Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AIR PUBLICATION
 116E-2206-I

FREQUENCY SHIFT TONE KEYER TELESIGNAL MODEL 302

GENERAL AND TECHNICAL

INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL

4.Dumitt.

Ministry of Defence
FOR USE \mathbb{N} THE
ROYAL AIR FORCE

NOTE TO READERS

The subject matter of this publication may be affected by Defence Council Instructions, Servicing schedules (Topic 5), or "General Orders and Modifications" leaflets in this A.P. If possible, Amendment Lists are issued to correct this publication accordingly, but it is not always practicable to do so. When an Instruction, Servicing schedule, or leaflet contradicts any portion of this publication, the Instruction, Servicing schedule, or leaflet is to be taken as the overriding authority.

The inclusion of references to items of equipnent does not constituauthority for demanding the items.

Each leaf, except the original issue of prelimineries, bears the date of issue and the number of the imendment list with which it was issued. New or anended technical information on new leaves which are inserted when this publication is anended will be indicated by a vertical line in the mergin. This line merely denotes a change and is not a mark of emphasis. When a Part, Section, or Chapter is issued in a completely revised form, the line will not appear.

LIST OF ASSOCLITED PUBLICATIONS
A.P.

Digital keyer Telesignal
model 301
116E-2205-1

TELE-SIGNAL CORPORATION CV 1692 (P)/UGC
 MODEL 302
 FREQUENCY SHIFT TONE RECEIVER
 INSTRUCTION MANUAL
 ISSUE 3

Proprietary Information

Reproduction, dissemination or use of information contained herein for other than maintenance purposi is prohibited without prior written approval of Tele-Signal Corporation.
FREQUENCY SHIFT TONE RECEIVERCV $1692(\mathrm{P}) / \mathrm{MGC}$INDEX
ISSUE 3
1.0 PURPOSE AND BASIC PRINCIPLES
1.01 Application
1.02 Unit Description
2.0 SPECIFICATIONS
2.01 General Characteristics
3.0 INSTALLATION INSTRUCTIONS
3.01 Mechanical Arrangment
3.02 Power Connections
3.03 Input Signal Connections
3.04 Output Signal Connections
4.0 ORERATING INSTRUCTIONS
4.01 Strapping
4.02 Sense Switch Position
4.03 Test Equipment Required for Adjustments
4.04 Initial Check on Operating Conditions
4.05 Center Frequency Adjustment
4.06 Bias Adjustment
4.07 Delay Adjustment
4.08 Test Point Nave forms and Voltages.
5.0 THEORY
5.01 General
5.02 Input Amplifier - Limiter Circuit Description
5.03 Phmseshift Network Circuit Description
5.04 Polar Detector Circuit Description
5.05 Triggered Keyer Circuit Description
5.06 Time Delay Circuit Description
5.07 AND Gate and Transistor Switch Circuit Description
5.08 Output Circuit Description
5.09 Power Supply Circuit Description
APPENDICES
Ia Electrical Parts List - Model 302
Ib List of Manufacturers Designations
ILUUSTRATIONS
TetleSchematicD 302-01
Block Diagran B 302-02
Component Board Assembly TB-1 C 302-09
Component Board Assembiy TB-2 C 302-13
Component Board Assembly TB-3 A 302-17

1.0 PURPOSE AND BASIC PRINCIPLES

1.01 Application

1. The Model 302 is one of the basic building block components used to form a voice frequency telegraph multiplex system, converting mark and space audio tones into DC binary signals. All receivers of a system are usually identical with the exception of bandpass filters and frequency determining networks.
2. Up to sixteen units may be paralleled across a nominal 3kc voice frequency line; however, the capabilities may be expanded by increasing the number of channels and the correaponding response of the VF line facility.

1.02 Unit Description

1. The Model 302 is a transistorised modular plug-in assembly capable of converting mark and space audio tones into corresponding DC binary signala
2. The unit is $2^{\prime \prime}$ wide, $5 \frac{11}{}{ }^{\prime \prime}$ high and $19 \frac{1}{2}$ " deep. It is mechanically a Tele-Signal two inch module designed to slide into Model 239-series equipmant shelves. All aignal and power connections are made by means of a shelf connector at the rear of the unit which ia engaged when the unit is eeated in the shelf.
3. The Model 302 is completaly self contained and incorporates its own DC power supply.
2.0 SPECIFICATIONS CV 1692(P)/UCC

2.01 General Characteristics

General Characteristics:	Converts frequency shift audio tones into DC binary signals.
Size:	2 " wide $\times 5 \frac{1}{4}^{\circ} \mathrm{high} \times 19$ deep.
Weight:	10 lbs. approximately.
Power Requir ements:	115/230VAC, $47 / 440 \mathrm{cps}$, slngle phase approximately 4 watts.
Input Frequency Range:	300cps to 8kc audio tones.
Input Impedance:	600 ohms $\pm 10 \%$, unba lanced.
Input Level:	-45dbm to +5 dbm .
Output Signal:	a. (Relay Output) Polar relay contacts, standard S-T-M configuration, electrically floating.
	b. (Direct Output) Neutral -12V $\pm 10 \%$. 10ma maximum. Source impedance approximately 2000hms .
Output Current:	10 to 100 ma for relay output.
Output Keying Sense:	Direct or inverted by internal switch.
Total Bias Distortion:	Less than 5\% when keyed with Model 301D keyer on a back-to-back basis at 90 baud.
Carrier Distortion:	Less than 2% at lowest standard center frequency.
Output Signal Delay:	Minimum adjustable range of 5 milliseconds.
Temperature Range:	Operating: -18 to $+55^{\circ} \mathrm{C}$. Storage: $\quad-62$ to $+85^{\circ} \mathrm{C}$.
Elevation:	Operating: 10,000 feet above sea level. Non-Operating: 50,000 feet above sea level.
Humidity:	Up to 97\% relative humidity for 20 hours.
Front Panel Controls:	CENTER FREQUEENCY
	BIAS
	DELAY
Internal Controls:	SENSE switch
Monitoring Facilities:	TP-1 Filtered tone input monitor
	TP-2 Low level keyer output monitor
	TP-3 Polar detector output monitor
	TP-4 High level output monitor
	TP-5 Ground

3.0 INSTALEATION INSTRUCTIONS

3.01 Mechanical Arrangement

1. The unit is mechanically designed to mount in a Model 239 or 240-series equipment shelf.
a. To install, slide the module into the appropriate shelf poaition until the module connector seats firmly into the shelf connector.
b. Secure the module to the shelf with the two thumberews at the top and bottom of the front panel.
2. All connections to the module are made through the shelf connector.
3. The module should be physically and electrically located as close to asaociated equipment as possible to minimize extraneous signal pickup.

3.02 Power Connetions

1. External AC power is brought into the module through connector Pl pins 1 (HI) and 13 (10). The power source may be either 115 VAC or 230 VAC . The module is nomally strapped for ll5VAC unless otherwise specified by the customer.
2. To change the input power strapping.

Input Voltage	Powar Trana former Strapa	$\begin{gathered} \text { AC } \\ \text { Power Fuse } \\ \text { Slze } \\ \hline \end{gathered}$
115VAC	1 \& 3	1 ampere
	$2 \& 4$	
230VAC	$2 \& 3$	$\frac{1}{2}$ ampere

3.03 Input Signal Connections

1. Input audio tones are connected to shelf pin 24 (high) and pin 12 (ground).

3.04 Output Signal Connections

1. The polar relay contacts appear on shelf pins 9 (apace), 7 (tongue), and 20 (mark).
2. The low leval neutral (0 -12VDC) signal appears on pin 5 (high) and pin 12 (ground).

4.0 OPERATING INSTRUCTIONS

4.01 Strapping

1. Normally the Model 302 leaves the factory strapped for 115VAC operation; for 230VAC operation remove the straps from terminals 1 to 3 and 2 to 4 on transformer T5. Strap terminals 2 to 3 and apply 230VAC across pins 1 and 13 of P1.
2. Provide strapping for diversity or non-diversity operation as follows: a. For non-diversity operation: strap A, B \& C.
b. For diveraity operation: strap C.
3. If a common power supply is used for a number of units remove strap D and connect the common power supply to pin $4(-)$ and pin $11(+)$ on the shelf connector.

4.02 Sense Switch Position

1. The SENSE switch is set to the poaition designated by the system requirements.
a. With the SENSE awitch in the DIRECT position, a frequency higher than center frequency at the receiver input will close the tongue to the mark contact on the polar relay.
b. With the SENSE ewitch in the INVERTED position, a frequency lower than center frequency at the receiver input will close the tongue to the mark contact on the polar relay.

4.03 Test Equipment Required for Adjustments

1. Volt-ohm-milliammeter - Simpson 260 or equivalent.
2. Oscilloscope - Hewlett-Packard 122A or equivalent.
3. Frequency shift or digital keyer with matching network and filter Model 301D or equivalent.
4. Dotter to key the keyer with $1: 1$ reversals - Model 320 or equivalent.
5. Delay measuring device - Model 320 or equivalent.

4.04 Initial Check on Operating Conditions:

1. The DC power supply and bias circuits may be checked as follows:
a. Apply power to the Model 302 receiver.
b. Connect a VOM set to read 4 VDC between TPS (-) and TP5 (+).
c. Short TP1 to TP5 or chassis ground.
d. Turn the BIAs control full CCW. The VOM should read OVDC.
e. Turn the BLAS control full CW. The vOA should read a nominal $-3.5 \mathrm{VDC} \pm 20 \%$.
f. If the reading is 10 w , insure that the power supply output is $12 \mathrm{VDC} \pm 10 \%$.
2. The trigger circuit output may be checked as follows:
a. Connect a VOM set to read 12 VDC to TP2 (-) and TP5 (+),
b. Short TP1 to TP5 or chassis ground.
c. Turn the BLAS coatrol full CCW. The VOM should read -12VDC $\pm 1.5 \mathrm{~V}$.
d. Turn the BIAS control full CN. The Vow should read between OVBC and and - 1.5 VDC.

4.05 Center Frequency Adfuatmant

1. The center frequency of the discriminator is controlled by adjustment of L101. This screw driver adjustment is accessible from the front panel and is labeled CENTER fREQ.
2. Comect the output of a frequency shift tone keyer/transeitter to the iaput of the Model 302 receivar.
a. Insure that the kayer meets all operational apecifications.
b. Connect a telegraph test generator capable of generating 1:1 reversals at 90 baud to the input of the keyer.
c. Lower keying speeds may be used but chould not be less than the speed of tranenisaion on the chamel in traffic conditions.
3. Connect an oscilloscope between TP3 and TP5 (ground).
a. Set the scope for no sync (free running).
b. Adjust the ameep speed for two or three cycles of wavefern per Figure 1.
4. Adjust the Criris rapo control for a symetrical waveform per Figure 2. This is a coarse adjustment only and there is no need for accuracy.

Pigure 1

Pigure 2
5. With no sync on the scope, adjust the scope sweep frequency for a Eigure-8 pattern par Figure 3A.
a. Short TP1 and TP5. This shorts out the input signal and a horizontal trace will be seen on the scope.

3A

3B

3C

Figure 3
b. Set this horizontal trace to the center cursor line on the scope per Figure 3B.
c. Remove the short from TP1 and TP5.
d. Adjust the CENXRR PREQ control so that the 1 gigure- 8 crossover points fall exactly on the zero aignal reference line.
6. This completes the normal discriminator alignment procedure.
7. When required, slightly better peak telegraph distortien characteristics may be obtained by refining aligrment as outlined in the following paragraphe.
8. Alignment at a constant bit rate such as $1: 1$ reversals does not yield optimum results when the channel is keyed at a varying bit rate as in traffic.
a. If the channel is keyed with a locked character containing the the longest signal elements and the shortest signal elements, discriminator aligment can be made on an everaging basis so that peak telegraph distortion will be minimized under traffic conditions.
b. Figure 4 shows a 7 bit start stop signal used as a test sigasi. The short signal elemants are bits 2 and 3 . The long signal elements are bits 4,5 , stop, start, and 1.
c. Figure 5 shows the discriminator output for the Figure 4 test signal.
d. Aligrment on such a aignal will yield, generally, an improvemant of $1-2 \%$ over $1: 1$ reversal alignment at the maximum bit rate.

Figure 5
9. Final aligmant is made by adjusting the CENTER FREQ control silghtly to optimize discriminator output in the following ateps:
a. With 90 baud reversala, set the scope for a reversal pattern spread per Figure 6.
b. With the 90 baud test aignal per Figure 4, readjust the acope as required for the keying aignal crossover pattern per Figure 7.
c. Note that the rising edges of two aignal elements and the falling edge of two signal alements form an appropriate diamond figure in the center of the pattern.
d. Adjust the CENTER FREQ coatrol to optimize the following requirements:
(1) Minimize the horizontal width of the diamond pattern (spread between points of intersection).
(2) When the scope is mitched to yield a presentation per Figure 5, dimensiens B or C shall have not decreased more than 10% lass than dimension A.
e. Averaging to weat all these requirementa will optimize discriminator alignment.
f. Following alignont, reset the BLAS control as described later and measure output distortion.

Scope Precentation
1:1 Reversals
Figure 6

horizontal width of diamond pattern

Scope Presentation Keylng Signal Crossover

Figure 7
10. An altornative mathod of final aligment is to change the CENTKR FREQ control in smil lacraments, in each case setting BIMS to sere, and maseuring output distortion. In this case, the discriminator is left at the point of minimum distortion. The input test signal is per Figure 4.

4.06 Bias Adjustment

1. With $1: 1$ reversals at the keyer input and the oscilloscope at twice the signal speed (without synch), place the scope lead between TP2 and TPS (ground) of the receiver. Adjust the BIAS control for a 50/50 weighted squarewave pattern on the scope as indicated in figure 8.

Figure 8

4.07 Delay Adjustment

1. The delay adjustment on the Model 302 receiver must be made using the receiver in a system configuration with another Model 302 as a reference receiver, (the lowest frequency channel receiver should be used as the reference) a Model 320 metering panel, and appropriate jacking facilities.
2. Terminate the receive DC loops of the Model 302 reference receiver and the Model 302 to be adjusted into the Model 320 DELAY $\$ 1$ and DELAY $\$ 2$ respectively.
3. With both receivers on steady mark, adjust both receiver loops for 60 ma . Controls are on Model 320. Set the dealy meter CIRCUIT switch to BAL and carefully adjust one of the loop currents so that the delay meter reads exactly zero. Increase meter sensitivity and carefully readjust. Return delay meter switch to low sensitivity.
4. Apply identical 1:1 reversals to each companion keyer. Set the delay meter CIRCUIT switch to DELAY.
5. Set the DELAY control on the reference receiver to $\frac{3}{2}$ rotation from maximum CW and adjust the DELAY control of the other receiver for minimum delay time (zero microamperes) as read on the Model 320 meter.

4.08 Test Point Waveform and Voltages

1. Input - companion keyer, keyed at $1: 1$ AC reversals.
2. Output viewed on oscilloscope with horizontal sweep set to twice keying speed.
3. All readings taken with respect to TP-5.

WAVEFORMS

Amplitude dependent upon loop battery supply voltage and external loading Extermal loop battery common muat be grounded

5.0 THEORY

5.01 Gmarel

1. Referemce 1. made to drawinge D 302-01 and D 302-02, the chamatic and block diagram of the unit.
2. The Model 302 Frequency Shift Towe leceiver basically comalate of ten functional circuits detailed as followes
a. Baxdpaes Pilter which ceparates the teans of ean particular chamal from all othor teans on the aggregate tone lise.
b. Two-atage puch-pull amplifier which provides amplificatiea and limiting of the inceming tomas.
c. Phamechift matwork capable of chifting the phese of the voltagee fed to the polar datector.
d. Fhacohift auplifiar avd liaiter which drivee a section of the pelar detector.
-. Polar detecter which converta the mark and space frequaseles inte peaitive and megative DC binary puleas.
f. Triggered kayer circuit which providan waveshaping for the DC pulees frem the pelar detector.
3. Delay emplifier which ia capable of providing a variabla tim delay of the binary aignals fed to the tranaiater ewiteh.
h. An AND gate waich triggers the tramiator ariteh.
4. A transister witch wich provides drive faw the pelar melay.
J. A pelar melay which isolater the DC Eelegraph line frow the daternal circuitry of the Medel 302.

5.02 Inout Anolifier - Mintar Circult Pacirintise

1. The incoming aggregate audio tones are fed chrough the bandpase filter The filter pascea only the band of fraquamelee containimg the mark and apace tomes of a designeted chamal. The outpet of the filter is trandionmer couplod to puch-puli aplifiar-1imiter stage Q1 and Q2. The cireuit is arranged such that meek signale will be maplified and atreag aigmale will be lindted. The output of this atage is traneformax coupled to a emend perm-pull 1 isiter atage Q3 and Q4. This circuit will 1 indt all oipmia and provide a comatemt apilitede output. Two outputs axe cabon frem the mecon punh-pull iledtar the firet output is taben from the collector of $Q 3$ and fed to the phase chift motrork L101, C101 and C102. The aacoad output of tha lindter is transformar coupled to the polar datecter.

5.03 Phaceahift Wetwork enseust beweripcime

 of the output voltages of the 110 diper. The phate alifted voltage is fed to isolatien atage QS vaich drives 11 indter stage Q6. The output of $\mathbf{Q 6}^{6}$ is
trameformer coupled to one section of the polar detector.

5.04 Polar Detector Circuit Deecription

1. The polar detector couprises diodes CRI through CR4. The circuit is arranged so that when the two input voltages are 90° out of phace, the output of the detector, across R17 and R18, will be zero volts. This represents an iaput aignal at the center frequency of the particular channel. The 90° phase abift is accomplished by tapping the voltage across the inductance of a tuned series circuit. When the input frequency changes to elther the mark or apace frequency, the phace relationship between the two applied voltagea will depart from 90°, and the polar detector will deliver either a pesitive or negative DC voltage. The direction and amplitude of this voltage depends upon the phase and time duration of the two applied voltages.

5.05 Trisgersed Reyer Cixcult Dascription

1. The output of the polar detector is fed through the SENSE awitch to a post-detectien lowpase filter comprised of LI and C103. The output of the lowpass filter feeds the Schmitt-trigger circuit $Q 8$ and $Q 9$ through the impedance comverting stage Q7. The Schmitt-trigger circuit provides normalized output, the weight of which is determined by the bias centrol R20. Transistor $Q 10$ is a phase inverter wich drives the time delay circuit.

5.06 Tima Delay Circuit Dascription

1. Transiators Q11, Q12 and Q13 comprise the time delay atage which provides a variable delay from the output of Q10 ta the input of the tranalator awitch Q14 and Q15. Q11 and Q12 is a one-shot multivibrator with Q12 normally eaturated and Q11 cutoff. The output frem the collector of Q10 is a coupled through diffarentiating capacitors C8 and C11 to the base of Q11 and Q12 through CR8 and CR11, and will cause Q12 to become cutoff and Q11 to become maturated. After a time dalay deterninod by the time constant of C13, R39, Q11, R40 and CR9 in ceries, the one shot multivibrator Q11 and Q12 will return to its original state, providing a positive pulse to drive Q14 or Q15. At this instant Q13 conducts and prowides a fast charging time for C13.

5.07 AND Gate and Trangistor Bwitch circuit Description

1. The poaitive pulse from the collector of Q 12 is coupled threugh differentiating capacitors C14 and C15 to the AND gete comprised of CR13, 342 and CR14, R41. In ordar for CR13 or CR14 to pass this pulse; it is mecessery that its anode be at approximately sero volta DC level. The andteer of Q9 is coupled to the anode of CR13 through R42, and the collector of Q10 is coupled to the anode of CR14 through R41. When ose of these peints is at sere DC level, the other peint will be at approximately -12VDC leval. The magative 12 volts will beck bias ana of the dioles and will imhiblt the pulee frem Q12 from appearing at the base of either output ardteh trensistor: Q14 or Q15. Only the diode uith zero volts DC on its anole will pass the pulee, therefore causing either Q14 or Q15 to become aturated and the other te become cutoff. Whan Q 9 and Q10 change state, Q14 and Q15 will alto chasge state after a number of milliseconds as determined by the dalay circult.

5.08 Output Circuit Dacription

1. The collector outpit of the transistor awitch Q14 and Q15 are connected to the windings of the polar relay. CR15 and CR16 are uead to auprese the inductive voltage apikes gemerated by the relay windings. The contacts of the relay are connected directly to the telegraph line. C18, R50 and C19, 251 provide spark suppression for the relay contacts.

5.09 Power Supply Circuit Deseriptica

1. The power supply is isolated from the AC line by transformer T5. This tranaformer has a split primary and may be atrapped for either 115VAC or 230VAC operation. The bridge rectifier is comprised of CR17 through CR20 and filtering is accomplished by C2O and RS2. The output is zener regulated by CR21 yialding a DC voltage of approximately -12 V with respect to ground.

Symbol	Description	Per MIL Spec	Mfr.	Part No.
C1	Capacitor, Electrolytic, Tantalum, $22 \mathrm{mfd} \pm 20 \% 15 \mathrm{~V}$	MIL-C-26655	MC	CS12AD220M *
C2	Capacitor, Electrolytic, Tantalum, $22 \mathrm{mfd} \pm 20 \% 15 \mathrm{~V}$	MIL-C-26655	MC	CS12AD220M *
C3	Capacitor, Electrolytic, Tantalum, $180 \mathrm{mfd} \pm 10 \% 6 \mathrm{~V}$	MIL-C-26655	MC	CS12AB181K *
C4	Capacitor, Metallized Paper, . $25 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$	N.A.	AV	P82922N11
C5	Capacitor, Metallized Paper, $11 \mathrm{mfd} \pm 20 \%$ 200v	N.A.	AV	P82922N10
C6	Capacitor, Metallized Paper, . $1 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$	N.A.	AV	P82922N10
C7	Capacitor, Electrolytic, Tantalum, $22 \mathrm{mfd} \pm 20 \% 15 \mathrm{~V}$	MIL-C-26655	MC	CS12AD220M *
C8	Capacitor, Metallized Paper, . $01 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$	N.A.	AV	P82922N6
C9	Capacitor, Ceramic, . $0047 \mathrm{mfd} \pm 20 \%$ l00V	MIL-C-11015B	AV	CK13AX472M *
c10	Capacitor, Ceramic, . $0047 \mathrm{mfd} \pm 20 \% 100 \mathrm{~V}$	MIL-C-11015B	AV	CK13AX472M *
C11	Capacitor, Metallized Paper, . $1 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$	N.A.	AV	P82922N10
C12	Capacitor, Ceramic, . $0047 \mathrm{mfd} \pm 20 \% 100 \mathrm{~V}$	MIL-C-11015B	AV	CK13AX472M *
C13	Capacitor, Paper, . $22 \mathrm{mfd} \pm 10 \% 100 \mathrm{~V}$	MIL-C-25C	AC	CP09A1KB224K1 *
C14	Capacitor, Ceramic, . $0047 \mathrm{mfd} \pm 20 \% 100 \mathrm{~V}$	MIL-C-11015B	AV	CK13AX472M *
C15	Capacitor, Ceramic, . $0047 \mathrm{mfd} \pm 20 \% 100 \mathrm{~V}$	MIL-C-11015B	AV	CK13AX472M *
C16	Capacitor, Metallized Paper, . $01 \mathrm{mfd} \pm 20 \%$ 200V	N.A.	AV	P82922N6
C17	Capacitor, Metallized Paper, . $01 \mathrm{mfd} \pm 20 \% 200 \mathrm{~V}$	N.A.	AV	P82922N6
C18	Capacitor, Metallized Paper, . 25 mfd 400V	N.A.	AV	P82922N20

Symbol	Description	Per MIL Spec	Mfr.	Part No.
C19	Capacitor, Metallized Paper, . 25 mfd 400 V	N.A.	AV	P82922N20
C20	Capacitor, Electrolytic, Tantalum, 250 mfd 25 V	MIL-C-3965B	MC	CL24BG251UP3 *
C21 CR1	Canacitor, Electrolytic, Tantalum, $22 \mathrm{mfd} \pm 20 \% 15 \mathrm{l}$ Diode, Silicon	$\begin{aligned} & \text { MIL-C-2665.5 } \\ & \text { MIL-S-19500/118 } \end{aligned}$	$\begin{gathered} M C \\ S Y \end{gathered}$	CS13AD220M *
CR2	Diode, Silicon	MIL-S-19500/118	SY	1N483B *
CR3	Diode, Silicon	MIL-S-19500/118	SY	1N483B *
CR4	Diode, Silicon	MIL-S-19500/118	SY	1N483B *
CR5	Diode, Germanium, Temperature Compensating	N.A.	GE	4JA2FX355
CR6	Diode, Silicon	MLL-S-19500/118	SY	1 N 483 B *
CR7	Diode, Silicon	MIL-S-19500/118	SY	1N483B *
CR8	Diode, Silicon	MLL-S-19500/118	SY	1N483B *
CR9	Diode, Germanium	MIL-S-19500/192	SY	JAN 1N2 76 *
CR10	Diode, Germanium	MIL-S-19500/192	SY	JAN 1N276 *
CR11	Diode, Silicon	MIL-S-19500/118	SY	1N483B *
CR12	Diode, Silicon	MIL-S-19500/118	SY	1N483B *
CR13	Diode, Germanium	MIL-S-19500/192	SY	JAN 1N276 *
CR14	Diode, Germanium	MIL-S-19500/192	SY	JAN 1N276 *
CR15	Diode, Germanium	MLL-S-19500/192	SY	JAN 1N276 *
CR16	Diode, Germanium	MIL-S-19500/192	SY	JAN 1N276 *
CR17	Diode, Silicon Rectifier	MIL-E-1/1084	GI	JAN 1N538 *
CR18	Diode, Silicon Rectifier	MIL-E-1/1084	GI	JAN 1N538 *
CR19	Diode, Silicon Rectifier	MIL-E-1/1084	GI	JAN 1N538 *
CR20	Diode, Silicon Rectifier	MIL-E-1/1084	GI	JAN IN538 *

Symbol	Description	Per MIL Spec	Mfr	Part No.
CR21	Diode, Zener, Voltage Regulating	MIL-S-19500/124	IR	1N2976B *
F1	Fuse, Quick acting, 1 amp $\frac{1}{4}{ }^{\prime \prime}$ dia. $\times 1 \frac{1}{4} 1 \mathrm{l}$.	MIL-F-15160	LI	F02A250V1A
J1	Connector, 15 pin Female	N.A.	AE	17-10150
K1	Relay,	N.A.	TS	XR10004
L1	Inductor, Toroidal, 15 Hy	MIL-T-27A	TS	IF20002-15*
P1	Connector, 24 Pin Male	N.A.	AE	57-10240
Q1	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q2	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q3	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q4	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q5	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q6	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q7	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q8	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q9	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q10	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q11	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q12	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q13	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q14	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428 *
Q15	Transistor, Germanium, PNP	MIL-S-19500/44	IT	JAN 2N428*
R1	Resistor, Fixed, Composition, 10 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC20GF103K *
R2	Resistor, Fixed, Composition, 2.2 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF222K *

Symbol		Description	Per MIL Spec	Mfr.	Part No.
R3	Resistor,	Fixed Composition, 15 K ohm $\pm 10 \%$ 3 ${ }^{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF153K *
R4	Resistor,	Fixed, Composition, 15 K ohm $\pm 10 \% \frac{3}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF153K *
R5	Resistor,	Fixed, Composition, 470 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-110	AB	RC20GF471K *
R6	Resistor,	Fixed, Composition, 10 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF103K *
R7	Resistor,	Fixed, Composition, 4.7 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MLL-R-11D	$A B$	RC20GF472K *
R8	Resistor,	Fixed, Composition, 470 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF471K *
R9	Resistor,	Fixed, Composition, 470 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF471K *
R10	Resistor,	Fixed, Composition, 10 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC20GF103K *
R11	Resistor,	Fixed, Composition, 1.5 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC20GF152K *
R12	Resistor,	Fixed, Composition, 120 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC20GF121K *
R13	Resistor,	Fixed, Composition, 220 ohm $\pm 10 \% \frac{1}{2} W$	MIL-R-11D	$A B$	RC20GF221K *
R14	Resistor,	Fixed, Composition, 220 ohm $\pm 10 \% \frac{1}{2} W$	MIL-R-11D	$A B$	RC20GF221K *
R15	Resistor,	Fixed, Composition, 220 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC20GF221K *
R16	Resistor,	Fixed, Composition, 220 ohm $\pm 10 \% \frac{3}{2} \mathrm{~W}$	MLL-R-11D	$A B$	RC20GF221K *
R17	Resistor,	Fixed, Composition, 5.6 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MLL-R-11D	$A B$	RC20GF562K *
R18	Resistor,	Fixed, Composition, 5.6 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF562K *
R19	Resistor,	Fixed, Composition, 5.6 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF562K *
R20	Resistor,	Variable, Composition, 2.5 K ohm $\pm 20 \% \frac{1}{2} \mathrm{~W}$	MIL-R-94B	AB	RV6NAYSL252B *
R21	Resistor,	Fixed, Composition, 15 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC20GF153K *
R22	Resistor,	Fixed, Composition, 470 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF471K *
R23	Resistor,	Fixed, Composition, 1 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	AB	RC20GF102K *
R24	Resistor,	Fixed, Composition, 100 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-IID	AB	RC20GF101K *
R25	Resistor,	Fixed,Composition, 2.2 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$	MIL-R-11D	$A B$	RC.20GF222K *

Symbol	Description
R26	Resistor, Fixed, Composition, 22 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R27	Resistor, Fixed,Composition, 4.7 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R28	Resistor, Fixed,Composition, 12 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R29	Resistor, Fixed, Composition, 1.8 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R30	Resistor, Fixed, Composition, 2.2 K ohm $\pm 10 \%{ }_{2} \mathrm{~W} \mathrm{~W}$
R31	Resistor, Fixed,Composition, 47 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R32	Resistor, Fixed,Composition, 12 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R33	Resistor, Fixed,Composition, 15 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R34	Resistor, Fixed,Composition, 8.2K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R35	Resistor, Fixed, Composition, 4.7 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R36	Resistor, Fixed,Composition, 100 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R37	Resistor, Fixed,Composition, 12 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R38	Resistor, Fixed, Composition, 20 K ohm $\pm 5 \% \frac{1}{2} \mathrm{~W}$
R39	Resistor, Fixed, Composition, 1.8 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R40	Resistor, Variable, Composition, 50 K ohm $\pm 20 \%$ \% ${ }_{2} \mathrm{~W}$
R41	Resistor, Fixed, Composition, 12 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R42	Resistor, Fixed, Composition, 12 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R43	Resistor, Fixed, Composition, 4.7 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R44	Resistor, Fixed, Composition, 4.7K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R45	Resistor, Fixed, Composition, 4.7 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R46	Resistor, Fixed, Composition, 4.7 K ohm $\pm 10 \%{ }_{2} \mathrm{~W}$
R47	Resistor, Fixed, Composition, 10 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$

Per MIL Spec	Mfr.	Part No.
MIL-R-11D	AB	RC20GF223K*
MIL-R-11D	$A B$	RC20GF472K*
MIL-R-11D	AB	RC20GF123K*
MIL-R-11D	AB	RC20GF 182K*
MIL-R-11D	AB	RC20GF222K *
MIL-R-11D	AB	RC20GF473K *
MIL-R-11D	AB	RC20GF 123K*
MIL-R-11D	$A B$	RC20GF153K *
MIL-R-11D	AB	RC20GF822K *
MIL-R-11D	AB	RC20GF472K *
MIL-R-11D	AB	RC20GF 101K *
MIL-R-11D	$A B$	RC20GF 123K *
MIL-R-11D	AB	RC20GF203J *
MIL-R-11D	AB	RC20GF182K *
MIL-R-94B	$A B$	RV6NAYSL503B *
MIL-R-11D	AB	RC20GF 123K *
MIL-R-11D	AB	RC20GF123K *
MIL-R-11D	AB	RC20GF472K *
MIL-R-11D	AB	RC20GF 100K *

Symbor	1 Deacription
R48	Resistor, Fixed, Composition, 10 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R49	Resistor, Fixed, Composition, 100 ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R50	Resistor, Fixed, Composition, 1.5 K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R51	Resistor, Fixed, Composition, 1.5K ohm $\pm 10 \% \frac{1}{2} \mathrm{~W}$
R52	Resistor, Fixed, Wirewound, $75 \mathrm{ohm} \pm 5 \%, 6.5 \mathrm{~W}$
R53	Resistor, Fixed, Composition, 220 K ohm $\pm 10 \%$ 矝 W
R54	Resistor, Fixed, Composition, $820 \mathrm{ohm} \pm 10 \% \frac{1}{2} \mathrm{~W}$
R55	Resistor, Fixed, Composition, $820 \mathrm{ohm} \pm 10 \% \frac{1}{2} \mathrm{~W}$
S1	Switch, Toggle - DPDT
T1	Transformer, Interstage
T2	Transformer, Interstage
T3	Transformer, Interstage
T4	Transformer, Interstage
T5	Transformer, Power, 18V, . 18 amp
TP1	Jack, Pin
TP2	Jack, Pin
TP3	Jack, Pin
TP4	Jack, Pin
TP5	Jack, Pin
XF1	Fuse, Extractor Post, Finger Operated Knob, Bayonet type
XK1	Socket, Octal

Per MIL Spec	Mfr.	Part No.
MIL-R-11D	AB	RC20GF100K *
MIL-R-11D	AB	RC20GF101K *
MIL-R-11D	AB	RC20GF152K *
MIL-R-11D	AB	RC20GF152K *
MIL-R-26C	SP	RW57V750 * or equiv.
MIL-R-11D	AB	RC20GF224K *
MIL-R-11D	AB	RC20GF821K*
MIL-R-11D	AB	RC20GF821K*
N.A.	CH	8363K7
MIL-T-27A	UT	D0-T23 *
MIL-T-27A	UT	D0-T23 *
MIL-T-27A	UT	D0-T36 *
MIL-T-27A	UT	D0-T23 *
MIL-T-27A	TS	XF10010
N.A.	CE	45E-1
N.A.	CE	45E-3
N.A.	LI	342004
MIL-S-12883	EL	TS101P01
inspection		

LIST OF MANUFACTURERS DESIGNATIONS

Model 302

Allen-Bradley Company
Astron Corporation
Amphenol Electronics Corporation

Aerovox Corporation

Burnell and Company, Incorporated
Cannon Electric Company

Cutler-Hammer, Incorporated

Eby Sales Company

Elco Corperation

Freed Transformer Company, Incorporated

General Electric Company

General Instrument Company

International Rectifier Corporation

Industro Transistor Corporation

Littlefuse, Incorporated

Mallory and Company, Incorporated

Magnetic Devices, Incorporated

Sprague Electric Company
Sylvania Electric Products, Incorporated
United Transformer Corporation

