Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website <u>https://blunham.com/Radar</u>, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (<u>https://blunham.com/Radar</u>). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson In the village of Blunham, Bedfordshire.

2nd. Edition Apr. 77

POWER SUPPLY COUTANT TYPES ASA/ATA, ASB/ATB AND ASC/ATC

GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL

Ministry of Defence

Sponsored for use in the

ROYAL AIR FORCE by D SIGS (AIR)

Publications authority: ATP/MOD(PE)

Service users should send their comments through the channel prescribed for the purpose in: AP 100B-01 Order 0504 (RAF)

Prelim

Page 1/2

Issued Apr. 77

POWER SUPPLY COUTANT

TYPE ASA/ATA, ASB/ATB, AND ASC/ATC

CONTENTS

					CONT	ENTS					I	Para.
Specif	Eicat	ion	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	1
Intro	luctio	on	•••	• • •	•••	•••	• • •	• • •	• • •	•••	• • •	2
Genera	al des	scription	•••	• • •	•••	•••	•••	• • •	•••	•••	•••	3
Urcu	lt des	scription	•••	•••	• • •	• • •	•••	• • •	• • •	•••	•••	0 15
Insta.	LIGLI	511 •••	• • •	• • •	• • •	• • •	•••	•••	•••	•••	• • •	1)
No.					TAI	BLES]	Page
1	Power	r supply u	nit :	dimen	sions a	and we	ights	• • •	• • •	• • •	•••	3
2	List	of fuse r	atings	s	• • •	• • •	• • •	• • •	• • •	•••	• • •	.6
3	Volt	age/resist	or val	lues	•••	•••	• • •	• • •	• • •	•••	•••	11
4	Part	s list : p	ower s	supply	iramev	vork D 207/4	•••	• • •	• • •	• • •	•••	10 20
2	Part	s list : r	CD 293	5/294 8	and PCI	5 2977.	290	•••	• • •	• • •	• • •	23
Fig.					ILLUSTI	RATION	S					Page
1	Tran	sformer pr	imary	tap c	onnect	ions	•••	• • •	• • •	• • •	• • •	7
2	Term	inal block	conne	ection	s	• • •	• • •	• • •	• • •	• • •	• • •	8
3	Remo	te sensing	; conne	ection	s	• • •	• • •	•••	•••	•••	• • •	9
4	Para	llel opera	iting o	connec	tions	•••	•••	•••	••,•	•••	• • •	10
5	Cout	ant A seri	es por	wer su wor su	ppiy : pply :	circu	it dia	gram (early y	versio	n)	35/36
U	oout		.05 pot			TOTO			,		,	55,50
					APPE	NDICES						
App.A	Cout	ant overvo	ltage	prote	ction	units.						
				LEA	DING P.	ARTICU	LARS					
Speci	ficat	ions										
$\frac{bpcc}{1}$	The	specificat	ions	for th	e powe	r unit	are a	s foll	ows:-			
	(1)	Output vo	ltage	•		ASA	/ATA 1	v – 7.	5V dc			
	(1)	output v	JILAGE	•		ASB	ATB 6	v1	5V dc			
						ASC	/ATC 6	v - 30	V dc			
	(2)	Output v	ltage	contr	01:	Af	ront p	anel p	otenti	ometer	cont	rol
	(2)	output v				giv	es a ±	1V ad	justme	nt ove	r the	2
						pre	set le	vel.	-			
	(3)	Output cu	irrent	:		0.5	to 30	A in 1	ogical	steps	(50A	ASA)
	(4)	Stabilis	ation	ratio:		10,	000 :	1 for	± 10%	mains	chang	çe
	(5)	Line reg	latio	n:		0.0	01% fo	ra ±	10% ma	ins ch	ange	
	(6)	Output r	esista	nce:		Les	s than	1 moh	m for	7A uni	.ts ar	nd
		-				bel	ow. L	ess th	an 2 m	ohm fo	or 104	units
						and	above	. Twi	n outp	ut uni	ts of	E 0.5A
						and	IA OU	cput c	io not	nave i d the	outru	t roci-
						sen	nce of	these	units	is 6	mohms	(load
						reg	ulatio	n 6mV	or 0.0	67 whi	cheve	eris
						gre	ater).					
	(7)	Load rea	ulatio	n:		- 1 m V	or 0.	02% wł	icheve	rise	greate	er, no
	(\prime)	Doau reg	aracr0			10a	ld to f	ull 10	ad.	6		•

(8)	Output impedance:	Less than 0.1 ohm at 100 kHz. Less than 0.25 ohm at 500 kHz. Impedance increases linearly (approx) with increasing frequency.
(9)	Low frequency ripple and noise:	Less than $200\mu V$ peak to peak ($500\mu V$ for units of 15A and above).
(10)	Transient response:	Approximately 10µs for recovery to within 10mV of nominal voltage after maximum load changes.
(11)	Temperature range:	$-10^{\circ}C$ to $+65^{\circ}C$.
(12)	Temperature coefficient:	0.02% ⁰ C (0.005% ⁰ C optional).
(13)	Overload protection	The overload protection circuit operates at between 115 - 160% of the maximum current rating on 0.5A - 7A units and between 115 - 140% on 10A - 50A units. On units with an output of 4.5V and below the overload characteristic approximates to constant current operation. Higher voltage units have a re-entrant characteristic with an initial period of 200ms of approximately constant current operation to ensure reliable "switch on" into non-linear loads.
(14)	Overvoltage protection:	Overvoltage protection circuits are fitted to some ASA units as standard. External overvoltage units to connect directly to the output terminals are available. Appendix A contains details of external overvoltage units.
(15)	Input power:	100V to 125V ac and 200V - 250V ac 45 to 400Hz single phase. Split primary windings are connected in parallel for 100V to 125V and in series for 200V to 250V.
(16)	Remote sensing:	Amplifier terminals are provided on all units (with the exception of 0.5A to 1A twin output units).
(17)	Output voltage polarity:	Both output terminals are isolated from earth and either can be grounded.
(18)	Insulation resistance:	Withstands 500V dc across output terminals and earth. Withstands 2.1kV dc across line, neutral and earth.

supply units are listed in table 1.

(19) Series and parallel Any number of units of a similar type connection: may be connected in series. Units of a similar type fitted with 'P' terminals may be connected in parallel with the 'P' terminals interconnected. Fig 4 gives details of method of connection. (20) Dimensions and weights: The dimensions and weights of the power

TABLE 1

Power supply units : dimensions and weights

SIZE		1		B	(()	1	D				F	(3		1	Γ.	J		<	L	APPROX	WEIGHT
REF.	105	mm	-	mm	Ins	mm	HTS.		1716	mm	104	-	S WG	mm	1715	mm	Ins	mm	ms	mm	UNIFIED TAP	LBS	Kgs)
10	31	83	34	83	7	178	4	10	뷺	8	ł	95	12	2-63	21	64	21	73	-	-	6 - 32U.N.C	4	18
11A	5	127	31	83	7	178	4	102	5 16	8	ł	95	12	2-63	2 1/2	64	21	73	-	-	6 -32U.N.C	5	2.
11 B	5	127	34	83	7 1/2	190	41	114	1à	8	3	9.5	12	263	23	64	27	73	-	-	6 - 32U.N.C	6	27
11C	5	127	31	83	9	229	6	152	5	8	1	9.5	12	2-63	23	64	24	73	-	- 1	6 -32U.N.C	7	32
11D	5	127	34	83	114	286	81	210	à	8	ł	9.5	12	263	21	64	24	73	6	152	6 -32U.N.C	8	36
12	5	127	41	105	112	298	83	222	#3	10	H	17.5	10	3-28	31	92	31	95	6	152	10-32U.N.F] n	49
13	5	127	67	165	111	286	81	210	뷺	10	냁	17.5	ю	3.28	31	92	61	56	6	152	6 -32U.N.C	20	9-1
14A	67	171	81	213	113	298	87	222	<u>}</u>	10	뷣	17.5	10	3-28	3-	76	8	203	6	152	10-32U.N.F	. 32	14 5
14 B	61	171	8	213	15	397	12	321	11	10	뷺	17.5	10	3-28	3	76	8	203	6	152	10-32U.N.F	37	167
15	8	206	17	438	16 1	419	13 1/2	317	ł	16	11	17.5	10	3-28	3	76	167	419	6.	152	10-32U.N.F	75	34
15Amp units	Labo	re have	0/2 1	minah	which	pretro	udo 1.m	(25.	4 mm.)	from t	he fron	t pane	4		1	• For t	win un	rts recor	5	(130)		

1 JAmp units & above have UP	r terminals which protrug	e in (2.3.4 mm./from H	e trant panel

Size Ref	Power supply type
10	ASA50, ASA100, ASB50, ASC50
11A	ASB100
11B	ASA200, ASC100
11C	ASB200
11D	ASA300, ASB300, ASC200, ATA50, ATA100, ATA200, ATB50, ATB100, ATC50, ATC100
12	ASA500, ASB500, ASC300, ATB200
13	ASA700, ASA1000, ASB700, ASB1000, ASC500, ATA300, ATB300 ATC200
- • •	

ASA1500, ASC700, ASC1000, ATA500, ATB500, ATC300, ATC500 14A 14B ASA2000, ASB1500, 15

ASA3000, ASA5000, ASB2000, ASB3000, ASC1500, ASC2000, ASC3000

INTRODUCTION

2. The Coutant series of stabilized supplies are used to provide sources of dc power for logic circuits over a voltage range of 1V to 30V with current rating of 0.5A to 50A. The voltage range is covered by three groups of power supply, each group having eleven units to cater for the wide current range. The voltage output of each unit is set during manufacture to a specified level but can subsequently be altered by adjustment of transformer tappings and resistor change. Twin output units are provided in the lower current ranges (up to 5A) of each group. The three groups are as follows:-

Group	Voltage output range	Current output range
ASA/ATA	1V - 7.5V dc	0.5 - 50A ASA
		0.5 - 5A ATA
ASB/ATB	6V - 15V dc	0.5 - 30A ASB
		0.5 - 5A ATB
ASC/ATC	6V - 30V dc	0.5 - 30A ASC
		0.5 - 5A ATC

General description

3. The power supply consists of a rectangular frame closed by a panel at each end. One end panel is used as the input/output panel and is fitted with a terminal block for ac, dc and SENSE connections. Mounted above the terminal block is the ac fuse and a potentiometer for fine adjustment of the output voltage. A solid baseplate supports the supply transformer, electrolytic reservoir capacitors and an inductor which is fitted on high current output units only.

4. The voltage control components are mounted on a printed circuit board (PCB) which is secured to the side rails of the frame on some lower current units and behind the input/output panel on all high current units (3A and above). Two types of PCB are in use. Early versions of the power supply use a PCB 293 single output and PCB 294 twin output, while on later production a PCB 397 single output and PCB 398 twin output is used. The twin output PCB's each contain two identical control circuits. To facilitate re-adjustment of the output voltage those resistors on the PCB subject to change are mounted on stand-off tags clear of the board surface.

5. Series current transistors used in the circuit are mounted with their associated resistor on panels secured to the frame side rails. The number of transistors used depends on the output current rating of the unit. For example a unit with a rated current output of 3A would have two transistors in parallel while a 30A output unit would require 13 in parallel.

Circuit description (figs 5 and 6)

6. Input power is supplied to the primaries of the transformer via antisurge fuse FS 1. The split winding is connected in series for voltages of 200-250 and in parallel for voltages 100-125. Full wave bridge MR7-10 rectifies the output of the 22 volt secondary winding and the resulting dc passes to transistors VT1 and VT6 which provide a constant current output feed into three zener diodes. The most negative zener (MR2) forms the stabilised negative line of the subsidiary rail. The two most positive zeners (MR3 and 4) form the positive subsidiary line and the junction of zeners MR2 and MR3 is taken to the common reference rail which is also the positive sensing line.

7. The output of the main secondary winding is full wave rectified by MR11-12 diode network and the resulting dc output passes to the output terminals via series transistors VT50 (VT50 may consist of two or more transistors in parallel). R50 compensates for any base emitter voltage variation in VT50 and also forms part of the overload protection circuit.

8. Zener diode MR6 is connected via R17 to the positive subsidiary rail to provide a reference voltage from which a reference current is derived by R19. This current is compared by comparator VT5a and b with a current obtained from the output voltage by R20. Since the current obtained is proportional to the output voltage the value of this resistor determines the output voltage of the unit. RV1 provides a degree of output voltage adjustment.

9. The single ended output from the comparator is taken to common emitter amplifier VT3, the emitter of which is taken to the junction of MR3 and 4. MR4 together with VT3 provides an approximate constant voltage across R16 which defines the current in VT5b. The output of VT3 provides the drive to emitter follower chain VT2 and VT51 which in turn controls the current to the base of series transistor VT50. (VT51 is not fitted on units of 2 amps and below).

10. Lag network R8 and C2 ensures high frequency stability of the closed loop. C4 and R18 provide a degree of ripple attenuation by by-passing R20 at ripple frequency thereby increasing the low frequency a.c. loop gain. R12 may be incorporated to improve the output resistance by providing feed forward into comparator VT5a and b of a current proportional to the output current.

11. Re-entrant overload protection is provided by VT4 and related circuitry. VT4 compares the voltage across R50 with a reference voltage derived from the output by potential divider R6 and R7. (R10 is incorporated in the potential divider circuit on units with an output of 5 volts and above). When the voltage across R50 increases sufficiently, VT4 conducts and diverts the drive current from the emitter follower chain and causes the output voltage and current to fall to a low level. When the trip operates VT3 is turned on but as the drive voltage is now developed across R9, this prevents VT3 interfering with the operation of VT4.

12. As the output voltage falls, the reference voltage at VT4 is reduced, hence the voltage drop required in R50 for conduction in VT4 is also reduced and the available current falls. Because C3 is connected to the negative subsidiary rail, an approximate constant current characteristic prevails when the unit is first switch on, until C3 is charged.

13. When C3 is at the same potential as the base of VT4 the normal re-entrant characteristic is established. MR5 prevents C3 causing a voltage over-shoot when the unit is switched off. MR50 protects the unit from reverse voltages applied across the output terminals.

Installation and adjustments 15. Examine the unit for visible damage.

Note...

Some high current power supplies are to be fitted with fast acting fuses when operated on 115V ac nominal input. Table 2 contains details of those power supplies to which this applies.

16. Ensure that the fuse fitted is of the correct rating (table 2) and is an anti-surge device.

List of fuse ratings

Power supply type	Maximum dc current	ac 200 -	fuse rating 250V 100 - 125V	Fuse	type
ASA50, ASB50, ASC50	0.5A	1A	1A	TDC	123
ASA100, ASB100, ASC100	1A	1A	1A	TDC	123
ASA200, ASB200, ASC200	2A	1A	1A	TDC	123
ASA300, ASB300, ASC300	3A	2A	3A	TDC	11
ASA500, ASB500, ASC500	5A	3A	5A	TDC	11
ASA700, ASB700, ASC700	7A	5A	5A	TDC	11
ASA1000, ASB1000, ASC1000	10A	5A	7A	TDC	11
ASA1500, ASB1500, ASC1500	15A	10A	10A	TDC	11
ASA2000, ASB2000	20A	10A	10A	TDC	11
ASC2000	20A	10A	20A*	TDC	11 10A
ASA3000	30A	10A	10A		
ASB3000, ASC3000	30A	10A	20A*	TDC	10 20A
ASA5000	50A	10A	20A*		
ATA50, ATB50, ATC50	2 x 0.5A	1A	1A	TDC	123
ATA100, ATB100, ATC100	2 x 1A	1A	2A	TDC	123
ATA200, ATB200, ATC200	2 x 2A	2A	3A	TDC	123
ATA300, ATB300, ATC300	2 x 3A	3A	5A	TDC	11
ATA500, ATB500, ATC500	2 x 5A	7A	7A	TDC	11
Except for fuses indi anti-surge type. Fuses: TDC 10, TDC 11, TDC Fuseholders: For TDC 123 -	cated * all 123, Manufac Belling Lee	fuses an turer K Type E(Beswick Ltd.,		
Some power supplies m negative line. These following ratings app	ay be fitted are of the ly:-	with fu	ises in the dc out ting type and the	put	
Unit current	output	Fu	ise rating		
1A			2A		
2A			3A		
3A			5A		
5A			7A		
7A			10A		
10A			15A		
15A			20A		
20A			30A		
30A			40A		
50A			60A		

17. The mains transformer has a split primary winding with tappings. The windings must be connected in series for the input voltage range 200V - 250V and in parallel for 100V to 125V. The appropriate tappings must be selected for within $\pm 10\%$ of the nominal input voltage.

Fig 1 Transformer primary connections

18. The power supplies are convection cooled and should be mounted with the heatsinks vertical and positioned to ensure an uninterrupted flow of air through the unit. The air temperature in the immediate vicinity of the heatsinks should not exceed 65°C with the unit working at full power. If the temperature is likely to exceed this maximum the unit must be derated or force ventilated to avoid overheating.

Input and output connections (fig.2)

19. Connect the mains input to the 'AC' terminals line to 'L' and neutral to 'N'. The unit is earthed at the 'E' terminal.

20. The output terminals comprise a positive and negative line with positive and negative amplifier sensing terminals (AMP). Normally the amplifier sensing terminals are directly linked to the output by a fanning strip supplied with the unit. When difficulty is experienced with voltage drop at the load end, the unit may have to be operated with remote sensing as detailed in the paragraphs which follow.

Remote sensing connections

21. When the voltage drop across the output leads causes difficulty, the connection between the sensing terminals (AMP) and the output terminals can be removed and the sensing terminals connected directly to the load with separate leads; the correct output voltage will then be regulated at the load. An electrolytic capacitor of approx. 100μ F per ampere must be connected across the load to balance the inductance of the leads. The following must also be observed when operating the unit under remote sensing:-

(1) When using long runs route the sensing leads carefully to avoid mains pick up and subsequently possible oscillation of the sense amplifier. It may be necessary to use screened leads.

(2) Ensure that the resistance of the sensing leads is as low as possible.

Fig 2 Terminal block connections

AP 116U-0504-1

(2nd Edn.)

(3) When very long sensing leads are used it may be necessary to remove the output capacitor (C51) from the unit to improve the high frequency stability of the amplifier.

Fig 3 Remote sensing connections

Output voltage adjustment

22. The front panel potentiometer RVl provides a fine adjustment of the output voltage of approx. $\pm 1V$. On some of the higher voltage units it may be possible to achieve a wider voltage variation. Such large adjustments by means of RVl may cause over dissipation of the series transistors at full load, with consequent damage to the unit, particularly if the voltage is reduced excessively.

Caution...

Before commencing any work on the power supply involving component changes, the reservoir capacitors must be discharged through a low value wirewound resistor. Failure to do this may result in an accidental short circuit damaging components.

23. To alter the pre-set output voltage it is necessary to change the values of resistors R7, R10, R20 and in some cases R8 and R12. In addition the transformer output tappings will require re-selection. The values of the resistors and the transformer tappings for the various units is contained in Table 3. For ease in removal the resistors requiring change are mounted on stand-off tags on the PCB and are clearly identified.

24. The values given in Table 3 for resistors R10 and R7 are approximate and are dependent upon the charactersistics of the series transistors VT50. (2N3055). Resistor R10 determines the trip current level. To increase the trip current, the value of R10 must be decreased and its value increased to lower the trip current. Resistor R7 determines the short circuit current level. A decrease in the value of R7 increases the short circuit current level and its value must be increased to lower the short circuit current.

Parallel operation (fig. 4)

Caution...

Care should be taken to ensure that the 'P' terminal is not short circuited to the negative output terminal. A short circuit between these two terminals will result in circuit failure.

25. When operating a maximum of five similar power supplies in parallel is only necessary to interconnect the 'P' terminals of each unit and parallel the dc outputs. The unit set to the highest voltage will act as the master unit and will have overriding control of the other units. The output voltage of each unit should be set within the limits required.

26. When more than five units are operated in parallel the units should be connected using 47 ohm $\frac{1}{2}W$ resistors as shown in fig 4.

Fig 4 Parallel operating connections

Output voltage - resistor values

ASA/ATA 50 - 5000 power supply units

Output voltage range	Resistor	50	100	200	300	500	700	1000	1500	2000	3000	5000	Transformer tappings
PCB 293&294													
1V to 4.5V	R7 R10 R12 R20	3.3k _ 470k 100	1.8k _ 470k 100	1.8k _ 470k 100	1.5k _ _ 100	910 - - 100	1.5k - - 100	1k 100	1k 100	910 - - 100	910 - - 100		ASA 50 - 2000 9V - 0 - 9V ASA 3000 14V - 0 - 14V
4.5V to 7.5V	R7 R10 R12 R20	2.2k 3.9k 470k 270	6.8k 2.2k 470k 270	6.8k 2k 470k 270	2.7k 3k _ 270	2.2k 1.5k _ 270	3.3k 2.2k _ 270	2.2k 1.8k _ 270	2.2k 1.8k _ 270	2.2k 1.8k _ 270	5.6k 1k - 270		ASA 50 - 2000 12V - 0 - 12V ASA 3000 17V - 0 - 17V
PCB 397&398													
lV to 4V	R7 R8 R10 R12 R20	3.3k 560 - 470k 100	1.8k 560 - 470k 100	1.8k 560 - 470k 100	1.5k 560 - 100	910 560 - 100	1.5k 560 - 100	1k 560 - 100	1k 560 - 100	910 1k - 100	910 1k - 100		ASA 50 - 3000 9V - 0 - 9V
5V to 7.5V	R7 R8 R10 R12 R20	2.2k 560 2.7k 470k 270	6.8k 560 2.2k 470k 270	6.8k 560 2k 470k 270	2.7k 560 3k - 270	2.2k 560 1.5k - 270	3.3k 560 2.2k _ 270	2.2k 560 1.8k - 270	2.2k 560 1.8k 	2.2k 1k 1.5k - 270	5.6k 1k 1k - 270		ASA 50 - 3000 12V - 0 - 12V

AP 116U-0504-1 (2nd Edn.)

Page 11

ASB/ATB 50 - 2000 power supply units

Output voltage range	Resistor	50	100	200	300	500	700	1000	1500	2000	Transformer tappings
PCB 293&294 PCB 397&398											
6V to 8V	R7 R10 R12 R20	27k 5.6k 470k 470	6.8k 2.2k 470k 470	6.8k 2.2k 470k 470	4.7k 2.4k - 470	3.3k 1.5k - 470	4.7k 2.7k _ 470	3.3k 3.9k - 470	4.7k 1.8k - 470	4.7k 1.5k - 470	ASB 50 - 2000 OV - 13 (13V)
9V to 11V	R7 R10 R12 R20	2.7k 6.8k 470k 750	6.8k 3.3k 470k 750	6.8k 3.3k 470k 750	4.7k 3.3k - 750	3.3k 1.8k _ 750	4.7k 3.9k _ 750	3.3k 4.3k - 750	4.7k 2.7k _ 750	4.7k 2k - 750	ASB 50 - 2000 2V - 0 - 13V (15V)
12V to 13V	R7 R10 R12 R20	27k 8.2k 470k 1k	6.8k 4.7k 470k 1k	6.8k 4.7k 470k 1k	4.7k 4.7k - 1k	3.3k 2.7k - 1k	4.7k 4.7k - 1k	3.3k 4.7k _ 1k	4.7k 3.3k - 1k	4.7k 2.7k _ 1k	ASB 50 - 2000 OV - 18V (18V)
14V to 15V	R7 R10 R12 R20	27k 8.2k 470k 1.2k	6.8k 4.7k 470k 1.2k	6.8k 4.7k 470k 1.2k	4.7k 4.7k - 1.2k	3.3k 2.7k _ 1.2k	4.7k 4.7k _ 1.2k	3.3k 5.1k 1.2k	4.7k 3.9k _ 1.2k	4.7k 3.3k - 1.2k	ASB 50 - 2000 2V - 0 - 18V (20V)

TABLE 3 (Cont.)

ASC/ATC 50 - 1500 power supply units

.

Output voltage range	Resistor	50	100	200	300	500	700	1000	1500	Transformer tappings	
PCB 397&398		<u></u>				<u> </u>					
6V to 8V	R7	-	-	-	5.6k	5.6k	6.8k	5.6k	5.6k	ASC 50 - 1500	
	R10	3.3k	2.4k	2.2k	2.7k	1.8k	1.5k	2.4k	2.2k	OV - 13V (13V)	
	R12	470k	470k	470k	-	-		-	-		
	R20	270	270	270	270	270	270	270	270		
9V to 11V	R7	-	_	_	5.6k	5.6k	6.8k	5.6k	5.6k	ASC 50 - 1500	
	R10	4.7k	3.3k	2.7k	3.9k	3.9k	1.8k	3.3k	2.7k	3V - 0 - 13V (16V)	
	R12	470k	470k	470k	-	-	-	_			
	R20	560	560	560	560	560	560	560	560		
12V to 14V	R7	-	_	-	5.6k	5.6k	6.8k	5.6k	5.6k	ASC 50 - 1500	
	R10	8.2k	4.7k	3.9k	47k	5.6k	2.2k	3.9k	3.3k	6V - 0 - 13V (19V)	
	R12	470k	470k	470k	-	_		_	_		
	R20	820	820	820	820	820	820	820	820		
15V to 17V	R7	-	-	-	5.6k	5.6k	6.8k	5.6k	5.6k	ASC 50 - 1500	
	R10	12k	5.1k	4.7k	5.6k	5.6k	2.7k	4.7k	3.9k	0V - 23V (23V)	
	R12	1M	2.2M	470k	_	_	_	-	_		5
	R20	1.2k	1.2k	1.2k	1.2k	1.2k	1.2k	1.2k	1.2k		(2n
	R7	-	_	-	5.6k	5.6k	5.8k	5.6k	5.6k	ASC 50 - 1500	d E
	R10	15k	6.8k	5.6k	7.5k	5.8k	6.8k	5.6k	4.7k	3V - 0 - 23V (26V)	- B- C

-

_

ASC/ATC 50 - 1500 power supply units Output voltage Transformer Resistor 50 100 200 300 500 700 1000 1500 range tappings PCB 397&398 18V to 20V R12 470k 2.2M 470k ASC 50 - 1500 ----R20 1.5k 1.5k 1.5k 1.5k 1.5k 1.5k 1.5k 1.5k 3V - 0 - 23V (26V) 21V to 24V R7 5.6k 5.6k 6.8k ---5.6k 5.6k ASC 50 - 1500 R10 18k 7.5k 6.8k 8.2k 9.1k 7.5k 6.8k 4.7k 6V - 0 - 23V (29V) R12 470k 2.2M 470k -----------R20 1.8k 1.8k 1.8k 1.8k 1.8k 1.8k 1.8k 1.8k 25V to 27V R7 _ _ -5.6k 5.6k 6.8k 5.6k 5.6k ASC 50 - 1500 R10 15k 9.1k 7.5k 10k 8.2k 10k 7.5k 5.6k 3V - 0 - 28V (31V) R12 470k 2.2M 470k --------R20 2k 2k 2k 2k 2k 2k 2k 2k 28V to 30V R7 --5.6k 5.6k 6.8k -5.6k 5.6k ASC 50 - 1500 R10 20k 9.1k 10k 10k 12k 10k 9.1k 6.2k 6V - 0 - 28V (34V)R12 2.2M 2.2M 470k -----R20 2.4k 2.4k 2.4k 2.4k 2.4k 2.4k 2.4k 2.4k

TABLE 3 (Cont.)

TUDDD 2 (OOHet	• •	
----------------	-----	--

ASC 2	2000	and	ASC	3000	power	supply	units
-------	------	-----	-----	------	-------	--------	-------

Output voltage	Resistor	2000	3000	Transformer output voltage. Obtained by output tapping selection
6V to 8V	R7	5.6k	5.6k	20V
	R10	1.5k	1.5k	
	R12	-	-	
	R20	270	270	
9V to 11V	R7	5.6k	5.6k	24V
	R10	1.8k	1.8k	
	R12	-	-	
	R20	560	560	
12V to 14V	R7	5.6k	5.6k	28V
	R10	2k	2k	
	R12	-	-	
	R20	820	820	
15V to 17V	R7	5.6k	5.6k	34V
	R10	2.7k	3.3k	
	R12	-	-	
	R20	1.2k	1.2k	
18V to 20V	R7	5.6k	5.6k	38V
	R10	3 . 9k	3.9k	
	R12	-		
	R20	1.5k	1.5k	(2nc)
21V to 24V	R7	5.6k	5.6k	40V R
	R10	4.7k	4.7k	
	R12	-		
	R20	1.8k	1.8k	

Page 15A/B

TABLE 3	(Con	t.)
---------	------	-----

ASC 2000 and ASC 3000 power supply unit

Output voltage range	Resistor	2000	3000	Transformer output voltage. Obtained by output tapping selection
25V to 27V	R7 R10 R12 R20	5.6k 5.1k - 2k	5.6k 5.6k - 2k	44 v
28V to 30V	R7 R10 R12 R20	5.6k 5.6k - 2.4k	5.6k 5.8k - 2.4k	48V

TABLE 4

Parts list: power supply framework

These lists contains those components that are fitted to the power supply framework. Diodes MR11-12 given in those lists may on some twin output units (ATB) be fitted to the printed circuit board. Parts list for printed circuit boards PCB293/294 and PCB397/398 (later versions) are contained in table 5. PCB 293 and PCB 397 are used on single output.units (AS) PCB 294 and PCB 398 are used on twin output units (AT).

Component Ref	Description	Manufacturers part/type
ASA50, ASA100 ATA50, ATA100		
C50	Capacitor elect. 2500µF 25V	Sprague 36D 272G 025 AA 2A
C51 C52	Capacitor elect. 200µF 35V Capacitor 0.1µF 160V	Wima Printilyt Wima Tropyfol M
MR11-12 MR50-51	Diode Diode	Motorola 1N4003 (2) Motorola 1N4003 (2)
R50 RV1	Resistor 1 ohm 3W 5% Resistor variable 500 ohm 5%	Wirewound Reliance CC115 wirewound or Colvern CLR1106/9S
T1 (ASA50) (ATA50) (ASA100) (ATA100)	Transformer Transformer Transformer Transformer	Albion T147/8 Albion T78/16 Albion T147/9 Albion T78/17
VT50	Transistor	RCA 2N3055
ASA200, ATA200		
C50	Capacitor elect. 5100µF 25V	Sprague 32D 512G 025 AC 2A (or AC 6B)
C51 C52	Capacitor elect. 200µF 35V Capacitor 0.22µF 160V	Wima Printilyt Wima Tropyfol M
MR11-12 MR50-51	Diode Diode	Westinghouse 1N5402 (2) Motorola 1N4003 (2)
R50 RV1	Resistor 0.5 ohm 5W 5% Resistor variable 500 ohm 5%	Wirewound Reliance CC115 wirewound or Col ver n CLR1106/9S
T1 (ASA200) (ATA200)	Transformer Transformer	Albion T78/11 Albion T152/8
VT50	Transistor	RCA 2N3055

Component Ref	Description	Manufacturers part/type
ASA300, ATA300		
C50	Capacitor elect. 5100µF 25V	Sprague 32D 512G 025 AC 2A (or AC 6B)
C51 a C51 b	Capacitor elect. $500\mu F$ 35V Capacitor elect. $39\mu F$ 40V	Wima Printilyt Mullard 121/17399 (or Mullard C415)
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-12 MR50 MR51-52	Diode Diode Diode	Westinghouse 1N5402 (2) Int. Rectifiers 3F10 Motorola 1N4003 (2)
R50 a, b R51 RV1 T1 (ASA300) (ATA300)	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 500 ohm 5% Transformer Transformer	Wirewound (2) Wirewound Reliance CC115 wirewound or Colvern CLR1106/9S Albion T78/7 Albion T120/23
VT50 a & b VT51	Transistor Transistor	RCA 2N3055 (2) RCA 2N3055
ASA500, ATA500		
C50 C51 a C51 b	Capacitor elect. 11000μ F 25V Capacitor elect. 500μ F 35V Capacitor elect. 39μ F 40V	Sprague 32D 113G 025 BC 2A (or BC 6B) Wima Printilyt Mullard 121/17399 (or
C52	Capacitor 0.22µF 160V	Mullard C415) Wima Tropyfol
MR11-12 (ASA500) MR11-12 (ATA500) MR50 MR51 MR52	Diode Diode, bridge Diode Diode Diode	RCA 40210 Motorola MDA 962-2 (2) Int. Rectifiers 3F10 Motorola 1N4003 Motorola 1N4003
R50 a & b R51 RV1	Resistor 0.5 ohm 5% 5W Resistor 1 kohm 5% 3W Resistor variable 500 ohm 5%	Wirewound (2) Wirewound Reliance CC115 wirewound (or Colvern CLR1106/9S)
T1 (ASA500) (ATA500)	Transformer Transformer	Albion T78/13 Albion T120/24
VT50 a & b VT51	Transistor Transistor	RCA 2N3055 (2) RCA 2N3055
ASA 700		
C50 a	Capacitor elect. $5100\mu F$ 25V	Sprague 32D 512G 025 AC 2A (or AC 6B)
С50 Ъ	Capacitor elect. 11000µF 25V	Sprague 32D-113 025 BC 2A (or BC 6B)

Component Pef

Description

ASA	700 (Cont'd)		
	C51 a C51 b	Capacitor elect. 500µF 35V Capacitor elect. 39µF 40V	Wima Printilyt Mullard C121 (or Mullard
	C52	Capacitor 0.22µF 160V	Wima Tropyfol M
	MR11-12 MR50 MR51	Diode Diode Diode	RCA 40210 (2) RCA 40209 Westinghouse 1N5402
	R50 a-e R51 RV1	Resistor 0.5 ohm 5% 5W Resistor 1 kohm 5% 5W Resistor variable 500 ohm 5%	Wirewound (5) Wirewound Reliance CC115 (or Colvern CLR1106/9S
	T1	Transformer	Albion T120/16
	VT50 a-e VT51	Transistor Transistor	RCA 2N3055 (5) RCA 2N3055
ASA	1000		
	C50 a & b	Capacitor elect. 11000µF 25V	Sprague 32D 113G 025 BC 2A (or BC 6B) (2)
	C51 a C51 b	Capacitor elect. 500µF 35V Capacitor elect. 39µF 40V	Wima Printilyt Mullard Cl21
	C52	Capacitor 0.22µF 160V	Wima Tropyfol M
	MR11-12 MR50 MR51	Diode Diode Diode	RCA 40210 (2) RCA 40209 Westinghouse 1N5402
	R50 a-e R51 RV1	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable too ohm 5%	Wirewound (5) Wirewound Reliance CC115 (or Colvern CLR1106/9S
	Tl	Transformer	Albion T120/17
	VT50 a-e VT51	Transistor Transistor	Motorola 1N5402 (5) Solidev 2N3055
ASA	1500		
	C50 a-c	Capacitor elect. 11000µF 25V	Sprague 36D 113 025 AE 2A (or AE 6E) (3)
	C51 a C51 b	Capacitor elect. 1400µF 64V Capacitor elect. 39µF 40V	Mullard C432 Mullard Cl21 (or Mullard C415)
	C51 c C52 C54	Capacitor elect. 500µF 35V Capacitor 0.22µF Capacitor 2µF 40V	Wima Printilyt Wima Tropyfol M Mullard C415

Cc	omponent Ref	Description	Manufacturers part/type
ASA	1500 (Cont'd)		
	MR11-12 MR50 MR51	Diode Diode Diode	RCA 40210 (2) RCA 40209R Westinghouse 1N5402
	R50 a-f R51 RV1	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 500 ohm 5%	Wirewound (6) Wirewound Reliance CC115 (or Colvern CLR1106/9S
	T1	Transformer	Albion T248/2
	VT50 a-f VT51	Transistor Transistor	RCA 2N3055 (6) Solidev 2N3055
ASA	2000		
	C50 a-d	Capacitor elect. 1100µF 25V	Sprague 32D 113G 025 CD 2A (or CD 6B) (4)
	C51 a C51 b	Capacitor elect. 1400µF 64V Capacitor elect. 39µF 40V	Mullard C432 Mullard C121 (or Mullard C415)
	C51 c C52 C54	Capacitor elect. 500µF 35V Capacitor 0.22 F Capacitor 2µF 40V	Wima Printilyt Wima Tropyfol M Mullard C415
]	MR11-12 MR50 MR51	Diode Diode Diode	RCA 40210 (2) RCA 40209 Westinghouse 1N5402
-	R50 a-h R51	Resistor 0.5 ohm 5V 5% Resistor 1 kohm 3W 5%	Wirewound (8) Wirewound
	T1 VT50 a-h VT51	Transformer Transistor Transistor	Albion T248/3 RCA 2N3055 (8) Solidev 2N3055
ASA	3000		
I	С50 а & b	Capacitor elect. $1600\mu F$ 30V	Sprague 36D 163G 030 BD (or BD 6B)
1	С51 а С51 b	Capacitor elect. 1400µF 64V Capacitor elect. 39µF 40V	Mullard C432 FR/H1400 Mullard C121 (or Mullard C415)
	C51 c C52 L1 MR11-12 MR50 a & b MR51	Capacitor elect. 500µF 35V Capacitor 0.22µF 160V Inductor Diode Diode Diode	Wima Printilyt Wima Tropyfol M Albion L78/4 RCA 40210 (2) RCA 40209 (2) Westinghouse 1N5402

ASA	3000 (Cont'd)		
	R50 a-m R51 RV1	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 5%	Wirewound (13) Wirewound Reliance CC115 (or Colvern
	T1	Transformer	Albion T638C/2
	VT50 a-m VT51	Transistor Transistor	RCA 2N3055 Solidev 2N3055
ASA	5000		
	C50 a-c	Capacitor elect. 1600 μF 30V	Sprague 36D 163G 030 BD 2A (or BD 6B) (3)
	C51 a C51 b	Capacitor elect. 1400 μ F 64V Capacitor elect. 39 μ F 40V	Mullard C432 FR/H1400 Mullard C121 (or Mullard C415)
	C51.c C52 C54 L1 MR11-12 MR50 a-b MR51	Capacitor elect. 500 F 35V Capacitor 0.22 µF 160V Capacitor 2 µF 40V Inductor Diode Diode Diode	Wima Printlyt Wima Tropyfol M Mullard C415AP/G2 Albion L78/5 Motorola MR1202FL (2) RCA 1N40209 (2) Westinghouse 1N5402
	R50 a-z R51 RV1	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 500 ohms 5%	Wirewound (26) Wirewound Reliance CC115 (or Colvern CLR1106/9S)
	VT50 a-z VT51	Transistor Transistor	RCA 2N3055(26) Solidev 2N3055
	T1	Transformer	Albion T638C/3
ASB	50, ATB50		
	C50	Capacitor elect. 1000µF 40V	Sprague 32D 102G 025 AA 2A (or AA 6B)
	C51 C52	Capacitor elect. 200 µF 35V Capacitor 0.1 µF 160V	Wima Printilyt Wima Tropyfol M
	MR11-12 MR50-52 R50 R51 RV1 (ASB)	Diode Diode Resistor 1 ohm 3W 5% Resistor 1 kohm 3W 5% Resistor variable 500 ohm 5%	Motorola 1N4003 (4) Motorola 1N4003 (3) Wirewound Wirewound Reliance WL18 wirewound (or Colvern CLR1106/9S)
	RV1 ATB	Resistor variable 500 ohm 5%	M.E.C. MP31 (or Reliance CW-90)
	T1 (ASB) (ATB)	Fransformer Transformer	Albion T147/10 Albion T78/18
	VT50	Transistor	RCA 2N3055

Component Ref	Description	Manufacturers part/type
ASB100, ATB100		
C50	Capacitor elect. 2100µF 40V	Sprague 32D 212G 040 AB 2A (or AA 6B)
C51 C52	Capacitor elect. 200µF 35V Capacitor 0.22µF 160V	Wima Printilyt Wima Tropyfol M
MR11-12 MR50-52	Diode Diode	Motorola 1N4003 (4) Motorola 1N4003 (3)
R5O RV1 (ASB)	Resistor 1 ohm 3W 5% Resistor variable 500 ohm 5%	Wirewound Reliance WL18 (or Colvern CLR1106/95)
RV1 (ATB)	Resistor Variable 500 ohm 5%	M.E.C. MP31 (or Reliance CW-90)
T1 (ASB) (ATB)	Transformer Transformer	Albion T29/7 Albion T78/19
VT50	Transistor	Motorola 2N3055
ASB 200, ATB 200		
C50 a & b	Capacitor elect. 2100 F 40V	Sprague 32D 212G 040 AB 2A (or AB 6A)
C51 C52	Capacitor elect. 200 F 35V Capacitor 0.22 F 160V	Wima Printilyt Wima Tropyfol
MR11-12 MR50-52	Diode bridge Diode	Motorola MDA 952-2 Motorola 1N4003 (3)
R5O RV1 (ASB)	Resistor 0.5 ohm 5W 5% Resistor Variable 500 ohm 5%	Wirewound Reliance WL18 (or Colvern
RV1 (ATB)	Resistor variable 500 ohm 5%	M.E.C. MP31 (or Reliance WL18)
T1 (ASB) T1 (ATB)	Transformer Transformer	Albion T78/8 Albion T78/21
VT50	Transistor	Motorola 2N3055
ASB 300, ATB 300		
C50 a & b	Capacitor elect. $3600\mu F$ $40V$	Sprague 36D 362G 040 AB 2A (or AC 6B) (2)
C51 a	Capacitor elect. 500µF 35V	Wima Printilyt
С51 Ъ	Capacitor elect. 39µF 40V	Mullard C415
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-12	Diode bridge	Motorola MDA 952-2
MR50	Diode	Int. Rectifiers 3F10
MR51-52	Diode	Motorola 1N4003

Co	omponent Ref	Description	Manufacturers part/type
ASB	300, ATB 300		
	R50 a & b R51 RV1 (ASB)	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 500 ohm	Wirewound (2) Wirewound Reliance WL18 (or Colvern
	RV1 (ATB)	Resistor variable	M.E.C. MP31 (or Reliance WL-18)
	T1 (ASB) T1 (ATB)	Transformer Transformer	Albion T152/4 Albion T120/26
	VT50 a & b VT51	Transistor Transistor	Motorola 2N3O55 Solidev 2N3O55
ASB	500, ATB 500		
	C50 a & b (ASB)	Capacitor elect. 5500µF 40V	Sprague 36D 552G 040 AC 2A
	C50 (ATB)	Capacitor elect. $12000\mu F$ 40V	(or AC 6B) (2) Sprague 32D 123G 040 AC 2A (or CC 6B)
	C51 a C51 b C52	Capacitor elect. 500µF 35V Capacitor elect. 39µF 40V Capacitor 0.22µF 160V	Wima Tropyfol M Mullard C415 Wima Tropyfol M
	MR11-12 MR50-52	Diode bridge Diode	Motorola MDA-962-2 Motorola 1N4003
	R50 a & b (ASB) R50 a-c (ATB) R51 RV1 (ASB)	Resistor 0.5 ohm 5W 5% Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 5%	Wirewound (2) Wirewound (3) Wirewound Reliance WL18 (or Colvern CLR1106/95
	RV1 (ATB)	Resistor variable 5%	M.E.C. MP31 (or Reliance WL18)
	T1 (ASB) T1 (ATB)	Transformer Transformer	Albion T78/14 Albion T120/27
	VT50 a & b (ASB) VT50 a-c (ATB) VT51	Transistor Transistor Transistor	Motorola 2N3O55 (2) Solidev 2N3O55 (3) Solidev 2N3O55
ASB	700		
	С50 а & b	Capacitor elect. $7300\mu F$ 40V	Sprague 32D 732G 040 BC 2A (or BC 6B) (2)
	C51 a C51 b C52	Capacitor elect. 500µF 35V Capacitor elect. 39µF 40V Capacitor 0.22µF 160V	Wima Printilyt Mullard C415 Wima Tropyfol M
	MR11-12 MR50 MR51 a & b MR52	Diode bridge Diode Diode Diode	Motorola MDA-962-2 RCA 40209 Westinghouse 1N5402 (2) Motorola 1N4003

Component Ref	Description	Manufacturers part/type
ASB 700 (Cont'd)		
R50 a-c	Resistor 0.5 ohm 5W 5%	Wirewound (5)
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor variable 500 ohm 5%	Reliance WL18 (or Colvern CLR1106/9S)
T1	Transformer	Albion T120/18
VT50 a-e	Transistor	Motorola 2N3055
VT51	Transistor	Solidev 2N3055
ASB 1000		
С50 а & Ъ	Capacitor elect. 12000µF 40V	Sprague 32D 123G 040 CC 2A (or CC 6A) (2)
C51a	Capacitor elect. 500µF 35V	Wima Printilyt
С51 Ъ	Capacitor elect. 39µF 40V	Mullard C415
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-12	Diode bridge	Motorola MDA-962-2
MR50	Diode	RCA 40209
MR51 a & b	Diode	Westinghouse 1N4721 (2)
MR52	Diode	Motorola 1N4003
R50 a-b	Resistor 0.5 ohm 5W 5%	Wirewound (6)
R51	Resistor 1 kohm 3W 5%	Wirewound
KV 1	Resistor variable 500 onm 5%	CIPIIO6/95)
T1	Transformer	Albion T120/19
VT50 a-f	Transistor	Motorola 2N3055 (6)
VT51	Transistor	Soidev 2N3055
ASB 1500		
C50 a-b	Capacitor elect. $7300 \mu F$ 40V	Sprague 32D 732 040 BC 2A (or BC 6B)
C51 a	Capacitor elect. 1400µF 64V	Mullard C432
С51 Ъ	Capacitor elect. 39µF 40V	Mullard C415
C51 c	Capacitor elect. 500µF 35V	Wima Printilyt
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-12	Diode bridge	Motorola MDA-972-2
MR50	Diode	RCA 40209
MR51 a & b	Diode	Westinghouse IN4/21 (2)
MK5Z	DIOGE	MOLOTOIA IN4003
R50 a-h	Resistor 0.5 ohm 5W 5%	Wirewound (8)
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor variable 500 ohm 5%	CLR1106/9S)
T1	Transformer	Albion T284/4

•

Co	omponent Ref	Description	Manufacturers part/type
ASB	1500		
	VT50 a-h	Transistor	Motorola 2N3055 (8)
	VT51	Transistor	Solidev 2N3055
ASB	2000		
	C50 a & b	Capacitor elect. 7300 F 40V	Sprague 32D 732G 040 BC 2A (or BC 6B) (2)
	C50 c & d	Capacitor elect. 12000 F 40V	Sprague 32D 123G 040 CC 2A (or CC 6B) (2)
	C51 a	Capacitor elect. 1400 F 64V	Mullard C432 FR/H1400
	С51 Ъ	Capacitor elect. 39 F 40V	Mullard C415
	С51 с	Capacitor elect. 500 F 35V	Wima Printilyt
	C52	Capacitor 0.22 F 160V	Wima Tropyfol M
	MR11 a-12a	Diode	RCA 1N40210R (or 1N40209R) (2)
	MR11 b-12b	Diode	RCA 1N40210 (or 1N40209) (2)
	MR51	Diode	Westinghouse 1N5402
	MR52	Diode	Motorola 1N4003
	R50 a-g	Resistor 0.5 5W 5%	Wirewound (7)
	R51	Resistor 1 kohm 3W 5%	Wirewound
	RV1	Resistor variable 500 ohm 5%	Reliance WL18 (or Colvern CLR1106/9S)
	T1	Transformer	Albion T248/5
	VT50 a-a	Transistor	Motorola 2N3055 (7)
	VT51	Transistor	Solider 2N3055
ASE	3000		
	C50 a-c	Capacitor elect. 10,000 F 50V	/ Sprague 32D 103G 050 CC 2A (or CC 6B)
	C51 a	Capacitor elect. 1400 F 64V	Mullard C432 FR/H1400
	С51 Ъ	Capacitor elect. 39 F 40V	Mullard C415
	C51 c	Capacitor elect. 500 F 35V	Wima Printilyt
	C52	Capacitor 0.22 F 160V	Wima Tropyfol
	L1	Inductor	Albion L120/3
	MR11 a-12 a	Diode	RCA 40210R (2)
	MR11 b-12 b	Diode	RCA 40210 (2)
	MR50 a & b	Diode	RCA 40209 (2)
	MR51	Diode	Westinghouse 1N5402
	MR52	Diode	Motorola 1N4003
	R50 a-m	Resistor 0.5 ohm 5W 5%	Wirewound (13)
	R51	Resistor 1 kohm 3W 5%	Wirewound
	RV1	Resistor variable 500 ohm 5%	Reliance WL18 (for Colvern CLR1106/9S)

Components Ref	Description	Manufacturers part/type
ASB 3000 (Cont'd)		
T1	Transformer	Albion T638C/4
VT50 a-m VT51	Transistor Transistor	RCA 2N3055 (13) Solidev 2N3055
ASC 50 - ATC 50		
C50 C51 C52	Capacitor elect. 1300µF 50V Capacitor elect. 200µF 35V Capacitor 0.µF 160V	Strague 36D 132G 050 AA 2A Wima Tropyfol M Wima Printilyt
MR11-12 MR50-51	Diode Diode	Motorola 1N4003 (4) Motorola 1N4003 (2)
R50 RV1 T1 (ASC) T1 (ATC) VT50	Resistor 1 ohm 5W 5% Resistor variable 1 kohm 5% Transformer Transformer Transistor	Wirewound Colvern CLR1106/9S (or M.E.C. MP31) Albion T147/11 Albion T78/20 Motorola 2N3055
ASC 100 - ATC 100		
C50 C51 C52	Capacitor elect. 2600µF 50V Capacitor elect. 200µF 35V Capacitor 0.22µF 160V	Sprague 36D 262G 050 AB 2A Wima Printilyt Wima Tropyfol M
MR11-12 MR50-51	Diode Diode	Motorola 1N4003 (4) Motorola 1N4003 (2)
R50 RV1	Resistor 1 ohm 5W 5% Resistor variable 1 kohm 5%	Wirewound Colvern CLR1106/95 (or M.E.C. MP31)
T1 (ASC) T1 (ATC)	Transformer Transformer	Albion T78/9 Albion T152/5
VT50	Transistor	Motorola 2N3055
ASC 200 - ATC 200		
C50 a & b C51 C52	Capacitor elect. 2600µF 50V Capacitor elect. 200µF 35V Capacitor 0.22µF 160V	Sprague 36D 262G 050 AB 2A Wima Printilyt Wima Tropyfol M
MR11-MR12 MR50-51	Diode bridge Diode	Motorola MDA-952-2 Motorola 1N4003
R50 a & b RV1	Resistor 1 ohm 5W 5% Resistor variable 1 kohm 5%	Wirewound Colvern CLR1106/9S (or M.E.C. MP31)

Component Ref.	Description	Manufacturers part/type
T1 (ASC)	Transformer	Albion T152/3
T1 (ATC)	Transformer	Albion T120/25
VT50 a & b	Transistor	Motorola 2N3055 (2)
ASC 300 - ATC 300		
C50	Capacitor elect. 5800µF 50V	Sprague 32D 582G 050 BC 2A
C51 a	Capacitor elect. 500µF 35V	Wima Printilyt
C51 b	Capacitor elect. 39µF 40V	Mullard C415
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-MR12	Diode bridge	Motorola MDA-952-2
MR50	Diode	Int. Rectifiers 3F10
MR51	Diode	Motorola 1N4003
R50 a & b R51 RV1	Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor variable 500 ohm 5%	Wirewound (2) Wirewound Colvern 1106/9S (Or M.E.C. MP31)
T1 (ASC)	Transformer	Albion T78/15
T1 (ATC)	Transformer	Albion T248/8
VT50 a & b	Transistor	Motorola 2N3055 (2)
VT51	Transistor	Solidev 2N3055
ASC 500 - ATC 500		
С50	Capacitor elect. 10000µF 50V	Sprague 32D 103G 050 CC 2A
С51 а	Capacitor elect. 500µF 35V	Wima Printilyt
С51 Ъ	Capacitor elect. 39µF 40V	Mullard C415
С52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-MR12	Diode bridge	Motorola MDA-962-2
MR50	Diode	Int. Rectifiers 3F10
MR51	Diode	Motorola 1N4003
R50 a-d (ASC) R50 a-c (ATC) R51 RV1	Resistor 0.5 ohm 5W 5% Resistor 0.5 ohm 5W 5% Resistor 1 kohm 3W 5% Resistor 1 kohm 5%	Wirewound (4) Wirewound (3) Wirewound Colvern CLR1106/9S (or M.E.C. MP31)
T1 (ASC)	Transformer	Albion T120/0
T1 (ATC)	Transformer	Albion T248/0
VT50 a-d (ASC)	Transistor	Motorola 2N3055 (4)
VT50 a-c (ATC)	Transistor	Solidev 2N3055 (3)
ASC 700		
C50 a	Capacitor elect. 8500µF 50V	Sprague 32D 582G 050 BC 2A
C50 b	Capacitor elect. 10000µF 50V	Sprague 32D 103G 050 CC 2A
C51 a	Capacitor elect. 500µF 35V	Wima Printilyt
C51 b	Capacitor elect. 39µF 40V	Mullard C415
C52	Capacitor 0.22µF 160V	Wima Tropyfol
MR11-12	Diode bridge	Motorola MDA-972-2
MR50	Diode	RCA 40209
MR51	Diode	Motorola 1N4721

Component Ref.	Description	Manufacturers part/type
ASC 700 (Cont'd)		
R50 a-e	Resistor 0.5 ohm 5W 5%	Wirewound
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor variable 1 kohm 5 %	Colvern CLR1106/9S
T1	Transformer	Albion T248/6
VT50 a-e	Transistor	Motorola 2N3O55
VT51	Transistor	Solidev 2N3O55
ASC 1000		
C50 a & b	Capacitor elect. 1000µF 50V	Sprague 32D 103G 050 CC 2A (2)
C51 a	Capacitor elect. 500µF 35V	Wima Printilyt
С51 Ь	Capacitor elect. 39µF 40V	Mullard C415
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
MR11-12	Diode bridge	Motorola MDA-972-2
MR50	Diode	RCA 40209R
MR51	Diode	Motorola 1N5402
R50 a-f	Resistor 0.5 ohm 5W 5%	Wirewound (6)
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor variable 1 kohm 5%	Colvern CLR1106/9S
T1	Transformer	Albion T248/7
VT50 a-f	Transistor	Motorola 2N3055 (6)
VT51	Transistor	Solidev 2N3055
ASC 1500		
C50 a-c	Capacitor elect. $1000\mu F$ 50V	Sprague 32D 103G 050 CC 2A (3)
C51 a	Capacitor elect. 1400µF 64V	Mullard C432 FR/H1400
С51 Ъ	Capacitor elect. $39\mu F$ 40V	Mullard C415
C51 c	Capacitor elect. 500µF 35V	Wima Printilyt
MR11 a-12 a	Diode	RCA 1N40210R (2)
MR11 b-12 b	Diode	RCA 1N40210 (2)
MR50	Diode	RCA 1N40209
MR51	Diode	Motorola 1N4721
R50 a-g	Resistor 0.5 ohm 5W 5%	Wirewound
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor 1 kohm 5%	Colvern CLR1106/9S
Tl	Transformer	Albion T638C/5
VT50 a-g	Transistor	Motorola 2N3055 (7)
VT51	Transistor	Solidev 2N3055

Component Ref.	Description	Manufacturers part/type
ASC 2000		
C50 a & b	Capacitor elect. $15000\mu\text{F}$ 75V	Sprague 36D 153F 075 CF 2A
C51 a	Capacitor elect. 1400µF 64V	Mullard C432 FR/H1400
C51 b	Capacitor elect. 39µF 40V	Mullard C415
C51 c	Capacitor elect. 500µF 35V	Wima Printilyt
C52	Capacitor 0.22µF 160V	Wima Tropyfol M
L1	Inductor	Albion L120/4
MR11 a-12 a	Diode	RCA 1N40210R (2)
MR11 b-12 b	Diode	RCA 1N40210 (2)
MR50 a & b	Diode	RCA 1N40209 (2)
MR51	Diode	Motorola 1N4721
R50 a-i	Resistor 0.5 ohm 5W 5%	Wirewound (9)
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor variable 1 kohm 5%	Colvern CLR1105/9S
T1	Transformer	Albion T638C/6
VT50 a-i	Transistor	Motorola 2N3055 (9)
VT51	Transistor	Solidev 2N3055
ASC 3000		
C50 a & b	Capacitor elect. $15000\mu F$ 75V	Sprague 36D 153F 075 CF 2A
C51 a	Capacitor elect. 1400µF 64V	Mullard C432 FR/H1400
C51 b	Capacitor elect. 39µF 40V	Mullard C415
C51 c	Capacitor elect. 500µF 35V	Wima Printilyt
C52	Capacitor elect. 0.22µF 160V	Wima Tropyfol M
L1	Inductor	Albion L120/5
MR11 a-12 a	Diode	RCA 1N40210R (2)
MR11 b-12 b	Diode	RCA 1N40210 (2)
MR50 a & b	Diode	RCA 40209 (2)
MR51	Diode	Motorola 1N4721
R50 a-m	Resistor 0.5 ohm 5W 5%	Wirewound (13)
R51	Resistor 1 kohm 3W 5%	Wirewound
RV1	Resistor variable 1 kohm 5%	Colvern CLR1106/9S
T1	Transformer	Albion T638/7
VT50 a-m	Transistor	RCA 2N3055 (13)
VT51	Transistor	Solidev 2N3055

TABLE 5

Parts list: PCB 293/294 and PCB 397/398

PCB 293/294

Component ref.	Description	Manufacturers part/type
C1	Capacitor $200 \mu F$ elect. 35V	Wima Printilyt
C2	Capacitor 1000pF 400V	Wima Tropyfol M
C3	Capacitor 200µF elect. 35V	Wima Printilyt
C4	Capacitor 5µF elect. 64V	Mullard C428 AR/H5
MR1	Diode, zener 4.3V	Mullard BZY 88C4V3
MR2	Diode, zener 5.1V	Mullard BZY 88C5V1
MR3	Diode, zener 5.6V	Mullard BZY 88C5V6
MR4	Diode, zener 4.3V	Mullard BZY 88C4V3
MR5	Diode	Motorola 1N4001
MR6	Diode, zener 5.1V	Mullard BZY 88C5V1
MR7-10		Mullard 1N4001
MR11-12		
Note		
MR1	1-12 may be fitted to the PCB 294	on some power supply units
ins	tead of on the main chassis. Deta	ails of these components
are	contained in the parts list for e	each power supply.
MR13-14	Diode	Mullard 1N4001
R1	Resistor 2 2 kohm carbon	All resistors are 5% ½W
R2	Resistor 7.5 kohm carbon	carbon
R3	Resistor 100 ohm, carbon	
R4	Resistor 1 kohm, carbon	
R5	Resistor 10 kohm, carbon	
R6	Resistor 390 ohm carbon	
R/	Resistor, * selected component	
K8 D0	Resistor 1 Konm, Carbon	
R9 DIO	Resistor 100 onm, carbon	
RIU D11	Resistor * selected component	
RII D12	Resistor i colocted component	
R12 D12	Resistor 470 obm carbon	
R15 R14	Resistor 2 2 kohm carbon	
R15-16	Resistor 4.7 kohm, carbon	
R17	Resistor 240 ohm, carbon	
R18	Resistor 470 ohm, carbon	
R19	Resistor 510 ohm, carbon	
R20	Resistor * selected component	
R21-R22	Resistor 100 ohms, carbon	
Note	•	
R22	is removed when Coutant Overvolt.	age Protection Units
are	fitted to the power supply.	
Note		
Det	ails of the values for * selected	components can be
fou	nd in Table 3.	
VT1-VT2	Transistor	Mullard BFY51
VT3	Transistor	Mullard BCY72
VT4	Transistor	Mullard BC108
VT5a-VT5b	Transistor	Mullard BC108

PCB 397/398

Component ref.	Description	Manufacturers part/type
C1	Capacitor 200uF elect. 35V	Wima Printilyt
C2	Capacitor 2200pF 400V	Wima Tropyfol M
C3	Capacitor 200µF elect. 6.4V	Mullard C426 AR/C200
C4	Capacitor 5µF elect. 64V	Mullard C428 AR/H5
C5	This component annotation is not used	
C6	Capacitor 4700pF 160V	Wima Tropyfol M
C7	Capacitor 0.01µF 400V	Wima Tropyfol M
Note	•	
C7	is only fitted to units with outputs	
of	15A and above	N 11 1 D2V 000/V12
MR1	Diode, zener 4.3V	Mullard BZY 8804V3
MR2	Diode, zener 5.1V	Mullard BLI 8805VI
MR3	Diode, zener 5.6V	Mullard BZI OOCJVO
MR4	Diode, zener 4.3V	Mullaru BZI 0004VJ
MR5	Diode Diode Foren 5 1V	$M_{\rm W} 11 \rm ard B7Y 88C5V1$
MKO	Diode, zener 5.1v	Mullaru bzi 0005vi
NOLE MD	6 on some boards may be 1N823. This is	a manufacturers change.
Re	sistor R19 is associated with this chan	ge.
MR7-10	Diode	Mullard 1N4003
MR11-12	21000	
Note	•	
MR	11-12 may be fitted to the PCB 398 on s	ome power supply
un	its instead of on the main chassis. De	tails of these
co	mponents are contained in the parts lis	t for each power
su	pply.	× 11 1 1× 002
MR13-14	Diode	Mullard IN4003
D1	Desister 200 ohn bigh stability	
KI D2	Resistor 390 0mm, night Stability	Electrosil TR5
R2 22	Resistor 100 obm carbon film	Metal oxide, high stability
R/	Resistor 1 kohm carbon film	resistors 2% or 5%
R5	Resistor 10 kohm, carbon film	Waycom Piher WP051
R6	Resistor 390 ohm, high stability	carbon film resistors
R7	Resistor, * selected component,	<u>↓</u> ₩ 5%
	high stability	-
R8	Resistor 560 ohm, carbon film	
R9	Resistor 180 ohm, carbon film	
R10	Resistor * selected component,	
	high stability	
R11	Resistor 1 kohm, high stability	
R12	Resistor * selected component,	
	high stability	
R13	Resistor 470 ohm, carbon film	
R14	Resistor 2.2 kohm, carbon film	
R15-16	Resistor 4.7 kohm, carbon film	
R17	Resistor 240 ohm, high stability	
R18	Kesistor 4/U ohm, carbon film	
R19	Kesistor 510 ohm, high stability	

(Table 5 Cont.)

PCB 397/398

Component ref.	Desc	ription	Manufacturers part/type	
Note				
R19) on some boards may	have a value of 620	ohms.	
Thi	is is a manufacturer	s change. Rectifier	r MR6 is associated	
wit	th this change.	-		
R20	Resistor * selecte	Resistor * selected component, high stability		
R21-R22	Resistor 100 ohms,	carbon film		
Note				
R22	2 is removed when Co	utant Overvoltage Pr	rotection Units	
are	are fitted to the power supply.			
R23	Resistor 39 kohm,	carbon film.		
Note				
Det	tails of the values	for * selected compo	onents can be	
fou	und in Table 3.			
VT1-VT2	Transistor		Mullard BFY51	
_			(alternative 2N3053)	
VT3	Transistor		Mullard BCY/2	
	- · ·		(alternative SM 49/5)	
VT4	Transistor		Mullard BC108	
			(alternative 2N3053)	
VT5a-VT5b	Transistor		fairchild U415	
			$(alternative 2 \times bolog of)$	
*1004	M		2 X 5r1 05/0 11 V15 18 DU1/2)	
V.T.O	Transistor		$\frac{1}{(01+0)} \frac{1}{(01+0)} 1$	
			(arternative origin)	

.

Fig.5

APPENDIX A

Coutant overvoltage protection units

- 1. OV series
- 2. KRO 30

Appendix A

COUTANT OVERVOLTAGE PROTECTION UNIT

OV SERIES

1. Coutant OV protection units are designed to protect voltage sensitive components connected to the output terminals of standard Coutant A Series power supply units. Voltage rise beyond a pre-adjusted limit results in the firing of a Crowbar SCR which clamps the output of the supply unit at zero.

2. The overvoltage unit connects directly to the tagboard of the power supply or alternatively can be connected into the output cableform remote from the supply. A dc fuse which forms part of the protection circuit is mounted on the OV printed circuit board. The OV protection unit derives its power from its associated power supply. The following specifications apply to the unit:-

Dimensions:	2.25 in (57 mm) x 2.375 in (61 mm) x 4.2 in (107 mm)
Weight:	$4\frac{1}{2}$ oz (127.5 gm)
Overvoltage limits:	Range 1 8.5 to 35V Range 2 4.5 to 13V
Temperature range:	-10 deg. C. to +65 deg. C.
Setting resolution:	Range 1 100 mV Range 2 60 mV
Minimum threshold setting: for protection over the full temperature range	Range 1 output volts +5% nom. Range 2 output volts +10% nom.
Delay time:	Normal 20 µS (set by manufacturer) Minimum 3 µS (by removal of link LKA)

Circuit description (fig.1)

3. A voltage derived from the output of the power supply by potential divider R4 and RV1 is compared by VT2 with a fixed reference voltage across Zener diode MR4 (high range) and MR3 (low range). VT3 and VT4 provide a constant current source to drive the Zener diode over a wide voltage range.

4. When the voltage from the potential divider R4/RV1 rises sufficient to cause VT1 to conduct, the resultant signal amplified by VT1 fires SCR2. This fires SCR1 clamping the +ve output rail and the P terminal via MR1 to the -ve output rail. Link LKB is inserted for low voltage operation (4.5 to 13V).

5. If the overvoltage condition has been caused by other than a series element failure the unit goes into the overcurrent protection condition and only a few milliamps will be drawn from the power supply. Series element failure results in a large current surge through SCRI blowing fuse FSI in the OV protection unit; isolating the -ve output rail from the load.

6. A delay is introduced between the occurrence of the overvoltage condition and the firing of the SCR by the insertion of link LKA. The link made gives a delay of 20μ S. Removal of the link reduces this delay to 3μ S so that the unit then responds to transient voltage changes. To adjust the OV unit proceed as follows:-

(1) Unclip the cover from the printed circuit board on the OV protection unit

Issued Apr.77

(2) Turn the OV potentiometer (RV1) fully counterclockwise

(3) Monitor the output voltage with a suitable voltmeter and adjust the output voltage control on the power supply for an indication of 10% above the normal output

(4) Turn the OV potentiometer clockwise until the unit trips indicated by the output falling to zero

(5) Switch off the power supply and turn the output voltage control fully counterclockwise. Switch on the power supply

(6) Check that the OV protection unit trips at 10% above normal by increasing the output voltage. If necessary repeat paras. (2) to (5)

(7) After satisfactory adjustment reset the power supply for the normal output and refit the cover on the OV protection unit.

Fig 1 Circuit diagram : OV series 2, 3 and 4

7. Coutant overvoltage protection units OV series are fitted to the following power supplies:-

(1) Coutant power supply type ASB 700/6; part of FGRI 26062/1. Embodied under modification No. A3888 - AP 116S-0206-2

(2) Coutant power supply type ASB 700/12; part of FGRI 26062/1. Embodied under modification No. A3889 - AP 116S-0206-2

.

Parts List

Components ref	Description	Manufacturers part/type
Cl	0.047 160V	Wima Tropyfol M
MR1	Diode	Texas Instruments 1N914
MR2	Diode	Motorola 1N4003
MR3	Diode Zener 3.3V	Mullard BYZ 88 C3V3
MR4	Diode Zener 6.2V	Mullard BZY 88 C6V2
MR5	Diode	Motorola 1N4003
R1-R2	Resistor 10 ohm ½W 5%	Carbon
R3	Resistor 10 kohm ½W 5%	Carbon
R4	Resistor 2 kohm ½W 2% high stab	Carbon
R5	Resistor 1 kohm ½W 5%	Carbon
R6	Resistor 4.7 kohm ½W 5%	Carbon
R7	Resistor 100 ohm $\frac{1}{2}W$ 5%	Carbon
R8	Resistor 910 ohm ½W 5%	Carbon
R9	Resistor 1.8 kohm $\frac{1}{2}$ W 5%	Carbon
R10	Resistor 10 kohm $\frac{1}{2}$ 5%	Carbon
R11	Resistor 10 ohm ½W 5%	Carbon
R12	Resistor 10 ohm $\frac{1}{2}$ W 5%	Carbon
R13	Resistor 100 ohm ½W 5%	Carbon
RV1	Resistor variable 10 kohm	Reliance WL18 or M.E.C. MP31
SCR1	Silicon controlled rectifier	RCA 2N3896 (OV2 & OV3)
SCR1	Silicon controlled rectifier	Westinghouse 29T1 (0V4)
SCR2	Silicon controlled rectifier	Motorola 2N5061
VT1	Transistor	Mullard BC107
VT2	Transistor	Mullard BCY72
VT3	Transistor	Mullard BCY70
VT4	Transistor	Mullard BC107

(5920-99-626-8109)

General description

1. Type KRO overvoltage protection units are fully encapsulated complete units and capable of providing protection of voltage sensitive loads in any power system up to a rating of 3 amps.

2. The unit is connected across the supply lines to the load. In the event of the supply line voltage rising above the preset protection level a fast acting circuit operates to turn on a SCR connected across the supply lines thus effectively short circuiting the supply and protecting the load. The following are the specifications for the unit.

Preset limit voltage	30V ± 2%
Adjustable range	10-35V
Operating temprature range	-15C to +100 [°] C
Delay time	Supplied set at 20µS
Case style	A
	Pin 1 POS
	Pin 2 ADJ
	Pin 3 GATE
	Pin 4 COM

Voltage setting

3. Units are internally preset before encapsulation but any voltage within the range 10-35V can be set by the addition of one external resistor. For voltage above the preset level the resistor is connected between the positive supply line and the ADJ pin. For voltages below the preset level the resistor is connected between the negative supply line and the ADJ pin.

4. A range of resistor values with corresponding voltage settings is given in the following table:

Units to which fitted

5 Overvoltage protection unit type KRO30 is fitted to Countant power supply type ATB 100 12/2; part of FGRI 26062/1. Embodied under modification No. A3887 - AP 116S-0206-2.