connections that should be made between the various secondary windings of T1 and the values of R110, R111, R117, R118 and (R50 and R57 if fitted), that should be inserted to obtain the required output voltage. These resistors are located on the AUX. PC Board and R50 and R57 on the O/V PC board.

NOTE When the overvoltage circuit is fitted it is necessary to change the link on the O/V PC board when operating units above 7 V i.e.
$0-7 \mathrm{~V}$ LINK terminals 1 and 9
$8-50 \mathrm{~V}$ LINK terminals 1 and 8

3.7 PROGRAMMING CURRENT AND VOLTAGE Output Characteristics and Programming.

To enable users of these power supplies to have a wide range of operating conditions care has been taken in the design to accommodate facilities for modifying the basic operating characteristic. It will be appreciated that an alteration to the normal characteristic of the power unit must impose certain limits to its operating area.

3.7.1 EXTERNAL PROGRAMMING

Voltage, current and overvoltage protection levels can be controlled externally. To utilise the facility it is necessary to remove terminal links (which disconnect the internal controls from circuit) and connect external resistors by means of remote lines if necessary. By using resistors whose values correspond to the voltage or current required, voltage control, current control and overvoltage control can be effected remotely.

Graph 3

NOTE If remote lines are used, their resistance is to be included in the value of the programming resistor and they should be shielded from stray electromagnetic fields to minimise 'noise' pick-up.

3.7.1 (a) VOLTAGE CONTROL

For external control of voltage, RV101 is disconnected from circuit and replaced by an external potentiometer or fixed resistor. The level of the output voltage is related to the value of the external resistance by the $100 \Omega / \mathrm{V}$ scale factor for all units.

NOTE When the voltage is reduced from the set MAX the MAX current setting is also reduced if re-entrant current mode protection is in use. See Graph 3.

To connect the unit for external programming of voltage the procedure is as follows:-
(1) Switch off AC supply.
(2) Disconnect the link across terminals 4 and 5 of TB3
(3) Connect the external programme resistor to terminal 4 of TB3 and terminal 6 of TB2. (-ve SENSE).
(4) Switch on the AC supply.

3.7.1 (b) CURRENT CONTROL

For external control of current, RV100 is disconnected from circuit and replaced by an external potentiometer or fixed resistor. The level of current is related to the value of the external resistance by the Ω / A scale factor which is given in Section 2 for each of the power supplies. To connect the unit for external programming of current, the procedure is as follows:-
(1) Switch off the AC supply.
(2) Disconnect the link across terminals 1 and 2 of TB3.
(3) Connect the external programme resistor to terminals 3 and 2 of TB3.
(4) Switch on the AC supply.

3.7.1 (c) OVERVOLTAGE CONTROL

For external control of the overvoltage protection circuit, RV50 is disconnected from circuit and replaced by an external potentiometer or resistors. A resistance range from 0 to $3.3 \mathrm{~K} \Omega$ corresponds approximately to an overvoltage protection range of
1.5 V to 120% of FULL OUTPUT VOLTAGE FOR $0-15 \mathrm{~V}$ UNITS 3 V to 120% of FULL OUTPUT VOLTAGE FOR $0-30 \mathrm{~V}$ UNITS 5 V to 120% of FULL OUTPUT VOLTAGE FOR $30-50 \mathrm{~V}$ UNITS

To connect the unit for external programming of overvoltage protection, the procedure is as follows:-
(1) Switch off the AC supply.
(2) Disconnect the link across terminals 4 and 5 on the overvoltage printed circuit board.
(3) Connect an external programme potentiometer of 3.3 K resistance to terminals 4 (slider), 6 and 7 of the printed circuit board connector Alternatively connect fixed resistors between terminals 7 and 4 and between terminals 6 and 4 .
(4) Switch on the AC supply.
(5) Adjust for overvoltage setting.

3.8 PARALLEL AND SERIES OPERATION

3.8.1. Up to a maximum of 5 modular power units can be operated in parallel, (or 3, 20A units) and should be connecred as shown in Fig. 5. For best voltage regulation, the terminal labelled ' P ' on the circuit, (terminal 6 of TB3) on each unit should be returned to a common point, and four-terminal sensing used as described in Section 3.10 - but this is not essential.

NOTE When units are connected in parallei the built-in thyristor of the optional overvoltage circuit in each unit must be made inoperative. because it is not possible to ensure that each thyristor will have an equal share of total current under fault condition unless connected as shown in Fig. 6. This is done by removing the gate connection of the thyristor either at the thyristor itself, or at the overvoltage PC board (terminal 3).

If overvoltage protection is required, an external thyristor of suitable rating for the total parallel current of all units should be used. Its gate terminal should be connected to pin 3 on the overvoltage board of one unit after disconnecting the existing gate connection to MR102. A gate firing current of approximately 50 mA is available from pin 3. The cathode should be connected to the common negative line and the anode to the common positive line. Set overvoltage as in section 3.5 All other units should have gate connections to pin 3 removed as outlined above.

Fig. 5 Parallel Operations
3.8.2. PARALLEL OPERATION WITH BUILT IN THYRISTORS MR102. Units should be connected as shown in Fig. 6 under the conditions as follows:
(a) If necessary each unit is to be set up separately to the required operating conditions as detailed in paragraphs 3.4 and 3.5.
(b) A diode of the same current and voltage rating as the power module, must be connected in series with each output (positive end of the diode to negative terminal of power module.)
(c) Link the 'P' terminals 6 on TB3.
(d) Link the sensing terminal as shown in Fig. 6.

NOTE Because the forward voltage drop of the diode uses all the allowable external lead voltage drop no extra lead length can be allowed for four terminal sensing.

Fig. 6 Parallel Units with Overvoltage Circuits Fitted.
NOTE R106 must be removed from between terminals -ve and -ve sense.
3.8. 3 It is also possible to operate modular power units in series under certain conditions as follows:-
(a) If necessary each unit is to be set up separately to the required operating conditions as detailed in paragraphs 3.4 and 3.5
(b) A diode, of the same current and voltage rating as the power module, must be connected across EACH power module output (positive end of diode to positive terminal of power module).
(c) The number of modules connected in series is limited to give a maximum of 250 V DC.

3.9 OPERATION WITH OTHER POWER SUPPLY UNITS

When power modules are used in conjunction with other power supplies of opposite polarity, provision must be made as in 3.8.3(b) to protect the power module against reverse voltage conditions. The rating of the diode used must be sufficient to carry the fault current generated.

3. 10 FOUR-TERMINAL SENSING

Where long external output leads are used, four-terminal sensing is provided to enable the load voltage regulation of the power supply to be maintained at the load connections. The two links between the +ve output and the +ve sense, and the -ve output and the -ve sense terminals should be removed and connections made as shown in Fig. 7. These output connections should be run together and a decoupling capacitor, similar to C102 in the power supply, connected at the load terminals if the high frequency output impedance is to be maintained. Parallel connection should be made as shown in Fig. 8.

The maximum permissible voltage drop in the external leads when using four-terminal sensing is 0.5 V total in both leads i.e. 0.25 V in each lead +ve and -ve or 0.5 V in one supply lead with a ground return of negligible resistance. The total permissible length of lead for 0.5 V drop is listed in Table 11 for various wire sizes and current ratings. Note that this is the total permissible loop length 'go and return' and that the power supply can only be situated at half this distance from the load for a two wire +ve and -ve lead svstem.

Fig. 7 Four-terminal Sensing

Fig. 8 Four-terminal Sensing (Parallel)

Table 8 Voltage Adjustments PM44, 47, 50, 53, 56.

NOTE
Resistors Types
R110 R111
R117
Electrosil TR $5+2 \%$
CGS CR1. 5 up to $5 \mathrm{~V}+5 \%$ 6 V to $15 \mathrm{~V} \pm 2 \%$

R50
Electrosil TR5 $\pm 5 \%$
R57
Electrosil TR5 $\pm 5 \%$

Table 9 Voltage Adjustments PM45, 48, 51, 54.

NOTE
Resistor Types
Electrosil TR5 $+2 \%$

R117

R118
R50
R57

CGS CR1. 5 up to $5 \mathrm{~V}+5 \%$

$$
6 \mathrm{~V} \text { to } 30 \mathrm{~V} \pm 2 \%
$$

Electrosil TR5 $\pm 5 \%$
Electrosil TR5 $\pm 5 \%$
Up to 18 V Electrosil TR5 $+5 \%$
19-30V Welwyn W21 $\pm 5 \%$

Table 10 Voltage Adjustments PM46, 49, 52, 55.

CONNECTIONS						RESISTOR VALUES						
Volts	Rec	Tran	nsfor	rmer		Rec	R110	R111	R117	R118	R50	R57
out	(1)	$\begin{array}{\|l\|} \hline 40 \\ -+ \\ \hline \end{array}$	$\underline{6}$	$\underline{3}+1$	19	(2)						
30			¢	-	¢		3.3 K	510	3K	56 K	1.5 K	330
31							3.6 K	330	3K	160K	2.7 K	390
32							3.6 K	470	3.3 K	39K	2.7 K	390
33							3.6 K	620	3.3 K	68K	2.7 K	470
34							3.9 K	470	3.3 K	220K	2.7 K	470
35						\rightarrow	3.9 K	560	3.6 K	47K	2.7 K	470
36						\bullet	2.4 K	1.2 K	3.6K	82K	2.7 K	470
37							2.7 K	2.0 K	3.6 K	220K	2.7 K	470
33							2.7 K	2.2 K	3.9 K	56K	2.7 K	560
39						-	3.0 K	2.0 K	3.9 K	91K	3.3 K	560
40						\bullet	3. 3 K	1.8 K	3.9K	330 K	3.3 K	560
41						-	3.3K	2.0 K	4.3 K	47K	3.3 K	560
42							3.6 K	1.8 K	4.3 K	68K	3.3 K	560
43		,				.	3.3 K	2.2 K	4.3K	120K	3.3 K	560
44						\rightarrow	3.6 K	2.0 K	4.3K	330 K	3.9 K	560
45						\rightarrow	3.6 K	2.2 K	4.35 K		3.9 K	680
46		-	-			\bullet	3.9K	2.0K	4.45K		3.9K	680
47		- \cdot			-	\square	4.3 K	1.8 K	4.55 K		3. 9 K	680
48			-	-		\square	4.7 K	1.5 K	4.65 K		4. 3K	680
49			- ${ }^{\circ}$	T +		\square	4.3 K	2.0 K	4.75K		4. 3 K	680
50		1	+1	$1+$	+1-	\square	4.3K	2.2 K	4.85 K	z	4. 3K	680

NOTE Resistors Types

R110 R111
R117
R118
R50
R57

Electrosil TR5 $+2 \%$
CGS CR1. 530 and $31 \mathrm{~V}+2 \%$ 32 V to $50 \mathrm{~V} \pm 1 \%$
Electrosil TR5 $\pm 5 \%$
Electrosil TR5 $\pm 5 \%$
30-32V Welwyn W21 $\pm 5 \%$
$33-50 \mathrm{~V}$ RVW4-J $+5 \%$

Table 11 Permissible lead length for four-terminal sensings.

Wire	Lead Length (feet and metres)									
Size	$\begin{aligned} & \text { PM44, } 45 \\ & 46 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { PM47, } 48 \\ & 49 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { PM50, } 51 \\ & 52 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { PM53, } 54 \\ & 55 \end{aligned}$		PM56	
		m		m			ft	m	ft	m
7/0076		6								
14/0076		12		4						
23/0076		18		6						
40/0076						6.5		3		
70/0076						11	18	5.5		
110/0076							29	9		4.5
162/0076										

Fig. 9 Functional Diagram of Power Unit

4.1 GENERAL

A simplified functional diagram of the circuitry of the power unit is shown in Fig. 9. The voltage and current modes of operation are controlled by two independent bridge circuits. Any variation of load current or output voltage produces an out-of-balance condition of the associated bridge. The output of the bridge is applied to a comparator amplifier whose output is fed into a mode gate. The output of the mode gate controls the output resistance of a series regulator which (assuming the initial variation was within the present operating limits of the unit) restores the original mode conditions.

The circuit cannot operate in both modes simultaneously, and only the control signal from the bridge corresponding to the mode of operation passes through the gate. Crossover from one mode to another is automatic, and the point of crossover is determined by the settings of the two controls SET OUTPUT VOLTS (RV101) and SET OUTPUT CURRENT (RV100).

An auxiliary stabilised power supply is also incorporated. This supplies the bridge circuits and the comparator amplifiers; to simplify the functional diagram, the output connections of the auxiliary supply are not shown. Overvoltage protection is afforded by a sensing circuit connected across the stabilised output terminals The level at which the circuit operates is controlled by the setting of a potentiometer.

4.2 SUPPLY RECTIFICATION AND SMOOTHING

The AC input voltage within the range $100 \mathrm{~V}-125 \mathrm{~V}$ and $200 \mathrm{~V}-250 \mathrm{~V}$, 48 Hz to 450 Hz is applied, via the terminals of TB 1 , to the primary of T1. Interconnection of the primary terminals for different voltage supplies is given in Section 3. 2.

The transformer has five secondary windings. The output voltage derived from one winding is used for the auxiliary supply. This AC voltage is full-wave rectified by MR1 and MR2 and smoothed by R1, C1 and C2. The output voltage of the other windings connected as per Section 3.6 is applied to the bridge rectifier MR100 and then smoothed by C101. The resultant 'raw' DC is protected by fuse FS2 and then applied to the series regulator.

4.3 SERIES REGULATOR

The series regulator contains transistor VT100 and transistor VT101 (which may consist of several transistors in parallel) arranged in a Darlington-pair configuration. An increasing positive signal applied to the base of VT100 decreases the output resistance of the circuit; conversely, a decreasing signal increases the output resistance. Each transistor in VT101 has a separate resistor in the emitter circuit to provide current sharing between transistors. The voltage developed by the flow of load current through the resistor R101 is connected across a common potential divider network of resistor R102 and R103 to provide a voltage signal nroportional to the output current which is standardised at 0.85 V ior 100% output current.

4.4 BRIDGE REFERENCE SOURCES

Two zener diodes, MR4 and MR5, are used as reference sources in the voltage and current bridges, respectively.

These diodes are connected in series with the resistor network of R10, R11 and R12 across the auxiliary voltage supply line, and MR4 is also used as the reference for the stabilising circuitry of the auxiliary voltage supply. The flow of current through the two diodes is determined by accurate adjustment of the value of the resistor network. This level of current is maintained by the stabilised auxiliary voltage.

4.5 STABILISATION OF THE AUXILIARY SUPPLY

Stabi lisation is effected by the sensing network R5, R6 and R9 and the associated circuitry of the transistors VT1 to VT4. A proportion of any change in the auxiliary voltage is fed to the base of VT3 which is in a long-tail pair configuration with VT4.
Assume that the voltage across the sensing network tends to rise. An increase in the voltage drop across R6 occurs. This increases the base voltage of VT3 which is compared with the fixed base voltage of VT4 establised by MR4. The resultant positive increase of the collector potential of VT4 decreases the conduction of VT2: the emitter voltage of VT2 is fixed by Zener diode MR3. As a result, the decreased conduction of VT2 reduces the base drive of the series regulator transistor VT1. Thus, the resistance of VT1 increases and counteracts the initial tendency of the output voltage to rıse. Resistor R4 ensures initial conduction of VT1.

4.6 VOLTAGE CONTROL BRIDGE

The circuitry which senses any tendency of the output voltage to change is shown in a bridge configuration in Fig. 9 and the Circuit Diagram Fig. 12. Any unbalance of the bridge is detected by the long-tail pair VT5 and VT6 which operate as the voltage comparator amplifier. The two diodes, MR6 and MR7, connected from the base of VT5 to the base of VT6 protect the two transistors against heavy dishcarge current from C102 if the capacitor is in a charged condition when the sense lines are connected.
As shown in Fig. 9 the resistor network R14, R15, and R16 and RV101, R117 and R118 form two arms of the voltage control bridge. When the bridge is balanced, the voltage condition is as follows:-

$$
\begin{array}{ll}
\mathrm{V}_{\text {MR4 }} & = \\
\mathrm{V}_{(\mathrm{RV} 101+\mathrm{R} 117 / \mathrm{R} 118)} & =\mathrm{V}_{\text {(R14+R15/R16) }} \\
\text { OUT }
\end{array}
$$

For VOUT to equal (RV101 + R117/R118) at all settings of RV101, R117 and R118, the output voltage must be a direct function of the resistance of RV101, R117 and R118.

4.7 VOLTAGE CONTROL

With the bridge balanced, the circuit will remain in equilibrium until the output voltage tends to change. Any change in output voltage across the load is fed back, via the positive sense line to the base of VT6 where it is compared with the base voltage of VT5. The resultant change of level of the collector voltage of VT5 is applied to MR8 which with MR9 forms the mode gate. A change in signal to MR8 results in a change of output resistance of the series regulator in such a direction as to counteract the original change in voltage.

4.8 CURRENT CONTROL BRIDGE

The circuitry forms a bridge configuration as shown in Fig. 10 and the Circuit Diagram Fig. 12.

The output current in passing through the R101's in parallel provides a voltage signal proportional to the output current which is divided down to a standard level by resistors R102 and

R103 in parallel with R104. This signal is compared with the voltage generated across RV101 by the current i_{1} (which is the sum of currents i_{2} and i_{3}) by the long-tail pair VT7 and VT8 operating as a comparator amplifier.

When the power unit is operating in the current mode the voltage amplifier is inoperative and the current bridge is in a balanced condition. The voltage conditions are then as follows:-

$$
\mathrm{I}_{\text {OUT }} \times \mathrm{R} 101\left[\frac{\mathrm{R} 103 / \mathrm{R} 104}{\mathrm{R} 102+\mathrm{R} 103 / \mathrm{R} 104}\right]=\mathrm{i}_{1} \times \mathrm{RV} 100
$$

i.e. $I_{\text {OUT }}=K \times i_{1} \times$ RV100

4.8.1 RE-ENTRANT CURRENT MODE

i_{3} is supplied from the -ve auxiliary supply (MR5) via R20, R21 and R22 and therefore is essentially constant under all output voltage conditions. i_{2} is supplied from the-ve output line via R119, R111 and R110 and is therefore proportional to output voltage.

As the load resistance changes from a high value $R_{c v}$ through the critical value R_{c} (where the power unit changes from voltage controlled to current controlled operation) to a low value $\mathbf{R}_{\mathbf{c r}}$ the output current falls at the same time as the output voltage falls as shown in Fig. 11.

At the limit, i.e. short circuit load
VOUT $=0$
hence i_{2} $=0$
and therefore

$$
\mathrm{i}_{1} \quad=\quad \mathrm{i}_{3}
$$

and therefore for balance

$$
\text { LOUT } \quad=\quad K \times \text { i3 } \times \text { RV100 }
$$

i_{3} therefore sets the maximum short circuit current from the unit.

Fig. 11 Output Voltage plotted against Output Current in Re-Entrant Mode

4.8.2 CONSTANT CURRENT MODE

In the constant current mode i_{2} is disconnected and the output current is therefore proportional to i_{3} only and is therefore essentially not affected by the output voltage.

4.8. 3 SERIES SWITCH-ON CIRCUIT

Due to the re-entrant circuit protection it is not possible to connect two or more power supplies in series with a common load current. It has therefore been necessary to modify the characteristic at switch on so that for approximately 200 mS the supply will go into a constant current mode, this being the time the supplies take to stabilise their voltages.

At switch on the output voltage is zero, and hence without the switch-on circuit

$$
\begin{aligned}
\mathrm{i}_{1} & =\mathrm{i}_{3} \\
\text { and therefore } 1_{\mathrm{OUT}} & =\mathrm{K} \times \mathrm{i}_{3} \times \text { RV100 } \\
& =10 \% \text { of output current }
\end{aligned}
$$

To overcome this problem the current i_{2} is provided via the switch-on circuit for the first 200 mSec .

Now as C103 is charging at switch on VT102 is biased on, hence R119 is connected via VT102 to MR101 which in conjunction with MR5 forms a -2 V supply. Hence R119 has the same i_{2} flowing as if the output voltage was stabilised at full output, and hence the current will be held constant at I for APP. 200 mS the charging time of C103, R114.

VT102 is biased off when C103 has charged and has no further part in the circuit.

4.9 CURRENT CONTROL

With the bridge balanced, the circuit will remain in equilibrium until the output current tends to change. Any change of load current changes the voltage drop across resistors R103, R104 with respect to the base of VT8. A proportion of this voltage change is applied, via RV100 to the base of VT7. The resultant change in the level of the collector voltage of VT8 is then applied. MR9 which with MR8 forms the mode gate. A change in signal to MR9 results in a change of output resistance of the series regulator in such a
direction as to counteract the original change in current

4.10 MODE OF OPERATION

The mode of operation of the power supply is determined by the load conditions and the setting of the voltage and current controls. Automatic crossover from one mode to the other is depicted in Fig. 11 and occurs at the value of load resistor designated $\mathbf{R}_{\mathbf{c}}$. The value (in ohms) of the load resistor R_{c} is obtained by dividing the voltage (volts) set by RV101, R117 and R118 and the current (amps) set by RV100. When the power supply is connected to any load $R_{c v}$ whose resistance is more than R_{c} the mode of operation is constant voltage. When the resistance of the load decreases to any value $R_{c r}$ below R_{c} the mode of operation is re-entrant or constant current.

During either mode of operation, both comparator amplifiers produce output voltages which are applied to two diodes in the mode gate. Diode MR8 is controlled by the output of the voltage comparator (collector of VT5), and diode MR9 is controlled by the output of the current comparator (collector of VT8). The diode which conducts is the one receiving the higher output voltage. The output from the conducting diode is amplified by VT9 and then applied, via the emitter-follower VT10, to the series regulator. Except for a brief transitional period at crossover, both diodes do not conduct simultaneously; thus, it is always the higher output of the two comparators which controls the resistance of the series regulator.
NOTE that VT9 introduces polarity inversion, and a high positive output from the mode gate produces high resistance of the series regulator.

The crossover action is best understood by considering the operation of the control circuits as the resistance of the load is decreased from a high value of $R_{c v}$ to a low value below R_{c}. At first, with a very low load current flowing, the collector voltage of VT8 is very low because the voltage developed across R103, R104 is low, and the resultant low base voltage of VT7 allows VT8 to conduct heavily. At the same time, the collector voltage of VT6 is high because with low load current the stabilised output voltage tends to rise, but is held at its predetermined level by heavy conduction of VT6 which results in a high positive potential at the collector of VT5. Thus, of the two signals applied to the mode
gate, the signal from VT5 will take control and effect the high value of output resistance required of the series regulator.

As the resistance of the load is decreased, VT7 senses the increased voltage drop across R103, R104 and increases conduction. This decreases the conduction of VT8 and its collector potential rises. Simultaneously, the collector voltage of VT5 decreases in order to reduce the output resistance of the series regulator so that the higher load current may flow.

This action of the collector voltage of VT8 rising and that of VT5 falling as the resistance of the load decreases continues until at the crossover point the signal from VT8 takes control and a rapid transition from voltage mode to current mode occurs. The output supply voltage of the unit then falls to the level required to sustain the preset current level. This rapid transition from voltage mode to current mode provides overcurrent protection.

4.11 OVERVOLTAGE PROTECTION

The overvoltage protection circuit uses a long-tail pair comparatos circuit containing transistors VT50 and VT51. The input to the base of VT51 is derived from R55 which with R54 forms a potentia divider across the stabilised output supply. VT51 base voltage is compared with the base voltage of VT50 derived from the potentiometer RV50 connected across a Zener diode reference source MR50. The level at which overvoltage protection is required is effected by the setting of RV50; because this level is obviously above the stabilised output voltage, the normal quiescent condition of the long-tail pair is such that VT50 is conducting much more than VT51. In practice, the overvoltage limit is set approximately 10% above the level of the stabilised voltage. If the stabilised output voltage rises above the level set by RV101, transistor VT51 conducts and drives VT52 into heavy conduction. The base voltage of VT52 is fixed by the Zener diode MR51; consequently, VT52 provides a constant current via R57 to the gate electrode of SCR MR102 which fires and produces a short circuit across the terminals of the stabilised output supply.

4. 12 EXTERNAL PROGRAMMING

As explained during the description of the voltage and current control bridges, the balance conditions of the bridges are such that the following conditions exist.
(1) The voltage across the resistance of RV101 (SET OUTPUT VOLTS) is equal to the output voltage. A change of resistance of RV101 produces a directly proportional change of output voltage. (2) The voltage across the resistance of RV100 (SET OUTPUT CURRENT) is equal to the voltage across resistors R103, R104 which, in turn, is directly proportional to output current. A change of resistance of RV100 produces a directly proportional change of output current.

Thus, resistance-output voltage and resistance-output current relationships exist, and these are expressed as Ω / V and Ω / A scale factors, respectively. By disconnecting the variable resistors from circuit and in their place connecting - by remote lines if necessary fixed or variable resistors, the output voltage or current level can be set by altering the value of resistance. The advantage of this circuit facility is that without any monitoring or metering aid, the voltage and current level can be set simply by the value of resistance in circuit. The method of connecting the unit for external programming of output voltage, output current and overvoltage protection is detailed in Section 3.

5.1 ACCESS TO COMPONENTS

All components, except those mounted on the printed circuit boards, are accessible after removing the front panel (held by fixing screws) and detaching the heat sink assemblies from the side bars. Access to the components on the printed circuit board during operating conditions may be obtained by removing the board and connecting it to the socket in the unit via an extension board (Advance Part No. 19014).

NOTE The printed circuit boards must not be removed from the modules without first switching off the AC supply.
5.2 REPLACEMENT SERVICING OF PRINTED CIRCUIT BOARDS The control boards used in any of the units in the PM44-56 range are interchangeable. The Overvoltage Boards, if fitted in the units, are also interchangeable.

The extension board is available as a servicing aid. This board can be used as an extended connector for any printed circuit board in the entire range PM44-56 of modular Stabilised Power Supplies.

All boards are available as spare parts, and the following Advance Part No. should be quoted when ordering.
(1) Control Board
Advance Part No. 26521
(2) Extension Board
Advance Part No. 19014

5.3 FAULT FINDING

Determine the state of the output voltage ON LOAD and proceed as outlined in Table 12.

Table 12. Fault Finding Chart

Output Voltage	Fault	Action
No Output	Input Fuse blown	Change fuse.
	MR100 open circuit	Change MR100
	FS1 blown AND OR	Change fuse. Check
	FS2	circuit for cause. VT1 may be short circuit.
		Refit
	DC LINK OPEN	CCT

Table 12 Fault Finding Chart (Cont)

Output Voltage	Fault	Action
Low Output	VT101 open circuit RV100 fully anti clock Printed circuit board out of socket or faulty MR100 partially open circuit MR102 has fired (if fitted) RV100 Set Low Re-entrant Links o/c Printed circuit board faulty	Change VT101. Re. Adj. Replace with new assembly. Change MR100 Check external circuit for overvoltage. Readjust Replace Replace with new assembly.
High unstabilised output) High Ripple	VT100 short circuit VT101 short circuit Printed circuit board faulty	Change VT100 Change VT101 Replace with new assembly. Check to see why MR102 has not fired. If fitted.
Excessive Output Current	Programming link TB3 (2 \& 3) o/c Programming link Resistor o/c Re-entrant links in for constant current operation	Replace Replace

5.4 MEAN TIME BETWEEN FAILURES

The figures quoted below are estimated from data currently available from international sources. These estimates are based on continuous operation at maximum temperature, output voltage and current, and will improve appreciably if units are operated in less arduous conditions. An indication of the possible improvement can be obtained from the accompanying graphs.

Unit	PM44-47	PM48-50	PM51-53	PM54-56
Estimated	35,000	34,000	29,000	25,000
MTBF hrs				

This instrument is guaranteed for a period of one year from its delivery to the purchaser, covering the replacement of defective parts other than tubes, semiconductors and fuses. Tubes and semiconductors are subject to the manufacturers' guarantee.

We maintain comprehensive after sales facilities and the instrument can, if necessary, be returned to our factory for servicing. The Type and Serial Number of the instrument should always be quoted, together with full details of any fault and the service required. The Service Department can also provide maintenance and repair information by telephone or letter.

Equipment returned to us for servicing must be adequately packed, preferably in the special box supplied, and shipped with the transportation charges prepaid. We can accept no responsibility for instruments arriving damaged. Should the cause of failure during the guarantee period be due to misuse or abuse of the instrument, or if the guarantee has expired, the repair will be put in hand without delay and charged unless other instructions are received.

OUR SALES, SERVICE AND ENGINEERING DEPARTMENTS ARE READY TO ASSIST YOU AT ALL TIMES.

[^0]: *Fast Blow E E GS150/25

