Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

G \& E BRADLEY OSCILLOSCOPE CALIBRATOR TYPE 192

GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL

> Michael Cam Ministry of Defence

Sponsored for use in the ROYAL AIR FORCE by DWSE (RAF)

Prepared by G \& E Bradley Ltd, Neasden, London, N.W. 10
Publications authority: DATP/MOD (PE)
Service users should send their comments through
the channel prescribed for the purpose in:
AP3158 Vol. 2 Leaflet No.D6 (ARMY and RAF)

PREFACE

The subject matter of this publication may be affected by Defence Council Instructions or "General Orders and Modification" leaflets. If possible, Amendment Lists are issued to correct this publication accordingly, but it is not always practicable to do so. When an Instruction or Mod. Leaflet contradicts any portion of this publication the Instruction or Leaflet is to be taken as to overriding authority.

The inclusion of references to items of equipment does not constitute authority for demanding the items.

Each leaf bears the date of issue, and subsequent amendments the number of the Amendment List with which it was issued.

New or amended technical matter will be indicated by black triangles positioned in the text thus:-4---..---- to show the extent of amended text, and thus:- \rightarrow to show where text has been deleted. When a Section is issued in a completely revised form, the triangles will not appear.

OSCILLOSCOPE CALIBRATOR 192

CONTENTS

SECTION	1	INTRODUCTION
	1.1	Description
	1.2	Voltage Calibrator
	1.3	Time Calibration
	1.4	Risetime Calibrator
	1.5	Synchronisation/Trigger Check
SECTION	2	SPECIFICATION
	2.1	Voltage Calibrator
	2.2	Time Calibrator
	2.3	Risetime Calibrator and Trigger Output
	2.4	50 Hz Sync. Output
	2.5	Power Supplies
	2.6	Environment
	2.7	Size
	2.8	Weight
SECTION	3	OPERATING INSTRUCTIONS
	3.1	Installation
	3.2	Facilities
	3.3	Push Buttons
	3.4	Voltage Calibration
	3.5	Voltage Errors
	3.6	Risetime Measurement
	3.7	Time Calibration
	3.8	HF Outputs
	3.9	Line Frequency Output
	3.10	External Triggering
	3.11	Overloads
	3.12	Explanatory Notes on Operation Fault Finding Guide
SECTION	4	TECHNICAL DESCRIPTION
	4.1	Voltage Functions
	4.2	Time Functions
	4.3	High Frequency Outputs
	4.4	Trigger/Risetirme
	4.5	Power Supplies
	4.6	Line Frequency Output
SECTION	5	SERVICING AND ADJUSTMENTS
	5.1	General
	5.2	Mechanical Details
	5.3	Test Equipment
	5.4	Transformer Connections

CONTENTS (Cont'd)

SECTION	5	SERVICING AND ADJUSTMENTS (Cont'd) TIME CALIBRATION
	5.5	Power Supplies
	5.6	Time Outputs
	5.7	Fast Rise Squarewaves
	5.8	Time Deviation
	5.9	HF Outputs
	5.10	Fast Risetime
		VOLTS CALIBRATION
	5.11	Resistances
	5.12	Supplies and Shorted Output
	5.13	Regulation
	5.14	Voltage Deviation
	5.15	Attenuator Ratios
	5.16	Optimum Reference Setting
	5.17	Square Wave Zero Level
	5.18	Voltage Square Wave
	5.19	Ripple
	5.20	Line Frequency Amplitude
SECTION	6	PARTS LIST
		ILLUSTRATIONS
Frontispiece		The Type 192 Oscilloscope Calibrator
Figure 1		Power Supplies
Figure 2		Trigger Risetime Circuit
Figure 3		Volts Circuit
Figure 4		Time Circuit
Figure 5		Optimum Reference Setting. Plotting Diag

INTRODUCTION

1.1 The Bradley Oscilloscope Calibrator is really a number of instruments in one case, to provide the facilities normally required for calibrating modern precision oscilloscopes. It is simple to use. The operator sets the amplitude or time control to the value required, depresses the appropriate function and multiplier buttons and observes the waveform on the oscilloscope. If the trace does not coincide with the appropriate graticule, the deviation control is adjusted until it does, when the error can be read directly off the meter as a percentage. In addition to the facilities for amplitude and time calibration, outputs are available for risetime calibration and for checking synchronisation/triggering at line frequency.

1.2 VOLTAGE CALIBRATOR

An accurate DC voltage, either positive or negative or zero, or a 1 kHz positive going square wave is provided for amplitude calibration of the Y amplifier.

The main voltage control switch is designed to correspond with that on the oscilloscope. It is calibrated in 1, 2, 5 steps over the range 10 microvolts per division to 20 volts per division and in use is set to the same setting as on the oscilloscope. Push button switches give $\mathrm{X}, 3,4$, $5,6,8$ or 10 multiplication of the output so that the display may be expanded to suit the CRT graticule markings and to give a suitable picture size.

The deviation control enables the output to be adjusted until the trace coincides exactly with the graticule divisions. The meter will then indicate the percentage error.

The 1 kHz square wave is crystal controlled. The voltage reference is a high quality zener diode. The amplitude accuracy is 0.25%.

1.3 TIME CALIBRATION

A high quality time-mark generator provides pulses for time calibration. This section is split into two ranges, each with its own output socket. The main range covers from 100 nanoseconds per division to 0.5 seconds per division in 1, 2, 5 steps. The time per division switch settings correspond to those on the oscilloscope and as with the volts per division switch, is set to the same setting as that on the oscilloscope. Push button switches give X $1,2,5$ or 10 multiplication of the output so that the
display may be expanded to suit the CRT graticule markings.
As with voltage calibration the deviation control varies the spacing until the waveform coincides exactly with the scale divisions. The percentage error can then be read directly from the meter.

The pulses are in spike form and have fast risetimes. The width at the base of each pulse is generally 10% of the pulse interval.

The second range provides the faster speeds of $10,20,50$ nanoseconds. The sinewave output has no multiplication or deviation facilities.

1.4 RISETIME CALIBRATOR

An extremely fast risetime square wave output is provided for risetime measurements. The amplitude is continuously variable over the range 200 to 250 mV (into 50 ohms). There is sufficient adjustment to provide a display of 4 or 5 divisions on oscilloscopes of $50 \mathrm{mV} /$ division without using the oscilloscope variable volts/division control.
1.5 SYNCHRONISATION/TRIGGER CHECK

A $50 / 60 \mathrm{~Hz}$ sinewave output of variable amplitude is available for checking trigger circuits at line frequency.

SECTION 2

SPECIFICATION

2.1	VOLTAGE CALIBRATOR	
2.1.1	Ranges	
	(a) Volts/division	$10 \mu \mathrm{~V}$ to 20 V in $1,2,5$ steps
	(b) Number of divisions multiplier	X $3,4,5,6,8,10$.
2.1 .2	Deviation ranges	$\pm 3 \%, \pm 10 \%$.
2.1 .3	Ontput Modes	AC 1 kHz positive going square wave
		DC Positive
		DC negative
		ZERO
2.3.4	Accuracy (EMF)	Better than $\pm 0.25 \%$
2.1 .5	Offret	Better than $\pm 5 \mu \mathrm{~V}$ below 50 mV . (After use on ranges on and above 50 mV , a five minute settling time is required).
		Better than $\pm 50 \mu \mathrm{~V}$ above 50 mV .
		Note: The same offset is obtained on all output modes including zero.
2.1 .6	Ripple and Hum	Better than $0.1 \%+2 \mu \mathrm{~V}-\mathrm{p}$.
2.1.7	Square wave risetime	Less than $5 \mu \mathrm{~s}$
2.1 .8	Square wave overshoot	Less than 0.5\%
2.1.9	Regulation (for $1 \mathrm{M} \Omega$ load)	Varies between 0 and $0,27 \%$ depending on setting. (Correction curve in Section C).
2.1 .10	Deviation Accuracy	$\pm 1 \% \mathrm{FSD}+2.5 \%$ of reading
2.1.11	Overload Protection	1 minute limit. (See para 3.11). Protection is provided against intermittent short circuit of the outputs.
2.1.12	Reference	High quality zener diode, T.C. 0.002% per ${ }^{\circ} \mathrm{C}$
2.1.13	T. C. of Output ($10-30^{\circ} \mathrm{C}$)	Better than 0.01% per ${ }^{\circ} \mathrm{C}$.

2.1.14	Line Regulation for $\pm 10 \%$ mains	0.02\% max
2.1 .15	Stability	0.10\% per year max
2.2	TIME CALIBRATOR	
2.2.1	Ranges	
	(a) Time/division	10 nsec to $0.5 \mathrm{sec} / \mathrm{div}$ in $1,2,5$ steps
	(b) Multiplier (Number of Divisions)	X $1,2,5,10$ on 100 nsec to $0.5 \mathrm{secs} /$ div only.
2.2.2	Deviation Ranges for $100 \mathrm{nsec} / \mathrm{div}$ and greater	$\pm 3 \%$ and $\pm 10 \%$
2.2.3	Accuracy	
	(a) Crystal locked	0.01\%
	(b) Deviation 3\%	0.1\%
	(c) Deviation 10\%	0.2\%
2.2.4	Amplitude	
	$100 \mathrm{nsec} / \mathrm{div}$ to $0.5 \mathrm{sec} / \mathrm{div}$	1. 0 V typical into 50Ω
	below $100 \mathrm{nsec} / \mathrm{div}$	1. $0 \mathrm{~V} \mathrm{p}-\mathrm{p}$ typical into 50Ω
2.2 .5	Pulse shape and width	
	$100 \mathrm{nsec} / \mathrm{div}$ to $0.5 \mathrm{sec} / \mathrm{div}$	Spike: width at base 10% of pulse interval
	below $100 \mathrm{nsec} /$ div	Sinewave
2.3	RISETIME CALIBRATOR	ND TRIGGER OUTPUT
2.3.1	Amplitude	$200 \mathrm{mV}-250 \mathrm{mV}$ continuously variable into 50Ω ($400 \mathrm{mV}-500 \mathrm{mV}$ EMF)
2.3.2	Risetime	Less than 1nsec positive going
2.3.3	Period	$1 \mu \mathrm{sec}$ to 1 sec in decade steps
2.3.4	Waveform	Square
2.3 .5	Overshoot	Less than 2\%

2.3.6 Accuracy As for Time Calibrator (see para 2.2.3).
$2.4 \quad 50 \mathrm{~Hz}$ SYNC. OUTPUT
2.4.1 Amplitude Continuously variable 0-1V peak-to-peak from $2 k \Omega$ source max.
2.4.2 Waveform As Mains supply

2.5 POWER SUPPLIES

The instrument will operate from supplies of $50 / 60 \mathrm{~Hz}$ and $100 / 125$ and $200 / 250$ volts r.m.s., 17 W .
2.6 ENVIRONMENT

Operating temperature $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ ambient.
Storage temperature $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ambient.
2.7 SIZE

Full rack, 5. 1/4" high x $12^{\prime \prime}$ deep overall. $133,5 \mathrm{~mm} \times 304.8 \mathrm{~mm}$.
2.8 WEIGHT
$15 \mathrm{lbs} 8 \mathrm{oz}-7.08 \mathrm{~kg}$.

SECTION 3

OPERATING INSTRUCTIONS

3.1 INSTALLATION

3.1.1 Supply Voltage

Set the voltage selector plug on the rear panel to the supply voltage.
Fuse Ratings for - $200 / 250 \mathrm{~V}$ operation. 0.5 A (supplied. for $-100 / 125 \mathrm{~V}$ operation. 1 A .

3.1.2 Supply Connection

Brown	-	Line
Blue	-	Neutral
Green/Yellow	-	Earth

3.2 FACILITIES

3.2.1 Output Connections

Five output BNC sockets are provided.
(i) Line Frequency - with continuously variable peak to peak voltage 0 to 1 V sine wave for checking trigger circuits at line frequency.
(ii) Volts - Provides an accurate d.c. voltage, positive or negative or zero. Provides also a 1 kHz square wave positive going output for calibration of the Y amplifier.
(iii) Time - Two output sockets provide normal or H.F. Calibration Output The normal socket provides for outputs from 100 ns to 0.5 secs per division in $1,2,5$ steps. The assosciated push buttons provide multiplication of X 1, 2, 5 or 10 to enable the display to be expanded to suit the oscilloscope CRT graticules.

The H. F. range provides the faster speeds of 10,20 and 50 ns .

The output is sinewave. No multiplier or deviation facilities are provided on this range.

(iv)Risetime Output	-Provides an output square wave with a risetime better than 1ns. The amplitude is continuously
	variable over the range 200 to 250 mV . Frequency
	is variable from 1 Hz to 1 MHz in decade steps.

3.3 PUSH BUTTONS

3.3.1 All front panel legends above push buttons refer to the situation existing when a button is depressed.
3.3.2 Four buttons are mechanically independent. They are press to select, press to release type.

These are:

X 2	-	Voltage Divisions
$\mathrm{X} 2)$		
$\mathrm{X} 5)$	-	Time Divisions
$\mathrm{ms} / \mu \mathrm{s}$	-	

All other buttons are mechanically linked in groups so that depressing one button releases any other button in the group.

Correct operation is obtained by depressing the required button fully so that only one button per group remains depressed.

No damage will result if all buttons are "out" or if more than one is "in".

3.4 VOLTAGE CALIBRATION

The VOLTS output provides an accurate d.c. voltage either positive or negative or zero. The VOLTS/DIV control on the 192 provides from 10μ volts to 20 volts per division in 1, 2, 5 steps.

Method

Connect the oscilloscope to the VOLTS output socket using co-axial lead with BNC terminations.
(i) Select the required range on the VOLTS/DIV switch to match the voltage range setting of the oscilloscope.
(ii) Using the mode push buttons select the required mode:
negative d.c.
zero
positive d.c.
positive going square wave
(iii) Selected the required number of display divisions by depressing fully the 3,4 or 5 division button and if required the X 2 multiplier button which is of the push on-push off type.
(iv) For a calibrated output press the Deviation 'Off' button.
(v) To measure the oscilloscope calibration error on the deviation meter, depress the Deviation V button and select the 3 or 10 per cent meter range. The indicator lamp to the right of the meter will be illuminated.

Adjust the display on the CRT to align with the graticule by rotating the Deviate Control (concentric with the VOLTS/DIV switch.) Read the percentage error directly off the meter.

3.5 VOLTAGE ERRORS

Loading

The VOLTAGE output is specified unloaded. A small error is caused by a $1 \mathrm{M} \Omega$ load, as indicated below.

Volts/Div	Output Resistance	\% Error with $1 \mathrm{M} \Omega$ load
20 V	220Ω	.022
10 V or 10 mV	$2.72 \mathrm{k} \Omega$.272
5 V or 5 mV	$2.09 \mathrm{k} \Omega$.209
2 V or 2 mV	$1.12 \mathrm{k} \Omega$.112
1 V or 1 mV	695Ω	.070
0.5 V or 0.5 mV	463Ω	.046
0.2 V or 0.2 mV	319Ω	.032
0.1 V or 0.1 mV	270Ω	.027
50 mV or $50 \mu \mathrm{~V}$	245Ω	.025
20 mV -	320Ω	.032
	$20 \mu \mathrm{~V}$	230Ω
	$10 \mu \mathrm{~V}$	225Ω

d. c. offset

At Volts/division settings of 50 mV and above the output attenuator dissipates sufficent heat to produce thermo-electric offsets of a few $\mu \mathrm{V}$ on the lower settings. Therefore at least 5 minutes should be allowed for the attenuator to cool down if it has been set to 50 mV / division or above before using the low voltage outputs.

Do not use the switch on the oscilloscope itself, but use the ' 0 ' mode of the 192 voltage output to provide the zero reference for the oscilloscope, in order to eliminate any remaining thermal effect in the
attenuator resistors or the interconnections to the oscilloscope.

Warm-up

The drift to be expected during the first 20 minutes is approximately $.02 \%$ and is therefore of no significance for normal operation.

3.6
 RISETIME MEASUREMENT

Amplitude

It is usual to measure the risetime of an oscilloscope on the range where its attenuator is in the straight through position.

The 192 Fast-rise output provides 0.25 volts into 50Ω, or 0.5 volts unterminated, and will, therefore, produce 5 divisions of defelction on oscilloscopes of sensitivities of 50 mV or even 100 mV per division.

The amplitude control provides variation for oscilloscopes which require 4 divisions, and for adjusting the display to the exact height, as the transient response of most oscilloscopes deteriorates when the variable volts per division control is used.

For more sensitive oscilloscopes, 50Ω co-axial attenuators should be used.

Cable Matching

The impedance of the interconnecting cable should be $50 \Omega \pm 2 \%$.

A slight reflection which may occur due to source mismatch can be removed by a 50Ω termination at the oscilloscope input. This reflection will only be noticeable on very fast oscilloscopes, and will occur 3nsec per foot of cable after the main rise.

Another effect of a termination is to reduce the source impedance to the oscilloscope from 50 to 25Ω, which may result in a slightly faster oscilloscope risetime.

In practice the effect on the shape of response due to a terminating resistance on oscilloscopes of bandwidths up to 50 MHz is not normally noticeable.

Display Perturbations

The overshoot on the positive going edge of the Fast-rise output of 2% maximum amplituu: and about 1 nsec duration is not visible on even a 250 MHz oscilloscope. Experience has shown that any preshoot, overshoot or other positive edge or top perturbations visible on oscilloscopes
of up to 250 MHz bandwidth are invariably caused by the oscilloscope itself.

This contention may be verified by (a) if other fast-rise sources are available, checking that perburtations are independent of source, or (b) if other oscilloscopes or channels are arailable, check that substitution does alter the perturbations.

Measurement Accuracy

Before measuring the risetime of an oscilloscope the calibration of the time range to be used should be checked.

The 1 nsec going edge will increase the observed risetime of a 50 MHz oscilloscope (7 nsec risetime) by only 1%, and therefore for slower oscilloscopes the observed risetime may be taken to be the true risetime.

For faster oscilloscopes the true risetime is given by:-

$$
\text { True Risetime }=\sqrt{{\text { (Observed Risetime })^{2}-(\text { Source Risetime })^{2}}^{2}}
$$

The error due to taking the source risetime to be 1 nsec when it differs from this by 10% is negligible (< 1%) for oscilloscopes up to 150 MHz , and is 5% for oscilloscopes of 250 MHz .

Measurement

Connect fast-rise output to oscilloscope input by a $50 \Omega \pm 2 \%$ BNC cable, with a 50Ω termination at the oscilloscope. If required insert 50Ω coaxial attenuators in the line to attenuate from $50 \mathrm{mV} / \mathrm{div}$ to the $\mathrm{mV} / \mathrm{div}$ of the range in use.

Select the desired repetition period, for example $1 \mu \mathrm{sec}$ by releasing the 'msec' button to its ' $\mu \mathrm{sec}$ OUT' position and pressing the ' 1 ' button. Use the Fast-rise amplitude control and the oscilloscope vertical level control to align the upper and lower levels of the waveform with the chosen 100% and 0% reference levels on the graticule. Measure the time difference between the 10% and 90% levels.

Bandwidth Calculation

The bandwidth of an oscilloscope may be calculated from its risetime by the formula:-

$$
\text { Bandwidth in } \mathrm{MHz}=\frac{350}{\text { True risetime, in nanoseconds }}
$$

The bandwidth may be more accurately measured by a variable frequency sinewave source of known, or constant amplitude. However, unless the oscilloscope is to be used to measure the amplitudes of sinewave near to its cut-off frequency, the measurement of risetime, and observation of the transient response, are more useful in deciding what waveform distortions are caused by the oscilloscope.

3.7 TIME CALIBRATION

1. Connect the TIME output to the oscilloscope voltage input by a co-axial lead (preferably 50S) with BNC terminations.
2. Set the TIME/DIV switch (large knob) to the same setting as the oscilloscope timebase to be calibrated.
3. Select the desired number of divisions spacing between time markers on the oscilloscope screen by the X2 and X5 DIVS buttons. These are of the push-on push-off type and provide a choice of $1,2,5$ or 10 divisions.
4. For a calibrated output press the 'Deviation Off' button.
5. To measure the oscilloscope calibration error, press the 'Deviation T ' button, and select the 3% or 10% meter range. The indicator lamp to the left of the meter will light. Rotate the 'Deviate' control (the smaller knob concentric with TIME/DIV) to align the right-hand reference marker with the graticule keeping the left-hand marker aligned by means of the oscilloscope horizontal position control. Read the error directly off the meter.

$3.8 \quad$ HF OUTPUTS

When the Deviation 'Off' or ' V ' button is depressed, a sinewave of 10 , 20 or 50 nanoseconds period is available at the 'HF' socket.

These frequencies are fixed, and the amplitudes are approximately IV peak-to-peak into 50Ω.

It may be necessary to terminate the connecting cable.
If difficulty in trigger ng the oscilloscope is encountered, an external trigger may be obtained from the TIME or Fast Rise and Trigger output, for example set to the $1 \mu \mathrm{sec}$ period.

3.9 LINE FREQUENCY OUTPUT

A sinewave of amplitudes variable from 0 to 1 V peak-to-peak from a $2 \mathrm{k} \Omega$ max. source impedance is provided at this output.

It is derived from the supply, filtered to remove higher frequency interference. This output is useful for checking the sensitivity and correct operation of oscilloscope trigger circuits.

3. 10 EXTERNAL TRIGGERING

Because the frequencies of all outputs (except Line Frequency) are obtained by division from one oscillator, any output may be used to externally trigger the oscilloscope. In general the trigger frequency should be the same as or lower than the observed frequency.

3.11 OVERLOADS

It is important to note that on models of Serial No, 100 to 299 the instrument is proof against overload for one minute limit only.

For users who may require continuous operation in overload condition a retrospective modification is available.
3.12 EXPLANATORY NOTES ON OPERATION
3.12.1 Voltage Output Multiplier

The multiplier is arranged so that the user can obtain the number of divisions he requires directly on the oscilloscope under test without having to calculate the voltage it is necessary to apply.

For example if an oscilloscope needs 4 volts to give the required display this can be obtained by selecting 1 volt per division, the multiplier to X1 (i.e. X2 not depressed) and the division button set to 4 .

Because users do not normally wish to check a display size of one division no provision has been made for this. It is not intended that the user should always take voltage off the main volts per division dial directly.

3.12.1. Time Multiplier

In this case we are dealing with period. Thus if the period is multiplied by depressing the X2 button, the period displayed on the oscilloscope would be twice as great as with no multiplier depressed (i.e X1). Thus if the period is multiplied, the frequency is divided. This is logical since the oscilloscope ranges are calibrated in period.
3.12.3 Time-base Calibrating Waveform

The time output gives spikes from 0.5 sec (extended to one spike over 5 secs when using the multiplier) up to 1μ s but after the 1μ s position there is some degradation in the shape of the spikes so that at the $0.1 \mu \mathrm{~s}$ position the waveform tends to look more like a sine wave.

This "degradation" in no way affects the use and application of the calibrator since the time accuracy is maintained and each waveform has edges or points which are sharp and well enough defined to allow accurate alignment with the oscilloscope graticule, (see photograph, page 14).

3.12.4 Fast Sine Wave Outputs

The 10, 20 and 50 ns HF outputs are sinewaves. This is usual in time-mark generators operating at this high frequency. The comments made in the previous paragraph also apply. These waveforms are more than adequate for checking time-base accuracy and should give no operator difficulty.
3.12.5 \% Deviation

In 3.4 and 3.7 the error mentioned is in the deflection factor of the oscilloscope. For example, when calibrating the $1 \mathrm{~V} / \mathrm{cm}$ range if the deviation reading is $+25 \%$ when the display is aligned with the graticule, 1.25 V is being supplied to the oscilloscope and its deflection factor is $1.25 \mathrm{~V} / \mathrm{cm}$ and the oscilloscope is in error by $+25 \%$.

When a true 1 V is supplied to this oscilloscope it will read $\frac{1 \mathrm{~V}}{1.25}=0.8 \mathrm{~V}$. It is a common misunderstanding to say that the oscilloscope "reads low" therefore its error is negative, in this case -20%. This would be true if the oscilloscope were calibrated in cm / V instead of V / cm.

When using the calibrated oscilloscope to measure an unknown voltage the convention that the oscilloscope "reads low" is of no interest. The operator observes the display (say 2.4 cm) multiplies by the deflection factor (1 volt $+25 \%$ to give the true level at 3 volts.

A related confusion may occur when checking the accuracy of time deviation of the 192. The deviation meter is calibrated in terms of period, and an error will be indicated if checked as a frequency.

For instance $+10 \%$ error in time $/ \mathrm{cm}$ or period is $\frac{100}{110}=.909$, i.e. -9.1% in frequency.
3.12.6 Push Button Selection - Valid and Invalid Outputs

White Buttons

It is stressed that a valid output is obtained whatever the positions of the white buttons. For example on the time-side if the X2 and X5 buttons are depressed at the same time the output is multiplied by 10 . If no white button is depressed the output is as selected on the rotary control. Any combination may be used to give the desired output.

Black Buttons

For a valid output a least one and no more than one black button of the group must be depressed. If none or two or more are depressed the output will be invalid.

FAULT FINDING GUIDE

1. Meter Not Centred When Deviation Is Off

This indicates that the time section is not calibrated. Probably due to maladjustment of C415 or RV470 (LOCK).
2. Meter not Sweeping Cleanly Between End Stops on 10\% Time Range

First ascertain whether the PERIOD deviation of any time output agrees with the meter by measurement using an oscilloscope, or preferably a counter. If it does not agree and still deviates correctly the fault is in section 700 . Check that the 1 MHz signal on the right hand side of R744 has a $50-50$ mark to space ratio $\pm 5 \%$. If not change the value of R745 until it does. If the needle reverses, or stops at the centre, the fault if in X710, 720, 730 or X510b.

If it does agree the fault is in the variable master oscillator TR430/440 or the divider chain section 500 . If the oscillator supply has incorrect deviation range, adjust RV434 (-LIM) for the negative meter excursion (it should just touch the end stop on the 10% range). Then adjust RV472 (+LIM) for the positive excursion.

A photograph of an oscilloscope display showing Waveforms at different time bases.

TECHNICAL DESCRIPTION

4.1 VOLTAGE FUNCTIONS

TR104A and TR104B are the two halves of a long tail pair which sense the difference in potentials between the negative end of the reference zener D113 and the virutal earth point of the reference chain (R119 to R127).

The difference is amplified and fed via emitter follower TR103 and series regulator TR102 to control the collector potential of TR107. The reference chain itself is supplied from the positive end of the reference diode D113. The output voltage is determined by the ratio of the resistance either side of the virtual earth point. Resistors selected by the DIVS switch S102, fix the ratios so that for settings of $3,4,5,6,8$ and 10 DIVS, the voltages at collector TR107 are 60, 80, $100,120,160$ and 200 volts respectively.

Voltage deviation is provided either by injecting or by extracting current from the reference chain at the virtual earth point for positive or negative deviation respectively. The DEVIATION control RV101 connected via switch S702 enables the current in the lower limb of the reference chain and the final voltage output to be varied by $\pm 10 \%$.

TR107 is normally in a saturated mode to provide a low and stable voltage drop from the stabilised line to the output. TR108 forms a switch which enables the output to be modulated by a 1 kHz square wave derived from the TIME board. For the high state of the square wave voltage output, TR108 is off and TR107 is saturated. In the low state, TR108 is saturated and TR107 is off.

In the low voltage state at the 20 VOLTS/DIV setting, transistor TR109 eliminates small errors caused by reverse current flow into the VOLTS output socket from the oscilloscope blocking capacitor. TR109 becomes effective only when the calibrator is used in the square wave mode and the oscilloscope under test is AC coupled.

Four voltage modes are available.
(i) Positive DC level.
(ii) Positive going square wave derived from the positive DC level.
(iii) Negative DC level, by operation of the polarity change-over switch.
(iv) Zero voltage - obtained by shorting the input end of the attenuator.

The voltage output socket is insulated to allow the circuit to float about one end of R152 to earth. This reduces the effect of stray earth loops between the oscilloscope and the calibrator which would otherwise appear as noise on the oscilloscope trace.

4.2 TIME FUNCTIONS

Multivibrator TR430, 440 with centre frequency of 20 MHz ($50 \mu \mathrm{sec}$ period) is the variable master oscillator providing signal frequencies via the divider chain X510a to X590.

The time deviation control varies the period of the multivibrator by $\pm 10 \%$. The deviation is measured by X710, 720, 730 which drive the meter (with reference to the 1 MHz crystal oscillator X740.) When time deviation is switched off, power is supplied to the 100 MHz crystal oscillator X411, TR410, which then locks the multivibrator to 20 MHz .

4.2.1 Variable Master Oscillator

The Master Oscillator, comprising TR430 and TR440 is an emittercoupled multivibrator, whose timing capacity is provided by D430/ C440. With TIME DEVIATION ON RV741 (or with TIME DEVIATION OFF, RV470) enables the d.c. voltage to D430 to be varied, thus varying the capacitance. RV472 limits the positive excursion of this variable voltage to restrict the maximum positive period deviation.

Filter network R472, C474 and R474 reduces any time jitter of the multivibrator. RV434 adjusts the period of the multivibrator by varying the amplitudes of the ramps at the emitters of TR430 and TR440.

RV430 adjusts the mark to space ratio, to virtual unity to ensure the best safe locking range for synchronisation with the 10 nsec sinewave supplied to TR430 base.

The multivibrator is synchronised on each half cycle, i.e. every 2.1/2 cycles of incoming signal. This technique doubles the safe locking range compared with the conventional method of synchronisation.
4.2.2 Time Outnut

The 20 MHz signal from the variable master oscillator is a.c. coupled to the type D flip-flop X510a, to which feedback is applied so that it divides by two, providing 10 MHz , or $0.1 \mu \mathrm{sec}$ period. X 520 then divides this signal by 5 , giving a $0.5 \mu \mathrm{sec}$ period. The next six stages, X530 to X580 each divide by two and five in series, providing the output $1,5,10$, $50 \mu \mathrm{sec}$ et seq: to 0.5 sec

These signals are brought out ot the TIME/DIV switch S500, and directly selected by wafer 4 F when they coinc-de with the required output. Signals of periods divisible by two are generated by the $\div 2$ section of X520 from the frequency, selected by wafer $4 R$.

Wafer 3 connects either the direct signal from 4 F , or the divided by two signal from X520. The output from wafer 3 coincides with the output selected on the TIME/DIV switch.

When the oscilloscope Time/Division setting coincides with that of the 192, the number of divisions between markers is se.ected by S601, S 602 , which switch into the path the $\div 2$ and $\div 5$ sections of X 610 as required.

The signal is then "cleaned up" by TR630 and the positive edge is differentiated by C651 to C661. The current drain is provided by R642 (attenua ed also by R641).

D642 conducts in the quescent state and removes the negative differentiated edge. R643 limits the current through D642.

D640 and D641 raise the voltage at the base of TR640 so that it is on the verge of conducting in the quiescent state.

Emitter follower TR460 provides the low impedance necessary to drive the capacitance of a coaxial cable. R647 provides matching for a 50Ω cable.

4.2.3 Time Deviation Measuring Circuit

This circuit is similar to the normal pulse counting frequency measuring circuit, in which pulses of constant amplitude and width are integrated to provide a d.c. output proportional to their frequency.

Type D flip-flop X710a subtracts the variable frequency, (nominally $1 \mu \mathrm{sec}$ period), of X530 from the fixed 1 MHz of crystal oscillator X740. X 710 b , acting as the second stage of a shift register. repeats the output of X710a, delayed by one period of the variable 1 MHz .

The connections to AND gates X730 from X710a Q and $X 710 \mathrm{~b} \overline{\mathrm{Q}}$ provide a pulse whose width is equal to one period of the variable 1 MHz , and whose prf is the difference frequincy.

Assuming that logical 1 's are present on the other two connections to X730a for the duration of this pulse. The gate output is the free collector of a grounded emitter transistor. When the pulse is present, current flows from the +5 V supply via the 3% switch 5701 , through two arms of the resistor network. When the 3% range is selected the current flows through R703 and R704. One of these current has to flow through C730 which has a very large capacitance to filter the a.c. component so that
negligible voltage trop occurs and onlw the d c. component of this pulsed current passes through the meter.

Thus:
Meter Current $\propto \propto$ pulse width \times prf.
$\propto \quad \operatorname{Tv}(\mathrm{fo}-\mathrm{fv})$

$\mathcal{O}(\mathrm{TV}-\mathrm{To})$
To
α Percentage period deviation
Polarity information is provided by X720. X720b provides an output at the variable 1 MHz frequency but 90° out of phase with that from X 530 . X720a subtracts this from the crystal 1 MHz , producing a similar output at the difference frequency, but again 90° out of phase. Thus whilst X710 generates a pulse X720a will be providing steady outputs, and will open either X 730 a when the variable 1 MHz signal is higher than the crystal frequency or 730 b when the signal frequency is lower than the crystal frequency.

At vey low difference frequencies the slightest frequency or phase modulation on either of the input frequencies will cause multiple pulsing giving jitter of the meter needle when close to zero. X510b is clocked on the negative edge at X 710 a Q output and reads the information on X 720 a, but supplies it to gates 730 by crossed connections. Both gates are thus "cut off" unless X720a changes after X710a Q falls. However ragged the edges of the difference frequency squarewave, there can be only one pulse per cycle of the difference frequency.

4.2.4 1 MHz Crystal Oscillator

This circuit provides a nominally symmetrical output without overdriving the crystal to reduce the risk of operation at an overtone.

Both positive and negative inputs of X740 are biased at 0V. R741 provides the positive bias, the negative bias is provided by negative feedback through R742/C742.

The output voltage attenuated by R744 and R742, drives the crystal which is operated at series resonance to provide positive feedback. The current path is completed through R742, C742 and R741.

There is negligible d.c. drop across R 742 because only the small input bias current is passed. The quiescent output voltage is therefore +1.4 V matching the logic threshold voltage. This also ensures that the oscillator is self starting.

4.3 HIGH FREQUENCY OUTPUTS

When time deviation is switched off, S703 supplies -10 V to the 100 MHz (10 nsec) crystal oscillator TR410, locking multivibrator TR430, 440 to 50 nsec . S703 also supplies -10 V to S 401 , S402 and S403. S401 allows sufficient current to pass via R419 to open diode gate D419 for the transmission of a 1 V peak-to-peak sinewave from the winding on L414, via C419 to the output.

S402 supplies -10 V to the 20 nsec oscillator TR420 and at the same time opens diode gate D429. TR420 is locked to the correct frequency by the 10 nsec oscillator via R423 and C423.

Similarly S403 powers the tuned amplifier TR450 which converts the square wave from the multivibrator to a sinewave.

S401, S402 and S403 are mutually cancelling so that only one output is present.
4.4 TRIGGER/RISETIME

S801 and S804 select the required frequency from the divider chain decade outputs from X 530 to X 590 . X590 is an extra $\div 2$ stage providing 1 sec period for trigger purposes.

Output transistor TR850 is used in common base to provide the minimum break through of unwanted fast signals and purturbations to the output. The calibrating edge is the positive one produced as the transistor turns off, and its collector voltage rises to ground potential. The top of this waveform is thud free from droop. Overshoot may occur in the output loop due to the inductance and the collector base capacitance. R854 and R855 are therefore included to damp the loop beyond the critical point, to prevent overshoot.

TR850 is driven from common base transistor TR840, also with collector circuit damping resistor. R844 and TR830 provide further isolation of the output from noisy parts of the circuit.

Inverters TR810 and TR820 provide sufficient speed and drive for TR830. The components between them improve the turn off drive to TR820 and slow the negative edge at the output.

Both supplies are regulated, the +5 V being reference to the -10 V .

RV961 provides the major part of the bias current for zener diode D96 from the stabilised -10 V . R963 and D961 ensure that the circuit is self starting. R934 and R974 limit the available base currents for the output transistors, providing short-circuit protection of the supplies.

4.6 LINE FREQUENCY OUTPUT

The Line frequency output is taken from the mains transformer and filtered by R160/C120 to provide a clean sinusoidal output suitable for checking trigger circuits of the oscilloscope under test.

SERVICING AND ADJUSTMENTS

5.1 GENERAL

Before attempting to trace a fault or effect a repair read the Technical Description given in Section 4.

This section together with Section 4 is intended to provide the user with sufficient information to allow most repairs and to allow calibration of tie instrument after servicing.

5.2 MECHANICAL DETAILS

To remove the top cover loosen the two screws on the rear upper face of the cover. The cover is lipped front and rear. Release the front lip by easing the cover forward. The cover can now be lifted clear of the rear lip and removed.

This gives access to the main board and to most of the major components.
If it should become necessary to replace a component on the printed circuit board the bottom cover may be removed by undoing the four screws in the cover, do not remove the small feet. Access can now be gained to the underside of the main board.

5.3 TEST EQUIPMENT

1. Variac
2. Avo Model 8 or 9.
3. Bradley Multimeter.
4. DC Differential Voltmeter. Fluke 895A.
5. Oscilloscope - Tektronix with 5 mV plug in unit also capable of accepting the ISI sampling unit.
6. BNC to BNC cable. 3 ft length $50 \Omega \pm 2 \%$.
$7 \quad$ Flexible leads with small probe clips. (Radiospares or similar).
7. BNC to Banana type conversion piece UG5 14/U.
8. Low voltage d. c. supply IV d.c. I. E. or similar.
9. $2.2 \mathrm{M} \Omega$ resistor $\pm 2 \%$ insulated body with stiff insulated flying lead:.
10. $1 \mathrm{M} \Omega$ resistor $\pm 2 \%$ wired across a BNC plug and fully insulated.
11. BNC T piece.

5.4 TKANSFORMER CONNECTIONS

Checking the Mains Transformer Secondary Voltages.

1. Adjust the voltage selector for 250 V .
2. Connect the multimeter (3) set to 40 V a.c. across the transformer high voltage terminals No. 14 and 15.
3. Supply the unit with 25 V 50 Hz from Variac (1) monitoring the supply to the instrument with Avo (2).
4. Switch the instrument ON and note the reading on meter (3). Let this voltage be E.

MAINS TRANSFOIMER
5. Repeat 3 and 4, supplying the instrument with $1 / 10$ of nominal selector panel voltage for all other voltage selector panel settings.

Verify E does not varv by more than 3.5%.
6. Check at any one of the settings that the secondary voltages are approximately as follows.

Trans Pins	Voltage
$14-15$	22 V
$16-17$	1.5 V
$21-22$	1.5 V
$18-20$	1.5 V

TIME CALIBRATION

5.5 Power Supplies (use Multimeter, Variac).

1. Set mains voltage selector to 240 V .
2. Apply 210 V
3. Switch Power On, check that lamp lights.
4. Select 'Deviation Off'.
5. Adjust RV951 to give +5.00 V at TR940 collector.
6. Read ripple at same point. 1.5 mV max.
7. Read voltage at TR980 collector. $-10 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
8. Read ripple at same point. 2.5 mV max.

9 Reset mains voltage to 240 V .
5.6 TIME OUTPUTS (Using the 30 MHz Oscilloscope)

1. Connect the instrument to the oscilloscope using the 50Ω BNC lead with T-piece at oscilloscope. Switch 192 Time/Div to $0.1 \mu \mathrm{sec}$ and select x 5 divs.

Switch oscilloscope to $1 \mathrm{~V} / \mathrm{cm}$ and $0.1 \mu \mathrm{sec} / \mathrm{cm}$.
2. Select Deviation 'T'. Turn 'Deviate" fully anti-clockwise. Set 'BAL' RV430 midway. Adjust '-LIM' RV343 to give about 4.4 cms between pips.
3. Turn 'Deviate' fully clockwise. Adjust '-LIM' RV472 to give about 5.6 cms between pips.
4. Adjust 'Deviate' until the meter reads approximately zero. Adjust oscilloscope horizontal control so that the three pips roughly line up with the graticule end and centre.
5. Switch the two Time/Divs anti-clockwise keeping each in step. Allowing for oscilloscope errors, check that the spacing remains constant on all ranges. It is important to check that the concentric Deviation control is not dragged round whilst switching by observing that the meter needle remains at zero.
6. Return both switches to $0,1 \mu \mathrm{sec}$. Press the x 2 Divs button. Check that the spacing becomes 10 cm . Release both x 2 and x 5 . Check that the spacing is now 1 cm .
7. In this test the amplitude at all settings of the Time/Div switch must be between 1.5 and 2.5 V . Rotate the 192 Time/Div switch three steps to $1 \mu \mathrm{sec}$, so that the spacing is 10 cm . Then rotate both switches two steps to $5 \mu \mathrm{sec}$ on the 192 .

Rotate both switches a further 10 steps to 10 msec on the 192 . Check that the base width is $1 \mathrm{~cm} \pm 30 \%$ in each case. (The spacing should remain at 10 cm).
8. Add 50Ω termination at the oscilloscope. Check that the amplitude is reduced by a factor of two.
5.7 FAST RISE SQUAREWAVES (using 30 MHz Oscilloscope)

1. Connect the 192 to the oscilloscope using the 50Ω BNC lead terminated in 50Ω. Set oscilloscope to $50 \mathrm{mV} / \mathrm{cm}$. (Ensure that the oscilloscope is correctly calibrated).
2. Select $1 \mu \mathrm{sec}$ period by releasing the ' mS ' button and depressing the ' 1 ' button. Set oscilloscope to $0.1 \mu \mathrm{sec}$. Observe the squarewave 10 cm period, amplitude varaible over the range 0.180 to 0.275 volts.
3. Switch oscilloscope Time/cm 3 steps each time, selecting 10μ, $100 \mu, 1 \mathrm{~m}, 10 \mathrm{~m}, 100 \mathrm{~m}$ and 1 Sec in turn. Check that period remains at 10 cm .
5.8 TIME DEVIATION (Using Crystal Oscillators or a Counter/Timer)
4. Check meter zero with Power Off and Time Deviation selected.
5. Switch Power on, select 3% range.

Set Deviation to -2.5% either by:
(a) locking to crystal oscillator frequency, or by
(b) adjusting Deviation control, measuring the period in μ secs of the Fast-Rise output at 10 msec .

Adjust -3% range potentiometer, RV703 so that meter reads -2.5%.
3. Set Deviation to $+2.5 \%$, adjust 3% range potentiometer RV704 so that meter reads $+2.5 \%$.
4. Select 10% meter range, set Deviation to -8% and adjust the meter to this value by adjusting -10% potentiometer RV710.
5. Set Deviation to $+8 \%$ and adjust meter to this value by adjusting the $+10 \%$ range potentiometer RV711.
6. Select 3% range, check -2.5% and $+2.5 \%$ points.

Readjust if necessary.

5.9 HF OUTPUTS (Using the Sampling Oscilloscope)

1. Select Time Deviation 10% range. Adjust BAL to give the most -ve meter reading.
2. Set the sampling oscilloscope to $200 \mathrm{mV}, 10 \mathrm{nsec} / \mathrm{cm}$. Connect the 192 HF output to 50Ω input of sampling unit, using the 50Ω BNC cable with GR adaptor.
3. Select Deviation Off and HF output to 10 nsecs. Starting from minimum capacitance point, adjust C415 clockwise to give a sinewave of maximum amplitude 10 nsec . Back off to reduce peak to peak amplitude by about 20%.
4. Adjust "LOCK" potentiometer RV470 so that Deviation needle goes to the centre of the scale. Temporarily remove BNC lead from 192. Check that the needle remains at the centre of the scale.
5. Select 20 nsecs . Adjust C425 to centre of safe range. TAKE CARE.
6. Select 50 nsecs . Adjust LOCK to keep the needle at centre of the scale. Adjust C455 to give nearly maximum amplitude where waveform is clearer.
7. Choose the best position of the BALANCE to allow the maximum anti-clockwise rotation of LOCK with the meter needle remaining locked at centre.

Note the range of the LOCK potentiometer for which the needle remains locked. It should be about half a turn or more. Set LOCK to centre of this range.
8. Select Time Deviation 10% range. Turn 'Deviate' control fully anti-clockwise. Turn '-LIM' clockwise to bring the meter needle on the scale, then back it off until the needle just rests on the left end stop.

9 Turn 'Deviate' fully clockwise. Turn '+LIM' anti-clockwise to bring the needle on the scale, then back it off until the needle just rests on the right end stop.
10. Check that the 'Deviate' control sweeps the needle smoothly across the meter, with less than 20° excess rotation at each end.
11. Select Deviation Off and check that the needle remains centred for 10,20 and 50 nsec outputs both with the sampling oscilloscope connected and with the lead disconnected from the 192 HF output.
5.10 FAST-RISETIME (using sampling oscilloscope)

1. Connect 192 output to sampling oscilloscope 50Ω input. Set $1 \mu \mathrm{sec}$ period, and sensitivity of $50 \mathrm{mV} / \mathrm{cm}$ on the oscilloscope.
2. Adjust 192 amplitude control to give exactly 5 cm . Measure the risetime of the positive edge over centre 4 cm (10 to 90%). Allow for the oscilloscope risetime which should be known. Use the table to give true risetime. Record this. Limits: 1nsec max.
3. Set the oscilloscope sensitivity to $2 \mathrm{nsec} / \mathrm{cm}$ and $5 \mathrm{mV} / \mathrm{cm}$. Measure overshoot on positive edge. Scale is $2 \% / \mathrm{cm}$. Limits : 2% max. Check that the overshoot remains less than 1 cm for any position of the 192 amplitude control.

5.11 VOLTS CALIBRATION

RESISTANCES (Using Multimeter $\Omega \times 100$ range)

1. Switch Power Off.
2. Measure resistance across outer insulated band of VOLTS outpit socket. Limits $100 \Omega \pm 20 \%$.
3. Measure resistance across normal inner to outer of VOLTS socket. This should be 220Ω at $10 \mu \mathrm{~V}$ increasing on each range to $3.2 \mathrm{k} \Omega$ at 10 mV . (Allow for multimeter error).

Select:
Volts/Div 20
Mode +
Divs 10
Deviation Off

Output voltage to be +170 to +230 V
2. Switch multimeter to I DC thus shorting output. Limits 31 to 37 mA .

3 Switch back to 400 V DC and check that the voltage returns.
4. Select: Mode 0.

Record the voltages across.

Limits

C104 300 to 350 V
C105 16 to 19 V
C106 18.3 to 21.3 V
(All +ve to left hand end of instrument).

5.13
 REGULATION (Using DC Differential Voltmeter Fluke 895A)

1. Supply the unit with $240 \pm 1 \mathrm{~V}$ r.m.s. from variac (1) using the AVO (2) to monitor the voltage.
2. Select: Mode + (positive).
3. Monitor the VOLTAGE output via T piece, BNC lead and adaptor (8) with Fluke set to 200 V and 100 mV full scale. Adjust RV104 to centre the meter $\pm 20 \mathrm{mV}$. RECORD voltage.
4. Reduce the variac output so that the AVO reads $216 \mathrm{~V} \pm 1 \mathrm{~V}$. RECORD change in output.

Limit: 40 mV max.
5. Reset the variac to 240 V .
6. Connect the $1 \mathrm{M} \Omega$ termination (11) onto the T piece. RECORD the fall in output voltage.

Limit • 0.1V max.

1. Select. Deviation Volts.
2. Select the 10% deviation range and adjust the voltage output using the DEVIATION control, to $220 \mathrm{~V} \pm 40 \mathrm{mV}$ measured on meter 4 .
3. Adjust RV102 so that the meter needle reads FSD on the 10% scale readjusting the DEVIATION control if found necessary to maintain $220 \mathrm{~V} \pm 40 \mathrm{mV}$.
4. Turn the deviation control anticlockwise until the meter reads -10%. Measure the voltage output and calculate the deviation from 180.00 volts. Let this voltage be E_{D}. The voltage E_{D} must not exceed ± 0.6 volts.
5. Turn the DEVIATION control slightly to bring the output voltage nearer to 180.00 volts by shifting the voltage by half the calculated deviation $E_{D} / 2$ determined in para 4 above.
6. Readjust RV102 to obtain -10% on scale (FSD).
7. Turn the DEVIATION control clockwise so that the meter reads $+\mathbf{1 0} \%$ (FSD). Measure the output voltage and verify that the voltage is 220 V ${ }^{ \pm} \mathrm{E}_{\mathrm{D}} / 2{ }^{ \pm 100 \mathrm{mV}}$ approximately.
i.e. in the range 220.40 to 219.60 volts.

NOTE: Tests 5-7 are not necessary if E_{D} is less than 100 mV .
8. Select 3% voltage deviation range and adjust the deviation control so that the instrument meter reads $+3 \%$ (FSD) on the 3% scale.
9. Adjust RV103 so that the voltage output indicated on meter (4) reads $206 \mathrm{~V} \pm 20 \mathrm{mV}$
10. Turn the DEVIATION control anticlockwise so that the meter reads -3% (FSD). Measure the voltage and calculate the deviation from 194.00 V . Let the voltage be V_{D}. This deviation voltage should not exceed 0.2 volts.

NOTE: Tests 11 and 12 are not necessary if $\mathrm{V}_{\mathrm{D}}<40 \mathrm{mV}$.
11. Readjust RV103 to bring the output voltage nearer to 194.00 volts by shifting by an amount $\mathrm{V}_{\mathrm{D}^{\prime}} 2$.
12. Turn the DEVIATION control clockwise so that the meter reads
$+3 \%$ (FSD). Measure the output voltage and verify that it is 206 $\pm \mathrm{V}_{\mathrm{D}} / 2 \pm 40 \mathrm{mV}$ approximately, that is 206.120 to 205.88 volts.

5.15 ATTENUATOR RATIOS (Using DC Differential Voltmeter Fluke 895A)

1. Select: Deviation Off.

RECORD output voltage
Readjust RV104 to give $200 \mathrm{~V} \pm 20 \mathrm{mV}$.
2. Taking care not to touch any high voltages on the voltage attenuator, connect Fluke 895A (4) via flexible leads (7) across R146 and R147 in turn and note the readings.

Solder resistors according to the following table across R146 and R147.

If V_{m} is the measured voltage and E is the error from the required voltage in mV .

$$
\mathbf{E}=\left(\mathrm{V}_{\mathrm{m}}-100\right) \mathrm{mV}
$$

	Measured Voltage	FOT Required	TOL Required	
R146	$\mathrm{V}_{\mathrm{m}}=100 \mathrm{mV}+\mathrm{E}$	$500 / \mathrm{E}$	$5 / \mathrm{E}$	
R 147	$\mathrm{~V}_{\mathrm{m}}=100 \mathrm{mV}+\mathrm{E}$	$500 / \mathrm{E}$	$5 / \mathrm{E}$	
where E and V_{m} are in mV.				

Switch the instrument off when fitting FOT resistors.
3. RECORD the voltage across R146 and R147 and verify that they are $0.1 \mathrm{~V} \pm 100 \mu \mathrm{~V}$ after a period of 5 minutes with the instrument ON.
4. Connect Fluke 895A (4) to the VOLTAGE output socket via coaxial lead (6) and adaptor (8).
5. RECORD the voltages at the following switch positions and verify that they fall within the required tolerance.
\(\left.$$
\begin{array}{cccc}\hline \text { MODE } & \text { DIVS } & \text { VOLTS/DIV } & \begin{array}{l}\text { VOLTAGE } \\
\text { MEASURED }\end{array}\end{array}
$$ \begin{array}{l}OUTPUT

LIMITS\end{array}\right]\)| | |
| :---: | :---: |
| + | 10 |

6. Select $20 \mathrm{mV} /$ DEV with VOLTS/DIV switch and adjust the output voltage to 0.2 volts $\pm 20 \mu \mathrm{~V}$ by RV106.
7. Select: Mode - and $20 \mathrm{~V} / \mathrm{Div}$. Verify that the voltage is -200 V $\pm 20 \mathrm{mV}$.

OPTIMUM REFERENCE SETTING (Using DC Differential Voltmeter Fluke 895A).

1. Select:

Volts/Div
20
Mode + (positive).
2. RECORD the errors for all DIVS settings in the following table under "Initial Errors, mV'.
3. Plot a graph of error against nominal voltage as shown in Fig.A. (to be found at the end of this section).
4. Rule two lines A and B from the origin (0 volts) through the plots that provide the two extreme values of slope.
5. Draw a vertical line at 200 volts. Measure the difference between the two intersections with the slope lines A and B. RECORD under "Error spread, mV".
6. Mark off the centre point between the two intersections. RECORD the value under "Mean Error, mV".
7. Change sign of Mean Error and add to initial 200V error. RECORD under "Final 200V Error".
8. Select:

Divs 10.

Adjust 200V error to "Final error"

FIGURE A

Divs	Nominal Voltage	Initial Errors mV	Error Spread mV	Mean Error mV	Final 200V Error, mV
10	200				
8	160				
6	120				
5	100				
4	80				

5. 17 SQUARE WAVE ZERO LEVEL (Using DC Differential Voltmeter Fluke 895A)
6. Select the following controls:

MODE	+ (positive)
DIVS	10
VOLTS/DIV	20
DEV	OFF

2. Connect a low voltage d.c. supply set at $1 \mathrm{~V} \pm 0.02 \mathrm{~V}$ across emitter TR108 and junction of R130 to R131 making the positive connection to the junction of the resistors. Two pins TP1 and TP2 are provided for connecting the wires. Check the low voltage using meter (3).
3. Monitor the VOLTAGE output with meter (4) and switch the instrument ON.
4. Switch on the low voltage d.c. supply and verify that the voltage output changes from 200 V to approximately 0 V
5. Set RV105 to obtain zero volts $\pm 5 \mathrm{mV}$.
6. Place $2.2 \mathrm{~m} \Omega$ resistor (1) momentarily across collector and emitter of TR107 and verify that the output voltage does not rise to more than +0.05 volts.
7. Switch off the instrument and disconnect the low voltage d.c. supply before changing any front panel settings.
8. Select the following controls:

MODE	+
DIVS	10
VOLTS/DIV	10
DEVIATION	OFF

2. Monitor the VOLTAGE output with the oscilloscope (5) set to $20 \mathrm{~V} / \mathrm{div} 1 \mathrm{~ms} / \mathrm{div}$ via coaxial cable (6). The oscilloscope should be d.c. coupled.

A square wave of 5 divisions amplitude and 1 division period should be displayed.
3. Reduce the calibrator VOLTS/DIV switch setting to $50 \mathrm{mV} / \mathrm{div}$ and the oscilloscope to $0.1 \mathrm{~V} / \mathrm{cm}$. Adjust the oscilloscope to display the leading edge.

Note the rise-time between 10% and 90% of the amplitude and verify ihat it is less than $5 \mu \mathrm{~S}$ with overshoot better than 0.5%.
4. Reduce the VOLTS/DIV switch setting to $20 \mathrm{mV} / \mathrm{div}$ and adjust the oscilloscope for a display similar to that seen in test 3 above. Trim the capacitor C111 to eliminate any roll up or overshoot.
5. As far as possible check all output levels and ensure that there are no abnormalities.
5. 19 RIPPLE (Using Oscilloscope (5))

1. Set the variac to give $216 \pm 1 \mathrm{~V}$.
2. Select the following controls:

MODE	+
DIVS	10
VOLTS/DIV	20
DEVIATION	OFF

3. Monitor the VOLTS output with oscilloscope (5) set to $0.1 \mathrm{~V} / \mathrm{cm} \mathrm{a.c}$. coupled $10 \mathrm{~ms} / \mathrm{cm}$.

Verify that the ripple is less than 0.2 V peak-to-peak.
4. Reset the variac at $240 \mathrm{~V} \pm 1 \mathrm{~V}$.

LINE FREQUENCY AMPLITUDE (Using Oscilloscope 5).

Monitor the LINE FREQUENCY output socket using oscilloscope (5) set to $0.5 \mathrm{~V} / \mathrm{cm}$. Verify that at least 1 volt peak-to-peak sine wave can be obtained and check visually that it has a low harmonic content.

SECTION 6

PARTS LIST

When ordering spare parts please quote the instrument type and Serial Number, and the value and reference number of the components required.

VOLTS CIRCUIT (For additional items see Page 30-31)
RESISTORS, FIXED

CIRCUIT REF	VALUE Ω	TOL $\%$	RATING W		MANUFACTURER OR STYLE
R101	470	10	$1 / 4$	Morganite S	BRADLEY REF. NO.
R102	39 k	10	$1 / 4$	Morganite S	C130921
R103	4.7 k	1.0	$1 / 8$	Welwyn 4033 100ppm	C130990
R104	4.7 k	1.0	$1 / 8$	Welwyn 4033 100ppm	GR01146
R105	120	2.0	$1 / 2$	Mullard MR30	GR01146
R106	2.2 k	10	$1 / 4$	Morganite S	GR00484
R107	1.5 k	10	$1 / 4$	Morganite S	
R108	5.6 k	2.0	$1 / 2$	Mullard MR30	C130945
R109	1.5 k	10	$1 / 4$	Morganite S	C130939
R110	57.6 k	1.0	$1 / 8$	Welwyn 4033 100ppm	GR07894
R111	2.2 k	2.0	$1 / 2$	Mullard MR30	C130939
R112	39 k	2.0	$1 / 2$	Mullard MR30	GR00990
R113	2.7 k	2.0	$1 / 2$	Mullard MR30	
R114	2.2 k	2.0	$1 / 2$	Mullard MR30	GR07841
R115	18 k	2.0	$1 / 2$	Mullard MR30	GR07901
					GR07830
R116	1.74 k	1.0	$1 / 8$	Welwyn 4033 100ppm	GR01019
R117	30 k	1.0	$1 / 8$	Welwyn 4033 100ppm	GR10074
R118	39 k	1.0	$1 / 8$	Welwyn 4033 100ppm	GR01133
R119	220	1.0	$1 / 8$	Welwyn 4033 100ppm	GR00897
R120	220	1.0	$1 / 8$	Welwyn 4033 100ppm	GR01134
					GR00978
R121	3 k	0.5	$1 / 8$	Welwyn 4333 25ppm	
R122	30 k	0.02	0.4	Welwyn Vishay 4802	
R123	10 k	0.1	$1 / 8$	Welwyn 4333 25ppm	GR00984
R124	10 k	0.1	$1 / 8$	Weiwyn 4333 25ppm	GR00988
R125	10 k	0.1	$1 / 8$	Welwyn 4333 25ppm	GR00985
					GR00985

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF } \end{aligned}$	$\underset{\Omega}{\text { VALUE }}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$	$\begin{aligned} & \text { RATING } \\ & \text { W } \end{aligned}$	MANUFACTURER OR STYLE	BRADLEY REF. NO.
R126	20k	0.1	1/8	Welwyn 4333 25ppm	GR00986
R127	20k	0.1	1/8	Welwyn 4333 25ppm	GR00986
R128	2. 2 k	2.0	1/2	Mullard MR30	GR01019
R129	1k	10	1/4	Morganite S	C120933
R130	470	10	1/4	Morganite S	C130921
R131	5.6k	10	1/4	Morganite S	C130960
R132	220k	2.0	1	Electrosil TR6	GR00971
R133	100k	0.25	1	Morganite FC75 15ppm	GR00999
R134	3 M	1.0	1/4	Weiwyn 4034 150ppm	GR00991
R135	100	0.1	1/8	Welwyn 4333 25ppm	GR00976
R136	2.5k	0.02	1.2	Welwyn Vishay 4805/11	GR00983
R137	2.5k	0.02	1.2	Welwyn Vishay 4805/11	GR00983
R138	2.5k	0.02	1.2	Welwyn Vishay 4805/11	GR00983
R139	1.5k	0.02	0.8	Welwyn Vishay 4804/11	GR00981
R140	500	0.1	1/4	Welwyn 4334 25ppm	GR00980
R141	250	0.1	1/8	Welwyn 4333 25ppm	GR00979
R142	150	0.1	1/8	Welwyn 4333 25ppm	GR00977
R143	50	0.1	1/8	Welwyn 4333 25ppm	GR00975
R144	25	0.1	0.4	Welwyn Vishay 4802/11	GR00974
R145	15	0.1	0.4	Welwyn Vishay 4802/11	GR00973
R146	5.05	1.0	1/8	Welwyn 433350 ppm	GR00972
R147	5.05	1.0	1/8	Welwyn 433350 ppm	GR00972
R148			0.4	F.O.T. MR25 Mullard	
R149			0.4	F.O. T. MR25 Mullard	
R150	NOT USE			NOT USED	
R151	220	1.0	1/8	Welwyn 4033 100ppm	GR00978
R152	100	5	1/2	Electrosil TR6	GR07113
R153	2. 2 M	10	1/4	Morganite S	C131053
R160	15k	2.0	1/2	MR30 Mullard	GR01023
R162	15k	2.0	$1 / 2$	MR30 Mullard	GR01023
R165	10 k	2.0	0.4	MR25 Mullard	GR00777
R166	47	2.0	0.4	MR25 Mullard	GR00814
R181	56k	2.0	0.4	MR25 Mullard	GR01393

Second choice Alternative for Fixed Resistors (Welwyn Resistors only)
\(\left.$$
\begin{array}{llllll}\hline \begin{array}{l}\text { CIRCUIT } \\
\text { REF }\end{array} & \begin{array}{c}\text { VALUE } \\
\Omega\end{array} & \begin{array}{c}\text { TOL } \\
\%\end{array}
$$ \& \begin{array}{c}RATING

\mathrm{W}\end{array} \& \& MANUFACTURER OR STYLE\end{array}\right]\)| BRADLEY |
| :--- |
| REF. NO. |

RESISTORS, VARIABLE

RV101	10 k	20	0.5	A-B Metal C45 LIN LAW	A129997
RV102	4.7 k	20	0.25	Plessey MPD PC	GR07806
RV103	4.7 k	20	0.25	Plessey MPD PC	GR07806
RV104	50 k	10	0.75	Morganite 80F	GR01000
RV105	470	20		Plessey MOD PC	GR07804
RV106	500 k	10	0.75	Morganite 80	GR01001
RV107	2.2 k	20		A-B Metal C45 LOG LAW	GR01002

TRANSISTORS

CIRCUIT REF	MANUFACTURER OR STYLE	BRADLEY REF.NO.	
	MANUFACTURER	TYPE	
TR101	RCA	40374	GV00496
TR102	Motorola	MPS6515	GV00532
TR103	Motorola	MPS6519	GV00919
TR104	S.G.S.	BFY81	BFY81
TR105	Mullard	BC108	BC108
TR106	Motorola	MPS6519	GV00919
TR107	Motorola *	2 N3739	2 N3739
TR108	Motorola *	2 N3739	$2 N 3739$
TR109	Texas	BF258	BF258
CAPACITORS	$*$ Alternatives MJE 3739 or 2N6176		

CIRCUIT REF	$\begin{gathered} \text { VALUE } \\ \text { F } \end{gathered}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$	$\begin{gathered} \text { RATING } \\ \mathrm{V} \end{gathered}$	MANUFACTURER OR STYLE	BRADLEY REF.NO.
C101	2μ	$\begin{aligned} & +50 \\ & -20 \end{aligned}$	350	Erie L37/1 MEF118T	GC10111
C102	2μ	$\begin{aligned} & +50 \\ & -20 \end{aligned}$	350	Erie L37/1 MEF118T	GC10111
C103	0.5μ	± 20	600	Erie WF49 AF406K	GC22155
C104	8μ	$\begin{aligned} & +50 \\ & -20 \end{aligned}$	350	Erie L37/1 JF403BT	GC02036
C105	250μ	$\begin{aligned} & +100 \\ & -20 \end{aligned}$	25	Hunts L37 MEF35AT	GC10117
C106	250μ	$\begin{aligned} & +100 \\ & -20 \end{aligned}$	25	Hunts L37 MEF35AT	GC10117
C107	0.01μ	$\begin{aligned} & +50 \\ & -25 \end{aligned}$	25	Erie 831/T/25V	GC29045
C109	2μ	$\begin{aligned} & +50 \\ & -20 \end{aligned}$	350	Erie L37/1 MEF118T	GC10111
C110	0.01μ	$\begin{aligned} & -25 \\ & +50 \end{aligned}$	25	Erie 831/T/25V	GC29045
C111	0-3p		500	Mullard Trimmer C004EA/3E	GC22187
C112	2200 p	± 20	200	Erie K350081/AD	GC08097
C120	1μ	± 20	100	STC PMA 1.0 M100	GC20155
C170	1000p	$\begin{aligned} & -20 \\ & +80 \end{aligned}$	500	Erie Feed Through 361-K2600	GC22166

CAPACITORS (Cont'd)

CIRCUIT REF.	$\begin{gathered} \text { VALUE } \\ F \end{gathered}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$	$\begin{gathered} \text { RATING } \\ \mathrm{V} \end{gathered}$	MANUFACTURER OR STYLE	$\overline{\text { BRADLEY }}$ REF. NO.
C171	1000p	$\begin{aligned} & -20 \\ & +80 \end{aligned}$	500	Erie Feed Through 361-K2600	GC22166
C172	1000p	$\begin{aligned} & -20 \\ & +80 \end{aligned}$	500	Erie Feed Through 361-K2600	GC22166
C173	1000p	$\begin{aligned} & -20 \\ & +80 \end{aligned}$	500	Erie Feed Through 361-K2600	GC22166
C174	1000p	$\begin{aligned} & -20 \\ & +80 \end{aligned}$	500	Erie Feed Through 361-K2600	GC22166
C175	1000p	$\begin{aligned} & -20 \\ & +80 \end{aligned}$	500	Erie Feed Through 361-K2600	GC22166
C180	270 p	5	500	Mullard 42722701 J	GC92116

DIODES
D101
IR 10D4
GV01136
D102
D103
D104
D105
IR 10D4
GV01136
IR 10D4 GV01136
IR 10D4
GV01136

D106
D017
D108
D109
D110
D111
D112
D113
D114
D115
D116
IR 10D4
GV01136

TIME CIRCUIT
RESISTORS, FIXED
\(\left.$$
\begin{array}{lcccll}\hline \begin{array}{l}\text { CIRCUIT } \\
\text { REF }\end{array} & \begin{array}{c}\text { VALUE } \\
\Omega\end{array} & \begin{array}{c}\text { TOL } \\
\%\end{array}
$$ \& \begin{array}{c}RATING

\mathrm{W}\end{array} \& \& MANUFACTURER OR STYLE\end{array}\right]\)| BRADLEY |
| :---: |
| REF. NO. |

$\overline{\text { CIRCUIT }}$ REF	$\begin{gathered} \text { VALUE } \\ \Omega \end{gathered}$	$\begin{gathered} \mathrm{TOL} \\ \% \end{gathered}$	RATING W	MANUFACTURER OR STYLE	BRADLEY REF. NO.
R412	1k	10	0.25	Morganite Type S	C130933
R418	47	10	0.25	Morganite Type S	C130885
R419	560	10	0.25	Morganite Type S	C130924
R420	1k5	10	0.25	Morganite Type S	C130939
R421	6k8	10	0, 25	Morganite Type S	C130963
R422	3k3	10	0.25	Morganite Type S	C130951
R423	47	10	0.25	Morganite Type S	C130885
R429	680	10	0.25	Morganite Type S	C130927
R430	1k	2	0.5	Mullard MR30	GR00725
R431	2 k 2	2	0.5	Mullard MR30	GR01019
R432	5 k 6	2	0.5	Mullard MR30	GR01022
R433	22	10	0.25	Morganite Type S	C130873
R434	100	2	0.4	Mullard MR25	GR00560
R440	1k	2	0.5	Mullard MR30	GR00725
R442	5k6	2	0.5	Mullard MR30	GR01022
R444	220	10	0.25	Morganite Type S	C130909
R445	120	10	0.25	Morganite Type S	C130900
R450	1 k	10	0.25	Morganite Type S	C130933
R451	6k8	10	0.25	Morganite Type S	C130963
R452	3k3	10	0.25	Morganite Type S	C130951
R459	680	10	0.25	Morganite Type S	C130927
R467	2 k 2	10	0.25	Morganite Type S	C130945
R472	1 k 8	10	0.25	Morganite Type S	C130942
R473	22k	10	0.25	Morganite Type S	C130981
R474	22 k	10	0.25	Morganite Type S	C130981
R512	1k8	10	0.25	Morganite Type S	C130942
R560	100	2	0.4	Mullard MR25	GR00560
R600	68	10	0.25	Morganite Type S	C130891
R632	2k2	10	0.25	Morganite Type S	C130945
R633	560	10	0.25	Morganite Type S	C130924
R634	330	10	0.25	Morganite Type S	C130915
R635	68	10	0.25	Morganite Type S	C130891
R640	47	10	0.25	Morganite Type S	C130885
R641	2k2	10	0.25	Morganite Type S	C130945
R642	2k2	10	0.25	Morganite Type S	C130945
R643	27	10	0.25	Morganite Type S	C130876

$\begin{aligned} & \text { CIRCUIT } \\ & \text { REF } \end{aligned}$	$\begin{gathered} \text { VALUE } \\ \Omega \end{gathered}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$	RATING W	MANUFACTURER OR STYLE	BRADLEY REF. NO.
R647	47	10	0.25	Morganite Type S	C130885
R703	240	1	0.5	Mullard MR30	GR00626
R704	240	2	0.5	Mullard MR30	GR00626
R710	750	2	0.5	Mullard MR30	GR01015
R711	750	2	0.5	Mullard MR30	GR01015
R740	1k	10	0.25	Morganite Type S	C130933
R741	220	10	0.25	Morganite Type S	C130909
R742	100	10	0.25	Morganite Type S	C130897
R744	470	10	0.25	Morganite Type S	C130921
R745	2 k 7	10	0.25	Morganite Type S	C130948
R751	470	2	0.40	Mullard MR25	GR07740
R752	470	2	0.40	Mullard MR25	GR07740
R801	120	10	0.25	Morganite Type S	C130900
R802	120	10	0.25	Morganite Type S	C130900
R803	120	10	0.25	Morganite Type S	C130900
R804	120	10	0.25	Morganite Type S	C130900
R805	120	10	0.25	Morganite Type S	C130900
R806	120	10	0.25	Morganite Type S	C130900
K807	120	10	0.25	Morganite Type S	C130900
R813	390	10	0.25	Morganite Type S	C130918
R814	820	2	0.4	Mullard MR25	GR00565
R822	15k	2	0.4	Mullard MR25	GR00822
R823	2k2	2	0.4	Mullard MR25	GR00568
R824	100	2	0.4	Mullard MR25	GR00560
R830	220	10	0.25	Morganite XL	GR01130
R832	390	2	0.4	Mullard MR25	GR00815
R834	33	2	0.4	Mullard MR25	GR00552
R844	150	10	0.25	Morganite XL	GR01129
R850	100	2	0.4	Mullard MR25	GR00560
R851	1 k 2	2	0.4	Mullard MR25	GR00773
R852	510	2	0.5	Mullard MR30	GR07888
R854	150	10	0.25	Morganite XL	GR01129
R855	150	10	0.25	Morganite XL	GR01129
R856	470	2	0.5	Mullard MR30	GR00638
R857	82	2	0.5	Mullard MR30	GR00624
R858	100	2	0.4	Mullard MR25	GR00560
R859	100	2	0.4	Mullard MR25	GR00560
R831	150	2		Mullard MR25	GR00575

[^0]\(\left.$$
\begin{array}{llllll}\hline \begin{array}{c}\text { CIRCUIT } \\
\text { REF }\end{array} & \begin{array}{c}\text { VALUE } \\
\Omega\end{array} & \begin{array}{c}\text { TOL } \\
\%\end{array}
$$ \& \begin{array}{c}RATING

\mathrm{W}\end{array} \& \& MANUFACTURER OR STYLE\end{array}\right]\)| BRADLEY |
| :--- |
| REF. NO. |

RESISTORS, VARIABLE

RV430	1 k	± 20	0.25	Plessey MP Dealer (PC)	GR07584
RV434	220	± 10	1	Plessey WMP (PC)	GR00726
RV470	10 k	± 20	0.25	Plessey MP (PC)	GR07654
RV471	10 k			AB/45 Long Spindle	A12999
RV472	10 k	± 20	0.25	Plessey MP (PC)	GR07654
RV703	100	± 10	1	Plessey WMP (PC)	GR00633
RV704	100	± 10	1	Plessey WMP (PC)	GR00633
RV710	330	± 10	1	Plessey WMP (PC)	GR01003
RV711	330	± 10	1	Plessey WMP (PC)	GR01003
RV800	10 kLOG		0.5	AB/45 LOG	GR01128
RV951	1 k	± 20	$\mathbf{0 . 2 5}$	Plessey MPD (PC)	FR07584

TRANSISTORS

TR410	Mullard BSX20	BSX20
TR420	Mullard BSX20	BSX20
TR430	Mullard BSX20	BSX20
TR440	Mullard BSX20	BSX20
TR450	Mullard BSX20	BSX20

TRANSISTORS (Cont'd)

CIRCUIT REF	MANUFACTURER OR STYLE	BRADLEY REF.NO.
TR630	Mullard BSX20	BSX20
TR640	Mullard BSX20	BSX20
TR810	Mullard BSX20	BSX20
TR820	Mullard BSX20	BSX20
TR830	Mullard BFX89	BFX89
TR840	SGS BFX48	BFX48
TR850	Mullard BFX89	BFX89
TR910	Mullard BC108	BC108
TR920	Mullard BC108	BC108
TR930	Mullard BCY70	BCY70
TR940	Texas Instrument TIP30	GV01506
TR950	Mullard BCY70	BCY70
TR960	Mullard BCY70	BCY70
TR970	Mullard BC108	BC108
TR980	Mullard BFY51	BFY51

CAPACITORS
\(\left.$$
\begin{array}{llllll}\hline \begin{array}{l}\text { CIRCUIT } \\
\text { REF }\end{array} & \begin{array}{c}\text { VALUE } \\
\text { F }\end{array} & \begin{array}{c}\text { TOL } \\
\%\end{array}
$$ \& \begin{array}{c}RATING

V\end{array} \& \& MANUFACTU RER OR STYLE\end{array}\right]\)| BRADLEY |
| :--- |
| REF. NO. |

CIRCUIT REF.	$\begin{gathered} \text { VALUE } \\ \text { F } \end{gathered}$	$\begin{gathered} \text { TOL } \\ \% \end{gathered}$	$\begin{aligned} & \text { RATING } \\ & \mathrm{V} \end{aligned}$	MANUFACTURER OR STYLE	$\begin{aligned} & \text { BRADLEY } \\ & \text { REF. NO. } \end{aligned}$
C444	220p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22173
C450	1000p	10	500	Hi-K/AD	GC22164
C453	1000p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22164
C454	22p	5	750	Erie N220/AD	GC22157
C455	2-22p		400	Mullard 808	GC22187
C458	1000p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22164
C459	1000p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22164
C474	0.1μ	20	100	STC PMA	GC22039
C568	1μ	20	100	STC.PMA	GC20155
C618	0.1μ	20	100	STC PMA	GC22039
C638	1μ	20	100	STC PMA	GC20155
C651	470p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22111
C652	1000p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22164
C653	2000μ	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22165
C654	4700μ	-20	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC12075
		+40			
C655	. 01μ	20	400	STC PMA	GC22152
C656	. 022μ	20	400	STC PMA	GC22169
C657	. 047μ	20	250	STC PMA	GC22170
C658	0.1μ	20	100	STC PMA	GC22039
C659	0. 22μ	20	100	STC PMA	GC22171
C660	0.47μ	30	100	STC PMA	GC22072
C661	1μ	20	100	STC PMA	GC20155
C708	0.47μ	20	100	STC PMA	GC22072
C730	1μ	20	100	STC PMA	GC20155
C742	0.1μ	20	100	STC PMA	GC22039
C813	1000p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22164
C814	56p	5	705	Erie N750/AD	GC22172
C828	0.47μ	20	100	STC PMA	GC22072
C830	3.3 p	0.5 pf	750	Erie NPO/AD	GC22138
C834	1000p	10	500	Hi-K/AD	GC22164
C851	1000p	10	500	$\mathrm{Hi}-\mathrm{K} / \mathrm{AD}$	GC22164
C858	0.1μ	20	100	STC PMA	GC22039
C901	2000μ	-10 +50	10	Mullard C431 BR/D2000	GC20225
C831	3.3 p	025	750	Erie NPO/AD	GC22138

* Note. Not always fitted.

CAPACITORS (Cont'd)
\(\left.$$
\begin{array}{llccll}\hline \begin{array}{lll}\text { CIRCUIT } \\
\text { REF }\end{array} & \begin{array}{c}\text { VALUE } \\
\mathrm{F}\end{array} & \begin{array}{c}\text { TOL } \\
\%\end{array}
$$ \& \begin{array}{c}RATING

\mathrm{V}\end{array} \& \& MANUFACTURER OR STYLE\end{array}\right]\)| BRADLEY |
| :---: |
| REF. NO. |

| CIRCUIT |
| :--- | :--- | :--- |
| REF |

D419
D429
D430
D441
D459
D640
D641
D642
D731
D732
D740
D822
D823
D901
D902
D961
D962
D991
SGS BAY82 BAY82
Mullard BAX13 BAX13
BA112 BA112
Mullard BZY88-C3V3 BZY88-C3V3
Mullard BAX13 BAX13
Mullard BZY88-C3V3 BZY88-C3V3
Mullard BAX13 BAX13
Mullard BAX13 BAX13
International Rectifier 10D05 GV01411
International Rectifier 10D05 GV01411
Mullard BAX13 BAX13
Mullard BZY88-C5V6 BZY88-C5V6
International Rectifier 10D05 GV01411

CIRCUIT REF.	VALUE	TOL	RATING	MANUFACTURER OR STYLE	$\begin{aligned} & \text { BRADLEY } \\ & \text { REF. NO. } \end{aligned}$
X510				Texas Instrument SN7474N	GV01513
X520				Texas Instrument SN7490N	GV00815
X530				Texas Instrument SN7490N	GV00815
X540				Texas Instrument SN7490N	GV00815
X550				Texas Instrument SN7490N	GV00815
X560				Texas Instrument SN7490N	GV00815
X570				Texas Instrument SN7490N	GV00815
X580				Texas Instrument SN7490N	GV00815
X590				Texas Instrument SN7472N	GV00817
X610				Texas Instrument SN7490N	GV00815
X710				Texas Instrument SN7474N	GV01513
X720				Texas Instrument SN7474N	GV01513
X730				Texas Instrument SN15844N	GV01465
X740				Texas Instrument SN72702N	GV01514
XL411	100 MHz	0.1\%	$0-50^{\circ} \mathrm{C}$	STC 4203/AT-5	GV00651
XL747	1 MHz	0.1\%	$-20+70^{\circ} \mathrm{C}$	STC 4046/AT	GV01516
X412				Ferrite Bead. Mullard FX1242	A10355
M700				Meter. Sifam. $500 \mu \mathrm{~A}$ f.s.d.	C128720
L414				Bradley	A129918
L424	$0.47 \mu \mathrm{H}$			Painton 58/10/0003/10	GT13384
L454	1. $5 \mu \mathrm{H}$			Painton 50/10/0006/10	GT13385

VOLTS CIRCUIT (ADDITIONAL ITEMS)
SWITCHES

CIRCUIT VALUE REF	TOL	RATING	MANUFACTURER OR STYLE	BRADLEY REF.NO.
S101				
	250V 3A	Mains Toggle DPD. T. MST205N	GC01422	
S102		Waycom		
S103		VOLTS/DIV Push Button Isostat	A129993	
S104		MODE Push Button Isostat	A129992	
		VOLTS/DIV Rotary Wafer Switch	C129990	

| CIRCUIT
 REF | VALUE | TOL | RATING |
| :--- | :--- | :--- | :--- | MANUFACTURER OR STYLE | BRADLEY |
| :---: |
| REF. NO. |

BNC SOCKETS
SKT101
UG657/U
GP01584
SKT102
UG657/U Insulated
GP01583
INDICATOR LAMPS

ILP101	12V	0.1 A	Boss Industrial SM/A/1/79/TAMB	GV01485
ILP701			HP 5082-4440 Solid state lamporange	GV01710
ILP702		$"$		

TRANSFORMERS

T101

T102
MISCELLANEOUS

Mains Transformer with Input	C129988
Selector Panel	
Radiospares Driver Transformer	GT13160

$\left.\begin{array}{l}\text { L101 } \\ \text { L102 }\end{array}\right\}$ Not on all units

FS $\quad 200 / 250$

Part of T101
$\begin{array}{ll}500 \mathrm{~mA} \text { Twin Suppressor } & \text { GT20276 } \\ \text { Choke Radiospares } & \text { GT20276 }\end{array}$
500 mA Fuse Belling Lee L1055 GV17105
McMurdo Voltage Selector
B130104

B279002/A

POWER SUPPLY CIRCUIT (TIME SIDE)

FIGURE 5.

AP117D-0910-2

G\&E BRADLEY OSCILLOCOPE CALIBRATOR TYPE 192

GENERAL ORDERS AND MODIFICATIONS

BY COMMAND OF THE DEFENCE COUNCIL

Ministry of Defence
Sponsored for use in the ROYAL AIR FORCE by DWSE (RAF)
Prepared by G \& E Bradley Ltd, Neasden, London, N.W. 10
Publications authority; DATP/MOD (PE)
Service users should send their comments through the channel prescribed for the purpose in.
AP3158 Vol. 2 leaflet No. D6 (ARMY and RAF)

Prelim
Page 1/2

[^1](CSDE/3000/4/3/ETE)
$\frac{\text { Amendmert }}{\text { Sign the }}$ Amendent Record Sheet. .

1. INTRODUCTION

The Calibrator Oscilloscope, type 192, was developed as a commercial project and has been sold to Industry and both the RAF and Army. It has been subject to a number of production changes by the manufacturer, the incorporation of each change/and or modification being denoted by a specified strike off figure shown on the instruments modification record label. The purpose of this leaflet is to list the changes made so that all concerned are informed of the details of each change. Only some of these changes are to be incorporated retrospectively, thus equipments in Service with RAF and Army, may have gaps in the strike offs incorporated. Furthermore, modifications promulgated via the RMC will not start a 1 and run consecutively.
2. INFORMATION

Strike off No	$\begin{aligned} & \text { Instrument } \\ & \hline \text { Serial No } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Service } \\ & \text { Mod No } \end{aligned}$	Detail
1.	BGB200 onwards		Changes in tracking to Volts and Time Printed Boards to allow fitting of new heat sink and mounting method.
2.	BGB200 onwards		Rear mains connector added to meet IEC 320 requirements R560 added between Volts and Time PC Boards to reduce overloading of X 560 .
3.	BGB300 onwards	A4315	Fitting of $100 \mathrm{~K} \Omega$ resistor R165
4.	BGB500 onwards		Change of value of R114, R128 and R434. Performed by the contractor if product fails to meet spec after repair.
5.	BGB500 onwards	Mod A awaiting RMC approval	Introduction of additional capacitor C180

Strike off No $\frac{\text { Instrument }}{\text { Serial No }} \quad \frac{\text { Service }}{\text { Mod No }}$
6. BGB560 onwards

R166 added between TP and mode switch. Performed by Contractor i: product will not permi calibration when RV105 is set up.

Calibrator Oscilloscope (Ref No 10D/6625-99-117-8133) (formerly Ref No 10ZZ/205086) (RAF) part of Calibrator Set Oscilloscope Type 192 - Fitting of an Additional Resistor.
(Mod No A4315)
(Class C/3 on repair or recalibration (Army \& RAF))
(ADSML25/M/2338)
(ADP No ZAA43150)

1. INTRODUCTION

It has been found that when the switch 5103 is set for "DC MODE" operation the base of the transistor TR109 is left flosting, since this transistor is operational only in 'Square Wave MODE'. This modification rectifies the circuitry by connecting a $10 \mathrm{~K} \Omega$ resistor R165 between the emitter and the base of the transistor TR109.

The modification is to be embodied in all Calibrators Oscilloscope (Ref No 10D/6625-99-117-8133) (formerly 10ZZ/205086 (RAF)).
(1) This modification does not supersede, partially supersde or satisfy the work called for by any other Modification, Command Modification SII, SI or SRIM.

2. EMBODIMENT

This modification is to be embodied by recalibration or repair authorities only (RAF).
3. APPROXIMATE TIIE REQUIRED FOR EMBODTAET

The work will take approximately $\frac{1}{2}$ man hour.
4. DRAUINGS REQUIRED

Drawing Ho AP 117D-0910-2/B $1 \quad / 74$ is incorporated in this leaflet.
5. PARIS AND SPECIAL TOOLS REQUIRED
(1) Parts and Materials
(a) A Modification Kit will not be assembled.
(b) The following service supply item is required:
$\frac{\text { Ref No }}{10 \mathrm{~W} / 5905-99-013-6019} \quad \frac{\text { Nomenclature }}{\text { Resistor, Fixed, } 10 \mathrm{~K} \Omega \pm 2 \%} \quad \frac{\text { Qty }}{1}$

RAF units are to forward their demands for the individual referenced items direct to the appropriate ESD for non-SCC items (quoting the Mod number) and through SCC for SCC-controlled items. Other users are to demand their requirements in accordance with current regulations.
(c) The following materials are to be provided under Unit arrangements:

Ref No
Nomenclature
33C/1223
Ink, marking, Black

Qty
As Reqd
(2) Special Tools and Test Equipment

No special tools or test equipment are required for the embodiment of this modification.
6. MODIFICATION OF SPARES

No spares are affected by this modification.
7. CHANGE OF RFFTRENGE, PART AND ASSMBBLY NUMBERS

There are no changes of Reference, Part or Assembly Numbers as a result of this modification.

8. SEquence of oprrations

The following is the sequence of operations:
NOTE: Before any electrical circuit is disturbed or disconnected, all electrical power supplies in, to or from the equipment are to be disconnected. Power supplies are to be reconnected only when the person responsible for embodying or inspecting the modification is satisfied that all action has been taken to make the equipment safe for reconnection.

Where nuclear safety may be affected, the prescribed routeing of electric cables must be strictly followed.

It is assumed that the Calibrator Oscilloscope Type 192 is on the workbench.
(a) Position the unit so that the bottom is uppermost. Remove and retain the four 4BA Phillips retaining screws, and remove and retain the bottom cover.
(b) Refer to the Drawing. To the underside of the volts PCB, connect by soldering, the 10K Ω resistor, between TP1 and the emitter of TR109.
(c) In the position shown in the drawing, annotate the circuit reference R165 using black marking ink.
(d) Refit the bottom cover and secure with the four Phillips 4BA screws retained in Operation 8(a).
(e) Strike through without obliterating the figure 3 on the Modification Record Label.
9. SPECIAL TESTS AFTHR EMBODIMENT

No special tests are required after the embodiment of this modification.
10. RECORDING ACTION

Record on calibration/repair records (RAF).
11. DISPOSAL OF REDUNDANT PARTS

No parts are rendered redundant by the embodiment of this modification.
12. EFFECT ON WEIGHT

This modification has no effect on weight.
13. EFFFECT ON AIRCRAFT OR EQUIPMENT OPERATION AND HANDLING

This modification does not affect the operation or handing of the equipnent.
14. BFIFRCT ON SERVICING AND SERVICING SCHEDULE
(1) This modification does not affect the servicing of the equipment.
(2) This modification does not affect the servicing schedule.

899722 I.O.L. (D \& P) Ltd. 11/74

Calibrator, Oscilloscope (Ref No 10D/6625-99-117-8133), part of Calibrator Set Oscilloscope Type 192 Introduction of new Capacitor C180.
(Mod No A5225/5)
(Class D/3 on recalibration)
(RAF \& ARMY)
(ADSM25/M/27963)
(ADP No ZAA52250)

Amendment Instructions:- Insert this leaflet (2 leaves) in correct sequence. Sign the Amendment Record Sheet.

1. INTRODUCTION

It has been found that when the Calibrator Oscilloscope Type 192 is being used on "Square Wave" mode to check the voltage accuracy of high frequency oscilloscopes, modulation from the 1 MHz oscillator circuit causes a thicker trace to be displayed on the scope. To filter out this unwanted modulation a 300 pF capacitor C 180 is connected across the inner and outer conductor of the voltage output socket SKT 102.

The modification is to be embodied on all Calibrators, Oscilloscope (Ref No 10D/6625-99-117-8133) below serial number BCB 500.
(1) This modification does not supersede, partially supersede or satisfy the work called for by any Modification Command, Naval Service Modification, SII, SI or SRIM.
2. EMBODIMENT

This modification is to be embodied by RAF Flectronic Calibration Centres.
3. APPROXIMATE TIME REQUIRED FOR EMBODIMIENT

The work will take approximately $\frac{1}{2}$ man hour.
4. DRAWINGS REQUIRED

No drawings are required for the embodiment of this modification.
5. PARTS AND SPECIAL TOOLS RERUIRED
(1) Parts and Materials
(a) A Modification Kit will not be assembled.
(b) The following service supply items are required but not assembled as a Kit:m

Ref No Drg/Part No Nomenclature Qty
10C/5910-99m012-0130. GPM-5B Capacitor, Fixed, Metallised 1 $300 \mathrm{pF} \pm 20 \%$, 500 V .

RAF units are to forward their demands for the individual referenced item direct to the appropriate ESD for non-SCC items (quoting the Mod number) and through SCC for SCCmcontrolled items. Other users are to demand their requirements in accordance with current regulations.
(2) Special Tools and Test Equipment

No special tools or test equipment are required for the embodiment of this modification.
6. MODIFICATION OF SPARES

No spares are affected by this modification.
7. CHANGE OF REFERRMCE, PART AND ASSEMBLY NUMBEHS

There are no changes of Reference, Part or Assembly Numbers as a result of this modification.
8. SDRUEHCE OF OPERATIONS

The following is the sequence of operations:-
NOTE: Before any electrical circuit is disturbed or disconnected, all electrical power supplies in, to or from the equipment are to be disconnected. Power supplies are to be reconnected only when the person responsible for embodying or inspecting the modification is satisfied that all action has been taken to make the equipment safe for reconnection.

> When nuclear safety may be affected, the prescribed routing of electric cables must be strictly followed.
> It is assumed that the Calibrator Oscilloscope Type 192 is on the workbench.
(1) Position the Pype 192 so that the bottom is uppermost. Unscrew, remove and retain the four 4BA posidriv screws securing the bottom cover, remove and retain the bottom cover.
(2) Locate and identify socket SKT102 (Square Wave mode) positioned on the bottom left hand of the front panel. Connect, by soldering, the 300 pF capacitor C 180 between the inner conductor of SKT102 and the junction of resistor R152 and the outer conductor of SKT 102.
(3) Replace the bottom cover and secure it using the screws retained in operation (1).
(4) Strike through without obliterating the figure 5 on the Mod Record Label.
9. SPECIAL TESTS AFIER EMBODIMENT

No special tests are required after the embodiment of this modification.
10. RECORDING ACIION

Record in relevant unit documents.
11. DISPOSAL OF RBDUNDANI PARTS

No parts are rendered redundant by the embodiment of this modification.
12. BFFECT ON WEIGHT

This modification has no effect on weight.
13. EHFFECT ON AIRCRAFT OR EQUIPMENT OPERATION AND HANDLING

This modification does not affect the operation or handling of the equipment.
14. EFFTBCT ON SERVICING AND SERVICING SCHEDULE

This modification does not affect servicing or the servicing schedule.
15. EFFFECT ON NOCLEAR SAFETY AND BLBCTROMAGNETIC COMPATIBILITTY

This modification has no effect on nuclear safety and electromagnetic compatibility.
$161 / 512(\mathrm{~A} 4) 940006 / 65 / 7.75$

Page 4

[^0]: * Not always fitted

[^1]: Calibrator Oscilloscope, Type 192 (Ref No 10S/6625-99-117-8133) part of Calibrator Set, Oscilloscope, Type 192.

