Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

# AP 116U-0504-1 

2nd. Edition Apr. 77
(Superfeding previous edition)

# POWER SUPPLY COUTANT TYPES ASA/ATA, ASB/ATB AND ASC/ATC 

## GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL


Ministry of Defence

Sponsored for use in the

# ROYAL AIR FORCE by D SIGS (AIR) 

Publications authority: ATP/MOD(PE)

Service users should send their comments through
the channel prescribed for the purpose in:
AP 100B-01 Order 0504 (RAF)

## TYPE ASA/ATA, ASB/ATB, AND ASC/ATC

CONTENTS


## APPENDICES

App.A Coutant overvoltage protection units.

## LEADING PARTICULARS

## Specifications

1. The specifications for the power unit are as follows:-
(1) Output voltage:
(2) Output voltage control:
(3) Output current:
(4) Stabilisation ratio:
(5) Line regulation:
(6) Output resistance:
(7) Load regulation:

ASA/ATA 1V - 7.5 V de ASB/ATB 6V - -15 V dc ASC/ATC $6 \mathrm{~V}-30 \mathrm{~V} \mathrm{dc}$
A front panel potentiometer control gives a $\pm 1 \mathrm{~V}$ adjustment over the preset level.
0.5 to 30 A in logical steps (50A ASA)

10,000 : 1 for $\pm 10 \%$ mains change
$0.001 \%$ for $\mathrm{a} \pm 10 \%$ mains change
Less than 1 mohm for 7A units and below. Less than 2 mohm for 10A units and above. Twin output units of 0.5 A and 1 A output do not have remote sensing facilities and the output resistance of these units is 6 mohms (load regulation 6 mV or $0.06 \%$ whichever is greater).
1 mV or $0.02 \%$ whichever is greater, no load to full load.
(8) Output impedance:
(9) Low frequency ripple and noise:
(10) Transient response:
(11) Temperature range:
(12) Temperature coefficient:
(13) Overload protection
(14) Overvoltage protection:
(15) Input power:
(16) Remote sensing:
(17) Output voltage polarity:
(18) Insulation resistance:

Less than 0.1 ohm at 100 kHz . Less than 0.25 ohm at 500 kHz . Impedance increases linearly (approx) with increasing frequency.

Less than $200 \mu \mathrm{~V}$ peak to peak ( $500 \mu \mathrm{~V}$

- for units of 15A and above).

Approximately $10 \mu$ s for recovery to within 10 mV of nominal voltage after maximum load changes.
$-10^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
$0.02 \%^{\circ} \mathrm{C}$ ( $0.005 \%^{\circ} \mathrm{C}$ optional).
The overload protection circuit operates at between $115-160 \%$ of the maximum current rating on $0.5 \mathrm{~A}-7 \mathrm{~A}$ units and between $115-140 \%$ on $10 \mathrm{~A}-$ 50A units.
On units with an output of 4.5 V and below the overload characteristic approximates to constant current operation.
Higher voltage units have a re-entrant characteristic with an initial period of 200 ms of approximately constant current operation to ensure reliable "switch on" into non-linear loads.
Overvoltage protection circuits are fitted to some.ASA units as standard. External overvoltage units to connect directly to the output terminals are available.
Appendix A contains details of external overvoltage units.
100 V to 125 V ac and $200 \mathrm{~V}-250 \mathrm{~V}$ ac 45 to 400 Hz single phase. Split primary windings are connected in parallel for 100 V to 125 V and in series for 200 V to 250 V .

Amplifier terminals are provided on all units (with the exception of 0.5 A to 1 A twin output units).

Both output terminals are isolated from earth and either can be grounded.

Withstands 500 V dc across output terminals and earth. Withstands 2.1 kV dc across line, neutral and earth.

AP 116U－0504－1
（2nd Edn．）
（19）Series and parallel connection：
（20）Dimensions and weights：
Any number of units of a similar type may be connected in series．Units of a similar type fitted with＇P＇term－ inals may be connected in parallel with the＇$P$＇terminals interconnected． Fig 4 gives details of method of connection．

The dimensions and weights of the power supply units are listed in table 1.
TABLE 1
Power supply units ：dimensions and weights


| $\begin{aligned} & \text { SIZE } \\ & \text { REF } \end{aligned}$ | A |  | B |  |  |  | D |  | E |  | $F$ |  | G |  | H |  |  |  | K |  | UUNFIED IAP | $\begin{array}{\|cc\|} \hline \text { APPROX } & \text { WEIGH } \\ \hline \text { LBS } & \mathrm{KgS} \\ \hline \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ins | mm | m | mim | $m$ |  | ma | mm | T | ， | m | ［mm | swa | mm |  | m |  | mm | $m$ | K |  |  |  |
| 10 | $3 \frac{1}{1}$ | 83 | $3 \frac{1}{4}$ | 83 | 7 | 178 | 4 | 10 | $\frac{3}{8}$ | 8 | $\frac{1}{1}$ | 95 | 12 | 263 | $2 \frac{1}{2}$ | 64 | 2］ | 73 | － | － | 6－32U．N．C | 4 | 18 |
| 11A | 5 | 127 | $3 \frac{1}{1}$ | 83 | 7 | 178 | 4 | 102 | $\frac{5}{16}$ | 8 | 1 | 95 | 12 | 2.63 | $2{ }^{\frac{1}{2}}$ | 64 | 23 | 73 | － | － | 6－32U．N．C | 5 | 2 |
| $11 B$ | 5 | 127 | 3 | 83 | $7 \frac{1}{2}$ | 190 | $4 \frac{1}{3}$ | 114 | 鿬 | 8 | 3 | 9.5 | 12 | 263 | $2 \frac{1}{2}$ | 64 | 27 | 73 | － | － | 6－32U．NC | 6 | 27 |
| 11C | 5 | 127 | $3 \frac{1}{4}$ | 83 | 9 | 229 | 6 | 152 | $\frac{5}{10}$ | 8 | 1 | 9.5 | 12 | 263 | $2 \frac{1}{2}$ | 64 | $2 t$ | 73 | － |  | 6－32U．N．C． | 7 | 32 |
| 11D | 5 | 127 | 3！ | 83 | $11 \frac{1}{1 / 4}$ | 286 | $8 \frac{1}{2}$ | 210 | $\frac{5}{4}$ | 8 | 1 | 9.5 | 12 | 26 | $2 \frac{1}{2}$ | 64 | 27 | 73 | 6 | 152 | 0－32U．N． | 8 | 36 |
| 12 | 5 | 127 | $4{ }^{\frac{1}{4}}$ | 105 | $11 \frac{3}{4}$ |  | 87 | 222 | $\frac{13}{12}$ | 10 | 茄 | 17.5 | 10 | 328 | $3{ }^{\frac{5}{2}}$ | 92 | $3 \frac{1}{}$ | 95 | 6 | 152 | 10－32U．N | 11 | 49 |
| 13 | 5 | 127 | $6 \frac{1}{2}$ | 165 | $11 \frac{1}{4}$ | 286 | 81 | 210 | $\frac{13}{32}$ | 10 | \＃ | 17.5 | 10 | 328 | 3 T | 92 | 61 | 56 | 6 | 152 | 6－32UN．C． | 20 | 9.1 |
| 14A | $6 \frac{3}{4}$ | 177 | 8 ？ | 213 | $11{ }^{\frac{3}{4}}$ | 298 | 87 | 222 | $\frac{13}{3}$ | 10 | 立 | 17.5 | 10 | 328 | 3－ | 76 | 8 | 203 | 6 | 152 | 10－32U．N．E | 32 | 145 |
| 148 | 61 | 171 | 8 ？ | 213 | $15^{\frac{5}{8}}$ | 397 | 12 | 321 | $\frac{12}{2}$ | 10 | $\frac{11}{16}$ | 17.5 | 10 | 3.28 | 3 | 76 |  | 203 | $6^{\circ}$ | 152 | 10－32U．N．F． | 37 | 167 |
| 15 | 81 | 206 | $17 \frac{1}{4}$ | 438 | $16 \frac{1}{2}$ | 419 | $13 \frac{1}{2}$ | 317 | $\frac{3}{8}$ | 16 | $\frac{11}{16}$ | 17.5 | 10 | 328 | 3 | 76 | $16 \frac{1}{2}$ | 419 | $6^{\circ}$ | 152 | 10－32U．N．F． | 75 | 34 |

Size Ref
Power supply type

10
11A
11B
11C
11D
12
13
14A
14B
15

ASA50，ASA100，ASB50，ASC50
ASB100
ASA200，ASC100
ASB200
ASA300，ASB300，ASC200，ATA50，ATA100，ATA200，ATB50， ATB100，ATC50，ATC100
ASA500，ASB500，ASC300，ATB200
ASA700，ASA1000，ASB700，ASB1000，ASC500，ATA300，ATB300 ATC200
ASA1500，ASC700，ASC1000，ATA500，ATB500，ATC300，ATC500
ASA2000，ASB1500，
ASA3000，ASA5000，ASB2000，ASB3000，ASC1500，ASC2000， ASC3000

## INTRODUCTION

2. The Coutant series of stabilized supplies are used to provide sources of dc power for logic circuits over a voltage range of 1 V to 30 V with current rating of 0.5 A to 50 A . The voltage range is covered by three groups of power supply, each group having eleven units to cater for the wide current range. The voltage output of each unit is set during manufacture to a specified level but can subsequently be altered by adjustment of transformer tappings and resistor change. Twin output units are provided in the lower current ranges (up to 5A) of each group. The three groups are as follows:-

| Group | Voltage output range | Current output range |
| :---: | :---: | :---: |
| ASA/ATA | $1 \mathrm{~V}-7.5 \mathrm{~V}$ dc | $0.5-50 \mathrm{~A}$ ASA |
|  |  | $0.5-5 \mathrm{ATA}$ |
| ASB/ATB | $6 \mathrm{~V}-15 \mathrm{~V}$ dc | $0.5-30 \mathrm{~A}$ ASB |
| ASC/ATC |  | $0.5-5 \mathrm{~A}$ ATB |
|  |  | 0.5 V dc |

## General description

3. The power supply consists of a rectangular frame closed by a panel at each end. One end panel is used as the input/output panel and is fitted with a terminal block for $a c, d c$ and SENSE connections. Mounted above the terminal block is the ac fise and a potentiometer for fine adjustment of the output voltage. A solid baseplate supports the supply transformer, electrolytic reservoir capacitors and an inductor which is fitted on high current output units only.
4. The voltage control components are mounted on a printed circuit board (PCB) which is secured to the side rails of the frame on some lower current units and behind the input/output panel on all high current units (3A and above). Two types of PCB are in use. Early versions of the power supply use a PCB 293 single output and PCB 294 twin output, while on later production a PCB 397 single output and PCB 398 twin output is used. The twin output PCB's each contain two identical control circuits. To facilitate re-adjustment of the output voltage those resistors on the PCB subject to change are mounted on stand-off tags clear of the board surface.
5. Series current transistors used in the circuit are mounted with their associated resistor on panels secured to the frame side rails. The number of transistors used depends on the output current rating of the unit. For example a unit with a rated current output of $3 A$ would have two transistors in parallel while a 30 A output unit would require 13 in parallel.

## Circuit description (figs 5 and 6)

6. Input power is supplied to the primaries of the transformer via antisurge fuse FS 1. The split winding is connected in series for voltages of 200-250 and in parallel for voltages $100-125$. Full wave bridge MR7-10 rectifies the output of the 22 volt secondary winding and the resulting dc passes to transistors VT1 and VT6 which provide a constant current output feed into three zener diodes. The most negative zener (MR2) forms the stabilised negative line of the subsidiary rail. The two most positive zeners (MR3 and 4) form the positive subsidiary line and the junction of zeners MR2 and MR3 is taken to the common reference rail which is also the positive sensing line.
7. The output of the main secondary winding is full wave rectified by MRIl12 diode network and the resulting dc output passes to the output terminals via series transistors VT50 (VT50 may consist of two or more transistors in parallel). R50 compensates for any base emitter voltage variation in VT50
and also forms part of the overload protection circuit.
8. Zener diode MR6 is connected via R17 to the positive subsidiary rail to provide a reference voltage from which a reference current is derived by R19. This current is compared by comparator VT5a and b with a current obtained from the output voltage by R20. Since the current obtained is proportional to the output voltage the value of this resistor determines the output voltage of the unit. RV1 provides a degree of output voltage adjustment.
9. The single ended output from the comparator is taken to common emitter amplifier VT3, the emitter of which is taken to the junction of MR3 and 4. MR4 together with VT3 provides an approximate constant voltage across R16 which defines the current in VT5b. The output of VT3 provides the drive to emitter follower chain VT2 and VT51 which in turn controls the current to the base of series transistor VT50. (VT51 is not fitted on units of 2 amps and below).
10. Lag network R 8 and C 2 ensures high frequency stability of the closed loop. C4 and R18 provide a degree of ripple attenuation by by-passing R20 at ripple frequency thereby increasing the low frequency a.c. loop gain. R12 may be incorporated to improve the output resistance by providing feed forward into comparator VT5a and b of a current proportional to the output current.
11. Re-entrant overload protection is provided by VT4 and related circuitry. VT4 compares the voltage across R50 with a reference voltage derived from the output by potential divider R6 and R7. (R10 is incorporated in the potential divider circuit on units with an output of 5 volts and above). When the voltage across R50 increases sufficiently, VT4 conducts and diverts the drive current from the emitter follower chain and causes the output voltage and current to fall to a low level. When the trip operates VT3 is turned on but as the drive voltage is now developed across R9, this prevents VT3 interfering with the operation of VT4.
12. As the output voltage falls, the reference voltage at VT4 is reduced, hence the voltage drop required in R50 for conduction in VT4 is also reduced and the available current falls. Because C3 is connected to the negative subsidiary rail, an approximate constant current characteristic prevails when the unit is first switch on, until C3 is charged.
13. When C3 is at the same potential as the base of VT4 the normal re-entrant characteristic is established. MR5 prevents C3 causing a voltage over-shoot when the unit is switched off. MR50 protects the unit from reverse voltages applied across the output terminals.

Installation and adjustments
15. Examine the unit for visible damage.

Note. .
Some high current power supplies are to be fitted with fast acting fuses when operated on 115 V ac nominal input. Table 2 contains details of those power supplies to which this applies.
16. Ensure that the fuse fitted is of the correct rating (table 2) and is an anti-surge device.

TABLE 2

List of fuse ratings

| Power supply type | Maximum dc current | $200^{\text {ac }}$ | $\begin{aligned} & \text { rating } \\ & 100-125 \mathrm{~V} \end{aligned}$ | Fuse type |
| :---: | :---: | :---: | :---: | :---: |
| ASA50, ASB50, ASC50 | 0.5 A | 1A | 1A | TDC 123 |
| ASA100, ASB100, ASC100 | 1A | 1A | 1A | TDC 123 |
| ASA200, ASB200, ASC200 | 2A | 1A | 1A | TDC 123 |
| ASA300, ASB300, ASC300 | 3A | 2A | 3A | TDC 11 |
| ASA500, ASB500, ASC500 | 5A | 3A | 5A | TDC 11 |
| ASA700, ASB700, ASC700 | 7A | 5A | 5A | TDC 11 |
| ASA1000, ASB1000, ASC1000 | 10A | 5A | 7A | TDC 11 |
| ASA1500, ASB1500, ASC1500 | 15A | 10A | 10A | TDC 11 |
| ASA2000, ASB2000 | 20A | 10A | 10A | TDC 11 |
| ASC2000 | 20A | 10A | 20A* | TDC 11 10A |
| ASA3000 | 30A | 10A | 10A |  |
| ASB3000, ASC3000 | 30A | 10A | 20A* | TDC 10 20A |
| ASA5000 | 50A | 10A | 20A* |  |
| ATA50, ATB50, ATC50 | $2 \times 0.5 \mathrm{~A}$ | 1A | 1A | TDC 123 |
| ATA100, ATB100, ATC100 | $2 \times 1 \mathrm{~A}$ | 1A | 2A | TDC 123 |
| ATA200, ATB200, ATC200 | $2 \times 2 \mathrm{~A}$ | 2A | 3A | TDC 123 |
| ATA300, ATB300, ATC300 | $2 \times 3 \mathrm{~A}$ | 3A | 5A | TDC 11 |
| ATA500, ATB500, ATC500 | $2 \times 5 \mathrm{~A}$ | 7A | 7A | TDC 11 |

Note...
Except for fuses indicated * all fuses are of the anti-surge type.

Fuses: TDC 10, TDC 11, TDC 123, Manufacturer K Beswick Ltd.,
Fuseholders: For TDC 123 - Belling Lee Type E6011 For TDC 10, TDC 11 - Belling Lee Type L1744

Some power supplies may be fitted with fuses in the dc output negative line. These are of the fast acting type and the following ratings apply:-

Unit current output Fuse rating

| 1 A | 2 A |
| ---: | ---: |
| 2 A | 3 A |
| 3 A | 5 A |
| 5 A | 7 A |
| 7 A | 10 A |
| 10 A | 15 A |
| 15 A | 20 A |
| 20 A | 30 A |
| 30 A | 40 A |
| 50 A | 60 A |

17. The mains transformer has a split primary winding with tappings. The windings must be connected in series for the input voltage range 200V - 250V and in parallel for 100 V to 125 V . The appropriate tappings must be selected for within $\pm 10 \%$ of the nominal input voltage.


Fig 1 Transformer primary connections
18. The power supplies are convection cooled and should be mounted with the heatsinks vertical and positioned to ensure an uninterrupted flow of air through the unit. The air temperature in the immediate vicinity of the heatsinks should not exceed $65^{\circ} \mathrm{C}$ with the unit working at full power. If the temperature is likely to exceed this maximum the unit must be derated or force ventilated to avoid overheating.

Input and output connections (fig. 2 )
19. Connect the mains input to the 'AC' terminals line to 'L' and neutral to 'N'. The unit is earthed at the ' $E$ ' terminal.
20. The output terminals comprise a positive and negative line with positive and negative amplifier sensing terminals (AMP). Normally the amplifier sensing terminals are directly linked to the output by a fanning strip supplied with the unit. When difficulty is experienced with voltage drop at the load end, the unit may have to be operated with remote sensing as detailed in the paragraphs which follow.

## Remote sensing connections

21. When the voltage drop across the output leads causes difficulty, the connection between the sensing terminals (AMP) and the output terminals can be removed and the sensing terminals connected directly to the load with separate leads; the correct output voltage will then be regulated at the load. An electrolytic capacitor of approx. $100 \mu \mathrm{~F}$ per ampere must be connected across the load to balance the inductance of the leads. The following must also be observed when operating the unit under remote sensing:-
(1) When using long runs route the sensing leads carefully to avoid mains pick up and subsequently possible oscillation of the sense amplifier. It may be necessary to use screened leads.
(2) Ensure that the resistance of the sensing leads is as low as possible.

ASA $50 \quad 100 \quad 200 \quad 300$ ASB 50100200300 ASC 50100200


ASA 5007001000 ASB 5007001000 ASC $300 \quad 500 \quad 700 \quad 1000$


ASA 1500200030005000 ASB 150020003000 ASC 150020003000


TWIN OUTPUT MODELS

ATA 50100200
ATB 50100
ATC 50100


ATA 300500
ATB 300500
ATC 200300500
ATB 200 Terminal Block
(Type No. 79/593/12m) has' the same connection layout but with
a pitch of \&".


Fig 2 Terminal block connections
(3) When very long sensing leads are used it may be necessary to remove the output capacitor (C51) from the unit to improve the high frequency stability of the amplifier.


Fig 3 Remote sensing connections
Output voltage adjustment
22. The front panel potentiometer RV1 provides a fine adjustment of the output voltage of approx. $\pm 1 \mathrm{~V}$. On some of the higher voltage units it may be possible to achieve a wider voltage variation. Such large adjustments by means of RV1 may cause over dissipation of the series transistors at full load, with consequent damage to the unit, particularly if the voltage is reduced excessively.
Caution...
Before commencing any work on the power supply involving component changes, the reservoir capacitors must be discharged through a low value wirewound resistor. Failure to do this may result in an accidental short circuit damaging components.
23. To alter the pre-set output voltage it is necessary to change the values of resistors R7, R10, R20 and in some cases R8 and R12. In addition the transformer output tappings will require re-selection. The values of the resistors and the transformer tappings for the various units is contained in Table 3. For ease in removal the resistors requiring change are mounted on stand-off tags on the PCB and are clearly identified.
24. The values given in Table 3 for resistors R10 and R7 are approximate and are dependent upon the charactersistics of the series transistors VT50. (2N3055). Resistor R10 determines the trip current level. To increase the trip current, the value of R10 must be decreased and its value increased to lower the trip current. Resistor $R 7$ determines the short circuit current level. A decrease in the value of R 7 increases the short circuit current level and its value must be increased to lower the short circuit current.

Parallel operation (fig. 4)
Caution...
Care should be taken to ensure that the ' $P$ ' terminal is not short circuited to the negative output terminal. A short circuit between these two terminals will result in circuit failure.
25. When operating a maximum of five similar power supplies in parallel is only necessary to interconnect the ' $P$ ' terminals of each unit and parallel the dc outputs. The unit set to the highest voltage will act as the master unit and will have overriding control of the other units. The output voltage of each unit should be set within the limits required.
26. When more than five units are operated in parallel the units should be connected using 47 ohm $\frac{1}{2} \mathrm{~W}$ resistors as shown in fig 4 .


Fig 4 Parallel operating connections

TABLE 3

Output voltage - resistor values
ASA/ATA 50 - 5000 power supply units

| Output voltage range | Resistor | 50 | 100 | 200 | 300 | 500 | 700 | 1000 | 1500 | 2000 | 3000 | 5000 | Transformer tappings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCB 2938294 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 V to 4.5 V | R7 | 3.3k | 1.8k | 1.8k | 1.5k | 910 | 1.5k | 1 k | 1k | 910 | 910 |  | . ASA $50-2000$ |
|  | R10 | - | - | - | - | - | - | - | - | - | - |  | 9V-0-9V |
|  | K12 | 470k | 470k | 470k | - | - | - | - | - | - | - |  | ASA 3000 |
|  | R20 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |  | $14 \mathrm{~V}-0-14 \mathrm{~V}$ |
| 4.5 V to 7.5 V | R7 | 2.2k | 6.8k | 6.8 k | 2.7k | 2.2k | 3.3k | 2.2 k | 2.2k | 2.2k | 5.6k |  | ASA $50-2000$ |
|  | R10 | 3.9k | 2.2k | 2k | 3 k | 1.5k | 2.2k | 1.8k | 1.8k | 1.8k | 1k |  | $12 \mathrm{~V}-0-12 \mathrm{~V}$ |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - | - | - |  | ASA 3000 |
|  | R20 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 |  | 17V-0-17V |

PCB 397\&398

|  | 1 V to 4V | R7 | 3.3k | 1.8k | 1.8 k | 1.5k | 910 | 1.5k | 1 k | 1 k | 910 | 910 | ASA 50-3000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | R8 | 560 | 560 | 560 | 560 | 560 | 560 | 560 | 560 | 1 k | 1k | $9 \mathrm{~V}-0-9 \mathrm{~V}$ |  |
|  |  | R10 | - | - | - | - | - | - | - | - | - | - |  | $B$ |
|  |  | R12 | 470k | 470k | 470k | - | - | - | - | - | - | - |  | N- |
|  |  | K20 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |  | 吕宗 |
|  | 5 V to 7.5 V | 2. 7 | 2. 2 k | 6.8k | 6.8k | 2.7k | 2.2k | 3.3k | 2.2k | 2. 2 k | 2. 2 k | 5.6k | ASA 50-3000 | (10 |
| 0 |  | R8 | 560 | 560 | 560 | 560 | 560 | 560 | 560 | 560 | 1 k | 1 k | $12 \mathrm{~V}-0-12 \mathrm{~V}$ | $\bigcirc$ |
| 0 |  | R. 10 | 2.7 k | 2. 2 k | 2k | 3 k | 1.5k | $2.2 k$ | 1.8 k | 1.3 k | 1.5k | 1 k |  | $\stackrel{1}{\square}$ |
| ■ |  | R12 | 470 k | 470k | 470k | - | - | - | - | - | - | - |  |  |
| ■ |  | F20 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 |  |  |

TABLE 3 (Cont.)
ASB/ATB 50-2000 power supply units

| Output voltage range | Resistor | 50 | 100 | 200 | 300 | 500 | 700 | 1000 | 1500 | 2000 | Transformer tappings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCB 293\&294 |  |  |  |  |  |  |  |  |  |  |  |
| PCB 3978398 |  |  |  |  |  |  |  |  |  |  |  |
| 6 V to 8 V | R7 | 27k | 6.8k | 6.8k | 4.7k | 3.3k | 4.7k | 3.3k | 4.7k | 4.7k | ASB $50-2000$ |
|  | R10 | 5.6k | 2.2k | 2.2k | 2.4k | 1.5k | 2.7k | 3.9k | 1.8k | 1.5k | OV - 13 (13V) |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - | - |  |
|  | R20 | 470 | 470 | 470 | 470 | 470 | 470 | 470 | 470 | 470 |  |
| 9 V to 11 V | R7 | 2.7k | 6.8k | 6.8k | 4.7k | 3.3k | 4.7k | 3.3k | 4.7 k | 4.7k | ASB $50-2000$ |
|  | R10 | 6.8k | 3.3k | 3.3k | 3.3k | 1.8k | 3.9k | 4.3k | 2.7k | 2k | 2V-0-13V (15V) |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - | - |  |
|  | R20 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 |  |
| 12 V to 13 V | R7 | 27k | 6.8k | 6.8k | 4.7k | 3.3k | 4.7k | 3.3k | 4.7k | 4.7k | ASB 50-2000 |
|  | R10 | 8.2k | 4.7k | 4.7k | 4.7k | 2.7k | 4.7k | 4.7k | 3.3k | 2.7k | OV-18V (18V) |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - | - |  |
|  | R20 | 1k | 1k | 1k | 1k | 1k | 1k | 1 k | 1 k | 1k |  |
| 14 V to 15 V | R7 | 27k | 6.8k | 6.8k | 4.7 k | 3.3k | 4.7 k | 3.3k | 4.7k | 4.7k | ASB $50-2000$ |
|  | R10 | 8. 2k | 4.7k | 4.7k | 4.7k | 2.7k | 4.7k | 5.1k | 3.9k | 3.3k | $2 \mathrm{~V}-0-18 \mathrm{~V}$ (20V) |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - | - |  |
|  | R20 | 1.2k | 1.2k | 1.2k | 1.2 k | 1.2k | 1.2k | 1.2k | 1.2k | 1.2k |  |

TABLE 3 (Cont.)
ASC/ATC $50-1500$ power supply units

| Output voltage range | Resistor | 50 | 100 | 200 | 300 | 500 | 700 | 1000 | 1500 | Transformer tappings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCB 3978398 |  |  |  |  |  |  |  |  |  |  |
| 6 V to 8 V | R7 | - | - | - | 5.6k | 5.6k | 6.8k | 5.6k | 5.6k | ASC 50-1500 |
|  | R10 | 3.3k | 2.4k | 2.2k | 2.7k | 1.8k | 1.5k | 2.4k | 2.2k | $0 \mathrm{~V}-13 \mathrm{~V}$ (13v) |
|  | R12 | 470k | 470k | 470k | - |  | - | - |  |  |
|  | R20 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 |  |
| 9 V to 11 V | R7 | - | - | - | 5.6k | 5.6k | 6.8k | 5.6k | 5.6k | ASC 50-1500 |
|  | R10 | 4.7k | 3.3k | 2.7k | 3.9k | 3.9k | 1.8k | 3.3k | 2.7k | $3 \mathrm{~V}-0-13 \mathrm{~V}$ (16V) |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - |  |
|  | R20 | 560 | 560 | 560 | 560 | 560 | 560 | 560 | 560 |  |
| 12 V to 14 V | R7 | - | - | - | 5.6k | $5.6 \mathrm{k}$ | $6.8 \mathrm{k}$ | $5.6 k$ | $5.6 k$ | ASC $50-1500$ |
|  | R10 | 8.2k | 4.7k | 3.9k | 47k | $5.6 \mathrm{k}$ | 2.2k | 3.9k | $3.3 \mathrm{k}$ | $6 V-0-13 V(19 V)$ |
|  | R12 | 470k | 470k | 470k | - | - | - | - | - |  |
|  | R20 | 820 | 820 | 820 | 820 | 820 | 820 | 820 | 820 |  |
| 15 V to 17 V | R7 | - | - | - | 5.6k | 5.6k | 6.8 k | 5.6k | 5.6k | ASC $50-1500$ |
|  | R10 | 12k | 5.1k | 4.7k | 5.6k | 5.6k | 2.7 k | 4.7k | 3.9k | OV - 23V (23V) |
|  | R12 | 1M | 2.2M | 470k | - | - | - | - | - |  |
|  | R20 | 1.2k |  |
|  | R7 | - | - | - | 5.6k | 5.6k | 5.8k | 5.6k | 5.6k | ASC 50-1500 |
|  | R10 | 15k | 6.8 k | 5.6k | 7.5k | 5.8 k | 6.8 k | 5.6k | 4.7 k | $3 \mathrm{~V}-0-23 \mathrm{~V}$ (26V) |


| ASC/ATC $50-1500$ power supply units |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output voltage range | Resistor | 50 | 100 | 200 | 300 | 500 | 700 | 1000 | 1500 | Transformer tappings |
| PCB 3978398 |  |  |  |  |  |  |  |  |  |  |
| 18 V to 20 V | R12 | 470k | 2.2M | 470k | - | - | - | - | - | ASC $50-1500$ |
|  | R20 | 1.5k | $3 \mathrm{~V}-0-23 \mathrm{~V}$ (26V) |
| 21 V to 24V | R7 | - | - | - | 5.6k | 5.6k | 6.8k | 5.6k | 5.6k | ASC 50-1500 |
|  | R10 | 18k | 7.5k | 6.8k | 8. 2 k | 9.1k | 7.5k | 6.8k | 4.7k | 6V-0-23V (29V) |
|  | R12 | 470k | 2.2M | 470k | - | - | - | - | - |  |
|  | R20 | 1.8k | 1.8 k | 1.8k | 1.8k | 1.8 k | 1.8 k | 1.8 k | 1.8 k |  |
| 25 V to 27 V | R7 | - | - | - | 5.6k | 5.6k | 6.8k | 5.6k | 5.6k | ASC 50-1500 |
|  | R10 | 15k | 9.1k | 7.5k | 10k | 10k | 8.2k | 7.5k | 5.6k | 3V-0-28V (31V) |
|  | R12 | 470k | 2.2M | 470k | - | - | - | - | - |  |
|  | R20 | 2k |  |
| 28 V to 30 V | R7 | - | - | - | 5.6k | 5.6k | $6.8 k$ | 5.6k | 5.6k | ASC $50-1500$ |
|  | R10 | 20k | 10k | 9.1k | 10k | 12k | 10k | 9.1k | 6.2k | 6V-0-28V (34V) |
|  | R12 | 2. 2M | 2.2M | 470k | - | - | - | . | - |  |
|  | R20 | 2.4k |  |



| ASC 2000 and ASC 3000 power supply unit |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Output voltage range | Resistor | 2000 | 3000 | Transformer output voltage. Obtained by output tapping selection |
| 25 V to 27V | R7 | 5.6k | 5.6k | 44V |
|  | R10 | 5.1k | 5.6k |  |
|  | R12 | - | - |  |
|  | R20 | 2k | 2k |  |
| 28 V to 30 V | R7 | $5.6 k$ | $5.6 \mathrm{k}$ | 48V |
|  | R10 | $5.6 \mathrm{k}$ | $5.8 k$ |  |
|  | R12 | - |  |  |
|  | R20 | 2.4k | 2.4k |  |

## TABLE 4

Parts list: power supply framework
These lists contains those components that are fitted to the power supply framework. Diodes MR11-12 given in those lists may on some twin output units (ATB) be fitted to the printed circuit board. Parts list for printed circuit boards PCB293/294 and PCB397/398 (later versions) are contained in table 5 . PCB 293 and PCB 397 are used on single output.units (AS) PCB 294 and PCB 398 are used on twin output units (AT).

| Component Ref | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| $\frac{\text { ASA50, ASA100 }}{\text { ATA50, ATA100 }}$ |  |  |
|  |  |  |
| C50 | Capacitor elect. $2500 \mu \mathrm{~F} 25 \mathrm{~V}$ | Sprague 36D 272G 025 AA 2A (or AA 6B) |
| C51 | Capacitor elect. 200~F 35V | Wima Printilyt |
| C52 | Capacitor 0.1雨 160V | Wima Tropyfol M |
| MR11-12 | Diode | Motorola 1N4003 (2) |
| MR50-51 | Diode | Motorola 1N4003 (2) |
| R50 | Resistor 1 ohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance CC115 wirewound or Colvern CLR1106/9S |
| T1 (ASA50) | Transformer | Albion T147/8 |
| (ata50) | Transformer | Albion T78/16 |
| (ASA100) | Transformer | Albion T147/9 |
| (ATA100) | Transformer | Albion T78/17 |
| VT50 | Transistor | RCA 2N3055 |
| ASA200, ATA200 |  |  |
| C50 | Capacitor elect. 5100~F 25V | Sprague 32D 512G 025 AC 2A (or AC 6B) |
| C51 | Capacitor elect. 200uF 35V | Wima Printilyt |
| C52 | Capacitor 0.22uF 160V | Wima Tropyfol M |
| MR11-12 | Diode | Westinghouse 1N5402 (2) |
| MR50-51 | Diode | Motorola 1N4003 (2) |
| R50 | Resistor 0.5 ohm 5W 5\% | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance CC115 wirewound or Colvern CLR1106/9S |
|  | Transformer | Albion $778 / 11$ |
| (ATA200) | Transformer | Albion T152/8 |
| VT50 | Transistor | RCA 2N3055 |


| Component Ref | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| ASA300, ATA 300 |  |  |
| C50 | Capacitor elect. 5100uF 25V | Sprague 32D 512G 025 AC 2A (or AC 6B) |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard 121/17399 (or Mullard C415) |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode | Westinghouse 1N5402 (2) |
| MR50 | Diode | Int. Rectifiers 3F10 |
| MR51-52 | Diode | Motorola 1N4003 (2) |
| R50 a, b | Resistor 0.5 ohm 5W 5\% | Wirewound (2) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance CC115 wirewound or Colvern CLR1106/9S |
| T1 (ASA300) | Transformer | Albion T78/7 |
| (ATA300) | Transformer | Albion T120/23 |
| VT50 a \& b | Transistor | RCA 2 N 3055 (2) |
| VT51 | Transistor | RCA 2N3055 |
| ASA500, ATA500 |  |  |
| C50 | Capacitor elect. 11000uF 25 V | Sprague 32D 113G 025 BC 2A (or BC 6 B ) |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard 121/17399 (or Mullard C415) |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol |
| MR11-12 (ASA500) | Diode | RCA 40210 |
| MR11-12 (ATA500) | Diode, bridge | Motorola MDA 962-2 (2) |
| MR50 | Diode | Int. Rectifiers 3F10 |
| MR51 | Diode | Motorola 1N4003 |
| MR52 | Diode | Motorola 1N4003 |
| R50 a \& b | Resistor 0.5 ohm 5\% 5W | Wirewound (2) |
| R51 | Resistor $1 \mathrm{kohm} \mathrm{5} \mathrm{\%} \mathrm{3W}$ | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance CC115 wirewound (or Colvern CLR1106/9S) |
| T1 (ASA500) | Transformer | Albion T78/13 |
| (ATA500) | Transformer | Albion T120/24 |
| VT50 a \& b | Transistor | RCA 2 N 3055 (2) |
| VT51 | Transistor | RCA 2N3055 |

ASA 700
C50 a Capacitor elect. 5100رF 25V Sprague 32D 512G 025 AC 2A (or AC 6B)
C50 b Capacitor elect. 11000 F F 25V Sprague 32D-113 025 BC 2A (or BC 6 B )

ASA 700 (Cont'd)

| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| :---: | :---: | :---: |
| C51 下 | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard C121 (or Niullard C415) |
| C 52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode | RCA 40210 (2) |
| MR 50 | Diode | RCA 40209 |
| MR51 | Diode | Westinghouse 1N5402 |
| R.50 a-e | Resistor 0.5 ohm 5\% 5W | Wirewound (5) |
| R 51 | Resistor 1 kohm 5\% 5W | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance CCll5 (or Colvern CLR1106/9S |
| T1 | Transformer | Albion T120/16 |
| VT50 a-e | Transistor | RCA 2N3055 (5) |
| VT51 | Transistor | RCA 2N3055 |

ASA 1000

| C50 a \& b | Capacitor elect. $11000 \mu \mathrm{~F} 25 \mathrm{~V}$ | Sprague 32D 113G 025 BC 2A (or BC 6B) (2) |
| :---: | :---: | :---: |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C.51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard C121 |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode | RCA 40210 (2) |
| MR50 | Diode | RCA 40209 |
| MR5 1 | Diode | Westinghouse 1N5402 |
| R50 a-e | Resistor 0.5 ohm 5N 5\% | Wirewound (5) |
| F. 51 | Resistor 1 kohm 3W 5\% | Wirewound |
| IV1 | Pesistor variable too ohm 5\% | Reliance CCll5 (or Colvern CLR1106/9S |
| T1 | Transformer | Albion T120/17 |
| VT50 a-e | Transistor | Motorola 1N5402 (5) |
| VT51 | Transistor | Solidev 2N3055 |

ASA 1500

| C50 a-c | Capacitor elect. 11000 F 2 25 V | Sprague 3 (f) 113025 AL 2 A (or AE 6E) (3) |
| :---: | :---: | :---: |
| C51 a | Capacitor elect. $1400 \mu \mathrm{~F} 64 \mathrm{~V}$ | Mullard C.432 |
| C 51 b | Capacitor elect. 39 F 40 V | Mullard C121 (or Mullard c.415) |
| C51 c | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C52 | Capacitor $0.22 \mu \mathrm{~F}$ | Wima Tropyfol M |
| C54 | Capacitor $2 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard C415 |

AP 116U-0504-1
(2nd Edn.)
Component Ref Description Manufacturers part/type

ASA 1500 (Cont 'd)

| MR11-12 | Diode |
| :--- | :--- |
| MR50 | Diode |
| MR51 | Diode |

RCA 40210 (2)
MR50 Diode
RCA 40209R
MR51 Diode
Westinghouse 1N5402
R50 a-f
R51
Resistor 0.5 ohm 5W 5\%
Wirewound
(6)

RV1
T1
Resistor 1 kohm 3W 5\%
Wirewound
Resistor variable 500 ohm 5\% Reliance CCll5 (or Colvern
CLR1106/9S
Transformer
Albion T248/2
VT50 a-f
VT51
Transistor
Transistor
PCA 2N3055 (6)
Solidev 2N3055
ASA 2000

| C50 a-d | Capacitor elect. 1100 F F 25V | Sprague 32D 113G 025 CD 2 A (or CD 6B) (4) |
| :---: | :---: | :---: |
| C51 a | Capacitor elect. $1400 \mu \mathrm{~F} 64 \mathrm{~V}$ | Mullard C.432 |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard C121 (or Mullard C415) |
| C51 c | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | lima Printilyt |
| C52 | Capacitor 0. 22 F | Wima Tropyfol M |
| C54 | Capacitor $2 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mul1ard C415 |
| MR11-12 | Diode | RCA 40210 (2) |
| MR50 | Diode | RCA 40209 |
| MR51 | Diode | Westingtouse 1N540? |
| R50 a-h | Resistor 0.5 ohm 5\% $5 \%$ | Wirewound (8) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| T1 | Transformer | Altion T248/3 |
| VT50 a-h | Transistor | PCA 2N3055 (8) |
| VT51 | Transistor | Solidev 2N3055 |

ASA 3000

| C50 a \& b | Capacitor efect. 1600 F 30V | Sprague 36D 163G 030 BD (or for 6B) |
| :---: | :---: | :---: |
| C51 a | Capacitor elect. $1400 \mu \mathrm{~F} 64 \mathrm{~V}$ | Mullarc C432 FR/H1400 |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mullard C121 (or :lullard c.415) |
| C51 c | Capacitor elect. 500 F 3 35 V | Wima Printilyt |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Jropyfol il |
| L1 | Inductor | A.1bion L78/4 |
| MR11-12 | Diode | RCA 40210 (2) |
| MR50 a \& b | Diode | RCA 40209 (2) |
| MR51 | Diode | Westinghouse 1:5402 |

ASA 3000 (Cont'd)

| R50 a-m | Resistor 0.5 ohm $5 \mathrm{~W} \mathrm{5} \mathrm{\%}$ | Wirewound (13) |
| :--- | :--- | :--- |
| R51 | Resistor 1 kohm $3 \mathrm{~W} 5 \%$ | Wirewound |
| RV1 | Resistor variable $5 \%$ | Reliance CC115 (or Colvern <br>  <br> T1 |
|  | Transformer | CLR1106/9S) |
| VT50 a-m | Transistor T638C/2 |  |
| VT51 | Transistor | RCA 2N3055 |

ASA 5000

| C50 a-c | Capacitor elect. $1600 \mu \mathrm{~F}$ 30V | Sprague 36D 163G 030 BD 2A (or BD 6B) (3) |
| :---: | :---: | :---: |
| C51 a | Capacitor elect. $1400 \mu \mathrm{~F} 64 \mathrm{~V}$ | Mullard C432 FR/H1400 |
| C51 b | Capacitor elect. 39 ¢F 40V | Mullard C121 (or Mullard C415) |
| C51.c | Capacitor elect. 500 F 35V | Wima Printlyt |
| C52 | Capacitor $0.22 \mu \mathrm{~F}$ 160V | Wima Tropyfol M |
| C54 | Capacitor $2 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mu11ard C415AP/G2 |
| L1 | Inductor | Albion L78/5 |
| MR11-12 | Diode | Motorola MR1202FL (2) |
| MR50 a-b | Diode | RCA 1N40209 (2) |
| MR51 | Diode | Westinghouse 1N5402 |
| R50 a-z | Resistor 0.5 ohm 5W 5\% | Wirewound (26) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 500 ohms 5\% | Reliance CC115 (or Colvern CLR1106/9S) |
| VT50 a-z | Transistor | RCA 2N3055(26) |
| VT51 | Transistor | Solidev 2N3055 |
| T1 | Transformer | Albion T638C/3 |

ASB50, ATB50

| C50 | Capacitor elect. 1000 F 40 V | Sprague 32D 102G 025 AA 2A (or AA 6B) |
| :---: | :---: | :---: |
| C51 | Capacitor elect. $200 \mu \mathrm{~F}$ 35V | Wima Printilyt |
| C52 | Capacitor $0.1 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode | Motorola 1N4003 (4) |
| MR50-52 | Diode | Motorola 1N4003 (3) |
| R50 | Resistor 1 ohm 3W 5\% | Wirewound |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 (ASB) | Resistor variable 500 ohm 5\% | Reliance WL18 wirewound (or Colvern CLR1106/9S) |
| RV1 ATB | Resistor variable 500 ohm 5\% | M.E.C. MP31 (or Reliance CW-90) |
| T1 (ASB) | Transformer | Albion T147/10 |
| (ATB) | Transformer | Albion T78/18 |
| VT50 | Transistor | RCA 2N3055 |

```
AP 116U-0504-1
    (2nd Edn.)
```

| Component Ref | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| ASB100, ATB100 |  |  |
| C50 | Capacitor elect. $2100 \mu \mathrm{~F} 40 \mathrm{~V}$ | Sprague 32D 212G 040 AB 2 A (or AA 6B) |
| C51 | Capacitor elect. 200んF 35V | Wima Printilyt |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode | Motorola 1N4003 (4) |
| MR50-52 | Diode | Motorola 1N4003 (3) |
| R50 | Resistor 1 ohm 3W 5\% | Wirewound |
| RV1 (ASB) | Resistor variable 500 ohm 5\% | Reliance WL18 (or Colvern CLR1106/9S) |
| RV1 (ATB) | Resistor Variable 500 ohm 5\% | M.E.C. MP31 (or Reliance CW-90) |
| T1 (ASB) | Transformer | Albion $729 / 7$ |
| (ATB) | Transformer | Albion T78/19 |
| VT50 | Transistor | Motorola 2N3055 |
| ASB 200, ATB 200 |  |  |
| C 50 a \& b | Capacitor elect. 2100 F 40 V | Sprague 32D 212G 040 AB 2 A (or AB6A) |
| C51 | Capacitor elect. 200 F 35V | Wima Printilyt |
| C52 | Capacitor 0.22 F 160V | Wima Tropyfol |
| MR11-12 | Diode bridge | Motorola MDA 952-2 |
| MR50-52 | Diode | Motorola 1N4003 (3) |
| R50 | Resistor 0.5 ohm 5W 5\% | Wirewound |
| RV1 (ASB) | Resistor Variable 500 ohm 5\% | Reliance WL18 (or Colvern CLR1106/9S) |
| RV1 (ATB) | Resistor variable 500 ohm 5\% | M.E.C. MP31 (or Reliance WL18) |
| T1 (ASB) | Transformer | Albion T78/8 |
| Tl (ATB) | Transformer | Albion T78/21 |
| VT50 | Transistor | Motorola 2N3055 |
| ASB 300, ATB 300 |  |  |
| C50 a \& b | Capacitor elect. $3600 \mu \mathrm{~F} 40 \mathrm{~V}$ | Sprague 36D 362G 040 AB 2 A (or AC 6B) (2) |
| C51 a | Capacitor elect. 500⿲F 35V | Wima Printilyt |
| C 51 b | Capacitor elect. 39, 40 V | Mullard C415 |
| C52 | Capacitor 0.22 2 F 160 V | Wima Tropyfol M |
| MR11-12 | Diode bridge | Motorola MDA 952-2 |
| MR50 | Diode | Int. Rectifiers 3F10 |
| MR51-52 | Diode | Motorola 1 N 4003 |

ASB 300, ATB 300

| R50 a \& b | Resistor 0.5 ohm $5 \mathrm{~W} 5 \%$ | Wirewound (2) |
| :--- | :--- | :--- |
| R51 (ASB) | Resistor 1 kohm $3 \mathrm{~W} 5 \%$ <br> RV1 | Wirewound |
| RV1 (ATB) | Resistor variable 500 ohm | Reliance WL18 (or Colvern <br> CLR1106/9S |
|  |  | M.E.C. MP31 (or Reliance <br> WL-18) |
| T1 (ASB) | Transformer |  |
| T1 (ATB) | Transformer | Albion T152/4 |
| VT50 a \& b | Transistor | Albion T120/26 |
| VT51 | Transistor | Motorola 2N3055 |

ASB 500, ATB 500

| C50 a \& b (ASB) | Capacitor elect. $5500 \mu \mathrm{~F} 40 \mathrm{~V}$ |
| :--- | :--- |
| C50 (ATB) | Capacitor elect. $12000 \mu \mathrm{~F} 40 \mathrm{~V}$ |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 45 \mathrm{~V}$ <br> C51 b <br> C52 |
| Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ <br> MR11-12 | Diode bridge <br> MR50-52 |

Sprague 36D 552G 040 AC 2A
(or AC 6B) (2)
Sprague 32D 123G 040 AC 2A
(or CC 6B)
Wima Tropyfol M
Mullard C415
Wima Tropyfol M
Motorola MDA-962-2
Motorola 1N4003
Wirewound (2)
Wirewound (3)
Wirewound
Reliance WL18 (or Colvern
CLR1106/9S
M.E.C. MP31 (or Reliance WL18)
Albion T78/14
Albion T120/27
Motorola 2N3055 (2)
Solidev 2N3055 (3)
Solidev 2N3055

ASB 700

| C50 a \& b | Capacitor elect. $7300 \mu \mathrm{~F} 40 \mathrm{~V}$ |
| :---: | :---: |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ |
| C51 b | Capacitor elect. 39 F 40 V |
| C52 | Capacitor 0.22 $\mathrm{F}^{\text {F }} 160 \mathrm{~V}$ |
| MR11-12 | Diode bridge |
| MR50 | Diode |
| MR51 a \& b | Diode |
| MR52 | Diode |


| Component Ref | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| ASB 700 (Cont'd) |  |  |
| R50 a-c | Resistor 0.5 ohm 5W 5\% | Wirewound (5) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance WL18 (or Colvern CLR1106/9S) |
| T1 | Transformer | Albion T120/18 |
| VT50 a-e | Transistor | Motorola 2 N 3055 |
| VT51 | Transistor | Solidev 2N3055 |
| ASB 1000 |  |  |
| C50 a \& b | Capacitor elect. 12000uF 40 V | Sprague 32D 123 G 040 CC 2 A (or CC 6A) (2) |
| C51a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C51 b | Capacitor elect. 39 F 40 V | Mullard C415 |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode bridge | Motorola MDA-962-2 |
| MR50 | Diode | RCA 40209 |
| MR51 a \& b | Diode | Westinghouse 1 N4721 (2) |
| MR52 | Diode | Motorola 1N4003 |
| R50 a-b | Resistor 0.5 ohm 5W 5\% | Wirewound (6) |
| R51 | Resistor $1 \mathrm{kohm} \mathrm{3W} \mathrm{5} \mathrm{\%}$ | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance WL18 (or Colvern CLR1106/9S) |
| T1 | Transformer | Albion T120/19 |
| VT50 a-f | Transistor | Motorola 2N3055 (6) |
| VT51 | Transistor | Soidev 2N3055 |
| ASB 1500 |  |  |
| C50 a-b | Capacitor elect. $7300 \mu \mathrm{~F} 40 \mathrm{~V}$ | Sprague 32D 732040 BC 2A (or BC 6 B ) |
| C51 a | Capacitor elect. 1400^F 64V | Mullard C432 |
| C 51 b | Capacitor elect. 39,F 40 V | Mullard C415 |
| C51 c | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C52 | Capacitor 0.22 $\mathrm{F}^{\text {c }} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode bridge | Motorola MDA-972-2 |
| MR50 | Diode | RCA 40209 |
| MR51 a \& b | Diode | Westinghouse 1N4721 (2) |
| MR52 | Diode | Motorola 1N4003 |
| R50 a-h | Resistor 0.5 ohm 5W 5\% | Wirewound (8) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 500 ohm 5\% | Reliance WL18 (or Colvern CLR1106/9S) |
| T1 | Transformer | Albion T284/4 |

Component Ref $\quad$ Description $\quad$ Manufacturers part/type

ASB 1500

VT50 a-h
VT51

ASB 2000
C50 a \&
$C 50 c \& d$
C51 a
C51 b
C51 c
C52
MR11 a-12a
MR11 b-12b
MR51 Diode
MR52 Diode

R50 a-g
R51
RV1

T1
VT50 a-g
VT51

ASB 3000

C51 a
C51 b
C51 c
C52
Ll
MR11 a-12 a
MR11 b-12 b
MR50 a \& b
MR51
MR52
R50 a-m
R51
RV1

Transistor
Transistor

Motorola 2N3055 (8)
Solidev 2N3055

Capacitor elect. 7300 F 40V Sprague 32D 732G 040 BC 2A (or BC 6B) (2)
Sprague 32D 123G 040 CC 2A (or CC 6B) (2)
Mullard C432 FR/H1400
Mullard C415
Wima Printilyt
Wima Tropyfol M
RCA 1N40210R (or 1N40209R)
(2)

RCA 1N40210 (or 1N40209)
(2)

Westinghouse 1N5402
Motorola 1N4003
Wirewound (7)
Wirewound
Reliance WL18 (or Colvern CLR1106/9S)

Albion T248/5
Motorola 2N3055 (7)
Solider 2N3055

Capacitor elect. 10,000 F 50V Sprague 32D 103G 050 CC 2A (or CC 6B)
Capacitor elect. 1400 F 64V Mullard C432 FR/H1400
Capacitor elect. 39 F 40 V Mullard C415
Capacitor elect. 500 F 35V Wima Printilyt
Capacitor 0.22 F 160V
Inductor
Diode
Diode
Diode
Diode
Diode
Resistor 0.5 ohm 5W 5\% Wirewound (13)
Resistor 1 kohm 3W 5\%
Wirewound
Resistor variable 500 ohm 5\% Reliance WL18 (for Colvern CLR1106/9S)

| Components Ref | Description | Manufacturers part/type |
| :--- | :--- | :--- |
| ASB 3000 (Cont'd) |  |  |
| T1 |  |  |
| VT50 a-m | Transformer | Albion T638C/4 |
| VT51 | Transistor | RCA 2N3055 (13) |
|  | Transistor | Solidev 2N3055 |


| T1 (ASC) | Transformer | Albion T152/3 |
| :--- | :--- | :--- |
| T1 (ATC) | Transformer | Albion T120/25 |
| VT50 a \& b | Transistor | Motorola 2N3055 (2) |

ASC 300 - ATC 300

| C50 | Capacitor elect. $5800 \mu \mathrm{~F} 50 \mathrm{~V}$ |
| :--- | :--- |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ |
| C52 | Capacitor 0.22 16 V |
| MR11-MR12 | Diode bridge |
| MR50 | Diode |
| MR51 | Diode |

R50 a \& b
R51
RV1

T1 (ASC)
T1 (ATC)
VT50 a \& b VT51

Resistor 0.5 ohm 5W 5\%
Resistor 1 kohm 3W 5\%
Resistor variable 500 ohm $5 \%$

Transformer
Transformer
Transistor
Transistor
Sprague 32D 582G 050 BC 2A
Wima Printilyt
Mullard $C 415$
Wima Tropyfol M
Motorola MDA-952-2
Int. Rectifiers 3F10
Motorola 1N4003
Wirewound (2)
Wirewound
Colvern 1106/9S (Or M.E.C. MP31)
Albion T78/15
Albion T248/8
Motorola 2N3055 (2)
Solidev 2N3055

ASC 500 - ATC 500

| C50 | Capacitor elect. $10000 \mu \mathrm{~F} 50 \mathrm{~V}$ |
| :---: | :---: |
| C51 a | Capacitor elect. 500 F 35V |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ |
| C 52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ |
| MR11-MR12 | Diode bridge |
| MR50 | Diode |
| MR51 | Diode |
| R50 a-d (ASC) | Resistor 0.5 ohm 5W 5\% |
| R50 a-c (ATC) | Resistor 0.5 ohm 5W 5\% |
| R51 | Resistor 1 kohm 3W 5\% |
| RV1 | Resistor 1 kohm 5\% |
| T1 (ASC) | Transformer |
| T1 (ATC) | Transformer |
| VT50 a-d (ASC) | Transistor |
| VT50 a-c (ATC) | Transistor |

Sprague 32D 103G 050 CC 2A
Wima Printilyt
Mullard C415
Wima Tropyfol M
Motorola MDA-962-2
Int. Rectifiers 3 F10
Motorola 1N4003
Wirewound (4)
Wirewound (3)
Wirewound
Colvern CLR1106/9S (or
M.E.C. MP31)

Albion T120/0
Albion T248/0
Motorola 2N3055 (4)
Solidev 2N3055 (3)

ASC 700

| C50 a | Capacitor elect. $8500 \mu \mathrm{~F} 50 \mathrm{~V}$ |
| :--- | :--- |
| C50 b | Capacitor elect. $10000 \mu \mathrm{~F} 50 \mathrm{~V}$ |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} \mathrm{40V}$ |
| C52 | Capacitor 0.22 $\mu \mathrm{F} 160 \mathrm{~V}$ |
| MR11-12 | Diode bridge |
| MR50 | Diode |
| MR51 | Diode |

Sprague 32D 582G 050 BC 2A
Sprague 32D 103G 050 CC 2A
Wima Printilyt
Mullard C415
Wima Tropyfol
Motorola MDA-972-2
RCA 40209
Motorola 1N4721

| Component Ref. | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| ASC 700 (Cont'd) |  |  |
| R50 a-e | Resistor 0.5 ohm 5W 5\% | Wirewound |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 1 kohm 5\% | Colvern CLR1106/9S |
| T1 | Transformer | Albion T248/6 |
| VT50 a-e | Transistor | Motorola 2 N 3055 |
| VT51 | Transistor | Solidev 2N3055 |
| ASC 1000 |  |  |
| C50 a \& b | Capacitor elect. $1000 \mu \mathrm{~F} 50 \mathrm{~V}$ | Sprague 32D 103G 050 CC 2A (2) |
| C51 a | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C51 b | Capacitor elect. 39 F 40 V | Mullard C415 |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| MR11-12 | Diode bridge | Motorola MDA-972-2 |
| MR50 | Diode | RCA 40209R |
| MR51 | Diode | Motorola 1N5402 |
| R50 a-f | Resistor 0.5 ohm 5W 5\% | Wirewound (6) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 1 kohm 5\% | Colvern CLR1106/9S |
| T1 | Transformer | Albion T248/7 |
| VT50 a-f | Transistor | Motorola 2N3055 (6) |
| VT51 | Transistor | Solidev 2N3055 |
| ASC 1500 |  |  |
| C50 a-c | Capacitor elect. $1000 \mu \mathrm{~F} 50 \mathrm{~V}$ | Sprague 32D 103G 050 CC 2A (3) |
| C51 a | Capacitor elect. 1400~F 64V | Mullard C432 FR/H1400 |
| C51 b | Capacitor elect. 39 $\mathrm{F}^{\text {4 }} 40 \mathrm{~V}$ | Mullard C415 |
| C51 c | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| MR11 a-12 a | Diode | RCA 1N40210R (2) |
| MR11 b-12 b | Diode | RCA 1N40210 (2) |
| MR50 | Diode | RCA 1N40209 |
| MR51 | Diode | Motorola 1N4721 |
| R50 a-g | Resistor 0.5 ohm 5W 5\% | Wirewound |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor 1 kohm 5\% | Colvern CLR1106/9S |
| T1 | Transformer | Albion T638C/5 |
| VT50 a-g | Transistor | Motorola 2N3055 (7) |
| VT51 | Transistor | Solidev 2N3055 |


| Component Ref. | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| ASC 2000 |  |  |
| C 50 a \& b | Capacitor elect. 15000 F F 75V | Sprague 36D 153F 075 CF 2A (2) |
| C51 a | Capacitor elect. $1400 \mu \mathrm{~F} 64 \mathrm{~V}$ | Mullard C432 FR/H1400 |
| C51 b | Capacitor elect. 39 F 40V | Mullard C415 |
| C51 c | Capacitor elect. 500 F F 35V | Wima Printilyt |
| C52 | Capacitor $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| L1 | Inductor | Albion Ll20/4 |
| MR11 a-12 a | Diode | RCA 1N40210R (2) |
| MR11 b-12 b | Diode | RCA 1N40210 (2) |
| MR50 a \& b | Diode | RCA 1N40209 (2) |
| MR51 | Diode | Motorola 1N4721 |
| R50 a-i | Resistor 0.5 ohm 5W 5\% | Wirewound (9) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 1 kohm 5\% | Colvern CLR1105/9S |
| T1 | Transformer | Albion T638C/6 |
| VT50 a-i | Transistor | Motorola 2N3055 (9) |
| VT51 | Transistor | Solidev 2N3055 |
| ASC 3000 |  |  |
| C50 a \& b | Capacitor elect. $15000 \mu \mathrm{~F} 75 \mathrm{~V}$ | Sprague 36D 153F 075 CF 2A (2) |
| C51 a | Capacitor elect. $1400 \mu \mathrm{~F} 64 \mathrm{~V}$ | Mullard C432 FR/H1400 |
| C51 b | Capacitor elect. $39 \mu \mathrm{~F} 40 \mathrm{~V}$ | Mu11ard C415 |
| C51 c | Capacitor elect. $500 \mu \mathrm{~F} 35 \mathrm{~V}$ | Wima Printilyt |
| C52 | Capacitor elect. $0.22 \mu \mathrm{~F} 160 \mathrm{~V}$ | Wima Tropyfol M |
| L1 | Inductor | Albion L120/5 |
| MR11 a-12 a | Diode | RCA 1N40210R (2) |
| MR11 b-12 b | Diode | RCA 1N40210 (2) |
| MR50 a \& b | Diode | RCA 40209 (2) |
| MR51 | Diode | Motorola 1N4721 |
| R50 a-m | Resistor 0.5 ohm 5W 5\% | Wirewound (13) |
| R51 | Resistor 1 kohm 3W 5\% | Wirewound |
| RV1 | Resistor variable 1 kohm 5\% | Colvern CLR1106/9S |
| TI | Transformer | Albion T638/7 |
| VT50 a-m | Transistor | RCA 2N3055 (13) |
| VT51 | Transistor | Solidev 2N3055 |

TABLE 5

Parts list: PCB 293/294 and PCB 397/398

PCB 293/294
Component
ref. Description Manufacturers part/type

| C1 | Capacitor 200 F elect. 35V | Wima Printilyt |
| :--- | :--- | :--- |
| C2 | Capacitor 1000pF 400V | Wima Tropyfol M |
| C3 | Capacitor 200 F elect. 35V | Wima Printilyt |
| C4 | Capacitor $5 \mu F$ elect. 64V | Mullard C428 AR/H5 |
| MR1 | Diode, zener 4.3V | Mullard BZY 88C4V3 |
| MR2 | Diode, zener 5.1V | Mullard BZY 88C5V1 |
| MR3 | Diode, zener 5.6V | Mullard BZY 88C5V6 |
| MR4 | Diode, zener 4.3V | Mullard BZY 88C4V3 |
| MR5 | Diode | Motorola 1N4001 |
| MR6 | Diode, zener 5.1V | Mullard BZY 88C5V1 |
| MR7-10 |  | Mullard 1N4001 |

MR11-12
Note. . .
MR11-12 may be fitted to the PCB 294 on some power supply units
instead of on the main chassis. Details of these components
are contained in the parts list for each power supply.
MR13-14 Diode Mullard 1N4001
R1 Resistor 22 kohm carbon All resistors are $5 \% \frac{1}{2} \mathrm{~W}$
R2 Resistor 7.5 kohm carbon carbon

R3 Resistor 100 ohm, carbon
R4 Resistor 1 kohm, carbon
R5 Resistor 10 kohm, carbon
R6 Resistor 390 ohm carbon
R7 Resistor, * selected component
R8 Resistor 1 kohm, carbon
R9 Resistor 180 ohm, carbon
R10 Resistor * selected component
R11 Resistor 1 kohm, carbon
R12 Resistor * selected component
R13 Resistor 470 ohm, carbon
R14 Resistor 2.2 kohm, carbon
R15-16 Resistor 4.7 kohm, carbon
R17 Resistor 240 ohm, carbon
R18 Resistor 470 ohm, carbon
R19 Resistor 510 ohm, carbon
R20 Resistor * selected component
R21-R22 Resistor 100 ohms, carbon
Note...
R22 is removed when Coutant Overvoltage Protection Units are fitted to the power supply.

Note...
Details of the values for $*$ selected components can be found in Table 3.

| VT1-VT2 | Transistor | Mu11ard BFY51 |
| :--- | :--- | :--- |
| VT3 | Transistor | Mullard BCY72 |
| VT4 | Transistor | Mu11ard BC108 |
| VT5a-VT5b | Transistor | Mullard BC108 |


| Component ref. | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| C1 | Capacitor $200 \mu \mathrm{~F}$ elect. 35V | Wima Printilyt |
| C2 | Capacitor 2200pF 400V | Wima Tropyfol M |
| C3 | Capacitor $200 \mu \mathrm{~F}$ elect. 6.4 V | Mullard C426 AR/C200 |
| C4 | Capacitor $5 \mu \mathrm{~F}$ elect. 64 V | Mullard C428 AR/H5 |
| C5 | This component annotation is not used |  |
| C6 | Capacitor 4700pF 160V | Wima Tropyfol M |
| C7 | Capacitor 0.01 F ( 400 V | Wima Tropyfol M |
| Note... <br> C7 is only fitted to units with outputs of 15 A and above |  |  |
|  |  |  |
|  |  |  |
| MR2 | Diode, zener 5.1V | Mullard BZY 88C5V1 |
| MR3 | Diode, zener 5.6 V | Mullard BZY 88C5V6 |
| MR4 | Diode, zener 4.3V | Mullard BZY 88C4V3 |
| MR5 | Diode | Motorola 1N4003 |
| MR6 | Diode, zener 5.1V | Mullard BZY 88C5V1 |
| Note... |  |  |
|  |  |  |
| Resistor R19 is associated with this change. |  |  |
| MR 7-10 | Diode | Mullard 1N4003 |
| MR11-12 |  |  |
| Note... |  |  |
| units instead of on the main chassis. Details of these |  |  |
| components are contained in the parts list for each power |  |  |
|  |  |  |
| MR13-14 | Diode | Mullard 1N4003 |
| R1 | Resistor 390 ohm, high stability |  |
| R2 | Resistor 82 kohm , carbon film | Electrosil TR5 |
| R3 | Resistor 100 ohm, carbon film | Metal oxide, high stability |
| R4 | Resistor 1 kohm , carbon film | resistors $2 \%$ or 5\% |
| R5 | Resistor 10 kohm , carbon film | Waycom Piher WP051 |
| R6 | Resistor 390 ohm, high stability | carbon film resistors |
| R7 | Resistor, * selected component, high stability | $\frac{1}{2}$ W 5\% |
| R8 | Resistor 560 ohm, carbon film |  |
| R9 | Resistor 180 ohm, carbon film |  |
| R10 | Resistor * selected component, high stability |  |
| R11 | Resistor 1 kohm, high stability |  |
| R12 | Resistor * selected component, high stability |  |
| R13 | Resistor 470 ohm, carbon film |  |
| R14 | Resistor 2.2 kohm, carbon film |  |
| R15-16 | Resistor 4.7 kohm, carbon film |  |
| R17 | Resistor 240 ohm, high stability |  |
| R18 | Resistor 470 ohm, carbon film |  |
| R19 | Resistor 510 ohm, high stability |  |





APPENDIX A
Coutant overvoltage protection units

1. $O V$ series
2. KRO 30

## Appendix A COUTANT OVERVOLTAGE PROTECTION UNIT

## OV SERIES

1. Coutant OV protection units are designed to protect voltage sensitive components connected to the output terminals of standard Coutant A Series power supply units. Voltage rise beyond a pre-adjusted limit results in the firing of a Crowbar SCR which clamps the output of the supply unit at zero.
2. The overvoltage unit connects directly to the tagboard of the power supply or alternatively can be connected into the output cableform remote from the supply. A dc fuse which forms part of the protection circuit is mounted on the OV printed circuit board. The OV protection unit derives its power from its associated power supply. The following specifications apply to the unit:-

Dimensions:

Weight:
Overvoltage limits:

Temperature range:
Setting resolution:

Minimum threshold setting:
for protection over the
full temperature range
Delay time:

```
2.25 in (57 mm) x 2.375 in (61 mm) x 4.2
in (107 mm)
4\frac{1}{2} oz (127.5 gm)
Range 1 8.5 to 35V
Range 2 4.5 to 13V
-10 deg. C. to +65 deg. C.
Range 1 100 mV
Range 2 60 mV
Range 1 output volts +5% nom.
Range 2 output volts +10% nom.
```

Normal 20 $\mu \mathrm{S}$ (set by manufacturer) Minimum $3 \mu \mathrm{~S}$ (by removal of link LKA)

Circuit description (fig.1)
3. A voltage derived from the output of the power supply by potential divider R4 and RV1 is compared by VT2 with a fixed reference voltage across Zener diode MR4 (high range) and MR3 (low range). VT3 and VT4 provide a constant current source to drive the Zener diode over a wide voltage range.
4. When the voltage fron the potential divider R4/RV1 rises sufficient to cause VTl to conduct, the resultant signal amplified by VT1 fires SCR2. This fires SCR1 clamping the tve output rail and the P terminal via MR1 to the -ve output rail. Link LKB is inserted for low voltage operation ( 4.5 to 13V).
5. If the overvoltage condition has been caused by other than a series element failure the unit goes into the overcurrent protection condition and only a few milliamps will be drawn from the power supply. Series element failure results in a large current surge through SCRI blowing fuse FSl in the OV protection unit; isolating the -ve output rail from the load.
6. A delay is introduced between the occurrence of the overvoltage condition and the firing of the SCR by the insertion of link LKA. The link made gives a delay of $20 \mu \mathrm{~S}$. Removal of the link reduces this delay to $3 \mu \mathrm{~S}$ so that the unit then responds to transient voltage changes. To adjust the OV unit proceed as follows:-
(1) Unclip the cover from the printed circuit board on the $O V$ protection unit
(2) Turn the OV potentiometer (RV1) fully counterclockwise
(3) Monitor the output voltage with a suitable voltmeter and adjust the output voltage control on the power supply for an indication of $10 \%$ above the normal output
(4) Turn the OV potentiometer clockwise until the unit trips indicated by the output falling to zero
(5) Switch off the power supply and turn the output voltage control fully counterclockwise. Switch on the power supply
(6) Check that the OV protection unit trips at $10 \%$ above normal by increasing the output voltage. If necessary repeat paras. (2) to (5)
(7) After satisfactory adjustment reset the power supply for the normal output and refit the cover on the $O V$ protection unit.


Fig 1 Circuit diagram : $0 V$ series 2,3 and 4
7. Coutant overvoltage protection units $O V$ series are fitted to the following power supplies:-
(1) Coutant power supply type ASB 700/6; part of FGRI 26062/1. Embodied under modification No. A3888 - AP 116S-0206-2
(2) Coutant power supply type ASB 700/12; part of FGRI 26062/1.

Embodied under modification No. A3889 - AP 116S-0206-2

Parts List

| Components ref | Description | Manufacturers part/type |
| :---: | :---: | :---: |
| Cl | 0.047160 V | Wima Tropyfol M |
| MR1 | Diode | Texas Instruments 1N914 |
| MR2 | Diode | Motorola 1N4003 |
| MR3 | Diode Zener 3.3V | Mullard BYZ 88 C3v3 |
| MR4 | Diode Zener 6.2V | Mullard BZY 88 C6V2 |
| MR5 | Diode | Motorola 1N4003 |
| R1-R2 | Resistor 10 ohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R3 | Resistor 10 kohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R4 | ```Resistor 2 kohm \frac{1}{2}W 2% high stab``` | Carbon |
| R5 | Resistor 1 kohm $\frac{1}{2} \mathrm{~W}$ 5\% | Carbon |
| R6 | Resistor 4.7 kohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R7 | Resistor 100 ohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R8 | Resistor 910 ohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R9 | Resistor 1.8 kohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R10 | Resistor 10 kohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R11 | Resistor 10 ohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R12 | Resistor 10 ohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| R13 | Resistor 100 ohm $\frac{1}{2} \mathrm{~W} 5 \%$ | Carbon |
| RV1 | Resistor variable 10 kohm | Reliance WL18 or M.E.C. MP31 |
| SCR1 | Silicon controlled rectifier | RCA 2N3896 (0V2 \& 0V3) |
| SCR1 | Silicon controlled rectifier | Westinghouse 29T1 (0V4) |
| SCR2 | Silicon controlled rectifier | Motorola 2N5061 |
| VT1 | Transistor | Mullard BC107 |
| VT2 | Transistor | Mullard BCY72 |
| VT3 | Transistor | Mullard BCY70 |
| VT4 | Transistor | Mullard BC107 |

General description

1. Type KRO overvoltage protection units are fully encapsulated complete units and capable of providing protection of voltage sensitive loads in any power system up to a rating of 3 amps.
2. The unit is connected across the supply lines to the load. In the event of the supply line voltage rising above the preset protection level a fast acting circuit operates to turn on a SCR connected across the supply lines thus effectively short circuiting the supply and protecting the load. The following are the specifications for the unit.

| Preset limit voltage | $30 \mathrm{~V} \pm 2 \%$ |
| :--- | :--- |
| Adjustable range | $10-35 \mathrm{~V}$ |
| Operating temprature range | -15 C to $+100^{\circ} \mathrm{C}$ |
| Delay time | Supplied set at $20 \mu \mathrm{~S}$ |
| Case style | A |
|  | Pin 1 POS |
|  | Pin 2 ADJ |
|  | Pin 3 GATE |
|  | Pin 4 COM |

## Voltage setting

3. Units are internally preset before encapsulation but any voltage within the range $10-35 \mathrm{~V}$ can be set by the addition of one external resistor. For voltage above the preset level the resistor is connected between the positive supply line and the ADJ pin. For voltages below the preset level the resistor is connected between the negative supply line and the ADJ pin.
4. A range of resistor values with corresponding voltage settings is given in the following table:

| Voltage | Resistor value |
| :---: | :---: |
| 10 | $4.3 \mathrm{k} \Omega$ |
| 12 | $6.0 \mathrm{k} \Omega$ |
| 15 | $9.5 \mathrm{k} \Omega$ |
| 18 | $14.7 \mathrm{k} \Omega$ |
| 20 | $20.0 \mathrm{k} \Omega$ |
| 22 | $27.6 \mathrm{k} \Omega$ |
| 25 | $56.0 \mathrm{k} \Omega$ |
| 27 | $100.0 \mathrm{k} \Omega$ |
| 35 | $7.5 \mathrm{k} \Omega$ |



## Units to which fitted

5 Overvoltage protection unit type KRO30 is fitted to Countant power supply type ATB 100 12/2; part of FGRI 26062/1. Embodied under modification No. A3887 - AP 116S-0206-2.

