Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website <u>https://blunham.com/Radar</u>, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (<u>https://blunham.com/Radar</u>). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson In the village of Blunham, Bedfordshire.

AIR PUBLICATION 116U-0507-16

POWER SUPPLIES (ADVANCE TYPE PM44-56)

BY COMMAND OF THE DEFENCE COUNCIL

1. Dunnite

(Ministry of Defence)

Issued Mar. 73

•

Prelim. Page 1/2

High Reliability Power Supplies PM44-56

Instruction Manual

Raynham Road Bishops Stortford Herts Telephone 0279-55155 Telex 81510

Division of ADVANCE ELECTRONICS LIMITED

2 Contents

SECTION	1	INTRODUCTION	5
SECTION	2	SPECIFICATION	6
SECTION	3	OPERATION	9
	3.1	Installation, Dimensions, Weights	9
		and Power Dissipations	
	3.2	AC Supply and Preliminary Checks	11
	3.3	Resetting the Output Voltage	14
	3.4	Resetting the Overload Protection	15
	3.5	Resetting the Overvoltage Protection	20
	3.6	Unit Connections	20
	3.7	Programming Current and Voltage	21
	3.8	Parallel and Series Operation	23
	3.9	Operation with other Power Supply Units	25
	3.10	Four-terminal Sensing	25
SECTION	4	CIRCUIT DESCRIPTION	31
	4.1	General	31
	4.2	Supply Rectification and Smoothing	31
	4.3	Series Regulator	32
	4.4	Bridge Reference Source	32
	4.5	Stabilisation of Auxiliary Supply	32
	4.6	Voltage Control Bridge	33
	4.7	Voltage Control	33
	4.8	Current Control Bridge	33
	4.9	Current Control	36
	4.10	Mode of Operation	37
	4.11	Overvoltage Protection	38
	4.12	External Programming	38
SECTION	5	MAINTENANCE	40
	5.1	Access to Components	40
	5.2	Replacement Servicing of	40
		Printed Circuit Boards	
	5.3	Fault Finding	40
	5.4	MTBF	42
SECTION	6	COMPONENT LIST AND	۸J
		ILLUSTRATIONS	-10

Contents

SECTION 7	GUARANTEE AND SERVICE FACILITIES	47
	TABLES	
Table 1	Fixings, Dimensions, Weights and	9
	Dissipations	
Table 2	Transformer Primary Connections 100-125V	12
Table 3	Transformer Primary Connections 200-250V	12
Table 4	Fuse Ratings	13
Table 5	Constant Current Mode Ratings 0-15V	17
Table 6	Constant Current Mode Ratings 0-30V	13
Table 7	Constant Current Mode Ratings 30-50V	19
Table 8	Voltage Adjustments 0–15V Units	27
Table 9	Voltage Adjustments 0-30V Units	28
Table 10	Voltage Adjustments 30-50V Units	29
Table 11	Permissible Lead Lengths	30
Table 12	Fault Finding Chart	40
	ILLUSTRATIONS	
Fig. 1	Typical Modular Power Supply	4
Fig. 2	Dimension Diagrams	9
Fig. 3	Transformer Primary Connections 110V	11
Fig.4	Transformer Primary Connections 240V	12
Fig. 5	Parallel Operation	23
Fig. 6	Parallel Units with Overvoltage Circuits	24
Fig.7	Four-terminal Sensing	26
Fig.8	Four-terminal Sensing (Parallel)	26
Fig.9	Functional Diagram of Power Unit	30
Fig. 10	Current Control Circuit	34
Fig. 11	Output Voltage plotted against Output Current in Re-entrant Mode	35
Fig. 12	Circuit Diagram and Component List	43
-	0	45

This new range of Modular Power supplies, PM44-56, marks a radical departure from accepted attitudes in commercial power supply design.

The range provides pre-set output voltages in the range 0-50V in current ratings of 1, 3, 5, 10A and 20A with very extensive facilities and a high degree of reliability.

Facilities available include the selection of various output characteristics, such as constant current operation, by means of internal links, external programming and optional built in SCR overvoltage protection.

Particular emphasis has been placed on a high specification, rugged mechanical construction and long-life components. As a result of this attention it is possible to quote estimated MTBF figures for each individual unit.

- •10,000:1 Stability
- •Re-entrant protection with constant current optional
- •Programmeable on Voltage and Current
- •MTBF estimated not less than 25,000 hours

Low Voltage Units for Integrated Circuits.

The range of Modular Power Supplies PM16-20 consists of units having a fully variable output of 0 to 7V with a choice of current ratings from 1 to 20A. They have been specifically designed to meet the requirements of Integrated Circuit Technology with particular reference to very high reliability, and incorporate a new protection circuit to safeguard both the power supply and the load. This range offers the Integrated Circuit user a power supply to satisfy most applications.

6 Specification

INPUT VOLTAGE 100, 105, 110, 115, 120, 125, 200, 220, 230, 240, 250V <u>+</u>10% 48-450Hz

LINE REGULATION Less than $\pm (0.001\% + 30\mu V)$ for $\pm 10\%$ AC line variation at any specified tap.

LOAD REGULATION Less than (0.02% + 1 mV) for a no load to full load swing

RIPPLE

Less than $400\mu V \text{ pk-pk}$, (typically $250\mu \text{ pk-pk}$)

TEMPERATURE CO-EFFICIENT Less than $(0.015\% + 200\mu V)$ per ^OC

OUTPUT IMPEDANCE Less than 0.25 Ω at 100kHz. Typically less than 0.1 Ω at 100kHz.

RECOVERY TIME

For a full load step change the output voltage will recover in approximately 20μ seconds to within 10mV of regulation Band.

OVERLOAD PROTECTION

Re-ent rant overload protection which is variable from 15% to 105% at full load current by a potentiometer on the front panel. At switch-on the protection may be set to operate at constant current for a period of 200m seconds after which it reverts to re-entrant operation. This facility is optional and may be selected by an internal link but is not available below 4 volts output.

OVERVOLTAGE PROTECTION

Optional

Overvoltage protection is by means of a high speed SCR crowbar with fuse. The trip voltage may be varied by potentiometer or programming resistors. This facility is an optional extra which can be built into the unit if required.

TEMPERATURE RANGE -10^o to +60^oC

Specification

INSULATION

Floating output must not exceed ± 250 V DC from ground. Input tested 500 V DC live to ground, and live to output greater than 10M ohms.

CONSTANT CURRENT OPERATION

Optional

All units can be operated in the constant current mode at reduced ratings. Further details can be found on Graph 2 Section 3 and Tables 5 to 7.

PROGRAMMING

External programming of both voltage and current by means of external resistors, is possible and is restricted to operation within the re-entrant characteristic, or within the constant current restrictions if operating in this mode. Further details of this form of operation can be found in Section 3.

PROGRAMMING RESISTANCES

VOLTAGE MODE $100\Omega/\text{volt} \pm \frac{1}{4}\%$ CURRENT MODE $100\Omega/100\%$ of output current $\pm 3\%$ for re-entrant current mode $1050\Omega/100\%$ of output current $\pm 3\%$ for constant current mode

OUTPUT VOLTAGES AND CURRENTS

Output Voltage	Output Current					
	1 A	3A	5A	10A	20A	
0-15V	PM44	PM47	PM50	PM53	PM56	
0 - 30 V	PM45	PM48	PM51	PM54	-	
30-50V	PM46	PM49	PM52	PM55	-	

Output Voltages factory pre-set in 1V increments and variable by $\pm 0.5V$ min by a potentiometer on the front panel.

FACTORY FITTED OPTIONS Extra SUFFIX 'X' Alternative PC board assembly to give $(0.005\% + 50\mu V)/^{O}C$ temperature Co-efficient fitted instead of standard (.015% + 200 μ V)/^OC temperature co-efficient.

- SUFFIX 'Y'The Power Unit will be set to operate in
constant current mode at the ratings in Tables
5, 6 and 7 instead of standard re-entrant mode.SUFFIX 171An SCB everyeltage protection circuit will be
- SUFFIX 'Z' An SCR overvoltage protection circuit will be fitted within the Power Unit normally set to 10% or 1 volt (whichever is greater) above the nominal output voltage.

3.1 INSTALLATION

Fig. 2 Dimension Diagrams

Table 1	Fixing	Centre	Data,	Dimensions,	Weights	and	Dissipations
---------	--------	--------	-------	-------------	---------	-----	--------------

Overall Dimensions and Weights								
Туре	Heig A	zht	Widt B	h	Leng C	th	Wei	ight
	in	cm	in	cm	in	cm	lb	kg
PM44	51	13.0	$3\frac{9}{32}$	8.3	5 <u>1</u>	13.0	4	1.8
PM45	5 <u>1</u>	13.0	4 <u>4</u>	11.8	5 j	13.0	6	2.7
PM46	58	13.0	332	8.3	9 <u>1</u>	23.5	8	3.6
PM47	58	13.0	332	8.3	9 <u>1</u>	23.5	8	3.6
PM48	5 ¹ 8	13.0	464	11.8	9 1	23.5	11	5.0
PM49	$5\frac{1}{8}$	13.0	$7\frac{3}{8}$	18.7	$9\frac{1}{4}$	23.5	15	6.8
PM50	$5\frac{1}{8}$	13.0	$4\frac{5}{8}$	11.8	91	23.5	11	5.0
PM51	58	13.0	$7\frac{3}{8}$	18.7	$9\frac{1}{4}$	23.5	17	7.7
PM52	518	13.0	$4\frac{5}{8}$	11.8	$15\frac{1}{16}$	38.2	21	9.5
PM53	5 1	13.0	$7\frac{3}{8}$	18.7	$9\frac{1}{4}$	23.5	17	7.7
PM54	5분	13.0	$7\frac{3}{8}$	18.7	151	38.2	35	15.9
PM55	58	13.0	$9\frac{1}{8}$	23.2	1518	38.2	44	20.0
PM56	5 <u>1</u>	13.0	9 <u>1</u>	23.2	15tg	38.2	44	20.0

Section 3

Fixing Centre	8							
Туре	D		E		F		G	
• -	in	cm	in	cm	in	cm	in	cm
PM44	$4\frac{3}{4}$	12.07	1	2.54	-	5	3	7.94
PM45	$4\frac{3}{4}$	12.07	1	2.54	-	-	3	7.94
PM46	$4\frac{3}{4}$	12.07	1	2.54	-	-	$7\frac{1}{4}$	18.42
PM47	$4\frac{3}{4}$	12.07	1	2.54	-	-	$7\frac{1}{4}$	18.42
PM48	$4\frac{3}{4}$	12.07	1	2.54	-	-	71	18.42
РМ49	$4\frac{3}{4}$	12.07	1	2.54	-	-	$7\frac{1}{4}$	18.42
PM50	$4\frac{3}{4}$	12.07	1	2.54	-	-	$7\frac{1}{4}$	18.42
PM51	$4\frac{3}{4}$	12.07	1	2.54		-	$7\frac{1}{4}$	18.42
PM52	$4\frac{3}{4}$	12.07	$2\frac{1}{16}$	5.24	5_{32}^{15}	13.89	10년	27.78
PM53	4 <u>3</u>	12.07	1	2.54	-	-	$7\frac{1}{4}$	18.42
PM54	$4\frac{3}{4}$	12.07	216	5.24	5 <u>15</u> 5 <u>32</u>	13.89	108	27.78
PM55	$4\frac{3}{4}$	12.07	2 <u>1</u>	5.24	5 ¹⁵ 32	13.89	105	27.78
РМ56	$4\frac{3}{4}$	12.07	2 <u> </u> 16	5.24	5 <u>32</u>	13.89	$10\frac{15}{16}$	27.78
Туре	н		J		ĸ		L	
Туре	H in	cm	J in	cm	K in	cm	L in	cm
Type PM44	H in 232	cm 7.39	J in 1 ¹ /2	cm 3.81	K in -	<u>cm</u>	L in 21/8	cm 5.40
Туре РМ44 РМ45	H in 232 412	cm 7.39 10.85	J in $1\frac{1}{2}$ $1\frac{1}{2}$	cm 3.81 3.81	K in -	<u>cm</u> -	L in 21 21 21	cm 5.40 5.40
Туре РМ44 РМ45 РМ46	H in 232 417 232 232	cm 7.39 10.85 7.39	$ J in 1\frac{1}{2} 1\frac{1}{2} 2 $	cm 3.81 3.81 5.08	K in - -	<u>cm</u> - -	L in 2 8 2 8 5 1	cm 5.40 5.40 13.3
Type PM44 PM45 PM46 PM47	H in 232 417 232 232 232 232	cm 7.39 10.85 7.39 7.39 7.39	J in $1\frac{1}{2}$ $1\frac{1}{2}$ 2 2	cm 3.81 3.81 5.08 5.08	K in - - -	cm - - -	L in 21 21 21 51 51 51 51 51	cm 5.40 5.40 13.3 13.3
Type PM44 PM45 PM46 PM47 PM48	H in 232 41/2 232 232 232 232 232 41/2	cm 7.39 10.85 7.39 7.39 10.85	$ \begin{array}{r} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	cm 3.81 3.81 5.08 5.08 5.08 5.08	K in - - - -	cm - - -	L in 2 ¹ / ₈ 2 ¹ / ₈ 5 ¹ / ₄ 5 ¹ / ₄ 5 ¹ / ₄	cm 5.40 5.40 13.3 13.3 13.3
Type PM44 PM45 PM46 PM47 PM48 PM49	H in 232 417 232 232 232 232 232 47 47 7	cm 7.39 10.85 7.39 7.39 10.85 17.78	$ \begin{array}{r} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	cm 3.81 3.81 5.08 5.08 5.08 5.08 5.08	K in - - - - -	cm - - - -	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$	cm 5.40 5.40 13.3 13.3 13.3 13.3
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50	H in 232 417 232 232 232 232 417 7 417 7	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85	$ \begin{array}{r} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	cm 3.81 3.81 5.08 5.08 5.08 5.08 5.08 5.08	K in - - - - -	cm 	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50 PM51	H in 232 417 232 232 232 232 417 7 417 7	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78	$ \begin{array}{r} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	cm 3.81 3.81 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	K in - - - - - - -	cm 	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$ $5\frac{1}{4}$	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3 13.3 13.3
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50 PM51 PM52	H in 232 412 232 232 232 232 232 232 232 232 232 2	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78 10.85	$ \begin{array}{r} J \\ in \\ \frac{1\frac{1}{2}}{1\frac{1}{2}} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ \end{array} $	cm 3. 81 3. 81 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 7. 62	K in - - - - 518	cm - - - - - 12.86	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ 51	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3 13.3 23.02
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50 PM51 PM52 PM53	H in $2\frac{32}{42}$ $4\frac{17}{232}$ $2\frac{32}{42}$ $4\frac{17}{42}$ 7 $4\frac{17}{42}$ 7 $4\frac{17}{42}$ 7	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78 10.85 17.78	$ \begin{array}{c} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2$	cm 3.81 3.81 5.08	K in - - - - 518 -	cm - - - - - 12.86	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ 51	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50 PM51 PM52 PM53 PM54	H in 232 422 232 232 232 422 7 422 7 422 7 422 7 7 422 7 7 7	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78 10.85 17.78 10.85 17.78	$ \begin{array}{c} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \end{array} $	cm 3.81 3.81 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 7.62 5.08 7.62	K in - - - - 5 5 8 - 5	cm - - - - - 12.86	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ 51	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3 13.3 13.3 23.02 13.3 23.02
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50 PM51 PM52 PM53 PM54 PM55	H in $232 4232 232 424 7 427 7 427 7 427 7 834$	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78 10.85 17.78 10.85 17.78 10.85 17.78 10.78	$ \begin{array}{c} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \end{array} $	cm 3.81 3.81 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08 7.62 5.08 7.62 7.62 7.62	K in - - - - - 5 k 5 k 5 k	cm - - - - - 12.86 - 12.86 12.86	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ 51	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.
Type PM44 PM45 PM46 PM47 PM48 PM49 PM50 PM51 PM52 PM55 PM55 PM55 PM55	H in 232 423 232 423 232 423 232 423 232 423 7 423 7 423 7 423 7 423 7 423 7 423 7 423 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8	cm 7.39 10.85 7.39 7.39 10.85 17.78 10.85 17.78 10.85 17.78 10.85 17.78 17.78 17.78 17.78 22.23 22.23	$ \begin{array}{c} J \\ in \\ 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \end{array} $	cm 3. 81 3. 81 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 5. 08 7. 62 5. 08 7. 62 7. 62 7. 62 7. 62	K in - - - - - - - 5 - 5 - 5 - 5 - 5 - 5 -	cm - - - - - 12.86 12.86 12.86 12.86	L in $2\frac{1}{8}$ $2\frac{1}{8}$ $5\frac{1}{4}$ 51	cm 5.40 5.40 13.3 13.3 13.3 13.3 13.3 13.3 13.3 23.02 13.3 23.02 23.02 23.02

Table 1 Fixing Centre Data, Dimensions, Weights & Dissipations (Cont)

Unit	Max Full Load	Max Overload	Unit	Max Full Load	Max Overload
PM44 PM45 PM46 PM47 PM48 PM49	12W 15W 20W 30W 45W 60W	13W 20W 33W 35W 60W 95W	PM50 PM51 PM52 PM53 PM54 PM55 PM56	50W 65W 90W 95W 130W 180W 190W	60W 105W 155W 130W 200W 310W 260W

Power Dissipations at Maximum Input Voltage

3.2 AC SUPPLY

Verify that the connections to the primary of supply transformer T1 corresponds to the voltage of the local supply, and that the supply fuse FS1 is correct for the unit in use (see Table 4)

The primary connections of T1 should be paralleled when the local supply is 100 to 125V. Fig. 3 shows the connections for a 110V supply, and Table 2 gives the connections for supplies between 100 and 125V.

Fig. 3 Transformer Primary Connections for 110V

Supply	Neutral	Line	Neutral Link Between	Line Link Between
100V	0	100	0-0	100-100
105V	5	100	5-5	100-100
110V	0	110	0-0	110-110
115V	5	110	5-5	110-110
120V	0	120	0-0	120-120
125V	5	120	5-5	120-120

Table 2 Transformer Primary Connections 100-125V

When a 200 to 250V supply is available, the primary connections of T1 should be made in series. Fig.4 shows the series connections to be made for a 240V supply, and Table 3 gives the connections for supplies between 200 and 250V.

Fig. 4 Transformer Primary Connections for 240V

Supply	Neutral to Inner Tag	Line to Outer Tag	Diagonal Link Between
200	0	100	0-100
210	5	100	5-100
220	0	110	0-110
230	5	110	5-110
240	0	120	0-120
250	5	120	5-120

Power Supply			FS1	·	FS2	
	200-250V		100-125V		DC Fuse	
	Rating	Size	Rating	Size	Rating	Size
PM44	1A	00	2.5A	00	2.5A	00
PM45	2.5A	00	4A	00	2.5A	00
PM46	2.5A	00	4A	00	2.5A	00
PM47	2.5A	00	4A	00	4A	00
PM48	3A	0	7A	0	5A	0
PM49	5A	0	10A	0	7A	0
PM50	3A	0	7A	0	7A	0
PM51	5 A	0	10A	0	7A	0
PM52	7A	0	15A	0	7A	0
PM53	5 A	0	10A	0	12A	0
PM54	7A	0	15A	0	12A	0
PM55	10A	0	20A	0	12A	0
PM56	10A	0	20A	0	25A	*

Table 4 Fuse Rating (fuses up to 10A must be HRC type)

*Fast Blow E E GS150/25

3.2.1. PRELIMINARY CHECKS

Before the line supply is connected to the unit, ensure that the correct fuses are fitted as specified in Table 4. Check that the following terminal links on terminal block TB2 (mounted on the front panel) and TB3 (mounted on the left-hand side of the unit) are in position.

```
(1) 1 and 2 on TB2 (DC LINK)
```

- (2) 3 (+s) to 4 on TB2) DC output
- (3) 6 (-s) to 5 on TB2) DC
- (4) 1 and 2 on TB3 (External programming of current)
- (5) 4 and 5 on TB3 (External programming of voltage)

NOTE If these links are not made the unit will not operate satisfactorily.

When the preliminary checks have been completed, connect the line supply to the following terminals on TB1.

Line	to 1
Neutral	to 2
Ground	to 3

3.3 RESETTING THE OUTPUT VOLTAGE

(a) SETTING THE OUTPUT VOLTAGE

The unit is adjusted in the factory to provide the voltage indicated on the serial number panel, with a further $\pm 0.5V$ control available on the SET O/P VOLTS control positioned on the front panel. The following conditions should be observed.

(1) The SET OUTPUT CURRENT control on the front panel should be fully clockwise.

(2) The level of output voltage does not exceed the trip level of the overvoltage protection circuit (when fitted).

(b) TO CHANGE THE OUTPUT VOLTAGE

(1) Connect a voltmeter across terminals 3(+s) and 5 (-s) on TB2.

(2) Adjust the transformer taps on the secondary of T1 and R110,

R111, R117, R118 and (R50 and R57 if fitted), as shown on tables 8, 9 and 10.

(3) Switch on the AC Supply.

(4) Adjust the SET OUTPUT VOLTS control to obtain the exact output level required.

(c) EXTERNAL PROGRAMMING OF OUTPUT VOLTAGE (see Section 3.7)

3.4 RESETTING THE OVERLOAD PROTECTION

(a) The current re-entrant limit level is determined by the SET OUTPUT CURRENT control on the front panel. The control can be set to any value of current within the range 15% to 105% of the maximum rated current of the unit, provided that the correct value of R110 and R111 has been fitted.

Graph 1 Output Voltage Plotted Against Output Current

To set the output current rotate the SET OUTPUT CURRENT control fully clockwise. Switch on the AC supply.

Connect an ammeter and adjustable load between terminals 4 (+) and 5 (-) on TB2, and carefully adjust the load until the ammeter indicates the unit is delivering the required current.

Adjust the SET OUTPUT CURRENT control counter clockwise until the output voltage starts to fall, and then rotate the control a small amount clockwise.

Decrease the load resistance slowly and verify the maximum load current available.

NOTE As the output current setting is reduced so the maximum short circuit current is reduced proportionately, as shown on Graph 1.

(b) TO OPERATE THE POWER SUPPLY IN CONSTANT CURRENT MODE

Remove the link between terminals 20 and 21, and 18 and 19 on the

AUX PC Board, and fit an external programming resistor between terminals 2 and 3 on TB3 having first removed the link between terminals 1 and 2. The maximum nominal currents allowable are shown on Tables 5, 6 and 7.

NOTE At no time must the current exceed the limit shown on Graph 2.

For currents other than those shown on Tables 5, 6 and 7 calculate programming resistor values as per specification, Section 2.

Graph 2 shows limits to output current in constant I mode

(c) CONSTANT CURRENT SWITCH ON

To remove the 200mS constant current switch on facility, remove the link between the terminals 20 and 21 on the AUX PC Board.

Table 5 Maximum Current in Constant Current Mode

With Output	Nominal	Nominal Output Current (Max)									
Volts set to	PM44	PM47	PM50	PM53	PM56						
1	1.0A	3.0A	5.0A	10A	20A						
2	1.0	3.0	5.0	10	20						
3	1.0	3.0	5.0	10	20						
4	. 83	2.9	4.1	8.3	16.6						
5	.74	2.2	3.7	7.4	14.8						
6	. 62	1.9	3.1	6.2	12.4						
7	. 57	1.7	2.8	5.7	11.4						
8	. 54	1.6	2.7	5.4	10.8						
9	. 50	1.5	2.5	5.0	10.0						
10	.48	1.4	2.4	4.8	9.6						
11	.45	1.4	2.2	4.5	9.0						
12	. 42	1.3	2.1	4.2	8.4						
13	.40	1.2	2.0	4.0	8.0						
14	. 39	1.2	1.9	3.9	7.8						
15	. 37	1.1	1.8	3.7	7.4						

Table 6

With Output	Nominal (Nominal Output Current (Max)								
Volts set to	PM45	PM48	PM51	PM54						
1	1.0A	3.0A	5A	10 A						
2	1.0 [.]	3.0	5	10						
3	1.0	3.0	5	10						
4	1.0	3.0	5	10						
5	1.0	3.0	5	10						
6	1.0	3.0	5	10						
7	1.0	3.0	5	10						
8	. 90	2.7	4.5	9						
9	. 82	2.5	4.1	8.2						
10	.77	2.3	3.8	7.7						
11	.72	2.2	3.6	7.2						
12	. 68	2.0	3.4	6.8						
13	. 65	1.9	3.2	6.5						
14	. 61	1.8	3.0	6.1						
15	. 58	1.7	2.9	5.8						
16	. 57	1.7	2.8	5.7						
17	. 55	1.6	2.7	5.5						
18	. 52	1.6	2.6	5.2						
19	. 51	1.5	2.5	5.1						
20	. 50	1.5	2.5	5.0						
21	. 47	1.4	2.3	4.7						
22	.44	1.3	2.2	4.4						
23	.43	1.3	2.1	4.3						
24	. 42	1.3	2.1	4.2						
25	. 40	1.2	2.0	4.0						
26	. 39	1.2	1.9	3.9						
27	. 38	1.1	1.9	3.8						
28	. 37	1.1	1.8	3.7						
29	. 36	1.1	1.8	3.6						
30	. 35	1.0	1.7	3.5						

Table 7

With Output	Nominal	Output Cu	rrent (Max)
Volts set to	PM46	PM49	PM52	PM55
30	. 52A	. 16A	2.6A	5.2A
31	. 51	1.5	2.5	5.1
32	. 50	1.5	2.5	5.0
33	.49	1.5	2.4	4.9
34	.48	1.4	2.4	4.8
35	. 47	1.4	2.4	4.7
36	.46	1.4	2.3	4.6
37	.45	1.3	2.3	4.5
38	. 44	1.3	2.2	4.4
39	.43	1.3	2.2	4.3
40	.42	1.3	2.1	4.2
41	.41	1.2	2.1	4.1
42	. 40	1.2	2.0	4.0
43	. 39	1.2	2.0	3.9
44	. 38	1.1	1.9	3.8
45	. 38	1.1	1.9	3.8
46	. 37	1.1	1.9	3.7
47	. 37	1.1	1.9	3.7
48	. 36	1.1	1.8	3.6
49	. 36	1.1	1.8	3.6
50	. 35	1.0	1.8	3.5

3.5 RESETTING THE OVERVOLTAGE PROTECTION (IF FITTED)

(1) Having checked that the overload protection is working, connect a voltmeter from terminal 4 (+) to terminal 5 (-) on TB2.

(2) Set the overvoltage control (RV50) mounted on the Overvoltage Board to the maximum setting - fully clockwise.

(3) Set the output voltage by rotating the SET OUTPUT VOLTS control RV101 or by using the external voltage programming facility to the required overvoltage level. (See external voltage programming, Section 3.7).

(4) Slowly turn RV50 counter-clockwise until the overvoltage circuit operates. Operation is evident by a reduction to approximately 1V on the voltmeter.

(5) Reduce the output voltage by varying the programming resistor to give approximately normal voltage.

(6) Switch off the AC supply, and the switch on again, to reset the circuit.

(7) Increase the output voltage by slowly increasing the programming resistor. This will check the operation of the circuit at the level indicated on the voltmeter.

(8) Remove the External programming resistor.

(9) Check the output voltage setting.

3.6 UNIT CONNECTIONS

Tables 8, 9 and 10 show the connections that should be made between the various secondary windings of T1 and the values of R110, R111, R117, R118 and (R50 and R57 if fitted), that should be inserted to obtain the required output voltage. These resistors are located on the AUX. PC Board and R50 and R57 on the O/V PC board.

NOTE When the overvoltage circuit is fitted it is necessary to change the link on the O/V PC board when operating units above 7V i.e.

0 - 7V LINK terminals 1 and 9 8 - 50V LINK terminals 1 and 8

3.7 PROGRAMMING CURRENT AND VOLTAGE

Output Characteristics and Programming.

To enable users of these power supplies to have a wide range of operating conditions care has been taken in the design to accommodate facilities for modifying the basic operating characteristic. It will be appreciated that an alteration to the normal characteristic of the power unit must impose certain limits to its operating area.

3.7.1 EXTERNAL PROGRAMMING

Voltage, current and overvoltage protection levels can be controlled externally. To utilise the facility it is necessary to remove terminal links (which disconnect the internal controls from circuit) and connect external resistors by means of remote lines if necessary. By using resistors whose values correspond to the voltage or current required, voltage control, current control and overvoltage control can be effected remotely.

Graph 3

NOTE If remote lines are used, their resistance is to be included in the value of the programming resistor and they should be shielded from stray electromagnetic fields to minimise 'noise' pick-up.

3.7.1 (a) VOLTAGE CONTROL

For external control of voltage, RV101 is disconnected from circuit and replaced by an external potentiometer or fixed resistor. The level of the output voltage is related to the value of the external resistance by the $100\Omega/V$ scale factor for all units.

NOTE When the voltage is reduced from the set MAX the MAX current setting is also reduced if re-entrant current mode protection is in use. See Graph 3.

To connect the unit for external programming of voltage the procedure is as follows:-

(1) Switch off AC supply.

(2) Disconnect the link across terminals 4 and 5 of TB3

(3) Connect the external programme resistor to terminal 4 of

TB3 and terminal 6 of TB2. (-ve SENSE).

(4) Switch on the AC supply.

3.7.1 (b) CURRENT CONTROL

For external control of current, RV100 is disconnected from circuit and replaced by an external potentiometer or fixed resistor. The level of current is related to the value of the external resistance by the Ω/A scale factor which is given in Section 2 for each of the power supplies. To connect the unit for external programming of current, the procedure is as follows:-

- (1) Switch off the AC supply.
- (2) Disconnect the link across terminals 1 and 2 of TB3.

(3) Connect the external programme resistor to terminals 3 and 2 of TB3.

(4) Switch on the AC supply.

3.7.1 (c) OVERVOLTAGE CONTROL

For external control of the overvoltage protection circuit, RV50 is disconnected from circuit and replaced by an external potentiometer or resistors. A resistance range from 0 to 3. $3K\Omega$ corresponds approximately to an overvoltage protection range of

5V to 120% of FULL OUTPUT VOLTAGE FOR 0 -15V UNITS
 3V to 120% of FULL OUTPUT VOLTAGE FOR 0 -30V UNITS
 5V to 120% of FULL OUTPUT VOLTAGE FOR 30-50V UNITS

To connect the unit for external programming of overvoltage protection, the procedure is as follows:-

(1) Switch off the AC supply.

(2) Disconnect the link across terminals 4 and 5 on the overvoltage printed circuit board.

(3) Connect an external programme potentiometer of 3. 3K resistance to terminals 4 (slider), 6 and 7 of the printed circuit board connector Alternatively connect fixed resistors between terminals 7 and 4 and between terminals 6 and 4.

- (4) Switch on the AC supply.
- (5) Adjust for overvoltage setting.

3.8 PARALLEL AND SERIES OPERATION

3.8.1. Up to a maximum of 5 modular power units can be operated in parallel, (or 3, 20A units) and should be connected as shown in Fig. 5. For best voltage regulation, the terminal labelled 'P' on the circuit, (terminal 6 of TB3) on each unit should be returned to a common point, and four-terminal sensing used as described in Section 3.10 - but this is not essential.

NOTE When units are connected in parallel the built-in thyristor of the optional overvoltage circuit in each unit must be made inoperative. because it is not possible to ensure that each thyristor will have an equal share of total current under fault condition unless connected as shown in Fig. 6. This is done by removing the gate connection of the thyristor either at the thyristor itself, or at the overvoltage PC board (terminal 3).

If overvoltage protection is required, an external thyristor of suitable rating for the total parallel current of all units should be used. Its gate terminal should be connected to pin 3 on the overvoltage board of one unit after disconnecting the existing gate connection to MR102. A gate firing current of approximately 50mA is available from pin 3. The cathode should be connected to the common negative line and the anode to the common positive line. Set overvoltage as in section 3.5 All other units should have gate connections to pin 3 removed as outlined above.

Fig. 5 Parallel Operations

3.8.2. PARALLEL OPERATION WITH BUILT IN THYRISTORS MR102. Units should be connected as shown in Fig. 6 under the conditions as follows:

(a) If necessary each unit is to be set up separately to the required operating conditions as detailed in paragraphs 3.4 and 3.5.(b) A diode of the same current and voltage rating as the power module, must be connected in series with each output (positive end of the diode to negative terminal of power module.)

- (c) Link the 'P' terminals 6 on TB3.
- (d) Link the sensing terminal as shown in Fig. 6.

NOTE Because the forward voltage drop of the diode uses all the allowable external lead voltage drop no extra lead length can be allowed for four terminal sensing.

Fig. 6 Parallel Units with Overvoltage Circuits Fitted.

NOTE R106 must be removed from between terminals -ve and -ve sense.

3.8.3 It is also possible to operate modular power units in series under certain conditions as follows:-

(a) If necessary each unit is to be set up separately to the required operating conditions as detailed in paragraphs 3.4 and 3.5
(b) A diode, of the same current and voltage rating as the power module, must be connected across EACH power module output (positive end of diode to positive terminal of power module).
(c) The number of modules connected in series is limited to give a maximum of 250V DC.

3.9 OPERATION WITH OTHER POWER SUPPLY UNITS When power modules are used in conjunction with other power supplies of opposite polarity, provision must be made as in 3.8.3(b) to protect the power module against reverse voltage conditions. The rating of the diode used must be sufficient to carry the fault current generated.

3.10 FOUR-TERMINAL SENSING

Where long external output leads are used, four-terminal sensing is provided to enable the load voltage regulation of the power supply to be maintained at the load connections. The two links between the +ve output and the +ve sense, and the -ve output and the -ve sense terminals should be removed and connections made as shown in Fig. 7. These output connections should be run together and a decoupling capacitor, similar to C102 in the power supply, connected at the load terminals if the high frequency output impedance is to be maintained. Parallel connection should be made as shown in Fig. 8.

The maximum permissible voltage drop in the external leads when using four-terminal sensing is 0.5V total in both leads i.e. 0.25V in each lead +ve and -ve or 0.5V in one supply lead with a ground return of negligible resistance. The total permissible length of lead for 0.5V drop is listed in Table 11 for various wire sizes and current ratings. Note that this is the total permissible loop length 'go and return' and that the power supply can only be situated at half this distance from the load for a two wire +ve and -ve lead system.

Fig. 7 Four-terminal Sensing

Fig. 8 Four-terminal Sensing (Parallel)

CONNECTIONS											RESISTOR VALUES					
Volts	Rec	T	ra	ns	sfo	rn	ıe	r		Rec	R110	R111	R117	R118	R50	R57
out	(1)	- 8	8+	4	+	2	-	1	+	(2)						
1	•	•	•	•	-•	•	•	•	•	-•	22Ω	22Ω	LINK		470Ω	91Ω
2	•	•	•	•	•	•	•	•-	•	-	150Ω	12Ω	100Ω		470Ω	91Ω
3	•	•	•	•	•	•	•				270Ω	22Ω	220Ω		470Ω	91Ω
4	•	•	•	•	•	•	•	•	•	•	390Ω	33Ω	300Ω		470Ω	91Ω
5	•	•	•	•	•					•	560Ω	LINK	390Ω		470Ω	91Ω
6	•	-	•			•	-•			-•	680Ω	LINK	470Ω		470Ω	91Ω
7	•	•	•					•	•	-•	820Ω	LINK	560Ω	5V	470Ω	91Ω
8	•	•	•							•	910Ω	LINK	680Ω	0 1	120Ω	51Ω
9	•	•	•					•	•	-•	910Ω	180Ω	820Ω	o te	120Ω	51Ω
10	•	•	•			-•	•			•	1.2K	LINK	910Ω	In .	120Ω	51Ω
11	•	•	•			-•	•	-•	•	•	1.2K	150Ω	1K	for	470Ω	51Ω
12	•	•	•	•	•					•	1.2K	270Ω	1.1K	[p	470Ω	51Ω
13	•	•	•	-•	•			-•	•	•	1.5K	100Ω	1.2K	ISE	470Ω	51Ω
14	•	•	•	-•	•	-•	•	_		•	1.5K	220Ω	1.3K	ot 1	470Ω	150Ω
15	•	•	•	•	•	-•	•	-•	•	•	1.8K	47Ω	1.4K	ž	470Ω	150Ω

Table	8	Voltage	Adjustments	PM44,	47,	50,	53,	56.
-------	---	---------	-------------	-------	-----	-----	-----	-----

NOTE

Electrosil TR5 <u>+</u> 2%
CGS CR1.5 up to $5V \pm 5\%$
6V to 15V $\pm 2\%$
Electrosil TR5 <u>+</u> 5%
Electrosil TR5 <u>+</u> 5%

CONNECTIONS								RESISTOR VALUES								
Volts	Rec	Т	'ra	ins	fo	r	ne	er	T	Rec	R110	R111	R117	R118	R50	R57
out	(1)		7	9		3		1	-1	(2)						
1	•	-	+	-	+	-	+	-	#		220	220	LINK		4700	910
2	•	•	-		•		-•	•			1500	120	1000		4700	910
2	•	-	-	•		•	-•	•	•		2700	220	2200		4700	910
3	•	-	•	•	•	•	-	•	•		3900	330	300.0		4700	91Ω
5	•	-	•	•		-	•	•	•		560.0	LINK	390.0		4700	910
6	•	-		•		•	-	•	•		6800	LINK	4700		4700	910
7	•	•	•	•			-		-		820.0	LINK	560.0		470.0	<u>91Ω</u>
8		-	•	·		•			Ī		9100	LINK	680Ω	>	1200	51Ω
9	•	•	-	•			•				<u>910Ω</u>	180Ω	820Ω	15	120Ω	51Ω
10	•	•		•	H					•	1.2K	LINK	910Ω	to	120Ω	51Ω
11	•	+•		•					•		1.2K	150Ω	1K	dn	470Ω	51Ω
12	•	•		•			•				1.2K	270Ω	1.1K	pe	470Ω	51Ω
13	•	•		•			•	•		•	1.5K	100Ω	1.2K	nse	470Ω	51Ω
14	•	•				•			•		1.5K	220Ω	1. 3K	ot	470Ω	150Ω
15	•	•				•	Ē		H		1.8K	47Ω	1.4K	Z	470Ω	150Ω
16		+				•	Ē				1.8K	180Ω	1.5K	47K	470Ω	150Ω
17	-	Þ					Ē	•		•	1.8K	330Ω	1.8K	12K	470Ω	150Ω
18	-	•	•	-					F	•	1.8K	470Ω	1.8K	22K	470Ω	150Ω
19	•	† •	•	<u> </u>					•		2.2K	180Ω	1.8K	68K	470Ω	220Ω
20	-	Ŧ	•			-			-	•	2.2K	330 Ω	2.0K	27K	470Ω	220Ω
21	•	+	•	 	-	•	•				2.2K	430Ω	2.0K	82K	1.5K	220Ω
22	•	+•	•	•	•	•	-	•	•		2.2K	560Ω	2.2K	33K	1.5K	220Ω
23	•	ŧ	•	-		•	•	-	F	•	2.7K	220Ω	2.2K	100K	1.5K	220Ω
24	•	+•	•	+•		•	-	•	•	-	2.7K	330Ω	2.4K	33K	1.5K	220Ω
25	•	+	•	•	•			•-	F	-•	3.0K	180 Ω	2.4K	100K	1.5K	330Ω
26	-	+•	•	+•	•		1-	 	F	-	3. 3K	LINK	2.7K	27K	1.5K	330Ω
27	•	+	•	+•	•	+	1-	•	•		3. 3K	120Ω	2.7K	47K	1.5K	330 Ω
28	•	┮	•	•	•	•	•	•	-	•	3. 3K	270Ω	2.7K	120K	1.5K	330Ω
29	•	╞	•	+•	•	-	-	-	F		3. 3K	390Ω	3K	33K	1.5K	330Ω
30	-	∔	•	-	•	-	•	-	•		3. 3K	510Ω	3K	56K	1.5K	330 Ω

Table 9 Voltage Adjustments PM45, 48, 51, 54.

Section 3 29

R117	CGS CR1.5 up to 5V $\pm 5\%$
	6V to $30V + 2%$
R118	Electrosil TR5 +5%
R50	Electrosil TR5 +5%
R57	Up to 18V Electrosil TR5 +5%
	19-30V Welwyn W21 <u>+</u> 5%

Table 1	10	Voltage	Adjustments	PM46, 49	, 52, 55.
---------	----	---------	-------------	----------	-----------

	INE	CTIC	ONS			RESISTOR VALUES						
Volts	Rec	Tra	nsfe	orme	r	Rec	R110	R111	R117	R118	R50	R57
out	(1)	40	<mark>6</mark> +	3 +	1 +	(2)						
30	•	• •	-				3. 3K	510	3K	56K	1.5K	330
31	•	-	P	┲			3.6K	330	3K	160K	2.7K	390
32	•	• •	•	T-t-		-	3, 6K	470	3. 3K	39K	2.7K	390
33	•	• •	•	┼╻╧╸		_	3.6K	620	3. 3K	68K	2.7K	4 70
34	•	• •	•				3. 9K	470	3. 3K	220K	2.7K	470
35	•	• •	•				3. 9K	560	3.6K	47K	2.7K	470
36	•	┝╸┃╺╴	•			•	2.4K	1.2K	3.6K	82K	2.7K	470
37	-	• •		1-1-			2.7K	2.0K	3.6K	220K	2.7K	470
33	•	• •	\mathbf{F}	•••	\square		2.7K	2.2K	3. 9K	56K	2.7K	56 0
39	•	• •	FF		-••		3.0K	2.0K	3. 9K	91K	3. 3K	56 0
40	-		FT				3. 3K	1.8K	3. 9K	330K	3. 3K	560
41	-		F-F-	++			3. 3K	2.0K	4.3K	47K	3. 3K	560
42	•	• •	FŦ	+• •	T-	-	3. 6K	1.8K	4.3K	68K	3. 3K	560
43	•	-	\square	+• •	FF		3.3K	2.2K	4.3K	120K	3. 3K	560
44	-	-	FF	+• •		-	3.6K	2.0K	4.3K	330K	3. 9K	56 0
45	•		••		-		3.6K	2.2K	4.35K	1	3. 9K	680
46	-		••	ŦŦ	FF		3.9K	2.0K	4.45K]	3.9K	680
47	-		••	+		+-•	4.3K	1.8K	4.55K	g [3. 9K	680
48	-		•••			-	4.7K	1.5K	4.65K	ISE	4.3K	680
49	-		-	•	\mathbf{H}	+-•	4.3K	2.0K	4.75K		4.3K	680
50	-		-••	+• •	+• •		4.3K	2.2K	4.85K	Ĭž	4.3K	680

NOTE Resistors Types R110 R111 R117

R118

R50

R57

Electrosil TR5 +2% CGS CR1. 5 30 and 31V +2% 32V to 50V +1% Electrosil TR5 +5% Electrosil TR5 + 5% 30-32V Welwyn W21 +5% 33-50V RVW4-J +5%

Wire		Lead Length (feet and metres)									
Size	PM 46	44, 45	PM 49	47,48	PM50, 51 52		PM 55	53, 54	PM56		
	ft	m	ft	m	ft	m	ft	m	ft	m	
7/0076	19	6									
14/0076	38	12	13	4							
23/0076	60	18	20	6	12	3.5					
40/0076			6 8	21	21	6.5	10	3			
70/0076					37	11	18	5.5	9	2.7	
110/0076					58	18	29	9	14	4.5	
162/0076							43	13	21	6.5	

Table 11 Permissible lead length for four-terminal sensings.

Fig. 9 Functional Diagram of Power Unit

4.1 GENERAL

A simplified functional diagram of the circuitry of the power unit is shown in Fig. 9. The voltage and current modes of operation are controlled by two independent bridge circuits. Any variation of load current or output voltage produces an out-of-balance condition of the associated bridge. The output of the bridge is applied to a comparator amplifier whose output is fed into a mode gate. The output of the mode gate controls the output resistance of a series regulator which (assuming the initial variation was within the present operating limits of the unit) restores the original mode conditions.

The circuit cannot operate in both modes simultaneously, and only the control signal from the bridge corresponding to the mode of operation passes through the gate. Crossover from one mode to another is automatic, and the point of crossover is determined by the settings of the two controls SET OUTPUT VOLTS (RV101) and SET OUTPUT CURRENT (RV100).

An auxiliary stabilised power supply is also incorporated. This supplies the bridge circuits and the comparator amplifiers; to simplify the functional diagram, the output connections of the auxiliary supply are not shown. Overvoltage protection is afforded by a sensing circuit connected across the stabilised output terminals The level at which the circuit operates is controlled by the setting of a potentiometer.

4.2 SUPPLY RECTIFICATION AND SMOOTHING

The AC input voltage within the range 100V-125V and 200V-250V, 48Hz to 450Hz is applied, via the terminals of TB1, to the primary of T1. Interconnection of the primary terminals for different voltage supplies is given in Section 3.2.

The transformer has five secondary windings. The output voltage derived from one winding is used for the auxiliary supply. This AC voltage is full-wave rectified by MR1 and MR2 and smoothed by R1, C1 and C2. The output voltage of the other windings connected as per Section 3.6 is applied to the bridge rectifier MR100 and then smoothed by C101. The resultant 'raw' DC is protected by fuse FS2 and then applied to the series regulator.

4.3 SERIES REGULATOR

The series regulator contains transistor VT100 and transistor VT101 (which may consist of several transistors in parallel) arranged in a Darlington-pair configuration. An increasing positive signal applied to the base of VT100 decreases the output resistance of the circuit; conversely, a decreasing signal increases the output resistance. Each transistor in VT101 has a separate resistor in the emitter circuit to provide current sharing between transistors. The voltage developed by the flow of load current through the resistor R101 is connected across a common potential divider network of resistor R102 and R103 to provide a voltage signal proportional to the output current which is standardised at 0.85V for 100% output current.

4.4 BRIDGE REFERENCE SOURCES

Two zener diodes, MR4 and MR5, are used as reference sources in the voltage and current bridges, respectively.

These diodes are connected in series with the resistor network of R10, R11 and R12 across the auxiliary voltage supply line, and MR4 is also used as the reference for the stabilising circuitry of the auxiliary voltage supply. The flow of current through the two diodes is determined by accurate adjustment of the value of the resistor network. This level of current is maintained by the stabilised auxiliary voltage.

4.5 STABILISATION OF THE AUXILIARY SUPPLY

Stabi lisation is effected by the sensing network R5, R6 and R9 and the associated circuitry of the transistors VT1 to VT4. A proportion of any change in the auxiliary voltage is fed to the base of VT3 which is in a long-tail pair configuration with VT4. Assume that the voltage across the sensing network tends to rise. An increase in the voltage drop across R6 occurs. This increases the base voltage of VT3 which is compared with the fixed base voltage of VT4 establised by MR4. The resultant positive increase of the collector potential of VT4 decreases the conduction of VT2: the emitter voltage of VT2 is fixed by Zener diode MR3. As a result, the decreased conduction of VT2 reduces the base drive of the series regulator transistor VT1. Thus, the resistance of VT1 increases and counteracts the initial tendency of the output voltage to rise. Resistor R4 ensures initial conduction of VT1.

4.6 VOLTAGE CONTROL BRIDGE

The circuitry which senses any tendency of the output voltage to change is shown in a bridge configuration in Fig. 9 and the Circuit Diagram Fig. 12. Any unbalance of the bridge is detected by the long-tail pair VT5 and VT6 which operate as the voltage comparator amplifier. The two diodes, MR6 and MR7, connected from the base of VT5 to the base of VT6 protect the two transistors against heavy dishcarge current from C102 if the capacitor is in a charged condition when the sense lines are connected.

As shown in Fig. 9 the resistor network R14, R15, and R16 and RV101, R117 and R118 form two arms of the voltage control bridge. When the bridge is balanced, the voltage condition is as follows:-

VMR4	=	V (R14+R15/R16)
V (RV101 + R117/R118)	=	V _{OUT}

For V_{OUT} to equal (RV101 + R117/R118) at all settings of RV101, R117 and R118, the output voltage must be a direct function of the resistance of RV101, R117 and R118.

4.7 VOLTAGE CONTROL

With the bridge balanced, the circuit will remain in equilibrium until the output voltage tends to change. Any change in output voltage across the load is fed back, via the positive sense line to the base of VT6 where it is compared with the base voltage of VT5. The resultant change of level of the collector voltage of VT5 is applied to MR8 which with MR9 forms the mode gate. A change in signal to MR8 results in a change of output resistance of the series regulator in such a direction as to counteract the original change in voltage.

4.8 CURRENT CONTROL BRIDGE

The circuitry forms a bridge configuration as shown in Fig. 10 and the Circuit Diagram Fig. 12.

The output current in passing through the R101's in parallel provides a voltage signal proportional to the output current which is divided down to a standard level by resistors R102 and R103 in parallel with R104. This signal is compared with the voltage generated across RV101 by the current i_1 (which is the sum of currents i_2 and i_3) by the long-tail pair VT7 and VT8 operating as a comparator amplifier.

When the power unit is operating in the current mode the voltage amplifier is inoperative and the current bridge is in a balanced condition. The voltage conditions are then as follows:-

$$I_{OUT} \times R101 \left[\frac{R103/R104}{R102 + R103/R104} \right] = i_1 \times RV100$$

i.e. $I_{OUT} = K \times i_1 \times RV100$

Fig. 10 Current Control Circuit

Circuit Description

35 Section 4

4.8.1 RE-ENTRANT CURRENT MODE

i₃ is supplied from the -ve auxiliary supply (MR5) via R20, R21 and R22 and therefore is essentially constant under all output voltage conditions. i2 is supplied from the -ve output line via R119, R111 and R110 and is therefore proportional to output voltage.

As the load resistance changes from a high value R_{cv} through the critical value R_c (where the power unit changes from voltage controlled to current controlled operation) to a low value R_{cr} the output current falls at the same time as the output voltage falls as shown in Fig. 11.

0

At the limit, i.e. short circuit load

VOUT hence i₂ 0

and therefore **i**1

and therefore for balance

LOUT K x i3 x RV100

i₃ therefore sets the maximum short circuit current from the unit.

iz

Fig. 11 Output Voltage plotted against Output Current in Re-Entrant Mode

4.8.2 CONSTANT CURRENT MODE

In the constant current mode i_2 is disconnected and the output current is therefore proportional to i_3 only and is therefore essentially not affected by the output voltage.

4.8. 3 SERIES SWITCH-ON CIRCUIT

Due to the re-entrant circuit protection it is not possible to connect two or more power supplies in series with a common load current. It has therefore been necessary to modify the characteristic at switch on so that for approximately 200mS the supply will go into a constant current mode, this being the time the supplies take to stabilise their voltages.

At switch on the output voltage is zero, and hence without the switch-on circuit

i ₁	=	ⁱ 3
and therefore 1 OUT	=	K x i ₃ x RV100
	=	10% of output current

To overcome this problem the current i₂ is provided via the switch-on circuit for the first 200 mSec.²

Now as C103 is charging at switch on VT102 is biased on, hence R119 is connected via VT102 to MR101 which in conjunction with MR5 forms a -2V supply. Hence R119 has the same i_2 flowing as if the output voltage was stabilised at full output, and hence the current will be held constant at I for APP. 200mS the charging time of C103, R114.

VT102 is biased off when C103 has charged and has no further part in the circuit.

4.9 CURRENT CONTROL

With the bridge balanced, the circuit will remain in equilibrium until the output current tends to change. Any change of load current changes the voltage drop across resistors R103, R104 with respect to the base of VT8. A proportion of this voltage change is applied, via RV100 to the base of VT7. The resultant change in the level of the collector voltage of VT8 is then applied. MR9 which with MR8 forms the mode gate. A change in signal to MR9 results in a change of output resistance of the series regulator in such a direction as to counteract the original change in current

4.10 MODE OF OPERATION

The mode of operation of the power supply is determined by the load conditions and the setting of the voltage and current controls. Automatic crossover from one mode to the other is depicted in Fig. 11 and occurs at the value of load resistor designated R_c . The value (in ohms) of the load resistor R_c is obtained by dividing the voltage (volts) set by RV101, R117 and R118 and the current (amps) set by RV100. When the power supply is connected to any load R_{cv} whose resistance is more than R_c the mode of operation is constant voltage. When the resistance of the load decreases to any value R_{cr} below R_c the mode of operation is re-entrant or constant current.

During either mode of operation, both comparator amplifiers produce output voltages which are applied to two diodes in the mode gate. Diode MR8 is controlled by the output of the voltage comparator (collector of VT5), and diode MR9 is controlled by the output of the current comparator (collector of VT8). The diode which conducts is the one receiving the higher output voltage. The output from the conducting diode is amplified by VT9 and then applied, via the emitter-follower VT10, to the series regulator. Except for a brief transitional period at crossover, both diodes do not conduct simultaneously; thus, it is always the higher output of the two comparators which controls the resistance of the series regulator.

NOTE that VT9 introduces polarity inversion, and a high positive output from the mode gate produces high resistance of the series regulator.

The crossover action is best understood by considering the operation of the control circuits as the resistance of the load is decreased from a high value of $R_{\rm CV}$ to a low value below $R_{\rm C}$. At first, with a very low load current flowing, the collector voltage of VT8 is very low because the voltage developed across R103, R104 is low, and the resultant low base voltage of VT7 allows VT8 to conduct heavily. At the same time, the collector voltage of VT6 is high because with low load current the stabilised output voltage tends to rise, but is held at its predetermined level by heavy conduction of VT6 which results in a high positive potential at the collector of VT5. Thus, of the two signals applied to the mode

38 **Circuit Description**

gate, the signal from VT5 will take control and effect the high value of output resistance required of the series regulator.

As the resistance of the load is decreased, VT7 senses the increased voltage drop across R103, R104 and increases conduction. This decreases the conduction of VT8 and its collector potential rises. Simultaneously, the collector voltage of VT5 decreases in order to reduce the output resistance of the series regulator so that the higher load current may flow.

This action of the collector voltage of VT8 rising and that of VT5 falling as the resistance of the load decreases continues until at the crossover point the signal from VT8 takes control and a rapid transition from voltage mode to current mode occurs. The output supply voltage of the unit then falls to the level required to sustain the preset current level. This rapid transition from voltage mode to current protection.

4.11 OVERVOLTAGE PROTECTION

The overvoltage protection circuit uses a long-tail pair comparato circuit containing transistors VT50 and VT51. The input to the base of VT51 is derived from R55 which with R54 forms a potential divider across the stabilised output supply. VT51 base voltage is compared with the base voltage of VT50 derived from the potentiometer RV50 connected across a Zener diode reference source MR50. The level at which overvoltage protection is required is effected by the setting of RV50; because this level is obviously above the stabilised output voltage, the normal quiescent condition of the long-tail pair is such that VT50 is conducting much more than VT51. In practice, the overvoltage limit is set approximately 10% above the level of the stabilised voltage. If the stabilised output voltage rises above the level set by RV101, transistor VT51 conducts and drives VT52 into heavy conduction. The base voltage of VT52 is fixed by the Zener diode MR51; consequently, VT52 provides a constant current via R57 to the gate electrode of SCR MR102 which fires and produces a short circuit across the terminals of the stabilised output supply.

4.12 EXTERNAL PROGRAMMING

As explained during the description of the voltage and current control bridges, the balance conditions of the bridges are such that the following conditions exist. The voltage across the resistance of RV101 (SET OUTPUT VOLTS) is equal to the output voltage. A change of resistance of RV101 produces a directly proportional change of output voltage.
 The voltage across the resistance of RV100 (SET OUTPUT CURRENT) is equal to the voltage across resistors R103, R104 which, in turn, is directly proportional to output current. A change of resistance of RV100 produces a directly proportional change of output current.

Thus, resistance-output voltage and resistance-output current relationships exist, and these are expressed as Ω/V and Ω/A scale factors, respectively. By disconnecting the variable resistors from circuit and in their place connecting - by remote lines if necessary fixed or variable resistors, the output voltage or current level can be set by altering the value of resistance. The advantage of this circuit facility is that without any monitoring or metering aid, the voltage and current level can be set simply by the value of resistance in circuit. The method of connecting the unit for external programming of output voltage, output current and overvoltage protection is detailed in Section 3.

5.1 ACCESS TO COMPONENTS

All components, except those mounted on the printed circuit boards, are accessible after removing the front panel (held by fixing screws) and detaching the heat sink assemblies from the side bars. Access to the components on the printed circuit board during operating conditions may be obtained by removing the board and connecting it to the socket in the unit via an extension board (Advance Part No. 19014).

NOTE The printed circuit boards must not be removed from the modules without first switching off the AC supply.

5.2 REPLACEMENT SERVICING OF PRINTED CIRCUIT BOARDS The control boards used in any of the units in the PM44-56 range are interchangeable. The Overvoltage Boards, if fitted in the units, are also interchangeable.

The extension board is available as a servicing aid. This board can be used as an extended connector for any printed circuit board in the entire range PM44-56 of modular Stabilised Power Supplies.

All boards are available as spare parts, and the following Advance Part No. should be quoted when ordering.

(1)	Control Board	Advance	Part	No.	26521
(2)	Extension Board	Advance	Part	No.	19014

5.3 FAULT FINDING

Determine the state of the output voltage ON LOAD and proceed as outlined in Table 12.

Output Voltage	Fault	Action
No Output	Input Fuse blown MR100 open circuit FS1 blown AND OR FS2	Change fuse. Change MR100 Change fuse. Check circuit for cause. VT1 may be short circuit.
	DC LINK OPEN CCT	Refit

Table 12. Fault Finding Chart

Table	12	Fault	Finding	Chart	(Cont)
				UUU	

Output Voltage	Fault	Action						
	VT101 open cir- cuit RV100 fully anti clock Printed circuit board out of socket or faulty	Change VT101. Re. Adj. Replace with new assembly.						
Low Output	MR100 partially open circuit MR102 has fired (if fitted) RV100 Set Low Re-entrant Links o/c Printed circuit board faulty	Change MR100 Check external circuit for overvoltage. Readjust Replace Replace with new assembly.						
High unstabilised output)	VT100 short circuit	Change VT100						
) High Ripple))))	VT101 short circuit Printed circuit board faulty	Change VT101 Replace with new assembly. Check to see why MR102 has not fired. If fitted.						
Excessive Output Current	Programming link TB3 (2 & 3) o/c Programming link Resistor o/c Re-entrant links in for constant current operation	Replace Replace						

5.4 MEAN TIME BETWEEN FAILURES

The figures quoted below are estimated from data currently available from international sources. These estimates are based on continuous operation at maximum temperature, output voltage and current, and will improve appreciably if units are operated in less arduous conditions. An indication of the possible improvement can be obtained from the accompanying graphs.

Unit	PM44-47	PM48-50	PM51-53	PM54-56
Estimated MTBF hrs	35, 000	34,000	29, 000	25, 000

	PM 44		PM 45			PM 46			PM 47			PM 48			PM 49			PM 50	
REF	DESCRIPTION	QTY PART N	DESCRIPTION	QTY	PARTN	DESCRIPTION	QTY	PART	DESCRIPT ION	QT	PARTN	DESCRIPTION	QTY	PART No	DESCRIPTION	QTY	PART N	DESCRIPTION	QTY PART No
	TRANSFORMER	1 47527	TRANSFORMER		MT 624	TRANSFORMER		MT 529	TRANSFORMER	1	MT584	TRANSFORMER	11	MT 624	TRANSFORMER		MT 532	TRANSFORMER	1 MT 583
<u> </u>		t misa/	Thatter children		1		1				1								
	CARACITORS		CAPACITORS		1	CAPACITORS	1	1	CAPACITORS			CAPACITORS			CAPACITORS			CAPACITORS	
teres	CAPACITORS		MELAPD C296 AA/A (OL-E 10% 160	1 Icv	804	MULLARD C296 AA/A (O LEF 10% 160%	t ī	804	MULLARD C296 AA/A (0 1+F10% 160V)	T	804	MULLARD C296 AA/A (O IF 10% 160	1) 1	804	MULL ARD C296 AA/A (O I #F 10% 160V)		804	MULLARD C296 AA/A (O I #F 10% 160V)	1 804
	SPRACIE 3608200404424 (800-E 404)	1 22710	SPDACIE 36085E075AA24/850HE 75V		22716	SPRAGUE 36D9OIFIOOAB2A (900 F 100V)		22719	SPRAGUE 360420040AD2A (6400+F40V)	14	22708	SPRAGUE 360392F075882A(3900)#F 75V	0 1	22714	SPRAGUE 360 302 FIOD BC2A (3000 FIOD		22718	SPRAGUE 360123GO4 BC2A(12OOyF4OV)	1 22501
	SPRAGUE SOUBLOOM CAALA (BOOD FOU)	1 3102	MULLARD CASI BR 6500 1500-E 40		3102	MULLARD C43I BR/H500 (500#F 64V)	ti	18780	MULLARD CA31 BR/F1250 (1250#F 25V)		19215	MULLARD C431 BR/GBOO (800 F 40)	1) 1	2799	MULLARD C431 BR/HEDO (BOO/F 64V)	1	18147	MULLARD C431 BR/F2000 (2000) F25	1 4847
C102	MULLAND CASI BMASOO(SOOP 404)	1 3102	MOLLAND CAST BRASSOU (SOOM 40)				† ·	+	OR HUGHES GOODUF 40V FOR CIOI	14	1 22709		-						
<u> </u>				_	<u> </u>		1	+					_						
		<u> </u>	#		-		+			-	+		-						
		╞──┼───	DESISTORS		1	PESISTOPS	+	+	RESISTORS		+	RESISTORS			RESISTORS			RESISTORS	
	RESISTORS			+	19706	CCS VPE-A (6 PK 5%)	1.	2053	CCS VPE (4 (920 5%)	-	106.42	CGS VPE-10 (15K 5%)		4806	CGS VPF - 10 2-2K		17745	CGS VPF-10 (270 5%)	1 19641
RIOO	ELECTROSIL TR 5 (27K 576)	1 18//1	ELECTROSIL THE (4 /K 570)	-+	23066	CGS VPF-4 (0 0K 5/0)	t÷	23066	CGS VPF-10 (0 33 5%)	Η÷	24969	CGS VPF-10 (0.68 5%)	2	23067	CGS VPF - 10 0 68	2	23067	CGS VPF-10 (0 39 5%)	2 25142
RIOI	CGS VPFID (1 5% IOW)	1 23066		+;-	10330	ELECTROSH TR5 (10 5%)	+ 5	10330	ELECTROSIL TRS (10 5%)	12	10330	FLECTROSIL TR5 (10 5%)	2	19339	ELECTROSIL TRS (10 5%)	2	19339	ELECTROSIL TRS (10 5%)	2 19339
RIO2	ELECTROSIL TRS (10 5%)	2 19339	ELECTROSIL TRS (R) 5767		19337		+÷	1.0.70		-	19337		+-	18702	FLECTROSH TRS (100 5%)	1	18702	ELECTROSIL TRS (IOO 5%)	1 18702
R 106	ELECTROSIL TR5 (100 5%)	1 18702	ELECTROSIL TRS (100 5%)	_ <u>+</u>	18702		++-	1870	ELECTROSIL TRS (IOO 5767	+	18702		-+;-	18702	ELECTROSIL TRS (100 5%)	⊢; I	18702	ELECTROSIL TRS (IOO 5%)	1 18702
R109	ELECTROSIL TRS (100 5%)	1 18702	ELECTROSIL TRS (100 5%)	-+	10702		+÷-	1070	ELECTROSIL TRS (100 5 %)	+÷	10702	FLECTROSIL TRS (100 5%)	+;	1970 2	ELECTROSIL TRS (100 5%)	5	19702		2 18702
R115	ELECTROSIL TRS (100 5%)	1 18702	ELECTROSIL TRS (100 570)	-+	118/02	ELECTRUSIL TRS (100 576)	+ '	18704	ELECTROSIL THS (100 5 /67	+-	118/02	ELECTROSIL TRS (100 5 167	1-	10/02	Lacincola ins 1100 5 167	- ° -	10/02	ELECTROSIE TRS (100 3 /87	2 10/02
					├ ──		<u>+</u>	+		┣──				ł					
		↓			ł	TRANSICTORS	+	+	TRANSITORS	┝──	+	TDANSISTODS	+		TRANSISTORS			TRANSISTORS	
	TRANSISTORS	I	TRANSISTORS	_ <u></u>		RANSISTORS	<u> </u>	+	TRANSISTORS	+			+.	4004	EDT 0203	,	24285		1 6226
VT 100	R C.A 40250	4224	RCA 40250		4224	SDT 9202	ł÷	24385	RCA 2N 3055	ŀ.	3813	RCA 40250	+ -	9224	SDT 0202		24305	RCA 40230	1 4224
VT 10 1	R C A 2N3055	1 3813	RCA 2N3055		3813	SDT 9202	+ '	24385	RCA 2N 3055	+-	3813	R C A 2N 3055		3013	301 9202	<u> </u>	24300	R.C.A. 2N 3055	2 3813
				-	\vdash		-	+		ļ				<u> </u>		┝──┥			
					L		-	-		L	+								
					ļ		4	-		L	1		-	<u> </u>					
										\vdash	1								
										ļ			_						
										L									
				_				1						ļ					
1																	L		
	MISCELLANEOUS		MISCELLANEOUS			MISCELLANEOUS			MISCELLANEOUS			MISCELLANEOUS	_		MISCELLANEOUS			MISCELLANEOUS	
MR 100	RECTIFIER WOOS PIRELLI SOV	1 19724	RECTIFIER WO2 PIRELLI 200V	1	19725	RECTIFIER WO2 PIRELLI 200V	1	19725	RECTIFIER TEXAS IB40K20 200V	1	17 763	RECTIFIER TEXAS IB40K20 200V	/ 1	17763	RECTIFIER TEXAS IB40K20 200V		17763	RECTIFIER SEMTECH SCBA2 200V	1 22721
								T I						L					
		<u> </u>					[Τ											
RV 100	CONTROL POT COLVERN 1106/95 120 102	1 26272	CONTROL POT COLVERN 1106/95 120 K	o%∣ ⊺	26272	CONTROL POT COLVERN 1106/95 120 109	1	26272	CONTROL POT COLVERN 1106/95 120 10%	T	26272	CONTROL POT COLVERN 1106/95 120 10	% 1	26272	CONTROL POT COLVERN 1106/95 120 10%	1	26272	CONTROL POT COLVERN 1106/95 120 10	1 26272
RVIOI	CONTROL POT COLVERN 1106/95 220 10%	1 26273	CONTROL POT COLVERN 1106/95 330 10	0% I	26758	CONTROL FOT COLVERN 1106/95 330 10%	1	26758	CONTROL POT COLVERN HOGAS 220 10%	T	26273	CONTROL POT COLVERN 1106/95 330 10	96 1	26758	CONTROL POT COLVERN 1106/95 330 10%	1	26758	CONTROL POT COLVERN 1106/95 220 10%	1 26273
			1					—									I		
	T						1			Γ_									
FSI	RUSE BALEE L562 (240V IA)	1 1254	FUSE B/LEE L 562 (240V 2 5A)	11	21189	FUSE B/LEE L562 (240V 2 5A)		21189	FUSE B/LEE L562 (240V 2 5A)	1	21189	FUSE B/LEE L693 (240V 3A)		12699	FUSE B/LEE L693 (240V 5A)	1	638	FUSE B/LEE L693 (240V 3A)	1 12699
FS2	FUSE B/LEE L562 (2 5A)	1 21189	FUSE B/LEE L562 (2 5A)	1	21189	FUSE B/LEE L562 (2 50)	1 ī	21189	FUSE B/LEE L562 (4A)	1	5120	FUSE B/LEE L693 (5A)	1	638	FUSE B/LEE L693 (7A)	1	13040	FUSE B/LEE L693 (7A)	1 13040
<u> </u>		1 1		<u> </u>			1	1			1			1			1		
			· · · · · · · · · · · · · · · · · · ·		1	1	1	1		1				1			1		1 1
MR IOI	THYRISTOR BTY 79 / IOOR	1 18693	THYRISTOR BTY 79/100R	-+	18693	THYRISTOR BTY 79/100R	11	18693	THYRISTOR BTY 87/100R	1	23074	THYRISTOR BTY87/100R		23074	THYRISTOR BTY 87/ 100R		23074	THYRISTOR BTY87/100R	1 23074
<u> </u>		1 1		- <u>+</u>				1	· · · · · · · · · · · · · · · · · · ·	-	1			· · · ·			<u> </u>		
		+ +	<u> </u>	-	1		1	+	· · · · · · · · · · · · · · · · · · ·	<u> </u>	1				1				1
		1 1	†		t	<u>+</u>	<u> </u>	+	<u>+</u>	<u> </u>			-		*		t		1
		tt	t	-+-	t	t	t –	1	<u> </u>	1-	+		-t	1	t		t	<u></u>	!!
H			1	+	<u>+</u>	t	+	1	+		+		-1-	1	<u> </u>	1	1		tt
		L	And the second s		1		-	+		L		······································	_	L					

PM 51			PM 52		PM 53			PM 54			PM 55			PM 56				
REF	DESCRIPTION	OTY P	ART No	DESCRIPTION	QTY PART N	DESCRIPTION	QTY	PART N	DESCRIPTION	QT	Y PART N	DESCRIPTION	QTY	PARTN	DESCRIPTION	YT	PART N	lo
ΤI	TRANSFORMER	IN	FT 626	TRANSFORMER	I MT 535	TRANSFORMER	1	MT 582	2 TRANSFORMER	1	MT 627	TRANSFORMER	1	MT538	TRANSFORMER	I	MT 618	
J							\downarrow				-			L				
	CAPACITORS	1		CAPACITORS	L	CAPACITORS	_		CAPACITORS	1		CAPACITORS			CAPACITORS			
C100	MULLARD C296 AA/A (O INF 10% 160V)		804	MULLARD C296 AA/A (O JuF 10% 160V)	1 804	MULLARD C296 AA/A (O JUF 10% 160V)	1	804	MULLARD C290 AA/A (14F 10% 160V)	1	807	MULLARD C296 AA/A (IF 10 % 160V)	1	807	MULLARD C296 AA/A (14F 10% 160V)	2	807	
C101	SPRAGUE 360692F075B02A(6500+F 75V)	1*1	22712	SPRAGUE 360532 F100CC2A (5300) F100V)	1 22717	SPRAGUE 36DI23GO4OBC2A(12OOpF 40V)	2	2250	SPRAGUE 36D692F075BD2A(6900#F 75V)	11	22712	SPRAGUE 36D532FIOOCC2A(5300#F 100V)	2	22717	SPRAGUE 36D/13GO40BC2A(2000 + 40V)	4	22501	
C 102	MULLARD C431 BR/G2500 (2500 + F 40V)		848	MULLARD C431 BR/H2500 (2500, F 64V)	1 4849	MULLARD C431 BR/F4000 (4000/F 25V)	1	4850	MULLARD C431 BR/G4000 (4000 + F 40V)	1	4851	MULLARD C431 BR/H2500 (2500 +F 64V)	2	4849	SPRAGUE 36D822GO25AC2A (8200_F 25V)	L	25251	
	PR HUGHES 6200 F 75V FOR CIOI	1*12	2713				+		OR HUGHES 62000 F 75Y FOR CIO	11	22713						L	
		┨──┨					1	<u> </u>		<u> </u>	-			L			L	
		- 1			L.		+			1			1				L	
	RESISTORS	\vdash		RESISTORS		RESISTORS	+	1	RESISTORS		-	RESISTORS		L	RESISTORS		L	
R 100	CGS VPF-10 (470 5%)		4805	CGS VPF - 10 (1 5K 5%)	1 4806	CGS VPF-10 (270 5%)	11	19641	CGS VPF - 14 (470 5%)		19363	CGS VPF - 14 (1K)	2	18755	CGS VPF-14 (270 5%)	2	18767	7
RIOT	CGS VPF-10 (0.82 5%)	4 2	25143	CGS VPF - 10 (1 5%)	5 23066	CGS VPF-10 (0 39 5%)	4	25142	2 CGS VPF - (0 68 5%)	7	23067	CGS VPF - IO (I)	ю	23066	CGS VPF 10 (047 5%)	9	23069	9
RIOZ	ELECTROSE TR 5 (22 5%)	4 1	8707	ELECTROSIL TR5 (27 5%)	5 19131	ELECTROSIL TR5 (22 5%)	4	18707	ELECTROSIL TR5 (33 5%)	7	19132	ELECTROSIL TR5 (51 5%)	10	19562	ELECTROSIL TR5 (47 5%)	9	19134	4
RIOS	ELECTROSIL TRS (100 5%)		8702	ELECTROSIL TR5 (100 5%)	1 18702	ELECTROSIL TR5 (100 5%)	1	18702	ELECTROSIL TR5 (100 5%)	1	18702	ELECTROSIL TR5 (100 5%)	1	18702	ELECTROSIL TR5 (100 5%)	ł	18702	2
8109	ELECTROSE (R5 (100 5%))	<u> </u>	8702	ELECTROSIL TRS (100 5%)	1 18702	ELECTROSIL TR5 (IOO 5%)	1	18702	ELECTROSIL TR5 (100 5%)	1	18702	ELECTROSIL TR5 (DO 5%)		18702	ELECTROSIL TR 5 (100 5%)	1	18702	2
R115	ELECTROSIL TRS (100 5%	4 1	8702	ELECTROSIL TRS (100 5%)	5 18702	ELECTROSIL TR5 (100 5%)	4	1870	2 ELECTROSIL TR5 (100 5%)	7	18702	ELECTROSIL TR5 (IOO 5%)	10	18702	ELECTROSIL TRS (100 5%	9	18702	2
					++	l												
		\vdash			↓		-L											
WT IOO	IRANSISTORS	+ + + + + + + + + + + + + + + + + + +		TRANSISTORS		TRANSISTORS		1	TRANSISTORS			TRANSISTORS			TRANSISTORS			
VT 100	RCA 2N 3055		3813	SDT 9202	1 24385	RCA 2N 3055		3813	RCA 2N 3055	1	3813	RCA SDT 9202	1	24385	RCA 2N 3055	_F_	3813	
11101	RCA 2N 3055	4	3813	SDT 9202	5 24385	R C A 2N 3055	4	3813	RCA 2N3055	7	3813	RCA SDT 9202	01	24385	RCA 2N 3055	9	3813	
		+			ļ ļ		<u> </u>											
		\vdash														_		
		- +			i		-	- I										
		┦			↓ +			- I										
		+ +			I													
					↓						1							
	+	┢┣-		· · · · · · · · · · · · · · · · · · ·	↓			1										
		╞──╁			↓ →													
	MISCELLANEOUS	+		MISCELLANEOUS	L	MISCELLANEOUS	1	1	MISCELLANEOUS			MISCELLANEOUS			MISCELLANEOUS			
1100		$ \cdot $			↓ - ↓	+	-											
MR 100	HECTIFIER SEMTECH SCBAZ (200V)	┟╌┟╛	2721	RECTIFIER SEMTECH SCBA2 (200V)	1 22721	RECTIFIER SEMTECH SCBA2 (200V)	1	2272	RECTIFIER LUCAS DIODES DD6123 200V	2	27214	RECTIFIER LUCAS DIODES DD6123 200V	2	27214	RECTIFIER LLCAS DIODES DD6123 200V	2	27214	
		┝─┼			+- + -		+		RECTIFIER LUCAS DIDES DD 6123A 200V	2	27215	RECTIFIER LUCAS DIODES DD6123A 200V	2	27215	RECTIFIER LUCAS DIODES DD6123A 200V	2	27215	
BV IOO	CONTROL FOT COLVERN HOLEN INC.	+			$\downarrow \rightarrow =$		1							T				
RVIOL	CONTROL FOR COLVERN HOLES 20 DE		02/2	CONTROL POT COLVERN 1106/95/120 10%)	1 26272	CONTROL POT COLVERN 1106/95 (120 10%	21	26272	2 CONTROL POT COLVERN 1106/951120 10%		26272	CONTROL POT COLVERN 1106/95 (120 10%)	1	26272	CONTROL POT COLVERN 1106/95 (120 10%)	1	26272	
AVIOI	CONTINUE POT COLORENN TIDEPSC330 1076		26/58	CONTROL POT COLVERN 1106/95(330 10%)	1 26758	CONTROL POT COLVERN 1106/95 (220 10%)	1	26273	CONTROL POT COLVERN 1106/95(330 10%)		26758	CONTROL POT COLVERN 1106/95 (330 10%)		26758	CONTROL POT COLVERN 1106/95 (220 10%)	I	26273	3
	+	┝┈┼			ŧŧ		1	_					T					
		+ +					+						Τ	1				
FSI	FUSE B/LEE 1 402 12404 EAL	+	(20			+	+	1										
552		 '_ 	030	FUSE B/ LEE L693 (240V 7A)	1 13040	FUSE B/LEE L693 (240V 5A)	<u> </u>	638	FUSE B/LEE L693 (240V 7A)	1	13040	FUSE B/LEE L693 (240V IOA)	1	4227	FUSE B/LEE L 693 (240 10A)	I	4227	
134	17V3E 0/LEE L093 (/A)	┞╵┸	1040	FUSE B/LEE L693 (7A)	1 13040	FUSE B/LEE LIOSS (12A)	1	2083	4 FUSE B/LEE LIOSS (12A)	1	20834	FUSE B/LEE LIO55 (12A)	1	20834	FUSE AEI GS 150/25 (25A)	1	19021	
 	H	+			↓ - ↓	#							1				1	
MBIO	THYPISTOR BTY 97/1000	┢╷┠	2074	TUMPICTOD	++	#	1						1	T			<u> </u>	
	THINKSTON BITE//IOOR	<u> </u> ²	30/4	THTRISTOR BEYB7/100R	23074	THYRISTOR 2N 3896	1	2547	3 THYRISTOR 2N 3896		25473	THYRISTOR 2N 3896	1	25473	THYRISTOR AEL CR-26-051 BI	I	27298	8
		┢──╁			<u>↓</u> ↓	H - ~		1					[1	
		ŧ—↓		H	╉──┢──╺┉	· · · · · · · · · · · · · · · · · · ·	1						1	I			1	
	+	+		+	╆┽	H <u></u>	-							I				
<u></u>	#	┢──			↓- ↓		+										1	
				ii an	1 1	11	1	1			1		1	T	1		T	

Guarantee and Service Facilities

This instrument is guaranteed for a period of one year from its delivery to the purchaser, covering the replacement of defective parts other than tubes, semiconductors and fuses. Tubes and semiconductors are subject to the manufacturers' guarantee.

We maintain comprehensive after sales facilities and the instrument can, if necessary, be returned to our factory for servicing. The Type and Serial Number of the instrument should always be quoted, together with full details of any fault and the service required. The Service Department can also provide maintenance and repair information by telephone or letter.

Equipment returned to us for servicing must be adequately packed, preferably in the special box supplied, and shipped with the transportation charges prepaid. We can accept no responsibility for instruments arriving damaged. Should the cause of failure during the guarantee period be due to misuse or abuse of the instrument, or if the guarantee has expired, the repair will be put in hand without delay and charged unless other instructions are received.

OUR SALES, SERVICE AND ENGINEERING DEPARTMENTS ARE READY TO ASSIST YOU AT ALL TIMES.