Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AP117D-1003-1C3D2

FREQUENCY CONVERTER 6625-99-972-3960 (HEWLETT PACKARD 5253B)

GENERAL AND TECHNICAL INFORMATION SCALE OF REPLACEMENT PARTS

BY COMMAND OF THE DEFENCE COUNCIL

FOR USE IN THE
ROYAL AIR FORCE

by $D \operatorname{Sigs}(A I R)$
Publications authority: DATP/MOD(PE)

[^0]| Hewlett Packard model | RAF reference number | Air publication | Frequency range | Principles | Used with Hewlett Packard counters |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5252A | - | AP 117D-1003-1F | d.c. to 350 MHz | Pre-scaler | $\begin{aligned} & 5245 \mathrm{~L} / \mathrm{M} \\ & 5246 \mathrm{~L} \\ & 5247 \mathrm{~L} \\ & 5248 \mathrm{~L} / \mathrm{M} \end{aligned}$ |
| 5253B | 10D/9723960 | $\begin{array}{r} \text { AP } 117 \mathrm{D}-1003- \\ 1 \mathrm{C} 3 \mathrm{D} 2 \end{array}$ | 50 MHz to 512 MHz | Frequency converter | $\begin{aligned} & 5245 \mathrm{~L} / \mathrm{M} \\ & 5246 \mathrm{~L} \\ & 5247 \mathrm{~L} \\ & 5248 \mathrm{~L} / \mathrm{M} \end{aligned}$ |
| 5254C | 110S/1406091 | AP 117E-0409-16 | 150 MHz to 3 GHz | Frequency converter | $\begin{aligned} & 5245 \mathrm{~L} / \mathrm{M} \\ & 5246 \mathrm{~L} \\ & 5248 \mathrm{~L} / \mathrm{M} \end{aligned}$ |
| 5255A | 10D/9711203 | - | 3 GHz to 12.4 GHz | Frequency converter | $\begin{aligned} & 5245 \mathrm{~L} / \mathrm{M} \\ & 5246 \mathrm{~L} \\ & 5248 \mathrm{~L} / \mathrm{M} \end{aligned}$ |
| 5256A | 10S/2220630 | - | 8 GHz to 18 GHz | Frequency converter | $\begin{aligned} & 5245 \mathrm{~L} / \mathrm{M} \\ & 5246 \mathrm{~L} \\ & 5248 \mathrm{M} \end{aligned}$ |
| 5257A | 10S/1140568 | - | 50 MHz to 18 GHz | Transfer oscillator | $\begin{aligned} & 5245 \mathrm{~L} / \mathrm{M} \\ & 5246 \mathrm{~L} \\ & 5247 \mathrm{M} \\ & 5248 \mathrm{~L} / \mathrm{M} \end{aligned}$ |

Hewlett Packard counters: plug - in units

PREFACE

ALl to AP 117D-1003-1C changed the, AP number to AP 117D-1003-1C3D2 so that the AP now contains:-

Topic 1B - Hewlett Packard instructions manual for Frequency Changer HP5253B.

Topic 3D2 - RAF scale of replacement parts.
AL2 introduced circuit changes and piece part changes embodied in later models.

4 AL3 introduced a new prelim. page giving details of Hewlett Packard plug-in units.

This AP applies to models with serial number prefixes 311-321-450-513 716 and 828 .

ASSOCIATED PUBLICATIONS

Electronic Counters (Hewlett Packard 5245L and J12 5245L Operating Manual.

AP 117D-1003-1A
Electronic Counters (Hewlett Packard 5245L and J12 5245L Service Manual AP 117D-1003-1B3D1 Pre-Scaler (Hewlett Packard 5252A modified to Spec. H11-5252A)

TABLE OF CONTENTS

Section Page
I GENERAL 1-1
1-1. Description 1-1
1-5. Specifications 1-1
1-7. Accessory 1-1
1-9. Instrument Identification 1-1
1-11. Cooling 1-1
II PREPARATION FOR USE 2-1
$2-1$. Unpacking and Mechanical Inspection 2-1
2-3. Electrical Inspection 2-1
2-5. Storage and Reshipment 2-1
2-8. Installation 2-1
2-11. Power Requirements 2-1
2-13. Electrical Connections 2-1
III OPERATION 3-1
3-1. Front Panel 3-1
3-3. Maximum Input Voltages 3-1
$3-5$. Operating Procedures 3-1
3-6. Normal Range Measurements 3-1
3-8. Extended Range Measurements. 3-1
3-12. Double-Checking Frequency Measurement Result 3-1
3-14. Aid to Rapid Tuning 3-3
IV PRINCIPLES OF OPERATION 4-1
4-1. General 4-1
4-5. Harmonic Generator (A2, A3), and Harmonic Selector Cavity. 4-1
4-7. Mixer (A4) 4-2
4-9. Video Amplifier Assembly (A1) 4-2
4-11. Level Indicator Meter 4-2
V MAINTENANCE 5-1
5-1. General. 5-1
5-2. Introduction 5-1
5-4. Periodic Maintenance 5-1
5-6. Test Equipment 5-1
5-8. Troubleshooting 5-1
Page
V MAINTENANCE (cont'd)
5-10. Repair and Replacement 5-1
5-12. Printed Circuit Component Replacement 5-3
5-14. Video Amplifier Assembly Replacement 5-3
5-16. Mixer Diode Replacement 5-3
5-18. Meter Replacement Procedure 5-3
5-20. Harmonic Generatơr Adjustment 5-4
5-22. Low Pass Filter Adjustment. 5-4
5-25. Mechanical Adjustment of Meter Zero 5-5
5-28. Sensitivity Check 5-5
5-29. Meter Accuracy Check 5-5
5-30. Low Pass Filter Check 5-5
5-31. In-Cabinet Performance Check 5-6
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-4. Ordering Information 6-1
APPENDIX I not issued
APPENDIX II - Model 5253A IIA.
ILA -1. Int roduction IIA
ILA-3. Description IIA.
IIA - 7. Operating Procedure IIA.
IIA -8. Normal Range Measurements IIA.
IIA -10. Extended Range Measurements IIA.
ILA - 14. Video Amplifier Assembly (A1) IIA.
ILA - 16. Level Indicator Meter IIA.
ILA-18. Harmonic Generator Adjustment IIA -
ILA -20. Low Pass Filter Adjustment IIA -
ILA -22. Meter Adjustment IIA.
ILA-23. Mechanical Adjustment of
Meter Zero IIA -
ILA -26. Sensitivity Check IIA -
ILA -27. Meter Accuracy Check IIA -
IIA -28. Low Pass Filter Check IIA.
ILA-29. In-Cabinet Performance Check IIA -Converter Frequency Electronic(10D/6625-99-972-3860)

Figure		Page	Figure		Page
		.1-2	- 5-4.	Top View - Test Points	5-9/10
1-1.	Model 5253B	.1-2	5-5. S	Schematic Diagram	5-9/10
3-1.	Front Panel	.3-0	5-5A	Schematic Diagram	5-11/12
3-2.	Frequency Measurement Procedure.	.3-2	6-1	Mechanical Parts location 5253B	6-2
3-3.	Typical Frequency Measurements . .	.3-3	6-2	Mechanical Parts location 5253B	6-3
4-1.	Block Diagram	.4-0	APPENDIX		
4-2.	Harmonic Generator (A2, A3) \%	. .4-0		Frequency Measurement Procedure	IIA-2
4-3.	Harmonic Selector Cavity	. 4-1	IIA-2.	Video Amplifier (A6)	IIA-4
4-4.	Balanced Mixer (A4) .	. 4 -2	IIA-3.	Level Indicator Meter Circuit	$\begin{aligned} & \text { IIA-4 } \\ & \text { IIA } 4 \end{aligned}$
4-5.	Video Amplifier (A1)4-3	HA-4.	Top View	IIA-6
4-6.	Level Indicator Meter Circuit	.4-3	IIA-5.	Left Side View	IIA-7
5-1.	A1 Video Amplifier Component Location	. 5-6	IIA-6.	Right Side View	IIA-8
5-2.	Left Side View	.5-7	IIA-7.	Top View - Test Points	IIA-9
5-3.	Right Side View	.5-8	IIA-8.	Schematic Diagram	IIA-11
LIST OF TABLES					
Table		Page	Table		Page
1-1.	Specifications	1-1	6-2.	Replaceable Parts	6-7
3-1.	Frequency Resolution	3-1	APPE	NDIX	
5-1.	Recommended Test Equipment	5-1	IA-1.	Not issued	IA-3
5-2.	Resistance Troubleshooting Aid	. 5-1	IIA-1.	Specifications	IIA-1
5-3.	Troubleshooting Procedure.	. 5-2	IIA-2.	Troubleshooting Procedure	IIA-10
5-4.	Adjustments after Repair.	. 5-4	IIA-3.	. Reference Designation Index	IIA-12
6-1.	Reference Designation Index	6-4	IIA-4.	. Replaceable Parts .	. IIA-14

[^1]Page 8

SECTION I
 GENERAL

1-1. DESCRIPTION.

1-2. The Hewlett-Packard Model 5253B Frequency Converter is a plug-in unit which converts a HewlettPackard Model 5245L or 5246L Electronic Counter into a direct reading counter from 50 to 512 Mc .

1-3. The stability and accuracy of the basic counter are retained by multiplying a $10-\mathrm{Mc}$ signal, derived from the $1-\mathrm{Mc}$ internal time base of the counter, to a selectable harmonic frequency between 50 and 500 Mc. This known harmonic of 10 Mc is then heterodyned with the INPUT signal. If the resulting difference frequency is between 100 kc and 12 Mc (bandwidth of amplifier in plug-in), it is counted and displayed by the counter. The frequency of the INPUT signal is then indicated by the combination of the MIXING FREQUENCY control (in megacyles; front panel of plug-in) and the digital display of the counter (in megacycles).

1-4. A front panel meter, by monitoring the differ-ence-frequency output of the plug-in to the counter, aids in selecting the desired MIXING FREQUENCY and also in determining if INPUT signal amplitude is adequate for accurate frequency measurement.

1-5. SPECIFICATIONS.

1-6. Table 1-1 contains all technical specifications for the Model 5253B when operated in the Model 5245L
or Model 5246L Electronic Counter. Test specific tions given in the Maintenance Section (Section V) this manual, for the purposes of troubleshooting a adjustment, do not represent the technical specifi tions of the instrument.

1-7. ACCESSORY.

1-8. A 50 -ohm coaxial cable, 48 inches long, me BNC to male BNC, is furnished with the Model 52

1-9. INSTRUMENT IDENTIFICATION.

1-10. Hewlett-Packard identifies each Model 525 with a two-section, eight-digit serial number. If first three digits of the serial number of your ins ment do not agree with those on the title page of t manual, change sheets supplied with the manual, define the differences between your instrument the Model 5253B described in this manual.

1-11. COOLING.

1-12. The Model 5253B is cooled by the ventilati system of the counter in which it is installed. S operating and service manual of counter for cool system maintenance instructions.

Table 1-1. Specifications*

RANGE: As converter for 5245 L or 5246 L counter, 50 Mc to 512 Mc , using mixing frequencies of 50 Mc to 500 Mc in 10 Mc steps.

ACCURACY: Retains accuracy of 5245 L or 5246 L counter
INPUT VOLTAGE RANGE: 50 mv to 1 v RMS
MAXIMUM INPUT: 2 v RMS or 100 vdc will not damage the instrument
INPUT IMPEDANCE: Approximately 50 ohms
LEVEL INDICATOR: Meter aids frequency selection; indicates output voltage level to counter

REGISTRATION: Counter display is added to the converter dial reading
WEIGHT: Net 5-1/2 lbs, shipping 9 lbs
ACCESSORY FURNISHED: © 10503A (AC-16K) Cable, 4 feet long, male BNC connectors

[^2]

Figure 1-1. Model 5253B and Accessory

SECTION II
 PREPARATION FOR USE

2-1. UNPACKING AND INSPECTION.

$2-2$. If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage (scratches, dents, broken knobs, etc). If the instrument is damaged or fails to meet specifications, notify the carrier and the nearest Hewlett-Packard field office immediately (field offices are listed at the back of this manual). Retain the shipping carton and the padding material for the carrier's inspection. The field office will arrange for the repair or replacement of your instrument without waiting for the claim against the carrier to be settled.

2-3. ELECTRICAL INSPECTION.

2-4. The performance check procedure (Paragraph 5-31) may be used to verify proper electrical operation as part of an incoming quality control inspection.

2-5. STORAGE AND RESHIPMENT.

2-6. PACKAGING. To protect valuable electronic equipment during storage or reshipment, always use the best packaging methods available. Your HewlettPackard field engineer can provide packing materials similar to those used for original factory packaging. Here are two recommended packing methods:
a. Original. Place instrument in original container. Replace each packing pad and filler in the exact position that it originally occupied.
b. Alternate. Cover panel with soft wrapping paper. Wrap corrugated cardboard completely around instrument and place in strong corrugated cardboard container ($350 \mathrm{lb} / \mathrm{sq}$ in. bursting test). Insert filler material between wrapped instrument and container to obtain a snug fit on all surfaces. Filler should be rubberized hair (2 in . thick), excelsior (6 in . thick), or equivalent.

2-7. ENVIRONMENT. Conditions during storage and shipment should normally be limited as follows:
a. Maximum altitude 20,000 feet (6,096 meters).
b. Minimum temperature $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$.
c. Maximum temperature $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$.

CAUTION

TURN COUNTER POWER OFF BEFORE INSTALLING OR REMOVING FREQUENCY CONVERTER.

2-8. INSTALLATION.

$2-9$. The Model 5253B plugs into the rectangular compartment at the right-hand side of the front panel of the Model 5243L or 5245L Electronic Counter. To install unit in counter, first check that retaining screw (see Figure 3-1) is turned fully counterclockwise, then push unit firmly into compartment until front panel of plug-in is flush with front panel of counter. Then turn retaining screw clockwise until it is tight.
$2-10$. To remove unit from counter, turn retaining screw counterclockwise to its stop. Then grasp mixing frequency selector (see Figure 3-1) and firmly pull unit from counter. If any difficulty is encountered with installation or removal, check that retaining screw is fully counterclockwise.

2-11. POWER REQUIREMENTS.

2-12. All electrical power required to operate the Model 5253B is supplied by the counter in which the unit is installed.

2-13. ELECTRICAL CONNECTIONS .

2-14. INPUT connector on front panel of plug-in (see Figure 3-1) is the only external electrical connection to the unit. All other connections are made through the 50 -pin connector at the rear of plug-in when installed. in counter.

1. INPUT signal connector.
2. MIXING FREQUENCY SELECTOR. Calibrated in mc, this control tunes the internal cavity to select a harmonic of 10 mc to be heterodyned with the INPUT signal.
3. LEVEL INDICATOR METER. The meter circuit continuously monitors the level of the
difference-frequency output of converter to counter. When meter reads in the green portion of its scale, INPUT signal amplitude is adequate for accurate frequency measurement.
4. RETAINING SCREW. The screw which holds the converter in place is located on the front panel of the counter. To tighten, turn fully clockwise. To loosen, turn fully counterclockwise.

SECTION III OPERATION

3-1. FRONT PANEL.

3-2. The functions of the front panel control, meter, connector, and retaining screws are given in Figure 3-1.

3-3. MAXIMUM INPUT VOLTAGES.

3-4. Damage to the converter may result if an AC signal greater than 2 v RMS or a DC voltage greater than 100 v is applied to converter INPUT connector.

3-5. OPERATING PROCEDURES.

3-6. NORMAL RANGE MEASUREMENTS.

$3-7$. Figure $3-2$ is the procedure to be used for measurement of frequencies from 50.1 to 512 Mc with INPUT signal amplitudes from 50 mv to 1 v RMS.

3-8. EXTENDED RANGE MEASUREMENTS.

$3-9$. The frequency of signals not within the normal range of 50.1 to $512 \mathrm{Mc}, 50 \mathrm{mv}$ to 1 v RMS, may be measured using the following procedures:

3-10. 50 TO 50.1 MC, 50 MV TO 1 V RMS. Perform steps 1 through 5 of Figure 3-2. Then:
a. Set mixing frequency control to slightly more than 60 Mc .
b. Turn mixing frequency control slowly clockwise until level indicator meter first reaches a maximum reading in the green portion of its scale.
c. Subtract counter display (in Mc) from reading of mixing frequency control (in Mc) for frequency of INPUT signal.

3-11. 50 TO 512 MC , AMPLITUDE LESS THAN 50 MV RMS. The front panel level indicator meter indicates in the green portion of its scale only when converter is properly tuned and amplitude of INPUT signal is adequate for accurate frequency measurement. However, because of conservative specifications of both the converter and counter, frequencies may often be accurately measured when meter reads in the red portion of its scale. To make these extended range measurements:
a. Follow normal procedure (Figure 3-2 or Paragraph 3-10, depending upon frequency range) except that mixing frequency control should be tuned for first maximum reading on the level indicator meter, regardless of the color of region maximum.
b. Check frequency measurement result as described in Paragraph 3-12, or
c. Insert an external variable attenuator (such as Hewlett-Packard Model 355A or 355 C) in the transmission line between the converter and the source of INPUT signal. Vary attenuation from 0 to 1 db during final step of frequency measurement procedure. If counter display does not change more than momentarily (during switching of attenuator), INPUT signal is above noise threshold and frequency measurement result is valid.

3-12. DOUBLE-CHECKING FREQUENCY MEASUREMENT RESULT.

$3-13$. Because of the heterodyne action of the converter, frequency measurement results obtained at any one setting of the mixing frequency control may be checked at other settings. See Figure 3-3 for examples.

Table 3-1. Frequency Resolution

1. Turn SAMPLE RATE control slightly out of POWER OFF position.
2. Set SENSITIVITY to PLUG IN.
3. Set TIME BASE to . 1 ms .*
4. Set FUNCTION to FREQUENCY.
5. Connect signal whose frequency is to be measured to INPUT of converter.
6. Set mixing frequency control to read slightly less than 50 Mc .
7. Slowly turn mixing frequency control counterclockwise until level indicator meter first reaches a maximum reading in the green portion of its scale.
8. Add counter display (in Mc) to mixing frequency control reading (in Mc) for frequency of INPUT signal.
[^3]Figure 3-2. Frequency Measurement Procedure

3-14. AID TO RAPID TUNING

3-15. To easily obtain an indication of the proper MIXING FREQUENCY when rapidly tuning the Model 5253B through its frequency range in search of an unknown INPUT frequency, set counter FUNCTION control to MANUAL START. This allows the counter to
totalize each cycle of any difference frequency produced during rapid tuning. When counter display changes, indicating that the MIXING FREQUENCY is heterodyning with the INPUT frequency and producing a difference frequency within the frequency range of the basic counter, set counter FUNCTION control to FREQUENCY and proceed with measurement.

	$\begin{aligned} & \text { INPUT } \\ & \text { FREQ. } \end{aligned}$	A	B	C	
	155.000 MC	00000000	140	\square	DIFFERENCE FREQUENCY OF 15 MC IS ABOVEPASS band of video amplifier assembly.
		00005000	150	\square	$\begin{array}{r} \begin{array}{r} 50.000 \mathrm{MC} \\ +\quad 5.000 \mathrm{MC} \\ \hline 155.000 \mathrm{MC} \end{array} \end{array}$
		00005000	160	\square	$\begin{array}{r} 160.000 \mathrm{MC} \\ -\quad 5.000 \mathrm{MC} \\ 155.000 \mathrm{MC} \end{array}$
		00010030	140	\square	$\begin{array}{r} 140.000 \mathrm{MC} \\ +\quad 10.030 \mathrm{MC} \\ \hline 150.030 \mathrm{mC} \end{array}$
	150.030 MC	00000000	150	\#1	DIFFERENCE FREQUENCY OF 30 KC IS BELOW PASS band of Video ampliFier assembly
		00009970	160	\square	$\begin{array}{r} 160.000 \mathrm{MC} \\ -\quad 9.970 \mathrm{MC} \\ \hline 150.030 \mathrm{MC} \end{array}$
		00000000	480	\pm	difference frequenc OF 32 MC IS ABOVEPASS BAND OF VIDEO AMPLIFIER ASSEMbly.
	512.000 MC	00000000	490	± 1	DIFFERENCE FREQUENCY OF 22 MC IS ABOVE PASS band of video ampli. FIER assembly.
		00012000	500	\square	$\begin{array}{r} 500.000 \mathrm{MC} \\ +\quad 12.000 \mathrm{MC} \\ 512.000 \mathrm{MC} \end{array}$

Figure 3-3. Typical Frequency Measurements

Figures 4-1 and 4-2

Figure 4-1. Block Diagram

Figure 4-2. Harmonic Generator (A2, A3)

SECTION IV

PRINCIPLES OF OPERATION

4-1. GENERAL

4-2. The Model 5253B is a heterodyne frequency converter designed to extend the range of frequency measurement of the Model 5243L and 5245L Electronic Counters to 512 Mc .

4-3. The converter contains four basic functional sections: harmonic generator, harmonic selector cavity, mixer, and video amplifier (see Figure 4-1).

4-4. In normal operation, the harmonic generator produces all of the harmonics of 10 Mc between 50 and 500 Mc . The harmonic selector cavity is tuned to select one of these harmonics to be supplied to the mixer. The mixer output is the difference frequency produced by the mixing of the INPUT frequency and the frequency supplied by the harmonic selector cavity. This difference frequency is amplified by the video amplifier and supplied to the counter input circuit. A low-pass filter within the video amplifier prevents all difference frequency signals above approximately 12 Mc from reaching the counter input circuit. The output of the video amplifier is monitored by a meter circuit which indicates when difference frequency output amplitude is greater than minimum signal required by counter input circuit.

4-5. HARMONIC GENERATOR (A2,A3), AND HARMONIC SELECTOR CAVITY

4-6. A $10-\mathrm{Mc}$ signal, supplied by the Counter, is amplified by A3Q1 to cause a tuned circuit, composed of A3L2, A3C4, A3C5, A3C6, and C22, to oscillate at $10-\mathrm{Mc}$ (Fig. 4-2). Step-recovery diode*, A2CR1, takes energy from this tuned circuit during a portion of each cycle of the $10-\mathrm{Mc}$ oscillation and produces a sharp step in the current following in the input loop of the harmonic selector cavity. This current step makes available, inside the cavity, all harmonics of 10 Mc from 10 Mc (fundamental) to over 500 Mc (fiftieth harmonic). The remaining components of the steprecovery diode network (Assembly A2) are used to maintain the sensitivity of the counter across its frequency range. The harmonic selector cavity is tuned to resonate at a particular harmonic of 10 Mc between 50 and 500 Mc so that energy at that frequency is coupled from the input loop to the output loops providing one of the two inputs to the mixer circuit (Fig. 4-4).
*-hpa-Application Note \#1 (The Step Recovery Diode; Circuit Design and Performance), -hpa- Application Note \#2 (Harmonic Generation, Rectification, and Lifetime Evaluation with the Step Recovery Diode; reprinted from the PROCE EDINGS OF THE IRE, VOL. 50, NO. 7, JULY 1962); available from -hp associates-, 620 Page Mill Road, , Palo Alto, California.

08283-2-0
Figure 4-3. Harmonic Selector Cavity

4-7. MIXER (A4)

4-8. Matched diodes are used in a balanced mixer circuit in order to minimize the generation of evenorder harmonics of both the INPUT signal and the selected mixing frequency. The balanced input signal required by the circuit is accomplished by grounding the junction of the two resistors of equal value, A4R1 and A4R2, and installing ferrite rings (E1, E2, and E3) around the input coaxial cable (see Figure 4-4). Both sides of resistor A4R1 are returned to common for DC currents. However, for AC currents in the frequency range of 50 to 512 Mc , the impedance of the input signal path is large, due to the inductance provided by the ferrite rings E1, E2, and E3, causing a balanced AC signal condition at the mixer diodes. Limiting diode A4CR2 prevents INPUT signals of high amplitude from overloading the mixer circuit. The output of the mixer diodes, during normal operation when the converter is properly tuned, is a complex signal containing the INPUT signal frequency, the frequency of the harmonic of 10 Mc to which the harmonic selector cavity is tuned, the frequency that is the sum of these two frequencies, and the frequency that is the difference between these two frequencies. Inductor A4L1 reduces the amplitude of any signal with a frequency above approximately 15 Mc before the signal reaches the input to the video amplifier. The output of the mixer circuit is then essentially composed of the difference frequency signal.

4-9. VIDEO AMPLIFIER ASSEMBLY (AI)

$4-10$. The output of the mixer circuit is amplified by transistors A1Q1 and A1Q2 and is fed to the $12-\mathrm{Mc}$ low-pass filter network (see Figure 4-5). This filter passes any signal frequency below approximately 12 Mc and attenuates all higher frequency signals. 'The lowpass filter output is amplified by A1Q3 and A1Q4 and fed to the last transistor amplifier, A1Q5, which provides both the output to the counter and the drive for the level indicator meter. The limiter diode, A1CR1, prevents the amplitude of the video amplifier output signal from exceeding approximately 300 mv RMS so that counter input circuits will not be overloaded. The low frequency limit of the video amplifier, determined by the bypass and interstage coupling networks, is approximately 100 kc . The converter output signal to the counter, when converter is properly tuned, will be between approximately 100 kc and 12 Mc and will have an amplitude that is less than approximately 300 mv RMS.

4-11. LEVEL INDICATOR METER

$4-12$. The $D C$ current supply for the meter is produced by metering detector A1CR3 and smoothed by capacitor A1C16 (see Figure 4-6). The value of shunt resistor A1R20 is selected to make level indicator meter M1 read at red-green border when amplitude of converter output to counter is in excess of the $100-$ mv RMS minimum signal amplitude normally required by the counter for accurate frequency measurement.

Figure 4-4. Balanced Mixer (A4)

Figure 4-5. Video Amplifier (A1)

Figure 4-6. Level Indicator Meter Circuit

SECTION V MAINTENANCE

5-1. GENERAL.

5-2. INTRODUCTION.

5-3. This section contains information concerning periodic maintenance, troubleshooting and recommended test equipment, repair, circuit adjustments, and performance testing. A complete schematic diagram of the converter is at the rear of this section (Figure 5-5).

5-4. PERIODIC MAINTENANCE.

5-5. No special maintenance procedures are required when the converter is operated in normal environments. However, if unit is subjected to operation in extremely dusty environments, periodically clean all.gears with a lint-free cloth and apply a coating of light, petroleum base, open-gear grease to all gear teeth.

5-6. TEST EQUIPMENT.

5-7. All test instruments required for performance testing, troubleshooting, and circuit adjustment after repair are listed in Table 5-1. Instruments having equivalent specifications may be substituted for the specific instruments recommended.

5-8. TROUBLESHOOTING.

5-9. Table 5-2 lists resistances from connecting pins on connector J1 to chassis (when unit is not connected to counter) to aid in troubleshooting. Table 5-3 is a suggested troubleshooting procedure which lists circuit conditions at Test Points throughout the converter. These Test Points are keyed to the component
location drawings, Figures 5-1, 5-2, 5-3 and 5-4, and also to the schematic diagram, Figure 5-5. Voltages listed in Table 5-3 are approximate and may vary widely between instruments, due to variations in component values. Table 5-4 lists recommended adjustments to be made after repair of any section of the converter.

Table 5-2. Resistance Troubleshooting Aid

Location	Resistance (to Chassis)*
$\mathrm{J} 2-\operatorname{Pin} 1$	>100 megohms
$\mathrm{J} 2-\operatorname{Pin} 15$	1 K ohms $\pm 20 \%$
$\mathrm{~J} 2-\operatorname{Pin} 20$	140 K ohms $\pm 20 \%$
$\mathrm{~J} 2-\operatorname{Pin} 25$	125 K ohms $\pm 20 \%$

* Unit not connected to counter.

5-10. REPAIR AND REPLACEMENT.

5-11. Paragraphs 5-12 through 5-19 are replacement procedures to aid in repair of the converter. Detailed procedures for replacement of all the individual components of the unit are beyond the scope of this manual. In-field repair is, for the most part, simple and straightforward. However, do not attempt adjustment of the gearing arrangement, the harmonic selector cavity or the step-recovery diode. Should gear, cavity, or step recovery diode problems arise, please contact your Hewlett-Packard field office to arrange for repair.

Table 5-1. Recommended Test Equipment

Instrument	Required Characteristics	Use	Instrument Recommended
Electronic Counter		Supply Power, Visual Operational Indicator	56) Model 5243L or (道. Model 5245L
RF Millivoltmeter	1 Mc to 20 Mc 10 mv to 10 vdc 10 mv resolution	Circuit Adjustment, Troubleshooting	(t50) Model 411A with Pen Type Probe Tip, 6p 11022A (formerly ${ }^{\hbar} 411 \mathrm{~A}-21 \mathrm{~B}$)
DC VTVM and Ohmmeter	0 to +25 vdc 0.1 v resolution 0 to 100 M ohms	Circuit Adjustment, Troubleshooting	(49. Model 412A
VHF Signal Generator	50 Mc to 480 Mc 10 mv to 1 v	Circuit Adjustment, Troubleshooting	54. Model 608C
Oscilloscope	15 Mc bandwidth	Circuit Adjustment, Troubleshooting	边 Model 175A with (6) Model 1752A High Gain Amplifier and the Model 1780A Aux Unit
Extension Cable	50 pin straightthru connections	Circuit Adjustment, Troubleshooting	$\begin{aligned} & \text { top } 10506 \mathrm{~A} \text { (formerly } \\ & \text { fo AC-16Y) } \end{aligned}$

Table 5-3. Troubleshooting Procedure
All voltages given are approximate and may vary from instrument to instrument because of variations in component characteristics.
TEST EQUIPMENT: 㚐 Model 411A RF Millivoltmeter with ${ }^{\circ} 11022 \mathrm{~A}$ (formerly 411A-21B) Pen Type Probe Tip, Model 412A DC VTVM

REMOVE 夳5253B FROM COUNTER; SELF-CHECK COUNTER	See counter manual for self-check procedure.
CONNECT 45253B TO COUNTER WITH EXTENSION CABLE, © 10506 A (formerly AC-16Y)	Extension cable available from dem; see parts list.
+20 VDC 2. -15 VDC	Checks power supplied to plug-in from counter; see counter manual for power supply adjustment procedure.
(3) +6 VDC	Checks 10-Mc drive of harmonic generator.
(4) ± 2 VDC	Checks generator diode drive. Voltages vary widely because of both the detuning effect of voltmeter probe and the variable value of A3R3. DC voltage may be either + or --, depending upon factory determined generator diode orientation.
5 +100 MV DC 6 +100 MV DC	Voltages vary widely because of diode characteristics. Voltages are 0 VDC when diode shorted, and +20 VDC when diode open. Voltages should be approximately equal because of matched characteristics.

CONNECT SIGNAL GENERATOR TO
SET GENERATOR TO $52 \mathrm{MC}, \mathrm{CW}, 100 \mathrm{MV}$.
SET COUNTER CONTROLS AND 5253B TO
MEASURE FREQUENCY OF INPUT SIGNAL.

| 5 MV RMS |
| :--- | :--- | :--- |$|$| This voltage is total harmonic energy output of |
| :--- |
| mixer and varies widely. |

5-12. PRINTED CIRCUIT COMPONENT REPLACEMENT.

5-13. Component lead-holes in the ${ }^{\circ} \mathrm{P}$ Model 5253B circuit boards have plated walls to insure good electrical contact between conductors on the opposite sides of the board. To prevent damage to this plating and also to the replacement component, apply heat sparingly and work carefully. The following replacement procedure is recommended:
a. Remove defective component.
b. Melt solder in component lead-holes. Use clean, "dry" soldering iron to remove excess solder. Clean holes with toothpick or wooden splinter. Do not use metal tool for cleaning as this may damage the throughhole plating.
c. Bend leads of replacement component to the correct shape and insert component leads in component lead-holes. Using heat and solder sparingly, solder leads in place. Heat may be applied to either side of board as is convenient. A heat sink (long-nose pliers, commercial heat-sink tweezers, etc.) should be used when replacing transistors and diodes in order to prevent excessive heat from being conducted by the leads from the soldering iron to the component.
d. Through-hole plating breaks are indicated by the separation from the board of the round conductor-pad on either side of the board. To repair breaks, press conductor-pads against board and solder replacement component lead to conductor-pad on both sides of the board.

5-14. VIDEO AMPLIFIER ASSEMBLY REPLACEMENT.

5-15. If video amplifier printed circuit board requires replacement, follow this procedure:
a. Remove the converter from counter.
b. Unscrew and remove small screw (MP1; see Figure 5-4) which holds video amplifier A1 in place. Remove screws which secure supporting bracket to front panel. Remove supporting bracket.
c. Firmly grasp assembly at component-free end and pull out of socket using a slight back-and-forth sideways movement.
d. Check that the connecting terminals of replacement assembly are clean. Push replacement assembly firmly into socket and check for proper seating. Replace supporting bracket and all screws.
e. All replacement video amplifier assemblies are adjusted and inspected at the factory for optimum performance. However, if a general operational check is desired, perform the in-cabinet performance check given in Paragraph 5-31.

5-16. MIXER DIODE REPLACEMENT.

$5-17$. If either of the matched pair of mixer diodes (A4CR1A or A4CR1B) is found to be defective, both
diodes should be replaced. The recommended replacement procedure is as follows:
a. Remove mixer-assembly shield cover (see Figure 5-3).
b. Remove diodes from spring clips, noting orientation.
c. Install replacement diodes with same orientation.
d. Replace mixer-assembly shield cover.
e. Perform the sensitivity check (Paragraph 5-28) to insure that converter operation is within specifications.

5-18. METER REPLACEMENT PROCEDURE.

$5-19$. If the level indicator meter requires replacement, follow this procedure:
a. Remove converter from counter.
b. Unscrew and remove small retaining screw (MP1 see Figure 5-4) which holds video amplifier board A1 in place. Remove screws which secure supporting bracket to front panel. Remove supporting bracket.
c. Firmly grasp video amplifier board at the com-ponent-free end and pull board out of socket using a slight back-and-forth sideways movement.
d. Place converter on bench with bottom plate resting on bench surface and with the front panel facing to the rear of the bench.
e. Remove screw (MP2) which holds aluminum spacer-rod (MP3) to plastic rear-support (MP4; see Figure 5-2). Grasp spacer-rod and turn counterclockwise to remove rod from front support.
f. Cut connecting wires at meter terminals.
g. Remove screws (MP5, 6; see Figure 5-4) from meter bezel at sides of meter. Push bezel forward as far as possible.
h. Remove screws (MP7, 8) on top of meter bracket
i. Grasp meter and gently pull meter (and bracket) backwards out of front panel hole, at the same time twisting rear of meter slightly sideways to the right and pulling up.
j. Remove bracket and hardware from meter and install in identical manner on replacement meter. Hardware which may come from the manufacturer with the replacement meter may be discarded.
k. Place meter (with bracket) in unit by reversing removal procedure.
m. Replace screws on top of meter bracket.
n. Replace meter bezel at sides of meter.
p. Check that meter terminals are not close to front bearing-block. Bend terminals away from block if necessary.
q. Strip 1/4-inch insulation from ends of each connecting wire and solder to meter terminals. Black wire goes to inside terminal and white wire goes to outside terminal.
r. Replace aluminum spacer-rod. Tighten only "finger-tight" as excessive torque may break end of rod.
s. Replace screw which holds spacer-rod to rearsupport.
t. Replace video amplifier assembly, supporting bracket, and all screws.

5-20. HARMONIC GENERATOR ADJUSTMENT.

5-21. To adjust the harmonic generator assembly, proceed as follows:
a. Remove converter from counter and reconnect to counter with Extension Cable, 造10506A.
b. Connect VHF Signal Generator to converter INPUT and set to $472 \mathrm{Mc}, \mathrm{CW}$, at 100 mv .
c. Connect RF Millivoltmeter to Test Point \#12 (see Figure 5-4).
d. Set converter mixing frequency control to 470 Mc, and tune for maximum reading on RF Millivoltmeter.
e. Vary output of VHF Signal Generator to make converter level indicator meter read at red-green border.
f. Using plastic tuning tool, tune A3C5 (see Figure 5-2) for maximum reading on RF Millivoltmeter. Tune A3C5 through hole in harmonic generator assembly shield cover.

5-22. LOW PASS FILTER ADJUSTMENT.

5-23. To adjust the low pass filter in the video amplifier assembly, proceed as follows:
a. Remove converter from counter and reconnect to counter with Extension Cable, the 10506A.
b. Connect VHF Signal Generator to converter INPUT and set to $110 \mathrm{Mc}, \mathrm{CW}$, at 50 mv .
c. Connect RF Millivoltmeter to Test Point \#12 (see Figures 5-4 and 5-5).
d. Set converter mixing frequency control to 100 Mc and tune for maximum reading on $R F$ Millivoltmeter.
e. Set Signal Generator to $116.2 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
f. Using plastic tool, adjust variable inductor A1L4 (see Figures 5-1 and 5-5) for minimum reading of RF Millivoltmeter.
g. Set Signal Generator to $120.2 \mathrm{Mc}, \mathrm{CW},{ }^{\prime}$ at 1 v .
h. Using plastic tool, adjust variable inductor A1L3 (see Figures 5-1 and 5-5) for minimum reading of RF Millivoltmeter.
i. Set Signal Generator to $115 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
j. Reading of RF Millivoltmeter should be less than 100 mv . If reading is above 100 mv , troubleshoot video amplifier assembly.

Table 5-4. Adjustments after Repair

AFTER REPLACING COMPONENT IN THIS SECTION:	PERFORM:
Harmonic generator (A3)	Harmonic generator adjustment (Paragraph 5-20) Mixer (A4) A1Q1 A1Q2 Lowsitivity check (Paragraph 5-28)
A1Q3 Fass Filter	Sensitivity check (Paragraph 5-28) A1Q4 Lowsitivity check (Paragraph 5-28), and
Meter circuit	Sensitivity check (Paragraph 5-28), and Low pass filter adjustment (Paragraph 5-22)
Sensitivity check (Paragraph 5-28), and Low pass filter adjustment (Paragraph 5-22)	
Sensitivity check (Paragraph 5-28), and Low pass filter adjustment (Paragraph 5-22)	
Meter accuracy check (Paragraph 5-29)	

5-24. METER CALIBRATION ADJUSTMENT. (pri.)

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, 10506 A.
b. Set VHF Signal Generator to 102 Mc , CW, at 50 mv and connect to INPUT of converter.
c. Set counter controls as shown in Figure 3-2. Counter should display approximately 2 Mc.
d. Vary VHF Generator output to make level indicator meter read at red-green border.
e. Using RF Millivoltmeter, measure voltage at Test Point \#12. Voltage should be between 100 mv and 130 mv . If not, change value of resistor A1R20 to change voltage to between 100 mv and 130 mv . If voltage is too high, increase value of A1R20. If voltage is too low, decrease value of A1R20. Repeat steps d and e after changing value of A1R20.

5-25. MECHANICAL ADJUSTMENT OF METER ZERO.

5-26. TRUE SIGNAL LEVEL INDICATION. Level indicator meter is adjusted at the factory for proper mechanical zero. However, normal aging of meter components may change indicated zero level. To insure accuracy of input signal level indication, periodic adjustment of meter zero may be necessary.

5-27. ZERO-SET. Nhen meter is properly zero-set, pointer rests over the zero calibration mark at the left-hand end of meter scale when converter is (1) at normal operating temperature, (2) in normal operating position, and (3) without power. Proceed as follows:
a. Allow counter and converter to operate for one hour to permit meter movement to reach normal operating temperature.
b. Turn counter off and allow one minute for all capacitors to discharge.
c. Remove converter from counter to enable access to rear of meter.
d. Remove adhesive-backed-paper cover from meter zero-adjustment access hole on top-rear of meter.
e. Carefully insert small tool in access hole and engage adjustment fork.
f. Vary setting of adjustment fork until meter reads zero.
g. Remove tool and replace adhesive-backed-paper cover on access hole. This completes meter zero adjustment procedure.

5-28. SENSITIVITY CHECK.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, 10506A.
b. Set VHF Signal Generator to $52 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Adjust controls as shown in Figure 3-2.
d. Set converter mixing frequency control to 50
Mc. Counter should display approximately 2 Mc .
e. Using RF Millivoltmeter, measure output of converter at Test Point \#12 (see Figures 5-4 and 5-5). Voltage should be at least 100 mv .
f. Repeat above steps c, d, and e with VHF Generator frequency of 472 Mc and converter mixing frequency control set to 470 Mc . Converter output to counter, as measured by RF Millivoltmeter, should be at least 100 mv .
g. A similar check may be made at any frequency within the range of the Model 5253B. Converter output to counter should be at least 100 mv when difference frequency is between 100 kc and 12 Mc and converter is properly tuned.

5-29. METER ACCURACY CHECK.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, 奇 10506A.
b. Set VHF Signal Generator to 102 Mc , CW, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure 3-2. Set converter mixing frequency control to 100 Mc . Counter should display approximately 2 Mc .
d. Vary output of VHF Signal Generator for converter level indicator to make meter read at redgreen border.
e. Using RF Millivoltmeter, measure converter output to counter at Test Point \#12. Voltage should be between 100 mv and 130 mv . If not, see Paragraph 5-24 for meter calibration adjustment procedure.

5-30. LOW PASS FILTER CHECK.

a. Turn counter power off, remove converter from counter and reconnect to counter with Extension Cable, 币 10506A.
b. Set VHF Signal Generator to $110 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure 3-2. Set converter mixing frequency control to 100 Mc . Counter should display approximately 10 Mc .
d. Connect RF Millivoltmeter to Test Point \#12. Vary output of VHF Signal Generator for RF Millivoltmeter reading of 100 mv . Note output level of VHF Signal Generator.
e. Set VHF Signal Generator to 115 Mc at same output level as noted in step d above. Converter output to counter, as shown on RF Millivoltmeter, should not exceed 50 mv . If converter output to counter is greater than 50 mv , see Paragraph 5-23 for low pass filter adjustment procedure.

5-31. IN-CABINET PERFORMANCE CHECK.

a. Turn counter power off and install converter.
b. Set VHF Signal Generator to 52 Mc , CW, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure 3-2. Counte: should display approximately 2 Mc .
d. Set VHF Signal Generator to any frequency be tween 50 Mc and 512 Mc with output of 50 mv . Cour ter should display correct frequency at any frequen within this range.

Figure 5-1. Video Amplifier Assembly A1 Component Location

DAMAGE TO COUNTER
WILL RESULT IF THIS POINT IS GROUNDED

Figure 5-2. Left Side View

Figure 5-3. Right Side View

Figure 5-4. Top View - Test Points

SECTION VI
 REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and 布 stock number of each part, together with any applicable notes. Table 6-2 lists parts in alpha-numerical order of their $\frac{10}{}$ stock number and provides the following information on each part:
a. Description of the part (see list of abbreviations below).
b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in Table 6-3.
c. Manufacturer's part number.
d. Total quantity used in the instrument (TQ column).

6-3. Miscellaneous parts are listed at the end of Table 6-1.

6-4. ORDERING INFORMATION.

$6-5$. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office (see lists at rear of this manual for addresses). Identify parts by their Hewlett-Packard stock numbers.

6-6. To obtain a part that is not listed, include:
a. Instrument model number.
b. Instrument serial number.
c. Description of the part.
d. Function and location of the part.

01194-10

Figure 6-1. Mechanical Parts Location - 5253B

Figure 6-2. Mechanical Parts Location - 5253B

Table 6-1. Reference Designation Index

Reference Designation	(0p Stock No.	Description \#	Note
A1	5253A-65A	For models with serial prefix numbers 311 and 321 see page 6-7/8.	
A1	$\begin{aligned} & 05253-6007 \\ & 05253-2007 \end{aligned}$	ASSYIAMPLIFIER BOARDIBLANK P.C.	
AlCl	0160-0128	CIFXD CER 2.2UF 20\% 25VDCW	
Alce	0180-0100	C:FXO ELECT TA 4.7UF 10\% 35VDCW	
Alcs	0160-0127	CIFXO CER IUF 20\% 25 VOCW	
AlC4	0160-0137	CIFXD CER O.33UF 20\% 25VDCW	
AICS	0160-0127	CIFXD CER IUF 20\% 25VDCW	
A1C6	0160-0127	CIFXO CER LUF 20\% 25VDCW	
A1C7	0140-0194	CIFXD MICA 110 PF 5\% 300 VDCW	
A1C8	0160-0178	C :FXD MICA 27PF 5\% 300VDCW	
Alc9	0160-0332	C:IFXD MICA 133PF 1\%	
A1C10	0140-0214	CIFXD MICA 60PF 5\% 300VOCW	
A1C11	0140-0192	C1FXD MICA 6BPF 5\% 300VOCW	
A1C12	0160-0127	CIFXD CER 1UF 20\% 25VOCw	
A1C13	0160-0127	C:FXD CER IUF 20x 25VOCW	
A1C14 A1C 15	$0160-0127$ $0160-0161$	C:FXD CER IUF $20 \$ 25 V O C W$ C:FXD MY O.01 UF $10 \pm 200 \mathrm{VDCW}$	
A1C16	0150-0121	C3FXO CER O.1UF +80\%-20\% 50VOCw	
AICRI	1910-0022	SEMICON DEVICEIOIODE GE 100MA GPIV 3.5NS	
A1CR2	1910-0022	SEMICON DEVICE:DIODE GE 100MA 6PIV 3.5NS	
AICR 3	1910-0022	SEMICON DEVICEIDIODE GE IOOMA 6PIV 3.5NS	
AILI	9140-0137	COILIFXD RF 1000UH	
A1L2	9140-0138	COILSFXD RF 180UH 5\%	
All 3	9140-0126	COILIVAR 1.76-4.02	
A1L4	9140-0125	COIL:VAR 0.9-1.9 UH	
AlL5	9140-0143	COILIFXO RF 3.3 UH	
A101 A102	$1854-0005$ $1853-0009$	TRANSISTOR:2N7OB NPN SILICON TRANSISTORISILICON PNP	
A102 A 103	$1853-0009$ $1854-0005$	TRANSISTORISILICON PNP TRANSISTOR:2N708 NPN SILICON	
A104	1853-0009	TRANSISTOR:SILICON PNP	
A105	1854-0005	TRANSISTOR: $2 N 708$. NPN SILICON	
A1R1	0683-1025	R:FXD COMP 1000 OHM 5\% 1/4w	
A1R2	0683-3925	RIFXO COMP 3900 OHM 5\% 1/4w	
A1R3	0683-4305	RIFXD COMP 43 OHM 5\% .25w	
A1R4	0683-5115	RIFXD COMP 510 OHM 5\% $1 / 4 \mathrm{~W}$	
A1R5	0683-1025	RIFXD COMP 1000 OHM 5\% 1/4W	
A1R6 A1R7	$0683-5115$ $0683-4315$		
A1R8	0683-1315	R:FXD COMP 130 OHM 5\% $1 / 4 \mathrm{~W}$	
A1R9	0683-1815	RIFXD COMP 180 OHM 5* $1 / 4 \mathrm{w}$	
A1R10	0683-4305	RIFXD COMP 43 OHM 5\% .25w	
ARP11 A1R12	0683-5115	RiFXD COMP 510 OHM 5\% 1/4w RIFXD COMP 1000 OHM 5\% $1 / 4 \mathrm{w}$	
A1R13	0683-5115	RIFXD COMP 510 OHM 5\% 1/4W	
A1R14	0683-4315	RIFXD COMP 430 OHM 5\% $1 / 4 \%$	
A1R15	0683-5125	RIFXD COMP 5100 OHM 5\% 1/4w	
$\begin{aligned} & A 1 R 16 \\ & \text { A1R17 } \end{aligned}$	$\begin{aligned} & 0683-2725 \\ & 0683-7515 \end{aligned}$	R:FXD COMP 2700 OHM 5\% $1 / 4 W$ RIFXD COMP 750 OHM 5\% $1 / 4 \mathrm{~W}$	

Table 6-1. Reference Designation Index (Cont'd)

Reference Designation	布 Stock No.	Description \#	Note
A1R18	0683-3915	RIFXD COMP 390 OHM 5\% 1/4w	
A1R19	0683-1525	R:FXD COMP 1500 OHM 5\% 1/4w	
A1R20	0683-4305	RIFXD COMP 43 OHM 5\% .25w FACTORY SELECTED COMPITYPICAL VALUE GIVEN	
A2	05253-6003	ASSYISTEP RECOVERY OIODE	
A2C 1 A2CR1	0150-0061	$\begin{aligned} & \text { CIFXO CER } 20 \text { PF } 100 \text { VDCW } \\ & \text { SPECIALLY SELECTED PART } \\ & \text { NOT RECOMMENDED FOR FIELD REPLACEMENT } \end{aligned}$	
A 2 EL	$9170-0029$ $9170-0029$	CORE: FERRITE BEAD	
A $2 E 2$	9170-0029	COREI FERRITE BEAD	
A2L1	9140-0170	COIL-FXD - 15 UH 205 350 MA	
A2R1	0683-3315	RIFXO COMP 330 OHM 5\% 1/4w FACTORY SELECTED PARTITYPICAL VALUE GIVEN	
A3	5253A-65B	ASSYIHARMONIC GENERATOR	
ABC1	0150-0093	CIFXD CER O.01UF +80-20\% 100VDCW	
ASC2	0170-0094	CIFXD MY 0.047UF 20\% 50VDCW	
${ }^{\text {A S }} 3$	0140-0151	CIFXU MICA E2OPF 2\% 300VOCW	
A3C4	0140-0200	CIFXD MICA 390PF 5\% 300VOCW	
A3C5	0130-0016	CIVAR CER 5-25 PF NPO	
A3C6	0140-0191	CIFXO MICA 56 PF 5\% 300 VOCW	
A3L1	9140-0107	COILIFXD RF 27 UH	
A3L2	9140-0025	COILIFXO RF 4.7 UHY	
A301	$\begin{aligned} & 1854-0005 \\ & 0686-2425 \end{aligned}$	TRANSISTOR:SILICON NPN 2N708 RIFXD COMP 2400 OHM 5* 1/2w	
A3R2	0683-2205	RIFXD COMP 22 OHM 5\% 1/4w	
A3R3	0683-5625	RIFXU COMP 5600 OHM 5\% $1 / 4 \mathrm{~W}$ factory selected partitypical value given	
A4	5253A-65C	ASSY:MIXER	
A4C:	0140-0069	CIFXD MICA 550 PF 10\% 500 VDCW	
$A 4 C 2$	0150-0050	C:FXD CER 1000PF 600 VDCW	
A4C3	0170-0040	C:FXD MY. 047 UF 10x 200VDCW	
A4CR1 A4CR2	$\begin{aligned} & 1901-0347 \\ & 1910-0016 \end{aligned}$	SEMICON DEVICEIDIODE IN4IGBM MATCH PAIR DIODE,GERMANIUM:100MA ATO.85V GOPIV	
A4L2	9140-0142	COIL:FXD RF 2.2 UH	
A4R1	0683-3305	RIFXD COMP 33 OHM 5\% $1 / 4 w$	
A 4 R2	0683-3305	RIFXD COMP 33 OHM 5\% 1/4w	
A4R3	0684-5621	RIFXD COMP 5.6K OHM 10\% 1/4W	
A 484	0683-2245	RIFXD COMP 220K OHM 5\% 1/4w	
A4R5	0683-2245	RIFXO COMP 220K OHM 5\% 1/4w	
$\begin{aligned} & \text { A4R6 } \\ & \text { A4R7 } \end{aligned}$	$\begin{aligned} & 0683-2715 \\ & 0683-6205 \end{aligned}$	RIFXD COMP 270 OHM 5\% 1/4W RIFXD COMP 62 OHM 5\% $1 / 4$ w FACTORY SELECTED PART:TYPICAL VALUE GIVEN	
$\begin{aligned} & C 21 \\ & c 22 \end{aligned}$	$\begin{aligned} & 0160-0127 \\ & 0140-0069 \end{aligned}$	C:FXO CER IUF 20\% 25VDCW CIFXD MICA 550 PF 10\% 500 VDCW NOT RECOMMENDED FOR FIELD REPLACEMENT	

\# See list of abbreviations in introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

\# See list of abbreviations in introduction to this section

Table 6-1 Reference Designation Index

Reference Designation	(4) Stock No.	Description \#	Note
		Applies to models with serial prefix numbers 311 and 321	-
A1	5253A-65A	ASSYBVIDEO AMPLIFIER	
A1C1	0160-0127	C PFXD LUF OHM 20\% 25VDCW	
A1C2	0160-0127	CIFXD 1UF OHM 20\% 25VDCW	
A IC3	0180-0100	C IFXD ELECT TA 4. TUF 10\% 35VDCw	
A1C4	0160-0137	C IFXO CER O.33UF 20\% 25VDCW	
A1CS	0160-0127	CsFXD LUF OHM 20. 25 VDCW	
AlC6	0160-0137	CIFXO CER O.33UF 20\% 25VOCw	
Alct	0140-0176	CIFXD MICA 100 PF 2\$ 300 VDCW	
Alcs	0140-0203	CIFXO MICA 30PF 5\% 500VOCW	
A1C9	0140-0193	CIFXD MICA 82 PF 5\% 300 VOCW	
AIC10	0140-0191	CIFXD MICA 56 PF 5\% 300 VDCW	
AlCII	0140-0204	C:FXD 47PF 5\% NPO 500 VDCW	
A1C 12	0150-0121	C 3 FXD I LMF 50VDCW	
A1C13	0160-0127	CIFXD LUF OHM 20\% 25VDCW	
A1C14	0160-0127	C:FXD IUF OMM 20\% 25VDCW	
AIC15	0140-0189	CIFXD MICA 5825 PF 2x 300 VDCw	
A1C16	0150-0121	CIFXD - 1MF 50VOCW	
AICRI	1901-0040	DIODE:SILICON	
AICR2	1901-0040	DIODE:SILICON	
AICR3	1901-0040	DIODE:SILICON	
L1	9140-0118	COIL:FXD 500 UH 5\%	
L2	9140-0118	COILIFXD 500 UH 58	
A1L3	9140-0126	COIL:VAR 1.76-4.02	
A1L4	9140-0125	COIL:VAR 0.9-1.9 UHY	
A1L5	9140-0111	COIL:FXD RF 3.3UHY	
4101	1850-0091	TRANSISTOR:GERMANIUM 2N2048 PNP	
A 102	1850-0091	TRANSISTORIGERMANIUM 2 N2048 PNP	
A103	1850-0091	TRANSISTORIGERMANIUM 2N2048 PNP	
A104	1850-0091	TRANSISTOR:GERMANIUM 2N204日 PNP	
A1R1	0683-7525	RIFXD COMP 7500 OHMS 5\% 1/4W	
A1R2	0683-1225	R:FXD 1200 OHM 5\% 1/4\%	
A1R3	0683-1225	R:FXD 1200 OHM 5\% 1/4w	
A1R4	0683-3305	R PFXD COMP 33 OHMS 5\% 1/4w	
A1R5	0683-1225	RIFXO COMP 1200 OHMS 5\% $1 / 4 \mathrm{~W}$	
A1R6	$0683-3615$ $0683-1025$	R:FXD COMP 360 OHMS 5\% $1 / 4 \mathrm{w}$ RIFXD COMP 1000 OHMS 5\% $1 / 4$	
A1R7 A1R8	0683-1025	RIFXD COMP 1000 OHMS 5* $1 / 4 \mathrm{~m}$ RIFXD 27 OHM 10\% $1 / 4 \mathrm{~W}$	
A1R8 A1R9	$0684-2701$ $0684-1511$		
AlR10	0683-2225	R:FXD 2.2K OHM 5\% 1/4W	
A1R11	0683-4725	R:FXD COMP 4700 OHMS 5* 1/4W	
A1R12	0683-4725	R:FXO COMP 4700 OHMS 5* $1 / 4 \mathrm{~W}$	
A1R13	0683-6815	R:FXD COMP 680 OHMS 5\% 1/4w	
A1R14	0683-5115	RiFXO COMP 510 OHMS 5\% $1 / 4 \mathrm{w}$	
A1R15	0683-3915	R2FXD COMP 390 OHMS 5\% 1/4W	
A1R16 A1R17	$\begin{aligned} & 0683-1025 \\ & 0683-1225 \end{aligned}$	RIFXD COMP 1000 OHMS 5* $1 / 4 \mathrm{~W}$ RIFXD 1200 OHM 5\% 1/4W	
AlR18	0684-1041	RIFXD 100 K OHM 10\% $1 / 4 \mathrm{w}$	
AR19	0683-8205	RIFXD COMP 82 OHMS 5\% 1/4\%	

Table 6-2. Replaceable Parts

(ta) Stock No.	Description\#	Mfr.	Mfr. Part No.	TQ
0130-0016	CIVAR CER 5-25 PF NPO	28480		
0140-0069	CIFXD MICA 550 PF 10×500 VDCW	00853	TYPE M 100 E10	
0140-0151	CIFXD MICA 82OPF 28300 VDCW	04062	RDM1SFB21G3S	2 1
0140-0191	CIFXD MICA 56 PF 5\% 300 VDCW	04062	RDM15E560J3C	1
0140-0192	CSFXD MICA G8PF 5\% 300VDCW	04062	RDM15E680J3C	1
0140-0194	C ${ }^{2} F X D$ MICA 110 PF 5\% 300 VDCW			1
0140-0200	C: FXD MICA 390PF 5* 300VDCW	04062	RDM15F391J3C	1
0140-0214	C PFXD MICA 60PF 5\% 300VOEW	04062	RDM15E600J3C	1
0150-0050	C IFXD CER 1000PF 600 VOCW	84411	TYPE E	1
0150-0061	C PFXD CER 20 PF 100 VDCW	56289	$53 \mathrm{CH7}$	1
$\begin{aligned} & 0150-0093 \\ & 0150-0121 \end{aligned}$	C:IFXD CER O.01UF +80-20\% 100VOCW C:FXD CER O.1UF +80\%-20\% 5OVDC*	91418	TA	1
$0150-0121$ $0160-0127$	C:FXD CER O.IUF +80\%-20\% SOVDW CiFXD CER 1UF 20\% 25 VDCW	56289 56289	5C50A $5 \mathrm{Cl3}$ 5015	1 6
0160-0128	C:FFD CER 2.2UF 20x 25VDCw	56289	${ }_{5 C 15}$	1
0160-0137	C IFXD CER O.33UF 20\% 25VDCW	56289	5C10	1
0160-0161	CIFXD MY 0.01 UF 10\% 200VOCW	28480	0160-0161	1
0160-0178	C:FXD MICA 27PF 5\% 300VDCW	04062	RDM15E270J3S	1
0160-0332	CiFXD MICA 133PF 18	28480	0160-0332	1
0170-0040	C:FXD MY 0.047 UF 10\% 200VDCW	28480	0170-0040	1
0170-0094	C:FXD MY 0.047UF 208 50VOCW	84411	TYPE 602	1
0180-0100	CIFXD ELECT TA 4.7UF JOE 35VOCW	56289	1500475 ${ }^{\text {c }}$ 9035B2	1
0683-1025	RiFXD COMP 1000 OHM 58 1/4w	01121	CB 1025	3
0683-1315	R:FXD COMP 130 OHM 5\% 1/4w	01121		1
0683-1525	RiFXD COMP 1500 OHM 5\% 1/4W	01121	CB 1525	1
0683-1815	RIFXD COMP 180 OHM 5\% 1/4w	01121	CB 1815	1
0683-2205	RIFXD COMP 22 OHM 5\% 1/4W	01121	CB 2205	1
0683-2245	RIFXD COMP 220K OHM 5* 174w	01121	CB 2245	2
0683-2715	RIFXD COMP 270 OHM 5\% 1/4w	01121	CB 2715	1
$0683-2725$ $0683-3305$	RIFXD COMP 2700 OHM 5\% 174w RIFXD COMP 33 OHM $5 \times 1 / 4 \mathrm{w}$	01121	$C B-2725$ $C B$ 305	$\frac{1}{2}$
-0683-3315	RiFXD COMP 330 OHM 5\% $1 / 4 \mathrm{w}$	01121 01121	CB 3305	1 1
0683-3915	R:FXD COMP 390 OHM 5\% 1/4W	01121	CB 3915	2
O683-3925	R:FXD COMP 3900 OHM 5\% 174	01121	CB 3925	
0683-4305	RIFXD COMP 43 OHM 5\% .25w	01121	CB 4305	3
0683-4315	RaFXD COMP 430 OHM 5\% 1/4w	01121	CB 4315	2
0683-5115	RafxD COMP 510 OHM 5\% 1/4w	01121	CB 5115	4
$0683-5125$ $0683-5625$		01121	$\begin{array}{ll}C B & 5125 \\ C B & 5625\end{array}$	1
$0683-5625$ $0683-6205$		01121 01121	CB 5625	1
0683-7515	R:FXD COMP 750 OHM 5* 1/4W	01121	CB 7515	1

Table 6-2. Replaceable Parts (Cont'd)

[^4]
APPENDIX II - 5253A

IIA-I. INTRODUCTION.

IIA-2. The 5253A is basically the same as the 5253 B except for frequency range. The 5253A measures from 100 to 500 Mc . The 5253 B measures from 50 to 500 Mc . The frequency range of the 5253 B was extended by changing the pick-up loop in the cavity. The 5353B manual will apply for most applications. Appendix II covers the differences between the two models and contains the necessary information for the operation and maintenance of the 5253 A .

IIA-3. DESCRIPTION.

IIA-4. The Hewlett-Packard Model 5253A Frequency Converter is a plug-in unit which converts a HewlettPackard Model 5243L or 5245L Electronic Counter into a direct reading counter from 88 to 512 Mc .

IIA-5. The stability and accuracy of the basic counter are retained by multiplying a $10-\mathrm{Mc}$ signal, derived from the $1-\mathrm{Mc}$ internal time base of the counter, to a selectable harmonic frequency between 100 and 500 Mc. This known harmonic of 10 Mc is then heterodyned with the INPUT signal. If the resulting difference frequency is between 100 kc and 12 Mc (bandwidth of amplifier in plug-in), it is countedand displayed by the counter. The frequency of the INPUT signal is then indicated by the combination of the MIXING FREQUENCY control (in megacycles; front panel of plug-in) and the digital display of the counter (in megacycles.

IIA-6. A front panel meter, by monitoring the differ-ence-frequency output of the plug-in to the counter,
aids in selecting the desired MIXING FREQUENCY and also in determining if INPUT signal amplitude is adequate for accurate frequency measurement.

IIA-7. OPERATING PROCEDURE.

IIA-8. NORMAL RANGE MEASUREMENTS.

IIA-9. Figure IIA-1 is the procedure to be used for measurement of frequencies from 100.1 to 512 Mc with INPUT signal amplitudes from 50 mv to 1 v RMS.

IIA-10. EXTENDED RANGE MEASUREMENTS.

IIA-11. The frequency of signals not within the normal range of 100.1 to $512 \mathrm{Mc}, 50 \mathrm{mv}$ to 1 v RMS, may be measured using the following procedures:

IIA-12. 88 TO 100. $1 \mathrm{MC}, 50 \mathrm{MV}$ TO 1 V RMS. Perform steps 1 through 5 of Figure IIA-1. Then:
a. Set mixing frequency control to slightly more than 110 Mc .
b. Turn mixing frequency control slowly clockwise until level indicator meter first reaches a maximum reading in the green portion of the scale.
c. Subtract counter display (in Mc) from reading of mixing frequency control (in Mc) for frequency of INPUT signal.

Table IIA-1. Specifications*
RANGE: As converter for 5243 L or 5245 L counter, 88 Mc to 512 Mc , using mixing frequencies of 100 Mc to 500 Mc in 10 Mc steps

ACCURACY: Retains accuracy of 5243 L or 5245 L counter
INPUT VOLTAGE RANGE: 50 mv to 1 v RMS
MAXIMUM INPUT: 2 v RMS or 100 vdc will not damage the instrument
INPUT IMPEDANCE: Approximately 50 ohms
LEVEL INDICATOR: Meter aids frequency selection; indicates output voltage level to counter

REGISTRATION: Counter display is added to the converter dial reading
WEIGHT: Net $5-1 / 2 \mathrm{lbs}$, shipping 9 lbs
ACCESSORY FURNISHED: to $10503 \mathrm{~A}(\mathrm{AC}-16 \mathrm{~K})$ Cable, 4 ft long, male BNC connectors
*When installed in Hewlett-Packard Model 5243L or Model 5245L Electronic Counter.

1. Turn SAMPLE RATE control slightly out of POWER OFF position.
2. Set SENSITIVITY to PLUG IN.
3. Set TIME BASE to .1 ms .*
4. Set FUNCTION to FREQUENCY.
5. Connect signal whose frequency is to be measured to INPUT of converter.
6. Set mixing frequency control to read slightly less than 100 mc .
7. Slowly turn mixing frequency control counterclockwise until level indicator meter first reaches a maximum reading in the green portion of its scale.
8. Add counter display (in mc) to mixing frequency control reading (in mc) for frequency of INPUT signal.
[^5]IIA-13. 88 TO 512 MC , AMPLITUDE LESS THAN 50 MV RMS. The front panel level indicator meter indicates in the green portion of its scale only when converter is properly tuned and amplitude of INPUT signal is adequate for accurate frequency measurement. However, because of conservative specifications of both the converter and counter, frequencies may often be accurately measured when meter reads in the red portion of its scale. To make these extended range measurements:
a. Follow normal procedure (Figure IIA-1 or Paragraph IIA-12, depending upon frequency range) except that mixing frequency control should be tuned for first maximum reading on the level indicator meter, regardless of the color of region maximum.
b. Insert an external variable attenuator (such as Hewlett-Packard Model 355A or 355C) in the transmission line between the converter and the source of INPUT signal. Vary attenuation from 0 to 1 db during final step of frequency measurement procedure. If counter display does not change more than momentarily (during switching of attenuator), INPUT signal is above noise threshold and frequency measurement result is valid.

IIA-14. VIDEO AMPLIFIER ASSEMBLY (AI).

IIA-15. The output of the mixer circuit is amplified by transistors A1Q1 and A1Q2 and is fed to the $12-\mathrm{Mc}$ low-pass filter network (see Figure IIA-2). This filter passes any signal frequency below approximately 12 Mc and attenuates all higher frequency signals. The low-pass filter output is amplified by A1Q3 and fed to the last transistor amplifier, A1Q4, which provides both the output to the counter and the drive for the level indicator meter. The limiter diode, A1CR1, prevents the amplitude of the video amplifier output signal from exceeding approximately 300 mv RMS so that counter input circuits will not be overloaded. The low frequency limit of the video amplifier, determined by the bypass and interstage coupling networks, is approximately 100 kc . The converter output signal to the counter, when converter is properly tuned, will be between approximately 100 kc and 12 Mc and will have an amplitude that is less than approximately 300 mv RMS.

IIA-16. LEVEL INDICATOR METER .

IIA-17. The dc current supply for the meter is produced by metering detector A1CR3 and smoothed by capacitor A1C16 (see Figure IIA-3). The value of shunt resistor A1R19 is selected to make level indicator meter M1 read at red-green border when amplitude of converter output to counter is in excess of the $100-\mathrm{mv}$ RMS minimum signal amplitude normally required by the counter for accurate frequency measurement.

IIA-18. HARMONIC GENERATOR ADJUSTMENT.

IIA-19. To adjust the harmonic generator assembly, proceed as follows:
a. Remove converter from counter and reconnect to counter with Fxtension Cable, 奇 10506A.
b. Connect VHF Signal Generator to converter INPUT and set to $472 \mathrm{Mc}, \mathrm{CW}$, at 100 mv .
c. Connect RF Millivoltmeter to Test Point \#13 (see Figure IIA-5).
d. Set converter mixing frequency control to 470 Mc, and tune for maximum reading on RF Millivoltmeter.
e. Vary output of VHF Signal Generator to make converter level indicator meter read at red-green border.
f. Using plastic tuning tool, tune A3C5 (see Figure IIA-5) for maximum reading on RF Millivoltmeter. Tune A3C5 through hole in harmonic generator assembly shield cover.

HA-20. LOW PASS FILTER ADJUSTMENT.

IIA-21. To adjust the low pass filter in the video amplifier assembly, proceed as follows:
a. Remove converter from counter and reconnect to counter with Extension Cable, ${ }^{6} 10506$ A.
b. Connect VHF Signal Generator to converter INPUT and set to $110 \mathrm{Mc}, \mathrm{CW}$, at 50 mv .
c. Connect RF Millivoltmeter to Test Point \#13 (see Figure IIA-7).
d. Set converter mixing frequency control to 100 Mc and tune for maximum reading on RF Millivoltmeter.
e. Set Signal Generator to $118 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
f. Using plastic tool, adjust variable inductor AlL4 (see Figure IIA-4) for minimum reading of RF Millivoltmeter.
g. Set Signal Generator to $117 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
h. Using plastic tool, adjust variable inductor AlL3 (see Figure IIA-4) for minimum reading of RF Millivoltmeter.
i. Set Signal Generator to $115 \mathrm{Mc}, \mathrm{CW}$, at 1 v .
j. Reading of RF Millivoltmeter should be less than 100 mv . If reading is above 100 mv , troubleshoot video amplifier assembly.

IIA-22. METER ADJUSTMENT.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, 南 10506A.
b. Set VHF Signal Generator to $102 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set counter controls as shown in Figure IIA-1. Counter should display approximately 2 Mc .
d. Vary VHF Generator output to make level indicator meter read at red-green border.

Figure IIA-2. Video Amplifier (A6)

Figure IIA-3. Level Indicator Meter Circuit
e. Using RF Millivoltmeter, measure voltage at Test Point \#13. Voltage should be between 100 mv and 130 mv . If not, change value of resistor A1R19 to change voltage to between 100 mv and 130 mv . If voltage is too high, increase value of A1R19. If voltage is too low, decrease value of A1R19. Repeat steps d and e after changing value of A1R19.

IIA-23. MECHANICAL ADJUSTMENT OF METER ZERO .

IIA-24. TRUE SIGNAL LEVEL INDICATION. Level indicator meter is adjusted at the factory for proper mechanical zero. However, normal aging of meter components may change indicated zero level. To insure accuracy of input signal level indication, periodic adjustment of meter zero may be necessary.

IIA-25. ZERO-SET. When meter is properly zeroset, pointer rests over the zero calibration mark at the left-hand end of meter scale when converter is (1) at normal operating temperature, (2) in normal operating position, and (3) without power. Proceed as follows:
a. Allow counter and converter to operate for one hour to permit meter movement to reach normal operating temperature.
b. Turn counter off and allow one minute for all capacitors to discharge.
c. Remove converter from counter to enable access to rear of meter.
d. Remove adhesive-backed-paper cover from meter zero-adjustment access hole on top-rear of meter.
e. Carefully insert small tool in access hole and engage adjustment fork.
f. Vary setting of adjustment fork until meter reads zero.
g. Remove tool and replace adhesive-backed paper cover on access hole. This completes meter zero adjustment procedure.

IIA-26. SENSITIVITY CHECK.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, 布 10506A.
b. Set VHF Signal Generator to 102 Mc , CW, at 50 mv and connect to INPUT of converter.
c. Adjust controls as shown in Figure ПA-2.
d. Set converter mixing frequency control to 100
Mc. Counter should display approximately 2 Mc .
e. Using RF Millivoltmeter, measure output of converter at Test Point \#13 (see Figure IIA-7). Voltage should be at least 100 mv .
f. Repeat above steps c, d, and e with VHF Generator frequency of 472 Mc and converter mixing frequency control set to 470 Mc . Converter output to counter, as measured by RF Millivoltmeter, should be at least 100 mv .
g. A similar check may be made at any frequency within the range of the Model 5253A. Converter output to counter should be at least 100 mv when difference frequency is between 100 kc and 12 Mc and converter is properly tuned.

IIA-27. METER ACCURACY CHECK.

a. Turn counter power off, remove converter from counter, and reconnect to counter with Extension Cable, top 10506A.
b. Set VHF Signal Generator to 102 Mc , CW, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure IIA-1. Set converter mixing frequency control to 100 Mc . Counter should display approximately 2 Mc .
d. Vary output of VHF Signal Generator for converter level indicator to make meter read at redgreen border.
e. Using RF Millivoltmeter, measure converter output to counter at Test Point \#13. Voltage should be between 100 mv and 130 mv . If not, see Paragraph ILA-22 for meter calibration adjustment procedure.

IIA-28. LOW PASS FILTER CHECK.

a. Turn counter power off, remove converter from counter and reconnect to counter with Extension Cable, top 10506A.
b. Set VHF Signal Generator to $110 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure IIA-1. Set converter mixing frequency control to 100 Mc . Counter should display approximately 10 Mc .
d. Connect RF Millivoltmeter to Test Point \#13. Vary output of VHF Signal Generator for RF Millivoltmeter reading of 100 mv . Note output level of VHF Signal Generator.
e. Set VHF Signal Generator to 115 Mc at same output level as noted in step d above. Converter output to counter, as shown on RF Millivoltmeter, should not exceed 50 mv . If converter output to counter is greater than 50 mv , see Paragraph IIA-20 for low pass filter adjustment procedure.

IIA-29. IN-CABINET PERFORMANCE CHECK.

a. Turn counter power off and install converter.
b. Set VHF Signal Generator to $102 \mathrm{Mc}, \mathrm{CW}$, at 50 mv and connect to INPUT of converter.
c. Set controls as shown in Figure IIA-1. Counter should display approximately 2 Mc .
d. Set VHF Signal Generator to any frequency between 88 Mc and 512 Mc with output of 50 mv . Counter should display correct frequency at any-frequency within this range.

Figure IIA-4. Model 5253A, Top View

Figure IIA-5. Left Side View

Figure IIA-6. Right Side View

Figure IIA-7. Top View - Test Points

Table IIA-2. Troubleshooting Procedure
All voltages given are approximate and may vary from instrument to instrument because of variations in component characteristics.

REMOVE 5 F 5253 A FROM COUNTER; SELF-CHECK COUNTER	See counter manual for self-check procedure.
CONNECT ${ }^{\circ}$ 5253AATO COUNTER WITH EXTENSION CABLE, 审10506A (formerly AC-16Y)	Extension cable available from 通; see parts list.
1. +20 VDC (2) -15 VDC	Checks power supplied to plug-in from counter; see counter manual for power supply adjustment procedure.
3) +6 VDC	Checks 10-Mc drive of harmonic generator.
(4) $\pm 2 \mathrm{~V}$ VDC	Checks generator diode drive. Voltages vary widely because of both the detuning effect of voltmeter probe and the variable value of A3R3. DC voltage may be either + or --, depending upon factory determined generator diode orientation.
$+100 \mathrm{MV} \mathrm{DC}$ +100 MV DC	Voltages vary widely because of diode characteristics. Voltages are 0 VDC when diode shorted, and +20 VDC when diode open. Voltages should be approximately equal because of matched characteristics.

CONNECT SIGNAL GENERATOR TO © 5253A.
SET GENERATOR TO $102 \mathrm{MC}, \mathrm{CW}, 100 \mathrm{MV}$.
SET COUNTER CONTROLS AND 5253A TO
MEASURE FREQUENCY OF INPUT SIGNAL.

71. 5 MV RMS	This voltage is total harmonic energy output of mixer and varies widely.
8. $\begin{aligned} & -6 \mathrm{VDC} \\ & 15 \mathrm{MV} \text { RMS }\end{aligned}$	Checks bias and amplification of A1Q1
$\begin{array}{ll}\text { (9) } & -10 \mathrm{VDC} \\ 200 \mathrm{MV} \text { RMS }\end{array}$	Checks bias and amplification of A1Q2
-4 VDC 15 MV RMS	General check of low pass filter section
-9 VDC 500 MV RMS	Checks bias and amplification of A1Q3
-8.5 VDC 300 MV RMS	Checks operation of A1Q4
$0 \mathrm{VDC}$ 200 MV RMS	Checks operation of limiter, A1CR1
0 MV DC WHEN METER READS AT LEFT END OF SCALE; 50 MV DC WHEN METER READS FULL SCALE; 15 MV DC WHEN TEST POINT \#13 IS 100 MV RMS, AND METER READS AT RED-GREEN BORDER.	Checks accuracy of meter circuit in relation to output to counter

Table IIA-3. Reference Designation Index

Reference Designation	(9) Stock No.	Description \#	Note
Al	5253A-65A	ASSY:VIDEO AMPLIFIER	
Alcl	0160-0127	C:FXD CER 1.0 UF 20\% 25VDCw	
Alcz	0160-0127	C:FXD CER 1.0 UF 20% 25VDCW	
AlC3	0180-0100	C:FXD ELECT TA 4.7 UF 10\% 35nBCW	
AlC4	0160-0137	C:FXD CER 0.33 UF 20\% 25VDCW	
Alc5	0160-0127	C:FXD CER 1.0 UF 20\% 25VDCW	
Alc6	0160-0137	C:FXD CER 0.33 UF 20\% 25VDCw	
Alc7	0140-0176	C :FXD MICA $100 \mathrm{PF} 2 \% 300 \mathrm{VOCW}$	
Alcs	0140-0203	C:FXD MICA $30 \mathrm{PF} 5 \% 500 \mathrm{VDCW}$	
Alc9	0140-0193	C:FXD MICA $82 \mathrm{PF} 5 \% 300 \mathrm{VDCW}$	
Alcio	0140-0191	C:FXD MICA 56 PF $5 \% 300 \mathrm{VDCW}$	
Alcil	0140-0204	C:FXD MICA 47 PF 5\% NPO 500VDCW	
AlCl2	0150-0121	C:FXD CER O.1 UF +80-20\% 50VDCW	
AlCl3	0160-0127	C :FXD CER 1.0 UF 20% 25VOCW	
A1C14	0160-0127	C:FXD CER 1.0 UF 20% 25VDCW	
AlCl5	0140-0189	C:FXD MICA 5825 PF 2\% 300VOCW	
A1Cl6	0150-0121	C:FXD CER O.1 UF +80-20\% 50VDCW	
AlCRI	1901-0040	DIODE:SILICON	
AlCR2	1901-0040	DIODE:SILICOM	
AlCR3	1901-0040	DIODE:SILICON	
All	9140-0118	COIL:500MH 5\%	
All 2	9140-0118	COIL: $500 \mathrm{MH} 5 \%$	
All 3	9140-0126	COIL:VAR 1.76-4.02 UH	
All 4	9140-0125	COIL:VAR 0.9-1.9 UH	
All 5	9140-0111	COIL: FXD RF 3.3 UH	
AlQ1	1850-0091	TRANSISTOR:GERMANIUM PNP 2N2048	
AlQ2	1850-0091	TRANSISTOR:GERMANIUM PNP 2 N2048	
A183	1850-0091	TRANSISTOR:GERMANIUM PNP 2N2048	
AlQ4	1850-0091	TRANSISTOR:GERMANIUM PNP 2N2048	
AlRI		R:FXD COMP 7500 OHM $5 \% 1 / 4 W$	
AlR2	0683-1225	R:FXD COMP 1200 OHM $5 \% 1 / 4 W$	
AlR3	0683-1225	R:FXD COMP 1200 OHM $5 \% 1 / 4 \mathrm{w}$	
AlR4	0683-3305	R:FXD COMP 33 OHM 5\% 1/4W	
AIR5	0683-1225	R:FXD COMP 1200 OHM $5 \% 1 / 4 \mathrm{~W}$	
AlR6	0683-3615	R:FXD COMP 360 OHM $5 \% 1 / 4 \mathrm{~W}$	
AlR7	0683-1025	R:FXD COMP 1000 OHM 5\% 1/4W	
AlR8	0684-2701	R:FXD COMP 27 OHM 10\% 1/4W	
AlR9	0684-1511	R:FXD COMP 150 OHM 10\% $1 / 4 \mathrm{~W}$	
AlRio	0683-2225	R:FXD COMP 2.2K OHM 5\% 1/4W	
AlRII		R:FXD COMP 4700 OHM $5 \% 1 / 4 \mathrm{w}$	
AlR12	$0683-4725$	F:FXD COMP 4700 OHM $5 \% 1 / 4 \mathrm{~W}$	
AlR13	$0683-6815$	R:FXD COMP 680 OHM $5 \% ~ 1 / 4 W$	
AlR14	$0683-5115$	R:FXD COMP 510 OHM $5 \% 1 / 4 W$	
AlR15	0683-3915	R:FXD COMP 390 OHM 5\% $1 / 4 \mathrm{~W}$	
AlR16 AlR17 AlR18 A1R19	$\begin{aligned} & 0683-1025 \\ & 0683-1225 \\ & 0684-1041 \\ & 0683-8205 \end{aligned}$	R:FXD COMP 1000 OHM $5 \% 1 / 4 \mathrm{~W}$ R:FXD COMP 1200 OHM $5 \% 1 / 4 \mathrm{~W}$ R:FXD COMP 100K OHM $10 \% 1 / 4 \mathrm{~W}$ R:FXD COMP 82 OHM $5 \% 1 / 4 W$ FACTORY SELECTED PART;TYPIGAL VALUE GIVEN	

Table IIA-3. Reference Designation Index (Cont'd)

Reference Designation	(59) Stock No.	Description \#	Note
A2	5253A-95A	ASSY:STEP RECOVERY DIDDE NOT RECOMMENDED FOR FIELD REPLACEMENT	
A2CRI	1901-0120	DIODE : STEP RECOVERY, SPECIALLY SELECTED PART.	
A2E1		CORE : TOROID, SPECIALLY SELECTED PART.	
A3	5253A-65B	ASSY:HARMONIC GENERATOR	
A3C1	$0150-0093$	C:FXD CER 0.01 UF +80-20\% 100VDCW	
A3C2	0170-0094	C:FXD MY 0.047 UF 20\% 50VDCW	
A3C3	0140-0151	C:FXD MYCA 820 PF 2\% 300VDCW	
A3C4	0140-0200	C:FXD MICA 390 PF 5% 300VDCW	
A3C5	0130-0016	C: VAR CER 5-25 PF NPO	
A3C6	0140-0191	C:FXD MICA $56 \mathrm{PF} 5 \% 300 \mathrm{VDCW}$	
$\begin{aligned} & A 3 L 1 \\ & A 3 L 2 \end{aligned}$	$\begin{aligned} & 9140-0107 \\ & 9140-0025 \end{aligned}$	COIL:FXD RF 27 UH COIL:FXD RF 4.7 UH	
A3R1 A3R2 A3R3	$\begin{aligned} & 0686-2425 \\ & 0683-2205 \\ & 0683-5625 \end{aligned}$	R:FXD COMP 2400 OHM $5 \% 1 / 2 W$ R:FXD COMP 22 OHM $5 \% 1 / 4 W$ R:FXD COMP 5600 OHM $5 \% 1 / 4 W$ FACTORY SELECTED PART;TYPICAL VALUE GIVEN	
A4	5253A-65C	ASSY:MIXER DOES NOT CONTAIN A4CRI, ORDER SEPARATELY	
A4C1 A4C2 A4C3	$0140-0069$ $0150-0050$ $0170-0040$	$\begin{aligned} & \text { C:FXD MICA 550.PF 10\% 500VDCW } \\ & \text { C:FXD CER 1000 PF 600VDCW } \\ & \text { C:FXD MY O.047 UF 10\% 200VDCW } \end{aligned}$	
A4CR1 A4CR2	$\begin{aligned} & 1900-0011 \\ & 1910-0016 \end{aligned}$	DIODE:SILICON IM4168M, MATCHED PAIR DIODE: GERMANIUM 1 MICROSEC 60 WIV	,
A4L1	9140-0142	COIL:FXD RF 2.2 UH	
A4R1	0683-3305	R:FXD COMP 33 OHM 5\% $1 / 4 \mathrm{~W}$	
A4R2	0683-3305	R:FXD COMP 33 OHM 5\% 1/4W	
A4R3	0684-5621	R:FXD COMP 5.6K OHM 10\% 1/4W	
A4R4	0683-2245	R:FXD COMP 220K OHM 5\% $1 / 4 W$	
A4R5	0683-2245	R:FXD COMP 220K OHM 5\% 1/4W	
$\begin{aligned} & \text { A4R6 } \\ & \text { A4R? } \end{aligned}$	$\begin{aligned} & 0683-2715 \\ & 0683-6205 \end{aligned}$	R:FXD COMP 270 OHM 5\% 1/4W R:FXD COMP 62 OHM $5 \% 1 / 4 \mathrm{~W}$ FACTORY SELECTED APRT;TYPICAL VALUE GIVEN	
$C 21$ $C 22$ $C 23$ $C 24$	$0160-0127$ $0140-0069$ $0160-0127$ $0160-0227$	$\begin{aligned} & \text { C:FXD CER } 1.0 \text { UF } 20 \% 25 \mathrm{VDCW} \\ & \text { C:FXD MICA } 550 \text { PF } 10 \% \text { 500VDCW } \\ & \text { C:FXD CER } 1.0 \text { UF } 20 \% 25 \mathrm{VDCW} \\ & \text { C:FXD CER } 1.0 \text { UF } 20 \% ~ 25 \mathrm{VDCW} \end{aligned}$	
E1 E2 E3	$\begin{aligned} & 9170-0059 \\ & 9170-0059 \\ & 9170-0059 \end{aligned}$	CORE:TOROID CORE:TOROID CORE : TOROID	
J1	$1250-0102$ $1251-0099$	CONNECTOR:BNC CONNECTOR:50-P IN MINIATURE	
R21	0684-5621	R:FXD COMP 5600 OHM 10\% 1/4W	
XA1	1251-0135	CONNECTOR :15 CONTACTS	

[^6]Table IIA-4. Replaceable Parts

(4) Stock No.	Description*	Mfr	Mfr. Part No.	TQ
5253A-65A	ASSY:VIDEO AMPLIFIER	28480	5253A-65A	1
5253A-658	ASSY:HARMONIC GENERATOR	28480	5253A-658	1
5253A-65C	ASSY BMIXER	28480	5253A-65C	1
5253A-95A	ASSY:STEP RECOVERY DIODE	28480	5253A-95A	1
0130-0016	C: VAR CER 5-25 PF NPO	28480	0130-0015	1
0140-0069	C:FXD MICA 550 PF 10\% 500VDCW	00853	TYPE M100 E10	2
0140-0151	C:FXD MICA 820 PF 2\% 300VDCW	04062	DM15F 8216	1
0140-0176	C:FXD MICA 100 PF $2 \% ~ 300 V D C W$ C:FXD MICA 5825 PF $2 \% 300 \mathrm{VDCW}$	04062	DM15F 101G 300 V	1
0140-0189	C:FXD MICA 5825 PF 2\% 300VDCW	04062		1
0140-0191	C:FXO MICA 56 PF 5\% 300VDCW	04062	DM15E 560J 300V	2
0140-0193	C.FXD MICA $82 \mathrm{PF} 5 \% 300 \mathrm{VOCW}$	04062	DM15E 820J 300V	1
0140-0200	C:FXD MICA 390 PF $5 \% 300 \mathrm{VOCW}$	04062	0M15F 391J 300V	1
0140-0203	C:FXD MICA $30 \mathrm{PF} 5 \%$ 500VDCW	04062	DM15E 300N 500V	1
0140-0204	C:FXD MICA 47 PF 5\% NPO 500VOCW	04062	DMISE 470	1
0150-0050	C:FXD CER 1000 PF 600VOCW	18486	TYPE E	1
0150-0093	C:FXD CER 0:01 UF $+80-20 \%$ 100VOCW	91418		1
0150-0121	C:FXD CER 0:1 UF $+80-20 \%$ 50VOCW	56289	5C50A	2
0160-0127	C:FXD CER 1:0 UF 20\% 25VOCW	56289	5 C 13	8
0160-0137	C:FXD CER 0.33 UF 20\% 25VOCW	56289	5610	2
0170-0040	C:FXD MY 0:047 UF 10\% 200VOCW	56289	$192 P 47392$	1
0170-0094	C:FXD MY 0.047 UF 20% 50VOCW	84411	TYPE 602	1
0180-0100	C:FXD ELECT TA 4.7 UF 10\% 35VOCW	56289	1500475×903582	1
0683-1025	R:FXD COMP 1000 OHM $5 \% 1 / 4 \mathrm{~m}$	01121	CE 1025	2
0683-1225	R:FXD COMP 1200 OHM $5 \% 1 / 4 \mathrm{w}$	01121	CB 1225	4
0683-2205	R:FXD COMP 22 OHM 5\% $1 / 4 \mathrm{~W}$	01121	C8 2205	1
0683-2225	R:FXD COMP 2.2K OHM $5 \% 1 / 4 \mathrm{~W}$	01121	CB 2225	1
0683-2245	R:FXD COMP 22OK OHM $5 \% 1 / 4 \mathrm{~W}$	01121	C8 2245	2
0683-2715	R:FXD COMP 270 OHM $5 \% 1 / 4 \mathrm{~m}$	01121	C8 2715	$\frac{1}{3}$
0683-3305	R:FXD COMP 33 OHM 5\% 1/4w	01121	C8 3305	3
0683-3615	R:FXD COMP 360 OHM 5\% 1/4W	01121	CB 3615	1
0683-3915	R:FXD COMP 390 OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 3915	1
0683-4725	R:FXD COMP 4700 OHM $5 \% 1 / 4 \mathrm{~W}$	01121.	CB 4725	2
$0683-5115$ $0683-5625$	R:FXD COMP R:FXD COMP 510 5600 OHM OHM 5% $1 / 4 \mathrm{~W}$ $1 / 4 \mathrm{~W}$	01121	CB 5115 CB 5625	1
0683-6205	R:FXD COMP 62 OHM 5\% 1/4W	01121	CB 6205	1
0683-6815	R:FXD COMP 680 OHM 5\% 1/4w	01121	CB 6815	1
0683-7525	R:FXD COMP , 7500 OHM \% $5 \% 1 / 4 \mathrm{~W}$	01121	CB 7525	1
0683-8205	R:FXD COMP 82 OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 8205	1
0684-1041	R:FXD COMP 100K OHM $10 \% 1 / 4 \mathrm{~m}$	01121	CE 1041	1
0684-1511	R:FXD COMP 150 OHM $10 \% 1 / 4 \mathrm{~W}$	01121	CB 1511	1
0684-2701	R:FXD COMP 27 OHM $10 \% 1 / 4 \mathrm{~m}$	01121	CB 2701	1
0684-5621	R:FXD COMP 5600 OHM 10\% 1/4w	01121	C8 5621	2
0686-2425	R:FXD COMP 2400 OHM 5\% 1/2w	01121	EB 2425	1
1250-0102	CONNECTOR :BNC	91737	1250-0102	1
1251-0099	CONNECTOR:50-PIR MINIATURE	02660	57-10500	1
1251-0135	CONNECTOR:IS-CONTACTS	95354	SD 615 UR	1
1850-0091	TRANS ISTOR:GERMANIUM PNP 2N2O48	87216	2N2048	4
1900-0011	DIODE:SILICON IN4168m MATCHED PAIR	93332	11041683	1
1901-0049	DIODE:SILICON	28480	1901-0040	3
1910-0016	DIODE: GERMANIUM 1 MICROSEC 60 WIV	28480	1910-0016	1
9140-0025	COIL 9 PD RF 4.7 UH	28480	9140-0025	1
9140-0107	COIL 3FXD RF 27 UH	28480	9140-0107	1
9140-0111	COIL FFXD RF 3.3 UF	28480	9140-0111	1
9140-0118	COIL:500 MM 5\%	99800	2500-14	2
9140-0125	COIL:VAR 0:9-1.9 UH	28480	9140-0125	1
9140-0126	COIL:VAR 1.76-4.02 UH	28480	9140-0126	1
9140-0142	COIL:FXD RF 2.2 UH	28480	9140-0142	1
9170-0059	CORE 3 TOROID	02114	396T125-102	3

[^7]
[^0]: Service users should send their comments through the channel prescribed for the purpose in:
 A.P. 3158 Vol. 2 Leaflet No.D6

[^1]: Prelim.

[^2]: *When installed in Hewlett-Packard Model 5245L or Model 5246L Electronic Counter.

[^3]: * TIME BASE setting may vary, depending on desired resolution of INPUT signal frequency. See Table 3-1.

[^4]: $=$ See list of abbreviations in introduction to this section

[^5]: * TIME BASE setting may vary, depending on desired resolution of INPUT signal frequency. See table 3-1.

[^6]: $=$ See list of abbreviations in introduction to this section

[^7]: \# See list of abbreviations in introduction to this section

