Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AP 116U-0516-1

POWER SUPPLY, TRANSISTOR DEVICES TYPE SPS-1070

BY COMMAND OF THE DEFENCE COUNCIL CTDunnett. Ministry of Defence

Sponsored for use in the ROYAL AIR FORCE by DWSE(RAF)

Publications authority: DATP/MOD(PE)

Service users should send their comments through
the channel prescribed for the purpose in:
AP 3158 Vol. 2 Leaflet Mo.D6 (ARMY and raf)

Status Indicating Relay: A status indicating relay is provided with double pole-double throw contacts which indicate the operating status of the power supply. The relay is actuated when the power supply is operating within predetermined voltage limits. The relay is deactuated when the power supply is operatir.y outside of these limits or when the power supply is off.

Margin Adjust: Provision is made for remote programming the power supply up and down (margin adjust). Programming down is accomplished by shorting terminal TB1-9 (MV3) to terminal TBI-10 (MV4). Programming up is accomplished by shorting terminal TB1-8 (MV2) to terminal TB1-7 (MV1). The output change due to programming is .2 V .

Front Panel Controls:
Output Voltage Meter: 0 to 10 V
Output Current Meter: 0 to 50 A
Voltage Adjustment Potentiometer, Coarse and Fine: Set to desired output voltage as measured on the front panel meter or on the front panel test points.

Overvoltage Adjust: Normally factory-set to 6 V or may be adjusted in the field.

Current (Limit) Adjust: This is normally set at 45 A at the factory. This is done by loading the power supply to 45 A and turning the current limit adjust counterclockwise until the mode indicating lamp operates. The current limit adjust may be adjusted to lesser values in accordance with the operational requirements of the system by turning the current limit adjust counterclockwise with the system operating until the mode indicating lamp illuminates. The current limit adjust should then be turned clockwise approximately $1 / 8$ of a turn until the mode indicator lamp extinguishes.

Test Points: Makes available the regulated output voltage.
Mode Indicator Lamp DS-1: When illuminated, indicatea current limiting operation.

Circuit Breaker CB-l: Fory on-off operation and line protection.

AC-On Lamp DS-2: Indicates power is on and circuit breaker is on.

1. INTRODUCTION

The Model SPS-1070 power supply (I.ink P/N D697901) is
shown in Figure 1 (D13225) and has the filiowing specifications:
Input Voltage: 105 to $132 \mathrm{~V}, 47$ to $\mathrm{E}:$
Output Voltage: Adjustable 5 to 5.4 V a 0 to 40 A .
Regulation: Line: Less than . 005 or 2 MV for 105-132 V AC line change

Load: Less than . 005\% or 2 MV for no load to (or from) full load changes

Ripple and Noise: . 5 MV RMS - 3 MV p.p. max.
vervoltage Protection: Response time 50 usec. The overvoltage is normally set to 8 V at the factory. It may be readjusted in accordance with the application as required.

Overload Protection: By electronic current limiting. The power supply will current limit at approximately 45A or less as adjusted by the operator. Under short circuit conditions, the load current will be reduced to a safe value and the power supply will automatically recover as soon as the overload or short circuit $1 s$ removed.

Remote Programing: By external potentiometer, lk, connected between terminals 7 and 8 to TB2.

Parallel Operation: Up to four units by interconnection between power supplies. See following section on rear panel connections.
demote Sensing: Yes
Temperature Range: -20 to $+65^{\circ} \mathrm{C}$
Temperature Coefficient: .01\% ${ }^{\circ} \mathrm{C}$
Size: Front panel is $19^{\prime \prime}$ wide by $3 h^{n}$ nigh; depth is $16-3 / 4^{\prime \prime}$ plus " protrusion for terminal blocks and power connectiona.

Cooling: Cooling is by external forced air which may enter either on the left front side of the power supply or from the bottom surface of the power supply.
the on-off front panel circuit breaker CB-1. When the circuit breaker is actuated, power is applied to $A C-$ on indicator lamp DS-2 and to the primary of transformer Tl.

The main power secondary of transformer Tl (terminals
8, 9, 10) is rectified and filtered by the action of rectifiers CR3 and CR4 and filter capacitors $C 5$ through Cl6. The voltage on these capacitors varies between 9 and 13 V in accordance with the line and load conditions.

The transistor configuration $Q 1, Q 9, Q 10$ through Q19 is a Darlington-driven parallel pass transistor configuration which acts as the main regulator; i.e., the regulated output voltage appears on terminals El and E2. The pass transistor configuration is inserted between the unregulated output voltage appearing on the filter capacitors and the regulated output voltage appearing on the output texininals. The difference voltage is dropped across the pass transistors. This is accomplished by adjusting the drive signal from the regulator so that the output voltage remains constant independeat of line and load conditions.

A control (bias) voltage is generated by an additional secondary of transformer $T 1$ (terminals 5, 6, 7), full wave center tap rectifiers CRI and CR2, and filter network RI-Cl. The voltage on Cl is approximately 30 V . A control voltage is generated by the action of voltage dropping resistor $R 2$ and zener diode CR5. The voltage on the cathode of CR5 is approximately liw more positive than the positive sense lead.

Rar Panel Connections:

```
Jl - Line cord connector (provided with the unit) to
plug into the AC line. The two AC lines and ground
connections are provided.
TB1-1: Normally open contact of status indicating relay.
TBl-2: C contact of status indicating relay.
TB1-3: Normally closed contact of status indicating relay.
TB1-4: Normally open contact of status indicating relay.
TB1-5: C contact of status indicating relay.
TB1-6: Normally closed contact of status indicating relay.
TB1-7)
TB1-8) Positive margin adjust.
TB1-9)
TB1-10) Negative margin adjust.
TB1-11: + output
TB1-12: + output sensing (should be jumpered to -11 or
    + output is remote sensing is used.)
TB1-13: - sensing (should be jumpered to minus sensing
        -ither locally or at the load.
TB1-14: - output.
TB1-15)
TB1-16) Normally shorted together. If parallel opera-
        tion is required, the jumper from -15 to -16
        should be removed on the slave units and TBl-15
        should be connected to TB1-15 of the master unit.
E1: + output.
E2: - output.
```


2. THEORY OF OPERATION

2.1 Regulator Action

A schematic diagram of the SPS-1070 is shown in Figure 2
(Drawing pl4286). AC power is applied to Jl, which applies power to.

Operation of the voltage regulator circuit is as follows: A reference voltage is generated by voltage dropping resistor R22 and zener diode CR8. The reference voltace across CR8 is reduced by the action of voltage divider network $\mathrm{F} 23-\mathrm{R} 24$ so that approximately 3.8 V appears on the base of transistor $Q 7$. The output voltage is sensed by resistive divider network $R 27, R 29, R 61$, and R60 (voltage adjust potentiometer). Transistors $Q 7$ and $Q 8$ operate as a differential error amplifier. When the output voltage is at the correct level, the voltage on the base of $Q 7$ will approximately equal he voltage on the base of Q8. If the output voltage tends to rise, Q8 conducts more heavily, thereby reducing the conduction of Q7. The amplified error voltage appears on the collector of $Q 7$ and is applied to the base of intermediate voltage amplifier transistor 05 . The error voltage is further amplified and inverted at the collector Of Q5 and applied to the base of transistor $Q 2$, whichin turn drives the pass transistor configuration $Q 1, Q 9$, etc., through TB1-15 and -16. It will be noted that as the output voltage tends to increase, the collector of 07 becomes more positive, thereby reducing the voltQge on the collector of $Q 5$, which in turn reduces the drive to $Q 2$, Q., etc., and reduces the output voltage in a regulatory fashion.

2.2 Overvoltage Protection

A voltage reference is generated by series dropping resistor R3l and zener diode CR10. The output voltage is measured by voltage divider network CRII-CRl2, temperature compensation resistors R34, R33, R32 (overvoltage adjust). When the overvoltage condition is reached, transistor $Q 20$ turns on, actuating the gate of SCR-1.
thereby shutting the power supply down. It will be noted that firing of SCR-1 removes the drive to the power surplies through resistor R59 so that once the overvoltage has fired, therf is minimal current flowing in the system. The overvoltage may be reset by turning off the line power by circuit breaker $C B-1$ and re-applying it.

2.3 Current Limiting Circuit

Resistors R40 through R49 generate a voltage drop proportional to the load current. In addition, the base to emitter drops F transistor 09 and the pass transistor configuracion $Q 10$, etc., are approximately proportional to the load current. Accordingly, the voltage on the base of $Q 9$ is a direct indication of the load current flowing. This voltage is sensed by resistive divider R8-R7R12 and applied to the base of transistor Q3 through resistor R9. Potentiometer $R 7$ sets the maximum current capability adjust of the front panel current limit and is normally set at approximately 55 A. Front pancl current limit adjust $R 28$ is normally set at approximately 45 A , and bendback adjust $R 9$ is normally set so that the hort circuit current is between 20 and 30 A . When excessive current 10 drawn, the base of $Q 3$ becomes positive (conducting through the emitter of Q3 to the base of Q4 to the emitter of Q4, which is tied to the positive output.) When transistor Q3 conducts, it shunts (limits) the drive signal to transistor Q2 and the power supply enters a current limiting mode of operation. As the load resistance is decreased in value (heavier load), the output voltage falls. Since R8-R7-R12 ic essentially a voltage divider, less voltage on the base of $Q 9$ is required to keep $Q 3$ in conduction, and the current limit bendback characteristic illustrated in Figure 3 is achieved.

METRUCTIO MNNUAL - MODEL SPS-1070 POWER SUPPLY

Current limit operation is indicated by lamp DS-1.
When Q3 conducts, Q4 conducts, which in turn 111 uminates lamp DS-1.

2.4 Status Indicating Relay

Relay. Kl is normally de-eneryized when the power supply is off and remains de-energized until the fower supply reaches proper operating voltage. Zener diode CRl 3 serves as a separate reference for the over- and undervoltage indicating circuits. Differential aplifier transistors Q23 and Q24, in conjunction with resistive divider R38-R37-R36, measure the overvoltaye status, and in the event of overvoltage, turns off transistor Q2l. Differential amplifier transistors Q25 and Q26 and resistive divider network R57-R56-R55 (undervoltage adjust) measure the undervoltage status, and in the event of undervoltage, turn off transistor Q22. Hence, it will be noted that relay $K 1$ can only be energized if the output voltage is between the over- and undervoltage limits previously defined. Relay Kl is shown on the chematic in its normally de-energized condition and hence, the contacts will change to the energized position when the output voltage is at the correct level.

2.5 Margin Adjust

The margin adjust is for checking the performance of the utilization equipment. Margin adjust downward is accomplished by shorting terminals TBI-9 and -10 (MV3 and MV4) together, which placen resistor R28 across the voltage divider sensing network and causes the regulator to shift downward in voltage. Positive margin adjust 1s accomplished by shorting terminals TB1-7 and -8 (MV1 and MV2) together, which places resistor R 30 across resistor R 29 and causes an upward change in the regulator for positive margin alymet testing.
2.6 Miscellaneous Components

Resistor Rl3 is a bleeder resistor designed to prevent epillover due to leakage currents at no luas. Resistor Pll is a load voltage compensating resistor which modifies the regulation in accordance with the load current for improved performance. Zener diode CR7 prevents conduction of transistor $Q 5$ until the power supply builds up to rated voltage and hence, assures build-up. Meters M1 and M2 are the front panel ammeter and voltmeter, respectively. 3. COMPONENT LOCATION

The location of major components (chassis-mounted) is indicated on the outline and installation drawing of figure 1. The smaller components are located on the printed circuit board, a layout of which is shown in Figure 4. The electrical parts list is given on the following pages.

INSTRUCTION MANUAL

TDI $\mathbf{P / N}$ SPS-1070

LINK P/N D697901

June 1970

AMENDMENT NO. 1

PAGE 3 SHOULD READ:

```
TBl-12 + Output Sensing (Must Be vonnected To
    Possitive Output Either At The Power
    Supply or At The Load)
```

TB1-13 - Output Sensing (Must Be Connected To
Negative Output Either At The Power
Supply Or At The Load)

SCHEMATIC DIAGRAM SHOULD BE:

R3	220 Ohms
R12	18 k Ohms
R59	10 Ohms
R14	Reference Note 3

Note 3: To Be Selected In Range of 680 Ohms To 1.5 K Ohms

PARTS LIST SHOULD BE:

R3	220 Ohms	RC20GF221K
R12	18 K Ohms	RC20GF183K
R59	10 Ohms	Re20GF100K

Section No.
1.
2. Theory of Operation
2.1 Regulator Action

2.3
2.4
2.5
2.6
3.

Introduction

Overvoltage Protection
Current Limit Circuit
5. 5.5

Status Indicating Relay
Margin Adjust 7
Margin Adjust
Miscellaneous Components
Component Location

LIST OF ILLUSTRATIONS
Figure No.
1.
2.
3.
4.

Outline Installation Drawing
Drawing No.

Schematic Diagram
D13225

Current Limit Bendback
D14286
A4449
PC Board Layout D14353
Electrical Parts List
Al4362

$\begin{aligned} & \overline{\text { QTY }} \\ & \text { REQD } \end{aligned}$	$\begin{aligned} & \text { ITEM } \\ & \text { NO } \end{aligned}$	NOMENCLATURE or DESCRIPTION	PART or IDENTIFYING NO	APPD MFR or EQUIV
	01	 CIRCUIT BREAKER ZENER DIODE, 12 V SILICO:N RECTIFIER ZENER CHIODE, 5.6 V zener diode, 6.2 V SILICON RECTIFIER zener viode, 3.9 V SILICON RECTIFIER		OPL
	C 2		CKJ6CWIOJK	QPL
	c 3		75F3R2A104	G.e.
	C 4		86F114:11	1
	C 5			
	C 6			1
	C 7			
	C 8			
	C 9			
	C 10			
	c 11			
	C 12			
	c 13			
	c 14		γ	γ
	C 15			
	C 15		86FI30MI	
	C 80C 81		75F3R2A134	G.E.
			CSI3BF335M	QPL
	CB 1		7.5 A AMIZMEб	heiniman
	CR 1		JAN 1:4245	$\stackrel{\text { QPL }}{1}$
	CR 2			
	CR 3		111184	1
	CR 4		1:11134	
	CR 5		111963B	
	CR 6		1N645	
	CR 7		IN752A	
	CR 8		1-1921	
	CR 9		1:1202A	
	$\begin{array}{ll}\text { CR } & 10 \\ C R & 11\end{array}$		$\boldsymbol{\gamma}_{\text {JAiN }} \text { INT48 }$	γ
				QPL

*vendor item -.. see source control or specification control drawings

$\begin{aligned} & \text { OTY } \\ & X \in Q D \end{aligned}$	IHEM NO		NOMENCLATURE or DESCRIPTION	PART or IDENTIFYING NO	APPD MFR or EQUIV
			$5.5 \mathrm{~K} \quad 1 / 2 \mathrm{~W} \quad 10 \%$ $1.5 \mathrm{~K} \quad 2 \mathrm{~W} \quad 1 \% \mathrm{WW}$ $1 \mathrm{~K} 2 \mathrm{~W} 1 \% \mathrm{WW}$ $1.5 \mathrm{~K} 2 \mathrm{~W} 1 \% \mathrm{WW}$ $1 \mathrm{~K} \quad 1 / 2 \mathrm{~W} \quad 10 \%$ 560 1/2 W • 10\% 2742 W 1\% WW I K 1/2 W 10\% $9092 \mathrm{~W} 1 \% \mathrm{WW}$ $5.6 \mathrm{~K} \mathrm{~L} / 2 \mathrm{~W} \quad 10 \%$ 470 1/2 W 10\% VAR. I K WW 120 1/2 W 10\% 560 1/2 W 10\% 100 1/2 W 10\% VAR. 500 $1.2 \mathrm{~K} \quad 1 / 2 \mathrm{~W} \quad 10 \%$ $1 \mathrm{~K} \quad 1 / 2 \mathrm{~W} \quad 10 \%$ 330 1/2 W 10\% .15 W . 5 W $4.7 \times \quad 1 / 2 \mathrm{~W} \quad 10 \%$ $1.2 \mathrm{~K} \mathrm{I} / 2 \mathrm{~W} \quad 10 \%$ 820. $1 / 2 \mathrm{~W}$ 10\%	RC20GF562K RW79U1501F RW79U1001F RW79U150IF RC20GFIO2K RC20GF56IK RW79U2740F RC20GF102K RW79U9090F RC20GF562K RC20GF47IK RA20LASBIO2A RC20GFIZIK RC20GF5EIK RCZOGFIOIK RA20LASB50IA RC20GFI22K RC20GF102K RC20GF331K RCŻOGF472K RC20GFI22K RC20GF82IR	
*vendor item --- see source control or specification control drawings					
SPS-1070			CODE IDENT NO 09004		14362
			SCALE		SHEET 5 of 6

BOARD SIZE $11.50 \times 3.31 \times .125$ THK.

