Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

AP 117D-0608-1F

SPECTRUM ANALYSER SET HP 140T/141T SERIES RF SECTION 8555A
 (10S/5270766)

GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL

Ministry of Defence
Sponsored for use in the

ROYAL AIR FORCE by DWSE (RAF)

Publications authority: DATP/MOD (PE)

Service users should send their comments through
the channel prescribed for the purpose in:
AP 3458 Vol. 2 Leaflet No.D6 (ARMY and RAF)

Model Number: 8555A
Date Printed: March 1972
Part Number: 08555-90016

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the marual.

To use this supplement:
Make all ERRATA corrections
Make all appropriate serial number related changes indicated in the tables below.

- new item

ERRATA

Page 1-12, Table 1.5:
On "Cover Assy" line, change to read, "Modified HP 5060-0740".
Page 2-2, paragraph 2-21A:
Add the following:
2-21A. Three HP 11593A 50 -ohm Terminations are supplied with each HP 8555A. They should be connected to the unused EXT MIXER, FIRST LO OUTPUT, and SECOND LO OUTPUT connectors on the front panel.

Page 3.7, Figure 3-2:

Change last two sentences of 5 to read, "Provides input for external blanking signal (-1.5 V) for external scan mode operation. Provides input for external positive or negative trigger pulses ($2-20 \mathrm{~V}$, normally negative, polarity selected by internal switch in IF Section) for external scan trigger operation."

Page 4-9, paragraph 4-21:
In step 1, change SCAN TIME PER DIVISION setting to 10 MILLISECONDS.
Page 5-6, paragraph 5-24:
Change step 7 to read as follows:
7. Set SCAN WIDTH to FULL and adjust A4R28, 4.1 GHz adj., to dip the 2 GHz comb line (20 th comb line) at the frequency marker.

NOTE

Manual change supplements are revised as often as necessary to keep manuds as current and accurate as possible Hewlett-Packard recommends that vou periodicaliv request the latest edition of this supplement Free copies dre dvalable from all HP offices. When requesting copies quote the manual identification information from vour supplement. or the model number and print date from the title page of the manual.

ERRATA (Cont'd)

Page 5-2 1, Table 5-1:
Under SCAN WIDTH PER DIVISIONS, on 6th, 7 th , and 8 th lines from bottom of table, change " MHz " to read, " kHz ".
Page 6.9. Table 6-2:
Add "A6MP3 0340-079 41 INSULATOR FOR A6U1".
Page 6-15. Table 6-2:
Change "A14A2T1" to read, "A14A2RT1".

Page 8-19, Figure 8-21, Service Sheet 3:
To A11A1C1, add "0.5 ALTERNATE VALUE".

Page 8-23, Figure 8.33, Service Sheet 5:
Pin number for 50 MHz output to IF Section should be P3-A1 (not P3-A2).
Page 8-46, Service Sheet 17 :
On Figure 8-74, near Detail A, add, "ITEM 63 (WASHER) IS LOCATED BETWEEN ITEMS 2 AND 35." On the table, add, " 63 (SEE NOTE) WASHER FLAT 0.378 ID 3050-0029".

Beside the table, add the following:

NOTE

If necessary, one or more of item 63 to be included to remove end-play from shaft.

CHANGE 1

Page 6-9. Table 6-2: Add A6MP3 0340-0794 INSULATOR FOR U1.

Page 6-12, Table 6-2:
Add A11A1C1 0160-3549 C:FXD PORC 0.5 ± 1 PF (ALTERNATE FOR 0160-3636).
Page 8-2. Table 8-1:
Add A11A1C1 Second LO Stabılity with turn-on.

Page 8-19, Figure 8-21, Service Sheet 3 :
Change A11A1C1 to read, " $\mathrm{C} 1 * 0.4$ OR 0.5 (ALTERNATE VALUE)."

CHANGE 2

Page 6-14, Table 6.2:
Delete A14A2C1 0180-1743 C: FXD ELECT 0.1 UF 10 35 VDCW.

Add A14A2C1 0160-3094 C: FXD ELECT 0.1 UF $10 \% 100$ VDCW.

CHANGE 3

Page 6-6. Table 6-2:
Change A2A5L6 to $9140-0094$ COIL:FXD RF 0.68 UH.
Page 8-23, Figure 8-33, Service Sheet 5:
Change A2A5L6 to $0.68 \mu \mathrm{H}$.

-CHANGE 4

Page 6-6, Table 6-2:
Add A4P1 0360-0124 TERMINAL PIN:ROUND.
Page 6-18, Table 6-2:
Add W29 - WIRE: 24 AWG WHITE (4.5 IN).
Add W29J1 1200-0063 LUG:CRIMP.
Page 8-27, Figure 8-40, Service Sheet 7 :
Replace appropriate portion of schematic with attached partial schematic.
Page 8-45, Figure 8-73, Service Sheet 16 :
Replace appropriate portion of schematic with attached partial schematic.

Figure 8-40. YIG Driver and Oscillator (P/O Change 4)

AUXILIARY "A" (8444A TRACKING GENERATOR)
Figure 8-73. $R F / I F$ Section Interconnection Diagram (P / O Change 4)

SPECTRUM ANALYZER RF SECTION

8555A

SERIAL NUMBERS

This manual applies directly to serial numbers prefixed 1203A.

With modifications described in Section VII this manual also applies to serial numbers prefixed $987,1043 \mathrm{~A}, 1114 \mathrm{~A}, 1116 \mathrm{~A}, 1138 \mathrm{~A}$ and 1143A.

For additional important information about serial numbers see "Instruments Covered by Manual" in Section I.

TABLE OF CONTENTS

Section Page1-1
1-1. INTRODUCTION 1-1
1-5. Instruments Covered by Manual 1-1
1-7. Description $1 \cdot 1$
1-12. Optional Equipment 1-2
1-14. Operating Accessories $1-2$
1-16. Equipment Required but not Supplied $1-2$
1-18. Test Equipment Required 1.2
1-20. Warranty 1-2
II INSTALLATION 2-1
2-1. Initial Inspection 2-1
2-2. Mechanical Check $2-1$
2-4. Electrical Check 2-1
2-6. Claims for Damage $2 \cdot 1$
2-9. Preparation for Use 2-1
2-10. Shipping Configuration 2-1
2-12. Power Requirements $2-1$
2-15. Power Cable $2-1$
2-17. Operating Environment 2-1
2-19. Interconnections $2-2$
2-22. Storage and Shipment 2-2
2-23. Orginal Packing $2-2$
2-27. Other Packaging Materials $2 \cdot 2$
III OPERATION 3-1
3-1. Introduction 3-1
3-3. Panel Features $3-1$
3-5. Operator's Checks 3-1
3-7. Operating Instructions 3-1
3-9. Controls, Indicators and Connectors 3-1
IV PERFORMANCE CHECKS 4-1
4-1. Introduction 4-1
4-4. Equipment Required 4-1
4-6. Front Panel Checks 4-1
4-8. Preset Adjustments 4-1
4-9. Display Adjustments 4-1
4-10. \quad RF and IF Section Adjustments 4-1
4-11. Ampl Cal Adjustment $4-2$
4-12. Ampl Cal Check for Linear Sensitivity Accuracy 4-2
4-14. Front Panel Checks 4-3
4-15. Performance Tests 4-3
4-20. Scan Accuracy 4.5
4-21. Frequency Response 4.7
4-22. Sensitivity 4-10
4-23. Noise Sidebands 4-11
4-24. Residual FM 4-12
4-25. Dial Accuracy 4-13
Section Page
IV PERFORMANCE CHECKS (cont'd)4-26. Residual Responses4-15
V ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-4. Equipment Required 5-1
5-16. Factory Selected Components 5-2
5-17. Related Adjustments 5-2
5-22. Input Operating Voltages Check and Adjustment 5-3
5-23. $\quad+20 /+10$ Volt Power Supply Check and Adjustment $5-4$
5-24. Yig Driver Adjustments 5.5
5-25. 2 nd LO (1500 MHz) Check and Adjustment . . 5-8
5-26. $\quad 1.5 \mathrm{GHz}$ Notch Filter and 2.0 GHz Low Pass Filter Check $5-9$
5-27. 2 nd Converter 2.05 GHz Bandpass Adjustment 5-10
5-28. $\quad 500 \mathrm{MHz}$ Local Oscillator Check and Adjustment 5-12
5-29. $\quad 500 \mathrm{MHz}$ Bandpass Filter and 50 MHz Filter Adjustment 5-14
5-30. $\quad 50 \mathrm{MHz}$ Amplifier Check and Adjustment 5-16
5-31. Tuning Stahilizer Control Adjustments $5-19$
5-32. Tuning Stabilizer VCXO Adjustments 5-20
5-33. Analogic Test and Adjustment 5-24
VI REPLACEABLE PARTS 6-1
VII MANUAL CHANGES 7-1
7-1. Current Instruments 7-1
7-3. Newer Instruments 7-1
7-4. Manual Up-dating 7-1
7-6. Older Instruments 7-1
7-7. Manual Back-dating 7-1
7-9. Modifications 7-1
7-10. Instrument Up-dating 7.1
VIII SERVICE 8 -1
8-1. Introduction 8-1
8-3. Principles of Operation 8-1
8-5. Recommended Test Equipment 8-1
8-7. Troubleshooting 8-1
8-11. Repair 8-1
8-21. General Service Hints 8.3
8-24. General Service Information 8.5
$8-31$. Integrated Circuits and Symbols 8.6

LIST OF ILLUSTRATIONS

Figure Page
1-1. Model 8555A Spectrum Analyzer RF Sectionwith 8552 B IF Section and 141TDisplay Section1.0
1-2. Instrument Identification 1-1
$1-3$. Typical Spectrum Analyzer Sensitivity and Frequency Response 1.5
14. Typical Spectrum Analzyer Resolution (Fundamental Mixing) $1-5$
1-5. HP 08555-60077 Service Kit Required for Adjustment \& Service Procedures 1-10
2-1. RF Section and IF Section Interconnections $2-3$
3-1. Front Panel Controls, Connectors and Indicators $3-4$
3-2. Typical Display and IF Section Controls, Connectors and Indicators 3-6
3-3. Operational Adjustments 3-8
34. General Operating Instructions, .01 to 18.0 GHz 3-10
3-5. Signal Identification Technique 3-12
$3-6$. External Mixer (HP 11517A) Operating Instructions 3-16
4 -1. CRT Display, 0 to 100 MHz 4-1
4-2. Vertical Gain Adjustment 4-2
4-3. Scan Width Accuracy Test Setup 4-5
44. Scan Width Accuracy Measurement 4-5
4-5. Scan Width Accuracy Test Setup 4-6
4-6. Frequency Response Test Setup, 0.1 to 2 GHz 4-7
4-7. Frequency Response Test Setup, 1.5 to 18 GHz 4-8
4-8. Noise Sideband Test Setup 4-11
4-9. Residual FM Test Setup 4-12
4-10. Demodulation Sensitivity Measurement 4-13
4-11. Dial Accuracy Test Setup 4-13
$5-1 . \quad+20 /+10$ Volt Power Supply Check and Adjustment Test Setup 54
5-2. Yig Driver Adjustments 5-5
5-3. 2nd LO Frequency and Power Level Adjustment 5-8
54 . 1.6 GHz Notch Filter and 2.0 GHz Low Pass Filter Check \& Adjustment Procedure 5-9
5-5. 2nd Converter 2.05 GHz IF Bandpass Adjustment 5-11
5-6. $\quad 500 \mathrm{MHzLO}$ and LO Driver Adjustment Test Setup 5-12
5-7. $\quad 550 \mathrm{MHz}$ Bandpass Filter and 50 MHz Filter Adjustment Test Setup 5-14
$5-8$. $\quad 50 \mathrm{MHz}$ Amplifier Check and Adjustment Test Setup 5-16
5-9. Tuning Stabilizer Control Adjustment Test Setup 5-19
5-10. Tuning Stabilizer VCXO Adjustment Test Setup 5-21
7-1. Scan Width Switch Assy, A1A2 (CHANGE B) 7-6
7-2. Scan Width Switch Assy, A1A2, Schematic Diagram (CHANGE D) $7-7$
Figure Page
7-3. Switching Regulator Board AssemblyA9A1 (08555-60056)(CHANGE E)7-8
7-4. Switching Regulator Schematic Diagram (08555-60056)(CHANGE E) 7.9
7-5. Tuning Stabilizer VCXO Assembly, A14A2 (08555-60058)(CHANGE F) 7-10
7-6. Tuning Stabilizer,VCXO Pulse Ampl Assy A14A2 (CHANGE F) 7-11
7-7. Yig Driver and Oscillator (CHANGE K) 7-12
8-1. Transistor Operation 8-6
8-2. Field Effect Transistor Operation 8-7
8 -3. Examples of Diode and Transistor Marking Methods 8-7
8-4. Integrated Circuit Packaging 8-8
8-5. Basic AND and OR Gates 8-9
8-6. Basic NAND and NOR Gates 8-9
8-7. Logic Comparison Diagrams 8-9
8-8. Operational Amplifier Equivalent Circuit 8-10
8-9. 8555A RF Section Troubleshooting Tree $8 \cdot 12$
8-10. 8555A RF Section Top/Bottom Internal Views 8-13
8-11. 8555A RF Section Block Diagram 8-15
8-12. 1st Converter Assy, Simplified Schematic $8-16$
8-13. Switch Assy A1A3 $8-16$
8-14. Attenuator Assy A13 8-16
8-15. 1st Converter Assy A12 $8-17$
8-16. INPUT Connector J1 Exploded View 8-17
8-17. Input Attenuator and 1st Converter Schematic Diagram 8-17
8-18. Second Mixer Diode Forming Dimensions in Inches 8-18
8-19. Second Converter Voltage Filter A11A3 8-19
8-20. Second Converter Assy A11 (Voltage Filter A11A3 Removed) $8-19$
8-21. Second Converter Voltage Filter A11A3 8-19
8-22. Third Converter Assy A2 Top View
(50 MHz Ampl Removed) 8-20
$8-23$. 500 MHz LO Drive Assembly A2A2 8-20
8 -24. 500 MHz LO Assembly A2A4 8.21
8-25. 550 MHz Ampl Assembly A2A1 8-21
$8-26$. $550 / 50 \mathrm{MHz}$ Mixer Assembly A2A3 8.21
8-27. Third Converter Assembly A2, Bottom View 8-21
8-28. Third Converter Schematic Diagram 8-21
8-29. CRT Display, Gain Change Base Line Lift 8-22
8-30. Third Converter Assembly, Side View 8-22
$8-31$. 40 MHz Ampl. Assemlby A2A5 8-23
$8-32$. 40 MHz Ampl. in Third Converter Casting 8-23
$8-33$. 50 MHz Ampl. and Input Mixer Gain Comp Network Schematic Diagram 8-23
8-34. Signal Identifier Timing Diagram 8-24
8-35. Signal Identifier and Attenuator Driver Assembly A7 $8-24$
8-36. Scan Width Switch Assembly A1A2 8.25
8-37. Signal Identifier Schematic Diagram $8-25$
8-38. Yig Driver Assembly A4 8-26
8-39. Yig Oscillator Assembly A3 8-27
8-40. Yig Driver and Oscillator Schematic Diagram 8-27

LIST OF ILLUSTRATIONS (cont'd)

Figure Page Figure Page
8-41. Control Generator Timing Diagram 8-28
8-42. Tuning Stabilizer Control Assembly A5 8-28
843. Band Buffer Assembly A6 with Mixer Gain Network A16 $8-29$
844. Control Generator and $1 / \mathrm{n}$ Attenuator
Schematic Diagram 8-29
8-45. Discriminator Block Schematic 8-30
8-46. VCXO Harmonics and Lock Points 8-30
8-47. Discriminator Output Error Signal 8-30
8-48. Tuning Stabilizer Assembly A14 8-31
8-49. Tuning Stabilizer Control Assembly A5 8-31
8-50. Discriminator Assembly A14A1 8-31
8-51. Tuning Stabilizer Control Asssy A5 and Discriminator Assy A14A1 8-31
8-52. Tuning Stabilizer VCXO Assembly A14A2 8-32
8-53. Tuning Stabilizer Assembly A14 8-33
8-54. Tuning Stabilizer VCXO/Pulse Ampl Assy A14A2, Discriminator A14A1, and SamplerAssy A14A3, Schematic Diagram 8-33
8-55. Logic State Versus Harmonic Band Number 8-34
8-56. Band Buffer Assembly A6 8-35
8-57. Band Code Switch Logic, Schematic Diagram 8.35
8-58. Simplified Scan Width Circuit 8-36
8-59. Scan Width Switch Assembly A1A2 8-37
8-60. Scan Width Switch Assembly A1A2 Schematic Diagram 8-37
8-61. Bandwidth Switch Assembly A1A1 8-38
8-62. Scan Width Switch Assembly A1A2 8-38
8-63. Simplified RF Section Analogic Circuit Diagram 8-39
8-64. RF Section Analogic Schematic Diagram $8-39$
8-65. Bandwidth Switch Assembly A1A1 8-41
8-66. Bandwidth Switching and Ampl Cal Schematic Diagram 8-41
8-67. Switching Regulator Simplified Diagram 8-42
8-68. Switching Regulator Assembly A9 8-42
8-69. Switching Regulator BoardAssembly A9A18-43
8-70. $+10 /+20$ Volt Power Supply Assembly A8 8-43
8-71. Switching Regulator and $+10 /+20$ Volt Power Supply Schematic Diagram 8-43
8-72. Connector Pin Location Diagram 8-45
8.74. Tuning Head Assy A1A4, Illustrated Parts Breakdown 8-47
8-75. Second Converter Casting, Illustrated Parts Breakdown 8-47
8-76. Chassis Sheetmetal Illustrated Parts Breakdown $8-49$

Table		Page	Table		Page
1-1.	8555A/8552A/8552B Specifications	1-3	6-2.	Replaceable Parts	6.2
1-2.	Supplemental Performance		6-3.	Manufacturer's Code List	6-20
	Characteristics	1-5			
1-3.	Operating Accessories	1-7	7-1.	Serial Number Change History	7-1
14.	Test Equipment Required	$1-8$	7-2.	Back-dating Changes	7-2
1-5.	Test Accessories	1-9		Summary of Instrument Changes	7-3
4-1.	Front Panel Checks	44	8-1.	Factory Selected Components	8-2
4-2.	Frequency Response	4-9		Adjustable Components	8-2
4-3.	Frequency Sensitivity, 10 kHz		8-3.	Schematic Diagram Notes	84
	Bandwidth	4-10	8-4.	Etched Circuit Soldering Equipment	8-5
4-4.	Performance Test Card	4-16	8-5.	RF Section Chassis Wiring from	
5-1.	Analogic Display Calibration Check	5-24		Connector J6	8-44
5-2.	Check and Adjustment Test Card	5-25	8-6.	Tuning Head Wiring from Connector	
6-1.	Reference Designators and Abbreviations			A1P6	8-44
	Used in Parts List	6-1	8-7.	RF Section Wiring from Connector P3	$8-44$

Figure 1-1. Model 8555A Spectrum Analyzer RF Section with 8552B IF Section and 141T Display Section

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the Hewlett-Packard Model 8555A Spectrum Analyzer RF Section. This section covers instrument identification, description, options, accessories, specifications and other basic information.

1-3. Figure $1-1$ shows the Hewlett-Packard Model 8555A Spectrum Analyzer RF Section with the Model 8552B Spectrum Analyzer IF Section and the Model 141T Display Section.
$1-4$. The various sections in this manual provide information as follows:

SECTION II, INSTALLATION, provides information relative to incoming inspection, power requirements, mounting, packing and shipping, etc.

SECTION III, OPERATION, provides information relative to operating the instrument.

SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.

SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs are made.

SECTION VI, REPLACEABLE PARTS, provides ordering information for all replaceable parts and assemblies.

SECTION VII, MANUAL CHANGES, normally will contain no relevant information in the original issue of a manual. This section is reserved to provide back-dated and up-dated information in manual revisions or reprints.

SECTION VIII, SERVICE, includes all information required to service the instrument.

1-5. INSTRUMENTS COVERED BY MANUAL

1-6. Hewlett-Packard instruments carry a serial number (see Figure 1-2) on the back panel. When the serial number prefix on the instrument serial number plate of your instrument is the same as one of the prefix numbers on the inside title page of this manual, the manual applies directly to the instrument. When the instrument serial number pre-
fix is not listed on the inside title page of initial issue, manual change sheets and manual up-dating information is provided. Later editions or revisions to the manual will contain the required change information in Section VII.

Figure 1-2. Instrument Identification

1-7. DESCRIPTION

1-8. The HP Model 8555A Spectrum Analyzer RF Section is shown in Figure 1-1 with the Model 8552B Spectrum Analyzer IF Section and the Model 141T Display Section. Table 1-1, Specifications, and Table 1-2, Supplemental Performance Characteristics, are for the 8555A RF Section when used with an 8552A/B IF Section and a 140 -series Display Section.
$1-9$. The 8555 A plug-in is the microwave RF section for use with the 8552 -series IF section and the 140 -series display section. Together they comprise a receiver that electronically scans an input signal and provides a visual display in the frequency domain. Input signal amplitude is plotted on the CRT as a function of frequency. The amplitude (Y -axis) of the CRT is calibrated in absolute units of power (dBm) or voltage $(\mu \mathrm{V} / \mathrm{mV})$ (50 -ohm system): accordingly, absolute and relative measurements of both amplitude and frequency can be made.

1-10. The analyzer RF and IF sections form a highly sensitive super-hetrodyne receiver with spectrum-scanning capabilities over the frequency range of 10 MHz to 40 GHz in 14 frequency bands. The analyzer presents a calibrated CRT display up to 2 GHz wide. Absolute calibration accuracy is maintained from 10 MHz to 18.0 GHz in 10 frequency bands, using internal mixing. The fre-
quency range from 12.4 GHz to 40 GHz is covered in 4 frequency bands through the use of external mixers.

1-11. Instrument controls are arranged so that the operator can identify, type, and measure signal parameters with a minimum of switching. For wide-spectrum analysis, the operator can choose a preset scan width covering the full range of each frequency band. For a more detailed study, the spectrum width can be progressively narrowed to as little as $2 \mathrm{kHz} / \mathrm{div}$, or the scanning capabilities can be eliminated altogether to use the instrument as a fixed-tuned receiver. A 300 kHz IF bandwidth is automatically selected for full-scan operation; for variable-scan and fixed frequency operation, bandwidths as narrow as 100 Hz can be selected. A single switch will automatically enable the first LO tuning stabilization circuit when scan widths of 100 kHz per division, or less, are selected. A signal identifier circuit, controlled by an on/off switch, allows the operator to quickly determine the harmonic mixing mode and select the appropriate frequency band. The signal identifier can be enabled for scan widths of 1 MHz per division or less.

1-12. OPTIONAL EQUIPMENT

1-13. The 8555A Spectrum Analyzer RF Section and a 8552 -series Spectrum Analyzer IF Section can be used with any 140 -series Display Sections or 140 -series Oscilloscope Mainframes. The 140S/140T/143S Display Sections are equipped with a fixed-persistence/non-storage CRT, whereas the 141 S and 141 T Display Sections are equipped with a variable-persistence storage CRT. Overlays, to provide LOG and LINEAR graticule scales, are available for use with the standard 140A and 141A Oscilloscope Mainframe.

1-14. OPERATING ACCESSORIES

1.15. Operating accessories for use with the 8555/8552/140 Spectrum Analyzer are listed in Table 1-3. Operating accessories include a wave-
guide mixer, adapters, filters and a frequency comb generator. An external waveguide mixer and appropriate adapters are required over the frequency range of 18 to 40 GHz . The RF Section is shipped with three coaxial type terminations and one multi-section termination. The coaxial terminations are installed on the EXT MIXER port, the FIRST LO OUTPUT port and the SECOND LO OUTPUT port. (See Figure 3-1, items 17, 18 and 19.) The multi-section termination is shipped taped to the top of the RF Section. Install the multisection termination on the Display Section rear panel. (See item 3, Figure 3-3.) The coaxial terminations are HP part number 11593A and the multisection termination is HP part number 08553-60122.

1-16. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-17. The 8555A Spectrum Analyzer RF Section must be mated with an 8552 -series Spectrum Analyzer IF Section and one of the 140 -series Display Sections or 140 -series Oscilloscope Mainframes before the units can perform their function as a spectrum analyzer. See Paragraph 1-13 for additional information on the display sections and oscilloscope mainframes.

1-18. TEST EQUIPMENT REQUIRED

$1-19$. Tables $1-4$ and $1-5$ list the test equipment and test equipment accessories required to check, adjust, and repair the 8555A Spectrum Analyzer RF Section.

1-20. WARRANTY

1-21. The 8555A Spectrum Analyzer RF Section is warranted and certified as indicated on the inner front cover of this manual. For further information contact the nearest Hewlett-Packard Sales and Service Office; addresses are provided at the back of this manual.

Table 1-1. 8555A/8552A/8552B Specifications

FREQUENCY SPECIFICATIONS

FREQUENCY RANGE

Tuning Range

With internal mixer: $0.01-18.00 \mathrm{GHz}$.
With external mixer: $12.4-40 \mathrm{GHz}$.
Selectable continuous coarse (by means of pushpull knob) and fine tuning determine display center frequency.
Harmonic Mixing Made
Signal Identification: Signal identifier separates unknown input signal in center of CRT into two images 2 divisions apart with image on left slightly less in amplitude when the calibrated frequency scale is advanced to the appropriate band.
Scan Width
Full Scan: Inverted marker positioned by tuning control identifies the frequency that becomes the center frequency for scan width per division and zero scan modes. The width of the scan depends on mixing mode. Scan width $=\mathrm{n}$ x 2000 MHz , where n is the mixing mode; e.g., for $n=2$, scan width is 4 GHz .
Per Division: 16 calibrated scan widths from 2 $\mathrm{kHz} /$ div to $200 \mathrm{MHz} /$ div in a $2,5,10$ sequence.
Manual Scan: (Available with 8552B only.) Scan determined by front panel control; continuously variable across CRT in either direction.
Zero Scan: Analyzer becomes fixed tuned receiver with frequency set by frequency and fine tune controls and selectable bandwidths by bandwidth control. Amplitude variations are displayed versus time on CRT.

FREQUENCY ACCURACY

Dial Accuracy: $\mathrm{n} \times(\pm 15 \mathrm{MHz})$ where n is the mixing mode.
Scan Accuracy: Frequency error between two points on the display is less than 10% of the indicated separation.
Stability:
Total Analyzer Residual FM (Fundamental Mixing)

Stabilized	Unstabilized
$<100 \mathrm{~Hz}$	$<10 \mathrm{kHz}$
peak-to-peak	peak-to-peak

First LO residual FM typically 30 Hz .
Noise Sidebands: For fundamental mixing. More than 70 dB below CW signal, 50 kHz or more away from signal, with 1 kHz IF bandwidth and 100 Hz video filter.

RESOLUTION

Bandwidth Ranges: IF bandwidths of 0.10 to 300 kHz provided in a 1,3 sequence.
Bandwidth Accuracy: Individual IF bandwidth 3 dB points calibrated to $\pm 20 \%$. (10 kHz bandwidth $\pm 5 \%$).
Bandwidth Selectivity:

IF	$60 \mathrm{~dB} / 3 \mathrm{~dB}$	
Bandwidth	Bandwidth Ratio $\mathbf{8 5 5 2 A}$	$\mathbf{8 5 5 2 B}$
$10 \mathrm{kHz}-300 \mathrm{kHz}$	$20: 1$	$20: 1$
$1 \mathrm{kHz}-3 \mathrm{kHz}$	$20: 1$	$11: 1$
$0.1 \mathrm{kHz}-0.3 \mathrm{kHz}$	$25: 1$	$11: 1$

AMPLITUDE SPECIFICATIONS

ABSOLUTE CALIBRATION RANGE
Measurement Range
Log Reference Level: From -130 dBm to +10 dBm , in 10 dB steps. Log reference level vernier, 0 to -12 dB continuously.
Linear Sensitivity: From $0.1 \mu \mathrm{~V} /$ div to 100 $\mathrm{mV} / \mathrm{div}$ in a 1.2 sequence. Linear sensitivity vernier 1 to 0.25 attenuation ratio continuously.

Sensitivity

Average Noise Level: Specified for 1 kHz bandwidth. Using lower bandwidths will improve average noise level; e.g., use of 100 Hz bandwidth will improve noise level in the 1.5 to 3.55 GHz frequency range from -117 dBm to -127 dBm max.
With INTERNAL Coaxial Mixer

Frequency Range (GHz)	Mixing Mode (n)	IF Freq. (MHz)	Average Noise Level (dBm max.)
$0.01-2.05$	$1-$	2050	-115
$1.50-3.55$	$1-$	550	-117
$2.07-6.15$	$2-$	2050	-108
$2.60-4.65$	$1+$	550	-117
$4.11-6.15$	$1+$	2050	-115
$4.13-10.25$	$3-$	2050	-103
$6.17-10.25$	$2+$	2050	-105
$6.19-14.35$	$4-$	2050	-95
$8.23-14.35$	$3+$	2050	-100
$10.29-18.00$	$4+$	2050	-90
With 11517A	EXTERNAL Waveguide Mixer and		
Appropriate Waveguide Tapers			

Frequency Range

$12.4 \cdot 18.0 \mathrm{GHz}$
$18.0-26.5 \mathrm{GHz}$
$26.5-40.0 \mathrm{GHz}$

Average Noise Level (Typical)
$-90 \mathrm{dBm}$
$-85 \mathrm{dBm}$
$-75 \mathrm{dBm}$

Table 1-1. 8555A/8552A/8552B Specifications (Continued)

Residual Responses: Referred to signal level at input mixer on fundamental mixing: $<-90 \mathrm{dBm}$.
Display Range
Log: $70 \mathrm{~dB}, 10 \mathrm{~dB} /$ div with $8552 \mathrm{~B} 2 \mathrm{~dB} /$ div \log expand on a 16 dB display.
Linear: From 0.1 mV to $100 \mathrm{mV} /$ div in a 1,2 sequence on an 8 -division display.
Display Uncalibrated Light: Panel light warns operator of uncalibrated amplitude display if selected IF or video bandwidth is too narrow for combination of scan width and scan time selected.

Input Attenuator Range: $0-50 \mathrm{~dB}$ in 10 dB steps.

ABSOLUTE CALIBRATION ACCURACY

The overall absolute calibration accuracy of the spectrum analyzer in a particular application is a function of the measurement technique. The following elements also affect absolute calibration accuracy:
Frequency Response: With 10 dB input attenuator setting.

Frequency Range (GHz)	Mixing Mode (n)	IF Freq. (MHz)	Frequency Response (dB max.)
$0.01-2.05$	$1-$	2050	± 1.0
$1.50-3.55$	$1-$	550	± 1.0
$2.07-6.15$	$2-$	2050	± 1.25
$2.60-4.65$	$1+$	550	± 1.0
$4.11-6.15$	$1+$	2050	± 1.0
$4.13-10.25$	$3-$	2050	± 1.5
$6.17-10.25$	$2+$	2050	± 1.5
$6.19-14.35$	$4-$	2050	± 2.0
$8.23-14.35$	$3+$	2050	± 2.0
$10.29-18.00$	$4+$	2050	± 2.0

IF gain variation with different bandwidth settings: (at $20^{\circ} \mathrm{C}$).
Log: $\pm 0.5 \mathrm{~dB}$.
Linear: $\pm 5.8^{\circ} c$.
Amplitude Display: Log $\pm 0.25 \mathrm{~dB} / \mathrm{dB}$ but not more than $\pm 1.5 \mathrm{~dB}$ over the full 70 dB display range. Linear: $\pm 2.8^{\circ}$ of full 8 -division deflection.
Input RF Attenuator: Frequency response typically $\pm 0.6 \mathrm{~dB}$ from 10 MHz to 18 GHz .
Log Reference Level: Accurate to $\pm 0.2 \mathrm{~dB}(\pm 2.3 \%$ Linear Sensitivity).

Log Reference Level Vernier: Accurate to $\pm 0.1 \mathrm{~dB}$ (1.2%) in $0,-6$, and -12 dB positions; otherwise, $\pm 0.25 \mathrm{~dB}(\pm 2.8 \%)$.
Calibrator Output: Amplitude $-30 \mathrm{dBm}, \pm 0.3 \mathrm{~dB}$.
Frequency $30 \mathrm{MHz}, \pm 0.3 \mathrm{MHz}(8552 \mathrm{~A}), \pm 3 \mathrm{kHz}$ (8552B).

INPUT SPECIFICATIONS

Input Impedance: 50 ohms nominal (0.01-18 GHz).
Reflection Coefficient: <0.130 (1.30 SWR) for input RF attenuator settings $\geqslant 10 \mathrm{~dB}$.
Maximum Input Level: Peak or average power +10 dBm (1.0 Vac peak) incident on mixer, +33 dBm incident on input attenuator.
RF Input Connector: Type N female.
External Mixer Input Connector: BNC female; LO power transfer to external mixer through connector as well as 2.05 GHz IF signal return to spectrum analyzer. LO power typically 0 dBm .

SCAN TIME SPECIFICATIONS

Scan Time: 16 internal scan rates from $0.1 \mathrm{~ms} /$ div to $10 \mathrm{sec} / \mathrm{div}$ in a $1,2,5$ sequence.

Scan Time Accuracy: $0.1 \mathrm{~ms} /$ div to $20 \mathrm{~ms} /$ div, $\pm 10 \%, 50 \mathrm{~ms} /$ div to $10 \mathrm{sec} / \mathrm{div}$, $\pm 20 \%$.

GENERAL SPECIFICATIONS

Power Requirements: 115 or 230 volts $\pm 10^{\%} \%, 50$ 60 Hz , normally less than 225 watts (varies with plug-in units used).
Dimensions: Model 140T or 141T Display Section, $9-1 / 16$ inches high (including height of feet) x $16-3 / 4$ inches wide x $18-3 / 8$ inches deep (229 x $425 \times 467 \mathrm{~mm}$). Model 143 S Display Section, 21 inches high (including height of feet) $\times 16-3 / 4$ inches wide $\mathrm{x} 18-3 / 8$ inches deep ($533 \times 425 \mathrm{x}$ 467 mm).
Weight:
Model 8555A RF Section: Net, 14 lb 15 oz (6,8 kg).
Model 8552A IF Section: Net, 9 lb ($4,1 \mathrm{~kg}$).
Model 8552B IF Section: Net, 9 lb ($4,1 \mathrm{~kg}$).
Model 140T Display Section: Net, $37 \mathrm{lb}(16,8$ kg).
Model 141 T Display Section: Net, $40 \mathrm{lb}(18 \mathrm{~kg})$.
Model 143S Display Section: Net, 62 lb (28,1 kg).

Table 1-2. Supplemental Performance Characteristics

SUPPLEMENTAL PERFORMANCE CHARACTERISTICS

AMPLITUDE CHARACTERISTICS

For typical sensitivity and frequency response versus input frequency, see Figure 1-3.

Spurious Responses Due to Second Harmonic Distortion: With -40 dBm incident on input mixer.
Frequency
Range
0.1 - 6.2 GHz
$6.2-10.3 \mathrm{GHz}$
$10.3 \cdot 14.4 \mathrm{GHz}$
$14.4-18.5 \mathrm{GHz}$

2nd Harmonic
Distortion
$<-63 \mathrm{~dB}$
$<69 \mathrm{~dB}$
$<-54 \mathrm{~dB}$
$<-51 \mathrm{~dB}$

Spurious Responses Due to Third Order Intermodulation Distortion: $<-70 \mathrm{~dB}$ with -30 dBm incident on input mixer and signal separation >1 MHz .

Video Filter: Post-detection filter used to average displayed noise. With 8552A nominal bandwidths: 10 kHz and 100 Hz . With 8552 B nominal bandwidths: $10 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz .

Gain Compression: For internal mixer gain compression $<1 \mathrm{~dB}$ for -10 dBm peak or average signal level to input mixer. 11517 A external mixer ($12.4-40 \mathrm{GHz}$) gain compression, $<1 \mathrm{~dB}$ for -15 dBm peak or average signal level to input mixer.

FREQUENCY CHARACTERISTICS

RESOLUTION

See Figure 1.4 for curves of typical $8555 \mathrm{~A} / 8552 \mathrm{~A}$ and $8555 \mathrm{~A} / 8552 \mathrm{~A}$ spectrum analyzer resolution for different bandwidths.

Figure 1-3. Typical Spectrum Analyzer Sensitivity and Frequency Response

FREQUENCY DRIFT

Long Term Drift: (At fixed center frequency, after 2-hour warm-up).
Stabilized: $\pm 3.0 \mathrm{kHz} / 10 \mathrm{~min}$.
Unstabilized: $\pm 25 \mathrm{kHz} / 10 \mathrm{~min}$.
Stabilization Range: First LO can be automatically stabilized to internal crystal reference for scan widths of $100 \mathrm{kHz} / \mathrm{div}$ or less.

OUTPUT CHARACTERISTICS

First LO Output: +10 dBm ; 50 ohms; 2.05 - 4.10 GHz.

Second LO Output: $+10 \mathrm{dBm} ; 50$ ohms; 1500 MHz .
Third LO Output: +5 dBm ; 50 ohms (rear panel); 500 MHz .

Pen Lift Output: 0 to 14 volts (0 volts during scan cycle). Output available in Int and single scan modes and Auto, Line, and Video scan trigger.

Vertical Output: 100 mV per major division on CRT display; output impedance <100 ohms.

SCAN CHARACTERISTICS

Scan Mode:

Int: Analyzer repetitively scanned by internc generated ramp; synchronization selected scan trigger.

Figure 1-4. Typical Spectrum Analyzer Resolution (Fundamental Mixing)

Table 1-2. Supplemental Performance Characteristics (cont'd)

SUPPLEMENTAL PERFORMANCE CHARACTERISTICS (Continued)

Single: Single scan with reset actuated by front panel pushbutton.
Ext: Scan determined by 0 to +8 volt external signal: scan input impedance $>10 \mathrm{k} \Omega$.
Blanking: -1.5 V external blanking signal required.
Manual: Scan determined by front panel control; continuously variable across CRT in either direction (8552B only).

Scan Trigger: For Internal Scan Mode, select between:
Auto: Scan free runs.
Line: Scan synchronized with power line frequency.
Ext: Scan synchronized with >2 volt (20 volt max.) trigger signal (polarity selected by internally located switch in IF Section).
Video: Scan internally synchronized to envelope of RF input signal (signal amplitude of 1.5 major divisions peak-to-peak required on display section CRT).

DISPLAY CHARACTERISTICS

Variable Persistence Storage (Model 141T):
Plug-ins: Accepts Model 8550 -series Spectrum Analyzer plug-ins and Model 1400 -series time domain plug-ins.

Cathode-ray Tube:

Type: Post-accelerator storage tube, 9000 volt accelerating potential; aluminized P31 phosphor: etched safety glass faceplate reduces glare.
Functions Used with Time Domain Plug-ins Only: Intensity modulation, calibrator, beam finder.
Special Order: Chassis slides and adapter kit: Fixed slides, order HP Part Number 1490-0714; pivot slides, order HP Part Number 1490-0718; slide adapter kit for mounting slides on scope, order HP Part Number 1490-0721.
Persistence:
Normal: Natural persistence of P31 phosphor (approximately 0.1 second).
Variable:
Normal Writing Rate Mode: Continuously variable from less than 0.2 second to more than one minute (typically to two or three minutes).
Maximum Writing Rate Mode: Typically from 0.2 second to 15 seconds.

Erase: Manual; erasure takes approximately 350 ms ; CRT ready to record immediately after erasure.
Storage Time: Normal writing rate; more than 2 hours at reduced brightness (typically 4 hours). More than one minute at maximum brightness. Fast writing speed; more than 15 minutes (typically 30 minutes) at reduced brightness or more than 15 seconds at maximum brightness.
Functions Used with Time Domain Plug-ins Only: Intensity modulation, calibrator, beam finder.

Normal Persistence (Model 140T):
Plug-ins: Same as 141T.
Cathode-ray Tube:
Type: Post-accelerator, 7300 volt potential medium-short persistence (P7) phosphor; tinted and etched safety glass faceplate reduces glare. (Normal persistence of P7 phosphor approximately 3 sec .).
Graticule: 8×10 division (approximately $7.6 \times$ $9,5 \mathrm{~cm}$) parallax-free internal graticule; five subdivisions per major division on horizontal and vertical axes.

Functions Used with Time Domain Plug-ins Only: Same as 141T.

Normal Persistence Large Screen Display (Model 143S):
Plug-ins: Same as 141T.

Cathode-ray Tube:

Type: Post-accelerator, 20 kV accelerating potential aluminized P31 phosphor. (Persistence approximately 0.1 sec .)

Graticule: 8×10 divisions (approximately $8 \times$ 10 inch) parallax-free internal graticule, five subdivisions per major division on horizontal and vertical axes.
Functions Used with Time Domain Plug-ins Only: Same as 141T.

GENERAL CHARACTERISTICS

CRT BASELINE CLIPPER: Front panel control adjusts blanking of CRT trace baseline to allow more detailed analysis of low-repetition-rate signals and improved photographic records to be made.

Temperature Range: Operating, 0° to $+40^{\circ} \mathrm{C}$; storage, -40° to $+75^{\circ} \mathrm{C}$.

Table 1-3. Operating Accessories

Model Number	Name	Description
11517 A	Waveguide Mixer	Mixes inputs from 12.4 to 40 GHz with frequencies from first LO HP 10503A Coaxial Cable terminated with BNC male connectors supplied with Mixer
11518A	Adapter	For mating 11517A Waveguide Mixer to P-band (12.4 to 18.0 GHz) system
11519A	Adapter	For mating 11517A Waveguide Mixer to K-band (18.0 to 26.5 GHz) system
11520A	Adapter	For mating 11517A Waveguide Mixer to R-band (26.5 to 40 GHz) system
8406A	Frequency Comp Generator	For calibrating scan-width function; generates precision markers with $1-, 10-$, and $100-\mathrm{MHz}$ spacing
*8430A	Bandpass Filter	Pass band: $1-2 \mathrm{GHz}$
*8431A	Bandpass Filter	Pass band: 2-4GHz
*8432A	Bandpass Filter	Pass band: $4-6 \mathrm{GHz}$
*8433A	Bandpass Filter	Pass band: 6.8 GHz
*8434A	Bandpass Filter	Pass band: 8-10 GHz
*8435A	Bandpass Filger	Pass band: $4-8 \mathrm{GHz}$
*8436A	Bandpass Filter	Pass band: 8-12.4 GHz
8444A	Tracking Generator	Functions as a frequency response measurement system when used with the Spectrum Analyzer. The system can be used as a sweeper or signal generator 10 MHz to 1.3 GHz .
8445A	Automatic Preselector	Functions to reduce or eliminate signal intermodulation, and multiple and spurious responses. Preselector is a lowpass filter over the 0 to 1.8 GHz range and a voltage tuned filter over the 1.8 to 18 GHz range.
8447A	Preamp	$0.1-400 \mathrm{MHz}$ low noise preamp; improves sensitivity or average noise level of RF Section approximately 16 dB
8447B	Preamp	$0.4-1.3 \mathrm{GHz}$ low noise preamp; improves sensitivity or average noise level of RF Section approximately 16 dB
*360 series	Low-pass Filter	360 A cuts off at $700 \mathrm{MHz}, 360 \mathrm{~B}$ cuts off at 1200 MHz
*362A series	Low-pass Filter	Acts like bandpass when used with waveguide; available for $\mathrm{X}, \mathrm{P}, \mathrm{K}, \mathrm{R}$ bands; eliminates signals outside normal waveguide band
*For applications information, see Application Noe 63A, Paragraph 4, HOW TO GET BEST PERFORMANCE BY USE OF FILTERS; bandpass filters discussed in AN 63, in section on RADIO FREQUENCY INTERFERENCE TESTING, Paragraph B.		

Table 1-4. Test Equipment Required

Item	Minimum Specifications	Suggested Model	Use*
Frequency Comb Generator	Frequency markers spaced $1,10,100$ MHz apart; usable to 4 GHz Frequency Accuracy: $\pm 0.01 \%$ Output Amplitude: $>-40 \mathrm{dBm}$	HP 8406A Comb Generator	P, A
HF Signal Generator	Frequency Range: $1-50 \mathrm{MHz}$ Output Amplitude: $>-20 \mathrm{dBm}$ Output Amplitude Accuracy: $\pm 1 \%$ Frequency Accuracy: $\pm 1 \%$ Output Impedance: 50 ohms	HP 606A/B HF Signal Generator	P
VHF Signal Generator	Frequency Range: $40-455 \mathrm{MHz}$ Frequency Accuracy: $\pm 1 \%$ Output Amplitude: $>-20 \mathrm{dBm}$ Output Impedance: 50 ohms	HP 608E/F VHF Signal Generator	A. T
UHF Signal Generator	Frequency Range: $450-1230 \mathrm{MHz}$ Frequency Accuracy: $\pm 1 \%$ Output Amplitude: $>-20 \mathrm{dBm}$ Output Impedance: 50 ohms	HP 612A UHF Signal Generator	T
Signal Generator	Frequency Range: $1.0-2.1 \mathrm{GHz}$ Frequency Accuracy: $\pm 1 \%$ Output Amplitude: $>-20 \mathrm{dBm}$ Output Impedance: 50 ohms	HP 8614A/B Signal Generator	A. T
Signal Generator	Frequency Range: $2.0-4.0 \mathrm{GHz}$ Frequency Accuracy: $\pm 1 \%$ Output Amplitude: $>-20 \mathrm{dBm}$ Output Impedance: 50 ohms	HP 8616A/B Signal Generator	A
Sweep Oscillator	Frequency Range: $0.1-18 \mathrm{GHz}$ Output Amplitude: $>-20 \mathrm{dBm}$ Output Impedance: 50 ohms	HP 8690B Sweep Oscllator with 8693A/B RF Unit 8694A/B RF Unit 8695A/B RF Unit 8699B RF Unit	P
Audio Oscillator	Frequency Range: $10 \mathrm{~Hz}-10 \mathrm{kHz}$ Output Amplitude: 2 Vrms Frequency Accuracy: 2\% Output Impedance: 600 ohms	HP 200CD Audio Oscillator	P
Test Oscillator	Frequency Range: $10 \mathrm{kHz}-1.3 \mathrm{MHz}$ Frequency Accuracy: $\pm 3 \%$ Output Amplitude: 3 Vrms Output Impedance: 50 ohms	HP 652A Test Oscillator	A
Frequency Counter	Frequency Range: $100 \mathrm{kHz}-18.5 \mathrm{GHz}$ Accuracy: $\pm 0.001 \%$ Sensitivity: 100 mV rms Readout Digits: 7 digits	HP 5245L Frequency Counter w/ HP 5257A Transfer Oscillator	A, T
*Use P P PERFORMANCE; $\mathrm{A}=$ ADJUSTMENT; $\mathrm{T}=$ TROUBLESHOOTING			

Table 1-4. Test Equipment Required (cont'd)

Item	Minimum Specifications	Suggested Model	*Use
Tunable RF Voltmeter	Bandwidth: 1 kHz Frequency Range: $1-1000 \mathrm{MHz}$ Sensitivity: $10 \mathrm{mV}-1 \mathrm{Vrms}$ Input Impedance: $\geqslant 0.1$ megohms	HP 8405A Vector Voltmeter	A
Digital Voltmeter	Voltage Accuracy: $\pm 0.2 \%$ Range Selection: manual or automatic Voltage Range: 1-1000 Vdc full scale Input Impedance: 10 megohms Polarity: Automatic indication	HP 3440A Digital Voltmeter w/ HP 3443A Plug-in	A, T
Oscilloscope	Frequency Range: dc to 50 MHz Time Base: 1 us/div to $10 \mathrm{~ms} / \mathrm{div}$ Time Base Accuracy: $\pm 3 \%$ Dual Channel, Alternate Operation AC or de Coupling External Sweep Mode Voltage Accuracy: $\pm 3 \%$ Sensitivity: $0.005 \mathrm{~V} /$ div	HP 180A with HP 1801A Vertical Amplifier and HP 1821A Horizontal Amplifier HP 10004 10:1 Divider Probes (2)	A, T
Power Meter	Frequency Range: $0.01-18.0 \mathrm{GHz}$ Accuracy: $\pm 1 \%$ Power Range: - 20 to +10 dBm	HP 432A Power Meter with HP 8478B Thermistor Mount	A, T
Power Supply Dual DC	Output Voltage: Variable, 0-30 Vdc Output Current: $0-300 \mathrm{~mA}$ Meter Accuracy: 3\%	HP 6205B Power Supply	T
DC Volt-OhmAmmeter	Voltmeter Voltage Range: $1 \mathrm{mV}-300 \mathrm{~V}$ Accuracy: $\pm 1 \%$ Input Resistance: 10 megohms Ammeter Current Range: $1 \mu \mathrm{~A}-1 \mathrm{~A}$ Accuracy: $\pm 2 \%$ Ohmmeter Resistance range: 1 ohm-100 megohm Accuracy: $\pm 5 \%$ reading at center scale	HP 412A Volt-OhmAmmeter	A, T

Table 1-5. Test Accessories

Item	Required Features	Suggested Model
Service Kit	Contents: 140 /141 Display Section to Spectrum Analyzer Plug-in Extender Cable Assembly (HP 11592-60015) IF to RF Unit Interconnection Extender Cable Assembly (HP 11592-60016) Selectro Female to BNC Male Test Cable, 36 inches long (HP 11592-60001) Selectro Male to Selectro Female Test Cable, 8 inches long yellow (HP 11592-60003)	HP 08555-60077

Table 1-5. Test Accessories (cont'd)

Figure 1-5. HP 08555-60077 Service Kit Required for Adjustment \& Service Procedures

Table 1-5. Test Accessories (cont'd)

Item	Required Features	Suggested Model	Use*
10 dB Fixed Attenuator	Frequency Range: DC -12.4 GHz Flatness: $\pm 0.2 \mathrm{~dB}$	HP 8491A, Option 10	A
12 dB Variable Attenuator	Frequency Range: DC-1 GHz Flatness: $\pm 0.3 \mathrm{~dB}$	HP 355C	A
VHF Attenuator	Frequency Range: DC-1 GHz $0-60 \mathrm{~dB}$ in 10 dB steps	HP 355D	A
50 -ohm Termination	Frequency Range: DC- 18 GHz VSWR: 1:1 Power Rating: 0.5 Watts Connector: Type N Male	HP 909A Coaxial Termination, Option 012	P, A
Dual Directional Coupler	Frequency Range: $100 \mathrm{MHz}-2 \mathrm{GHz}$ Directivity: 32 dB	HP 778D Dual Directional Coupler	P, A
Directional Coupler (2)	Frequency Range: $1.7-12.4 \mathrm{GHz}$ Directivity: 26 dB	HP 779D Directional Coupler	P
Coaxial Short	Type N Male Shorting Plug	HP 11512A	P
Low Pass Filter	Cut-off Frequency: 2.2 GHz Insertion Loss: $\leqslant 1 \mathrm{~dB}$ below 0.9 times cut-off frequency Rejection: $\geqslant 50 \mathrm{~dB}$ at 1.25 times cut-off freq.	HP 360C Low Pass Filter	P
BNC Tee	Two BNC Female Connectors, one Male BNC - Connector	UG-274A/U HP 1250-0781	T
Adapter	SMA Jack to BNC Plug	HP 1250-0831	A
Adapter	BNC Jack to BNC Jack	UG-914A/U HP 1250-0080	A
Adapter	BNC Male to Type N Female	UG-349A/U HP 1250-0077	A, T
Adapter (2)	BNC Female to Type N Male	UG-201A/U HP 1250-0067	P,A.T
Crystal Detector	Frequency Range: $0.01-12.4 \mathrm{GHz}$ Frequency Response: $\pm 0.5 \mathrm{~dB}$	HP 423A	P
Logic Level Indicator	Compatibility: DTL or TTL. Power Requirements: 5 volts $\pm 10 \%$ across any two pins	HP 10528A Logic Clip	T
Voltage Probe	Dual Banana Plug-to-Probe Tip and Clip (Ground) Lead	HP 10025A Straightthrough Voltage Probe	A, T
Cable Assy (2)	Male BNC Connectors, 48 inches long	HP 10503A	P,A,T
Cable Assy	BNC Male to Dual Banana Plug, 45 inches long	HP 11001A	P
*USE:	A = ADJUSTMENT; P = PERFORMANCE: $\mathbf{T}=$ TROUBLESH	Ing	

Table 1-5. Test Accessories (cont'd)

Item	Required Features	Suggested Model	Use*
Cable Assembly	Dual Banana Plug to Clip Lead and Probe, 60 inches long	HP 11003A	A
Cable Assembly	Male Type N Connectors, 72 inches long	HP 11500A	A
Tuning Tool, Blade	Nonmetallic Shaft, 6 inches long	General Cement 5003 (HP 8730-0013)	A, T
Tuning Tool, Slot	Nonmetallic, 6-inch shaft	Gowanda PC9668	A. T
Wrench	Open-end, 15/64-inch	HP 8710-0946	A, T
Wrench	Open-end, 5/16-inch	HP 8720-0030	A, T
Wrench	No. 6, Allen Driver	HP 5020-0289	A, T
Wrench	No. 10, Allen Driver	HP 5020-0291	A, T
Wrench	Nut Driver, 5/16-inch	HP 8720-0003	A, T
Screwdrivers	Phillips No. 1 Phillips No. 2 $\begin{array}{ll}\text { Pozidriv No. } 1 \text { (Small) } & \text { Stanley No. } 5531 \\ \text { Pozidriv No. } 2 \text { (Medium) } & \text { Stanley No. } 5332\end{array}$	HP 8710-0899 HP 8710-0900	$\begin{aligned} & \text { A, T } \\ & \text { A, T } \\ & \text { A. T } \\ & \text { A, T } \end{aligned}$
Tuning Tool, Slot	Nonmetallic, 2.5-inch shaft	HP 8710-0095	A, T
Cover Assy	Modified display section cover (see Paragraph 3-40)	Modified HP 5060-0470	A, T
Soldering Iron	47-1/2 watt	Ungar No. 776 with No. 4037 Heating Unit	A, T
Dummy Load	Resistance: 83 ohms, 5% Wattage: 20 watts (100 ohm HP 0819-0019 and 500 ohm HP 0819-0035 in parallel)	HP 0819-0019 HP 0819-0035	T
Voltage Divider	Resistance: $22.97 \mathrm{~K} 1 \% 1 / 4 \mathrm{~W}$ 21.5K (HP 0757-0199) in series with 1.47K (HP 0757-1094)	HP 0757-0199 HP 0757-1094	A
Variable Resistor	Resistance: 2.5 K ohms variable	HP 2100-2729	A
* USE: A = ADJUSTMENT; P P PERFORMANCE; $\mathbf{T}=$ TROUBLESHOOTING			

SECTION II
 INSTALLATION

2-1. INITIAL INSPECTION

2-2. Mechanical Check

$2-3$. Check the shipping carton for evidence of damage immediately after receipt. If there is any visible damage to the carton, request the carrier's agent be present when the instrument is unpacked. Inspect the instrument for physical damage such as bent or broken parts and dents or scratches. If damage is found refer to paragraph 2-6 for recommended claim procedures. If the instrument appears to be undamaged, perform the electrical check (see paragraph 2-4). The packaging material should be retained for possible future use.

2-4. Electrical Check

$2-5$. The electrical check consists of following the performance test procedures listed in Section IV. These procedures allow the operator to determine that the instrument is, or is not, operating within the specificaions listed in Table 1-1. The initial performance and accuracy of the instrument are certified as stated on the inside front cover of this manual. If the instrument does not operate as specified, refer to paragraph $2-6$ for the recommended claim procedure.

2-6. CLAIMS FOR DAMAGE

2-7. If physical damage is found when the instrument is unpacked, notify the carrier and the nearest Hewlett-Packard Sales/Service office immediately. The Sales/Service office will arrange for repair or replacement without waiting for a claim to be settled with the carrier.
$2-8$. The warranty statement for the instrument is on the inside front cover of this manual. Contact the nearest Sales/Service office for information about warranty claims.

2-9. PREPARATION FOR USE

CAUTION

Before applying power, check the rear panel slide switch on the Display Section for proper position (115 or 230 volts).

2-10. Shipping Configuration

2-11. Because of individual customer requirements, shipping configurations are flexible.

Preparation for use is based on the premise that the RF and IF Sections are installed in a Display Section; thus, the Spectrum Analyzer is physically and functionally complete for use. Since the RF and IF Sections are usually received separately, the plug-ins must be mechanically fitted together, electrically connected, and inserted in a display section or oscilloscope mainframe of the 140 -series. For mechanical and electrical connections, refer to Figure 2-1 and paragraph 2-20.

2-12. Power Requirements

2-13. The Spectrum Analyzer can be operated from a 50 - to 60 -hertz input line that supplies either a 115 -volt or 230 -volt ($\pm 10 \%$ in each case) power. Consumed power varies with the plug-ins used but is normally less than 225 watts. Line power enters the Display Section or Mainframe, where it is converted to dc voltages, and then is distributed to the RF and IF Sections via internal connectors.
$2-14$. The $115 / 230$ power selector switch at the rear of Display Section must be set to agree with the available line voltage. If the line voltage is 115 volts, the slide switch must be positioned so that 115 is clearly visible. The instrument is internally fused for 115 -volt operation, when shipped. If 230 -volt source is to be used, refer to fuse replacement procedures in the display section manual.

2-15. Power Cable

2-16. To protect operating personnel, the National Electrical Manufacturers Association (NEMA) and the International Electrotechnical Commission (IEC) recommends that the instrument panel and cabinet be grounded. The Spectrum Analyzer is equipped with a three-conductor power cable; the third conductor is the ground conductor and when the cable is plugged into an appropriate receptacle, the instrument is grounded. To preserve the protection feature when operating the instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the green lead on the adapter to ground.

2-17. Operating Environment

2-18. The Spectrum Analyzer uses a forced-air cooling system to maintain required operating temperatures within the instrument. The air intake and filter are located on the rear of the Display Sec-
tion: air is exhausted through the side panel perforations. When operating the instrument, choose a location which provides at least three inches of clearance around the rear and both sides. Refer to the Display Section manual for maintenance instructions for the cooling system.

2-19. Interconnections

2-20. The RF and IF Sections are normally shipped separately, the plug-ins must be mechanically fitted together, electrically connected, and then inserted in the Display Section or mainframe. To make these connections, refer to Figure 2-1 and proceed as follows:
a. Set the IF Section on a level bench. Locate slot near right rear corner of RF Section; also, locate metal tab on IF Section that engages with this slot.
b. Grasp the 8555A RF Section near middle of chassis and raise until it is a few inches above the IF Section.
c. Tilt RF Section until front of assembly is about 2 inches higher than the rear.
d. Engage assemblies in such a way that metal tab on the rear of the IF Section slips through the slot on RF Section.
e. With the preceding mechanical interface completed, gently lower RF Section until electrical plug and receptacle meet.
f. Position RF Section as required to mate the plug and receptacle. When plug and receptacle are properly aligned, only a small downward pressure is required to obtain a snug fit.
g. Position the latch on each side of the RF Section to lock the RF and IF Sections together.
h. Remove the 50 -ohm lead assembly AT4 (shipped taped to top of the RF Section) and install at the AUXILIARY "A" connector on the rear panel of the Display Section. On Display Sections not equipped with an AUXILIARY "A" connector, install 50 -ohm load assembly AT4 at AUXILIARY "A" connector on rear of RF Section.
i. Pick up the RF/IF Sections and center in opening of Display Section. Push forward until assembly fits snugly into Display Section mainframe.
j. Push in front latch to securely fasten assembly in place.

2-21. To separate the RF/IF Sections from Display Section and to separate the RF Section from the IF Section, proceed as follows:
a. Push front panel latch in direction of arrow until it releases.
b. Firmly grasp the middle of latch flange and pull RF/IF Sections straight out.
c. Unlock the latch on each side of the RF section and exert an upward pulling force on front edge of RF Section.
d. When the two sections separate at the front, raise RF Section two or three inches and slide metal tab at rear of IF Section out of the slot with which it is engaged.

2-22. STORAGE AND SHIPMENT

2-23. Original Packaging

$2-24$. The same containers and materials used in factory packaging can be obtained through the Hewlett-Packard Sales/Service offices listed at the rear of this manual.
$2-25$. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating service required, return address, instrument model number and full serial number. Mark the container FRAGILE to assure careful handling.
$2-26$. In any correspondence refer to the instrument by model number and full serial number.

2-27. Other Packaging Materials

$2-28$. The following general instructions should be followed when repackaging with commercially available materials:
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard Service office or center attach a tag indicating the type of service required, return address, model number and full serial number.)
b. Use a strong shipping container. A double-wall carton made of 350 pound test material is adequate.
c. Use enough shock-absorbing material (three to four inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

INTERCONNECTIONS

Figure 2-1. RF Section and IF Section Interconnections

CAUTION

DO NOT CONNECT IMPULSE GENERATORS TO 8555A INPUT. these mechanical type switching devices can generate PULSES IN EXCESS OF 300 VOLTS. THE BROADBAND OUTPUT FROM IMPULSE GENERATORS CAN DESTROY BOTH INPUT ATTENUATOR AND FIRST CONVERTER. SEE ADDITIONAL INFORMATION IN PARAGRAPHS 3-11 THROUGH 3-13 OF OPERATING AND SERVICE MANUAL PRIOR TO INSTRUMENT OPERATION.

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides complete operation instructions for the HP 8555A/8552A/140-series Spectrum Analyzer. Front panel controls, connectors and indicators, for the 8555A RF Section, are identified and described in Figure 3-1. Controls and indicators, for a typical Display Section and IF Section, are identified and described in Figure 3-2. Refer to the appropriate IF Section and Display Section manuals for identification and description of controls, indicators, and connectors not contained in this manual. Operational adjustments are detailed in Figure 3-3 and general operating instructions are provided in Figures 3-4 through 3-6.

3-3. PANEL FEATURES

$3-4$. Front panel features of the 8555A RF Section are described in Figure 3-1. Front and rear panel views of the HP 8555A/8552A/140T Spectrum Analyzer are shown in Figure 3-3. For a detailed description of the IF Section and Display Section controls and indicators, refer to the operation and service manuals for those instruments. Interconnection wiring between the RF Section and the IF Section and between the RF Section and the Display Section is contained in Section VIII of this manual.

3-5. OPERATOR'S CHECKS

3-6. Upon receipt of the instrument, or when one or more sections of the analyzer are changed, perform the operational adjustment procedures listed in Figure 3-3. This procedure corrects for minor differences between units and ensures that the RF Section, IF Section and Display Section are properly matched.

3-7. OPERATING INSTRUCTIONS

3-8. General operating instructions are contained in Figure 3-4. These instructions will familiarize the operator with basic operating functions of the spectrum analyzer. Additional information covering signal identifying techniques and external mixer operation is contained in Figures 3-5 and 3-6.

3-9. CONTROLS, INDICATORS AND CONNECTORS

$3-10$. Front panel controls, indicators, and connectors are identified and briefly described in Figures

3-1 and 3-2. Operational Adjustment procedures are given in Figure 3-3. Additional information, to assist the user during instrument operation, is given in the following paragraphs.

3-11. RF Input. The RF Section is normally shipped with a Type N connector. Option 001 instruments are shipped with a type APC-7 input connector. Refer to Section VI for part numbers associated with connector J1. (See Input Mixer Diode Characteristics below.) The mixer diode, in the First Converter Assembly A12, will burn out if overloaded. This diode is not separately replaceable; it is part of a thin film microcircuit enclosed in the sealed assembly. To protect the mixer diode it is a good operating practice to always set the INPUT ATTENUATION control to 50 dB before connecting the signal input. Maximum input level, peak or average power $+10 \mathrm{dBm}(1.0 \mathrm{~V}$ AC peak) incident on mixer. Maximum input level to prevent burnout of attenuator, peak or average, +33 dBm . (See INPUT ATTENUATION and Mixer Diode Characteristics below.)

3-12. Input Attenuation. The input attenuator is connected between the RF INPUT (. $01-18 \mathrm{GHz}$) and First Converter. The attenuator should be set to reduce the signal level at the attenuator output to -10 dBm average (signal compression level). The maximum input level, for each position of the attenuator control, for less than 1 dB signal compression, is indicated in red on the attenuator control dial. Unless extra sensitivity is required, at least 10 dB of input attenuation should be used. This provides a 50 -ohm termination for currents at the IF and LO frequencies that appear at the mixer's input port. With the input attenuator set to 0 dB , the RF INPUT is a dc block, capable of withstanding ± 20 volts. In other attenuator positions the input is a de return to ground of about 50 -ohms and is capable of handling $\pm 400 \mathrm{~mA}$ (see CAUTION).

CAUTION

Care must be taken when applying dc voltage to the RF INPUT of the analyzer. Do not change INPUT ATTENUATION setting when dc is applied. Apply only dc voltages with rise time less than 10^{6} volts per second and current with rise times less than 2×10^{4} amperes per second. Do not exceed ± 20 volts dc or 1.0 volts ac peak.

3-13. Mixer Overload Characteristics. The input mixer will provide absolute calibration at signal levels up to -10 dBm , moment on the mixer. Smaller signal levels will generally be necessary for distortion measurements to assure that the measurement does not melude distortion from the 8555 A mixer. (See distortion data in Table 1-2 Supplemental Performance Characteristics.

3-14. EXT MIXER Connector. Output connector for the 2.05 to 4.1 GHz first LO signal. A de bias voltage, adjustable from the front panel, is suppled to the external mixer through this connector. The 2.05 GHz IF ignal generated by the external mixer is applied through this same connector. The HP 11517A Waveguide Mixer is recommended as an accessory along with Waveguide Adapters 11518 A .11519 A and 11520 A for use over the 12.4 to 40 GHz frequency range. Maxımum mput power for less than 1 dB sgnal compression, is typucally .03 mW peak for the 11517 A . To protect the external miser dode. mputs should never exceed 1 milliwatt. Termmate the EXT MIIXER mput with the 50 -ohm load supplied when not in use. When using external mixing, terminate the .01-18 GHz INPLT with the 50 -ohm load or set INPLT ATTENLIATION to 10 or 20 dB . The mput attenuator is not in the external mixing circuit. but does control the LOG REF LEVEL index lamps. Amplitude display decurary will be approximate with INPLT AT FENTATION set to match external mixer lons.

3-15. FIRST LO OUTPUT. 2.05 to 1.1 GHz output from Yig Osellator at a level of approximately +10 dBm . Avalable as a test pomt and for use with accessory equipment Terminate the FIRST LO OUTPL'T with the 50 -ohm load supplied when not in use.

3-16. SECOND LO OUTPUT. 1.5 GHz output from second LO at a power level of approximately +9 dBm . Avalable as a test pomt and for use with accessory equipment Can be used as a test signal with INPLT ATTENUATION set to at least 20 dB. Termmate the SECOND LO OUTPUT with the 50 -ohm load supplied when not in use.

3-17. Frequency Scales. Set of 14 scales selected by the Band Switch Lever. Harmonic number ($n=$) assocrated with selected scale is shown on left edge of frequency scale. Selected IF frequency $(550 \mathrm{MHz}$ or 2.05 GHz is shown on the right edge of the scale.

3-18. LO Scale. Indicates the fundamental frequency of the first LO (Y 1 g). Cursor positioned by the FREQUENCY control indicates the LO fundamental center frequency in the ZERO and PER DIVISION SCAN WIDTH modes.

3-19. BAND Scale. Indicates the frequency range of each of the 14 frequency bands. Green dot on the selected Frequency Scale indicates the frequency BAND.

3-20. FREQUENCY Control. Coarse tunes the analyzer's center frequency in the ZERO and PER DIVISION SCAN WIDTH modes. It is a two-speed control (push-pull action) providing normal or rapid tuning. Do not use coarse tuning when analyzer is stabilized (TUNING STABILIZER ON and SCAN WIDTH PER DIVISION set to blue colorcoded numbers). When stabilized, coarse tunıng will cause signal to jump off CRT screen.

3-21. FINE TUNE. Three turn control fine tunes the analyzer's center frequency in the ZERO and PER DIVISION SCAN WIDTH modes. Use FINE TUNE control to tune analyzer in stabilized mode (see FREQUENCY control above). Provides a 1 MHz tuning range of the 1 st LO (Yıg) on fundamental mixing.

3-22. DISPLAY UNCAL. Warning indicator associated with BANDWIDTH. SCAN WIDTH, SCAN TIME PER DIVISION and VIDEO FILTER controls. Lamp lights when control settings are such that the calibration of the instrument is impared. On some control settmgs it is acceptable for the DISPLAY UNCAL light to be "on" if the light subsequently goes "off" when either the SCAN TIME PER DIVISION or SCAN WIDTH PER DIVISION control is switched one position counterclockwise. The indicator lamp bulb is replaceable from the front panel. HP Part Number 2140-0259. lamp incandescent, 12 volt, . 06 ampere, type T1 bulb. Turn plastic lens cover counterclockwise to remove cover.

3-23. BAND Switch Lever. Selects frequency scale from a set of 14 frequency scales. The band switch lever also controls a shaft encoder on the frequency scale drum that performs several functions:
a. Controls attenuation of the 1 st LO (Yig os() tuning ramp to maintain scan width calibration when using harmonic mixing.
b. Optimizes the bias for the input mixer to match the harmonic number (n) of the Yig oscillator. ($\mathrm{n}=$ harmonic number, shown on left of each frequency scale.)
c. Controls the overall gam of the RF Section to maintain absolute calibration when using internal mixing.
d. Controls switching of the IF signal path. Bypassing and disabling the second converter on the $1+$ and $1-(550 \mathrm{MHz}$ IF bands). Bypassing the first converter when using external mixing on the n $=6-, 6+, 10-$ and $10+$ frequency bands.
e. Provides $\mathrm{n} \pm$ information to signal identification circuit.
f. Provides frequency information to accessory equipment.

3-24. TUNING STABILIZER Switch. ON/OFF control for tuning stabilization circuit. The tuning stabilizer locks the 1st LO (Yig) to a 1 MHz volt-age-controlled crystal oscillator (VCXO) to reduce residual FM of the first LO. The circuitry is enabled when the switch is set to ON and the SCAN

WIDTH switch is in the ZERO or blue color-coded PER DIVISION positions.

3-25. SIGNAL IDENTIFIER Switch: ON/OFF control for signal-identification circuit. The signal identifier circuit provides a method of determining which harmonic of the 1 st LO is mixing with the input signal to give the display on the CRT. The circuitry is enabled when the switch is ON and SCAN WIDTH PER DIVISION control is set to 1 MHz or below. (See Signal Identification Technique, Figure 3-5.)

Figure 3-1. Front Panel Controls, Connectors and Indicators
(1) SIGNAL IDENTIFIER Switch: used in signalidentification technique to identify which harmonic is being mixed with the input signal to obtain the display. See Figure 3-5.
2 FREQUENCY Control: coarse tunes analyzer center frequency. Push-pull action provides either normal or rapid tuning.
(3) FINE TUNE Control: fine tunes analyzer center frequency. Three turn tuning control used in narrow (stabilized) scan widths.

4 Band Switch Lever: frequency range selection con trol. Bi-directional control, rotates Frequency Scales and Frequency Band Shaft Encoder. Shaft Encoder controls digital logic to provide automatic attenuation of 1st LO (Yig Oscillator) tuning ramp to maintain calibration on harmonic mixing. The logic circuitry also controls the input mixer bias and gain of the RF Section to maintain absolute calibration. In addition, the logic circuitry controls relay switching for external mixer operation (10.4 to 40 GHz) and for 2 nd converter bypass ($1+$ and 1. * bands).

* $=550 \mathrm{MHz}$ FIRST IF

5 TUNING STABILIZER Switch: used to lock the 1st LO to a harmonic of a voltage-tuned crystal oscillator for scan widths of 100 kHz per division or less.
(6) Dial Pointer: indicates center frequency to which analyzer is tuned by FREQUENCY Control (2) in PER DIVISION and ZERO scan modes. Also indicates LO center frequency in PER DIVISION and ZERO scan modes. Indicates marker frequency in FULL scan mode. Ganged to FREQUENCY Control; FINE TUNE does not move dial pointer.

BANDWIDTH Control: selects 3 dB IF bandwidths to determine analyzer resolution in ZERO and PER DIVISION positions of SCAN WIDTH Mode Switch (10). 300 kHz bandwidth automatically selected in FULL scan mode.

8 EXT MIXER BIAS: adjusts bias on external waveguide mixer diode; adjusted for optimum mixer sensitivity.

9 SCAN WIDTH PER DIVISION: indicates frequency scan calibration; scan widths from 2 $\mathrm{kHz} /$ div to $200 \mathrm{MHz} /$ div are selectable. Scan is symmetrical about center frequency selected by FREQUENCY (2) and FINE TUNE (3). Enabled by SCAN WIDTH mode switch (10).

10 SCAN WIDTH Mode Switch: selects ZERO, PER DIVISION (9) or FULL scan modes. In ZERO scan mode, analyzer acts as a fixed tuned receiver at the frequency selected by FREQUENCY (2) and FINE TUNE (3). In FULL scan mode, the analyzer scans the full range of the selected frequency band.

AMPL CAL: used to match RF Section with IF Section. Sets overall gain of analyzer for absolute amplitude calibration.

Frequency Bands: set of fourteen, indicates frequency ranges of analyzer. Dot above on Frequency Scale indicated selected Frequency Band.

Frequency Scale: set of fourteen scales, selected by frequency BAND lever.

14 Yig Oscillator (LO) Fundamental Frequency Scale: pointer indicates LO center frequency.
(15) INPUT ATTENUATION: attenuates input signal from 0 to 50 dB in 10 dB steps. Maximum input signal for 1 dB signal compression, indicated on outer dial scale.

CAUTION

Maximum input level peak or average +10 dBm (1.0 Vac peak) incident on mixer, +33 dBm incident on input attenuator.

DISPLAY UNCAL: display uncalibrated indicator; lights when relationship between scan time, scan width, bandwidth, and video filtering is such that accuracy of vertical calibration is impaired.

17 EXT MIXER Input: external mixer input for analyzer operation over 10.4 to 43 GHz frequency range. BNC female connector; accepts cable from external mixer. Supplies LO signal to external mixer and returns IF Signal from mixer. Terminate in 50 ohm load when not in use. See Figure 3-6, External Mixer Operation.

CAUTION

To prevent damage to external mixer do not apply more than 1 mW to 11517A mixer.
(18) FIRST LO OUTPUT: 2 to 4 GHz output from Yig oscillator. Female BNC connector, terminate in 50 -ohm load when not in use.

SECOND LO OUTPUT: 1.5 GHz output from second LO. Female BNC connector, terminate in 50 -ohm load when not in use.
(20) RF INPUT: input for .01 to 18 GHz signals. Female type N connector (Option 001 APC-7 connector).

CAUTION

Maximum input signal to attenuator must not exceed +33 dBm . To protect input mixer diode, output of attenuator must not exceed +10 dBm .

1 With LOG/LINEAR switch (11) set to LOG, lighted index lamp refers matching dB graduation to top LOG REF line of graticule; for example, if -30 dBm is opposite lighted lamp, then top LOG REF line is -30 dBm and so serves as an absolute
amplitude reference. With LOG/LINEAR switch set to LINEAR, lighted index lamp indicates the matching voltage graduation to be used as a perdivision multiplier for calibrated voltage readings (blue marking).

Figure 3-2. Typical Display and IF Section Controls, Connectors and Indicators
(2) Plus " + " lights when logarithmic amplification (11) is selected; times " x " lights when linear amplification (11) is selected. With " + " lighted, LOG REF line is sum (black numprals) of LOG REF LEVEL controls). With " x " lighted, per division absolute voltage amplitude is product (blue numerals) of LINEAR SENSITIVITY controls.
(3) Provides a $30-\mathrm{MHz}$ signal at -30 dBm for amplitude calibration of spectrum analyzer.
(4) Indicates 1 dB increments for logarithmic amplification; indicates multiplication factors up to unity for linear amplification.
(5) Provides penlift operation to HP 7005, 7035, 7004,7034 and all new TTL compatible HP recorders. Provides a blanking input for external scan mode operation. Provides an input for external trigger operation.
(6) Detected video output proportional to vertical deflection on CRT.

For receiving an external scan ramp or output coupling for the internally-generated scan ramp. Input or output function determined by INT/EXT positions of SCAN MODE switch.

8 Adjusts vertical position and gain of trace. Adjusts horizontal position and gain of trace.
(10) Selects scan trigger mode.

11 Selects logarithmic or linear display mode.
12 The dB graduation (black numerals), opposite the lighted index lamp, indicate the power level at the LOG REF graticule line on CRT when LOG/ LINEAR (11) is set to LOG. With LOG/LINEAR set to LINEAR, the voltage graduations (blue numerals), opposite the lighted index lamp, indicate the per division multiplier for calibrated voltage amplitude.

13 Selects scan ramp mode. Ramp is internally generated for SINGLE/INT positions but it must be externally supplied for EXT position. (Refer to Item 7).

Controls SCAN TIME PER DIVISION

(15) Press to initiate scan with SCAN MODE switch set to SINGLE. Press during scan to stop and reset scan.
Selects $100 \mathrm{~Hz}, 10 \mathrm{kHz}$ or OFF position of lowpass filter for detected video.
17 Lights for duration of each scan for single and internal scan modes.

18 Blanks lower part of trace to prevent overexposure of photographs due to high intensity of baseline. Blanking function also prevents blooming with a variable-persistence storage display section.
19 Provides 1 - and 10 -volt, peak-to-peak, 60 Hz squarewave outputs.

CAUTION

These calibrated outputs should never be used with the spectrum analyzer. (These outputs are for use only with the 1400 series oscilloscope plug-ins).

20 Adjusts brightness of CRT display.

CAUTION

Excessive brightness for a static or very slow-moving trace may burn the phosphor and permanently damage the CRT. This caution is applicable to both the fixed and variable-persistence/storage CRT; however, the latter is especially vulnerable to operational errors of this type.
(21) Makes base line parallel with the horizontal graticule line.
22 Focuses CRT beam.
23 Used with FOCUS control (22) to obtain smallest spot with maximum roundness.

24 Lights when line voltage is applied and instrument is turned on.
25 Switches line voltage to instrument.
26 When used with 1400 -series oscilloscope plug-ins, intensifies and returns beam to CRT, regardless of deflection potentials.
27 Display CRT with graticule lines.
28 Selects non-storage function.
CAUTION
Use storage function when possible to prevent damage to the CRT.
29 Press to ERASE when in STD or FAST writing speed.
(30) Selects writing speed.
(31) Varies time the trace is visible.
(32) Selects storage time.
(33) Press to store signal display. Storage time (relative display brightness) in storage mode is adjusted by (32).

Figure 3-3. Operational Adjustments

INPUT POWER AND INTENSITY MODULATION

1 Set $115 / 230$ switch to correspond with available input voltage. (The instrument is fused for 115 volt, $50 / 60 \mathrm{~Hz}$ operation; if 230 -volt power is used, refer to the display section service manual for fuse replacement procedures.)

2 Set INT/EXT switch to INT. (Set to EXT only if CRT is to be externally modulated - normally used with 1400 -series time-domain plug-ins.)

3 Connect 50 -ohm termination AT4.

FOCUS AND ASTIGMATISM ADJUSTMENTS

(4) Set:

POWER ON (up; observe that ON lamp lights)
BASE LINE CLIPPER, fully cew
SCAN WIDTH (inner/red) to ZERO
INPUT ATTENUATION to 10 dB
BANDWIDTH to 0.3 kHz
SCAN TIME PER DIVISION to 10 SECONDS
SCAN MODE to INT.
SCAN TRIGGER to AUTO
TUNING STABILIZER to ON
FINE TUNE Control centered
LOG/LINEAR to LOG
LOG REF LEVEL Vernier: max CCW
INTENSITY clockwise until trace is medium bright (approx. 1 o'clock position).
BAND to $0-2.05 \mathrm{GHz}$
VIDEO FILTER to OFF
5 Adjust FOCUS and ASTIGMATISM controls until combined effect produces best resolution (maximum roundness without fuzz) of the dot.

TRACE ALIGNMENT

6 Set SCAN TIME PER DIVISION to 10 MILLISECONDS.

1 If not already aligned, adjust TRACE ALIGN until trace is aligned with horizontal line of graticule.

HORIZONTAL POSITION AND GAIN
8 For convenience in making these adjustments, move trace to upper half of graticule by adjusting the VERTICAL POSITION control.

9 Rotate HORIZONTAL GAIN until trace is of minimum length.

10 Rotate HORIZONTAL POSITION until trace is centered on CENTER FREQUENCY line of graticule.

11 Alternately adjust HORIZONTAL POSITION/ GAIN controls until trace begins at first line of graticule and ends at last.

Readjust VERTICAL POSITION until trace aligns with bottom line of graticule.

VERTICAL POSITION AND GAIN

(13) Connect CAL OUTPUT ($30 \mathrm{MHz} /-30 \mathrm{dBm}$) signal to RF INPUT; select 100 kHz BANDWIDTH, 10 MHz PER DIVISION SCAN WIDTH and set LOG REF LEVEL to +10 dBm .

14 Tune FREQUENCY to align LO feedthru signal on -3 graticule line. The 30 MHz calibration signal should appear at the CENTER FREQUENCY graticule line with a harmonic at the +3 graticule line (60 MHz). The dial marker should indicate approximately 30 MHz .

Reduce SCAN WIDTH PER DIVISION to 0.2 Mhz. Center signal on display with FREQUENCY control. Reduce SCAN WIDTH PER DIVISION to 2 kHz (keep signal centered on display with FINE TUNE). Set LOG REF LEVEL to -30 dBm .

FINE TUNE to center signal on display.

11 Rotate AMPL CAL until trace is centered on top line of graticule at the CENTER FREQUENCY position.

18 Rotate LOG REF LEVEL counterclockwise and note that the signal decreases one division (10 dB) for each calibrated switch position. If trace moves one division per step in lower part of graticule but the amplitude creeps upward near top of graticule, adjust VERTICAL GAIN until each step is equal.

LINEAR AND LOGARITHMIC ADJUSTMENT

19 Rotate LOG REF LEVEL control until signal trace appears on fourth graticule line from bottom.

20 Set LOG/LINEAR switch to LINEAR and rotate LOG REF LEVEL control until $1 \mathrm{mV} / \mathrm{DIV}$ is matched with the lighted index lamp.

21 Reading from bottom of graticule (LIN scale), signal amplitude should be 7.1 millivolts. If it is not, adjust AMPL CAL for a signal amplitude of 7.1 millivolts.

22 Set LOG/LINEAR switch to LOG. Rotate LOG REF LEVEL control until -30 dBm graduation matches the lighted index lamp. Signal trace should align with top (LOG REF) line of the graticule.

Figure 3-4. General Operating Instructions, . 01 to 18.0 GHz
(1) Perform Operational Adjustments, Figure 3-3.
(2) Set controls as follows:

POWER . ON BANDWIDTH . 300 kHz
SCAN WIDTH . FULL
SCAN WIDTH PER DIVISION 20 MHz
INPUT ATTENUATION 50 dB
FINE TUNE . Centered
TUNING STABILIZER ON
SIGNAL IDENTIFIER OFF
BASE LINE CLIPPER 9 o'clock
SCAN TIME PER DIVISION 0.2 SECONDS
LOG REF LEVEL +10 dBm
LOG REF LEVEL Vernier max CCW
LOG/LINEAR 10 dB LOG
SCAN MODE . INT
SCAN TRIGGER . AUTO
VIDEO FILTER 10 kHz
(3) Adjust INTENSITY for a display trace.

CAUTION

To avoid mixer burnout, attenuator damage or both, the RF INPUT should never exceed 1.0 Vac peak or ± 20 Vdc.
4. Connect input signal (any frequency between 10 MHz and 18 GHz) to RF INPUT.
(5) Adjust PERSISTENCE, INTENSITY and BASE LINE CLIPPER for a display trace without blooming.
(6) Observe display for presence of a signal. If a signal is not observed, reduce INPUT ATTENUATION in steps while observing display for a signal.
(1) When a signal (or signals) is obtained on the display, tune FREQUENCY control to position inverted marker under signal (under largest signal, if more than one signal is viewed on the display).

Set SCAN WIDTH to PER DIVISION, SCAN TIME PER DIVISION to 20 MILLISECONDS and adjust INTENSITY for a convenient display.
(9) Center signal on display with FREQUENCY control.
(10) Reduce SCAN WIDTH PER DIVISION to 1 MHz and BANDWIDTH to 30 kHz , keeping signal centered on display with FREQUENCY control. Increase SCAN TIME PER DIVISION to 50 MILLISECONDS.

Set SIGNAL IDENTIFIER to ON. Note amount and direction signal shifts on alternate scan traces.
(12) Rotate Frequency Scales with Band Switch Lever until the signal shifts two divisions to the left on alternate scans and is approximately 5 dB less in amplitude.

NOTE

When switching from the $\mathrm{n}=1 \pm, 550 \mathrm{MHz}$ IF Frequency Bands, allow a tew seconds for instrument stabilization. Voltage to the 2 nd $\mathrm{LO}(1.5 \mathrm{GHz})$ is removed when these bands are selected.

Set SIGNAL IDENTIFIER switch to OFF. Center signal on CRT with FREQUENCY control. Read frequency of signal indicated by cursor on Frequency Scale.

14 If additional signals were observed during step 7 above, they may be identified in the same manner. Set SCAN WIDTH to FULL, SCAN WIDTH PER DIVISION to 20 MHz , BANDWIDTH to 30 kHz , and SCAN TIME PER DIVISION to 0.2 SECONDS. Tune FREQUENCY control to position inverted marker under signal of interest. Repeat steps 8 through 13 to identify signal frequency.

Figure 3-5. Signal Identification Technique

NOTE
This procedure is given in two parts. Steps 1 through 10 provides signal identification technique for use during normal operation. Steps 11 through 27 provides a procedure for operator familiarization.
(1) Center unknown signal on the display (use FINE TUNE when analyzer is stabilized).
(2) Set SIGNAL IDENTIFIER switch to ON.

Reduce SCAN WIDTH PER DIVISION to 1 MHz . Keep signal centered on display with FINE TUNE control.

Alternate sweep scans across the display. CRT will displace the unknown signal to the left or right of center.
(5) Reduce SCAN WIDTH PER DIVISION and BANDWIDTH to separate other signals on the display. Keep the signal under investigation centered on the display.
(6) Note direction and spacing of signal shift on the CRT. When the correct harmonic (n) number and sign (+ or -) is selected by the Band Switch Lever, the signal will shift two divisions to the left. The shifted signal is reduced in amplitude by approximately 5 dB .

If signal shifts to the right two divisions, the harmonic number is correct, however the sign (+ or -) on the left edge of the Frequency Scale is wrong.

If the signal shifts less than two divisions on the CRT, press the Band Switch Lever "up" to increase the harmonic number. Note that the signal shifts in the opposite direction with each change in sign and increases in width with each increasing harmonic number.
(9) Change Band Switch Lever until the signal shift is two divisions apart with the reduced signal on the left. FINE TUNE to align the reduced signal on the -2 graticule line with the signal to be identified on the Center Frequency graticule line.
(10) Read frequency indicated by the cursor on the Frequency Scale. The signal frequency is related to the first LO harmonic by the equation Fsig $=$ $\mathrm{nFLO} \pm \mathrm{IF}$.
where Fsig = signal frequency
$\mathrm{n}=$ harmonic number
$\mathrm{FLO}=\mathrm{LO}$ fundamental frequency
IF = frequency of first IF

NOTE

In the following familiarization procedure a known input signal is applied and the harmonic numbers producing the signals on the CRT display are identified. The input mixer is overdriven to produce sig. nals that would not normally be present on the display.

11 Set analyzer controls as follows:
FREQUENCY Full CCW
FINE TUNE Centered
BAND n=1- $0-2.05 \mathrm{GHz}$
TUNING STABILIZER ON
SIGNAL IDENTIFIER OFF
BANDWIDTH 100 kHz
SCAN WIDTH . FULL
SCAN WIDTH PER DIVISION 20 MHz
INPUT ATTENUATION 50 dB
VIDEO FILTER 10 kHz
SCAN TIME PER DIVISION 0.2 SECONDS
SCAN MODE . INT
SCAN TRIGGER . AUTO
LOG/LINEAR . LOG
LOG REF LEVEL $(+30 \mathrm{dBm})^{*}$
*2 steps CCW from +10 dBm
POWER . . ON
WRITING SPEED . STD
INTENSITY . 12 o'clock
PERSISTENCE . MAX

12 Adjust INTENSITY for a visible scan trace without blooming. ERASE display as necessary between adjustments. Adjust BASE LINE CLIPPER to blank lower portion of scan trace. Repeat adjustments as necessary during the following steps.

Remove 50 -ohm termination from SECOND LO OUTPUT and connect a cable from SECOND LO OUTPUT to RF INPUT.

14 Tune FREQUENCY control to the position marker under the signal between the +2 and +3 graticule lines.
(15) Note reading on Frequency Scale. Cursor indicates 1.5 GHz .
(16) Switch SCAN WIDTH to PER DIVISION. Center signal on display with FREQUENCY control. ERASE display to remove stored signals.

Set PERSISTENCE to MIN, SCAN WIDTH PER DIVISION to 1 MHz and SCAN TIME to 20 MILLISECONDS.

Center signal on display. Set SIGNAL IDENTIFIER to ON. Note signal shifts to the left and is reduced in amplitude on alternate sweep scans.

19 Set SCAN WIDTH PER DIVISION to 20 MHz , SCAN WIDTH to FULL, INPUT ATTENUATION to 40 dB and SCAN TIME PER DIVISION to 0.2 SECONDS.

20 Note signal display similar to Figure 3-5a. Decrease INPUT ATTENUATION to 30 dB . Note display similar to Figure 3-5b. Note that some signal levels increased more than 10 dB . The input mixer is being overdriven (see Mixer Diode Characteristics, paragraph 3-13).

Figure 3-5a.
(21) Tune FREQUENCY control to place marker under signal at +3 graticule line.

22 Set PERSISTENCE to MIN, SCAN WIDTH to PER DIVISION, SCAN WIDTH PER DIVISION to 10 MHz and SCAN TIME PER DIVISION to 50 MILLISECONDS. Center signal on display with FREQUENCY control. Reduce SCAN WIDTH PER DIVISION to 1 MHz . Note amount and direc. tion of signal shift.

23 Select $n=3-4.10$ to 10.25 GHz Frequency Band. Note change in direction and amount of shift as Band Switch Lever is pressed. Read frequency on Frequency Scale (9 GHz).

Figure 3-5. Signal Identification Technique (cont'd)

Set SCAN WIDTH to FULL and tune FREQUENCY to place marker under any signal on the display. Disregard DISPLAY UNCAL light at this time. Repeat step 22 for selected signal.

Change Band Switch Lever until the correct display is obtained. Read frequency of signal on Frequency Scale.

26 The signal at the -4.2 graticule line (just above the analyzer's noise level) is the 9 GHz signal from the $\mathrm{n}=5$ - harmonic. Signal shifts to the left approximately 1 and $2 / 3$-divisions on $n=4$ - Frequency Band.

Figure 3-5b

21 Signals shown in Figure 3-5b (mixer overdriven) are as follows:

Graticule Line	Harmonic	Frequency Scale
-4.4	$\mathrm{n}=3-$	4.5 GHz
-4.2	$\mathrm{n}=5-$	See step 26
-3.0	$\mathrm{n}=1+$	4.5 GHz
-2.6	$\mathrm{n}=2-$	3.0 GHz
-1.8	$\mathrm{n}=3-$	6.0 GHz
-1.6	$\mathrm{n}=2+$	7.5 GHz
-1.4	$\mathrm{n}=4-$	9.0 GHz
+0.6	$\mathrm{n}=3-$	7.5 GHz
+1.0	$\mathrm{n}=2-$	4.5 GHz
+2.0	$\mathrm{n}=2+$	9.0 GHz
+2.4	$\mathrm{n}=1-$	1.5 GHz
+3.0	$\mathrm{n}=3-$	9.0 GHz
+4.4	$\mathrm{n}=1+$	6.0 GHz

(28) Use the formula below to determine the harmonic mixing mode for modes not on the Frequency Scales (i.e., 5, 7, 8 and 9).

$$
n_{\text {true }}=\frac{2 \mathrm{~cm}}{\text { actual shift }} \quad \times(\text { displayed } n)
$$

Figure 3-5. Signal Identification Technique (cont'd)

(1) Set INPUT ATTENUATION to 20 dB . Connect cable supplied with waveguide mixer to EXT MIXER input.

CAUTION

Discharge cable to avoid damage to mixer diode. Touch edge of male BNC connector on cable to edge of female BNC connector on mixer to discharge cable. See 11517A Operating Note.
(2) Connect cable to mixer. The LO signal from the RF Section and the mixing products to the $R F$ Section are carried in this cable.
(3) Connect appropriate waveguide adapter to the mixer.

4 Connect waveguide adapter to signal source. For linear operation, adjust signal source for output no greater than .03 milliwatt. For minimum intermodulation and spurious signals, keep input signal level at -30 dBm or below.
(5) Set Frequency Band Level to lowest BAND which covers range of signal under investigation. (External mixer bands are as follows: $\mathrm{n}=6$ - 10.25 $22.55 \mathrm{GHz} ; \mathrm{n}=6+14.35-26.65 \mathrm{GHz}$; $\mathrm{n}=10-18.45-38.95 \mathrm{GHz}$ and $\mathrm{n}=10+22.55-$ 43.05 GHz.) When other bands are selected the external mixer circuit path is opened by coaxial switches in the RF Section.

6 Set Analyzer controls as follows:

BANDWIDTH	300 kHz
SCAN WIDTH	FULL
SCAN WIDTH PER DIVISION	10 MHz
TUNING STABILIZER	ON
SIGNAL IDENTIFIER	OFF
BASE LINE CLIPPER	12 o'clock
SCAN TIME PER DIVISION	0.2 SECONDS
LOG REF LEVEL	0 dB
LOG REF LEVEL Vernier	CCW
VIDEO FILTER	OFF
SCAN TRIGGER	AUTO
SCAN MODE	INT
*Input attenuator is not in extern switch controls position of LOG lamps and attenuator provides te mixer input port.	aing circuit, but LEVEL index tion for internal

(1) Adjust FREQUENCY control to position cursor at Frequency Scale reading that is approximately the frequency of the signal under investigation.
(8) Adjust Display Section for a convenient display. (WRITING SPEED - STD, PERSISTENCE - MIN \& INTENSITY approximateiy 12 o'clock.)
(9) Adjust FREQUENCY control to position marker under signal of interest.

10 Set SCAN WIDTH to PER DIVISION and adjust FREQUENCY control to center signal on display.
(11) Adjust LOG REF LEVEL for a convenient signal-to-noise ratio.
(12) Adjust EXT MIXER BIAS for best signal trace.
(13) Adjust BANDWIDTH, SCAN WIDTH PER DIVISION and SCAN TIME PER DIVISION to obtain best detail in region of interest.
(14) Readjust EXT MIXER BIAS for maximum amplitude.

SECTION IV
 PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. This section contains front panel checks and performance tests for the 8555A Spectrum Analyzer RF Section. Front panel checks for routine inspection are given in Table 4-1. Procedures for verifying that the instrument meets specifications are given in paragraphs 4-20 through 4-26.

4-3. Perform tests in procedural order, with the test equipment called for, or with its equivalent. During any performance test, all shields and attaching hardware must be in place; the RF and IF sections must be installed in the display section.

4-4. EOUIPMENT REOUIRED

4-5. Test equipment and test accessories for performance (P), adjustment (A) and troubleshooting (T) are listed in Tables 1-4 and 1-5. Critical specifications and/or required features, for the test equipment and accessories are contained in the test equipment and test accessories tables.

4.6. FRONT PANEL CHECKS

4-7. Before proceeding to the performance tests, the instrument must be adjusted and all controls set as specified in the preset adjustment instructions in paragraphs 4-8 through 4-18. After the instrument controls are preset, proceed with the front panel checks and adjustments. The instrument should perform as called out in the check and adjustment procedures before going on to the performance tests (paragraphs 4-20 through 4-26).

4-8. Preset Adjustments

a. Turn the analyzer on and preset INTENSITY control to approximately 1 o'clock. While the analyzer is warming up, make the following control settings:

BAND	. $01-2.05 \mathrm{GHz}$
FREQUENCY	50 MHz
FINE TUNE	Centered
BANDWIDTH	100 kHz
SCAN WIDTH	PER DIVISION
SCAN WIDTH PER DIVISION	10 MHz
INPUT ATTENUATION	10 dB
TUNING STABILIZER	
SIGNAL IDENTIFIER	OF
BASE LINE CLIPPER	CCW

LOG/LINEAR
LOG
LOG REF LEVEL 0 dBm
LOG REF LEVEL Vernier . 0
VIDEO FILTER . 10 kHz SCAN MODE . INT
SCAN TRIGGER . LINE
b. Connect CAL OUTPUT to RF INPUT using a BNC-to-type N cable. The analyzer display should be similar to Figure 4-1. Adjust FREQUENCY control to align the LO feedthrough signal on the left (-3) graticule of the CRT.

Figure 4-1. CRT Display, 0 to 100 MHz

4-9. Display Adjustments

a. Set LOG REF LEVEL max ccw.
b. Set SCAN TIME PER DIVISION to 10 SECONDS and adjust FOCUS and ASTIGMATISM for smallest round spot possible.
c. Reset SCAN TIME PER DIVISION to 10 MILLISECONDS. Adjust TRACE ALIGN so that the horizontal base line CRT trace is exactly parallel to the horizontal graticule lines.

4-10. RF and IF Section Adjustments

a. Adjust VERTICAL POSITION so that the horizontal base line CRT trace is exactly on the bottom horizontal graticule line of the CRT.
b. Set FREQUENCY to position the LO feedthrough signal on the -3 graticule line. Curser should indicate approximately 30 MHz on the frequency scale.
c. Adjust HORIZONTAL POSITION so display is centered on the CRT. Adjust HORIZONTAL GAIN until the displayed scan trace is exactly ten divisions wide. Some interaction between HORIZONTAL POSITION and GAIN adjustments may occur, requiring slight readjustment of the controls.
d. Set LOG REF LEVEL to 0 dBm . The amplitude of the center frequency signal (30 MHz) should be approximately -30 dBm . The amplitudes of the individual signals may be slightly different.

Note

The other signals on the display are the first LO feedthrough (zero frequency) at the - 3 graticule and the second harmonic of the 30 MHz calibrator signal at the +3 graticule.
e. Adjust FREQUENCY control to center 30 MHz calibrator signal, if necessary. Reduce SCAN WIDTH PER DIVISION to 10 kHz . Use FINE TUNE to center the signal on the display. With the TUNING STABILIZER set to ON (paragraph 4-8a) the analyzer's First LO is automatically locked to a crystal oscillator reference for the blue color-coded SCAN WIDTH positions. The FREQUENCY control should not be used to fine tune the analyzer; frequency would tune in 1 MHz steps.
f. Reduce BANDWIDTH to 10 kHz keeping the 30 MHz signal centered on the display with the FINE TUNE control, if necessary.
g. Adjust the LOG REF LEVEL controls so the maximum signal amplitude is exactly on the -70 dB graticule line. (Reduce AMPL CAL signal level if necessary.) Rotate LOG REF LEVEL control seven steps in the clockwise direction. The amplitude of signal should increase in increments of one division per 10 dB step. See Figure 4-2.
h. Adjust VERTICAL GAIN to place maximum signal amplitude exactly on the LOG REF (top) graticule line.
i. Repeat steps g and h to obtain optimum adjustment of VERTICAL GAIN (increments as close to one division per 10 dB step as possible).

4-11. Ampl Cal Adjustment

a. Set the LOG REF LEVEL controls to -30 $d B m(-30+0)$.

Figure 4-2. Vertical Gain Adjustment
b. Adjust AMPL CAL so that the signal amplitude (-30 dBm) is exactly on the LOG REF (top) graticule line of the CRT.

The analyzer is now calibrated in the LOG display mode.

4-12. AMPL CAL CHECK FOR LINEAR SENSITIVITY ACCURACY

4-13. In the LINEAR display mode the vertical display is calibrated in absolute voltage. For LINEAR measurements the LIN scale factors on the left side of the CRT and the blue color-coded scales of the LINEAR SENSITIVITY controls are used. The signal voltage is the product (note lighted " x " lamp) of the CRT deflection and LINEAR SENSITIVITY control settings. It is usually most convenient to normalize the LINEAR SENSITIVITY Vernier by setting it to " 1 " (blue scale).
a. Set LINEAR SENSITIVITY to $1 \mathrm{mV} / \mathrm{DIV}$ (1 mV x 1). Set the LOG/LINEAR switch to LINEAR. Since the -30 dBm calibrator output is equal to approximately 7.1 mV (across 50 ohms) the CRT deflection should be approximately 7.1 divisions.
b. Adjust AMPL CAL on the 8555A for approximately 7.1 division CRT deflection, if necessary. (LINEAR display is more expanded than the compressed LOG display, so adjustment of the AMPL CAL control can be made with more resolution in LINEAR without noticeable effect of the LOG calibration.)

The analyzer is now calibrated for both the LOG and LIN display modes.

4-14. FRONT PANEL CHECKS

a. Perform the Preset Adjustments, Display Adjustments and the RF and IF Adjustments (paragraphs 4-8 through 4-13) prior to performing the Front Panel Checks listed in Table 4-1.
b. With the analyzer controls as they were at the completion of the adjustment procedures, perform the following steps.

1. Set LOG/LINEAR switch to LOG.
2. Set LOG REF LEVEL to -10 dBm .
c. Perform Table 4-1 Front Panel Checks.

4-15. PERFORMANCE TESTS

4-16. The performance test given in this section are suitable for incoming inspection, troubleshooting, or preventive maintenance. During any performance test, all shields and connecting hardware must be in place and the RF section and IF section must be installed in the display section. The tests are designed to verify published instrument specifications. Perform the tests in the order given, and record data on test card (Table 4-4) and/or in the data spaces provided in each test.

4-17. The tests are arranged in the following order:

Paragraph Test Description
4-20 - Scan Accuracy (Linearity)
4-21 Frequency Response
4-22 Sensitivity (Average Noise Level)
4-23 Noise Sidebands
4-24 Residual FM
4-25 Tuning Dial Accuracy
4-26 Residual Responses

4-18. Each test is arranged so that the specification is written as it appears in the Table of Specifications in Section I. Next, a description of the test and any special instructions or problem areas are included. Each test that requires test equipment has a test setup drawing and a list of required equipment. Step 1 of each procedure gives control settings required for that particular test.

4-19. Required minimum specifications for test equipment are detailed in Table 1-4 in Section I. If substitute test equipment is used, it must meet the specifications listed in order to performance-test the analyzer.

Table 4-1. Front Panel Checks

Function	Procedure	Result
Base Line Clipper	1. Turn BASE LINE CLIPPER cw. 2. Return clipper to ccw.	1. At least the bottom two divisions should be blank.
Scan	3. SCAN TIME PER DIVISION across its range. 4. Set to 20 MILLISECONDS.	3. Scan should occur in all positions.
Scan Width	5. Turn SCAN WIDTH PER DIVISION to 10 MHz .	5. 30 MHz signal and second harmonic visible. DISPLAY UNCAL light is lit.
	6. Center CAL OUTPUT signal on display and set BANDWIDTH to 300 kHz .	6. DISPLAY UNCAL light is extinguished.
	7. Reduce SCAN WIDTH PER DIVISION to 100 kHz ; use FINE TUNE to center display.	7. Signal remains on-screen, centered.
Tuning Stabilization	8. Carefully turn FREQUENCY.	8. Signal jumps to left or right hand off of the CRT ($\pm 1 \mathrm{MHz}$). This corresponds to the 1 MHz oscillator in the automatic tuning stabilizer circuit.
	9. Turn TUNING STABILIZER to OFF; use FREQUENCY to center display.	9. Signal should jump $\leqslant 1$ division when TUNING STABILIZER is turned off.
	10. Turn TUNING STABILIZER on, use FINE TUNE to center display.	10. Signal should jump $\leqslant 1$ division.
Bandwidth \& Display Uncal Light	11. Reduce BANDWIDTH and SCAN TIME PER DIVISION using FINE TUNE to center display.	11. Display should be stable and viewable so long as DISPLAY UNCAL is unlit.
Signal Identifier	12. Return BANDWIDTH to 10 kHz ; SCAN WIDTH PER DIVISION to 100 kHz : and SCAN TIME PER DIVISION to 20 MILLISECONDS. Set SIGNAL IDENTIFIER to ON .	12. The 30 MHz calibrator signal is displaced 2 divisions to the left and reduced approximately 5 dB on alternate scan traces.
	13. Turn SIGNAL IDENTIFIER off. Set BANDWIDTH to 300 kHz and SCAN TIME PER DIVISION to 2 MILLISECONDS.	13. Analyzer displays the 30 MHz calibrator signal.
Calibration	14. Lit index light on LOG REF LEVEL control corresponds to top line of graticule; with input attenuation at 10 dB and LOG REF LEVEL at -10 dBm , signal level is -30 dBm .	14. Calibrator signal is at -30 dBm level (two divisions down from the top of graticule).
Gain Vernier	15. Turn LOG REF LEVEL Vernier cw.	15. Signal level increases by the amount marked on vernier dial.
Attenuators	16. Turn INPUT ATTENUATION and LOG REF LEVEL in 10 dB steps.	16. Signal increases or decreases one vertical division per 10 dB step.

PERFORMANCE TESTS

4-20. Scan Accuracy

SPECIFICATION: Frequency error between two points on the display is less than 10% of the indicated separation.

DESCRIPTION: Wide scan widths are checked using a comb generator directly. Narrow scan widths are checked using a comb generator modulated by an audio oscillator. Comb generator frequency components are aligned opposite graticule lines, and the amount of error is measured.

Figure 4-3. Scan Width Accuracy Test Setup

EQUIPMENT:

1. Connect the test setup in Figure $4-3$ and make the following control settings:
```
ANALYZER:
    FREQUENCY . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 GHz
    BANDWIDTH . . . . . . . . . . . . . . . . . . . . . . . . . 300 kHz
    SCAN WIDTH . . . . . . . . . . . . . . . . . . . PER DIVISION
    SCAN WIDTH PER DIVISION . . . . . . . . . . . . . . 100 MHz
    INPUT ATTENUATION . . . . . . . . . . . . . . . . . . . . . . 0 dB
    SCAN TIME PER DIVISION . . . . . . 10 MILLISECONDS
    LOG/LINEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LOG
    LOG REF LEVEL . . . . . . . . . . . . . . . . . . . . . . . . - . 20 dBm
    VIDEO FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . OFF
    SCAN MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT
    SCAN TRIGGER . . . . . . . . . . . . . . . . . . . . . . . . AUTO
    BAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .01-2.05 GHz
```

2. Set comb generator for a 100 MHz comb. A comb signal occurs every 100 MHz on the CRT display (see Figure 4-4). Tune FREQUENCY and FINE TUNE to line up a comb signal with the far left graticule line.

Figure 4-4. Scan Width Accuracy Measurement

PERFORMANCE TESTS

4-20. Scan Accuracy (cont'd)

3. Measure the amount of error in divisions that the comb signal deviates from the +3 graticule line. The comb signal should occur on the +3 line ± 0.8 division.

$$
+2.2 \ldots+3.8 \mathrm{div}
$$

4. Repeat steps 2 and 3 with SCAN WIDTH PER DIVISION set to 10 MHz and a comb frequency of 10 MHz .

$$
+2.2 \ldots+3.8 \mathrm{div}
$$

5. Repeat steps 2 and 3 with SCAN WIDTH PER DIVISION set to 1 MHz, BANDWIDTH at 10 kHz , SCAN TIME PER DIVISION to 20 MILLISECONDS, and a comb frequency of 1 MHz .
$+2.2$ \qquad +3.8 div

Figure 4-5. Scan Width Accuracy Test Setup
6. To test the 50 kHz SCAN WIDTH PER DIVISION setting, connect the test setup shown in Figure 4-5. Set controls as follows:

```
ANALYZER:
    BANDWIDTH
    3kHz
    SCAN TIME PER DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . }10\mathrm{ MILLISECONDS
    SCAN WIDTH PER DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }50\textrm{kHz
    TUNING STABILIZER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OFF
```

7. Set audio oscillator output frequency for 50 kHz and comb generator for 10 MHz comb. Maximize the comb signal amplitudes using the comb generator and audio oscillator output amplitude controls.
8. With controls set as in step 6 above, a comb signal occurs every 50 kHz on the display. Turn FINE TUNE to line up a comb signal with the far left graticule line.

PERFORMANCE TESTS

4-20. Scan Accuracy (cont'd)

9. Measure the amount of error, in divisions, that the comb signal deviates from the +3 graticule line. The comb signal should occur on the +3 line ± 0.8 division.
\qquad +3.8 div
10. Repeat steps 6 through 9 with TUNING STABILIZER on.

4-21. Frequency Response

SPECIFICATION: With 10 dB input attenuator setting:

Frequency Range (GHz)	Mixing Mode (n)	Frequency Response (dB max)
0.01-2.05	$1-$	± 1.0
1.50-3.55	$1-$	± 1.0
2.07-6.15	2 -	± 1.25
2.60-4.65	$1+$	± 1.0
4.11-6.15	1+	± 1.0
4.13-10.25	3.	± 1.5
6.17-10.25	$2+$	± 1.5
6.19-14.35	4.	± 2.0
8.23-14.35	$3+$	± 2.0
10.29-18.00	4+	± 2.0

DESCRIPTION: A leveled signal source is applied to the input of the spectrum analyzer. As the source is tuned across each band of the analyzer, the analyzer CRT is observed for amplitude variations versus frequency.

Figure 4-6. Frequency Response Test Setup, 0.1 to 2.05 GHz

4-21. Frequency Response (cont'd)

Figure 4-7. Frequency Response Test Setup, 1.5 to 18 GHz

EQUIPMENT:

1. Make the following analyzer control settings:

ANALYZER:
BAND
FREQUENCY
BANDWIDTH . 1 GHz Gz

4-21. Frequency Response (cont'd)

SCAN WIDTH PER DIVISION 200 MHz
INPUT ATTENUATION 10 dBSIGNAL IDENTIFIER
SCAN TIME PER DIVISION NDS
LOG/LINEAR LOG
LOG REF LEVEL $-10 \mathrm{dBm}$
VIDEO FILTER OFF
SCAN MODE INT
SCAN TRIGGER LINE
2. Connect the test setup shown in Figure 4-6 with the power meter connected at the output with the 8699B RF Unit installed in the Mainframe. Level the sweeper between 0.1 and 2.05 GHz for -10 to -20 dBm reading on the power meter.
3. With the sweeper set for CW operation, tune the sweeper between 0.1 and 2.05 GHz and note any amplitude variations as observed on the power meter. Any error must be subtracted from the frequency response measurements in the subsequent steps.
4. Connect the leveled output of the sweeper to the analyzer INPUT and tune the sweeper from 0.1 to 2.05 GHz . Amplitude variations should not exceed 0.2 divisions ($\pm 1.0 \mathrm{~dB}$).

Note

The LINEAR display mode may be used to expand the vertical sensitivity if desired. Amplitude variations expressed in dB would then be equal to $20 \log \mathrm{~V}_{1} / \mathrm{V}_{2}$ (where $\mathrm{V}_{1} / \mathrm{V}_{2}=$ amplitude variation units in volts).
5. Repeat steps 1 through 4 using the appropriate sweeper RF Unit and test setup, Figure 4-6 or 4-7 to check the remaining frequency bands of the analyzer. Adjust the analyzer FREQUENCY control and BAND to correspond to the frequency range being checked. The frequency response for each band should be within the limits tabulated below.

Table 4-2. Frequency Response

Frequency Range (GHz)	Mixing Mode (n)	IF Frequency (MHz)	Frequency Response $(\mathrm{dB}$ max. $)$
$0.01-2.05$	$1-$	2050	± 1.0
$1.50-3.55$	$1-$	550	± 1.0
$2.07-6.15$	$2-$	2050	± 1.25
$2.60-4.65$	$1+$	550	± 1.0
$4.11-6.15$	$1+$	2050	± 1.0
$4-13-10.25$	$3-$	2050	± 1.5
$6.17-10.25$	$2+$	2050	± 1.5
$6.19-14.35$	$4-$	2050	± 2.0
$8.23-14.35$	$4+$	2050	$\pm .0$
$10.29-18.00$		2050	± 2.0

PERFORMANCE TESTS

4-22. Sensitivity

SPECIFICATION: Average noise level in a 1 kHz IF bandwidth with internal coaxial mixer:

$.01-2.05$	GHz	-115 dBm
$1.50-3.55$	GHz	-117 dBm
$2.07-6.15$	GHz	-108 dBm
$2.60-4.65$	GHz	-117 dBm
$4.11-6.15$	GHz	-115 dBm
$4.13-10.25 \mathrm{GHz}$	-103 dBm	
$6.17-10.25 \mathrm{GHz}$	-95 dBm	
$6.19-14.35 \mathrm{GHz}$	-100 dBm	
$8.23-14.35 \mathrm{GHz}$	-90 dBm	

DESCRIPTION: Sensitivity is checked by observing the average noise power level of the analyzer using the analyzer's amplitude calibration and no input signal. The test is made using the 10 kHz IF bandwidth so that efficient use of the 100 Hz VIDEO FILTER is achieved. A 10 dB correction must then be made to give the equivalent 1 kHz bandwidth noise power level referred to the analyzer INPUT.

1. Terminate the analyzer INPUT in 50 ohms.
2. Make the following analyzer control settings:

3. Tune FREQUENCY control across each band and note the average noise power level on the CRT display. The noise level should be less than the limits indicated in Table $4-3$ for the appropriate BAND.

Table 4-3. Frequency Sensitivity, 10 kHz Bandwidth

BAND (GHz)	BANDWIDTH	Average Noise Level (dBm)
$1.50-3.55$	10 kHz	-107
$2.60-4.65$	10 kHz	-
$.01-2.05$	10 kHz	-
$4.11-6.15$	10 kHz	-
$2.07-6.15$	10 kHz	-
$6.17-10.25$	10 kHz	-98
$4.13-10.25$	10 kHz	-93
$8.23-14.35$	10 kHz	-
$6.19-14.35$	10 kHz	-
$10.29-18.45$	10 kHz	-85
		-

PERFORMANCE TESTS

4-23. Noise Sidebands

SPECIFICATION: For fundamental mixing. More than 70 dB below CW signal, 50 kHz or more away from signal, with 1 kHz IF bandwidth and 100 Hz video filter.

DESCRIPTION: A stable CW signal is applied to the spectrum analyzer and displayed on the CRT. The amplitude of the noise associated sidebands and unwanted responses close to the signal are measured.

Figure 4-8. Noise Sideband Test Setup

1. Connect the signal generator RF OUTPUT to the analyzer INPUT. (See Figure 4-8). Set the generator output frequency to 30 MHz at -20 dBm .
2. Make the following control settings:

ANALYZER:
BAND $0.1-2.05 \mathrm{GHz}$
FREQUENCY 30 MHz
TUNING STABILIZER ON
SIGNAL IDENTIFIER OFF
BANDWIDTH 100 kHz
SCAN WIDTH PER DIVISIONSCAN WIDTH PER DIVISION5 MHz
SCAN TIME PER DIVISION 10 MILLISECONDS
INPUT ATTENUATION 10 dB
LOG/LINEAR LOG
LOG REF LEVEL $-20 \mathrm{dBm}$
VIDEO FILTER OFF
SCAN MODE INT
SCAN TRIGGER LINE
3. Tune the analyzer FREQUENCY to center the 30 MHz signal, and if necessary, adjust the generator level so that the signal amplitude peaks at the top graticule line.
4. Keeping the display centered, reduce the SCAN WIDTH PER DIVISION to 20 kHz . Reduce BANDWIDTH to 1 kHz , SCAN TIME PER DIVISION to 0.2 SECONDS, and VIDEO FILTER to 100 Hz .
5. Observe the noise level two and one-half divisions or greater away from the signal (50 kHz). The average nosie level should be at least 70 dB below the CW signal level.
\qquad

PERFORMANCE TESTS

4-24. Residual FM

SPECIFICATION: Total Analyzer Residual FM (Fundamental Mixing)

Stabilized	Unstabilized
$<100 \mathrm{~Hz}$	$<10 \mathrm{kHz}$
peak-to-peak	peak-to-peak

DESCRIPTION: The linear portion of the analyzer IF filter skirt is used to slope detect low-order residual FM. The analyzer is stabilized, and the detected FM is displayed in the time domain.

Figure 4-9. Residual FM Test Setup

EQUIPMENT:

COMB GENERATOR . HP 8406A
CABLE ASSEMBLY . HP 10503A
ADAPTER
UG-201A/U (2)
LOW PASS FILTER HP 360C

1. Set the comb generator for a 100 MHz comb and connect the test setup shown in Figure 4-9. Set the analyzer controls as follows:
BAND . $01-2.05 \mathrm{GHz}$
FREQUENCY . 100 MHz
BANDWIDTH . 30 kHz
SCAN WIDTH . PER DIVISION
SCAN WIDTH PER DIVISION . 1 MHz
INPUT ATTENUATION . 10 dB
TUNING STABILIZER . ON
SIGNAL IDENTIFIER . OFF
SCAN TIME PER DIVISION . 50 MILLISECONDS
LOG/LINEAR LOG
LOG REF LEVEL . 30 dBm
VIDEO FILTER . 10 kHz
SCAN MODE . INT
SCAN TRIGGER . AUTO
2. Center the 100 MHz signal on the display and reduce SCAN WIDTH PER DIVISION to 2 kHz and BANDWIDTH to 1 kHz .
3. Switch LOG/LINEAR to LINEAR and adjust sensitivity for a full eight division display.

PERFORMANCE TESTS

4-24. Residual FM (cont'd)

4. Refer to Figure 4-10. Tune FINE TUNE so that the upward slope of the display intersects the CENTER FREQUENCY graticule line one division from the top.
5. Note where the slope intersects the middle horizontal graticule line:
Horizontal Displacement: \qquad divisions
6. Use the horizontal displacement to calculate demodulation sensitivity.
a. Convert the horizontal displacement (divisions) into Hertz.
Example: (2 kHz SCAN WIDTH) x (0.2 div) $=400 \mathrm{~Hz}$.

Figure 4-10. Demodulation Sensitivity Measurement
b. Calculate demodulation sensitivity by dividing the vertical displacement in divisions into the horizontal displacement in Hz :
Example: $\frac{400 \mathrm{~Hz}}{3 \text { divisions }}=133 \mathrm{~Hz} / \mathrm{div}$
7. Turn SCAN WIDTH to ZERO scan. Set FINE TUNE for a response level within the calibrated three division range (one division from the top to the center horizontal graticule line).
8. Measure the peak-to-peak deviation, and multiply it by the demodulation sensitivity obtained in step 6 b above.

Example: 0.5 div pk-pk signal deviation $\times 133 \mathrm{~Hz} / \mathrm{div}=66.5 \mathrm{~Hz}$ Residual FM
\qquad Hz peak-to-peak

4-25. Dial Accuracy

SPECIFICATION : $\pm 15 \mathrm{MHz}$ on fundamental mixing.
DESCRIPTION: Center frequency accuracy is verified by displaying test signals of known frequency accuracy. Test signals are the fundamental and harmonics of a 100 MHz comb generator.

Figure 4-11. Dial Accuracy Test Setup

PERFORMANCE TESTS

4-25. Dial Accuracy (cont'd)

EQUIPMENT:

COMB GENERATOR . HP 8406A
LP FILTER . HP 360C
CABLE ASSEMBLY . HP 10503A
ADAPTER (2) UG-201A/U

1. Connect the equipment as shown in Figure 4-11. Make the following control settings:
ANALYZER:
BAND $.01-2.05 \mathrm{GHz}$
FREQUENCY 100 MHz
BANDWIDTH 30 kHz
SCAN WIDTH PER DIVISION
SCAN WIDTH PER DIVISION 10 MHz
INPUT ATTENUATION 20 dB
SCAN TIME PER DIVISION 20 MILLISECONDS
LOG/LINEAR LOG
LOG REF LEVEL $-10 \mathrm{dBm}$
VIDEO FILTER OFF
SCAN MODE INT
SCAN TRIGGER LINE
2. Set comb generator for 100 MHz comb and tune analyzer FREQUENCY to 100 MHz ; a comb signal should be displayed ± 1.5 division of center graticule line.
3. Tune FREQUENCY to various dial calibration points to verify accuracy.

a.	200 MHz	-1.5	+1.5 div	f. 1200 MHz	-1.5	iv
b.	400 MHz	-1.5	+1.5 div	g. 1400 MHz	-1.5	1.5 div
c.	600 MHz	-1.5	+1.5 div	h. 1600 MHz	-1.5	+1.5 div
d.	800 MHz	-1.5	+1.5 div	i. 1800 MHz	-1.5	+1.5 div
e.	1000 MHz	-1.5	+1.5 div	2000 MHz	-1.5	+1.5 d

PERFORMANCE TESTS

26. Residual Responses

SPECIFICATION: Referred to signal level at input mixer on fundamental mixing: $<-90 \mathrm{dBm}$
DESCRIPTION: Signals present on the display with no input to the analyzer are residual responses. To check for residual responses a reference is selected so that -90 dBm is easily determined. The first LO is swept through its entire range while observing the display for any responses.
EQUIPMENT:50Ω TERMINATIONHP 909A

1. Set the analyzer controls as follows and terminate INPUT with 50Ω.
BAND $.01-2.05 \mathrm{GHz}$
FREQUENCY Low end stopFULL
INPUT ATTENUATION 0 dB
SCAN TIME PER DIVISION 10 SECONDS
LOG/LINEAR LOG
LOG REF LEVEL $-60 \mathrm{dBm}$
LOG REF LEVEL Vernier
$\dot{100 \mathrm{~Hz}}$
VIDEO FILTER
INT
SCAN MODE
SCAN MODEAUTO
2. Observe the display as the analyzer scans its full range. No responses should occur above -90 dBm .

Table 4-4. Performance Test Card

Para. No.	Test Description	Measurement Unit	Min.	Actual	Max
4-20	Scan Accuracy 100 MHz PER DIVISION (800 MHz) 10 MHz PER DIVISION (80 MHz) 1 MHz PER DIVISION (8 MHz) 50 kHz PER DIVISION (400 kHz)	divisions divisions divisions divisions	$\begin{aligned} & -0.8 \\ & -0.8 \\ & -0.8 \\ & -0.8 \end{aligned}$		$\begin{aligned} & +0.8 \\ & +0.8 \\ & +0.8 \\ & +0.8 \end{aligned}$
4-21	Frequency Response Frequency Range (GHz) Mixing Mode (n) $0.01-2.05$ $1-$ $1.50-3.55$ $1-$ $2.07-6.15$ $2-$ $2.60-4.65$ $1+$ $4.11-6.15$ $1+$ $4.13-10.25$ $3-$ $6.17-10.25$ $2+$ $6.19-14.35$ $4-$ $8.23-14.35$ $3+$ $10.29-18.00$ $4+$	dB dB	$\begin{aligned} & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1 \\ & -1.5 \\ & -1.5 \\ & -2 \\ & -2 \\ & -2.5 \end{aligned}$		$\begin{aligned} & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1 \\ & +1.5 \\ & +1.5 \\ & +2 \\ & +2 \\ & +2.5 \end{aligned}$
4-22	Frequency Sensitivity (10 kHz Bandwidth)	dBm	$\begin{aligned} & -107 \\ & -107 \\ & -105 \\ & -105 \\ & -98 \\ & -95 \\ & -93 \\ & -90 \\ & -95 \\ & -90 \end{aligned}$		
4-23	Noise Sidebands Average noise level below CW signal 50 kHz away, fundamental mixing, 1 kHz IF bandwidth, 100 Hz video filter.	dB	70	-	
4-24	Residual FM Stabilized Unstabilized	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{kHz} \end{aligned}$			$\begin{aligned} & 100 \\ & 10 \end{aligned}$
4-25	Dial Accuracy Fundamental mıxing	MHz	- 15		+15
4-26	Residual Responses Fundamental mixing	dBm		-	-90

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

$5-2$. This section describes adjustments required to return the analyzer RF Section to peak operating condition when repairs are required. Included in this section are test setups, checks and adjustment procedures. A test card for recording data is included at the back of this section. Adjustment location photographs are contained in foldouts in Section VIII of this manual.

5-3. The adjustment procedures are arranged in numerical order. For best results, this order should be followed. Record data, taken during adjustments, in the spaces provided or in the data test card at the end of this section. Comparison of initial data with data taken during periodic adjustments assists in preventive maintenance and troubleshooting.

5-4. EQUIPMENT REQUIRED

$5-5$. Tables $1-4$ and $1-5$ contain a tabular list of test equipment and test accessories required in the adjustment procedures. In addition, the tables contain the required minimum specifications and a suggested manufacturers model number.

5-6. In addition to the test equipment and test accessories in Tables 1-4 and 1-5, a Display Section and an IF Section are required. When the RF and IF sections are removed from the Display Section, install 50 -ohm termination AT4 on rear of RF Section. Perform the Display Section and IF Section adjustments prior to performing the RF Section adjustments.

5-7. Pozidriv Screwdrivers. Many screws in the instrument appear to be Phillips, but are not. The equipment required table gives the name and number of the Pozidriv screwdrivers designed to fit these screws. To avoid damage to the screw slots, the Pozidriv screwdrivers should be used.

5-8. Slug Tuning Tool. A hollow-handle $5 / 16$-inch nut driver that will accept a No. 10 Allen driver should be used when tuning the slugs in the second converter. This tool can be fabricated from HP 5020-0291 Allen Driver and HP 8720-0003 Nut Driver. However, both units must be modified. The shaft and handle of the nut driver must be drilled and the shaft of the Allen driver must be reduced in diameter.

5-9. Blade Tuning Tools. For adjustments requiring a nonmetallic metal-blade tuning tool, use the General Cement Model No. 5003 (HP 8730-0013). It may be necessary to cut away part of the plastic on the tuning blade end to use the tool on all the adjustments. In situations not requiring nonmetallic tuning tools, an ordinary small screwdriver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjustment control in the analyzer. This is especially critical when tuning variable slugtuned inductors, and variable capacitors.

5-10. HP 08555-60077 Service Kit. The HP 08555-60077 Service Kit is an accessory item available from Hewlett-Packard for use in maintaining both the RF and IF Sections of the spectrum analyzer. Some adjustment can be made without this kit by removing the top cover from both the RF Section and the Display Section. This procedure exposes dangerous potentials in the Display Section chassis and should not be used unless absolutely necessary. Adjustments that are possible without the service kit are proceeded by a warning to install a cover over the Display Section with a cutout above the RF Section. These adjustments can and should be performed with the analyzer plug-ins installed on extender cables provided in the service kit. The kit can be obtained by contacting the nearest Hewlett-Packard Sales and Service Office. A list of HP field offices is included at the back of this manual.

5-11. Table 1-5, Accessories, contains a detailed description of the contents of the service kit. Any item in the kit may be ordered separately if desired. In the case of the 11592-60015 Extender Cable Assembly, the wiring is especially critical and fabrication should not be attempted in the field. Other items in the kit may be built in the field if desired.

5-12. Extender Cable Installation. Push the front panel latch in the direction indicated by the arrow until the latch disengages and pops out from the panel. Pull the plug-ins out of the instrument. Locate the latches on each side of the RF Section. Unlock latches and firmly pull the two sections apart. When the two sections separate at the front panel, raise the upper section until it is above the lower section by two or three inches at the front panel. Disengage the metal tab-slot connection at the rear and separate the sections. Remove top and bottom covers from the RF Section.

5-13. Place the plate end of the HP $11592-60015$ Extender Cable Assembly in the Display Section and press firmly into place so that the plugs make contact. The plate and plugs cannot be installed upside down as the plate has two holes corresponding to the two guide rods in the mainframe.

5-14. Connect the upper cable plug to the RF Section and the lower cable plug to the IF Section. The plugs are keyed so that they will go on correctly and will not make contact upside down. Connect HP 11592-60016 Interconnection Cable Assembly between the RF and IF Sections. The connectors on the cable are keyed by the shape of the plug and the arrangement of the pins. Press the connectors firmly together and extend the instruments as far apart as the cable will allow without putting stress on the connectors. Remove Dummy Load Assembly AT4 from rear panel of Display Section and install at P4 on rear of RF Section.

5-15. FACTORY SELECTED COMPONENTS

$5-16$. Table $8-1$ contains a list of factory selected components by reference designation, basis of
selection, and schematic diagram location on which the component is illustrated. Factory selected components are designated by an asterisk ($*$) on the schematic diagrams in Section VIII of this manual.

5-17. RELATED ADJUSTMENTS

$5-18$. The following sets of adjustments are directly related. When one adjustment in a set is made, the others in that set should be checked.

5-19. Display Section Adjustments. Refer to the Display Section Operating and Service Manual.

5-20. IF Section Adjustments. Refer to the IF Section Operating and Service Manual.

5-21. RF Section Adjustments. Perform the Display Section and IF Section adjustments prior to performing the following RF Section adjustments.

ADJUSTMENTS

5-22. Input Operating Voltages, Check and Adjustment

REFERENCE: Schematic 9, Display Section and IF Section Operating and Service Manuals.
DESCRIPTION: Dc operating voltages for the RF Section are obtained from the Display Section, the IF Section and from a dual power supply in the RF Section. The Display Section provides +100 Vdc, -100 Vdc and -12.6 Vdc ; the IF Section provides -10 Vdc and the RF Section provides the +20 Vdc and +10 Vdc operating voltages. The Tuning Stabilizer Control Assy A5 uses all the above voltages and provides a convenient location for measurement (see Service Sheet 9). If the plug-ins are installed on extender cables, voltage test points are accessible on the A10 Interconnect board. Remove bottom cover from RF Section for access.

EQUIPMENT:
HP 3440A Digital Voltmeter w/HP 3443A Auto Range Unit
HP 11003A Test Leads
HP 5060-0256 Extender Board
Modified Display Section Cover, see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts dc to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

1. Install plug-ins on extender cables or install a cover over the Display Section with a cutout above the analyzer plug-ins.
2. With analyzer power off, remove top cover from RF Section and install Tuning Stabilizer Control Assy A5 on extender board.
3. Apply power to analyzer, measure and record the dc voltages.

Location	Normal		Actual
A5 Pin 1	+100	$\pm 1 \%$	-
A5 Pin E	-100	$\pm 1 \%$	-
A5 Pin 10	-12.6	$\pm 1 \%$	-
A5 Pin L	-10	$\pm .01 \mathrm{~V}$	-
A5 Pin D	+20	$\pm .01 \mathrm{~V}$	-
A5 Pin H	+10	$\pm .02 \mathrm{~V}$	-
A4 Pin A	-31	$\pm 1.5 \mathrm{~V}$	-

4. If the $+100,-100$ or -12.6 Vdc sources are out of tolerance, refer to Display Section Operating and Service Manual for both sequence of adjustment and adjustment procedure.
5. If the -10 Vdc source is out of tolerance, refer to the IF Section Operating and Service Manual for adjustment procedure.
6. If the +20 and/or +10 Vdc sources are out of tolerance, refer to $+20 /+10$ volt check and adjustment procedure, paragraph 5-23.

ADJUSTMENTS

5-23. $+20 /+10$ Volt Power Supply Check and Adjustment

REFERENCE: Schematic 15.
DESCRIPTION: The +20 -volt power supply is adjusted for correct output; while the +10 -volt power supply is checked for correct output. A voltage divider connected to the +20 -volt source provides the reference for the +10 -volt source.

Figure 5-1. $+20 /+10$ Volt Power Supply Check and Adjustment Test Setup

EQUIPMENT:

HP 3440A Digital Voltmeter with 3443A Auto Range Unit
HP 11003A Test Leads
Modified Display Section Cover, see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts dc to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

1. Install a cover over the Display Section with a cutout above the analyzer plug-ins.
2. Connect digital voltmeter test leads to A8TP2 and chassis ground.
3. Adjust A8R5 VOLT ADJ for an output of $+20 \pm .01 \mathrm{Vdc}$.
\qquad $+20 \pm .01 \mathrm{Vdc}$
4. Connect test leads to A8TP1 and chassis ground.
5. Check for an output level of $+10 \pm .02 \mathrm{Vdc}$.
\qquad $+10 \pm .02 \mathrm{Vdc}$

ADJUSTMENTS

5-24. Yig Driver Adjustments

REFERENCE: Schematic 7
DESCRIPTION: The upper and lower voltage limits of the FREQUENCY control tuning voltage are adjusted for a precise input to the Yig driver circuit. The upper limit corresponds to 2.0 GHz on the $\mathrm{n}=1-$ Frequency Scale; with the lower limit corresponding to 0 GHz . The Yig driver circuit is adjusted to produce an oscillator frequency of 4.1 GHz for the upper voltage limit and a 2.05 GHz frequency for the lower voltage limit. The dial accuracy is then checked in 100 MHz increments. During all FREQUENCY control adjustments, approach all dial settings clockwise.

Figure 5-2. Yig Driver Adjustments

EQUIPMENT:

HP 3440A Digital Voltmeter w/HP 3443A Auto Range Unit
HP 8616A Signal Generator
HP 8406A Comb Generator
HP 11003A Test Leads
HP 10503A Cable Assembly
HP 360C 2 GHz Low-Pass Filter
Modified Display Section Cover, see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts dc to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

ADJUSTMENTS

5-24. Yig Driver Adjustments (cont'd)

1. Install plug-ins on extender cables or install a cover over the Display Section with a cutout above the analyzer plug-ins.
2. Remove top cover from RF Section and connect digital voltmeter to test point A4TP2.
3. Set analyzer controls as follows:

Note

Allow sufficient time for instrument to warm up and stabilize. When making FREQUENCY control adjustments approach all dial settings clockwise. Avoid parallax error when reading dial frequency.
4. Connect the comb generator to RF Section INPUT through the low pass filter. Set comb generator for 100 MHz comb at maxımum output level.
5. Set FREQUENCY control to 2.0 GHz .
6. Adjust A4R2, -10 V adj. for a DVM reading of $-9.878 \pm .005 \mathrm{Vdc}$. $(-9.878 \mathrm{Vdc}$ at 2.0 GHz corresponds to -10.0 Vdc at 2.05 GHz .)
7. Set SCAN WIDTH to FULL and adjust A4R28, 4.1 GHz adj., so that the 2 GHz comb line (20th comb line) is lined up with the frequency marker at the $(+5)$ graticule line.
8. Set SCAN WIDTH to PER DIVISION and readjust A4R28, 4.1 GHz adj., to center the 2 GHz comb line within ± 1 d!vision of the CENTER FREQUENCY graticule line.
9. Replace the comb generator input with the signal generator tuned to 2.0 GHz to ensure that comb signal used was the 2.0 GHz comb line.
10. Replace the signal generator with the comb generator and record the displacement of the comb line from center frequency.

Center Frequency \pm \qquad div
11. Set SCAN WIDTH to ZERO, tune FREQUENCY to 0.0 GHz . See note above.
12. Adjust A4R5, -5 V adj., for $-5.000 \pm .005 \mathrm{Vdc}$ at A 4 TP 2 .
13. Switch SCAN WIDTH to FULL momentarily (to reset the Yig hysteresis) and then set to PER DIVISION.
14. Adjust A4R29, 2.05 GHz adj, to center the LO feedthrough on screen within ± 1 division. Record displacement from center frequency.

Center Frequency \pm \qquad div

ADJUSTMENTS

5-24. Yig Driver Adjustments (cont'd)

15. Repeat steps 5 through 14 , however, when setting the frequency - this time use the voltage at A4TP2 as an indicator of frequency setting. If the dial indication is not correct, re-adjust the appropriate voltage adjust potentiometer to correct dial indication. If more than a slight correction is needed, repeat the procedure twice to ensure proper alignment.
16. Set SCAN WIDTH PER DIVISION to 5 MHz and tune FREQUENCY control from 0 to 2 GHz in 100 MHz steps. Approach all dial settings clockwise and avoid parallax error. Note and record deviation of comb signal from center frequency at each 100 MHz step.

Maximum deviation $\pm 3 \operatorname{div}(15 \mathrm{MHz})$ \qquad
17. Set SCAN WIDTH PER DIVISION to 1 MHz and recheck deviation at 1 GHz .

Maximum deviation $\pm 3 \operatorname{div}(3 \mathrm{MHz})$
18. If deviation at 1 GHz exceeds 3 MHz , the FREQUENCY control potentiometer can be padded to improve linearity. If the 1 GHz comb signal is high (to the right of center) connect resistor between pins 1 and 2 of the potentiometer. If low (to left of center) connect resistor between pins 2 and 3 .
19. Install a 1% metal film $1 / 4$-watt resistor, selected from the chart below, between the pins indicated in step 18.

Deviation MHz	Resistor Value
3	422 K
4	316 K
5	261 K
6	215 K
7	178 K
8	162 K
10	133 K
12	110 K
14	90.9 K
16	82.5 K
18	68.1 K
20	61.9 K

20. Repeat steps 16 and 17.
21. Mark schematic diagram Service Sheet 7 showing location and value of resistor installed. Number resistor A1A4R4.

ADJUSTMENTS

5-25. 2nd LO (1500 MHz) Check and Adjustment

REFERENCE: Schematic 3

DESCRIPTION: The second local oscillator is checked for a center frequency of $1500 \mathrm{MHz} \pm 100 \mathrm{kHz}$. The power output level is checked and adjusted, if necessary. If the power output level is adjusted, the frequency is rechecked and adjusted if necessary.

Figure 5-3. 2nd LO Frequency and Power Level Adjustment
EQUIPMENT:
HP 5245L Frequency Counter w/5257A Transfer Oscillator
HP 432A Power Meter w/8478B Thermistor Mount
HP $8491 \mathrm{~A} / \mathrm{B} 10 \mathrm{~dB}$ Attenuator
UG 349A/U Adapter
Slug Tuning Tool (see paragraph 5-8)
Modified Display Section Cover, see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts de to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

1. Install plug-ins on extender cables or install a cover on the Display Section with a cutout above the analyzer plug-ins.
2. Apply power to analyzer and allow at least two hours for stabilization.
3. Connect the 10 dB attenuator to SECOND LO OUTPUT using the UG 349A/U adapter.

ADJUSTMENTS

5-25. 2nd LO (1500 MHz) Check and Adjustment (cont'd)

4. Select $\mathrm{n}-1-2.05 \mathrm{GHz}$ IF band and connect test setup as shown in figure above.
5. Measure 2nd LO frequency. If necessary, adjust LO tuning slug A11 ADJ 3 for a frequency of 1500 $\mathrm{MHz} \pm 100 \mathrm{kHz}$.

$$
1,499,900
$$

\qquad $1,500,100 \mathrm{kHz}$
6. Disconnect cable to transfer oscillator at 10 dB attenuator. Connect power meter thermistor mount to 10 dB attenuator and measure power output level for indication of -3 to +1 dBm . If necessary, adjust A11A3R1 (2ND LO PWR ADJ) for a level of $+9 \pm 2 \mathrm{dBm}$.
$+7$ \qquad $+11 \mathrm{dBm}$
7. If A11A3R1 is adjusted, recheck 2nd LO frequency, step 5 above.

5-26. 1.5 GHz Notch Filter and 2.05 GHz Low Pass Filter Check

REFERENCE: Schematic 3.

DESCRIPTION: The notch filter and low pass filter are checked by disconnecting the semi-rigid coax cables at K1J1 and K3J1, inserting a signal at K3J1 and measuring the signal output at K1J1. The 2nd LO signal is inserted and the output monitored on a power meter. A11 ADJ 4 is adjusted for minimum power output. The 1st LO signal is inserted and the output monitored with the power meter as the YIG oscillator is tuned from 2.05 to 4.1 GHz .

Figure 5-4. 1.5 GHz Notch Filter and 2.05 GHz Low Pass Filter Check and Adjustment Procedure

ADJUSTMENTS

5-26. 1.5 GHz Notch Filter and 2.05 GHz Low Pass Filter Check (cont'd)

EQUIPMENT:
HP 432A Power Meter
HP 8478B Thermistor Mount
HP 11592-60001 Test Cable
HP 11592-60003 Test Cable Selectro female to Selectro male
HP 1250-1153 Adapter Type N Jack to SMA plug
Tunng Wrench (see paragraph 5-8)
Modified Display Section Cover. see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts de to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

1. Install plug-ins on extender cables or install a cover over the Display Section with a cutout above the analyzer plug-ms.
2. Disconnest Cable W13 at K3J1 and W8 at K1J1.
3. Connect a test cable between SECOND LO OUTPUT and K3J1.
4. Connect a test cable between K1J1 and power meter thermistor mount.
5. Select $n=1-2.05 \mathrm{GHz}$ IF band; apply power to analyzer and allow sufficient time for instrument to warm up and stabilize.
6. Tune A11 ADJ 4 for minimum power indication on power meter.
7. Remove test cable from SECOND LO OUTPUT and connect to FIRST LO OUTPUT.
8. Tune FREQUENCY control from 0 to 2.05 GHz (oscillator signal through notch and low pass filter tunes 2.05 to 4.1 GHz).
9. Note frequency roll-off as Yig oscillator frequency is increased.
10. Insertion loss through the relays and filters can be determined by checking the loss of the test setup and comparing the difference. Disconnect the test cables from K1J1 and K3J1. Connect the test cables together with an adapter. Tune Yig oscillator throughout its range noting signal level on power meter. Compare with power level obtained in step 9 above. Insertion loss of the low pass filter should be less than 1 dB at 500 and 2050 MHz ; equal to or greater than 50 dB above 2450 MHz .

5-27. 2nd Converter 2.05 GHz Bandpass Adjustment

REFERENCE: Schematic 3
DESCRIPTION: The 2.05 GHz IF bandpass cavities in the second converter are tuned for peak indication using the analyzer as a test setup. The calibrator signal is connected to the RF Section INPUT and the analyzer tuned to display the 30 MHz signal on the center of the CRT. With the analyzer operating in the linear mode, the cavities are alternately adjusted for maximum indication on the CRT. The cavities are then detuned approximately one-half dB on the high side (slugs turned clockwise) to improve flatness at the low end of the analyzer's frequency range (10 MHz).

ADJUSTMENTS

5-27. 2nd Converter 2.05 GHz Bandpass Adjustment (cont'd)

Figure 5-5. 2nd Converter 2.05 GHz IF Bandpass Adjustment

EQUIPMENT:

HP 10503A Cable Assembly
UG 201A/U Adapter
Slug Tuning Tool (see paragraph 5-8)
Modified Display Section Cover, see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts dc to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

1. Install plug-ins on extender cables or install a cover over the Display Section with a cutout above the analyzer plug-ins.
2. Set analyzer controls as follows:

FREQUENCY	$30 \mathrm{MHz}(\mathrm{n}=1-2.05 \mathrm{GHz} \mathrm{IF})$
BANDWIDTH	300 kHz
SCAN WIDTH PER DIVISION	1 MHz
INPUT ATTENUATION	10 dB
SCAN TIME PER DIVISION	2 MILLISECONDS
LINEAR SENSITIVITY	$1 \mathrm{mV} / \mathrm{DIV}$
SCAN MODE	. . INT
SCAN TRIGGER	AUTO

3. Allow at least 1 hour of instrument warmup or operating time before adjusting tuning slugs in second converter.
4. Connect CAL OUTPUT to INPUT and tune FREQUENCY to center 30 MHz signal on display.
5. Adjust LINEAR SENSITIVITY controls to peak signal at approximately the LIN 7 graticule line to establish a reference point.
6. Alternately adjust A11 ADJ 1 and ADJ 2 for a maximum indication on the CRT. Adjust LINEAR SENSITIVITY controls to keep signal level at the LIN 7 graticule line.
7. When a maximum indication has been obtained, tune each adjustment clockwise reducing signal level by approximately 0.2 division. (This reduces instrument sensitivity slightly, but improves flatness at the instrument's lower frequency limits.)

ADJUSTMENTS

5-28. 500 MHz Local Oscillator Check and Adjustment

REFERENCE: Schematic 4

DESCRIPTION: The 500 MHz local oscillator (3rd LO) is checked for a center frequency of $500 \mathrm{MHz} \pm 50$ kHz at power output of at least +1 dBm . The 500 MHz LO drive circuit, that provides the frequency shift for signal identification, is checked and adjusted to provide a two-division shift on each side of the LO center frequency. A2A4C4 FREQUENCY ADJ sets the LO center frequency. A2A2R5 FREQ SENSITIVITY ADJ determines the frequency shift, around the LO center frequency, in the signal identification operating mode. A2A2R13 FREQ LINEARITY ADJ and Factory Selected Resistor A2A2R16 determines the linear operating point and frequency of the 500 MHz LO . Perform the horizontal scan check (see IF Section Operating and Service Manual) and check output from Signal Identifier Attenuator (Service Sheet 6) prior to adjusting the 500 MHz LO or LO driver components. Allow at least a half-hour period for the oscillator to warm up and stabilize before making adjustments. Perform a center frequency check, a frequency shift check and a power output check prior to adjusting components.

Figure 5-6. 500 MHz LO and LO Driver Adjustment Test Setup

ADJUSTMENTS

$5-28$. 500 MHz Local Oscillator Check and Adjustment (cont'd)

EQUIPMENT:
HP 5245L Frequency Counter w/5257A Plug-in
HP 11592-60015 Extender Cable Assy
HP 11592-60016 RF to IF Section Interconnection Cable
HP 11592-60013 R \& P Connector to BNC Male Test Cable
HP 1250-0080 Adapter BNC to BNC (UG 914/U)
HP 2100-2729 Resistor Variable 2.5 K ohms
HP 432A Power Meter with 8478B Thermistor Mount
HP 3440A Digital Voltmeter with HP 3443A Auto Range Unit
Note
The accuracy of the signal identifier frequency shift circuitry also is dependent on the accuracy of the IF Section scan width circuitry. Perform horizontal scan check (IF Section) prior to adjusting the 500 MHz LO drive components.

1. Remove RF and IF Section plug-ins from Display Section.
2. Separate RF Section from IF Section and remove bottom cover from RF Section.
3. Connect RF Section to IF Section with interconnection cable
4. Connect RF and IF Sections to Display Section with extender cable.
5. Apply power to analyzer and allow instrument to warm up and stabilize.
6. Remove AT4 Termination from P4 (or rear of Display Section) and connect 3rd LO output (P4-A2) to Frequency Counter using 11592-60013 cable.
7. Measure and record 3rd LO frequency (SIGNAL IDENTIFIER OFF).

$$
500 \pm .05 \mathrm{MHz}
$$

8. Set SCAN WIDTH to 1 MHz PER DIVISION, SIGNAL IDENTIFIER ON and adjust BANDWIDTH and VIDEO FILTER so that the DISPLAY UNCAL lamp is out.
9. Adjust SCAN TIME PER DIVISION and Frequency Counter to provide a complete count of both the center frequency and the shifted frequency.
10. Select $n=1-2.05 \mathrm{GHz}$ IF Frequency Band. Note and record frequency shift from center frequency.

$$
2 \mathrm{MHz} \pm 100 \mathrm{kHz}
$$

\qquad
11. Select $n=1+2.05 \mathrm{GHz}$ IF Frequency Band. Note and record frequency shift from center frequency.

$$
2 \mathrm{MHz} \pm 100 \mathrm{kHz}
$$

\qquad
12. Switch SIGNAL IDENTIFIER to OFF. Connect Power Meter to 3rd LO Output. Measure and record power output level.

$$
\geqslant+1 \mathrm{dBm}
$$

\qquad
13. If power output is incorrect, check dc input voltages, -10 ± 0.1 at A 2 C 3 and $+20 \pm 0.1 \mathrm{Vdc}$ at A 2 C 2 .
14. If the frequency shift (steps 10 and 11 above) is incorrect, set SIGNAL IDENTIFIER to ON and check input signal from signal identifier attenuator for an input level of $+9.9 \pm 0.1 \mathrm{Vdc}$ on the $\mathrm{n}=1$ - band and -9.9 ± 0.1 Vdc on the $\mathrm{n}=1+$ band.

ADJUSTMENTS

5-28. 500 MHz Local Oscillator Check and Adjustment (cont'd)
15. If the frequenc' y shift recorded in step 10 is different from that recorded in step 11 , adjust FREQ LINEARITY A2A2R13 for equal shift on each side of center frequency while switching between $n=1+$ and $n=1$-bands. Check and adjust FREQUENCY ADJ A2A4C4 if necessary, after each adjustment of A2A2R13.
16. Adjust FREQ SENSITIVITY ADJ A2A2R5 if necessary, for a $2 \mathrm{MHz} \pm 100 \mathrm{kHz}$ shift on each side of center frequency.
17. Repeat steps 15 and 16 as necessary. Note and record results in steps $7,10,11$, and 12 .
18. If the 500 MHz LO transistors have been replaced, it may be necessary to select a resistor for A2A2R16 to acheve frequency linearity. In this case the 500 MHz LO and LO drive should be adjusted hefore the assembly is installed in the analyzer.
19. Substitute a 2.5 K variable resistor in place of A2A2R16. Connect input voltages and signal identifier signal to A2A2. Perform steps 7 through 17 above. In step 15 , adjust the variable resistor (A2A2R16) along with A2A2R13 to acheve frequency linearity. When linearity is achieved, replace the variable renstor with a fixed resistor and install the assembly in the analyzer.
20. Repeat steps 7 through 17 as necessary to adjust the center frequency and signal identifier frequency shift circuitry.

$5-29$. 500 MHz Bandpass Filter and 50 MHz Filter Adjustment

REFERENCE: Schematic 4.
DESCRIPTION: With a signal applied to the analyzer INPUT, the 550 MHz bandpass filter and the 50 MHz filter are tuned for maximum output as observed on the CRT display. Prior to adjusting the filters, perform the 500 MHz LO check. Paragraph 5-28.

Flgure 5-7. 550 MHz Bandpass Filter and 50 MHz Filter Adjustment Test Setup

ADJUSTMENTS

$5-29$. 500 MHz Bandpass Filter and 50 MHz Filter Adjustment (cont'd)

EQUIPMENT:
HP 11592-60015 Extender Cable Assembly
HP 11592-60016 RF to IF Section Interconnect Cable
HP 11503A Cable Assembly
UG 201A/U Adapter
Tuning Tools, No. 6 Allen Driver and Non-metallic screwdriver.

1. Remove RF and IF Section plug-ins from Display Section.
2. Separate RF Section from IF Section and remove bottom cover from RF Section.
3. Connect RF Section to IF Section with interconnection cable.
4. Connect RF and IF Sections to Display Section with extender cable.
5. Apply power to analyzer and allow instrument to warm up and stabilize. Connect CAL OUTPUT to INPUT.
6. Set analyzer controls as follows:

7. Install Termination AT4 at P4 on rear of RF Section.
8. Tune FREQUENCY control to center 30 MHz signal on CRT display.
9. Adjust the three bandpass filter screws A2C5, C6 and C7 and the 50 MHz filter A2A3C3 for maximum signal indication on the CRT.
10. Repeat adjustments two or three times to obtain maximum signal indication.
11. Reinstall plug-ins and perform AMPL CAL procedure (see Section III).

ADJUSTMENTS

$5-30$. 50 MHz Amplifier Check and Adjustment

REFERENCE: Schematic 5.

DESCRIPTION: The variable gain of the 50 MHz amplifier determines the absolute accuracy of the analyzers amplitude calibration. Perform the adjustments in the order given and repeat adjustments at least one time. There are three fixed and one variable gain control steps applied to the amplifier. The fixed steps consist of the following: 5 dB gain on all bands except $\mathrm{n}=1 \pm * 550 \mathrm{MHz}$ IF Band, 15 dB gain on $\mathrm{n}=3,4,6$, and 10 bands. and the signal identifier attenuation (approximately 5 dB) on alternate scans. The variable gain step is controlled by Factory Selected resistors that match the amplifier gain to the mixer diode in the first converter. During adjustment of the 15 dB gain step the variable gain is removed by lifting resistors on the Input Mixer Gain Compensation Network A16. The variable gain step is adjusted by applying a fixed current and adjusting for a fixed gain. The 5 dB gain step is adjusted by applying a known level input signal on the $n=1-2.05 \mathrm{GHz}$ IF Band and then switching to the $\mathrm{n}=1-* 550 \mathrm{MHz}$ IF Band and adjusting $1 \mathrm{H}^{*}$ LOW to provide the same signal level indication.

Figure 5-8. 50 MHz Amplifier Check and Adjustment Test Setup
EQUIPMENT:
HP 608 VHF Signal Generator
HP 8614A B Signal Generator
HP 355C VHF Attenuator
HP 355D VHF Attenuator
HP 10503 A Cable Assembly (2)
UG 201A/U Adapter (2)
HP 11592-60001 Test Cable
HP 1250-0831 SMA to BNC Adapter
HP 0757-0199 Resstor $21.5 \mathrm{~K} 1 \% 1 / 4 \mathrm{~W}$

ADJUSTMENTS

5-30. 50 MHz Amplifier Check and Adjustment (cont'd)

EQUIPMENT: (cont'd)
HP 0757-1094 Resistor 1.47K 1\% 1/4 W
Modified Display Section Cover, see "Warning"

WARNING

The following steps apply dangerous potentials up to 7000 volts dc to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

1. Install plug-ins on extender cables or install a cover over the display section with a cutout above the analyzer plug-ins.
2. Disconnect Cable W18 from A2J2. Install attenuators connected in series between A2J2 and Cable W18.
3. Remove Band Buffer Assy A6 and unsolder one end of Resistors A16R11 and A16R13 (A16 board mounted on A6 assembly). Reinstall band buffer board.
4. Adjust attenuators for 15 dB attenuation of 50 MHz output.
5. Connect a -15 dBm 30 MHz signal to RF Section INPUT.
6. Set analyzer controls as follows:
```
BAND
n-1-2.05 GHz IF
FREQUENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }30\textrm{MHz
BANDWIDTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }100\textrm{kHz
SCAN WIDTH PER DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 MHz
INPUT ATTENUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }30\textrm{dB
SCAN TIME PER DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . }10\mathrm{ MILLISECONDS
LOG/LINEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LINEAR
LINEAR SENSITIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . max CCW
SCAN MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INT
SCAN TRIGGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AUTO
```

7. Tune FREQUENCY controls to center 30 MHz signal on display CRT.
8. Select $n=3$ - Band.
9. Adjust LINEAR SENSITIVITY controls to set signal amplitude at the LOG REF graticule line. (Adjust AMPL CAL control if necessary.)
10. Adjust A 2 A 5 C 2 and A 2 A 5 C 12 for maximum signal level.
11. Reset signal to LOG REF graticule with LINEAR SENSITIVITY controls.
12. Switch to $\mathrm{n}=1-2.05 \mathrm{GHz}$ IF Band.
13. Set attenuators in 50 MHz output to 0 dB .
14. Adjust A2A5R22 to set signal level at LOG REF graticule line.
15. Set INPUT ATTENUATION to 10 dB . Set LINEAR SENSITIVITY to $10 \mathrm{mV} / \mathrm{DIV}$ vernier control to 0.5 (on blue scale).

ADJUSTMENTS

5-30. 50 MHz Amplifier Check and Adjustment (cont'd)

16. Install 1-low resistor A16R11.
17. Adjust A2A5R4 for 37.0 mV (LOG REF level graticule is 40 mV).
18. Readjust A2A5C2 for maximum signal level and readjust A2A5R4 for 37.0 mV .
19. Remove 1-low resistor A16R11.
20. Set attenuators in 50 MHz output to 15 dB .
21. Set signal level to LOG REF graticule line with LINEAR SENSITIVITY vernier control.
22. Connect a 21.5 K ohm and 1.47 K ohm resistor in series and install between A 2 C 8 and A 2 C 9 (-12.6V 97 wire and 934 wire input to pin diode A2A5CR1).
23. Set attenuator in 50 MHz output to 0 dB .
24. Adjust A2A5C8 to set signal level at LOG REF graticule line.
25. Remove resistors connected in step 22.
26. Install resistors A16R11 and A16R13.
27. Set LINEAR SENSITIVITY controls to $10 \mathrm{mV} / \mathrm{DIV}$ and 0.5 (blue scale).
28. Center AMPL CAL potentiometer and adjust A2A5R4 for 37 mV . Adjust A2A5C2 for maximum and readjust A2A5R4 for 37 mV .
29. Remove attenuator in 50 MHz output and connect W18 Cable to A2J2.
30. Adjust A 2 A 5 C 12 for maximum signal level.
31. Adjust AMPL CAL for 40 mV .
32. Disconnect the $30 \mathrm{MHz}-15 \mathrm{dBm}$ signal from RF Section INPUT and connect a $1.6 \mathrm{GHz}-15 \mathrm{dBm}$ signal.
33. Connect a 1.6 GHz signal to RF Section INPUT and tune FREQUENCY to $1.6 \mathrm{GHz} \mathrm{n}=1-2.05 \mathrm{GHz} \mathrm{IF}$ Band.
34. Adjust input signal level to set signal amplitude at LOG REF graticule line.
35. Switch to $\mathrm{n}=1$-* 550 MHz IF Band and tune FREQUENCY to 1.6 GHz .
36. Adjust A2A5R25 to set signal amplitude at LOG REF graticule line.
37. Unless adjustments were very minor (less than 3 mV on linear scale) repeat adjustments starting with step 2.

Note

The factory selected resistor in Input Mixer Gain Compensation Network A16 are selected to match the mixer diode in the First Converter Assembly A12. Procedures for field selection and replacement are not given and are not recommended.

ADJUSTMENTS

$5-31$. Tuning Stabilizer Control Adjustments

REFERENCE: Schematic 9.

DESCRIPTION: The FET OFFSET A5R55 is adjusted to provide a zero level output to the tuning stabilizer with a zero level input from the fine tune and scan width amplifier A5U1 (with the analyzer unstabilized). The TICKLER SWEEP A5R48 is adjusted to align a 1 MHz comb signal on the -5 and +5 graticule lines (analyzer in the 100 kHz PER DIVISION SCAN WIDTH and unstabilized). The analyzer is then stabilized and the VCXO SWEEP A5R58 is adjusted to provide the same sweep display as the TICKLER SWEEP adjustment in the unstabilized mode. The adjustments are then rechecked for interaction.

Figure 5-9. Tuning Stabilizer Control Adjustment Test Setup

EQUIPMENT:

HP 5060-0256 Extender Board
HP 3440A Digital Voltmeter w/HP 3443A Auto Range Unit
HP 8406A Comb Generator
HP 10503A Cable Assembly
UG 201A/U Adapter (2)
Modified Display Section Cover, see "Warning"
WARNING
The following steps apply dangerous potentials up to 7000 volts dc to exposed terminals and wiring in the Display Section chassis. Exercise extreme caution when working inside this chassis.

ADJUSTMENTS

5-31. Tuning Stabilizer Control Adjustments (cont'd)

1. Install plug-ins on extender cables or install a cover over the Display Section with a cutout above the analyzer plug-ins.
2. Install A5 Tuning Stabilizer Control Assembly on extender board.
3. Select $\mathrm{n}=1-2.05 \mathrm{GHz}$ IF band; apply power to analyzer and allow sufficient time (at least 30 minutes) for instrument to warm up and stabilize.
4. Set analyzer controls as follows:
SCAN WIDTH PER DIVISION 100 kHz
SCAN WIDTH ZERO
FREQUENCY 10 MHz
BANDWIDTH 10 kHz
INPUT ATTENUATION 10 dB
SCAN TIME PER DIVISION 5 MILLISECONDS
LOG REF LEVEL $-10 \mathrm{dBm}$
LOG/LINEAR LOG
VIDEO FILTER OFF
SCAN MODE INT
SCAN TRIGGER LINE
TUNING STABILIZER OFF
5. Connect Digital Voltmeter to A5 TP4 and adjust FINE TUNE control for $0.0 \pm 0.1 \mathrm{~V}$ indication on voltmeter.
6. Connect Digital Voltmeter to A5 TP9 and adjust FET OFFSET for $0.0 \pm 0.1 \mathrm{~V}$.
7. Set SCAN WIDTH to PER DIVISION and connect a 1 MHz comb signal to $.01-18 \mathrm{GHz}$ INPUT.
8. Adjust TICKLER SWEEP A5R48 to align the comb signals on the -5 and +5 graticule lines. Use FINE TUNE control to shift signals on the display.
9. Set TUNING STABILIZER switch to ON and adjust VCXO SWEEP A5R58 to provide the same display as in step 8 above.
10. Repeat steps 5 through 9 to check for interaction between adjustments.

5-32. Tuning Stabilizer VCXO Adjustments

REFERENCE: Schematic 10.
DESCRIPTION:

Note

Do not adjust VCXO adjustments unless required. Perform steps 1 through 9 before making adjustments. Normal component replacement should not affect alignment. Perform Tuning Stabilizer Control Adjustments prior to performing VCXO adjustments.

ADJUSTMENTS

5-32. Tuning Stabilizer VCXO Adjustments (cont'd)

After the Tuning Stabilizer Control Adjustments (Paragraph 5-31) have been performed, the VCXO is checked for linearity. With the Yig oscillator locked to the 2050th harmonic of the VCXO, the Yig oscillator is driven with sweep to cause it's frequency to sweep 1 MHz . The VCXO is driven with sweep to cause the frequency of its 2050 th harmonic to sweep 1 MHz . If the two oscillators behaved perfectly, there would be no error signal out of the discriminator (A14C4). If the error signal is within limits, no adjustment of the VCXO circuits is required. If the error signal is out of limits perform the adjustments in the order given. A14A2C3 and A14A2C16 interact, small adjustments should be made and the TUNING STABILIZER switched "OFF" and then "ON" after each adjustment to remove the dc component introduced by the adjustment. C16 is adjusted to produce the best horizontal straight line and C3 is adjusted to remove curvature in the line.

Figure 5-10. Tuning Stabilizer VCXO Adjustment Test Setup

EQUIPMENT:

HP 180A Oscilloscope w/HP 1801A/HP 1821A Plug-ins
HP 652A Test Oscillator
HP 08555-60077 Service Kit
HP 10503A Cable Assembly

ADJUSTMENTS

5-32. Tuning Stabilizer VCXO Adjustments (cont'd)

1. Remove Plug-ins from Display Section and remove bottom cover from RF Section.
2. Connect Plug-ins to Display Section using extender cables.
3. Connect IF Section SCAN IN/OUT to external horizontal input of oscilloscope.
4. Connect oscilloscope vertical input to discriminator output error signal at A14C4 (958 wire).
5. Set oscilloscope vertical sensitivity to $10 \mathrm{mV} / \mathrm{DIV}$, dc coupled. (Straight through probe.)
6. Set analyzer controls as follows:

7. Switch TUNING STABILIZER "OFF" and "ON" to remove dc component on error signal. Center trace on oscilloscope with position control.
8. The line on the oscilloscope, representing the error signal must have a maximum slope of \pm one-half division per division to satisfy the ± 10 percent scan accuracy. (The horizontal sensitivity is 100 $\mathrm{kHz} /$ DIV and the vertical sensitivity is $20 \mathrm{kHz} /$ DIV.)
9. Adjust FINE TUNE control over its three turn range while observing the oscilloscope display. The slope must stay under \pm one-half division per division.
10. If the slope is out of tolerance, disconnect the SCAN IN/OUT from the oscilloscope horizontal external input, set SCAN WIDTH to ZERO and TUNING STABILIZER to "OFF".
11. Remove A14A2 cover plate for access to test points.
12. Center A14A2C3.
13. Connect a $1.3 \mathrm{MHz}, 3$-volt peak-to-peak signal from test oscillator to A14A2TP3. (Use straight through oscilloscope probe with ground clip connected to RF Section chassis.)
14. Connect oscilloscope to A14A2TP1 using X10 probe.
15. Adjust A14A2C2 with insulated tuning tool for minimum 1.3 MHz signal at TP1.
16. Disconnect 1.3 MHz signal from TP3 and move oscilloscope probe to TP2.
17. Adjust A14A2C16 for maximum 1 MHz signal at TP2.

ADJUSTMENTS

5-32. Tuning Stabilizer VCXO Adjustments (cont'd)

18. Repeat steps 3 through 9 above.
19. If the error slope is out of tolerance (steps 8 and 9) adjust A14A2C3 and C16 for VCXO linearity. Adjust C16 for best horizontal straight line and C3 to remove curvature in line. Adjust each in small steps and switch TUNING STABILIZER "OFF" and "ON" after each adjustment.
20. Recheck FINE TUNE control over its three turn range. If the slope does not exceed ± 0.5 division per division no further adjustment is necessary.
21. Repeat steps 19 and 20 as required.
22. Check Tuning Stabilizer Control Adjustments, paragraph 5-31, and if adjustments are made repeat steps 3 through 9 above to check VCXO linearity.

ADJUSTMENTS

5-33. ANALOGIC Test and Adjustment

REFERENCE: Schematic 13 and IF Section Operating and Service Manual.
DESCRIPTION: Perform the display calibration check below. If adjustment is required refer to IF Section Operating and Service Manual for adjustment procedure. When performing the display calibration check, if the table indicates the DISPLAY UNCAL light to be "off", it is acceptable for light to be "on" if the light subsequently goes "off", when either the SCAN TIME PER DIVISION or SCAN WIDTH PER DIVISION control is switched one position counterclockwise.

Table 5-1. Analogic Display Calibration Check

VIDEO FILTER	SCAN TIME PER DIVISION	BANDWIDTH	SCAN WIDTH PER DIVISIONS	SCAN WIDTH	DISPLAY UNCAL LIGHT
OFF	5 MILLISECONDS	300 kHz	200 MHz	PER DIVISION	ON
OFF	5 MILLISECONDS	300 kHz	100 MHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	100 kHz	100 MHz	PER DIVISION	ON
OFF	5 MILLISECONDS	100 kHz	20 MHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	30 kHz	20 MHz	PER DIVISION	ON
OFF	5 MILLISECONDS	30 kHz	2 MHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	10 kHz	2 MHz	PER DIVISION	ON
OFF	5 MILLISECONDS	10 kHz	0.2 MHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	3 kHz	0.2 MHz	PER DIVISION	ON
OFF	5 MILLISECONDS	3 kHz	20 kHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	1 kHz	20 kHz	PER DIVISION	ON
OFF	5 MILLISECONDS	1 kHz	2 kHz	PER DIVISION	OFF
OFF	5 MILLISECONDS	0.3 kHz	2 kHz	PER DIVISION	ON
OFF	50 MILLISECONDS	0.3 kHz	2 kHz	PER DIVISION	OFF
OFF	50 MILLISECONDS	0.1 kHz	2 kHz	PER DIVISION	ON
OFF	0.2 SECOND	0.1 kHz	2 kHz	PER DIVISION	OFF
100 Hz	5 SECONDS	300 kHz	200 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	100 kHz	200 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	100 kHz	50 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	30 kHz	50 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	30 kHz	20 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	10 kHz	20 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	10 kHz	5 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	3 kHz	5 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	3 kHz	1 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	1 kHz	1 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	1 kHz	0.2 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	0.3 kHz	0.2 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	0.3 kHz	50 MHz	PER DIVISION	OFF
100 Hz	5 SECONDS	0.1 kHz	50 MHz	PER DIVISION	ON
100 Hz	5 SECONDS	0.1 kHz	10 MHz	PER DIVISION	OFF
100 Hz	2 SECONDS			FULL	ON
100 Hz	5 SECONDS			FULL	OFF
100 Hz	5 MILLISECONDS	A11	A11	ZERO	OFF
OFF	5 MILLISECONDS		-	FULL	ON
OFF	10 MILLISECONDS	-	-	FULL	OFF

Table 5-2. Check and Adjustment Test Card

Hewlett-Packard Model 8555A RF Section		Tests Performed by			
Instrument's Serial No.: 8555 A		Date			
Para. No.	Test Description	Measurement Unit	Min.	Actual	Max.
5-22	Input Operating Voltages +100 Vde supply -100 Vde supply -12.6 Vdc supply - 10 Vde supply +20 Vde supply +10 V'de supply - 31 Vde supply	Vdc Vdc Vdc Vdc Vdc Vdc Vdc	$\begin{aligned} & +\quad 99 \\ & +\quad 99 \\ & -12.48 \\ & -\quad 9.99 \\ & +19.99 \\ & +\quad 9.98 \\ & -29.5 \end{aligned}$		$\begin{aligned} & +101 \\ & -101 \\ & -12.72 \\ & -10.01 \\ & +20.01 \\ & +10.02 \\ & -32.5 \end{aligned}$
5-23	$+20 /+10$ Volt Check and Adj +20 Volt supply +10 Volt supply	Vdc Vdc	$\begin{array}{r} +19.99 \\ +\quad 9.99 \end{array}$		$\begin{aligned} & +20.01 \\ & +10.01 \end{aligned}$
5-24	YIG Driver Adjustments 4.1 GHz Adjustment 2.05 GHz Adjustment 100 MHz Steps 1 GHz Check		-1 -1 -3 -3	ـ	$\begin{aligned} & +1 \\ & +1 \\ & +3 \\ & +3 \end{aligned}$
$5-25$	2nd LO Check and Adjustment 1500 MHz LO Frequency 1500 MHz LO Power Output	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{dBm} \end{aligned}$	$\begin{array}{r} 1,499.9 \\ +7 \end{array}$		$\begin{aligned} & 1.500 .1 \\ & +11 \end{aligned}$
5-28	500 MHz LO Check and Adjustment 500 MHz LO Frequency 500 MHz LO Power Output	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{dBm} \end{aligned}$	$\begin{array}{r} 499.95 \\ +\quad 1 \end{array}$		500.05

SECTION VI

REPLACEABLE PARTS

6-1. This section contains information relative to ordering replacement parts and assemblies.

6-2. Table 6-1 provides an index of reference designations and abbreviations used in the preparation of manuals by Hewlett-Packard.

6-3. Table 6-2 provides component description, part numbers, and other required ordering information.

6-4. Table 6-3 provides code number identification of manufacturers.

Table 6-1. Reference Designators and Abbreviations used in Parts List

REFERENCE DESIGNATORS							
A	= assembly	F	= fuse	P	$=$ plug	v	= vacuum tube,
B	$=$ motor	FL	$=$ Filter	Q	$=$ transistor		neon bulb,
BT	= battery	J	= jack	R	= resistor		photocell, et
C	= capacitor	K	= relay	${ }_{\text {RT }}$	$=$ thermistor $=$ switch	VR	$={ }_{\text {regulato }}$
CP	= coupler	L	\# inductor	S	$=$ switch	W	$={ }_{\text {cable }}{ }^{\text {regulator }}$
CR	$=$ diode	${ }_{\mathbf{M}}^{\text {LS }}$	$=$ loud speaker $=$ meter	${ }_{\text {T }}^{\text {T }}$	$=$ transformer $=$ terminal board	W	$=$ cable $=$ socket
DS	$=$ delay line $=$ device signaling (lamp)	M ${ }_{\text {MK }}$	$=$ meter $=$ microphone	${ }_{\text {TP }}$	= terminal board	$\stackrel{\mathbf{Y}}{\mathbf{Y}}$	= crystal
${ }_{\mathbf{E}}$	$=$ misc electronic part	MP	$=$ mechanical part	U	= integrated circuit	Z	$\begin{aligned} & =\text { tuned cavity, } \\ & \text { network } \end{aligned}$
ABBREVIATIONS							
A	$=$ amperes	H	$=$ henries	N/O	$=$ normally open	RMO	$=$ rack mount only
AFC	$=$ automatic frequency	HDW	= hardware	NOM	$=$ nominal	RMS	= root-mean square
AMPL	$=$ control ${ }_{\text {amplifier }}$	${ }_{\text {HEX }}^{\text {HEX }}$	= hexagonal $=$ mercury	NPO	$=\begin{aligned} \text { negative positive } \\ \text { zero (zero tem- }\end{aligned}$	RWV	$=$ reverse working voltage
		HR	= hour(s)		perature coef-	S-B	= slow-blow
BFO	```= beat frequency oscilla-```	Hz	= Hertz	NPN	$=\stackrel{\text { ficient }}{ }=$ negative-positive-	SCR	$=$ screw $=$ selenium
BE CU	= beryllium copper	IF	$=$ intermediate freq		negative	SECT	$=$ section(s)
BH	$=$ binder head	IMPG	= impregnated	NRFR	$=$ not recommended	SEMICON	$=$ semiconductor
BP	= bandpass	INCD	= incandescent		for field re-	SI	= silicon
BRS		INCL.	$=$ include(s)		- placement	SIL	= silver
BWO	$=\underset{\text { tor }}{\text { backward wave oscilla- }}$	$\begin{aligned} & \text { INS } \\ & \text { INT } \end{aligned}$	$\begin{aligned} & =\text { insulation(ed) } \\ & =\text { internal } \end{aligned}$	NSR	= not separately replaceable	SL ${ }_{\text {SPG }}$	$\begin{aligned} & =\text { slide } \\ & =\text { spring } \end{aligned}$
				OBD	= order by	SPL	= special
CCW	$=$ counterclockwise $=$ ceramic	K	$=$ kilo $=1000$		description		$=$ Stainless steel $=$ split ring
CMO	$=$ cabinet mount only			$\stackrel{\mathrm{OH}}{\mathrm{OH}}$	$=$ oval head	STL	= steel
COEF	= coefficient	LH	= left hand	OX	= oxide		
COM	$=$ common	LIN	$=$ linear taper	P	= peak	TA	$=$ tantalum
${ }^{\text {COMMP }}$	= composition	LK WASH	$=$ lock washer	${ }^{\text {PC }}$	$=$ printed circuit	TD	$=$ time delay
${ }_{\text {COMPL }}$	= complete	${ }_{\text {LPF }}^{\text {LOG }}$	$=$ logarithmic taper $=$ low pass filter	PF	$=$ picofarads $=10^{-12}$	TGL	$=$ toggle
CP	= cadmium plate				$=$ phasphor bronze	THD	$=$ thread
CRT	$=$ cathode-ray tube		$=$ milli $=10^{-3}$	PHL	$=$ Phillips	TOL	$=$ titanium $=$ tolerance
CW	= clockwise	MEG	$=\operatorname{meg}=10^{6}$	PIV	$=$ peak inverse	TRIM	= trimmer
DEPC	= deposited carbon	MET FLM	$=$ metal film	PNP	$=$ positive-negative -	TWT	$=$ traveling wave
DR	= drive	$\begin{aligned} & \text { MET OX } \\ & \text { MFR } \end{aligned}$	$=$ metallic oxide $=$ manufacturer	PNP	positive		
ELECT	= electrolytic	MHz	= mega Hertz	$\begin{aligned} & \text { P/O } \\ & \text { POLY } \end{aligned}$	$=$ part of $=$ polystrene	μ	$=$ micro $=10^{-6}$
ENCAP	= encapsulated	MINAT	$\overline{=}$ miniature	PORC	= porcelain		
EXT	= external	MOS	$=$ momentary $=$ metalized	POS	$=$ position(s)	VAR	= variable
F	$=$ farads		substrate	${ }_{\text {PP }}{ }^{\text {Pr }}$	$=$ potentiometer $=$ peak-to-peak	VDCW	= de working volts
FH	$=$ flat head	MTG	mounting	PT	$=$ point		
$\underset{\text { FXD }}{\text { FIL }}$	= Fillister head	MY	"mylar"	PWV	= peak working volt-	W/	$=$ with
FXD	= fixed						= watts
G	$=$ giga (10^{9})	$\stackrel{N}{N} / \mathbf{C}$	$\begin{aligned} & =\text { nano (} 10^{-9} \text {) } \\ & =\text { normally closed } \end{aligned}$	RECT	$=$ rectifier	WIV	$\begin{aligned} & =\text { working inverse } \\ & \text { voltage } \end{aligned}$
GE	= germanium	NE	$=$ neon		$=$ radio frequency	ww	$=$ wirewound
$\underset{\text { GRD }}{\text { GL }}$	$\begin{aligned} & =\text { glass } \\ & =\text { ground(ed) } \end{aligned}$	NI PL	= nickel plate	RH	$\begin{aligned} & =\begin{array}{l} \text { round head or } \\ \text { right hand } \end{array} \end{aligned}$	W/O	= without

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
$\Delta 1$	08555-60002	1	PANEL ASSY:FRONT(LITE GRAY)	28480	08555-60002
${ }^{41}$	08555-60100	1	PANEL ASSY: FRONT (MINT GRAY)	28480	08555-60100
A1MP 1	0370-0102	1	KNOB:RED BAR 0.125" SHAFT 0.500\%DIA	28480	0370-0102
AIMP1			(SCAN WIDTH)		
A1MP2	0370-0114	1	KNOB:RED W/ARROW 5/8" OD 1/8n SHAFT (Fine tune)	28490	0370-0114
A1MP3	0370-0116	1	KNOB: BLACK ROUND(FREQUENCY)	28480	0370-0116
$\triangle 1$ MP4	08555-00009	1	DIAL/KNOB (SCAN WIDTH)	28480	08555-00009
A1MP5	08555-00010	1	DIAL/KNOB (INPUT ATTENUATICA)	28480	08555-00010
$\triangle 1$ MPG	c8555-00011	1	DIAL/KNOB(BANOWIDTH)	28480	08555-00011
A1MP7	0510-0028	2	RING:RETAINING FOR 0.375" DIA SHAFT	79136	5100-37-S-MD
$\triangle 1$ MP88 A1MP8	0510-0035	3	RING:RETAINING FOR $0.375^{\prime \prime}$ DIA SHAFT (EXT BOW)	79136	5101-37-S-MD
$\triangle 1$ MPG	1410-0112	2	BuSHING:5/16-32 THD	28480	1410-0112
A1MPIO	5020-0446	2	NUT: HEX	28480	5020-0446
AIMPII	08555-00006	1	PANEL:FRONTILITE GRAY)	28480	08555-00006
A1MP11	08555-00043	1	PANEL:FRONT(MINT GRAY)	28480	08555-00043
$\triangle 1 M P 12$	08555-00007	1	PANEL : SUB	28480	08555-00007
AIMP 13	08555-20024	1	BUSHING:TUNING SHAFT	28480	08555-20024
AIMP 14	08555-50026	1	WIRING HARNESS	28480	08555-60026
A1PI			thru		
A1P5			NOT ASSIGNED		
${ }^{\text {AlP }}$ (1)	1251-2567	1	CONNECTOR:R \& P, FOR 79 FEMALE CONTACT	71468	20c795FO
$\triangle 1 P 6$	1251-2569	64	CONTACT:R \& P CONNECTOR, FEMALE	71468	030-9542-001
AIPG	08555-00039	1	CONNECTOR:HANDLE	28480	08555~00039
$A^{\text {alp }} 6$	0360-0060	1	TERMINAL LUG: SCLDER FOR *5/16 SCREM	00000	080
AlR1 AR1	2100-2066	1	R:VAR COMP 2 K OHM 20\% LIN 1/2W (EXT MIXER BIAS)	28480	2100-2066
A1R2 A1R2	2100-2488	1	R:VAR COMP 1OK GHM 20\% LIN 1/2W (AMPL CAL)	28480	2100-2488
A1S 1	3101-1560	2	SWITCH: SLIDE DPOT MINIATURE	28480	3101-1560
A151 A1S2	3101-1560		(SIGNAL IDENTIFIER) SWITCH: SLIDE DPOT MINIATURE	28480	3101-1560
A152			(TUNING STABILIZER)	28480	3101-1560
Alal	08555-60009	1	SWITCH ASSY: BANDWIOTH	28480	08555-60009
AlAICR1 AlAIR1	$1901-0040$ $0757-0346$	43	DIODE : SILICON 30MA 30WV R:FXD MET FLM 10 OHM $181 / 8 \mathrm{~L}$	07263 28480	FDG1088 0757 -0346
AlalR	$0757-0346$ $0757-0401$	9		28480 28480	0757-0346
AlAlR3	0757-0462	2	R:FXD MET FLM 75.0K OHM 1\% $1 / 8 \mathrm{~W}$	23480	0757-0462
AlAIR4	0698-3161	2	R:FXD MET FLM 38.3K OHM $1 \% 1 / 8 \mathrm{H}$	23480	0698-3161
AlAlR5	0698-4534	3	R:FXO MET FLM 309 K OHM 19 1/8W	28480	0698-4534
AlALR6	0698-4521	3	R:FXD MET FLM 154K OHM 12 1/8W	28480	0693-4521
AlAIR7	0698-4534		R:FXD MET FLM 309 K OHM 18 1/8W	28480	0698-4534
AlAIR8	0698-4521		R:FXD MET FLM 154 K OHM $181 / 8 \mathrm{H}$	28480	0698-4521
AlalRg	0698-4534		R:FXD MET FLM 309K OHM $121 / 8 \mathrm{~W}$	28480	0698-4534
ALAR10	0698-4521		R:FXD MET FLM 154 K DHM 1\% 1/8W	29480	0698-4521
AlAlRII	0757-0420	3	R:FXD MET FLM 750 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0420
Alalsi	3100-2677	1	SWITCH: ROTARY, SINGLE INDEX	28480	3100-2677
A1A2	08555-60010	1	SWITCH ASSY: SCAN WIDTH	28480	08555-60010
A1A2RI	0698-3430	1	R:FXD MET FLM 21.5 DHM is $1 / 8 \mathrm{H}$	28480	0698-3430
A1A2R2	0698-4376	1	R:FXD FLM 32.4 OHM 1\% 1/8w	28480	0698-4376
A1A2R3	0698-4383	1	R:FXD FLM 53.6 OHM 1\% $1 / 8 \mathrm{H}$	28480	0698-4383
A1A2R4	0698-4405	1	R:FXD FLM 107 OHM 1\% 1/8W	28480	0698-4405
A1A2R5	0698-6137	1	R:FXD FLM 328 OHM 1\% 1/8N	28480	0698-6137
AlA2R6	0757-0417	1	R:FXD MET FLM 562 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0417
A1A2R7	0698-4469	1	R:FXD FLM 1.15K OHM 18 1/8W	28480	0898-4469
A1A2R8	0698-3496	1	R:FXD FLM 3.57K OHM $121 / 8 \mathrm{~W}$	28480	0598-3496
AlA2R9	0698-3279	$\frac{1}{2}$	R:FXD MET FLM 4990 OHM 18 1/8W	28480	0698-3279
A 1A2R10	0698-4055	2	R:FXD FLM 1 K OHM $0.2521 / 8 \mathrm{~L}$	28480	0898-4055
A1A2R11	0698-7794	1	R:FXD FLM 10 K OHM $0.25 \% 1 / 8 \mathrm{H}$	28480	0698-7794
A1ARR12	0698-7795	2	R:FXD FLM 1.236K OHM 0.25 1/8w	28480	0698-7795
AlARRI3	0698-7793	1	R :FXD FLM 9.9K OHM 0.25 \% $1 / 8 \mathrm{~W}$	28480	069807793
A1A2R14	0698-7792		R:FXD FLM 1.1K OHM $0.2581 / 8 \mathrm{~W}$	28480	0698-7792
A1A2R15	0698-7800	1	R:FXD FLM 8K OHM 0.25 \% 1/8W	28480	0638-7800
A1A2R16	0698-7799	1	R:FXD FLM 2 K OHM $0.25 \% 1 / 8 \mathrm{~W}$	28480	0698-7799
A1A2R17	0698-7795		R:FXD FLM 1.236K OHM $0.25 \% 1 / 8 \mathrm{~W}$	28480	0698-7795
A1A2RIB	0757-0349		R:FXO MET FLM 22.5 K OHM 1\% 1/8W	28480	0757-0349
A1A2R19	0698-4205	1	R:FXD FLM 2IK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-4205
A1A2R20	0757-0279	6	R:FXD MET FLM 3.16K OHM 1\% 1/8\%	28480	0757-0279
A1A2R21	0698-4510	1	R:FXD MET FLM 84.5K OHM 1\% 1/8W	28480	0698-4510
A1A2R22	0698-3490	1	R:FXD FLM 66 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3490
A1A2R23	0698-3260	11	R:FXD MET FLM 464K OHM 18 1/8W	28480	0698-3260
A1A2R24	0698-3260		R:FXD MEY FLM 464 K OHM 18 1/8W	28480	0698-3260
A1A2R25	0698-3260		R:FXD MET FLM 464 K OHM $181 / 8 \mathrm{H}$	28480	0698-3260
A1A2R26	0698-3260		R:FXD MET FLM 464 K DHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3260

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mifr Part Number
A1A2R27	0698-3260		R:FXD MET FLM 464 K DHM 15 1/8W	28480	0698-3260
A1A2R28	0698-3260		R:FXD MET FLM 464 K OHM 17 1/8W	28480	0698-3260
A142R29	0698-3260		R:FXD MET FLM 464 K OHM $151 / 8 \mathrm{~W}$	28480	0698-3260
Ala2R30	0698-3260		R:FXD MEI FLM 464 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3260
Ala 2 R31	0698-3260		R:FXD MET FLM 464 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3260
A1A2R32	0698-3260		R:FXD MET FLM 464K OHM $121 / 8 \mathrm{~W}$	28480	0698-3260
A1A2R33	0698-3162	5	R:FXD MEI FLM 46.4 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3162
A1A2R34	0698-3162	,	R:FXD MET FLM 46.4 K OHM 17 1/8W	28480	0698-3162
A1A2R35	0698-0077	2	R:FXD MET FLM 93.1K OHM 1\% 1/8W	28480	0698-0077
A1A2R 36	0698-0077		R:FXD MET FLM 93.1K OHM 19 1/8W	28480	0698-0077
A1A2S 1	3100-2696	1	SWITCH: ROTARY SPEC. CIRCUITRY	28480	3100-2696
A1A3	08555-60011	1	SWITCH ASSY:INPUT ATTENUATION	28480	08555-60011
Ala 3 R1	0698-3400	1	R:FXD MET FLM 147 OHM 1\% 1/2W	28480	0698-3400
A1A3SL	3100-2670	1	SWITCH: ROTARY, SINGLE INDEX	28480	3100-2670
$\triangle 1 \Delta 4$	08555-60001	1	TUNING HEAD ASSYILIGHT GRAY)	28480	08555-60001
A1A4	08555-60101	1	TUNING HEAD ASSY(MINT GRAY) (SEE SERVICE SHEET 17 FOR IPB)	28480	08555-60101
A1A4MP1	0510-0028		RING:RETAINING FOR $0.375^{\prime \prime}$ DIA SHAFT	79136	5100-37-S-MD
$\triangle 1 \triangle 4 M P 2$	0510-0035		RING:RETAINING FOR $0.375^{\prime \prime}$ DIA SHAFT	79136	5101-37-5-M0
A1A4MP3	0510-0052	1	RING:RETAINING FOR 0.125" DIA SHAFT	79136	5555-12-5-MD
A1A4MP4	0510-0082	2	RING: RETAINING FOR 0.125" DIA SHAFT	79136	5100-12-C
AlA4MP5	0510-1140	1	RING:RETAINING FOR $0.312^{\prime \prime}$ CIA SHAFT	28480	0510-1140
$\triangle 1 \triangle 4 M P G$	1410-0226		BALL BEARING:STL 0.09375' DIA	00000	OBD
A1A4MP7	1430-0739	2	GEAR-MITER:48 DIAMETERICAL PITCH	28480	1430-0739
AlA4MP8	1460-0036	1	SPRING: COMPRESSION	28480	1460-0036
$\triangle 1 \triangle 4 M P G$	1460-1206	1	SPRING: TORSION	28480	1460-1206
AIACMP10	1460-1212	1	SPRING: EXTENSION 0.062" 00	00000	OBD
A1A4MP11	1480-0083	1	PIN:DOWELL STL $0.120^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ LG	00000	OBD
A1A4MP12	1460-1213	4	SPRING:COMPRESSITN 0.088' 00	00000	OBD
A1A4MP13	1480-0336	1	PIN GROOVE: $0.093{ }^{\prime \prime}$ DIA	73957	GP 24-093×750-16
A1A4MP14			SEE AIA4R3		
A1A4MP15			SEE AlA4R1		
$\triangle 1 A 4 M P 16$			SEE A1A4R2		
A1A4MP17	3050-0153	4	HASHER:FLAT BRS 0.005 SHIM	00000	OBD
AlA4MP18	2190-0368	2	WASHER:FLAT 0.130* ID	00000	OBD
-1A4MP19	08555-20029	1	LABEL : IDENT IFICATICN	28480	08555-20029
A1A4MP20	08555-20030	1	LABEL : IDENTIFICATION	28480	08555-20030
A1A4MP21	08555-20031	1	LABEL:IDENTIFICATION	28480	08555-20031
A1A4MP22	2190-0926	1	WASHER:LOCK	00000	OBD
A1A4MP 23	08555-00003	1	cover plate	28480	08555-00003
$\triangle 1$ A4MP 24	08555-00004	1	LEAF SPRING: CAM DRIVE	28480	08555-00004
A1A4MP25	08555-20003	1	SHAFT:MAIN	28480	08555-20003
A1A4MP26	08555-20005	1	GEAR:CLUTCH AND DIAL	28480	08555-20005
A1A4MP27	08555-20095	1	CLUTCH:PINION ASSY	28480	08555-20095
A1A4MP2B			NOT ASSIGNED		
11 A4MP 29	08555-20096	1	GEAR:PINION ASSY	28480	08555-20096
A 1 A4MP30			NOT ASSIGNED		
A1A4MP31	08555-20011	1	BEARING: REAR	28480	08555-20011
A1A4MP32	08555-20012	1	BEARING: SUPPORT FRONT	28480	08555-20012
A1A4MP33	08555-20013	1	CONE DRIVE	28480	08555-20013
A1A4MP34	08555-20014	3	PULLEY: IDLER	28480	08555-20014
A144MP 35	08555-20015	1	PLATE: MCUNTING	28480	08555-20015
-1A4MP36	08555-20016	1	LOWER EXTRUSION	28480	08555-20016
$\triangle 144 \mathrm{MP3} 7$	08555-20017	1	UPPER EXTRUSION(LIGHT GRAY)	28480	08555-20017
A1A 4MP37	08555-20100	1	UPPER EXTRUSION(MINT GRAY)	28480	08555-20100
A1A4MP38	08555-20018	1	SHAFT:FINE TUNE	28480	08555-20018
A1A4MP39	08555-20020	1	PINION:30 T	28480	08555-20020
AlA4MP40	08555-20021	1	WINDOW: DIAL	28480	08555-20021
$\triangle 144 \mathrm{MP4} 1$	08555-20025	1	PIN:CAH DRIVE	28480	08555-20025
$\triangle 1 A 4 M P 42$	08555-20026	1	TRIM:EXTRUSION	28480	08555-20026
A1A4MP43	08555-20032	1	DRUM: DIAL	28480	08555-20032
A1A4MP44	08555-40003	1	SPROCKET:16 T DRIVE	28480	08555-40003
A1A4MP45	08555-40005	1	CAM:14 POSITION DRIVE	28480	08555-40005
A1A4MP46	08555-40006	1	LEVER BAND SWITCH	28480	08555-40006
A1A4MP47	08555-40007	1	PLATE:LEVER (BLACK)	28480	08555-40007
A1A4MP47	08555-40014		PLATE:LEVER (OLIVE BLACK)	28480	08555-40014
A1A4MP48	08555-40008	1	CAP END	28480	08555-40008
A1A4MP49			NOT ASSIGNED		
A1 $\triangle 4 M P 50$			SEE AIA4S 1		
AIA4MP5 1	0350-0049	1	OIAL AND CURSOR	28480	0350-0049
A1A4MP52	2200-0143	8	SCREW:PAN HD POZI DR 4-40 $\times 0.375 \times$		
A1A4MP53	2200-0107	2	SCREW: POLI DR $4-40 \times 3 / 8 \mathrm{~W} / \mathrm{LOCK}$	00000	OBD
$\triangle 144 M P 54$	2200-0145	9	SCREW:PAN HD POZI DR 4-40 $\times 0.438$	00000	OBD
Alatmp 55	2200-0121	2	SCREW:PAN HO POZI DR 4-40 $\times 1-125{ }^{\prime \prime}$ LG	00000	OBD
AlA4MP56	0520-0169	1	SCREW:FLAT HD POZI DR 2-56 $\times 0.625^{\prime \prime}$ LG	00000	OBD

Table 5-2. Replaceable Parts

\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& Oty \& Description \& Mfr Code \& Mfr Part Number

\hline $\triangle 144 M P 57$ \& $0610-0001$ \& 4 \& NUT:HEX $2-56 \times 0.188{ }^{\prime \prime}$ \& 00000 \& OBD

\hline A1A4MP58 \& 2190-0019 \& 7 \& WASHER:LOCK BRONLE FOR 44 HOW \& 00000 \& 080

\hline A1A4MP59 \& $2200-0140$
$2200-0103$ \& 7 \& SCREN:FLAT HD POZI DR 4-40 \times 0.250" LG \& 00000 \& 080

\hline A1A4MP60
A $144 \mathrm{MPG1}$ \& $2200-0103$
$3030-0007$ \& 10 \& \& 00000
00000 \& OBD

\hline A 1 A4MP62 \& 08555-00020 \& 1 \& RETAI NER : WI Noow \& 28480 \& 08555-00020

\hline A1A4R1
$A 1 A 4 R 1$ \& 2100-2984 \& 1 \& R:VAR WH 5K OHM 10\% LIN IW (FREQUENCY) \& 28480 \& 2100-2984

\hline A1A4R2
$\triangle 1 \triangle 4 R 2$ \& 2100-2992 \& 1 \& R:VAR WH IOK OHM 3 LIN IW (fine tune) \& 28480 \& 2100-2992

\hline A1A4R3
AlAFR \& 2100-2485 \& 1 \& R:VAR WW 5K OHM 3\% LIN 1.5W (2:1 GAIN CONTROL) \& 28480 \& 2100-2485

\hline $\triangle 144 \mathrm{RG}$ \& \& \& factory Selected part \& \&

\hline A144S1 \& 08555-60050 \& 1 \& SWITCH ASSY: BAND \& 28480 \& 08555-60050

\hline 12 \& 08555-60007 \& 1 \& third cinverter assy \& 28480 \& 08555-60007

\hline ${ }^{\text {A2Cl }}$ \& 0160-0345 \& 15 \& C:FXD CER FEED-THRU 1000 PF 500 VDCH \& 01121 \& FB28-102W

\hline $\square^{2} \mathrm{CL} 2$ \& 0160-2437 \& 15 \& C:FFO CER 5000 PF +80-208 200VDCN \& 72982 \& 2425-000- $\times 5 \mathrm{VV}-502 \mathrm{P}$

\hline \& $0160-2437$
$0160-2437$ \& \& \& 72982 \& 2425-000-x5V-502P

\hline 42 C 5 \& 3030-0382 \& 6 \& SCREW:SET(LOCKING) \& 72962 \& 850063

\hline ${ }^{2} 2 \mathrm{C}_{5}$ \& 3030-0382 \& \& SCREW: SET (LOCKING) \& 72962 \& 850063

\hline ${ }^{-2 \mathrm{C}} 6$ \& 3030-0382 \& \& SCREW:SET(LOCKING) \& 72962 \& 850063

\hline ${ }^{42 \mathrm{C}} 6$ \& 3030-0382 \& \& SCREW:SET(LOCKING) \& 72962 \& 850063

\hline 4.267 \& 3030-0382 \& \& SCREW:SET(LOCKING) \& 72962 \& 850063

\hline ${ }^{2} 2 \mathrm{C} 7$ \& 3030-0382 \& \& SCREW: SET(LOCKING) \& 72962 \& 850063

\hline ${ }^{42 \mathrm{C} 8}$ \& 0160-2437 \& \& C:FXD CER 5000 PF +80-20\% 200VDCW \& 72982 \& 2425-000-x5V-502P

\hline $\triangle 2 \mathrm{Ca}$ \& 0160-2437 \& \& C:FXD CER 5000 PF $+80-208200 \mathrm{VDCW}$ \& 72982 \& 2425-000- $\times 5 \mathrm{~V}$-502P

\hline ${ }^{2} 2 \mathrm{Cl} 10$ \& 0160-2437 \& \& C:FXD CER 5000 PF +80-208 200VDCW \& 72982 \& 2425-000-x5V-502P

\hline ${ }^{\text {a } 2 C 112}$ \& $0160-2437$
$0160-2437$ \& \& \& 72982
72982 \& $2425-000-\times 5 V-502 P$
$2425-000-\times 5 \mathrm{~V}-502 \mathrm{P}$

\hline ${ }^{4} 2 \mathrm{C}, 13$ \& 0160-2437 \& \& C:FXD CER $5000 \mathrm{PF}+80-203$ 200VDCW \& 72982 \& 2425-000-x5v-502P

\hline \& 1250-0829 \& \& SEE A2A1J1(550 MHZ INPUT) \& \&

\hline ${ }_{4}$ \& 1250-0829 \& 6 \& CONNECTOR:RF 50-OHM SCREH ON TYPE (50 MHZ OUTPUTITO AUXILIARY B \& 98291 \& 50-045-4610

\hline A2J3
A $2, ~$ \& 1250-0828 \& 1 \& CONNECTOR:RF 50-OHM SCREW ON TYPE (500 MHZ OUTDUT) \& 98291 \& 50-043-4610

\hline \& 1250-0829 \& \& CONNECTOR:RF 50-DHM SCREW ON TYPE (50 MHZ OUT) \& 98291 \& 50-045-4610

\hline A2L 1 \& 08555-80004 \& 2 \& COIL FILTER:\#1 \& 28480 \& 08555-80004

\hline 82 Ll \& 08554-20038 \& 3 \& CONTACT:FILTER \& 28480 \& 08554-20038

\hline ${ }^{\text {A } 212}$ \& 08555-80005 \& 1 \& COIL FILTER: 2 \& 28480 \& 08555-80005

\hline ${ }^{42 L} 2$ \& 08554-20038 \& \& CONTACT: FILTER \& 28480 \& 08554-20038

\hline 4213 \& 08555-80004 \& \& COIL FILTER:\#1 \& 28480 \& 08555-30004

\hline 1223 \& 08554-20038 \& \& CONTACT:FILTER \& 28480 \& 08554-20038

\hline $\triangle 2 \mathrm{MP1}$ \& 08555-00015 \& 1 \& COVER:500 MHz OSC ILLATOR \& 28480 \& 08555-00015

\hline A2MP 2 \& 08555-00037 \& 1 \& COVER:50 mHz AMPLIFIER \& 28480 \& 08555-00037

\hline ${ }^{2} 2 \mathrm{MP3}$ \& 08555-20043 \& 1 \& HOUSING: THIRD CONVERTER \& 28480 \& 08555-20043

\hline $12 \mathrm{MP4}$ \& 08555-20044 \& 1 \& HOUSING:50 MHZ AMPLIFIER \& 28480 \& 08555-20044

\hline A2MP5 \& 08554-60017 \& 2 \& COUPLING: 500MHZ \& 28480 \& 08554-60017

\hline ${ }^{2}$ MP6 6 \& 08555-00014 \& 2 \& COUPLING LOOP: THIRD LOW \& 28480 \& 08555-00014

\hline ${ }^{\text {a } 22 R 1}$ \& 0698-7 200 \& 1 \& R:FXD FLM 31.6 OHM 22 1/8W \& 28480 \& 0698-7200

\hline 122 \& 0624-0206 \& 4 \& SCREW:TAPPING 6-32 THREAD \& 00000 \& 080

\hline ${ }^{22 L}$ \& 0624-0209 \& 4 \& SCREW:STL 6-32 $\times 0.750{ }^{\prime \prime}$ LG \& 00000 \& obd

\hline A22 \& 0624-0078 \& 29 \& SCREW:TAPPING 6-32 THREAD \& 00000 \& OBD

\hline A22 \& $0624-0262$ \& 4 \& SCREW:TAPPING PAN HO POZI DR 6-32 THRD \& 00000 \& obo

\hline 822 \& 0624-0271 \& 5 \& SCREW:TAP PAN HD POLT DR $6-32 \times 1.125{ }^{\prime \prime}$ \& 28480 \& 0624-0271

\hline ${ }^{422}$ \& 2190-0124 \& 2 \& WASHER:LOCK FOR \#10 HOW \& 00000 \& OBD

\hline A22 \& 2200-0139 \& 8 \& SCREW:SST PAN HD 4-40 THD \& 00000 \& 08 D

\hline 422 \& 2260-0002 \& 3 \& NUT: HEX FOR \#4 HOW \& 00000 \& 0 OD

\hline 122 \& 2580-0002 \& 3 \& NUT : HEX 8-32 thread \& 00000 \& 080

\hline 422
022

22 \& $2950-0078$
$08554-60017$ \& 2 \& NUT: HEX 10-32 THREAD FOR RF CONNECTOR COUPLING:500MHZ \& 24931

28480 \& $$
\begin{aligned}
& \text { HN 100-11 } \\
& 08554-60017
\end{aligned}
$$

\hline A22 \& 08555-00014 \& \& COUPLING LOOP:THIRD LOW \& 28480 \& $08555-00014$

\hline $$
\begin{aligned}
& \text { A2A1 } \\
& A 2 A 1 C l
\end{aligned}
$$ \& 08554-60009 \& i \& AMPLIFIER ASSY:55OMHZ NOT ASSIGNED \& 28480 \& 08554-60009

\hline AZA1C2
$A 2 A 1 C 3$ \& $0160-2248$
$0150-0093$ \& 1 \& C:FXD CER 4.3 PF S00VOCW
C:FXD CER
0.01 UF $+80-208100 \mathrm{VOCW}$ \& 28480
72982 \& 0160-2248
$801-\mathrm{K} 800011$

\hline ALALC4 \& 0160-2266 \& 1 \& C:FXD CER 24 PF 5\% 500VDCH \& 72982 \& 301-000-COGO-240J

\hline A2A1C5 \& 0160-2247 \& 3 \& C:FXO CER 3.9 PF 500 VOCN \& 12982 \& 301-NPO-3.9 PF

\hline A2Ald
A2Alul \& 1250-1220 \& \& CONNECTOR:RF 50 OHM SCREW-CN TYPE (550 MHZ INPUT) \& 98291 \& 50-051-0109

\hline ${ }^{\text {a }} 210101$ \& 1853-0020 \& 18 \& TSTR:SI PNP(SELECTED FROM 2N3702) \& 28480 \& 1853-0020

\hline A2A102 \& 1854-0292 \& 3 \& TSTR:SI NPM \& 28480 \& 1854-0292

\hline A2AlR1 \& 0698-3155 \& 7 \& R:FXD MET FLM 4.64 K OHM $121 / 8 \mathrm{~W}$ \& 28480 \& 0698-3155

\hline A2A1R2 \& 0757-0443 \& 3 \& R:FXD MET FLM 11.0X OHM 1\% $1 / 8 \mathrm{~W}$ \& 28480 \& 0757-0443

\hline
\end{tabular}

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
$\triangle 2 A 1 R 3$	c698-3155		R:FXD MET FLM 4.64 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3155
A2A1R4	0757-0280	17	R:FXD MET FLM iK OHM 18 1/8H	28480	0757-0280
A 2 alR 5	0757-0416	,	R:FXD MET FLM 511 OHM $181 / 8 \mathrm{~W}$	28480	0757-0416
A2A12	$2190-0326$	1	WASHER:FLAT $0.115^{\prime \prime}$ ID	00000	OBD
A2A2	08555-60061	1	BOARD ASSY:500 LOW OSCILLATCR DRIVE	28480	08555-60061
$\mathrm{A}_{2} \mathrm{~A} 2 \mathrm{C}_{1}$	0180-0058	1	C:FXD AL ELECT 50 UF +75-108 25 VDCW	56289	300506G025CC 2-DSM
${ }^{-1} 2 \mathrm{~A}_{2} \mathrm{Cl}_{2}$	0180-0197	16	$C: F X D$ ELECT 2.2 UF $10 \pm 20 \mathrm{VDCW}$	56289	1500225×902042-DYS
A 2 A 2 C 3 $\Delta 2 \mathrm{~A} 2 \mathrm{C}$	0170-0066	1	C:FFOD MY 0.027 UF 10% 200VOCH	56289	192 P 27392 -PTS
A2A $2 C 4$ $A 2 A 2 C R 1$	$0180-0197$ $1901-0025$	5	C:FXO ELECT 2.2 UF $10 \pm$ 20VDCH OIODE:SILICON $100 \mathrm{Ma} / 1 \mathrm{~V}$	56289 07263	
A2A201	1853-0020		TSTR:SI PNP(SELECTED FRCM 2N37021	28480	1853-0020
A2A202	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
${ }^{\text {a } 24203}$	1854-0071	28	TSTR:SI NPNISELECTED FROM 2 N37041	28480	1854-0071
$\mathrm{A}_{42 \mathrm{SO}}$	1854-0071		ISTR:SI NPN(SELECTED FROM 2N37041	28480	1854-0071
$\triangle 2 \mathrm{~A} 2 \mathrm{RL}$	0757-0442	28	R:FXD MET FLM 10.0 K OHM $181 / 8 \mathrm{H}$	28480	0757-0442
$\triangle 2 \mathrm{~A} 2 \mathrm{R} 2$	0757-0346		R:FXD MET FLM 10 OHM $181 / 8 \mathrm{~W}$	28480	0757-0346
${ }^{\text {A } 242 R 3 ~}$	0757-0464	2	R:FXD MET FLM 90.9 K OHM 1 I 1/8W	28480	0757-0464
${ }^{\text {A } 242 R 4 ~}$	0757-0459	2	R:FXD MET FLM 56.2 K OHM $181 / 8 \mathrm{BH}$	28480	0757-0459
A 2A2R5	2100-1775	1	R:VAR WW 5 K OHM 59 TYPE H 1 W	28480	2100-1775
A2A2R6	0698-7267	1	R:FXD MET FLM 19.6K OHM $281 / 8 \mathrm{~L}$	28480	0698-7267
A2A2R7	0698-7248	1	R:FXO FLM 3.16K OHM $281 / 8 \mathrm{~W}$	28480	0698-7248
${ }^{\text {a } 242 R 8 ~}$	0698-7245	1	R:FXD MET FLM 2.37 K OHM $281 / 8 \mathrm{H}$	28480	0698-7245
A 2 A 2 R 9	0698-7195	1	R:FXD MET FLM 19.6 OHM 28 1/8\%	28480	0698-7195
A2A2R10	c608-7253	1	R:FXD MET FLM 5.11K OHM $281 / 8 \mathrm{BW}$	28480	0698-7253
A2A2R11	0698-7247	1	R:FXD FLM 2.87 K OHM $281 / 8 \mathrm{~W}$	28480	0698-7247
A2AR2R12	0698-7240	2	R:FXD MET FLM 1.47 K OHM $281 / 8 \mathrm{~W}$	28480	0698-7240
A2A2R13	2100-1774	1	R:VAR WW 2K OHM 58 S TYPE H 1 W	28480	2100-1774
A2A2R14	0698-7240		R:FXD MET FLM 1.47 K OHM $2 \% 1 / 8 \mathrm{BW}$	28480	0698-7240
A2A2R15	0757-0420		R:FXD MET FLM 750 OHM 18 $1 / 8 \mathrm{~W}$	28480	$0757-0420$ $0757-0420$
	0757-0420		R:FXD MET FLM 750 DHM $121 / 8 \mathrm{~W}$ fartory selertec part	28480	0757-0420
A2A3	08555-60064	1	BOARD ASSY:550/50 MHz MIXER	28480	08555-60064
${ }^{\text {A2A }}$ SCl	0160-3067	2	C:FXD MICA 200PF 5\% 300V	72136	RDM15F201.j35
A2A3C2	0160-3070	1	C:FXD MICA 100PF $5 \pm 300 \mathrm{~V}$	72136	ROM15F101J3S
A2A3C3	0121-0046	3	C:VARI CER 9-35 PF	28480	0121-0046
${ }^{\text {A } 2 \triangle 3 C 4}$	0160-3067		C:FXD MICA 200PF 5\% 300V	72136	RDM15F201.13S
A2A3E1	0960-2071	1	MIXER(10514C)	28480	0960-2071
A2A3L1	$08555-80003$	1	MIXER COIL ASSY:3 CONTACT	28480	08555-80003
A2A4	08554-60006	1	LOCAL OSCILLATOR ASSY:500mhz	28480	08554-60008
$\mathrm{A}_{244 \mathrm{Cl}}$	0160-2357	2	C:FXD CER FEED-THRU 1000 PF $+80-20 \%$	28480	0160-2357
$\mathrm{A}_{2 \mathrm{ALCR}}$	0160-2357		C:FXD CER FEED-THRU $1000 \mathrm{PFF}+80-208$	28480	0160-2357
	0160-2247		C:FXD CER 3.9 PF 500VDCH	72982	301-NPO-3.9 PF
$\mathrm{A}_{2} \mathrm{ALCH}_{4}$	0121-0414	1	C: VAR AIR TRIMMER 1.9 TO 8.5 PF	28480	0121-0414
A2A4L1 $A 2 A 4 M P 1$	$08554-00007$ $08554-20016$	1	INDUC TOR: 500MHZ OSCILLATOR INDUC TOR MOUNTING: 500 MHZ CSCILLATOR	28480 28480	$08554-00007$
			inductor mounting:500mhz escillator	28480	08554-20016
120401	1854-0323	2	TSTR:SI NPN	02735	2N2857
A2A4C1	1205-0031	2	HEAT SINK:TRANSISTOR	28480	1205-0031
124402	1854-0323		TSTR:SI NPN	02735	2 N 2857
A24402	1205-0031		HEAT SINK:TRANSISTOR	28480	1205-0031
E2A4R1	0698-3447	2	R:FXD MET FLM 422 OHM 1\% 1/8W	29480	0698-3447
${ }^{\text {A } 244 R 2}$	0757-0280		R:FXD MET FLM 1 K OHM 18 1/8W	28480	0757-0280
A2A4R3	0757-0280		R:FXD MET FLM 1K OHM $191 / 8 \mathrm{~W}$	28480	0757-0280
A2A5	$08555-60060$	1	BCARD ASSY:50 MHZ AMPLIFIER	28480	08555-60060
A245C1	0160-2262	1	$\mathrm{C}: \mathrm{FXD}$ CFR 16 PF 58500 VDCH	72982	301-000 COGO 160J
A2A5C2	0121-0046		C:VARI CER 9-35 PF	28480	0121-0046
A2A513	0160-3456	15	C:FXD CER 1000 PF 108 250VDCW	50289	C067F251F102K S22-CDH
${ }^{\text {A } 2 \triangle 5 C 4}$	0160-3456		C:FXD CER 1000 PF 10\% 250VDCW	56289	C067F251F102ks22-COH
A2A5C5	0160-3456		C:FXO CER 1000 PF $10 \pm 250 \mathrm{VDCH}$	56289	C067F251F102kS22-CDH
A245C6	0160-3456		C:FXD CER 1000 PF 108 250VDCH	56289	C067F251F102Ks22-CDH
A2A5C7	0160-2247		C:FXD CER 3.9 PF 500VOCW	12982	301-NPO-3.9 PF
${ }^{\text {A } 245 C 8}$	0121-0452	3	C: VAR AIR 1.3 TO 5.4 PF 250 VOCW	28480	0121-0452
A2A5C9	0160-3456		C:FXD CER 1000 PF 10\% 250VOCH	56289	C067F251F102k 522-COH
$\triangle 2 \Delta 5 C 10$	0160-3456		C:FXD CER 1000 PF 102 250VDCH	56289	C067F251F102ks22-CDH
A2A5C11	0160-3456		C :FXD CER 1000 PF $10 \% 250 \mathrm{VOCH}$	56289	C067F251F102k522-CDH
A2A5C12	0121-0452		C:VAR AIR 1.3 TO 5.4 PF 250VDCW	28480	0121-0452
${ }^{\text {A2A5C13 }}$	0160-3456		C:FXD CER 1000 PF $10 \pm 250 \mathrm{VOCH}$	56289	C067F251F102K522-CDH
${ }^{22 A 5 C 14}$	0160-3456		C:FXD CER 1000 PF 108250 VDCM	56289	C067F251F102ks22-CDH
A2A5C15 $A 2 A 5 C 16$	$0160-2253$ $0160-3456$	1	C:FXO CER 6.8 PF 500VDCH	72982	301-NPO-6.8PF
${ }^{\text {A } 245 C 16}$	0160-3456		C:FXD CER 1000 PF 108 250VOCH	56289	C067F251F102ks22-CDH
A2ASC17	0160-3456		C:FXD CER 1000 PF 10\% 250VDCH	56289	C067F251F102k522-CDH
${ }^{\text {A } 245 C R 1 ~}$	1901-0639	3	DIODE:PIN 1 MHz TO 1GHZ	28480	1901-0639
$\triangle 225 C R 2$	1901-0639		DIODE:PIN 1 MHZ TO 1GHz	28480	1901-0639
A2A5CR3	1901-0639		DIODE:PIN 1 MHZ TO 1 GHz	28480	1901-0639
A2ASCR4	1901-0025		DIODE:SILICON $100 \mathrm{Ma} / 1 \mathrm{~V}$	07263	FD 2387
A2A5L1	9100-1611	1	COIL: FXO 0.22 UH 20%	28480	9100-1611

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
	-				
-2A5t2	9140-0111	1	COIL/CHCKE 3.30 UH 10 E	99800	1537-24
A2A5L3	9100-1615	1	COIL/CHIKE FXD 1.20 UH 10\%	28480	9100-1615
A2A5L4	$9140-0112$	2	COIL:FXD RF 4.7 UH	28480	9140-0112
A2A5L5	9140-0121	1	COIL:FXD 1.8 UH	28480	9140-0121
A2A5L6	9100-1614	1	COIL/CHOKE:0.82 UH 108	28480	9100-1614
A2A5L7	9140-0112		COIL:FXD RF 4.7 UH	28480	9140-0112
A2A501	1855-0020	4	TSTR:SI FET N-CHANNEL	28480	1255-0020
A2A502	1854-0345	4	ISTR:SI NPN	80131	2N5170
A2A503 824504	$1854-0345$ $1854-0345$		TSTR:SI NPN	80131 80131	2N5179 2N5170
A2A505	1854-0345		rStr:SI NPN	80131	2N5179
A2A5R1	0658-3156	5	R:FXD MET FLM 14.7K OHM 1\% 1/8W	28480	0698-3156
$\triangle 2 \triangle 5 R 2$	0757-0304	3	R:FXO MET FLM 51.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0344
A2A5R3	0757-0280		R:FXD MET FLM 1 K OHM 17 1/8\%	28480	0757-0280
A2A5R4	2100-1984	1	R:VAR FLM 100 OHM 10% LIN 1/2W	28480	2100-1924
A2A5R 5	0757-0274	1	R FFXD MET FLM 1.21K OHM 18 1/8W	28480	0757-0274
A2A5R6	0757-0279		R:FXD MET FLM 3.16K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0279
${ }^{\text {A } 24587 ~}$	0698-3155		R FFXD MET FLM 4.64 K OHM 1% 1/8W	28480	0698-3155
$\triangle 2 A 5 R 8$ $\triangle 2 \triangle 5 R 9$	0757-0346		R:FXD MET FLM 10 OHM 1\% 1/8W	28480	0757-0346
$\triangle 2 \triangle 5 R 9$	0698-0084	4	R:FXC MET FLM 2.15 K OHM $12 \mathrm{l} / 8 \mathrm{~W}$	28480	0698-0084
A2A5R10	0757-0346		R:FXD MET FLM 10 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0346
2-A5R11	0698-3457	2	R:FXD MEI FLM 316 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3457
A2A5R12	0757-0346		R:FXD MET FLM 10 OHM 1\% $1 / 8 \mathrm{~W}$	28480 28480	0757-0346
A2A5R13	0698-0084		R:EXD MET FLM 2.15 K OHM $12 \mathrm{t} 1 / 8 \mathrm{~W}$	28480	0698-0084
A2A5R14	0757-0294	1	R:FXD MET FLM 17.8 CHM $181 / 8 \mathrm{~W}$	28480	0757-0204
A2A5R15	0757-0346		R:FXD MEI FLM 10 OHM $181 / 8 \mathrm{~W}$	28480	0797-0346
${ }^{\text {A } 2451510}$	0757-0394		R:FXD MET FLM 51.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0394
$\triangle 245217$	0698-3153	2	R:FXD MET FLM 3.83K OHM 1% 1/8W	28480	0698-3153
A 245818 ATA5R19	0698-0084 $0757-0394$		R:FXD MET FLM R:FXD MET FLM Sl	28480	0698-0084
A2A5R19	0757-0394		R:FXD MET FLM 51.1 DHM 18 1/8W	28480	0757-0304
A2A5R20	0698-3450	1	R:FXD MET FLM 42.2 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0699-3450
A2A5R21	0698-3157	13	R:FXD MET FLM 19.6K OHM 1\% 1/8W	28480	0698-3157
A2A5R22	2100-1777	,	R:VAR WW 20K OHM 58 TYPE H IW	28480	2100-1777
${ }^{\text {a } 245823 ~}$	0757-0462		R:FXO MET FLM 75.0 O OHM 18 1/8W	28480	0757-0462
A2A5R24	0757-0458	7	R:FXD MET FLM 51.1K OHM 18 1/8W	28480	0757-045R
A2A5R25	2100-1777		R:VAR WW 20 K OHM 58 TYPE H 1 W	28480	2100-1777
A2A5R26	0698-0084		R:FXD MET FLM 2.15 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0693-0084
A2A521	9170-0029		CORE:FERRITE BEAD	02114	56-590-65A2/4A
A2A5z2	9170-0029		CORE:FERRITE BEAD	02114	56-590-6542/4A
A2A5z3	9170-0029		CPE FFPFITE BFAD	02114	5t-54-5A: -4
${ }_{4}^{4}{ }^{\text {a }}$	$08555-60081$ $08555-60082$	1		28480 28480	$02555-r 881$ $0855-60082$
${ }^{1}$			INCL. YIG OSC. ATTENUATOR \& ADAPTER	28480	08555-60082
A3ATI	08554-60058	1	ATTENUA TOR:2DB	28480	08554-60058
${ }^{\text {A3CP }} 1$	1250-1249	1	CONNECTOR:RF RT ANGLE ADAPTER	16179	219
A3P1	1251-2583	1	CONNECTOR STRIP:MALE	28480	1251-2583
${ }^{4} 4$	08555-60053	1	BOARD ASSY:YIG DRIVER	28480	08555-60053
${ }^{4} 4 \mathrm{Cl}$	0180-0116	3	C:FXD ELECT 6.8 UF $10 \% 35 \mathrm{VDCW}$	56289	1500635 9 903582-0Y5
${ }^{14} 42$	0180-2144	1	C:FXD ELECT 200 UF +75-102 25 VOCW	28480	0180-2144
A4C3 A4C4	0180-2210	1	C:FXD ELECT 2 UF +50-10\% 150VDCW NOT ASSIGVED	28480	0180-2210
$\mathrm{ALC5}_{4}$	0160-0174	1	C:FXD CER 0.47 UF +80-20\% 25 VDCW	56289	${ }^{51} 11875-\mathrm{CML}$
A4CR1	1902-0680	2	DIODE:TC REF. JEDEC TYPE	04713	11.827
$\triangle 4 C R 2$	1901-0040		DICDE:SILICON 30MA 30HV	07263	F0G1088
44 CR3	1902-0556	1	DIDDE: BREAKDOWN 20.OV 5\% 1W	28480	1902-0556
A4CR4	1902-3290	1	DIODE BREAKDOWN:SILICON 31.6V 52	28480	1902-3290
$\triangle 4 C R 5$	1902-3048	1	OIODE EREAKDOWN:SILICON 3.48V 5\%	28480	1902-3042
${ }^{\text {A4CRG }}$	1901-0040		DIODE:SILICCN 30MA 30WV	07263	F0G1098
A4CR7	1901-0040		DIDCE:SILICON 30ma 30w	07263	FDG1088
A4CR8	1902-3301	1	OIODE: RREAKDOWN $^{\text {34.8V }} 5$	07910	CO 35862
$\triangle 4 M P 1$	08555-00040	1	heat sink:yig driver	28480	$09555-00040$
4401	1853-0050	1	TSTR:SI PNP	28480	1853-0050
A402	1853-0038	1	TSTR:SI PNP	28480	1853-0038
A403	1854-0216	1	TSTR:SI NPN	80131	2N3441
${ }^{\text {A4 }} 403$	0340-0162	4	INSULATOR:TSTR FOR TO-66	13103	A0340-0162-1
A404	1853-0052	1	TSTR:SI PNP	80131	2N3740
A404	0340-0162		INSULATOR:TSTR FOR TO-66	13103	A0340-0162-1
${ }^{\text {A } 4 R 1}$	0811-2881	1	R:FXD WW 3.16K OHM $0.151 / 16 \mathrm{~W}$	28480	0811-2881
A4R2	2100-1757	3	R:VAR WH 500 OHM $5 \pm$ TYPE VIW	28480	2100-1757
A4R3	0811-2879	1	R:FXD WW 4.64 K OHM $0.1 \% 1 / 16 \mathrm{~W}$	28480	0811-2879
A4R4	0757-1094	1	R:FXO MET FLM 1.47 K OHM $181 / 8 \mathrm{~W}$	28450	0757-1094
24 R 5	2100-1757		R:VAR WH 500 OHM 58 TYPE V IW	28480	2100-1757
A4R6	0698-3447		R:FXD MET FLM 422 CHM $181 / 8 \mathrm{~W}$	28480	0698-3447
A4R 7	0757-0467	2	R:FXD MET FLM 121 K OHM $181 / 8 \mathrm{H}$	28480	0757-0467
A4R8	0698-7798	1	R:FXD FLM 5.25 K OHM $0.2581 / 8 \mathrm{~W}$	28480	0698-7798
A4R9	0698-7797	1	R:FKD FLM 7.68 K OHM $0.258 \mathrm{l} 1 / 8 \mathrm{~W}$	28480	0698-7797

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4R10	0698-0085	1	R:FXD MET FLM 2.61K OHM 1\% 1/8W	28480	0698-0085
:4R11	0683-6245	2	R:FXD COMP 620 K OHM 5\% $1 / 4 \mathrm{~W}$	01121	C, 6245
A4R12	0683-6245		R:FXD COMP 620 K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 6245
${ }^{\text {A }}$ R 13	0698-3162		R:FXD MET FLM 46.4 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3162
${ }^{44 R 14}$	0698-3162		R:FXD MEI FLM 46.4 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3162
E4R15	0683-1055	4.	R:FXD COMP 1 MEGOHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 1055
A4R16	0757-0442		R:FXD MET FLM 10.0 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
A4R17	0757-0280		R:FXD MET FLM 1 K OHM $151 / 8 \mathrm{~W}$	28480	0757-0280
A4R13	0698-3156		R:FXD MET FLM 14.7K OHM 18 1/8W	28480	0698-3156
A4R19	0757-0438	10	R:FXD MET FLM 5.11K OHM $121 / 8 \mathrm{~W}$	28480	0757-0438
A4R2O	0811-0445	1	R:FXD WW 5000 OHM 0.12 1/16W	28480	0811-0445
A4R21	0811-0919	3	R:FXD WW 10K OHM $0.1 \% 1 / 16 \mathrm{~W}$	28480	0811-0919
A4R22	0698-3157		R:FXD MET FLM 19:6K OHM 17 $1 / 8 \mathrm{~B}$	28480 28480	0698-3157
A4R23 4 R 24	$0698-3157$ $0698-7791$	1	R:FXD MET FLM 19.6 K OHM 18118 NW R:FXD FLM	28480 28480	$0698-3157$ $0698-7191$
14R25	0698-6822	1	R:FXD FLM 26.1 K OHM 0.258 1/8W	28480	0698-6822
24 R 26	0698-7796	1	R:FXD FLM 14.7K OHM $0.2581 / 8 \mathrm{~W}$	28480	0698-7796
$44 \mathrm{R27}$	0811-2896	1	R:FXD WW 1.78K OHM $0.181 / 16 \mathrm{~W}$	28480	0811-2896
A4R28 A4R	$2100-1757$ $2100-1762$			28480 75042	${ }_{\text {CT }}^{2100-106-4}$
14R29	2100-1762	2	R:VAR WW 20 K 58 IW	75042	CT-106-4
A4R30	0698-3161		R:FXD MET FLM 38.3 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3161
A4R30	0698-3157		FAC IORY SELECTED PART R:FXD MET FLM 19.6 K OHM 18 $1 / 8 \mathrm{~W}$	28480	0698-3157
A4R31			Factory selected part		
$\triangle 4 R 32$	0757-0464		R:FXD MET FLM 90.9K OHM 18 1/8W	28480	0757-0484
A4R33	0811-2895	1	R:FXD WW 422 OHM $0.1 \% 1 / 16 \mathrm{~W}$	28480	0811-2895
A4R34	0757-0309	1	R:FXD MET FLM 61.9 K OHM $1 \% 1 / 2 \mathrm{~W}$	28480	0757-0309
A4R35 4 R 36	-0757-0438			28480 28480	0757-0401
A4R37	0698-3441	1	R:FXD MET FLM 215 OHM $18 \mathrm{l} 1 / 8 \mathrm{~N}$	28480	0698-3441
A4R39 14239	0698-3453	2	R:FXD MET FLM 196K OHM 18 1/8W	28480 28480	$0698-3453$ $0811-2880$
C4R 39 A 4 R 40	$0811-2880$ $0757-0839$	1		28480 28480	$0811-2880$ $0757-0839$
$44^{4} 41$	0757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A4R42	0698-3390	1	R:FXD MET FLM 19.6 DHM 18 1/2W	28480	0698-3390
84843	0757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W	28480	0757-0442
14844	0757-0280		R:FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0280
84 R 45	0698-3156		R:FXD MET FLM 14.7K OHM $181 / 8 \mathrm{~W}$	28480	0698-3156
A4R46	0757-0346		R:FXD MET FLM 10 OHM $181 / 8 \mathrm{~W}$	28480	0757-0346
84191	0360-1514	35	terminal pin: square	28480	0360-1514
447 P 2	0360-1514		TERMINAL PIN:SQUARE	28480	0360-1514
44193	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
${ }^{4} 4{ }_{4} \mathrm{P}_{4} \mathrm{P}_{4}$	0360-1514		TERMINAL PIN:SQuare	28480 28480	$0360-1514$ $0360-1514$
${ }^{44195}$	0360-1514		TERMINAL PIN: SQUARE	28480 28480	$0360-1514$ $0360-1514$
${ }^{14 T P 6}$	0360-1514		terminal pin:square	28480	0360-1514
${ }^{4} 4$ TP 7	0360-1514		IERMINAL Pin: SQuare	28480	0360-1514
${ }^{4} 4 \mathrm{~T}$ P8	0360-1514		TERMINAL PIN:SQUARE	28480	0360-1514
${ }^{4} 401$	1826-0013	16	IC:LINEAR	28480	1826-0013
4402	1821-0001	4	TRANSISTOR ARRAY:SI NPN	02735	CA3046
84.13	1826-0013		IC:LINEAR	28480	1826-0013
8.414	1826-0013		ic:linear	28480	1826-0013
A4U5	1826-0013		IC:LINEAR	28480	1826-0013
A4U0	1826-0013		ic:linear	28480	1826-0013
A4U7	1826-0013		IC:Linear	28480	1826-0013
	0520-0129			00000	OBD
	0520-0164	1	SCREW:FLAT HO POLI DR $2-56 \times 0.250^{\prime \prime}$ LG	00000	DBD
	061000001		NUT: HEX 2-56 X $0.188^{\prime \prime}$	00000	OBD
	$2190-0003$	8	WASHER:LOCK FOR \#4 HWD WASMER:LOCK	28480 00000	${ }^{2190-0003}$
	2190-0004		WASHER:LOCK INT \#4	00000	
	$2190-0014$ $2200-0145$	7	WASHER:LOCK FOR \#2 HWD SCREW:PAN HD POZI DR $4-40 \times 0.438$	28480 00000	${ }_{\text {OBD }}^{2190-0014}$
	2260-0001	8	NUT $:$ HEX SSIL $4-40 \times 1 / 4 \times 3 / 32$	80120	OBD*
A5	08555-60052	1	BOARD ASSY: STABILIZER CCNTROL	28480	08555-60052
${ }^{5} 51$	0160-0158	1	C:FXD MY 0.0056 UF 10% 200VDCW	56289	192P56292-PTS
${ }^{45 C 2}$			NOT ASSIGNED		
A $5 C 3$ $A 54$	C160-0153	1	C:FXD MY O. 001 UF $10 \% 200 \mathrm{VDCH}$	56289 56289	192P10292-PTS
A5C. ASC	$0180-0291$ $0180-1743$	3 6	C:FXD ELECT 1.0 UF 108 35VOCW C:FXD ELECT O.1 UF lot S	56289 56289	$1500105 \times 903542-\mathrm{OYS}$ $1500104 \times 9035 \mathrm{AR}$-0YS
ASC5 $\triangle 5 C 6$	$0180-1743$ $0180-1743$	6	$\begin{array}{llll}\text { C:FXD ELECT } \\ \text { C:FXO ELECT } & 0.1 \\ \text { O. }\end{array}$	56289 56289	$1500104 \times 9035 A 2-$ DYS
${ }^{45} 57$	0180-1743		C: FXO ELECT 0.1 UF 10\% 35vDCW	56289	1500104×903542-DYS
${ }_{45 \mathrm{Cb}}$	0180-1743		C:FXD ELECT O.1 UF 10% 35VOCH	56289 96733	1500104×903542-DYS
	0160-3473	1	C:FXD TFE 0.039 UF 5x 100 VDCH	96733	C-65149-3
${ }^{55 C 10}$	0180-0197		C:FXD ELECT 2.2 UF 10\% 20 VDCW	56289	1500225x9020A2-DYS
A5C11	0180-0229	3	C:FXD ELECT 33 UF 108 10VDCW	28480	$0180-0229$

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
${ }^{15 C 12}$	0160-3c94	1	C:FXD CER 0.1 UF $10 \% 100 \mathrm{VOCH}$	56289	2C18A1-CML
${ }^{45 C 13}$	0160-3459	2	C:FXD CER 0.02 UF 20x 100 VDCW	56289	C023F101H203MS22COH
A5CR1	1901-0040		DIODE:SILICON 30 MA 30WV	07263	FDG1088
A5CR2	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1089
A5CR3	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
A5CR4	1901-0040		DIODE:SILICON 30 MA 30WV	07263	FDG1088
A5CR 5	1901-0040		OIDOE:SILICON 30MA 30w	07263	FOGI088
\triangle SCR6	1901-0040		DIODE:SILICON 30MA 30w	07263	FOG1088
A5CR7 5 SR8	1901-0040		DIODE:SILICON 30MA 30 WV	07263	FDG1088
A5CR8	1901-0040		DIODE:SILICON 30MA 30 WV	07263	FDG1088
$\triangle 5 C R 9$	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
${ }^{\text {A }}$ K K 1	0490-0782	1	RELAY:REEC 1K OHM 9VDC	28480	0490-0782
$\triangle 5 \mathrm{LI}$	9140-0137	6	COIL:FXO RF 1000 UH 5\%	28480	9140-0137
$\triangle 5 \mathrm{MP1}$	0340-0037	1	PDST: TERMINAL	28480	0340-0037
A5MP 2	0340-0039	1	INSULATOR:BUSHING	28480	0340-0039
A501	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
4502	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
4503	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
${ }^{1504}$	1853-0020		TSTR:SI PNP(SELECTED FROM 2N37021	28480	1853-0020
4505	1854-0071		TSTR:SI NPNISELECTED FROM 2N37041	28480	1854-0071
A506	1854-0071		TSTR:S1 NPN(SELECTED FROM 2N3704)	28480	1854-0071
A507	1854-0071		TSTR:SI NPNTSELECTED FROM 2N37041	28480	1854-0071
${ }^{4} 508$	1854-0071		TSTR:SI NPN(SELECTED FRCM 2N3704)	28480	1854-0071
4509	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704]	28480	1854-0071
*5010	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
A5011	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
A5012	1853-0020		TSTR:S1 PNP(SELECTED FROM 2N3702)	23480	1853-0020
A5013	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
${ }^{\text {A }} 5014$	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
45015	1855-0098	1	TSTR:SI FET	28480	1855-0098
A5015	1200-0173	5	PAD:TRANSISTOR MOUNTING	28480	1200-0173
A5016	1854-0071		TSTR:SI NPNISELECTED FROM 2N37041	28480	1854-0071
85017	1855-0020		TSTR:SI FET N-CHANNEL	28480	1855-0020
A5018	1855-0020		TSTR: SI FET N-CHANNEL	28480	1855-0020
A5R1	0757-0465	10	R:FXD MET FLM look ohm 18 1/8W	28480	0757-0465
A5R2	0698-3136	2	R:FXD MET FLM 17.8K OHM $121 / 8 \mathrm{~W}$	28480	0698-3136
A5R3	0698-3457		R:FXD MET FLM 316K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3457
A5R4	0683-4735	19	R:FXD COMP 47K OHM 58 1/4W	01121	CB 4735
\& 5 R 5	0683-4735		R:FXD COMP 47K OHM $581 / 4 \mathrm{~W}$	01121	C8 4735
A5R6	0683-4735		R:FXO COMP 47 K OHM $5 \% 1 / 4 \mathrm{~W}$	01121	CB 4735
${ }^{45 R 7}$	0683-4735		R:FXD COMP 47K OHM 5x 1/4W	01121	CB 4735
A5R8	0683-4735		R: FXD COMP 47 K OHM $591 / 4 \mathrm{~W}$	01121	CB 4735
${ }^{45 R 9}$	0683-4735		R:FXD COMP 47K OHM 5\% 1/4W	01121	CB 4735
${ }^{45 R 10}$	0683-4735		R:FXD COMP 47 K OHM $581 / 4 \mathrm{H}$	01121	
A5R11	0683-4735		R:FXD COMP 47 K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4735
A SR12	0683-4735		R:FXD COMP 47K OHM 5\% 1/4W	01121	CB 4735
${ }^{4513}$	0683-4735		R:FXD COMP 47K OHM 5 z 1/4W	01121	CB 4735
A5R14	0683-4745	11	R:FXD COMP 470K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4745
${ }_{4} 515$	0683-4745		R:FXD COMP 470K OHM $581 / 4 \mathrm{~W}$	01121	CB 4745
A5R16	0683-4745		R:FXD COMP 470K OHM 5\% 1/4W	01121	CB 4745
A5R17	0683-4745		R:FXD COMP 470K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4745
ASR18	0683-4745		R:FXD COMP 470K OHM $5 \pm 1 / 4 \mathrm{~W}$	01121	CB 4745
45819	0683-4735		R:FXD CCMP 47 K OHM 5 $51 / 4 \mathrm{~W}$	01121	CB 4735
A5R20	$0683-4735$		R:FXD COMP 47 K OHM $5 \pm 1 / 4 \mathrm{~W}$	01121	C8 4735
15R21	0683-4735		R:FXD COMP 47K OHM 5\% 1/4W	01121	CB 4735
A5R22	0683-4735		R:FXD COMP 47 K OHM 5\% 1/4W	01121	CB 4735
A5R23	0683-4735		R:FXD COMP 47K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4735
${ }^{\text {A } 5 R 24}$	0683-4745		R:FXD COMP 470K OHM $5 \pm 1 / 4 \mathrm{~W}$	01121	CS 4745
${ }^{\text {A } 5 R 25}$	0683-4745		R:FXD COMP 470 OK OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4745
ASR26	0683-4745		R:FXD COMP 470 K DHM $5 \pm 1 / 4 \mathrm{~W}$	01121	CB 4745
A5R27	0683-4745		R:FXD COMP 470K OHM 5 F 1/4W	01121	CB 4745
A5R28 15829	0683-4745		R:FXD COMP 470K OHM 58 1/4W	01121	CB 4745
15R29	0683-4745		R:FXD COMP 470K DHM 58 1/4W	01121	CB 4745
A5R30	0683-2245	1	R:FXD COMP 220K OHM 5\% $1 / 4 \mathrm{~W}$	01121	C8 2245
A5R31	0683-4735		R:FXD COMP 47 K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4735
A5R32	0683-4735		R:FXD COMP 47 K OHM 5\% $1 / 4 \mathrm{~W}$	01121	CB 4735
A5R33	0683-4735		R:FXD COMP 47K OHM $581 / 4 \mathrm{H}$	01121	CB 4735
${ }^{\text {A5R34 }}$	0683-4735		R:FXO COMP 47 K OHM 5\% $1 / 4 \mathrm{H}$	01121	CB 4735
A5R35	0683-1035	2	R:FXD COMP 10K OHM 58 $1 / 4 \mathrm{~W}$	01121	CB 1035
A5R36	0683-1035		R:FXD COMP LOK OHM $581 / 4 \mathrm{~W}$	01121	CB 1035
${ }^{\text {A } 5 R 37}$	0698-3136		R:FXD MET FLM 17.8K OHM 12 1/8W	28480	0698-3136
A5R38	0698-3558	2	R:FXD MET FLM 4.02K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0898-3558
A5R39			NOT ASSIGNED		
A5R40	0698-3156		R:FXD MET FLM 14.7K OHM 12 1/8W	28480	0698-3156
A5R4 1	0698-3157		R:FXD MET FLM 19.6K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3157

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A5R42	0757-0440	3	R:FXD MET FLM 7.50K OHM $18 \mathrm{~T} 1 / 8 \mathrm{~W}$	28480	0757-0440
A5R43	0757-0367	1	R:FXD MET FLM 100K OHM 18 1/2W	28480	0757-0367
${ }^{\text {A 5R44 }}$	0757-0465		R:FXD MET FLM 100 K OHM $121 / 8 \mathrm{BW}$	28480	0757-0465
45845	0757-0853	1	R:FXD MET FLM 51.1K OHM 18 1/2W	28480	0757-0853
A5R46	0683-9145	1	R F FXD COMP 910K OHM $5 \% 1 / 4 \mathrm{~W}$	01121	C8 9145
A5R47	0757-0442			28480 28480	$0757-0442$ $2100-1755$
A5R48	$2100-1755$ $0698-3438$	1.		28480 28480	2100-1755
A5849 A5 50	$0698-3438$ $0757-0441$	1	R:FXD MET FLM R:FXD RET RLM R	28480 28480	0698-3438 $0757-0441$
A5R51	0757-0279		R:FXD MET FLM 3.16K DHM 18 1/8W	28480	0757-0279
A5R52	0757-0442		R:FXD MET FLH 10.0 K OHM $121 / 8 \mathrm{~W}$	28480	0757-0442
${ }^{\text {A5R53 }}$	0757-0442			28480	0757-0442
A5R54	0757-0442		R:FXD MET FLM $10 \times 0 \mathrm{~K}$ OHM 1\% $1 / 8 \mathrm{H}$ R:YAR	28480	0757-0442
65855 A 5850	2100-1762 $0683-1055$			75042 01121	CT-106-4 CB 1055
A5R57	0683-1055		R:FXD COMP 1 MEGOHM 58 $1 / 4 \mathrm{~W}$	01121	CB 1055
A5R58	2100-1760	1	R:VAR WH 5 K OHM 59 TYPE V IW	28480	2100-1760
-5R59	0757-0461	2	R:FXD MET FLM 68.1K OHM $121 / 8 \mathrm{~W}$	28480	0757-0461
A5R60	0698-4055		R:FXD FLM 1 K OHM 0.251 1/8W NOT ASSIGNED	28480	0698-4055
A5R62	0757-0443		R:FXD MET FLM 11. OK OHM 18 1/8W	28480	0757-0443
85863	0757-0440		R:FXD MET FLM 7.50K OHM 1\% $1 / 8 \mathrm{SH}$	28480	0757-0440
A5R64	0757-0438		R:FXD MET FLM 5.11 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0438
45865	0698-3459	2	R:FXD MET FLM 383 K OHM 18 1/8W	28480	0698-3459
15R66	0683-1555	1	R:FXD COMP $1.5 \mathrm{MEGOHM} 5 \mathrm{~L} 1 / 4 \mathrm{~W}$	01121	CB 1555
${ }^{6} 5191$	0360-1514		terminal pin: Square	28480	0360-1514
${ }^{4} 5192$	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
A5tP3	0360-1514		terminal pin=square	28480	0360-1514
${ }^{85194}$	0360-1514		terminal pin square	28480	0360-1514
A5tP5	0360-1514		terminal pin:square	28480	0360-1514
${ }^{\text {A5TP6 }}$	0360-1514		TERMINAL PIN: SQuare	28480	0360-1514
${ }^{45197}$	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
15198	0360-1514		terminal pin square	28480	0360-1514
A51P9	0360-1514		terminal pin:Square	28480	0360-1514
1501	1826-0013		IC:LINEAR	28480	1826-0013
A5U2	1826-0013		ic:linear	28480	1826-0013
4543	1826-0013		IC: LINEAR	28480	1826-0013
4504	1826-0013		ic:linear	28480	1826-0013
4505	1826-0013		IC: LINEAR	28480	1826-0013
A521	9170-0029		CORE:FERRITE BEAD	02114	56-590-65A2/4A
06	08555-60051	1	BOARD ASSY:BAND BUFFER	28480	08555-60051
${ }^{\text {A C C }} 1$	$0180-0197$		C:FXD ELECT 2.2 UF 108 20VDCW	56289	150D225 CO23F101F10320A2-DYS
${ }_{\text {AGCR }}{ }^{66 C 2}$	$0160-2055$ $1901-0040$	11	C:FXD CER O.01 UF +80-20\% 100 VDCW DIODE:SILICON 30 MA 30WV	56289 07263	FDG1088
${ }^{66}$ CR2	1901-0040		OIDDE:SILICON 3UMA 30wV	07263	FDG1088
A6CR3	1901-0040		didode: SILICON 30MA 30wV	07263	FDG1083
$\triangle 6 C R 4$	1901-0040		DICDE:SILICON 30MA 30HV	07263	FDG1088
A6CR5	1901-0040		DICDE:SILICON 30MA 30w	07263	FDG1088
${ }^{6}$ CR 68	1901-0040		OIDDE:SILICON 30MA SOHV	07263	FDG1088
${ }^{46 C R} 7$	1902-0048	1	DIIDEE:BREAKDOWN 6.8IV 5\%	04713	S210939-134
AbCRE	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
AbLl	9140-0210	6	COIL/CHOKE 100 UH 58	82142	15-1315-12J
${ }_{\triangle G M P 1}$	1205-0011	1	HEAT DISSIPATOR:FOR TO-5 AND TO-9 CASES	98978	1 \times BF-032-025B
A6MP2	1200-0173		PAD: TRANSISTOR MOUNTING	28480	1200-0173
1601	1854-0071		ISTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A602	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
4603	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
4604	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
4605 4606	$1854-0071$ $1854-0071$			28480 28480	$1854-0071$ $1854-0071$
8606	1854-0071.				
1607	1854-0039	2	TSTR:SI NPN	80131	2N3053
${ }^{46 R 1}$	0757-0442		R:EXO MET FLM 10.0K DHM $181 / 8 \mathrm{~W}$	28480	0757-0442
f6R2	0698-4473	2	R:FXD FLM 8.06K OHM 17 $1 / 8 \mathrm{H}$	28480	0698-4473
A6R3	0757-0123	2	R:FXD MET FLM 34.8K OHM 18 1/8W	28480	0757-0123
A6R4	0757-0442		R:FXD MET FLM 10.OK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
AGR5	0698-4473		R:FXO FLM 8.06k OHM 18 $1 / 8 \mathrm{~B}$	28480	0698-4473
AORO AGR	$0757-0123$ $0757-0442$			28480 28480	0757-0123 $0757-0442$
AGR AGR	$0757-0442$ $0698-3558$			28480	0698-3558
A6R9	0698-3157		R:FXD MET FLM 19.6K OHM 18 1/8W	28480	0698-3157
AGR 10	0757-0442		R:FXD MET FLM 10.0K OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
A6R11 $A 6 R 12$	$0757-0439$ $0698-8056$	2	R:FXO MET FLM	28480	0757-0439
AGR13	0757-0444	4	R:FXD MET FLM 12.1K OHM 1\% 1/8\%	28480	0757-0444
A6R14	0757-0442		R:FXD MET FLM 10.0 K OHM $121 / 8 \mathrm{~N}$	28480	0757-0442

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A6R 15	0757-0434	1	R:FXD MET FLM 3.65K OHM 12 1/8H	28480	0757-0434
A6R16	0757-0283	1	R:FXD MET FLM 2.00K OHM $1 \pm 1 / 8 \mathrm{~W}$	28480	0757-0283
A6R17 $A 6 R 18$	0698-3157		R:FXD MET FLM NOT ASSIGNED R	28480	0698-3157
$\triangle 6$ R19	0698-3160	3	R:FXD MET FLM 31.6 K OHM $181 / 8 \mathrm{CW}$	28480	0698-3160
A6R20	0757-0480	1	R:FXD MET FLM 61.9K OHM 18 1/8W	28480	0757-0460
A6R21	0757-0458		R:FXD MET FLM 51.1K OHM $181 / 8 \mathrm{~W}$	28480	0757-0458
${ }^{\text {A6R } 22}$	0698-3159	2	R:FXD MET FLM 26.1K OHM 18 1/8W	28480	0698-3159
A6R24	0757-0444 $0757-0443$			28480 28480	0757-0444 $0757-0443$
16R25	0757-0199	2	R:FXD MET FLM 21.5 K OHM 18 1/8W	28480	0757-0199
$46 R 26$	0757-0461		R:FXD MET FLM 68.1K OHM 18 1/8W	28480	0757-0461
${ }^{66 R 27}$	0757-0444		R:FXD MET FLM 12.1 K OHM 18 1/8W	28480	0757-0444
46828 $46 R 29$	$0698-3159$ $0757-0199$		$\begin{array}{lllllll}\text { R:FXD } & \text { MET } & \text { FLM } & 26.1 \mathrm{~K} & \text { OHM } & 18 & 1 / 8 \mathrm{H} \\ \text { R:FXD MEI } & \text { FLM } & 21.5 \mathrm{~K} & \text { OHM } & 18 & 1 / 8 \mathrm{H}\end{array}$	28480 28480	$0698-3159$ $0757-0199$
A6R 30	0757-0421	1	R:FXO MET FLM 825 OHM $181 / 8 \mathrm{~W}$	28480	0757-0421
46 R 31	0757-0288	1	R:FXO MET FLM 9.09K OHM 18 1/8W	28480	$0757-0288$
A6R32	0698-3151	3	R:FXD MET FLM 2.87 K CHM $121 / 8 \mathrm{~W}$	28480	0698-3151
26R33 A6R 34	0757-0280 $0757-0346$			28480 28480	0757-0280
A6R 34	0757-0346		R:FXD MET FLM 10 OHM 12 l 1/8W	28480	0757-0346
46835	0757-0458		R:FXD MET FLM 51.1K OHM 18 1/8W	28480	0757-0458
46836	0757-0458		R:FXD MET FLM 51.1 K OHM $181 / 8 \mathrm{BH}$	28480 28480	0757-0458
A6R37 AGR 38	$0757-0458$ $0757-0458$		R:FXD MET FLM 51.1 K CHM $181 / 8 \mathrm{l}$ R:FXD MET FLM R:	28480	0757-0458
26R39	0757-0458		R:FXO MET FLM 51.1K OHM 18 I/8w	28480 28480	$0757-0458$ $0757-0458$
A6R40	0757-0442		R:FXD MEI FLM 10.0 K OHM 12 l /8W	28480	0757-0442
${ }^{6} 61 \mathrm{P}_{1}$	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
86.1	1826-0013		ic:linear	28480	1826-0013
4602	1826-0013		IC: LINEAR	28480	1826-0013
A6U3	1820-0195	3	ic:ttl nand gate	28480	1820-0195
1804	1820-0121	1	IC:TTl hex interface lamp criver	18324	NBT90A
4605	1820-0195		IC:TTL NaNO GATE	28480	$1820-0195$
4646	1820-0535	2	IC:ITL DUAL 2-INPT CRIVER(OPEN COLL	01295	SN75451
4607	1820-0535		IC:TTL DUAL 2-INPT DRIVERIOPEN COLL	01295	SN75451
4648	1820-0195		IC:TtL nand gate	28480	1820-0195
4609	1820-0141	1	IC:TTL QUAD 2-INPT and gate	04713	MC3001P
86010	1820-0174	1	IC:TTL HEX INVERTER	01295	SN7404N
${ }^{46011}$	1821-0001		TRANSISTOR ARRAY:SI NPN	02735	CA3046
46×416	1251-2624	1	CONNECTOR:PCII $\times 15115$ CONTACT	05574	000200-0070
8621	08555-20023	1	GROMMET : BOARD	28480	08555-20023
47	08555-60054	1	BOARD ASSY: SIGNAL ID ATTENUATOR	28480	08555-60054
${ }^{47 C 1}$	0160-3456		C:FXD CER 1000 PF $10 \pm 250 \mathrm{VDCW}$	56289	C067F251F102k S22-CDH
A7C2	0160-3456		C:FXD CER 1000 PF 108 250VOCH	56289	C067F251F 102KS22-CDH
${ }^{\text {A }} 7 \mathrm{Cl}^{3}$	0160-3456		C:FXD CER 1000 PF 108250 VDCW	56289	C067F251F102k 522-CDH
${ }^{17} 4$	0180-0197		C:FXO ELECT 2.2 UF $10 x$ 20VDCW	56289	1500225×902042-DYS
A 765 $87 C 6$	0180-1735	2	C:FXD ELECT 0.22 UF 10835 VOCH	28480	0180-1735
A7C6	0180-1735		C:FXD ELECT 0.22 UF 10835 VDCW	28490	0180-1735
ATCR1	1901-0040		DIDDE:SILICON 30MA 30w	07263	FOG1098
ATCRZ	1901-0040		DIDDE:SILICON 30ma 30WV	07263	F0G1088
ATCR3	1901-0040		DIDDE:SILICEN 30ma 30w	07263	FOG1088
A7CR4	1901-0040		DICDE:SILICON 30MA 30wV	07263	FDG1088
A7CR5	1901-0040		DIODE:SILICON 30MA 30WV	07263	F061088
A7CR6	1901-0040		DIODE:SILICON 30MA 30HV	07263	FDG1089
$\triangle 7$ CR 7	1901-0040		DIODE: SILICON 30MA 30WV	07263	FDG1088
A7CR8	1901-0040		DIODE:SILICON 30MA 30WV	07263	FOG1088
ATCRg	1901-0159	3	DIDDE:SILICON 0.754 400PIV	04713	SR1359-4
ATMP 1	1200-0173		Pad:transistor mounting	28480	1200-0173
4701	1854-0072	3	TSTR:SI NPN	80131	2N3054
${ }^{\text {a }}$ 702	1853-0020		TSTR:SI PNP(SELECTEO FROM 2N37021	28480	1853-0020
A 703	1854-0039		TSTR:SI NPN	80131	2N3053
8703	1200-0173		PAD: TRANSISTOR MOUNTING	28480	1200-0173
${ }^{4704}$	1853-0020		TSTR:S1 PNP(SELECIED FRCM 2N3702)	28480	1853-0020
1705	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
4706	1854-0071		TSTR:SI NPN(SELECTEO FROM 2N3704)	28480	1854-0071
1707	1854-0071		TSTR:SI NPN(SELECTED FROM 2N37041	28480	1854-0071
A708	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
1709	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
$47 \mathrm{R1}$	0757-0465		R:FXD MET FLM look Chm 18 1/8H	28480	-0757-0465
A7R2	0757-0465		R:FXD MET FLM 100 K CHM $181 / 8 \mathrm{H}$	28480	0757-0465
A7R3	0757-0465		R:FXD MET FLM look CHM $181 / 8 \mathrm{BH}$	28480	0757-0465
${ }^{\text {A }}$ 7R4 4	0698-0083	4	R:FXD MET FLM 1.96 K OHM $181 / 8 \mathrm{~W}$	28480	0698-0083
A7R5	0757-0442		R:FXD MET FLM 10.0 K OHM $181 / 8 \mathrm{H}$	28480	0757-0442
A7R6	0757-0465		R:FXD MET FLM 100 K OHM $121 / 8 \mathrm{~W}$	28480	0757-0465
A7R7	0757-0442		R:FXD MET FLM 10.0 K OHM is $1 / 8 \mathrm{~W}$	28480	0757-0442
A7R8	${ }^{0698-3455}$	1	R:FXD MET FLM 261 K OHM $121 / 8 \mathrm{M}$	28480	0698-3455

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7R9	0698-3453		R:FXD MET FLM 196K OHM 18 1/8W	28480	0698-3453
A7R10	0757-0465		R:FXD MET FLM look OHM $181 / 8 \mathrm{~W}$	28480	0757-0465
E7R11	0757-0465		R:FXO MET FLM 100 K OHM $151 / 8 \mathrm{~W}$	28480	0757-0465
A 7 A 12 A 13	0698-3154 $0757-0465$	2		28480 28480	0698-3154 $0757-0465$
A7R14	0757-0442		R:FXD MET FLM 10.0K OHM 1\% $1 / 8 \mathrm{sw}$	28480	0757-0442
A7R15	0757-0467		R:FXD MET FLM 121 K OHM 18 1/8W	28480	0757-0467
A7R16	0698-3459		R:FXD MET FLM 383K OHM 18 1/8W	28480	0698-3459
47R17	0698-3260		R:FXD MET FLM 464 K OHM $181 / 8 \mathrm{H}$	28480	0698-3260
A7R18	0698-3157		R:FXD MET FLM 19.6 K OHM 18 l 1/8W	28480	0698-3157
A7R19	0757-0465		R:FXD MET FLM 100 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0465
47R20	0698-3449	1	R:FXD MET FLM 28.7 K CHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3449
A7R21	0757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W	28480	0757-0442
A7R22 ${ }_{\text {ATP }}$	$0698-3151$ $0360-1514$		R:FXD MET FLM 2.87 K OHM $181 / 8 \mathrm{H}$ TERMINAL PIN: SOUARE	28480 28480	0698-3151 $0360-1514$
A71P2	0360-1514		TERMINAL PIN:SQUARE	28480	0360-1514
A71P3	0360-1514		terminal pin: square	28480	0360-1514
${ }^{47194}$	0360-1514		terminal pinasquare	28480	0360-1514
471P5	0360-1514		TERMINAL PIN: SQuare	28480	0360-1514
A7IP6	0360-1514		terminal pin: Square	28480	0360-1514
${ }^{8} 8$	08555-60055	1	BOARD ASSY: $+10+20$ REGULATDR	28480	08555-60055
$\triangle 8 \mathrm{Cl}$	0180-0116		C:FXD ELECT 6.8 UF 10\% 35VDCH	56289	1500685 $\times 903582$-DYS
${ }_{8}^{88 C 2}$	$0180-0229$		C:FXO ELECT 33 UF 10\% 10VDCW	28480	0180-0229
$\triangle 8 \mathrm{C} 3$	0180-0116		C:FXD ELECT 6.8 UF 10\% 35VDCH	56289	$1500685 \times 9035 \mathrm{B2}-\mathrm{DYS}$
18 C 4	0180-0228	3	C:FXD ELECT 22 UF 10215 VDCH	56289	1500226X901582-DYS
$\triangle B^{\circ} 4$			** SEE SECTION VII		
$\triangle 8 C R 1$	1902-0680		DICDE: TC REF. JEDEC TYPE	04713	1 1 827
A8CR2 $A 8 C R 3$	$1901-0025$ $1902-0244$		DIDDE:SILICON $100 \mathrm{MA} / 1 \mathrm{~V}$	07263	FD 2387
A8CR3 ARCR 4	$1902-0244$ $1901-0025$	2	OIDDE SREAKDOWN:30.IV OIODE :SILICON $100 \mathrm{MA} / 1 \mathrm{~V}$	28480 07263	${ }_{\text {FD }} 1902-0244$
$\triangle 8 C R 5$	1902-0202	1	DIODE BREAKDOWN:15.0V 5 \% 1w	29480	1902-0202
A8CR6	1902-3182	1	DIODE BREAKDOWN:SILICON 12.1V 5\%	28480	1902-3182
$\triangle A C R 7$	1884-0073	2	THYRISIOR:SCR	03877	SW4051
${ }^{\text {ABCRE }}$	1902-3256	1	DIODE:BREAKDOWN SILICON 23.7V 58	28480	1902-3256
$\triangle 8 C R 9$	1884-0073		THYRISTOR:SCR	03877	SW4051
48 L 1	08555-80002	1	filter coil: power supply assy	28480	08555-80002
4801	1854-0072		TSTR: SI NPN	80131	2N3054
${ }^{4801}$	0340-0162		INSULATOR:TSTR for to-66	13103	A0340-0162-1
4801	08555-00038	2	HEAT SINK:POWER SUPPLY	28480	08555-00038
8802	1854-0072		tStR:SI NPN	80131	2N3054
${ }^{4802}$	0340-0162		INSULATOR:TSTR FOR TO-66	13103	A0340-0162-1
2802	08555-00038		HEAT SINK:POWER SUPPLY	28480	08555-00038
$\triangle 881$	0757-0438		R:FXD MET FLM 5.11K OHM 18 1/8W	28480	0757-0438
48 R 2	0757-0278	1	R:FXD MET FLM 1.78 F OHM $181 / 8 \mathrm{H}$	28480	0757-0278
¢8R3	0811-2817	2	R:FXD WW 2.7 OHM 58 1/2W	28480	0811-2817
$\triangle 8 \mathrm{~A}_{4}$	0757-0447	1	R:FXD MET FLM 16.2 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0447
A8R5	2100-1758	1	R:VAR WW 1K OHM 5\% TYPE V 1W	28480	2100-1758
48 R 6	$0698-4470$	1	R :FXD FLM 6.98 K OHM $181 / 8 \mathrm{~W}$	28480	0698-4470
A8R7	0811-0919		R:FXD WH 10 K OHM 0.18 l (16	28480	0811-0919
18R8	0811-0919		R:FXO WW 10K OHM $0.181 / 16 \mathrm{~W}$	28480	0811-0919
\triangle AR9	0811-2817		R:FXD WW 2.7 OHM 5\% 1/2W	28480	0811-2817
E8R10	0757-0438		R:FXD MET FLM 5.11K OHM $181 / 8 \mathrm{~W}$	28480	0757-0438
88 R 11	0757-0280		R:FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0280
A8R12	0757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
$\triangle B^{\prime} P^{\prime}$	0360-1514		terminal pin: Square	28480	0360-1514
${ }^{\text {ABTP2 }}$	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
${ }^{\text {A P1P3 }}$	0360-1514		terminal pin:souare	28480	0360-1514
f8u1	1826-0013		IC:LINEAR	28480	1826-0013
ABUz	1826-0013		ic:linear	28480	1826-0013
			miscellaneous for as parts		
	2190-0003		WASHER:LOCK FOR "4 HWD	28480	2190-0003
	2190-0004		WASHER:LOCK INT \#4	00000	OBD
	2190-0014		HASHER:LOCK FOR \#2 HWD	28480	2190-0014
	2200-0145		SCREW:PAN HD POLI OR 4-40 $\times 0.438$	00000	OBD
	2260-0001		NUT : HEX SSTL 4-40×1/4×3/32	80120	OBD*
${ }^{49}$	08555-8000 5		SWITCHING REGULATOR ASSY	28480	08555-60005
$\Delta 9$	08555-60080	1	REBUILT O8555-60005, REQUIRES EXCHANGE	28480	08555-60080
$\triangle 9 C 1$	0160-2049	2	C:FXD CER FEED-THRU 5000 PF $\mathbf{8 0 0 - 2 0 5}$	28480	0160-2049
4962	0160-2049		C:FXD CER FEED-THRU $5000 \mathrm{PF}+80-202$	28480	0160-2049
$\triangle 9 M P 1$	08555-00041	1	CAN:SWITCHING REGULATDR	28480	08555-00041

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A9al	08555-60098	1	BOARD ASSY:SWITCHING REGULATOR	28480	08555-60098
A9AICl	0160-3459		C CFXD CER 0.02 UF 208100 VDCH	56289	CO23F101H203MS22CDH
A9AIC2	0160-0298	1	C:FXD MY 0.0015 UF 108 200VDCH	56289	192P15292-PTS
${ }^{\text {A A AIC3 }}$	$0160-3456$ $0160-2055$		C:FXD CER 1000 PF 102 250VDCW	56289	C067F251F102k S22-CDH
agalc 4	0160-2055		C:FXD CER 0.01 UF +80-208 LOOVDCW	56289	C023F101F1032S22-CDH
A9AIC5	0180-2211	2	C FFXD ELECT 5 UF +50-102 150 VDCW	56289	300505F150CC2-DSM
A9AIC6	0180-2211		C:FXD ELECT 5 UF $+50-108150 \mathrm{VDCW}$	56289	300505F150CC 2-DSM
ASAICRI	$0180-1819$ $1901-0050$	1	C:FXD ELECT 100 UF $+75-10250 \mathrm{VOCW}$ DIDOE:SI 200 MA AT iV	28480 07263	$0180-1819$ FDA 6308
A9AICR2	1902-0244		DIODE BREAKDOWN:30.1V	28480	1902-0244
A9AICR3	1901-1067	2	OIDOE:SI 175MA 125V 450MH 60NS	28480	1901-1067
A9ALCR4	1901-1067		DIODE:S1 175MA 125V 450 MW 60NS	28480	1901-1067
89 A1L1	9140-0210		COILICHOKE 100 UH 5\%	82142	15-1315-12 J
19A1L2	9140-0210		COIL/CHOKE 100 UH 5%	82142	15-1315-12J
A9All 3	9100-1618	1	COIL: MOLDED CHOKE 5.60 UH	28480	9100-1618
A9A1MP 1	1-90-0173		PAD: TRANSISTOR MOUNTING	28480	1200-0173
A9A1MP2	$1.55-0033$	1	HEAT SINK: SEMICONDUCTİR	05820	207-CB
89 A 101	1854-0071		TSTR:SI NPNISELECTED FROM 2N3704)	28480	1854-0071
A9A102	1853-0308	1	TSTR:SI PNP	04713	MM4645
A9A103	1853-0020		TSTR:SI PNPISELECTED FROM 2N3702)	28480	1853-0020
A9A1R1 A9A1R2	$0698-3499$ $0757-0442$	1	R:FXD FLM 40.2 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3499
A9ALR3	0757-0442 $0757-0279$		R:FXD MET FLM 10.OK OHM 12 1/8H	28480	0757-0442
A9A1R4	0757-0280			28480	0757-0279
A9A1R5	0698-3160		R:FXD MET FLM 31.6 K OHM $1 \mathrm{~F} 1 / 8 \mathrm{BW}$	28480	-0698-3160
A9AIRG	0757-0442		R:FXD MET FLM 10.OK OHM $171 / 8 \mathrm{~W}$	28480	0757-0442
A9A1R7	0757-0442		R:FXD MET FLM 10.OK OHM 18 1/8W	28480	0757-0442
agairg	0698-3160		R:FXO MET FLM R:FXO MET FLM 31.6K OHM	28480	0698-3157
atalrio	0757-0442		R:FXD MET FLM 10.0 K OHM $181 / 8 \mathrm{H}$	28480 28880	$\begin{aligned} & 0698-3160 \\ & 0757-0442 \end{aligned}$
Agalril	0757-0279		R:FXD MET FLM 3.16K OHM 1\% $1 / 8 \mathrm{H}$	28480	0757-0279
A9A1R12	0757-0442		R:FXD MET FLM 10.0 K OHM $181 / 8 \mathrm{H}$	28480	0757-0442
cairiz	0698-3444	1	R:FXD MET FLM 316 OHM $181 / 8 \mathrm{~W}$	28480	0698-3444
asalR14	0811-2816	1	R:FXD WW 1.8 OHM $591 / 2 \mathrm{~W}$	28480	0811-2816
agalr 15	0757-0180	1	R:FXO MET FLM 31.6 OHM $181 / 8 \mathrm{~W}$	28480	0757-0180
A9A1R16	0757-0280		R:FXD MET FLH 1 K CHM 1\% $1 / 8 \mathrm{BW}$	28480	0757-0280
A9Alit	08555-80007	1	TRANSFORMER:SWITCH REGULATOR ASSY	28480	$08555-80007$
aqaill	1821-0001		TRANSISTOR ARRAY:SI NPN	02735	CA3046
asalzl	0380-0342	2	Standoff:Clinch mig, 6-32 thread	00000	OBD
A10	08555-60063	1	BOARO ASSY: INTERCONNECT	28480	08555-60063
Al0XAI THRU					
${ }^{410 \times 43}$			not assigned		
Aloxat	1251-2034	2	CONNECTOR:PC EDGE (2×10) 20 CONTACT	71785	252-10-30-300
${ }^{4} 10 \times 45$	1251-2034			71785	252-10-30-300
-10xab	1251-1626	1	CONNECTOR:PC $(2 \times 12) 24$ CONTACT	71785	252-12-30-300
${ }^{410 \times 47}$	1251-0472	2	CONNECTOR:PC 12 CONTACTS	71785	252-06-30-300
A10xas	1251-0472		CONNECTOR:PC 12 CONTACTS	71785	252-06-30-300
411	08555-60006	1	SECOND CONVERTER ASSY SEE SERVICE SHEET 18 FOR IPB	28480	08555-60006
A11	08555-60071	1	REBUILT EXCHANGE ASSY	28480	08555-60071
$\mathrm{Alicl}^{\text {c }}$	0160-3036	2	C:FXD CER $5000 \mathrm{PF}+80-20 \mathrm{x} 200 \mathrm{VDCW}$	28480	0160-3036
Al1c2	0160-3036		C:FXD CER 5000 PF $+80-208200 \mathrm{VOCW}$	28480	0160-3036
A1FL1	08555-20065	1	LINE SLOT FILTER	28480	08555-20065
A11J1	1250-0829		CONNECTOR:RF 50-DHM SCREW ON TYPE	98291	50-045-4610
AllJ2	1250-0829		CONNECTOR:RF 50-0HM SCREW CN TYPE	98291	50-045-4610
${ }^{\text {A11 }} 13$	1250-0829		CONNECTOR:RF 50-OHM SCREW ON TYPE	98291	50-045-4610
${ }_{\text {A }}{ }_{\text {All }} 11 \mathrm{MP1}$	0516-0005	3	SCREW:PAN HO SLOT DR 0-80 $\times 0.188^{\prime \prime}$ LG	00000	ObD
${ }^{\text {A }} 11 \mathrm{MP2}$	2200-0111	17	SCREH:PAN HO POLI DR $4-40 \times 0.500 \times 1 \mathrm{LG}$	00000	Ob
${ }^{\text {A }} 111 \mathrm{MP3}$	2200-0117	2	SCREW:SST PAN HD POLI DR 4-40 $\times 0.875^{\prime \prime}$	00000	OBD
A11MP4	2200-0172	2	SCREW:FLAT HD POZI DR 4-40 $\times 0.875^{\prime \prime}$ LG	00000	080
Al1mp ${ }^{\text {d }}$	2360-0117	1	SCREW:PAN HD POLI 6-32 $\times 3 / 8 \mathrm{~W} / \mathrm{LK}$	00000	OBD
Al1MP6	2200-0140		SCREH:FLAT HD POZI DR $4-40 \times 0.250 \times$ LG	00000	OBD
All MP7	2740-0001	3	NUT: HEX 10-32 Thread	00000	OBD
${ }^{\text {All }} 11 \mathrm{MP8}$	3030-0151	4	SCREH: SOCKET CAP 4-40 THREAD	28480	3030-0151
Allmpg	3030-0397	3	SCREY:SET 10-32 UNF-2A THREAD	00000	OBD
A11MP 10 $A 11 M P 11$	08555-00033	2	input-qutput loop	28480	08555-00033
A11MP11	08555-20002	1	SUPPORT:SLIOT FILTER	28480	08555-20002
${ }_{\text {ALIMP }}{ }^{\text {Ali }}$	$08555-20019$ $08555-20040$	1	SCREW: TUNING CAP:OUTER ELEMENT	28480	08555-20019
A11MP14	0855 5-20041	1	CAP:INNER ELEMENT	28480	08555-20040
A1MP15	08555-20042	1	CAP: DIELECTRIC	28480	08555-20042
Al1MP16 Al1MP17	08555-20046	1	COVER:PLATE SECOND CONVERTER	28480	08555-20046
	08555-20035	1	CAVITY BLOCK: SECOND CONVERTER	28480	08555-20035
	$08555-60068$ $0160-3636$	1	OSCILLATOR ASSY:1.5 GHZ C:FXD PORC $0.4+7-0.1$ PF 500VOCH	28480 29990	08555-60068 ATC100-B-0R4-AW

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A11ALl	0855400012	1	COUPLING:SECOND LOCAL OSC LOOP	28480	08554-00012
Allalmpl	08555-20038	1	HOLOER:TRANSISTOR	28480	08555-20038
Allalel	1854-0292		TSTR:SI NPN	28480	1854-0292
Allalez	1854-0292		TSTR:SI NPN	28480	1854-0292
cllalri	0757-0346		R:FXD MET FLM 10 OHM $1 \% 1 / 8 \mathrm{H}$	28480	0757-0346
allalrz	0698-0082	2	R:FXD MET FLM 464 OHM 1\% $1 / 8 \mathrm{SW}$	28480	0698-0082
fllalr3	C698-0082		R:FXD MET FLM 464 OHM 12 1/8W	28480	0698-0082
41142	08555-60069	1	SECOND MIXER/OUTPUT ASSY	28480	08555-60069
-1142	08555-00031	1	LID: RESONATOR HOUSING	28480	08555-00031
Al1az	08555-20036	1	RESONATOR HGUSING	28480	08555-20036
A1142	1251-1556	1	CONNECTOR: SINGLE CONTACT	00779	2-330809-8
41142	0520-0128	4	SCREW:PAN HD POZI DR $2-56 \times 0.250^{\prime \prime}$ LG	00000	Obo
A11A2Cl	0160-2327	1	C:FXD CER 1000 PF 208100 VCCW	96733	B1048 $\times 102 \mathrm{M}$
A11A2C2	0160-3550	1	C:5x0 MICA 15 PF '10\% 250VDCW	72982	2930-000-150K
aliazc 3	(160-3551	1	C:FXD MICA 33 PF 10\% 250VDCW	72982	2930-000-330K
A11A2CR1	1901-0633	1	DIODE: HOT CARRIER	28480	1901-0633
A1142J1			NOT ASSIGNED		
A11A2J2	1250-0829		CONNECTOR:RF 50-OHM SCREW ON TYPE	98291	50-045-4610
A11A2L1	9100-2254	1	COIL/CHOKE .39 UH 10\%	28480	9100-2254
Al1azR1	0608-7233	1	R:FXD FLM 750 OHM $2 \mathrm{E} 1 / 8 \mathrm{~W}^{*}$	28480	0698-7233
A1143	08555-60062	1	BOARD ASSY: SECOAD CCNVERTER FILTER	28480	08555-60062
$81143 C 1$	0180-0228		C:FXD ELECT 22 UF 10\% 15VDCH	56289	15002269015R2-DYS
Allabcz	0150-2055		C:FXD CER O.01 UF +80-209 100VOCH	56289	C023F101F1032S22-CDH
4114363	c180-0228		C:FXD ELECT 22 UF 10\$ 15VECW	56289	1500226×9015B2-OYS
A1143C4	0160-2055		C:FXD CER O.01 UF +80-20\% luOVDCW	56289	CO23F101F1032S22-CDH
Al1a3mpl	0380-0059	1	SPACER: SLEEVE BRASS FOR \#6 HDW	00866	obo
A114301	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
6114302	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
A114303	1854-0071		ISTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A114304	1854-0.71		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A1 $1143 R 1$ $011 \Delta 32$	2100-1176	1	R:VAR WH 10 K OHM 5 F TYPE H 1 W	28480	2100-1776
A11A3R2	0757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W	28480	0757-0442
Alla AliA	$0757-0442$ $0698-0083$			28480 28480	$0757-0442$ $0898-0083$
A: 2	38555-60070	1		28480	08555-60070
812 812		1	INCLUDES FIRST CONVERTER Al2 AND	28480	08535-ba0
A12			A16 COMPONENTS ARE FACTORY SELECTED		
112			TO MATCH AL2 ASSY. IST CONVERTER ASSY		
A12			Al2 FACtory repairable.		
$\Delta 12$	08555-60072	1	REBUILT EXCHANGE ASSY, incl al2 \& al6	28480	08555-60072
413	08555-60029	1	ATTENUATOR ASSY	28480	08555-60029
${ }^{4} 13$			THIS ASSY IS A SEALED UNIT.		
413			FACTORY REPAIR ONLY		
A13	08555-60073	1	REbUilt exchange assy	28480	08555-60073
A14	08555-60008	1	TUNING STABILIZER ASSY	28480	08555-60008
${ }^{1} 14$	c8555-60074	1	REBUILT EXCHANGE ASSY	28480	08555-60074
$\Delta_{14} 14$	0160-2437		C:FXD CER 5000 PF +80-20\% 200VVCW	72982	2425-000-x5V-502P
A14C)	0160-2437		C:FXD CER 5000 PF +80-20\% 200VOCH	72982	2425-000- $\times 5 \mathrm{~V}-502 \mathrm{P}$
A14C3	0160-2437		$\mathrm{C}: \mathrm{FXD}$ CER $5000 \mathrm{PF}+80-208200 \mathrm{VDCW}$	72982	2425-000-x5v-502P
A14C4	0160-2437		C:FXD CER $5000 \mathrm{PF}+80-20 \%$ 200VDCW	72982	2425-000-x5v-502P
$\triangle 14 \mathrm{C} 5$	0100-2437		C:FXD CER 5000 PF +80-20\% 200VDCW	72982	2425-000-×5V-502P
A14Co	0160-2437		C:FXD CER 5000 PF +80-208 200VOCW	72982	2425-000-x5v-502p
$A 14 \mathrm{MPI}$	0330-0178	1	GASKET:SAMPLER 0.030" THICK	07700	0330-0178
$\triangle 14 \mathrm{MP2}$	08555-00012	1	COVER:DISCRIMINATOR	28480	08555-00012
114 MP 3	09555-00013	1	COVER PLATES:AMPL VAR CRYSTAL OSC	28480	08555-00013
A14MP4	08555-20045	1	HOUSING: TUNING STABILIZER	28480	08555-20045
A14W1	08555-60018	2	CABLE ASSY:PULSE AMPLIfIER	28480	08555-60018
	$1369-74$ $0624-0078$ $2200-0139$ $2200-0140$ $6960-0059$	4	MISCELLANEOUS FOR AI 4 PARTS TERMINAL SOLDER LUG FOR $\# 6$ SCREW SCREW:TAPPING 6-32 THREAD SCREW:SST PAN HO 4-40 THD SCREW:FLAT HD POZI DR $4-40 \times 0.250^{\prime \prime}$ LG PLUGHOLE: WHITE NYLON 0.187" OIA HOLE	$\begin{aligned} & 28480 \\ & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \end{aligned}$	$\begin{aligned} & 0360-0 \cap 42 \\ & 080 \\ & 0 B D \\ & 0 B D \\ & \text { OBD } \end{aligned}$
214A1	0R555-60057	1	BIARD ASSY:STABILIILER DISCRIMINATOR	28480	08555-60057
A 14 AlCl	0160-2055		C:FXD CER 0.01 UF +80-20x 100VOCW	56289	CO23F101F1032S22-CDH
$\triangle 14 \triangle I C 2$	0180-0197		C:FXD ELECT 2.2 UF 108 20VDCW	56289	1500225X9020A2-DYS
A14A1C3	0180-1743		C:FXD ELECT 0.1 UF $10 \pm 35 \mathrm{VDCW}$	56289	1500104X9035A2-DY5
A14A1C4	0180-0197		C:FXD ELECT 2.2 UF 10% 20VDCW	56289	1500225×902042-DYS
A14A1C5	0180-0197		C:FXD ELECT 2.2 UF $10 \% 20 \mathrm{VOCW}$	56289	1500225×902042-ors
A14A1C6	0160-3533	2	C:FXD MICA 470 PF 5% 100VOCW	00853	RDM15F471J1C
A14A1C7	0160-3573		C:FXD MICA 470 PF 5\% l00VOCW	00853	RDM15F471JIC
A14A1C8	0160-3528	2	C:FXD MICA 750 PF $5 \pm 100 \mathrm{VECW}$	00853	RDM15F751JIC
Al4AICs	0160-3538		C:FXD MICA 750 PF 5\% 100 VOCW	00853	RDM15F751J1C
A14A1C10	0180-0197		C:FXO ELECT 2.2 UF 102 20VDCW	56289	1500225×902042-DYS

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A14A1C11	0160-2221	1	C:FXD MICA 1300 PF 57	28480	0160-2221
A14A1C12			FACTORY SELECTED PART		
A14A1C13	$0180-0197$		C:FXD ELECT 2.2 UF 10\% 20VOCH	56289	1500225x9020A2-DYS
A14A1C14	0160-2055		C : FXD CER 0.01 UF $+80-208$ 100VDCW	56289	C023F101F1032S22-CDH
A 14 A1C 15	0160-2055		C: FXO CER O.01 UF $+80-208100 \mathrm{VDCH}$	56289	C023F101F103LS22-CDH
A14A1C16 A14A1C17	$0160-2055$ $0160-2453$			56289 56289	C023F101F1032S22-CDH
${ }^{\text {A } 1441418}$	01180-0197	1	C:FXD MY 0.22 UF $10 \% 80 \mathrm{VDCH}$ C:FXD ELECT 2.2 UF 10820 VOCW	56289 56289	192P2249R8-PTS
A14A1C19	0180-0197		C:FXO ELECT 2.2 UF 108 20VDCH	56289	1500225x902042-DYS
-14A1C20	0180-0197		C:FXD ELECT 2.2 UF 10% 20VOCH	56289	1500225×902042-DYS
A14A1CR1	1901-0518	2	DIODE: Hot Carrier	28480	1901-0518
thalcra	1901-0518		DIGDE: HOT CARRIER	28480	1901-0518
A14AICR3	1902-3104	1	DIODE: BREAKDOWN 5.62V 5\%	04713	S210939-110
Al4alcr 4	1901-0040		DIODE:SILICON 30MA 30 WV	07263	FOG1088
Al4alll	9100-1646	2	COIL/CHOKe 430 UH 59	82142	19-1331-26J
A14all2	9100-1647	1	COIL/CHOKE 470 UH 5\%	82142	19-1331-27J
A14A1L3	9100-1646		COIL CHOKE 430 UH 59	82142	19-1331-26J
A14A1L4	9100-1644	1	COIL/CHOKE 330 UH 5%	28480	9100-1644
A14AlL5	9140-0210		COIL/CHOKE 100 UH 57	82142	15-1315-12J
A14A1L6	9140-0210		COIL/CHOKE 100 UH 5\%	82142	15-1315-12J
A14All 7	9140-0210		COIL/CHOKE 100 UH 5\%	82142	15-1315-12J
A 148101	1855-0081	1	TSIR:SI FET	80131	2N5245
A 144102	1854-0071		TSTR:SI NPNISELECTED FROM 2N3704)	28480	1854-0071
A14A103	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A14A104	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A14A105	1854-0071		TSTR:SI NPN(SELECTED FRCM 2 (3704)	28480	1854-0071
A14A106	1854-0019	3	TSTR:SI NPN	28480	1854-0019
A14A107	1854-0019		TSTR:SI NPN	28480	1854-0019
8144108	1853-0034	2	TSTR:SI PNP(SELECTED FRCM 2N3251)	28480	1853-0034
A14A109	1853-0034		TSTR:SI PNP(SELECTED FROM 2N3251)	28480	1853-0034
A14A1010	1854-0045	1	TSTR: SI NPN	04713	2N956
A14A1R1	0683-1055		R:FXD CCMP 1 MEGOHM 5\% $1 / 4 \mathrm{~N}$	01121	CB 1055
A14A1R2	0698-3162		R:FXD MET FLM 46.4 K OHM $121 / 8 \mathrm{~W}$	28480	0698-3162
A14A1R3	0698-3152	1	R:FXD MET FLM 3.48 K OHM 18 1/8H	28480	0698-3152
A14A1R4	0698-3150	1	R:FXD MET FLM 2.37 K OHM $181 / 8 \mathrm{H}$	28480	0693-3150
A14A1R5	0698-3157		R:FXD MET FLM 19.6 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3157
Al4A1R6	0757-0280		R:FXD MET FLM IK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A14A1R7	0757-0405	1	R:FXD MET FLM 162 OHM 12 1/8W	28480	0757-0405
Al4A1R8	0698-0083		R:FXD MET FLM 1.96 K OHM $121 / 8 \mathrm{H}$	28480	0698-0083
A14A1R9	0757-0424	1	R:FXD MET FLM 1.10K OHM 18 1/8W	28480	0757-0424
Al4alR10	0757-0442		R:FXD MET FLM 10.0K OHM 18 1/8w	28480	0757-0442
A14A1R11	0698-3157		R:FXD MET FLM 19.6K OHM 18 1/8W	28480	0698-3157
A14A1R12	0757-0280		R:FXD MEE FLM 1K OHM 18 $1 / 8 \mathrm{BW}$	28480	0757-0280
A14A1R13	0757-0401		R:FXD MET FLM 100 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0401
A14A1R14	0698-3434	1	R:FXD MET FLM 34.8 CHM 18 1/8W	28480	0698-3434
A14A1R14			factory selecteo part		
A14A1R15	0757-0401		R:FXD MET FLM 100 OHM $181 / 8 \mathrm{~W}$	28480	0757-0401
A14A1R16	0757-0401		R:FXD MET FLM 100 CHM 18 118 m	28480	0757-0401
Al4A1R17	0698-3155		R:FXD MET FLM 4.64 K OHM $12 \mathrm{l} / 8 \mathrm{~m}$	28480	0698-3155
Al4ALR18	0698-3155		R:FXD MET FLM 4.64 K OHM $18 \mathrm{l} 1 / 8 \mathrm{~W}$	28480	0699-3155
A14A1R19	0698-3157		R:FXD MET FLM 19.6K OHM $181 / 8 \mathrm{~W}$	28480	0698-3157
A14A1R2O	0698-3157		R:FXD MEI FLM 19.6K OHM 18 1/8W	28480	0698-3157
A14A1R21	0757-0438		R:FXD MET FLM 5.11K OHM $181 / 8 \mathrm{H}$	28480	0757-0438
A14A1R22	0757-0438		R:FXD MET FLM 5.11 K OHM $181 / 8 \mathrm{H}$	28480	0757-0438
A14A1R23	0757-0438		R:FXO MET FLM 5.11K OHM 18 1/8W	28480	0757-0438
A14A1R24	0757-0401		R:FXD MET FLM 100 OHM $181 / 8 \mathrm{H}$	28480	0757-0401
A14A1R25	0757-0439		R:FXD MET FLM 6.81K OHM $181 / 8 \mathrm{~W}$	28480	0757-0439
-1441226	0757-0442		R:FXD MET FLM 10.0K OHM 18 1/8H	28480	0757-0442
A14A1R27 $A 14 A 1 R 27$	0698-3154		R:FXD MET FLM 4.22K OHM $121 / 8 \mathrm{~W}$ ** SEE SECTION VII	28480	0698-3154
A14A1R28	0757-0442		R:FXD MET FLM 10.0 K OHM $121 / 8 \mathrm{~W}$	28480	0757-0442
A14A1R29	0757-0401		R:FXD MET FLM 100 CHM $181 / 8 \mathrm{H}$	28480	0757-0401
A14A1R30	0757-0442		R:FXO MET FLM 10.0 K OHM $181 / 8 \mathrm{H}$	28480	0757-0442
A14A1R31	0757-0401		R:FXD MET FLM 100 OHM $181 / 8 \mathrm{H}$	28480	0757-0401
A14A1R32	0698-3155		R:FXO MET FLM 4.64 K OHM $12 \mathrm{l} / 8 \mathrm{H}$	28480	0698-3155
A14A1TP1	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
Al4A1TP2	0360-1514		TERMINAL PIN:SQUARE	28480	0360-1514
A14A1TP3	0360-1514		TERMINAL PIN: SQUARE	28480	0360-1514
Al4AITP4	0360-1514		TERMINAL PIN: SQuare	28480	0360-1514
A14AlUI	1821-0001		transistor array: Si Npn	02735	CA3046
A14A1U2	1820-0327	1	IC:TTL quad z-Inpt nano gate	04713	SN7401N
A14A2Cl	0180-1743		C:FXD ELECT 0.1 UF 10% 35VDCH	56289	1500104×9035 A2-DYS
A14A2C2 $A 14 A 2 C 3$	0121-0452	1	C:VAR AIR 1.3 TO 5.4 PF 250 VOCW $\mathrm{C}:$ VAR TRIMER 1.7-11.0 PF 250VDC	28480 74970	-0121-0452

See introduction to this section for ordering information

Table 6－2．Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
$\triangle 1+4.204$	016002055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032522－COH
11442 C 5	0160－2055		C：FXO CER 0．01 UF＋80－20\％100VDCH	56289	CO23F101F1032S22-CDH
$\triangle 14$ A2C6			NOT ASSIGNED		
A1－42C7	0160－2055		$\mathrm{C}:$ FXO CER 0.01 UF $+80-20 \% 100 \mathrm{VDCH}$	56289	C023F101F1032S22－COH
1432C8	0160－0134	1	C：FXD MICA 220PF 5\％300VECW	14655	ROM15F221J3C
2144269	0160－2204	，	C：FXD MICA 100PF 5\％	72136	RDM15F101J3C
A14Aこご10	0140－0198	1＊	C：FXD MICA 200 PF 5\％	72136	RDM15F201J3C
Alvicla	0180－0197		C：FXD ELECT 2.2 UF 10\％2OVDCW	56289	1500225×9020A2－DYS
A142．${ }^{\text {a }}$	0180－0197		C：FXD ELECT 2.2 UF 100 2OVDCW	56289	1500225×9020A2－DYS
A－ticus	0180－0291		C：FXD ELECT 1.0 UF 10\％35VDCH	56289	1500105×9035A2－DYS
：$+\mathrm{Cc} \mathrm{Cl}_{4}$	$0180-0291$		C：FXO ELECT l．O UF 10235 VDCW	56289	1500105×9035A2－DYS
$\therefore \rightarrow 4 . C 15$	0180－0197		C：FXD ELECT 2.2 UF 108 20VDCW	56289	$1500225 \times 902042-D Y S$
\therefore A．${ }^{\text {a }}$	－131－0004	1	C：VAR MICA 16－150 PF 175 VDCW	72136	T51410－3
A14ACCl	0180－0229		C：FXD ELECT 33 UF $10 \% 10 \mathrm{VDCW}$	28480	0180－0229
－i4serra！	0122－0221	4	c：VOLTAGE VAR 100 PF 10\％30VDCW	28480	0122－0221
\therefore 二ackz	c122－0221		C：VOLTAGE VAR 100 PF 10% 30vdCh	28480	0122－0221
A4A2CR3	0122－0221		C：VOLTAGE VAR 100 PF 10\％30VOCW	28480	0122－0221
	0122－0221		c：VOLTAGE VAR 100 PF $10 \$ 30 \mathrm{VOCW}$	28480	0122－0221
＊ 14 CLLRS	1901－0040		DIODE：SILICON 30MA 30wv	07263	FDG1098
A．AAICR6	1901－0040		DIDDE：SILICON 30MA 30WV	07263	FOG1088
A14A2CR7	1901－0040		DIODE：SILICON 30MA 3OWV	07263	FDG1088
	1901－0025		DIODE：SILICON IOOMA／IV	07263	FD 2387
ciatacks	1901－0040		OIODE：SILICON 30MA 30WV	07263	FDG1088
A 4 4 <121	9100－1650	1	COIL／CHOKE 1300 UH 5\％	28480	9100－1656
	9100－3156	1	COIL：47 UH 5\％	28480	9100－3156
A14A2L3	9140－0137		COIL：FXO RF 1000 UH 5\％	28480	9140－0137
$414 \Delta 2 \mathrm{~L} 4$	9140－0137		COIL：FXO RF 1000 UH 5\％	28480	9140－0137
A14－EL？	9140－2137		COIL：FXD RF 1000 UH 5\％	28480	9140－0137
A14A2L6	9140－0137		COIL：FXD RF 1000 UH 58	28480	9140－0137
A1442L 7	9140－0137		COIL：FXD RF 1000 UH 5\％	28480	9140－0137
（1＋A）01	$1854-0071$		TSTR：SI NPNISELECTED FRCM 2N37041	28480	1854－0071
A14 $A \overline{\text { a }}$－	$1854-0071$		TSTR：SI NPN（SELECTED FROM 2N3704）	28480	1854－0071
t14A） 63	$1854-0071$		TSTR：SI NPNISELECTED FROM 2N37041	28480	1854－0071
C14A．${ }^{\text {c }}$	1255－0020		TSTR：SI FET N－CHANNEL	28480	1855－0020
t14A． 25	1254－0019		TSTR：SI NPN	28480	1854－0019
A14A23t	1853－0010	1	TSTR：SI PNPISELECTED FRCM 2N3251）	28480	1853－0010
A14AEU7	1854－0332	1	TSTR：SI NPN	02735	38868
Al4arki	0757－0280		R：FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757－0280
E1437R2	0757－0280		R：FXD MET FLM 1 K OHM 12 1／8W	28480	0757－0280
A14ARR3	0698－3247	1	R：FXD FLM 4.53 K OHM 0.25 \％ $1 / 8 \mathrm{~W}$	28480	0698－3247
A14A2R4	0698－7828		R：FXO FLM 437 K OHM 0.25 \％1／4W	28480	0698－7828
A14A2R5	0757－0428	2	R：FXD MET FLM 1.62 K OHM 1\％ $1 / 8 \mathrm{WW}$	28480	0757－0428
A14A2RE	0757－0428		R：FXD MET FLM 1.62 K OHM 12 1／8W	28480	0757－0428
Al4ar ${ }^{\text {a }}$	0698－3155		R：FXD MET FLM 4.64 K OHM 18 T 1／8W	28480	0698－3155
A14A2R 6			NOT ASSIGNED		
AI－AJKg	Ctas－3153		R：FXD MEI FLM 3．83K OHM $181 / 8 \mathrm{~K}$	28480	0698－3153
A14A2R10	0757－0440		R：FXD MET FLM 7．50K OHM 1\％1／8W	28480	0757－0440
$\Delta 1 \rightarrow \Delta>R 11$	0757－0438		R：FXD MET FLM 5．11K DHM 1\％1／8W	28480	0757－0438
A14A2R12	0757－0438		R：FXD MET FLM 5．11K OHM 1\％1／8W	28480	0757－0438
A14APR13			NOT ASSIGNED		
$A 14 A \partial B 14$			NOT ASSIGNED		
	$0698-3151$ $0757-0280$			28480	0698－3151
A14－R27	0698－0083		R：FXD MET R：FXD MET RLM IK	28480 28480	$0757-0280$ $0698-0083$
AIASTRIA	0683－1005	1	R：FXD COMP 10 OHM $5 \% 1 / 4 \mathrm{~W}$	01121	CB 1005
Al4ack 19	0757－0459		R：FXD MET FLM 56．2K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757－0459
A14 ${ }^{\text {cken } 20}$	0099－3408	1	R：FXO MET FLM $2.15 \mathrm{~K} \mathrm{OHM} \mathrm{1} \mathrm{\%} 1 / 2 \mathrm{~W}$	28480	0698－3408
Al4AER21	0757－0279		R：FXD MEI FLM 3．16K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757－0279
A14AER2L	0757－0411	1	R：FXD MET FLM 332 OHM 1\％ $1 / 8 \mathrm{~W}$	28480	0757－0411
A14A2R2S	0698－3156		R：FXD MET FLM 14．7K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698－3156
A14AこR24	0757－0444		R：FXD MET FLM 12．1K OHM 1\％1／8W	28480	0757－0444
A14．0T1	0837－0075	1	THERMISTOR：DISC TYPE 500 OHM LOZ a 25 C	28480	0837－0075
A14ArTPl	0260－1514		TERMINAL PIN：SQUARE	28480	0360－1514
Al4A，TP？	0360－1514		TERMINAL PIN：SQUARE		
A14A2TP3	0360－1514		TERMINAL PIN：SQUARE	28480	$0360-1514$
A14m＜TP4	0360－1514		TERMINAL PIN：SQUARE	28480	0360－1514
A14．4201	1826－0013		IC：LINEAR	28480	1826－0013
1442wl	08555－60018		CABLE ASSY：PULSE AMPLIFIER	28480	08555－60018
$A_{14 *}$	1250－1227	1	CONNECTOR：RF SERIES SMA	94142	546－001
A1442w1	8120－0229	1	CABLE：RF COAX RG	04217	421－105
	1200－0770	1	SOCKET：CRYSTAL	91506	8000－AG－26
	0－10－0013	1	CRYSTAL ：QUARTZ 1 MHz	28480	0410－0013
Al4all	9170－0029		CORE：FERRITE BEAD	02114	56－590－65 A2／4A
A14A4 Als	0960－0096	1	S－BANO SAMPLER：2－4 GHZ NOT ASSIGNED	28480	0960－0096

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			Chassis parts		
ATI	11593 A	3	TERMINATION:50 OHM	28480	11593 A
AT2	11593 A		TERMINATION:50 CHM	28480	11593 A
${ }_{4} 13$	115934		TERMINATION:50 OHM	28480	11593 A
AT4	08553-60122	1	LOAD ASSY:50 OHM	28480	08553-60122
AT5	0960-0084	2	ISOLATOR:2-PORT $2-4 \mathrm{GHz}$	28480	0960-0084
AT6	0960-0084		ISOLATOR:2-PORT 2-4 GHZ	28480	0960-0084
CR1	1901-0159		DIDDE:SILICON 0.754 400PIV	04713	SR1358-4
CR2	1901-0159		DIODE:SILICON 0.75 A 400PIV	04713	SR1358-4
c51	2140-0259	1	LAMP : INCANOESCENT 12V 0.06A	71744	CM8-1099
csi	1450-0153	1	LAMPHOLDER:FOR $\mathrm{T}-1$ SERIES	08717	102SR
CS1	1450-0371	1	LENS: LAMPHOLDER, AMBER	08717	102-A(LENS)
FLI	0960-0085	1	SEE AllFt1 FItTER:POW PASS 550 \& 2050 MHz	28480	0960-0085
11 MPl	1250-0914	1	BODY. RF CONNECTOR	02660	131-150
J1MP1 $J 1 M P 1$	1250-0900	1	(TYPEN) ${ }^{\text {BOOY:FEMALE,RF }}$ CONNECTOR	02660	131-1057
$J 1$ MP1			(APC-7, OPT 001)	02660	131-1057
JIMP2 JIMP2	1250-0915	1	CONTACT:RF CONNECTOR (TYPE N)	02660	131-149
J1MP2 $J 1 M P 2$	1250-0816	1	PIN:FEMALE, RF CONNECTOR (APC-7, OPT OOI)	02660	131-1054
J2MP3	5040-0306	1	INSULATOR	28480	5040-0306
J1MP4	08555-20093	1	CONTACT: JACK	28480	08555-20093
JIMP 5	08555-20094	1	BODY: BULKHEAD	28480	08555-20094
J1MP6	2190-0104	1	WASHER:LOCK 0.439 ${ }^{\text {ID }}$	00000	OBD
JIMP7	2950-0132	1	NUT:HEX 7/16-28	00000	OBD
JIMP8	08761-2027	1	INSULATOR	28480	08761-2027
J2 ${ }^{\text {J }}$ J					
J J 6	1251-2568	1	NOT $\triangle S S I G N E D$ BODY:R $\mathrm{P}, \mathrm{FOR} 79$ MALE CONTACT	71468	20C79PFO
J6	1251-2570	71	CONTACT:R \& P CONNECTOR, MALE	71468	031-9540-000
k1	3166-0009	3	SWITCH:COAX SPDT 12VDC	02660	315-10053-2
$k 2$	3106-0009		SWITCH:COAX SPDT 12VDC	02660	315-10053-2
K3	3106-0009		SWITCH:COAX SPDT 12VDC	02660	315-10053-2
NP1	08555-00024	1	GUSSET:LEFT	28480	08555-00024
NP2	08555-00022	1	PANEL:REAR	28480	08555-00022
NP2	08555-00002	1	SHIELD: CONNECTOR	28480	08555-00002
NP3	08555-00018	1	SUPPORT: 1 ST CONVERTER	28480	08555-00018
NP_{4}	08555-00023	1	GUSSET: RIGHT	28480	08555-00023
NP5	08555-00016	1	COVER:TOP	28480	08555-00016
MPG	08555-00017	1	COVER:BOTTOM	28480	08555-00017
${ }^{\prime 2} 96$	5040-0274	1	FOOT, PLUG-IN	28480	5040-0274
MP7	08555-20001	1	PLATE: CONNECTOR	28480	08555-20001
N98	08555-00019	1	DECK:MAIN	28480	08555-00019
-P9	08555-20027	4	SPACER:YIG GOVER	28480	08555-20027
NP10	08555-00025	1	COVER YIG	28480	08555-00025
MP11	08555-00042	1	BASE:YIG	28480	08555-00042
NP12	08555-60012	1	YOKE ASSY	28480	08555-60012
- P 12	0510-0045	6	RING:REIAINING FOR 0.188" OIA SHAFT	79136	5133-18-5-MD-R
MP12	1480-1205	2	SPRING:TORSION	28480	1460-1205
NP12	3050-0032	2	WASHER:FLAT 0.189"ID, FOR \#10 HOW	00000	OBD
NP12	08555-00026	1	rgee	28480	08555-00026
MP12	08555-00027	1	'LATCH: RIGHT	28480	08555-00027
MP12	08555-00028	1	LATCH:LEFT	28480	08555-00028
NP13	08555-00029	1	STIFFENER: BRACKET	28480	08555-00029
MP13	0400-0018	1	GROMMET:CHANNEL U-SHAPED	95987	WG-101
${ }_{\text {MP1 }}{ }_{\text {F }} 14$	08555-00021	1	SHIELD: BOARD NDT ASSIGNED	28480	08555-00021
F2	1251-0055	1	CONNECTOR:MALE 24 CONTACTS	28480	1251-0055
P3	1251-2081	1	CONNECTIOR:R AND P 41 MALE CONTACT	71468	DOM-43W2-P
F4	1251-2366	1	CONNECTOR:R ANO P 8 POSITIONS	71468	DCM 8w8S
P5	1251-1286	1	CONNECTOR:R \& P 12 CONTACT	71468	DCM-17W5S
P6	08555-20076	1	SEE AlPG ${ }_{\text {CABLE }}$ ASSY:RF INPUT TO Al3JI	28480	08555-20076
42	08555-20075	1	CABLE ASSY:Al3J2 TO Al2Ji	28480	08555-20075
n3	08555-20078	1	CABLE ASSY:EXT MIXER TO A12J2	28480	08555-20078
	08555-20105			28480	08555-20105
k 5	08555-20089	1	CABLE ASSYY:A12.14 TO ATGJ1	28480	08555-20089
W6	08555-20079	1	CABLE ASSY: A12.33 TC AT5J1	28480	08555-20079
n7	08555-20080	1	CABLE ASSY:AT5J2 TO K1J2	28480	08555-20080
W8	08555-20082	1	CABLE ASSY:A12J6 TC KlJl	28480	08555-20082

Table 6-2. Replaceable Parts

See introduction to this section for ordering information

Table 6-3. Code List of Manufacturers

SECTION VII
 MANUAL CHANGES

7-1. CURRENT INSTRUMENTS

7-2. This manual applies directly to standard Model 8555A Spectrum Analyzer RF Sections having serial number prefix 1203A.

7-3. NEWER INSTRUMENTS

7-4. Manual Up-dating

7-5. Instruments manufactured after the printing of this manual may have serial prefixes other than those listed on the title page. An unlisted serial prefix indicates an instrument that is different from those documented in this manual. Manuals for these instruments are supplied with a "Manual Changes" insert that contains information for updating the manual. Contact your local HewlettPackard Sales and Service Office if this insert is missing.

7-6. OLDER INSTRUMENTS

7-7. Manual Back-dating

7-8. Table 7-1 lists the serial number change history for the 8555A. The changes needed to back-date this manual to earlier instruments are listed opposite the serial numbers. Table 7-2 contains the back-dating changes. Use Table 7-1 to find the changes needed to document your instrument; then follow the instructions listed under the
changes in Table 7-2. Perform the changes in the sequence listed in Table 7-1 (e.g. from Change K to Change A).

7-9. MODIFICATIONS

7-10. Instrument Up-dating

$7-11$. Table $7-3$ is a summary of 8555 A changes. The table cross-references the changes to the affected assemblies. It also indicates whether or not the factory recommends that an instrument be up-dated.

Table 1-1. Serial Number Change History

Serial Number or Prefix	Make Manual Changes in Sequence
$987-00101$ to 00120	KJ HGFEDCBA
$987-00121$ to 00140	KJ HGFEDCB
$1043 A 00141$ to 00160	KJ HGFEDC
$1043 A 00161$ to 00260	KJ HGFED
$1043 A 00261$ to 00335	KJ HGFE
$1114 A$	KJ HGF
$1116 A 00461$ to 00560	KJ HG
$1116 A 00561$ to 00760	KJ H
$1138 A$	KJI
$1143 A$	K

Table 7-2. Back-dating Changes (cont'd)

A9A1Q3 1853-0038 TSTR:SI PNP
A9A1R15 $\quad 0698-3438$ R:FXD MET FLM 147 OHM $1 \% 1 / 8 \mathrm{~W}$
A9A1R16 0683-0275 R:FXD COMP 2.7 OHM 5\% 1/4W
Add: A9A1R17 0683-0275 R:FXD COMP 2.7 OHM 5\% 1/4W
Delete: A9A1MP1 1200-0173 PAD:TRANSISTOR MOUNTING A9A1MP2 1205-0033 HEAT SINK: TRANSISTOR

Figure 8-40, Change component values in 31 V power supply circuit as indicated below:
A4C3 from 2 UF to 20 UF
A4R 34 from 61.9 K OHM to 18 K OHM
A4R36 from 5110 OHM to 100 OHM
A4R40 from 10K OHM to 4640 OHM
A4R41 from 1000 OHM to 100 OHM
Figure 8-69, Delete and replace with Figure 7-3, Switching Regulator Board Assembly A9A1 (08555-60056) CHANGE E.

Figure 8-71, Replace left side of schematic with Figure 7-4. Switching Regulator Schematic Diagram (08555-60056). CHANGE E.

CHANGE F

Table 6-2, Change following parts to read:
A14A2 08555-60058 BOARD ASSY:VAR. CRYSTAL OSCILLATOR
A14A2R6 0757-0278 R:FXD MET FLM 1.78K OHM $1 \% 1 / 8 \mathrm{~W}$.
A14A2R20 0698-3409 R:FXD MET FLM 2.37 K OHM $1 \% 1 / 2 \mathrm{~W}$.
Table 6-2, Delete following parts:
A14A2CR9, A14A2R22, A14A2R23, A14A2R24 and A14A2RT1.
Figure 8-52, Delete and replace with Figure 7-5, Tuning Stabilizer VCXO Assembly A14A2 (08555-60058). CHANGE F.

Figure 8-54, Delete and replace with Figure 7-6, Tuning Stabilizer, VCXO Pulse Ampl Assy A14A2 (CHANGE F).

CHANGE G

Table 6-2, Delete:
A6CR8 1901-0040 DIODE: SILICON 30 MA 30WV 07263 FDG1088
Table 6-2, Change following parts to read:
A6R11 0757-0447 R:FXD MET FLM 16.2K OHM $1 \% 1 / 8 \mathrm{~W}$
A6R12 0757-0428 R:FXD MET FLM 1.62K OHM $1 \% 1 / 8 \mathrm{~W}$
A6R13 0698-3449 R:FXD MET FLM 28.7 K OHM $1 \% 1 / 8 \mathrm{~W}$
A6R15 0757-0288 R:FXD MET FLM 9.09K OHM $1 \% 1 / 8 \mathrm{~W}$
Figure 8-44, Band Buffer Assy A6:
Delete diode A6CR6, Change value of following components to read as follows: A6R11 to 16.2 K , A 6 R 12 to $1.62 \mathrm{~K}, \mathrm{~A} 6 \mathrm{R} 13$ to 28.7 K and A6R15 to 9.09 K .

Table 7-2. Back-dating Changes (cont'd)

CHANGE H

Table 1-1, change noise sideband specification to read:
Noise Sidebands: For fundamental mixing. More than 70 dB below CW signal, 30 kHz or more away from signal, with 1 kHz IF bandwidth and 100 Hz video filter.

Paragraph 4-23, change to read:
Specification: For fundamental mixing. More than 70 dB below CW signal, 30 kHz or more away from signal, with 1 kHz IF bandwidth and 100 Hz video filter.
4. Keeping the display centered, reduce the SCAN WIDTH PER DIVISION to 10 kHz . Reduce BANDWIDTH to 1 kHz , SCAN TIME PER DIVISION to 0.2 SECONDS, and VIDEO FILTER to 100 Hz .
5. Observe the noise level three divisions or greater away from the signal (30 kHz). The average noise level should be at least 70 dB below the CW signal level.

Table 6-2, change the following components to read:
A9A1CR3 1901-0050 DIODE:SI 200 MA AT 1 V
A9A1CR4 1901-0050 DIODE:SI 200 MA AT 1V
A9A1T1 08555-80001 TRANSFORMER. SWITCH REGULATOR ASSY

CHANGE I

Table 6-2, change to read:
A9A1C2 0160-0155 C:FXD MY 3300PF $10 \% 200 \mathrm{VDCW}$
A9A1C3 0160-3457 C:FXD CER 2000PF $10^{\circ} \% 250$ VDCW
Figure 8-71, change following componerto is read:
A9A1C2 to 3300 and A9A1C3 to 2000.

CHANGE J

Table 6-2, delete: A14A2Z1 9170-0029 CORE:FERRITE BEAD.
Figure 8-54, delete ferrite bead symbol and $Z 1$ from gate lead of A14A2Q4.

CHANGE K

Table 6-2:
Delete A3 08555-60081 OSC ILLATOR ASSY: YIG 2.0-4.0 GHz
08555-60082 REBUILT EXCHANGE ASSY, INCL. YIG OSCILLATOR, ATTENUATOR AND ADAPTER
A3AT1 08554-60058 ATTENUATOR: FXD 2 dB
A3CP1 1250-1249 ADAPTER:COAXIAL RIGHT ANGLE
W4 08555-20105 CABLE ASSY: A3AT1 to A12J5
Add A3 1820-0401 OSCILLATOR ASSY:YIG 2.0-4.0 GHz
W4 08555-20088 CABLE ASSY: A3J1 to A12J5
Figure 8-40:
Replace top right section of figure with Figure 7-7.

NOTE

1820-0401 not active for replacement. Orders for 1820-0401 filled with 08555-60082 and 08555-20105. Includes Y'lG oscillator, attenuator, adapter and cable assembly.

Table 7-3. Summary of Instrument Changes

	Assembly Number							
Change	A1	A3	A4	A6	A8	A9	A14	Chassis
A					$\mathrm{C4}_{3}$			$\mathrm{J1}_{2}$
B	A2							
C							A1R27 2	
D			C4, R46					
E			$\begin{aligned} & \mathrm{C} 3, \mathrm{R} 36, \\ & 38,40,41 \end{aligned}$			$\begin{aligned} & \text { A1, A1CR1 }{ }^{4} \\ & \text { A1Q2-3 } \\ & \text { A1R15, } 16 \end{aligned}$		
F							$\begin{aligned} & \text { A2, A2CR9, } \\ & \text { A2R6, 20, } \\ & 22-24, \text { A2RT1 } \end{aligned}$	
G				$\begin{array}{lr} \hline \text { CR8, } & 1 \\ \text { R11-13, } & 16 \end{array}$				
H						$\begin{aligned} & \hline \text { A1CR3, } 4 \\ & \text { A1T1 } \end{aligned}$		
I						$\mathrm{A} 1 \mathrm{C} 2,3 \quad 3$		
J							A2Z1	
K								$\mathrm{A} 3, \mathrm{~W} 4$
${ }^{1}$ Orginal part(s) preferred replacement. ${ }^{2}$ New part(s) preferred replacement. $3_{\text {Modification to new part(s) recommended. }}$ ${ }^{4}$ A9 assembly is preferred replacement.								

SECTION VIII SERVICE

8-1. INTRODUCTION

8 -2. This section provides instructions for troubleshooting and repair of the HP 8555A Spectrum Analyzer RF Section.

8-3. PRINCIPLES OF OPERATION

8-4. Information relative to the principles of operation appears on the foldout pages opposing the Block Diagram, Service Sheet 1. Theory of operation appears on the foldout pages opposing each of the foldout schematic diagrams. The schematic diagram circuits are referenced to the theory of operation text by block numbers.

8-5. RECOMMENDED TEST EQUIPMENT

8-6. Test equipment and accessories required to maintain the Spectrum Analyzer RF Section are listed in Tables 1-4 and 1-5. If the equipment listed is not available, equipment that meets the required specifications may be substituted.

8-7. TROUBLESHOOTING

8-8. Troubleshooting procedures are divided into two maintenance levels in this manual. The first, a troubleshooting tree, is designed to isolate the cause of a malfunction to a circuit or assembly. In this procedure, maximum use is made of the front panel controls, indicators and the analyzer's operating capability to isolate the malfunction to the defective circuit.

8-9. The second maintenance level provides circuit analysis and test procedures to aid in isolating faults to a defective component. Circuit descriptions and test procedures for the second maintenance level are located on the pages facing the schematic diagrams. The test procedures are referenced to the schematic diagrams by block numbers.

8-10. After the cause of a malfunction has been found and remedied in any circuit containing adjustable components, the applicable procedure specified in Section V of this manual should be performed. After repairs and/or adjustments have been made, the applicable procedure specified in Section IV of this manual should be performed.

8-11. REPAIR

8-12. Factory Repaired Exchange Modules. Factory repaired exchange modules are available for modules that are not field-repairable. In addition, repaired exchange modules are available for major sub-assemblies as an alternate method of repair. The factory repaired modules are available at a considerable savings in cost over the cost of a new module.

8-13. These exchange modules should be ordered from the nearest Hewlett-Packard Sales/Service office using the part numbers in the replaceable parts table in Section VI of this manual. Virtually all orders for replacement parts received by HP offices are shipped the same day received - either from the local office or from a Service Center.

8-14. Service Kit. A service kit, HP Part Number 08555-60077, is available as an aid in maintaining the $8555 / 8552$ Spectrum Analyzer. This kit is described in Table 1-5.

8-15. Factory Selected Components. Some component values are selected at the time of final checkout at the factory. Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components. These components, which are identified on the schematics with an asterisk, are listed in Table $8-1$. The recommended procedure for replacing a factory-selected component is as follows:
a. Try the original value, then perform the test specified in Section V of this manual for the circuit being repaired.
b. If the specified test cannot be satisfactorily performed, try the typical value shown in the parts list and repeat the test.
c. If the test results are still not satisfactory, substitute various values until the desired result is obtained.

8-16. Adjustable Components. Adjustable components, other than front panel operating controls, are listed in Table 8-2. Adjustment procedures for these components are contained in Section V of this manual.

8-17. Servicing Aids on Printed Circuit Boards. Servicing aids on printed circuit boards include test

Table 8-1. Factory Selected Components

Designation	Circuit	Purpose
A2A2R16	500 MHz LO Drive	Oscillator collector voltage
A4R30, 31	YIG Driver	YIG Oscillator sensitivity
A14A1C12	Discrimator	Discriminator frequency
A14A1R14	Discriminator	Discriminator gain
A16R1	Input Mixer Gain	$\mathrm{n}=1$-High Gain
A16R2	Input Mixer Gain	$\mathrm{n}=2$-High Gain
A16R3	Input Mixer Gain	$\mathrm{n}=3$-High Gain
A16R4	Input Mixer Gain	$\mathrm{n}=4$-High Gain
A16R5	Input Mixer Gain	$\mathrm{n}=1+$ High Gain
A16R6	Input Mixer Gain	$\mathrm{n}=2+$ High Gain
A16R7	Input Mixer Gain	$\mathrm{n}=3+$ High Gain
A16R8	Input Mixer Gain	$\mathrm{n}=4+$ High Gain
A16R9	Input Mixer Gain	$\mathrm{n}=1-(550 \mathrm{MHz}$ IF) High Gain
A16R10	Input Mixer Gain	$\mathrm{n}=1+(550 \mathrm{MHz} \mathrm{IF})$ High Gain
A16R12	Input Mixer Gain	$\mathrm{n}=2$-Low Gain
A16R13	Input Mixer Gain	$\mathrm{n}=3$-Low Gain
A16R14	Input Mixer Gain	$\mathrm{n}=4$-Low Gain
A16R15	Input Mixer Gain	$\mathrm{n}=1+$ Low Gain
A16R16	Input Mixer Gain	$\mathrm{n}=2+$ Low Gain
A16R17	Input Mixer Gain	$\mathrm{n}=3+$ Low Gain
A16R18	Input Mixer Gain	$\mathrm{n}=4+$ Low Gain
A16R20	Input Mixer Gain	$\mathrm{n}=1+(550 \mathrm{MHz}$ IF) Low Gain
A16R21	Input Mixer Bias	$\mathrm{n}=1 \pm, 3 \pm$ Bias
A16R22	Input Mixer Bias	$\mathrm{n}=2 \pm$ Bias
A16R23	Input Mixer Bias	

Table 8-2. Adjustable Components

Designation	Circuit	Purpose
A1R1	External mixer	External mixer bias
A1R2	Calibration	RF to IF Section matching
A1A4R1	Yig Driver	FREQUENCY Control
A1A4R2	Tuning Stabilizer	FINE TUNE Control
A1A4R3	Tuning Stabilizer	$2: 1$ Gain Control
A2C5	550 MHz IF	Bandpass Filter Adj.
A2C6	550 MHz IF	Bandpass Filter Adj.
A2C7	550 MHz IF	Bandpass Filter Adj.
A2A2R5	500 MHz LO Drive	Frequency Sensitivity
A2A2R13	500 MHz LO Drive	Frequency Linearity
A2A3C3	$550 / 50 \mathrm{MHz}$ Mixer	50 MHz Filter
A2A4C4	500 MHz LO	Frequency adjustment
A2A4L1	500 MHz LO	Output coupling
A2A5C2	$50 \mathrm{MHz} \mathrm{Ampl}$.	Input impedance matching
A2A5C8	$50 \mathrm{MHz} \mathrm{Ampl}$.	Pin attenuator adjustment
A2A5C12	$50 \mathrm{MHz} \mathrm{Ampl}$.	Output impedance matching
A2A5R4	$50 \mathrm{MHz} \mathrm{Ampl}$.	n=1-Low gain adjustment
A2A5R22	$50 \mathrm{MHz} \mathrm{Ampl}$.	15 dB gain step adjustment
A2A5R25	$50 \mathrm{MHz} \mathrm{Ampl}$.	n=1-*Low (550 MHz IF) adj.
A4R2	Yig Driver	-10 Volt adjustment
A4R5	Yig Driver	-5 Volt adjustment
A4R28	Yig Driver	4.1 GHz Yig Osc adjustment
A4R29	Yig Driver	2.05 GHz Yig Osc adjustment
A5R48	Tuning Stabilizer	Tickler sweep adjustment
A5R55	Tuning Stabilizer	FET offset adjustment

Table 8-2. Adjustable Components (cont'd)

Designation	Circuit	Purpose
A5R58	Tuning Stabilizer	VCXO sweep adjustment
A8R5	Power Supply	+20 and +10 V adjustment
A11 ADJ1	2.05 GHz IF	Bandpass filter adjustment
A11 ADJ2	2.05 GHz IF	Bandpass filter adjustment
A11 ADJ 3	1.5 GHz LO	Frequency adjustment
A11 ADJ4	1.5 GHz Notch Filter	1.5 GHz trap
A11A3R1	2nd LO Voltage Flt.	2 nd LO power adjustment
A14A2C2	VCXO Driver	1.3 MHz Null adjustment
A14A2C3	VCXO Driver	VCXO Linearity adjustment
A14A2C16	VCXO Driver	1 MHz Peak adjustment

points, transistor designations, adjustment callouts and assembly part numbers with alpha-numerical revision information.

8-18. Part Location Aids. The location of chassis mounted parts and major assemblies are shown in Figure 8-10. In addition, a location diagram with coaxial cable interconnection information is contained on the bottom of the RF Section Top Cover.

8-19. The location of individual components mounted on printed circuit boards or assemblies are shown on the appropriate schematic. The part reference designator is the assembly designation plus the part designation. (Example: A1R1 is R1 on the A1 assembly.) For specific component description and ordering information refer to the replaceable parts table in Section VI.

8-20. Diagram Notes. Table 8-3, Schematic Diagram Notes, provides information relative to symbols and values shown on schematic diagrams.

8-21. GENERAL SERVICE HINTS

8-22. The etched circuit boards used in HewlettPackard equipment are the plated-through type consisting of metallic conductors bonded to both sides of an insulating material. The circuit boards can be either a single layer or multi-layer board. The metallic conductors are extended through the component holes or interconnect holes by a plating process. Soldering can be performed on either side of the board with equally good results. Table 8-4 lists recommended tools and materials for use in repairing etched circuit boards. Following are recommendations and precautions pertinent to etched circuit repair work.
a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.
b. Do not use a high power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.
c. Use a suction device or wooden toothpick to remove solder from component mounting holes.

CAUTION

Do not use a sharp metal object such as an awl or twist drill for this purpose. Sharp objects may damage the plated-through conductor.
d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion.

8-23. Component Replacement. The following procedures are recommended when component replacement is necessary:
a. Remove defective component from board.
b. If component was unsoldered, remove solder from mounting holes with a suction device or a wooden toothpick.
c. Shape leads of replacement component to match mounting hole spacing.
d. Insert component leads into mounting holes and position component as original was positioned. Do not force leads into mounting holes; sharp lead ends may damage the plated-through conductor.

Note

Although not recommended when both sides of the circuit board are accessible, axial lead components such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board.

Table 8-3. Schematic Diagram Notes

SCHEMATIC DIAGRAM NOTES

Refer to USAS Y32.2-1967
Resistance is in ohms, inductance in microhenries and capacitance in picofarads unless otherwise noted.
$\mathrm{P} / \mathrm{O}=$ part of.
*Asterisk denotes a factory-selected value. Value shown is typical. Capacitors may be omitted or resistors jumpered.

Encloses front panel designations. [---] Encloses rear panel designation.

Circuit assembly borderline.
— - - - Other assembly borderline.

Heavy line with arrows indicates path and direction of main signal.

Heavy dashed line with arrows indicates path and direction of main feedback.

Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.

Numbers in stars on circuit assemblies show locations of test points.
Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number identifies the narrower stripe. E.g., 947 denotes white base, yellow wide stripe, violet narrow stripe.
$\mathrm{n}=1 \pm * \quad \mathrm{n}=$ harmonic number
$1=1$ st LO fundamental
$\pm=1$ st LO above or below 1st IF

* $=550 \mathrm{MHz}$ 1st IF

Wrap leads of replacement component one turn around original leads. Solder wrapped connection and clip off excess lead.

8-24. GENERAL SERVICE INFORMATION

8-25. Transistors and diodes are used throughout the RF Section in circuit configurations such as delay circuits, trigger circuits, switches, oscillators and various types of amplifiers. Basic transistor operation is shown in the following pages.

8-26. Transistor In-Circuit Testing. The common causes of transistor failure are internal short circuits and open circuits. In transistor circuit testing, the most important consideration is the transistor base-to-emitter junction. The base emitter junction in a transistor is comparable to the control gridcathode relationship in a vacuum tube. The base emitter junction is essentially a solid-state diode; for the transistor to conduct, this diode must be forward biased. As with simple diodes, the for-ward-bias polarity is determined by the materials forming the junction. Transistor symbols on schematic diagrams reveal the bias polarity required to forward-bias the base-emitter junction. The B part of Figure 8-1 shows transistor symbols with the terminals labeled. The other two columns compare
the biasing required to cause conduction and cutoff in NPN and PNP transistors. If the transistor base-emitter junction is forward biased, the transistor conducts. However, if the base-emitter junction is reverse-biased, the transistor is cut off (open). The voltage drop across a forward-biased, emitterbase junction varies with transistor collector current. For example, a germanium transistor has a typical forward-bias, base-emitter voltage of $0.2-0.3$ volt when collector current is $1-10 \mathrm{~mA}$, and $0.4-0.5$ volt when collector current is $10-100$ mA . In contrast, forward-bias voltage for silicon transistor is about twice that for germanium types; about $0.5-0.6$ volt when collector current is low, and about $0.8-0.9$ volt when collector current is high.

8-27. Figure 8-1, Part A, shows simplified versions of the three basic transistor circuits and gives the characteristics of each. When examining a transistor stage, first determine if the emitter-base junction is biased for conduction (forward-biased) by measuring the voltage difference between emitter and base. When using an electronic voltmeter, do not measure directly between emitter and base; there may be sufficient loop current between the voltmeter leads to damage the transistor. Instead, measure each voltage separately with respect to a common point (e.g., chassis). If the emitter-base

Table 8-4. Etched Circuit Soldering Equipment

Item	Use	Specification	Item Recommended
Soldering tool	Soldering Unsoldering	Wattage rating: 471/2-561/2 Tip Temp: 850-900 degrees	Ungar No. 776 handle with *Ungar No. 4037 Heating Unit
Soldering* Tip	Soldering Unsoldering	*Shape: pointed	*Ungar No. PL111
De-soldering aid	To remove molten solder from connection	Suction device	Soldapult by Edsyn Co.,Arleta, California
Resin (flux)	Remove excess flux from soldered area before applica- tion of protective coating.	Must not dissolve etched circuit base board material or conduc- tor bonding agent	Freon, Aceton, Lacquer Thinner, Isopropyl Alcohol (100\% dry)
Solder	Component replacement Circuit board repair Wiring	Resin (flux) core, high tin con- tent (60/40 tin/lead), 18 gauge (SWG) preferred	
Protective Coating	Contamination, corrosion protection.	Good electrical insulation, cor- rosion-prevention properties	Krylon Humiseal Protective Coating, Type 1B12 by Columbia Technical Corporation,

junction is forward-biased, check for amplifier action by short-circuiting base to emitter while observing collector voltage. The short circuit eliminates base-emitter bias and should cause the transistor to stop conducting (cut off). Collector voltage should then change and approach the supply voltage. Any difference is due to leakage current through the transistor and, in gneral, the smaller this current, the better the transistor. If the collector voltage does not change, the transistor has either an emitter-collector short circuit or emitterbase open circuit.

8-28. Field Effect Transistor (FET). Field effect transistors (see Figure 8-2) have three terminals: source. drain and gate, which correspond in function to emitter, collector, and base of junction transistors. Source and drain leads are attached to the same block (channel) of N or P semiconductor material. A band of oppositely doped material around the channel (between the source and drain leads) is connected to the gate lead.

8-29. In normal FET operation, the gate-source voltage reverse-biases the PN junction, causing an electric field that creates a depletion region in the source-drain channel. In the depletion region the number of avalable current carriers is reduced as the reverse biasing voltage increases, making source-drain current a function of gate-sourse voltage. With the input (gate-source) crrcuit reversebiased, the FET presents a high impedance to its signal sources (as compared with the low impedance of the forward-biased junction transistor
base-emitter circuit). Because there is no input current, FET's have less noise than junction transistors. Figure $8-2$ shows the schematic symbol and biasing for N channel and P channel field effect transistors.

8-30. Transistor and Diode Markings. Figure 8-3 illustrates examples of diode and transistor marking methods. In addition, the emitter lead for bipolar transistors and each lead for field effect transistors is identified on the printed circuit boards.

8-31. INTEGRATED CIRCUITS AND SYMBOLS

8 -32. The following paragraphs and illustrations provide basic information about integrated circuits and symbols. While a complete treatment of the subject is not within the scope of this manual, it is believed that this material will help the technician experienced with discrete devices. Typical integrated circuit packaging is illustrated in Figure 8-4.

8 -33. Logic Circuits and Symbols. The Logic circuits discussed are digital in nature: their outputs are always in one of two possible states, a " 1 " or " 0 ". These two states are also referred to as being either high (H) or low (L). The high and low states are relative; low must be less positive (more negative) than high, both states may be positive or negative, or high may be positive and low negative. In positive logic the more positive (H) state is a logical " 1 "" and the more negative (L) state is a logical " 0 ". In negative logic the more negative (L)

A. Amplifier Characteristics			
CHARACTERISTIC	$\begin{gathered} \hline \text { COMMON } \\ \text { BASE } \\ \hline \end{gathered}$	COMMON EMITER	COMMON COLLECTOR
I Input Impedance	$30 \Omega-50 \Omega$	$500 \Omega-1500 \Omega$	$20 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$
Output	$300 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$	$30 \mathrm{~K} \Omega-50 \mathrm{~K} \Omega$	$50 \Omega-1000 \Omega$
Voltage Gain	500-1500	300-1000	<1
Current Garn	<1	$25 \quad-50$	$25 \quad-50$
Power Gain	$20 \mathrm{~dB}-30 \mathrm{~dB}$	$25 \mathrm{~dB}-40 \mathrm{~dB}$	$\begin{array}{ll} 10 \mathrm{~dB} & -20 \mathrm{~dB} \\ \text { (Emitter Follower) } \end{array}$

B. Transistor Biasing		
TYPE	CuTOFF	CONDUCTION
NPN EMITTER		
PNP COLLECTOR BASE EMITTER		

Figure 8-1. Transistor Operation

A. FET Amplifier Characteristics		
CHARACTERISTIC	COMMON SOURCE	COMMON DRAIN (Source Follower)
Input Impedance Output Impedance Voltage Gain Power Gain	$1 \mathrm{M} \Omega-15 \mathrm{M} \Omega$ $5 \mathrm{~K} \Omega-100 \mathrm{~K} \Omega$ $10-200$ $60 \mathrm{~dB}-100 \mathrm{~dB}$	$\begin{aligned} & 1 \mathrm{M} \Omega-15 \mathrm{M} \Omega \\ & 1 \mathrm{~K} \Omega-10 \mathrm{~K} \Omega \\ & <1 \\ & 40 \mathrm{~dB}-80 \mathrm{~dB} \end{aligned}$

TYPE

Figure 8-2. Field Effect Transistor Operation

Figure 8-3. Examples of Diode and Transistor Marking Methods
state is a logical " 1 " and the more positive (H) state is a logical " 0 ".

8-34. Two of the basic "building blocks" of logic circuits are the AND and OR gates. The symbols and truth tables for basic AND and OR gates are shown in Figure 8-5.

8-35. Basic AND Gate (Positive logic). The basic AND gate is a circuit which produces an output " 1 " when, and only when, a " 1 " is applied to all inputs. As shown in Figure 8-5, terminal X will be high only when terminals A and B are both high. The dot (\bullet) shown in the AND gate is the logic term for AND. The term for a simple two input AND gate is $\mathrm{X}=\mathrm{A} \bullet \mathrm{B}(\mathrm{X}$ equals A and B$)$. AND gates may be designed to have as many inputs as required to fill a specific requirement.

8-26. Basic OR Gate (Positive Logic). The basic OR gate is a circuit which produces a " 1 " output when any one, or all of the inputs are in a " 1 " state. As shown in Figure 8-5, terminal X will be high when either terminal A or terminal B, or both are high. The + shown in the OR gate symbol is the logic term for OR. The term for a simple two input OR gate is $\mathrm{X}=\mathrm{A}+\mathrm{B}$ (X equals A or B). OR gates may be designed to have as many inputs as required for specific needs.

8-37. The symbols for AND and OR gates differ in that AND gate symbols have a flat input side and a rounded output side while OR gate symbols have a concave input side and a pointed output side.

8-38. Truth Tables. Truth tables provide a means of presenting the output state of logic devices for any set of inputs in tabular form. Truth tables contain one column for each of the inputs and a column for the output. In basic truth tables the column notations are usually H or L (for high and low) or, for binary notation, " 1 " or " 0 ". More complex truth tables use other terms which will be explained where these tables appear in the text.

8-39. Logic Inversion. Adding inversion to AND and OR gates changes their characteristics. Inversion is usually accomplished by adding an inverter stage (common emitter) in front of an input or after an output. A circle added to the input or output leads indicates the portion of the circuit in which the inversion takes place. The simplest of these devices are AND and OR gates in which the output is inverted. These gates are called NAND (for Not AND) and NOR (for Not OR). Basic NAND and NOR gates are shown in Figure 8-6. When all inputs and outputs of an AND gate are inverted, it functions as an OR gate. When all inputs and outputs of an OR gate are inverted, it

INTEGRATED CIRCUITS (PLASTIC AND METAL CASE)

Figure 8-4. Integrated Circuit Packaging

AND		OR		
$X=A \cdot B$ (X EQUALS A AND B)		$X=A+B$ (X EQUALS A OR B)		
A	X	A	B	X
H	H	- H	H	H
H	L	H	L	H
L	L	L	H	H
L	1	L	L	L

Figure 8-5. Basic AND and OR Gates
functions as an AND gate. Figure $8-7$ provides information relative to various gate inversion functions.

8-40. Operational Amplifier Circuits and Symbols. Operational amplifiers are used in the RF Section to provide such functions as summing amplifiers, offset amplifiers, buffers and power supplies. The particular function is determined by the external circuit connections. Equivalent circuit and logic diagrams for type 741 operational amplifiers are contained in Figure 8-8. Circuit A is a noninverting buffer amplifier with a gain of 1 . Circuit B is a non-inverting amplifier with gain determined by the resistance of R1 and R2. Circuit C is an inverting amplifier with gain determined by R1 and $R 2$, with the input impedance determined by R2. Circuit D contains the functional circuitry and pin

Figure 8-6. Basic NAND and NOR Gates
connection information along with an operational amplifier review.

Note

In circuit D it is assumed that the amplifier has high gain, low output impedance and high input impedance.

8-41. Operational Amplifier Troubleshooting Procedure. Measure and record the voltage level at both the - (inverting) terminal pin 2 and the + (non-inverting) terminal pin 3. The level should not differ by more than $\cong 10 \mathrm{mV}$. If the voltage level is not within $\cong 10 \mathrm{mV}$, check the external circuitry and components. If the external circuitry (input signal, operating voltages, feedback resistors) is normal, replace the operational amplifier.

A$X=\overline{\bar{A} \cdot \bar{B}}$$X=A+B$			$X=A \cdot B$$X=\overline{\bar{A}+\bar{B}}$			C$X=\bar{A} \cdot \bar{B}$$X=\overline{A+B}$			D$x=\overline{A \cdot B}$$X=\bar{A}+\bar{B}$		
A	B	X	A	B	X	A	B	X	A	B	x
H	H	H	H	H	H	H	H	L	H	H	L
H	L	H	H	L	L	H	L	L	H	L	H
L	H	H	L	H	L	1	H	L	L	H	H
L	L	L	L	1	L	L	L	H	L	L	H

Figure 8-7. Logic Comparison Diagrams

INPUT IMPEDANCE VERYHIGH OUTPUT IMPEDANCE VERY LOW

INPUT IMPEDANCE = R2
OUTPUT IMPEDANCE VERY LOW

IF " A " IS LARGE, $V_{F}=V_{1}$
(1) $V_{0}=V_{1}\left(1+\frac{R 1}{R 2}\right)-V_{2}\left(\frac{R 1}{R 2}\right)$
(2) IF $V_{2}=0\left(\frac{\downarrow}{\boldsymbol{v}}\right)$, THEN $V_{0}=V_{1}\left(1+\frac{R 1}{R 2}\right)$
(3) IF $V_{1}=0\left(\frac{\lambda}{\nabla}\right)$, THEN $V_{0}=-V_{2}\left(\frac{R 1}{R 2}\right)$

Figure 8-8. Operational Amplifier Equivalent Circuit

he numerals

Z RF input and first converter

 depending on the band selected. Conversion loss. in the first converter
typically 10 dB for fundamental mixing modes. The input antenuator provides 0 to 50 dB attenuation in 10 dB steps to
the RF input sigana in internal mixins modes. The antenuator is
control

 In the external mixer circuitry, both the LO signal and an adiustable

3 second converter

SERVICE SHEET 1 (cont'd
A voltage filter, mounted on the second converter casting, provides
fitering of the oscillator voitages to reduce hum and noise on the
fotres on An output from the second LO is coupled to the
with auxiliary equipment or for use as a test signal.
The second LO signal, flowing in the transmission path toward the firt
 The mixer in the second converter is a single hot carier diode.
Conversion loss in the second converter is typically $4 d \mathrm{~dB}$. Third converter

 three.section 550 MHz bandpass filter to the 3rd mix
The mixer, a standard HP 10514 C double-balanced quad diode unit, is
driven by the 500 MHz LO and produces a 50 MHz output signal. The 500 MHz LO normally operates at a fixed frequency. When the
analyzer is operated in the signal identifier mode, the LO driver circuit causes the oscillator to shitt frequency on alternate scans. The amount
of roqueney shift is determined by the signal identifier circuit (see
block 6 below.

550 MHz Variable gain amplifier
The 50 MHz amplifier is mounted on and is part of the third converter
see block 4 above). Amplifier gain is controlled by band code signals

 3 referenced to the RF INPUT for all in
GHzl with 0 A

signal identifie

SERVICE SHEET 1 (cont'd
IIDTH PER DIVISIIN switch. The polarity of the signal to the LO

IVIIION switch must be 1 MHz per division or les
WIDTH switch must be in the PER DIVIIION positi
The YIG oscillator is a transistor oscillator with a YIG sphere as the

 as the sweep for scan widths greater than 500 kHz per division.
The outut of the sevep buffer is combined with the output of the
RREQENE
 diver.
A marker generator circuit, enabled in the FULL sean position of the
SCAN WDTH switch, compares the sweep ramp voltage with t the

 that becomes the center frequency when the SCAN WIDTH swit
switched to PER DIVIISON or ZERO scan.
§ $1 / \mathrm{n}$ attenuator and tuning stablizer control

 FINE TUNE controls current in the YYG, tickler coil for all scan
widths (FFILL, PER DVIIIIN, and ZERO) in both the stabilized
and unstabiized mode of operation.

S\&ID tuning stablilizer and fine tune circuit

 discriminator output As a resul
harmonic of the crystal oscillator.

During the initial stabilization cycle, sweep was turned off by a
sweep kill command from the control senerat

Model 8555A

 band code switch logic

 3 scan attenuator and scan width per division

隹analogic

 dandwidth switching and ampical

 10rf Section power supply
A switching regulator and dual power supply provides the +10 and +20
volt source for the RF Section. Voltases other than the +10 and +20
Setor
 SERVICE
SHEET 1

Figure 8-11. 8555A RF Section Block Diagram

SERVICE SHEET 2

THEORY OF OPERATION

Service Sheet 2 contains the schematic diagram for Attenuator A13 the First Converter A12 and their associated switching and contro circuitry. Both the attenuator and first converter are sealed assemblie and are not field-repairable. Elaborate test equipment and microcircuit rework techniques are required to repair these units. (See Section VI for Exchange part numbers.) Replacement of the Firs Converter Assy A12 requires replacement of Gain Network Assy A16. Resistors in the gain network are factory-selected, to correct for gain variations in the first converter assembly, to maintain instrument First Converter A12 and matched Gain Network Assy A16 ar First Converter A12 and matched Gain Network
shipped together under the same part number.

1 ATTENUATOR

The programmable Attenuator Assy A13 consists of three attenuation elements that can be inserted or removed from the signal line by latching polarized solenoids. The three elements have attenuations of 10,20 , and 40 dB over the frequency range from DC to 18 GHz .
The INPUT ATTENUATION switch controls the attenuator to provide 0 to 50 dB attenuation in 10 dB steps. $\mathrm{A}-12$ volt, 150 millisecond pulse is generated by the attenuator driver circuit each the instrument is initially switched on. The pulse is applied to all three solenoids, with polarity determined by attenuator switch wafers A1A3S1-1, S1-2 and S1-3.
The trigger input at A7TP4, on the attenuator driver circuit, is normally connected to -12.6 volts through S1-4F. When the Q2 "on". C4 will charge through R19 and when it reagh C4, biases Q2 "on "C4 will charge through R19 and when it reaches 12 V , in Darlington Pair Q3 and Q1. When Q2 is "on", Q3 and Q1 will also be "on". When Q2 is "off" Q3 and Q1 will also be "off". Thus a -12 volt, 150 millisecond pulse is produced at the output at TP2. Diode CR9 prevents a large voltage from being developed at TP2 when Q3 and Q1 are turned "off". When the INPUT ATTENUATION control is switched, the -12.6 volt input to the attenuator driver will be momentarily interrupted by switch wafer S1-4F as it goes between positions. This will reset the attenuator driver by discharging C 4 through R18 and CR8. When the switch wafer reaches a position, the -12.6 volts again trigger the attenuator driver and the above action is repeated.
Wide contacts on the polarity switching wafers $\mathrm{S} 1-1$, $\mathrm{S} 1-2$ and $\mathrm{S} 1-3$ ensure that circuit path for the attenuator solenoids is completed before this pulse is applied.

2 LINEAR SCALE SWITCH

Contacts on switch wafer $S 1-4 \mathrm{~F}$ control the linear scale factor amplifier in the analyzer's IF Section when the analyzer is operated in the LINEAR mode. Refer to the appropriate 8552 IF Section Operating and Service Manual for circuit description. Contacts on switch wafer S1-4R control voltage to the LOG REF dection. The selected light DS1 through DS6 is the nalyzers if

SERVICE SHEET 2 (cont'd)

position of the INPUT ATTENUATION control. (See IF Section
Operating and Service Manual.)
3. FIRST CONVERTER

First Converter Assy A12 is a sealed microcircuit assembly that is factory repairable. The converter mixes the input signals with the output of the YIG oscillator and provides an output to the 2.05 GHz or 550 MHz IF. Overall conversion loss of the converter is pproximately 10 dB on fundamental mixing modes. The output of the YIG oscillator is coupled into both the internal mixer and the transmission path for external mixers via internal directional couplers. In addition, the YIG oscillator signal to the tuning stabilization circuit is fed through the first converter. External mixer bias is converter to the EXT MIXER connector. Internal mixer bias is converter to the EXT MIXER connector. Internal mixer bias is The bias resistors on the Gain Network are factory selected to match he characteristics of First Converter Assy A12. Both assemblies are upplied under one part number (see Section VI). In addition to mixer bias, the converter requires both a -10 and +10 volt source for operation

4 INTERNAL/EXTERNAL MIXING SELECTION

Coax Switch K1, controlled by a relay driver, (Service Sheet 11) switches the converter output from the internal mixing path to the external mixing path when $n=6 \pm$ or $n=10 \pm$ frequency bands are selected. Isolator AT5 buffers the unity reflection coefficient of the second converter at the first LO frequencies (2.06 to 4.1 GHz).

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to the 1 st converter or attenuator circuits, the INPUT ATTENUATION control should be used to help isolate the malfunction. The attenuator should change ATTENUATION, the relays inside the attenuator housing are triggered and produce an audible click. If trouble is suspected in the ttenuator or switching circuits, proceed with steps 1 and 2 below. If malfunction is suspected in the converter circuits, proceed with step 3 below.

EQUIPMENT REQUIRED
Oscilloscope
HP 180A/1801A/1821A
olt-Ohm-Ammeter . HP 412A
BNC Plug to Type N jack UG 349 B/U
BNC Plug to Type N jack . UG 349 B/U
Power Meter . 432 A
Thermistor Mount . HP HP 8478B

1 ATTENUATOR

Connect an input signal to the analyzer and check for a CRT response. If there is a response (other than LO feedthru) rotate INPUT ATTENUATION control and check for a 10 dB change in response level with each step of the INPUT ATTENUATION control.
If there is no change in response level, listen for an audible click If there is no change in response level, listen for an audible click
when the control is changed. If there is no audible sound, check

SERVICE SHEET 2 (cont'd)

output of the attenuator driver at A7 TP2. Install A7 assembly, using an extender board and connect oscilloscope test probe to A7 TP2.
Switch INPUT ATTENUATION control and check for a -12 volt 150 millisecond pulse, at A7 TP2. Switch the INPUT ATTENUATION control through its range while observing the oscilloscope for a pulse t each change in position. If the switching voltage is present at A7 P2, check for both switching voltage and ground return at each input to the relays in the attenuator assembly. If switching voltage is not present at A7 TP2, check the input to the relay driver at A7 TP4. If the input is correct, check the relay driver circuit.

Note
The input attenuator is not field-repairable. Factory repaired exchange assemblies are available. See Section VI for HP Part Number

2 LINEAR SCALE SWITCH

To locate a malfunnction in the index light selection or amplifier compensation wiring and switching circuitry, perform a point-to-point circuit check. See schematic diagram and also the interconnecting wiring information on Service Sheet 16.

3 FIRST CONVERTER

When a malfunction has been isolated to the input mixer, use the partial schematic below to confirm mixer failure. Check diode bias on he $\mathrm{n}=1$ through $\mathrm{n}=4$ bands. Typical voltages as follows: $\mathrm{n}=1$ and 3 3.8 volts; $n=2,-1.3$ volts; $n=4,-2.4$ volts. The exact bias voltage is factory determined for each diode. The converter transistor can be checked by comparing the collector and emitter current. Disconnect the -10 volt lead at the emitter bias terminal and measure emitter current with a milliammeter such as the HP 412 A . Connect -10 volt lead and repeat measurement procedure at the +10 volt terminal. The emitter current should be $18.5 \mathrm{~mA} \pm 20 \%$. The collector current
should be not more than 10% less than the emitter current. To check the mixer diode, turn instrument power off disconnect diode bias lead and check front to back ratio of diode circuit Set HP 412A to 1 K leam positi, connect red (+) lead to diode bias pin and black (-) lead to mitter bias pin. Reading should be greater than 10 megohms. Less than 10 megohms indicates a shorted diode. Reverse leads, reading should be between 1 K and 10K. (Infinity indicates open diode). (See 1st Converter replacement procedure below.) Measure the YIG oscillator power output at the EXT MIXER port on the front panel, using the HP 432A Power Meter and a HP 8478B Thermistor Mount. Typical power level should be between 0 and +5 dBm .
ATTENUATOR REMOVAL AND REPLACEMENT
See Service Sheet 18
FIRST CONVERTER REMOVAL AND REPLACEMENT
See Service Sheet 18.

SERVICE
SHEET 2

SERVICE SHEET 2 (cont'd)

Figure 8-12. First Converter Assy, Simplfied Schematic

Figure 8-13. Switch Assembly A1A3

Figure 8-14. Attenuator Assembly A13

SERVICE SHEET 3

Service Sheet 3 contains the schematic diagrams for the Second Converter Assy A11, the 2.05 GHz Low Pass Filter FL2 and the IF switching relays K2 and K3. The second converter consists of a casting containing three cavities, a two-transistor 1.5 GHz oscillator, a single diode second mixer, a 550 MHz output circuit, and a 1.5 GHz notch filter. In addition, a voltage filter and control board, mounted on the outside of the casting, is part of the second converter (see Section VI for replaceable parts and Service Sheet 18 for an illustrated parts breakdown of the second converter).

OTCH AND LOWPASS FILTERS

1.5 GHz notch filter and 2.05 GHz low pass filter. The 1.5 GHz notch filter consists of a quarter-wave directional coupler, short circuited at one end of the auxiliary line and capacitively loaded at other. The notch filter attenuates the 1.5 GHz oscillator signal, circuits The 205 GHz low pas filter is a non-adjustable sealed multi-pole filter connected in the circuit between the notch filter and he coax switch K3. The low pass filter provides attenuation of e coax switch K 3 . The low pass fiter provides attenuation of

2 IF SWITCHING
Coax Switches K2 and K3. K2 and K3 provide switching to bypass he second converter when the $\mathrm{n}=1 * 550 \mathrm{MHz}$ IF bands are selected. The switches are controlled by the F11 function from the Band Buffer Assy A6 (see Service Sheet 11).

voltage filter and control

Second Converter Voltage Filter Assy A11A3. The voltage filter is mounted on and connected to the second converter via feedthru apacitors $\mathrm{A} 11 \mathrm{C} 1, \mathrm{~A} 11 \mathrm{C} 2$ and a ground connecting mounting screw. The voltage filter provides a voltage switching circuit $n=1550 \mathrm{MHz}$ IF bands are selected. A11A3Q4 provides filtering of the -10 volt supply. A11Q1 through Q3 and associated components, provide filtering, switching and level control of the -10 volt supply. A11A3R1, 2nd LO power adjustment, sets the voltage level of the 10 volt supply to the 1.5 GHz oscillator. A11A3Q1 is turned "on" by the F11 function (see step 2 above) grounding the base of A11A3Q2 and removing the oscillator emitter bias.

4 SECOND CONVERTER

Second Converter LO Mixer and If. The second converter LO is a wo transistor oscillator whose frequency is determined by radial avities. Voltage to the oscillator is filtered and controlled by the shage diode lace between the oscillator cavity and the second 2.05 GHz IF cavity. The IF filter consists of two radial cavities that function to provide a two-pole Butterworth response. Both IF and 2nd LO cavities are adjustable by tuning slugs. The output of the second mixer is coupled through a 550 MHz bandpass filter consisting of A11A2C1, C2 and L2. R1 provides bias for the second converter.

SERVICE SHEET 3 (cont'd)

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to the Second Converter circuits or to isolate a malfunction in the Second Converter circuits, maximum use should be made of the instruments operating bypass all of the Second Converter circuits except the 1.5 GHz Notch Filter. In addition, the second LO output is available at the front panel and can be used as a test signal.

CAUTION

Before connecting the SECOND LO OUTPUT to the analyzer's INPUT, set INPUT ATTENUATION to at least 20 dB . The output level at the SECOND LO OUTPUT is typically +9 dBm .

When operating on the $\mathrm{n}=1 \pm 550 \mathrm{MHz}$ IF bands, the second LO is disabled. The disabling circuit can be bypassed by grounding the base of A11A3Q1. The oscillator output can then be observed at 1.5 GHz on the $\mathrm{n}=1-550 \mathrm{MHz} \mathrm{IF}$ band

EQUIPMENT REQUIRED

UHF Signal Generator	HP 612A
Signal Generator	HP 8614A
Digital Voltmeter	HP 3440A/3443A
Cable Assembly	HP 11592-60001
Adapter	UG 201A/U
Adapter	HP 1250-1200
Cable Assembly	HP 10503A
Adapter	HP 1250-0827

I NOTCH AND LOW PASS FILTERS

Operation abnormal on both 550 MHz and 2.05 GHz IF bands. Set controls as follows:

BAND
. $\mathrm{n}=1-2.05 \mathrm{GHz}$ IF
BANDWIDTH
300 kH
SCAN WIDT
Z
INPUT ATTENUATION 10 Míiser 0 d
SCAN TIME PER DIVISION
0 MILL
LOG RINEAR
$-20 \mathrm{dBm}$
SCAN MODE
LOG
SCAN TRIGG
AUTO
Connect a -60 dBm 2.05 GHz signal at J1 of Coax Switch K1. Fine tune signal source to peak signal on CRT display. Normal indication for a correctly operating system should be a signal level approximately $-50 \mathrm{dBm}(-60 \mathrm{dBm}$ input, +10 dB gain for 1st converter bypass.) If operation is abnormal, connect -60 dBm signa at J1 of Low Pass Filter FL2 and to J3 of Coax Switch K3 Negligible loss in signal level should occur in either the low pass or notch filters.

SERVICE SHEET 3 (cont'd)

2 IF SWITCHING
Coax Switches K2 and K3 can be visually observed and checked fo correct operation using the signal insertion procedure in step 1 above K 2 and K 3 should energize on the $\mathrm{n}=1 \pm 550 \mathrm{MHz}$ IF bands.

3 VOLTAGE FILTER AND CONTROL
Check the voltage level at - (negative) terminal on A11A3 while switching between the 550 MHz IF and 2.05 GHz IF bands. The voltage level should switch from approximately -9.2 volts to about 0 volts when the 550 MHz IF bands are selected. The actual voltag level depends on the setting of A11A3R1. If the voltage does not switch, check the F11 function signal from Band Buffer Assembly A6.
4 SECOND CONVERTER
The 1.5 GHz oscillator can be checked for output level and approximate frequency (with analyzer operating normally on the 550 MHz IF bands) by applying a ground to the base of A11A3Q1 to enable the -10 volt supply, and observing the oscillator output on the $\mathrm{n}=1-550 \mathrm{MHz} 1 \mathrm{~F}$ band. If the oscillator functions correctly and there is no 550 MHz output from the Second Converter (with a 2.05 GH input signal) check the Second Mixer and Output Assy A11A2. The mixer and output assembly can be removed from the converter assembly without removing the converter from the chassis. Refer to Service Sheet 18 for removal and replacement instructions. Note installation of the mixer diode. The diode leads from the coupling feedback capacitor $1142 \mathrm{C1}$, the other lead is installed in a clip typ socket. To install a new diode, form leads to the dimensions shown below. It may be necessary to trim the end of the diode lead that mounts in the clip to ensure that the diode mounts parallel with the block.

REMOVAL AND REPLACEMENT PROCEDURE
See Service Sheet 18

Second Converter
SERVICE SHEET 3

Figure 8-19. Second Converter Voltage Filter A11A3

$\underset{\substack{\text { SERVICE } \\ \text { SHETT }}}{ }$
Figure 8-20. Second Converter Assembly A11 (Voltage Filter A11A3 Removed)

[^0]

THEORY OF OPERATION

 Filter. Each subassembly, in the converter, is mounted in separate shiedded
compartments, except for the 500 MHz LO and Lo driver which are mounted in the
sampe compartment

1500 MHz LO Drive A2A

The 500 MHz LO Driver sets the collector voltage and emitter currents for
transistors in the 50 MHz LO In
In lill operatign modes the collector voltage is set by

 Band. The LO driver eonverts the change in voltage level to a change in emitter
courrent to the transistors in the 500 MHZ LO. The change in emitter current results
in a frequency shift
500 MHz LO A2A4
The 500 MHz LO is a awotransistor oscillator that normally operates at a fixed
frequency. In the Signal Identifier operating mode, the frequency of the LO is

[3 550 MHz Amplifier A2A1

The 550 MHz ampifier is a two-transistor amplifier which provides approximately
11 dB of gain. The amplifier input is from the second converter for all 2.05 GHz IF

f 550 MHz Bandpass Fiter

The 550 MHz Bandpass Filter consists of three helical inductors and three ccrews
that function as capacitiors. Together they provide a Butterw
dB bandwidth of 8 MHz . Fiter loss is approximately 2.5 dB .
$5550 / 50 \mathrm{MHz}$ Mixer A2A3
The $550 / 50 \mathrm{MHz}$ mixer consists of a standard HP 10514 C Mixer (A2AE1) and a
50 MH bandpass fitter. The mixer is
5 a double-bance or ring modulator type and is 50 sealed bandpasas oniturer. The mixer is a double-balance or ring modulator type and its
from the mixer.

SERVICE SHEET 4 (cont'd)
Troubleshooting procedure
See Overall Third Converter Test Procedure below. When a maluunction
has been isolated to the 400 MHz LO or to the LO driver or to iolate

UIPMENT REQUIRED	
VHF Signal Generator	688/E/F
UHF Signal Generator	HP 612A
Digital Voltmeter	HP 3440A/3444A
Vector Votmeter	
Cable Assembly	592.60001
ncy	A
Kit	HP 08555-60077

Rocriciun
Service Sheets 4 and

$\mathrm{n}=1-2.05 \mathrm{GHz} \mathrm{IF}$ Band, SIG
WIDTH ZERO, no signal input.

(Available through hole in left side gusset.)		
Wire Color Code	Capacitor	Voltage
902	$\mathrm{A}^{2} \mathrm{C} 1 / \mathrm{C} 2$	+20 Vdc
${ }_{946}^{907}$		${ }^{-10} \mathrm{Vdc}$
97	A2C8	$-12.6 \mathrm{Vdc}$
934	А2С9	$-0.6 \mathrm{Vdc}$
947 995	${ }^{\text {A2C10 }}$ 2 ${ }^{\text {c }}$	${ }^{-0.77 \mathrm{Vdc}}$
${ }_{936}^{935}$	${ }_{\text {A2C12 }}$	${ }_{-0.56}{ }^{-12.4 \mathrm{Vdc}}$

Check third LO output for both frequency and power level at A 2 J 3
or at rear panel connector P4-A2. The output should be $500 \mathrm{MHz} \pm$

 see troubleshooting procedure for 500 MHF LO Drive and LO (block
and 2 below). f the LO output is correct remove cover from 50

SERVICE SHEET 4 (cont'd)

GHY IF Band, BANDWIDTH 300 kHz , SCAN WIDTH ZERO, INPUT
AATENATIN 0 dB, SCAN TIME 10 MILLISECONDS, LOG REF LEVEL 10 dBm, SIINAL IDENTIFIER OFF, SCAN MODE INT,
and SCAN TRIGGER AUTO. Adjust frequency of 50 MHz signal for maximum base line lift. The
CRT display should indicate a simgal level of approximatel -30 dBm
If signal level is not correct see 50 NHz amplifier troutleshot If signal level is not correct see 50 MHz amplifier troubleshooting
procedure on Service Sheet 5 . If signal level is correct the

T 500 nhz LO DRIVE 2242 troubleshooting Procedure Remove bottom section of third converter from the RF Section
chassis see thire converter removal and replacement procedure,
Service Sheet 18 , conver Service Sheet 18). Connect +20 volts to A 2 Cl 1 C 2 and -10 volts to
A 2 C 3 from dual power supply. Measure current drawn from power

Perform voltage measurements as listed below:
Unit of measurement: Vdc; tolerance $\pm 0.1 \mathrm{Vdc}$.
[200
oscillator troubleshooting

 associated components.
3550 MHz AMPLIFIER TROUBLESHooting PRocedure

SERVICE SHEET 4 (cont'd)

$c+1.3 \mathrm{Vc}$
+4.4 Vdc
+1

 input level to mixer E1 at pins L and L's Signal level should approximately +10 dBm . If both the LO and 550 MHz signals to the mixer are correct, mixe
EIT , is probably defective. If replaced, pertorm Third Converter Adjustments in Section V . removal and replacement procedure See Service Sheet 18

Figure 8-22. Third Converter Assembly A2 Top View (50 MHz Ampl Removed)

SERVICE SHEET 5

THEORY OF OPERATION

Service Sheet 5 contains the schematic diagram for the 50 MHz variable gain amplifier, the input mixer gain compensation network and the gain network driving
circuits. The amplifier gain is controlled to provide a constant output level to the IF Section on all internal mixing bands (. .01 to 18 GHz). The amplifier compensates for losses in the 1st, 2nd and 3rd converters to maintain the overall gain of the RF Section at -3 dB . Maximum amplifier gain is provided on external mixing bands $(\mathrm{n}=6$
and $\mathrm{n}=10$) with minimum gain provided on the 550 MHz IF bands ($\mathrm{n}=1 \pm *$. Amplifier gain is controlled in steps over a range of approximately $\begin{aligned} & n=18 \\ & d B\end{aligned}$ Additionally, variable gain is provided by the sweep and tune voltages for all internal mixing bands. The controlled gain of the amplifier is varied by changing current
through PIN diodes which function as current controlled resistors.

1 . 50 MHz AMPLIFIER
Transistors A2A5Q1 and Q2 form a cascade amplifier. Amplifier gain is adjusted by A2A54 1-low, 205 GHz IF adjustment. For adjustment, see 50 MHz Amplifie Adjustment Procedure in Section V.

MIXER PIN DIODE

PIN Diode A2A5CR1 functions as a current controlled attenuator to match the 50 MHz amplifier with the input mixer diode in the 1st converter. Current through the diode is controlled by the Input Mixer Gain Compensation Network A16, gain A6U2. A2A5C8 provides a fixed adjustment level for the PIN diode attenuator Emitter followers A2A5Q3 and Q4 provide circuit isolation.

3 SIGNAL IDENTIFIER PIN DIODE
PIN Diode A2A5CR2 functions as a current controlled attenuator to reduce the amplifier gain by approximately 5 dB on alternate sweep scans. Current through the diode is switched by voltage from the Signal Identifier (see Service Sheet 6)

450 MHz STEP GAIN AMPLIFIER
Transistor A2A5Q5 and associated components form a 50 MHz amplifier whose gain Transistor A2A5Q5 and associated components form a 50 MHz amplifier whose gain gain is controlled by changing emitter degeneration. The amplifier stage has three controlled gain levels. On the $n=1 \pm 550 \mathrm{MHz}$ IF bands the gain level is set by A2A5R25. On the $n=1$ and $n=2(2.05 \mathrm{MHz}$ IF bands) the F17 function signal, from the Band Buffer Assy A6, reverse biases diode A2A5CR4 to remove the gain level
 that as current through PIN diode A2A5CR3 increases, degeneration is decreased and gain is increased. Functionally, the circuit operates to decrease amplifier gain by 5 dB on the $\mathrm{n}=1 \pm 550 \mathrm{MHz}$ IF bands, removes the 5 dB decrease in gain on the $\mathrm{n}=1 \pm$ and $\mathrm{n}=2 \pm 2.05 \mathrm{GHz}$ IF bands and adds 15 dB gain on the $\mathrm{n}=3 \pm$ through th $=10 \pm$ band

SWEEP PLUS TUNE AMPLIFIER
A6U2 provides gain compensation for each internal mixing band. As the YIG oscillator is tuned from the low to high end of its range, the amplifier produces positive-going ramp that is combined with the voltage developed across the selected resistors in the gain compensation network to reduce the attenuation through PIN operational amplifier input depends on the position of the SCAN WIDTH control and/or FREQUENCY control. In FULL scan the input is a -5 to -10 volt ramp. In PER DIVISION scan the FREQUENCY control sets the level while the position of the PER DIVISION control determines the amount of sweep. In ZERO scan the

SERVICE SHEET 5 (cont'd)

input is a voltage level determined by the position of the FREQUENCY control. The input to the operational amplifier is combined with an offset
voltage $(+10$ volts through A6R20), amplified and inverted. A -5 to -10 volt voltage (+10 volts through A6R20), amplified and inverted. A -5 to -10 volt
input results in a 0 to +8 volt output. Amplifier gain is determined by resistors
. INPUT MIXER GAIN COMPENSATION NETWORK A16
Factory selected resistors in the gain network control the amount of attenuation by PIN diode A2A5CR1 (see 2 above). Resistor values are selected
to match the input mixer diode in the 1st Converter Assy A12. Resistive sticks selected by function control signals (F1 through F10) from the Band Buffer (Service Sheet 11) determine the current through the PIN diode attenuator. Resistors A16R1-R10 set the gain at the high end of each band while A16R11-R20 set the gain at the low end. The active function signal has a applied to the high end gain resistors depends on the SCAN WIDTH operating mode (see 5 above). The two voltages are summed in the resistor sticks to determine the attenuation current through A2A5CR1.

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to or to isolate a malfunction in the 50 MHz amplifier, sweep plus tune amplifier or the input mixer gain compensation network, the front panel controls should be used to obtain as much information as possible. Whe troubleshoormation is obtained, or if not obtainable, proceed with

Front Panel
POWER
BAND

SCAN WIDTH INPUT ATTENUATION .
BASE LINE CLIPPER . 10 . 10 dB dB
VIDEO FILTER . 100 kHz
SCAN MODE .
SCAN TRIGGER .
LOG/LINEAR
10 MILLISECONDS
LOG REF LEVEL Controls
Center trace on CRT
Disregard DISPLAY UNCAL light during this check. Compare change in display trace with the figure below as the Frequency Band Lever is positioned to select $n=10 \pm$ through $n=6 \pm$. Selection of the $n=4+$ band should tilt the trace with a reduction in gain on the low frequency end and an increase in gain on the high frequency end. The tilt and change in gain is a combination of the sweep plus une amplifier output and the mixer gain compensation network. Select bands $n=4$ - through $n=3$ - and compare with figure. Gain reduction determined by 15 dB gain step. However, the attenuation through PIN diode A2A5CR1 is reduced by approximately 11 dB by the resistive network and the trace is reduced by approximately 4 dB . Select bands $\mathrm{n}=2$ - through $\mathrm{n}=1$-. The trace hould drop by the approximate amounts indicated in the figure. Select $\mathrm{n}= \pm$ * dB However this decrease in gain is offset by inctive decreasing gain by 5 converter which is bypassed on the $\mathrm{n}=1 \pm *$ bands. Switch SIGNAL IDENTIFIER to ON and select 1 MHz PER DIVISION SCAN WIDTH. Two traces should appear on the display with approximately 5 dB difference in

SERVICE SHEET 5 (cont'd)

level. Both the tilt and change in gain levels are matched to the first converter

EQUIPMENT REQUIRED Digital Voltmeter HP 3440A/3444A Oscilloscope
. HP $180 \mathrm{~A} / 1801 \mathrm{~A} / 1821 \mathrm{~A}$

50 MHz AMP Remove top cover from 3rd converter to gain access to the 50 MHHz
amplifier. Check the +20 amplifier. Check the +20
and -12.6 volt inputs to and -12.6 volt inputs to
the amplifier. Check the input amplifier by making dc voltage measurements of A2A5Q1 and Q2. Compare with typical values shown below.

50 MHz Amplifier A2A5 Voltage Measurements
Unit of Measurement Vdc: tolerance $\pm 0.1 \mathrm{Vdc}$. Conditions: $\mathrm{n}=1-2.05 \mathrm{GHz}$ IF Band, SIGNAL IDENTIFIER OFF, SCAN WIDTH ZERO, no signal input

	Source A2A5Q1 Emitter	Gate	Drain
		0	+10.06
A2A5Q2	+10.84	+11.56	Collector

2 MIXER PIN DIODE
Check de voltage levels for emitter followers A2A5Q3 and Q4. With analyzer and $n=6$. Observe CRT trace for a change from a level trace on the $n=6$ to a tilted trace on the $\mathrm{n}=4$ band. Observe CRT trace for a change in level between bands $n=4$ and $n=6$. If no change in either tilt or level, check front to back ratio of PIN diode A2A5CR1. If no tilt (and PIN diode checks good), see 5 below. If no change in tilt and level (and PIN diode checks good), see 6 below.

SERVICE SHEET 5 (cont'd)

3 SIGNAL IDENTIFIER PIN DIODE

With the analyzer operating in the signal identifier mode (SIGNAL IDENTIFIER Switch ON and SCAN WIDTH PER DIVISION set to 1 MHz or less) check voltage level at anode of A2A5CR2 Voltage level should alternate between +0.70 and -0.75 volts (approximately) for normal operation Check front to back ratio of diode if voltage is abnormal. Signal level is attenuated by the positive voltage level. The higher the positive voltage leve the greater the attenuation. When checking attenuation, measure signal attenuation, not the amount of base line shift.

450 MHz STEP GAIN AMPLIFIER
Check dc voltage level at cathode of PIN diode A2A5CR3. With analyzer controls set as indicated for the front panel check above, switch between bands and check voltage level. Typical levels are as follows: bands $n=10, \mathrm{n}=6, \mathrm{n}=4$ and $\mathrm{n}=3,-1.02$ volts; bands $n=2$ and $n=1,-0.54$ volts; band $n=1$ *, -0.52 volts.

5 SWEEP PLUS TUNE AMPLIFIER

The sweep plus tune amplifier A6U2 can be isolated from the following circuitry by disconnecting
at the tie point between the A6 and A16 circuit boards. With the analyzer operating in full scan, compare the output voltage with the input signal A -5 to -10 volt input ramp should produce a 0 to +8 volt output ramp. A6R21 divided by A6R19 determines amplifier gain. Voltage offset by +5 volts through A6R20.

6 INPUT MIXER GAIN COMPENSATION NETWORK

When a malfunction has been isolated to the Input Mixer Gain Compensation Network A16, remove the assembly and perform a point-to-point check of the resistive stick and diode associated with the defective band. Use markings on factory selected resistors to determine value. Replace defective resistors with resistors of the same value as the markings on the defective resistors. Perform the amplitude accuracy performance test in Section IV. The A16 assembly is matched with the First Converter Assembly A12. If one assembly is defective and cannot be repaired in the field both assemblies must be replaced (see Replaceable Parts Section VI).

Figure 8-31. 50 MHz Ampl. Assembly A2A5

SERVICE
Figure 8-32. 50 MHz Ampl. in Third Converter Casting

SERVICE SHEET 6 (cont'd)
A7 Signal Identifier Voltage Measurements Conditions: SIGNAL IDENTIFIER OFF, SCAN WIDTH ZERO, $\mathrm{n}=1$ - BAND, typical voltage levels.

Test Point	Voltage	
TP1	+10.0	Vdc
TP5	-0.76	Vdcc
TP6	0	Vdcc
TP7	0	Vdcc
A7Q4b	+10.0	Vdcc
A7Q4c	-0.76	Vdcc
A7Q5c	0	Vdc
A7Q6c	+0.60	Vdc
A7Q7b	-0.35	Vdc
A7Q7c	+10.0	Vdc
A7Q8b	-10.48	Vdc
A7Q9b	+9.8	Vdc
A7Q8b*	-10.42	Vdc
A7Q9b*	+10.5	Vdc

*n $=1+$ BAND

Figure 8-34. Signal Identifier Timing Diagram

Figure 8-35. Signal Identifier and Attenuator Driver Assembly A7

Figure 8-36. Scan Width Switch Assembly A1A2

SERVICE SHEET 6

THEORY OF OPERATION

Service Sheet 6 contains the schematic diagram for the Signal Identifier circuitry. The Signal Identifier provides a method of determining the mixing mode (harmonic number and sign) of the First Converter which is producing a given signal on the CRT display, so that the Frequency Scale can be set to the correct range. The signal identifier circuit is enabled when the SIGNAL IDENTIFIER switch is ON and the SCAN WIDTH PER DIVISION is 1 MHz or less.

The HP 8555A is a harmonic mixing analyzer, with the mixing equation for the first фonversion being:

Fsig $=n F L O \pm \mathrm{IF}$
where Fsig = signal frequency
$\mathrm{n}=$ harmonic number
$\begin{aligned} \mathrm{FLO} & =\text { LO fundamental frequency } \\ \mathrm{IF} & =\text { frequency }\end{aligned}$ IF = frequency of first IF
The first LO frequency, FLO, has a range of 2.05 to 4.10 GHz . The harmonic number, sign, and the first IF frequency are indicated on the Frequency Scale. The mixing modes are as follows: $\mathrm{n}=1-\mathrm{n}=1+$ for the 550 MHz IF and $\mathrm{n}=1-, 1+$, $2-, 2+, 3-, 3+, 4-, 4+, 6-, 6+, 10-$, and $10+$ for the 2.05 GHz IF. Note: there is no Freqkency Scale provided for the $n=5 \pm, 7 \pm, 8 \pm$ or $9 \pm$ mixing modes.
When an unknown signal is observed on the CRT, its frequency cannot be determined until the mixing mode is known. The mode indicated on the Frequency Scale is not necessarily the mode resulting in the displayed signal. Likewise, the frequency indicated on the dial is not correct unless the mixing mode is correct.

With the Signal Identifier enabled, the displayed signal will be shifted in frequency on alternate scans. The shifted signal is reduced in amplitude by about 5 dB to distinguish it from the unshifted signal. When the Frequency Scale is set to the correct mixing mode for that particular signal, the shifted signal will be two divisions to the left of the unshifted signal.

The \$ignal Identifier circuit shifts the Third LO, on alternate scans, by an amount equal to twice the setting of the SCAN WIDTH PER DIVISION switch. The direction of shift is determined by the sign of the band range selected. The amount and direction the displayed signal shifts on the CRT will depend on the mixing mode for that signal and the position of the BAND switch. The Signal Identfier functions by checking for the correct observed scan width and the correft direction of shift. With a $\mathrm{n}=1$ BAND selected, the SCAN WIDTH PER DIVISION indicates the scan width per division observed on the CRT display for a $n=1$ mode signal. However, a $n=2$ mode signal will have an observed scan width of tuice what the SCAN WIDTH PER DIVISION switch indicates as the sweep of the Ind harmonic is twice that of the fundamental. When the $n=2$ BAND is selected the observed scan width for a $n=2$ mode signal will be correct. The Band Switch controls the $1 / \mathrm{n}$ attenuator circuit (SS9) which divides the sweep voltage going to the YIG driver assembly by the n number on the Frequency Scale. If the shifted signal is displayed by something other than two divisions, the Frequency Scale is set to the wrong harmonic number for that signal. If the shifted signal is displaced by two divisions, but in the wrong direction, the harmonic number is correct, but the sign is wrong.

PULSE GENERATOR

Transistors A7Q5 and Q6 function as a pulse generator (see timing diagram below). When the -5 to +5 volt sweep input goes more positive than 0.6 volt Q 6 is turned "on" causing Q5 to turn "off". During retrace, when sweep input goes less positive than 0.6 volt, Q6 is turned "off" causing-Q5 to turn "on" and a negative-going pulse is applied at the junction of CR1 and CR2. As a result, during each retrace, a negative-going pulse is applied to trigger the bistable switch.

SERVICE SHEET 6 (cont'd)

BISTABLE SWITCH

Transistors Q4 and Q7 with their associated components, function as a complementary-symmetry bistable switch. Both transistors are either "on" or bath are "off". When the output of one is high, the output of the other is low. The circuit is enabled when the SIGNAL IDENTIFIER switch A1S1 is in the ON position and the SCAN WIDTH PER DIVISION switch A1A2S1 is in the 1 MHz or below positions. The circuit is disabled, by +10 volts being applied to the base of Q4, when the SIGNAL IDENTIFIER switch is in the OFF position or when the SCAN WIDTH PER DIVISION switch is set to 2 MHz or above. When the bistable switch is enabled, the output of the pulse generator alternately triggers the switch. The switch output at the collector of Q7 is applied to the base of Q9. The switch output at the collector of Q4 is applied to the base of Q8 and to the 50 MHz Amplifier (Service Sheet 5). The output to the 50 MHz amplifier attenuates the amplifier gain by approximately 5 dB . As a result the shifted signal on the CRT display is reduced in amplitude.

POLARITY SWITCH

Transistors Q8 and Q9 form a polarity switch controlled by the "E" bit band code from the BAND switch A1A4S1. The output polarity switch selects either a 0 to +10 volt or a 0 to -10 volt output on alternate scans. On the n - modes, Q8 is biased "off" from the - 100 volt source and Q9 turned "on" on alternate scans by the output from the bistable switch. When one of the $n+$ modes are selected, the +20 volt "E" bit biases Q9 "off" and allows Q8 to be turned "on" on alternate scans by the bistable switch. The output from the polarity switch is applied through a precision attenuator, on the SCAN WIDTH PER DIVISION switch A1A2S1, to the Third Converter Assy A2.

4. ATTENUATOR

Resistors R1 through R9, mounted on the SCAN WIDTH PER DIVISION switch, form an attenuator. The resistors attenuate the output voltage from the polarity switch to maintain the 3rd LO shift at twice the setting of the SCAN WIDTH PER DIVISION switch as it is reduced from 1 MHz to 2 kHz . Typical voltage levels are given below. These voltages will change to 0 volts on alternate scans.

TROUBLESHOOTING PROCEDURE

Troubleshoot the Signal Identifier, Attenuator Driver and attenuator circuit using the voltage tables and timing diagram.

EQUIPMENT REQUIRED

Oscilloscope		A/1801A/1821A
Dipital Voltmeter		P 3440A/3443A
Service Kit		HP 08555-6007
SCAN WIDTH PER DIVISION	n - Modes	$\mathrm{n}+$ Modes
1 MHz	+9.93V	-9.93V
0.5 MHz	+5.17V	-5.17V
0.2 MHz	+2.03V	-2.03V
100 kHz	+1.00V	-1.00V
50 kHz	+486mV	-486mV
20 kHz	+193mV	-193mV
10 kHz	+ 97 mV	- 97 mV
5 kHz	+ 49 mV	- 49 mV
2 kHz	+ 19.6 mV	- 19.6 mV
		Signal Identifier

Dipital Voltmeter . HP 3440A/3443A

SCAN WIDTH
PER DIVISION

SERVICE SHEET 7

THEORY OF OPERATION

Service Sheet 7 contains the schematic diagram for the YIG Driver Assembly A4 and the associated sections of the Scan Switch A1A2S2. The YIG oscillator, which is the 1st LO, is tuned over the frequency range of 2.05 to 4.10 GHz by the YIG driver assembly. Tuning is accomplished by the drive controlling the
current in the main coil of the YIG oscillator.

For ZERO SCAN WIDTH and SCAN WIDTH PER DIVISION of less than 1 MHz , only the voltage from the FREQUENCY control determines the current
in the main coil. For these narrow scan widths, sweep is added to the FINE TUNE voltage to control the current in the tickler coil of the YIG oscillator
(see Service Sheet 9). For SCAN WIDTH PER DIVISION of 1 MHz and above, sweep is added to the FREQUENCY control voltage to control the current in the YIG oscillator main coil.
In the FULL SCAN WIDTH mode, an offset sweep voltage controls the current to sweep the YIG oscillator from 2.05 to 4.05 GHz . Also, in the FULL SCAN
WIDTH mode, a frequency marker signal is generated and supplied to the IF Section. This signal results in an inverted vee marker appearing on the CRT display at the frequency to which the FREQUENCY control is set.
A precise voltage, in the range of -5.00 to -10.00 volts, that is representative of (Service Sheet 5) and is also provided for use by external equipment (Service Sheet 16).
1 -31 VOLT POWER SUPPLY
Breakdown diode A4CR4 provides the reference voltage for the supply, with current obtained from the -100 V supply through resistor R34. The reference connected in a bootstrap pair configuration with Q2 providing the control and Q3 carrying most of the current load. The transistor pair functions like a single Q2, and the supply output, will be 0.6 volt more positive than the voltage at the base of Q2.
Current limiting is provided by CR5 and R42, and will occur for a current which produces about a 2.9 volt drop across R42. Any further increase in as the base is prevented from going any more positive by CR5. This reduces the conduction of Q3 which will prevent the current from increasing. Breakdown diode CR8 provides overvoltage protection for the circuits powered from the -31 volt supply. CR8 is normally turned off, but a failure in the supply causing
a high voltage will cause the diode to conduct and prevent the output voltage a high voltage will cause the diode to conduct and prevent the output voltage current will probably destroy the diode (short) and the - 100 volt fuse in the Display Section.
2 TUNE CONTROL POWER SUPPLY
Operational Amplifier A4U6 is connected as a negative feedback regulating power supply. The supply provides two voltage levels, approximately -7.1 and -15.2 volts, to the FREQUENCY control potentiometer. These levels give the
control a tuning range of -7.5 to -15 volts. In the power supply circuit, CR1 control a tuning range of -7.5 to -15 volts. In the power supply circuit, CR1 driven by the output voltage, sets the reference level at the non-inverting input
of U6. Negative feedback, from the divider stick R1, R2 and R3, is applied to the inverting input of U6. The power supply output voltage at TP 7 is

SERVICE SHEET 7 (cont'd)

controlled by R2. (Note: the -5 volt adj and -10 volt adj associated with R2 and R5 refer to voltage levels measured at TP 2, not at TP7.) R5 sets th voltage level at the opposite end of the potentiometer from the -15.2 volt supply end. R7 reduces the interaction of the -5 volt adjustment (R5) on the
-10 volt adjustment (R2). In some instruments a factory-selected resistor is added across one side of the FREQUENCY potentiometer A1A4R1. This resistor (A1A4R4) is selected to improve the linearity of the FREQUENCY potentiometer. (See YIG Driver Adjustment Procedure in Section V.)
3 SWEEP PLUS TUNE AMPLIFIERS AND CONTROL
Operational amplifier U7 provides unity gain buffering of the tune voltage from the wiper arm of the FREQUENCY control. Filtering of this tune voltage provided by C1 and R10. The output of the tune buffer C is reduced by one-third by R20 and R21 and applied to the unity gain Sweep Plus Tune
Amplifier U4. In both FULL and ZERO scan modes, and for PER DIVISION scans of less than 1 MHz , only tuning voltage is applied to U4. In the PER scans of less than ramp and provides a gain of 1.463. In the PER DIVISION mode, the output from U5 is reduced by two-thirds and combined with the tuning voltage in summing resistors R20 and R21 and applied to U4. In the PER DIVISION and applied to the YIG Driver Amplifier U1. In PER DIVISION scan of less than MHz PER DIVISION and in ZERO scan mode there is no input to Swee Buffer U5. (See Service Sheet 12.) (The sweep ramp for narrow scan widths is combined with the FINE TUNE voltage and applied to the YIG oscillator tickler coil, Service Sheet 9.) To maintain SCAN WIDTH PER DIVISION
calibration on harmonic mixing modes the sweep ramp from the IF Section is attenuated by the $1 / \mathrm{n}$ attenuator before going to the scan attenuator. (See Service Sheet 8.) In FULL scan mode, the output of the Sweep Buffer U5 is reduced by two-thirds and offset by R24, R25 and R26 and applied to the unity gain full scan sweep offset amplifier U3. The output of amplifier U3 is a
negative going ramp of -5.000 to -9.878 volts. This ramp is applied to the YIG negative going ramp of -5.000 to -9.878 volts. This ramp is applied to the YIG

4 Yig DRIVER

The YIG driver consists of operational amplifier U1, transistors Q1, Q4 and their associated components. The input voltage to the In ZERO scan mod the level is between -5.000 and -10.000 volts with the level determined by the position of the FREQUENCY control (for a YIG oscillator frequency of 2.0 to 4.10 GHz). In the PER DIVISION scan mode (SCAN WIDTH PER DIVISION of 1 MHz and above) the sweep ramp from the Scan Attenuator
which has a maximum peak-to-peak level of 4.85 volts is summed with the FREQUENCY control voltage level which has a level of -5.000 to -10.000 volts. In FULL scan mode only the -5.000 to -9.878 volt sweep ramp is applied to the YIG driver. The Sweep-Plus-Tune voltage is also applied to the Marker Generator, the 50 MHz Gain Control circuitry, and to a connector on the rear panel of the Display Section for use by external equipment. Adjustments in the
YIG driver circuit correct for variations in current sensitivity of the YIG coil from unit to unit. Transistors Q1 and Q4 are connected in a darlington configuration and provide the current to drive the YIG coil. Current in the YIG coil is sensed at resistor R39 and applied as a negative feedback voitage to The 4.1 GHz adjustment R 28 is set to provide a YIG frequency of 4.1 GHz with -10.000 volts at TP2 and the 2.05 GHz adjustment R 29 is set to provide a
YIG frequency of 2.05 GHz with -5.000 volts at TP2. The circuit is arranged such that the 2.05 GHz adjustment will have little effect on the 4.10 GHz adjustment. (Refer to YIG Driver Adjustment Procedure in Section V.) C2 is a

SERVICE SHEET 7 (cont'd

nqise filter, switched in for SCAN WIDTH PER DIVISION of less than 1 MHz fy-back voltage limiting for transistors swept. Diodes CR2 and CR3 provid

\$ MARKER GENERATOR

In FULL scan mode, the marker generator is enabled and an inverted vee marker appears on the CRT at a position corresponding to the frequency to the tune voltage from the FREQUENCY control with the FULL scan ramp When the two voltages are equal, a negative-going marker signal is generated and applied to the deflection amplifier in the IF Section. A4U2 is an integrated circuit transistor array with five transistors, U2A through U2E. U2A and U2B $R 15$ providing a constant current source. When the input voltages to the bases of transistors U2D and U2E are not equal one transistor will be "on" while the other will be "off". The voltage at the collector of the "off" transistor will bias U2C "on" through either U2A or U2B. When the input voltages are equal, both biased "off." This causes a negative pulse to be generated at TP 4 .

647 MHz LO CONTROL

Rpsistors A4R18 and R19 form a resistive voltage divider for the 47 MHzLO in the IF Section. This voltage sets the 47 MHz LO to a fixed frequency. (See IF Section Operating and Service Manual.)

TROUBLESHOOTING PROCEDURE

When troubleshooting the YIG Driver Assembly A4, use the analyzer's operating controls and display to assist in isolating the malfunction to a functional circuit. If there is no output from the YIG oscillator, check the
voltage at A4TP3 for a level of -31 ± 1.5 volts. If there is an output from the YIG oscillator, compare the display produced in FULL scan with the display pyoduced in 200 MHz PER DIVISION scan. There should be no difference in the CRT display other than the frequency marker in the FULL scan mode. See Paragraph 8-41 for operational amplifier troubleshooting procedures.
EQUIPMENT REQUIRED
Digital Voltmeter
HP $\begin{array}{r}\text { HP 3440A/3443A } \\ 180 \mathrm{~A} / 1801 \mathrm{~A} / 1821 \mathrm{~A}\end{array}$ Ofcilloscope Comb Generato 1801A/1821A
Survice Kit ... Install the YIG Driver Assembly A4 on an extender board and check the -31
volt supply at test point A4TP3. If the output is correct, perform the YIG Driver Test Point Voltage Measurements listed below. Use Transistor Voltag Measurements to check Q1-Q4 and the transistors in U2. When the (see Section V).

A4 YIG Driver Transistor Voltage Measurements:
Conditions: $\mathrm{n}=1$ - Band, SCAN WIDTH ZERO, FREQUENCY 1 GHz ; unit of measurement, Vdc.

	Emitter	Base	Collector
A4Q1	-11.0	-11.6	-28.0
A4Q2	-31.0	-31.6	-67.0
A4Q3	-98.2	-97.8	-31.0
A4Q4	-10.5	-11.0	-28.0
A4U2A	-0.40	-0.55	-0.55
A4U2B	-0.40	-0.55	-0.55
A4U2C	-0.92	-0.40	+1.82
A4U2D	-8.1	-7.5	-0.55
A4U2E	-8.1	-7.5	-0.55

Figure 8-38. YIG Driver Assembly A4

A4 Yig Driver Test Point Voltage Measurements:
Conditions: $\mathrm{n}=1$ - Band, SCAN WIDTH and FREQUENCY
as specified; unit of measurement, Vdc unless otherwise
A4TP4 -0.2 Vdc.w/ FULL SCAN WIDTH specified
 -2 V pulses
A4TP5 Ramp -5.0 to PER DIVISION or FULL SCAN $+5.0 \mathrm{Vdc}$
A4TP6 -5.00 Vdc SCAN WIDTH
A4TP6 $-5.00 \mathrm{Vdc} \quad 0 \mathrm{GHz}$, ZERO SCAN WIDTH $-7.44 \mathrm{Vdc} \quad 1 \mathrm{GHz}$, ZERO SCAN WIDTH $-9.44 \mathrm{Vdc} \quad 2 \mathrm{GHz}$, ZERO SCAN WIDTH 4.85 V Vdc 200 MHz PER DIVISION centered on
7.44 Vdc

0 V
A4TP7 -15.2 Vdc
A4TP8 $-7.50 \mathrm{Vdc} \quad 0 \mathrm{GHz}$, ZERO SCAN WIDTH $-11.16 \mathrm{Vdc} \quad 1 \mathrm{GHz}$, ZERO SCAN WDTH $\begin{array}{ll}11.16 \mathrm{Vdc} & 1 \mathrm{GHz}, \text { ZERO SCAN WIDTH } \\ 14.83 \mathrm{Vdc} & 2 \mathrm{GHz}, \text { ZERO SCAN WIDTH }\end{array}$

SERVICE

Figure 8-39. YIG Oscillator Assembly A3

Figure 8-41. Control Generator Timing Diagram

Figure 8-42. Tuning Stabilizer Control Assembly A5

Figure 8-43. Band Buffer Assy A6 with Mixer Gain Network A16

SERVICE

 SHEET 8
SERVICE SHEET 8

THEORY OF OPERATION

Service Sheet 8 contains the schematic diagram for the tuning stabilizer control generator and for the $1 / \mathrm{n}$ sweep attenuator. The control generator provides the Sheet 9.) The $1 / \mathrm{n}$ attenuator reduces the swing stabilizer circuitry. (See Se maintain scan width calibration on harmonic mixing modes.

SWITCH CONTROL

Tuning stabilization is initiated by three series-connected switches supplying +20 volts to the tuning stabilizer control generator. These switches ar TUNING STABILIZER switch A1S2, SCAN WIDTH PER DIVISION switch A1A2S1 and SCAN WIDTH switch A1A2S2. The SCAN WIDTH PER DIVISION switch must be in one of the blue color-coded positions (100 kHz
or below) and the SCAN WIDTH switch in ZERO or PER DIVISION before the +20 volts can be routed from the TUNING STABILIZER switch to initiate uning stabilization. This +20 volt source is routed to the VCXO voltage-controlled crystal oscillator) pulse amplifier (Service Sheet 10) and to the Auxiliary "A" connector P4 pin A6 on the rear panel of the Display Section.

2. CONTROL GENERATOR

The tuning stabilizer circuitry shown on Service Sheet 8 functions as a contro generator to provide timing and switching control to FET 1 and FET 2 switches and memory storage relay (Service Sheet 9). In addition, a sweep kill signal is
provided to the $1 / \mathrm{n}$ attenuator circuit (Service Sheet 8). When the +20 volts is applied to the control generator a series of timing pulses are generated to trigge events necessary to accomplish stabilization lock. These pulses are over in 300 mS . The +20 volts charges A5C8 through A5R 18 turning "on" A5Q9 20 mse ter the three switches are closed. A5Q9 turns "on" A5Q4 which then charge A5C4 through A5R14, turming "on" A5Q8 200 msec later. This action continues for control generator. The steps generated at A5Q1 through A5Q5 produce the four functions at the bottom of the chart.

At time $\mathrm{T}_{0}+20$ volts is applied to the VCXO pulse amplifier and to the ontrol generator. The +20 volts to the control generator triggers the sweep kill driver A5Q13 and Q14 applying a sweep kill signal (+10 volts) to A6Q5 the sweep sization cycle.

At time T_{1}, A5Q4 is turned "on" supplying a start signal for delay 2 and a
turn "off", signal to Fet 1 switch driver A5Q11. A5Q11 is turned "off" turn "off" signal to Fet 1 switch driver A5Q11.

Time T_{2} references the end of delay 2 when A5Q8 is turned "on" which in urn triggers A5Q3 "on" to start delay 3 and trigger relay driver A5Q12 5 Q12 is turned "off" removing the ground return for relay A5K1

Time T_{3} references the end of delay 3 when A5Q7 and Q2 are turned "on" When A5Q2 turns "on", Fet 1 switch driver is triggered and delay 4 start A5Q10 is turned "off" turning A5Q11 "on" and applying a turn "on" signal to et 1 switch.

Time T_{4} references the end of delay 4 when $A 5 Q 6$ is turned "on". When 5Q6 is turned "on" Fet 1 switch driver is triggered to turn Fet 1 switch "on" and Fet 2 switch driver A5Q1 is triggered "on". When A5Q1 turns "on", et 2 switch is turned "on" and delay 5 starts.

SERVICE SHEET 8 (cont'd

Time T_{5} references the end of delay 5 when A5Q5 is turned "on". When A5Q5 is turned "on" the sweep kill driver, A5Q13 and Q14 is triggered to解 the sweep kill signal to A6Q5. The control generator timing ends with the removal of the sweep kill signal.

$31 / \mathrm{n}$ ATtENUATOR

The $1 / \mathrm{n}$ attenuator circuit attenuates the sweep input from the IF Section to maintain per division sweep calibration on harmonic mixing modes. Th attenuator reduces the sweep voltage by the factor of $1 / \mathrm{n}$. For example, on the
$\mathrm{n}=2$ bands the -5 to +5 input sweep voltage is reduced to a -2.5 to +2.5 swee output voltage. Resistive voltage dividers A6R5, R8, R12 and R16 ar selectively shunted to ground by transistor switches A6Q1 through A6Q4. The transistor switches are controlled by the +20 volt
frequency band shaft encoder (see Service Sheet 11).

On the $\mathrm{n}=1$ bands, all switches are off. Band code bit " D " is applied on the $\mathrm{n}=1550 \mathrm{MHz}$ IF bands, but has no effect since A6Q4 requires both band cod bits "C" and "D" before switching action occurs.

On the $n=2$ bands, $A 6 Q 1$ is switched "on".
On the $\mathrm{n}=3$ bands A6Q2 is switched "on." On the $\mathrm{n}=4$ bands both A6Q1 and Q2 are switched "on."

On the $\mathrm{n}=6$ bands A6Q3 is switched "on
On the $\mathrm{n}=10$ bands both A6Q3 and Q4 are switched "on"
SWEEP KILL
When tuning stabilization is initiated a +10 -volt signal from the contro generator is applied to the sweep kill switch A6Q5. This switch prevents the sweep from driving the YIG oscilator while the tuning stabilizer is
accomplishing the steps necessary for stabilization. Sweep is grounded from time T_{0} to time T_{5} (see timing diagram chart). The output of the $1 / \mathrm{n}$ attenuator is applied through operational amplifier A6U1 to the scan attenuator (see Service Sheet 12)

TROUBLESHOOTING PROCEDURE

1.2 CONTROL GENERATOR AND SWITCHING

When a malfunction has been isolated to or to isolate a malfunction in th control generator, perform the following procedure. Remove power from th analyze

EQUIPMENT REQUIRED
Digital Voltmeter
Extender Board
Extender Board
HP 3440A/3444A HP 5060-0258
HP $5060-0256$

Connect digital voltmeter or oscilloscope to XA5-pin 2 on the extende board. Apply power and check switching action of A1S2, A1A2S1 and shift from approximately -8 to +20 volts. Rotate the SCAN WIDTH PER DIVISION switch through the 100 to 2 kHz positions. The +20 volt level

SERVICE SHEET 8 (cont'd)

should remain steady. The contacts on switch wafer A1A2S1-4R do not break between these positions.

To check for proper operation of the control generator, the voltage waveforms on Figure $8-41$ should be observed with an oscilloscope. Set SCAN indicated in the figure. Trigger the control generator by switching the TUNING STABILIZER "OFF" and then "ON" when checking each waveform. The voltage chart below provides the fnal" (control generator sequence steps completed) transistor voltages for all transistors with the TUNING

3 1/n ATTENUATOR TROUBLESHOOTING
With the test setup as for step 1 above, install Band Buffer Assy A6 on extender board. Connect oscilloscope to A6TP1. Set SCAN WIDTH to PER DIVISION and SCAN TTME PER DIVISION to 1 MILLISECOND. Set SCAN convenient display. The display should be a sawtooth signal with a ramp of -5 to +5 volts on the $\mathrm{n}=1$ bands. The amplitude should be reduced by $1 / \mathrm{n} \pm 2 \%$ when the bands are switched. Rotate the BAND switch lever from $\mathrm{n}=1$ through $\mathrm{n}=10$ BANDS while noting the attenuation of sweep on each harmonic mixing mode. The transistors should switch "on" in the following sequence:
A6Q1 on $\mathrm{n}=2$ bands, A6Q2 on $\mathrm{n}=3$ bands, A 6 Q 1 and Q 2 on $\mathrm{n}=4$ bands, A 6 Q 3 on $\mathrm{n}=6$ bands and A 6 Q 3 and Q 4 on $\mathrm{n}=10$ bands.

Check input band code and switching action of any malfunctioning circuit.
4 SWEEP KILL TROUBLESHOOTING
With test setup as in step 3 above, set BAND switch lever to select $\mathrm{n}=1$ BAND 2.05 GHz IF and SCAN WIDTH PER DIVISION to 100 kHz . Switch TUNING STABILIZER "ON". The sweep signal should momentarily go to zero and return (sweep is removed by the sweep kill circuitry during stabilization period, approximately 300 milliseconds).

Final Value Control Generator Voltages
Conditions: SCAN WIDTH 100 kHz PER DIVISION
TUNING STABILIZER ON, Unit of Measurement Vd
Tolerance +0.1 V unless otherwise indicated.

Test point	Emitter	Base	Collector
A5Q1	+10 Supply	+9.35	+9.9
A5Q2	+10 Supply	+9.35	+9.9
A5Q3	+10 Supply	+9.35	+9.9
A5Q4	+10 Supply	+9.35	+9.9
A5Q5	Ground	+0.65	+0.1
A5Q6	Ground	+0.65	+0.1
A5Q7	Ground	+0.65	+0.1
A5Q8	Ground	+0.65	+0.1
A5Q9	Ground	+0.65	+0.1
A5Q10	+10 Supply	+9.4	+9.9
A5Q11	+10 Supply	+9.9	-9.9
A5Q12	Ground	-0.3 ± 0.2	-12.6 ± 0.3
A5Q13	+10 Supply	+9.35	+9.9
A5Q14	+10 Supply	+9.9	-9.9

Figure 8-46. VCXO Harmonics and Lock Points

1 THEORY OF OPERATION, TUNING STABILIZER CONTROL

The tuning stabilizer control generator (Service Sheet 8) provides the properly timed commands to accomplish the tuning stabilizer switching

At time T_{0} the stabilization process begins with closure of all three of the necessary switches. (See Service Sheet 8.) At this instant, sweep is shut off and the 1 MHz pulse amplifier (Service Sheet 10) is turned on.
At time T_{1}, Fet 1 (A5Q18), (Service Sheet 9) which has been "on" shorting the error signal to ground is turned "off". The error signal is allowed to pass through the closed contacts of A5K1, through the sample and hold circuit to the VCXO. This signal then causes the VCXO to shift frequency to move a harmonic lock point to the YIG oscillator.
At time T_{2}, the reed relay A5K1 opens leaving the error signal, at time T_{2} stored on A5C9.
At time T_{3} Fet 1 (A5Q18) is turned "on" again to discharge A 14 A 1 C 17 and A5C1.
At time T_{4} Fet 1 is turned "off" and Fet 2 (A5Q17) is turned "on" routing the error signal to the YIG oscillator tickler coil.
At time T_{5}, sweep is turned on and the instrument functions in the stabilized mode.
2. A14A1Q4 and Q5 are emitter followers, connected to terminate the 500 kHz filter in 1000 ohms and to provide a low output impedance to drive the series resonant circuit. A14A1L4, C11 and dominately by A14A1R14 and the resistance of inductor A14A114. A14A1C12 and R14 are factory selected components whose values are selected to set the frequency and " Q " of the 240 kHz resonator.
2-a. A14A1U1 is a transistor array consisting of five identical transistors in a 14-pin integrated circuit package. Four of the transistors in A14A1U1 combined with A14A1Q6 and Q7 make up two independent differential comparators. The differential comparators convert the sine wave input into a squarewave output. The phase difference between the two squarewaves is a function of the input frequency. The outputs are nearly in phase at low frequencies, 90 degrees out of phase at 240 kHz (see waveforms below), and nearly out of phase at 500 kHz .

SERVICE SHEETS 9 \& 10 (cont'd)

A A14A1Q7C Volts/Div: 2 Time/Div: $1 \mu \mathrm{sec}$
B A14A1Q6C
Volts/Div: 2 Time/Div: $1 \mu \mathrm{sec}$

A A14A1TP3 Volts/Div: 2 Time/Div: $1 \mu \mathrm{sec}$
B A14A1Q6C Volts/Div: 2 Time/Div: $1 \mu \mathrm{sec}$

A A14A1TP1 Volts/Div: 0.1

B A14A1Q6C Volts/Div: 2 Time/Div: $1 \mu \mathrm{sec}$

2-b. A14A1U2 is an integrated circuit quadruple NAND gate connected as an EXCLUSIVE OR circuit. Its output is high when the two inputs are different and low when they are the same. (Compare output waveform at TP3 with input waveforms.) The output of the EXCLUSIVE OR circuit has a dc component with an aver CLUSIVE that is a function of frequency. The output of the associated circuitry where the signal is buffered, offset and filtered. The error output signal is a dc voltage related to frequency as indicated in Figure 8-47

Figure 8-47. Discriminator Output Error Signal

SERVICE SHEETS 9 \& 10 (cont'd)

1 TUNING STABILIZER CONTROL TROUBLESHOOTING (See Service Sheet 8 also).
When a malfunction has been isolated or to isolate a malfunction in the Tuning Stabilizer Control Assy A5, perform the troubleshooting procedure in Service Sheet 8 prior to troubleshooting the circuitry in Service Sheet 9. If malfunction was isolated to the Tuning Stabilizer Assy A14, proceed to step 2. Separate RF and IF Sections, remove 8555A bottom cover so tuning stabilizer castcasting (958 wire at A14C4). Connect the RF Section to the IF Section and Display Section with extender cables. Install Tuning Stabilizer Control Assy A5 on an extender board.

EQUIPMENT REQUIRED

Digital Voltmeter	HP 3440A/3444A
Oscilloscope	HP 180A/1801A/1821A
Extender Board	HP 5060-0256
Power Supply	HP 6205B
Test Oscillator	HP 652A
Service Kit	HP 08555-60077
Volt-Ohm-Ammeter	HP 412A
1. Set analyzer controls as follows:	
BAND	$\mathrm{n}=1.2 .05 \mathrm{GHz} \mathrm{IF}$
BANDWIDTH	30 kHz
SCAN WIDTH	0.5 MHz PER DIVISION
INPUT ATTENUATION	20 dB
SCAN TIME PER DIVISION	1 MILLISECONDS
LOG REF LEVEL	. +10 dBm
LOG/LINEAR	LOG
SCAN MODE	INT
SCAN TRIGGER	AUTO
FREQUENCY	1.5 GHz
FIne TUNE	Centered
UNING STABILIZE	

1-a. Check input sweep signal from scan width voltage divider Service Sheet 12. With INPUT ATTENUATION set to 20 dB ,
connect the SECOND LO OUTPUT to INPUT. Tune FREconnect the SECOND LO OUTPUT to INPUT. Tune FRE-
QUENCY control to center signal on CRT display. Check operaQUENCY control to center signal on CRT display. Check opera-
tional amplifiers A5U1 and U2 by checking for normal operation of the FINE TUNE control and the SIGNAL IDENTIFIER system. (FINE TUNE control has a tuning range of over 1 MHz and
SIGNAL IDENTIFIER provides a two-division displacement on SIGNAL IDENTIFIER provides a two-division displacement on
alternate sweep scans.) If either or both are incorrect, check inputalternate sweep scans.) If either
versus-output of A5U1 and U2.

1-b. With controls set as indicated above, connect oscilloscope to 1-b. With controls set as indicated above, connect oscilloscope to
A5TP4. The signal at the test point should be a negative-going
samp of A5TP4. The signal at 10 verimately 10 volts around a level set by the FINE
ramp control. Vary FINE TUNE control and check for a shift of at least two volts change in the dc level.

1-c. Check for a positive-going ramp at A5TP3 of approximately 9.5 volts and at A5TP8 for approximately 8.5 volts. Check for a negative-going ramp of approximately 9.5 volts at A5TP9. Set
SIGNAL IDENTFIER to OFF.

SERVICE SHEETS 9 \& 10 (cont'd)

1-d. SAMPLE AND HOLD TEST
Set TUNING STABILIZER to ON; SCAN WIDTH to ZERO SCAN; SCAN WIDTH PER DIVISION to 100 kHz . With the error A5TP4 and adjust FINE TUNE control for zero volts at test point. Connect oscilloscope to A5TP9. Voltage should be 0 ± 0.1 volt. If voltage exceeds magnitude of 0.1 volt, adjust FET OFFSET A5R55 to zero voltage at A5TP9. Connect a +0.316 volt dc level
signal at A5TP2. The voltage at A5TP9 should not change indica signal at A5TP2. The voltage at A5TP9 should not change, indicaOFF. The voltage level at A5TP9 should change to $-1 \pm 0.25 \mathrm{Vdc}$. Set TUNING STABILIZER switch to ON. The voltage at A5TP9 should not change, indicating proper operation of the sample and hold circuit.

2 DISCRIMINATOR TEST AND TROUBLESHOOTING
Separate RF Section from IF Section, remove bottom cover and cover from Discriminator Assy A14A1. Connect RF Section to IF Section and to Display Section using extender cables. Disconnect
958 wire from A14C4. Set TUNING STABILIZER switch to OFF.
2-a. Connect a 13 mV peak-to-peak signal at a frequency of 10 to 700 kHz from Test Point A (Service Sheet 10) to chassis ground. Note: it is not necessary to disconnect the sampler.

2-b. Vary frequency of oscillator while observing the discriminaor output at A14C4 (Service Sheet 9). The discriminator output should vary as shown in Figure 8-47. If correct output is not obtained perform the following tests:

Connect oscilloscope to A14A1TP1. The signal should be a sinusoid 0.15 to 0.3 volt peak-to-peak for frequencies between 1 and 500 kHz . The voltage level should decrease rapidly as the frequency is increased above 500 kHz . Observe signal at collectors of
A14A1Q6 and Q7 with a dual channel oscilloscope. The signal should be a 0 to 5 volt squarewave. As the oscillator frequency is varied the phase relationship of the squarewaves should vary as follows: at low frequency the squarewaves should be almost in phase, at 240 kHz they should be approximately 90 degrees out of phase, at frequencies approaching 500 kHz they should be nearly out of phase.

SERVICE SHEET 9 \& 10 (cont'd)

A5 Tuning Stabilizer Control Voltage Measurements
Conditions: SCAN WIDTH 100 kHz PER DIVISION TUNING STABLIZER ON FINE TUNE Centere $(-5 \mathrm{Vdc}$ at TP 6$)$) $\mathrm{n}=1 \cdot$ BAND, FREQUENCY 1 GHz , SCAN TIME PER DIVISION 5 SECONDS

Test Point	Voltage	Remarks
TP1	+2.5 Vdc nominal	Unstablized
TP1	+1.5 to +3.5 Vdc	Stabilized, goes negative with increase in frequency, goes positive with decrease in frequency.
TP2	0 Vdc nominal	
TP3	-5.5 to -3.8 Vdc	
TP4	+0.93 to -1.03 Vdc	
TP5	-0.25 to +0.25 Vdc	
TP6	0 to -10 Vdc	FINE TUNE CW to CCW
TP7	0 Vdc nominal	Level goes positive with increase in frequency and
TP8	1.6 Volt	negative with decrease.
TP9	1.8 Volt	Negative going ramp.

Transistor voltage measurements, unstabilized, ZERO SCAN

	Emitter	Base	Collector
A5Q16	-8.67 Vdc	-8.2 Vdc	0
	Drain	Source	Gate
A5Q15	-8.67 Vdc	+2.55 Vdc	0
A5Q17	0	0	-5.7 Vdc
A5Q18	0	0	+0.5 Vdc

A14A1 Discriminator Voltage Measurements
Conditions: SCAN WIDTH 100 kHz PER DIVISION, TUNING STABILIZER ON, FINE TUNE Centered, RREQUENCY $1 \mathrm{GHz}, \mathrm{n}=1$ - BAND, SCAN TIME 2 MILLISECONDS PER DIVISION, Typical Vdc level indicated.

	Emitter	Base	Collector
A14A1Q4	-1.55	-0.98	0
Q5	-2.17	-1.55	0
Q6	0	+0.2	+1.7
Q7	0	+0.2	+1.7
Q8	+9.87	+9.98	-0.26
Q9	+9.87	+10.0	+0.30
Q10	+5.0	+5.66	+9.96
U1A	-0.3	0	+9.96
U1B	-0.3	0	+0.2
U1C	-0.7	0	+9.96
U1D	-0.7	0	+0.2

TP $1 \quad 0.2$ volt peak-to-peak 240 kHz sine wave
TP $3+2.8$ volt level. 5.6 volt peak-to-peak 480 kHz square wave
A14C4 (Error out signal) 0 Vdc nominal.

Figure 8-48. Tuning Stabilizer Assembly A14

Figure 8-49. Tuning Stabilizer Control Assembly A5

Figure 8-50. Discriminator Assembly A14A1

SERVICE SHEET 10 (cont'd)
A14A1 Discriminator Voltage Measurements

A14A2Q1	$\begin{aligned} & \text { Source } \\ & +1.0 \end{aligned}$	$\underset{0}{\substack{\text { Gate } \\ 0}}$	$\begin{aligned} & \text { Drin } \\ & +9 . \end{aligned}$
	Emitter	Base	Collector
A14A2Q2	+9.3	+9.96	+12.6
A14A2Q3	-0.8	-0.2	+ 5.7
TP A	+2.1		
тP B	$-0.98 \text { wit }$	olt peak-to	ak 240 kHz

Removal and replacement procedures See Service Sheet 18

SERVICE SHEET 10 (cont'd)

Figure 8.52. Tuning Stabilizer VCXO Assembly A 14A 2

Figure 8-53. Tuning Stabilizer A Asembly A14

SERVICE SHEET 10

THEORY OF OPERATION

3 VCXO PULSE AMPLIFIER
The variable frequency crystal oscillator (VCXO) is the 1 MHz reference for the tuning stabilizer circuit. The 1 MHz oscillator is electronically tunable $\pm 750 \mathrm{~Hz}$. The VCXO consists of a fixed frequency high " Q " crystal filter, a limiting amplifier, a variable frequency low " Q " LC filter and a driver circuit. The oscillator will oscillate at a frequency such that the phase shift through the two filters is zero. If the variable frequency LC filter is set, by voltage on the varactor diodes, to 1 MHz , the phase shift through each filter will be zero and the sum will be zero. If the frequency of the variable requency LC filter is set different from 1 MHz , the frequency of oscillation will shift such that the phase shift through the crystal filter is equal in magnitude, but opposite in sign to the phase shift through the variable frequency filter. By changing the bias voltage Since the " Q " of the crystal filter is much greater than the " Q " of the LC filter, the requency stability is on the order of the crystal stability.
$3-\mathrm{a}$. Bias voltage for varactor diodes A14A2CR1 through CR4 is supplied by operational amplifier A14A2U1. The input to A14A2U1 is a combination of the sweep plus fine tune signal and the output from the sample and hold circuit (SS9). This input signal must be attenuated by an amount depending on the YIG oscillator frequency. When the RF Section is tuned to the low end of any band, the YIG oscillator frequency is near 2.05 GHz . When locked to a VCXO harmonic (harmonic number near 2050) a frequency shift of 1 Hz at the VCXO will cause a shift of 2050 Hz at the YIG oscillator. When tuned nea shift of 1 Hz will cause a frequency shift of 4100 Hz at the YIG oscillator. To correct for the change in frequency shift as the YIG oscillator is tuned toward the high end of its range, the input signal to the VCXO must be attenuated by a factor of $2.05 \mathrm{GHz} / \mathrm{F}$ This attenuation is provided by A1A4R3, the $2: 1$ gain control, and resistor A14A2R 4 in the VCXO driver circuit. The 2:1 gain control is ganged with the FREQUENCY control.

3-b. There are three adjustable components in the VCXO circuit (see Tuning Stabilizer Adjustments in Section V). A14A2C16 1 MHz Peak adjusts center frequency of Low Q " LC variable frequency filter. A14A2C2 1.3 MHz Null; adjusted to balance out capacitance of crystal holder A14A2Y1. A14A2C3 Linearity, adjusts VCXO circuit to provide a linear requency change with a linear change in bias voltage to varactor diodes A14A2CR through CR4

3-c. Pulse amplifier A14A2Q5 through Q7 converts the 1 MHz signal from the VCXO to a squarewave pulse of sufficient amplitude to drive the mixer diode in sampler A14A3. The positive portion of the output pulse is clamped to approximately +0.6 to +0.8 Vdc by the sampler diode (see waveform for test point TP D).

4 SAMPLER AND DISCRIMINATOR PREAMPLIFIER
Sampler A14A3 mixes the 2.05 to 4.1 GHz signal from the YIG oscillator with the armonics from the 1 MHz VCXO and produces sum and difference output signals to the tuning stabilizer discriminator circuits. The YIG oscillator signal is routed through the 1st converter circuits (Service Sheet 2) and a 2 to 4 GHz isolator AF before being applied to he sampler. The YIG oscillator signal fed through the sampler is terminated in a 50 -ohm oad (AT2) at the front panel FIRST LO OUTPUT. The 1 MHz squarewave from the train of very narrow pulses. The frequency spectrum of the 1 MHz pulse train is a series of 1 MHz harmonics extending through 4.1 GHz . The sampler mixes the 2050 harmonics between 2.05 and 4.1 GHz with the 2.05 tc 4.1 GHz YIG oscillator signal. The output is filtered through a 500 kHz lowpass filter and applied to a 240 kHz discriminator. The output of the discriminator is fed back as an error signal shifting the YIG oscillator

SERVICE SHEET 10 (cont'd

frequency to a lock point. At a lock point (zero output from the discriminator) the YIG oscillator frequency is offset from the
nearest VXCO harmonic by approximately 240 kHz .
$4-$ a. The sampler output is amplified by A14A1Q1 through Q3, the tuning stabilizer preamplifier, before being applied to the 500 kHz lowpass filter. The sampler output signal is a +1.8 to +2.4 Vdc imposed on the dc signal output signals from the sampler superC.)

4-b. A14A1L1 through L3 and A14A1C6 through C9 make up a 500 kHz Chebychef lowpass filter. This filter rejects the 1 MHz sampling signal and the unwanted sideband coming from the samp-

TUNING STABILIZER TROUBLESHOOTING
(Continued from Service Sheet 9)
34 VCXO/PULSE AMPLIFIER/SAMPLER/PREAMPLIFIER TROUBLESHOOTING PROCEDURE

Remove cover from VCXO/PULSE AMPL Assy A14A2. Set analyzer controls as follows
SCAN WIDTH
ZERO SCAN TUNING S STABILIZER
100 kHz PER DIVISION
Observe voltage at A14A2TP-D with oscilloscope. The signal should be a 1 MHz squarewave between $-10 \pm 0.5 \mathrm{~V}$ and +0.7 $\pm 0.15 \mathrm{~V}$ with a frequency of $1 \mathrm{MHz} \pm 10 \mathrm{kHz}$. If the waveform at TP-D has an upper limit approaching +20 V , check for an open sampler diode open Sampler A14A3 step recovery diode. The input connector and checking the diode with an ohmmeter. Using a HP 412A Volt-Ohm-Ammeter, on the 100 ohm range, the diode should indicate 100 to 500 ohms with the positive probe to the center conductor and the negative probe to ground. The ohmmeter should indicate greater than 1 megohm in the reverse direction

Note

Other ohmmeters may give different resistance measurements. The actual value depends on the voltage of the ohmmeter.

If the voltage at TP-D is zero, check for shorted cable or shorted sampler step recovery diode by the above test. If the waveform at TP-D is wrong in some other way, check waveform at A14A2TP3 for a $1 \mathrm{MHz} \pm 10 \mathrm{kHz}$ sinusoid with a peak-to-peak amplitude of 6 to 9 volts. (An oscilloscope probe with capacitance less than 20 p should be used in this measurement.)

If the signal at A14A2TP-3 is correct and the signal at A14A2TP-D is incorrect, check the Pulse Ampl. circuit A14A2Q5, Q6 and Q7.

SERVICE SHEET 10 (cont'd)

If the signal at TP-3 is incorrect, disconnect the 903 wire at A14C6 and make the following dc voltage measurements with a low probe capacitance voltmeter such as the HP 412A.

A14A2U1 Pin 2 Pin 3 Pin 4 Pin 6 Pin

$0 \mathrm{~V} \pm 20 \mathrm{mV} \quad 0 \mathrm{~V} \pm 1 \mathrm{mV} \quad-9.7 \pm 0.2 \mathrm{~V} \quad 13 \pm 1 \mathrm{~V} \quad 19.7 \pm 0.2 \mathrm{~V}$

A14A2Q1	Emitter	Base	Collector
	$-0.6 \pm 0.2 \mathrm{~V}$	0	$+11 \pm 2 \mathrm{~V}$
A14A2Q4	Source	Gate	Drain
	+2 to +6 V	0	$+19.7 \pm 0.2 \mathrm{~V}$

A14A2Q2 and Q3 may be checked by applying a signal at A14A2TP1 and observing the output at TP3. Disconnect one end of A14A2C4 and connect a 1 MHz signal from TP1 to ground. The voltage at TP3 should peak between 6 and 9 V when the frequency
is varied around 1 MHz . The signal at the emitters of Q 2 and Q 3 should be a half-wave rectified sinewave with a positive peak of $2.4 \pm 0.5 \mathrm{~V}$ with the negative portion clipped at $-0.6 \pm 0.15 \mathrm{~V}$.

Quartz crystal A14A2Y1 can be checked for proper operation using the same test setup as for A14A2Q2 and Q3 above. Connect oscilloscope to source of FET Q4 and tune the 1 MHz signal source around 1 MHz . The 1 MHz sinewave at the source of Q4 should peak at 1 MHz .
Replace capacitor A14A2C1.
See Discriminator Test and Troubleshooting, Service Sheet 9.

Note

If components are replaced, see tuning stabilizer adjust ments in Section V. Do not adjust components unless it is necessary.

Tuning Stabilizer Waveforms

Conditions: Same as for voltage measurements. Oscilloscope dc coupled input unless otherwise indicated.

A $\quad 500 \mathrm{kHz}$ Filter Input A14A1C5/L1 Volts/Div: 1
Time/Div: $1 \mu \mathrm{se}$

B A14A1TP B Volts/Div: 0.1 Time/Div: $1 \mu \mathrm{sec}$

Figure 8-54. Tuning Stabilizer VCXO/Pulse Ampl Assy A14A2, Discriminator A14A1, and Sampler Assy A14A5

SERVICE SHEET 11

THEORY OF OPERATION

Service Sheet 11 contains the schematic diagram for the band code switch logic circuitry which consists of an encoder, a driver, a decoder and a logic power supply. The circuitry provides control of bias current to the diode in the first converter; gain control to the 50 he 15 GHz gacillator. In addition binary band code information is supplied to the $1 / \mathrm{n}$ ttenuator and to a plug on the rear panel to provide band code information for use by external equipment

FREQUENCY BAND SHAFT ENCODER

Switch A1A4S1 on the end of the frequency scale drum performs the encoding function which provides the five bit binary code. The switch is controlled by the front panel BAND lever. The encoder output is shown in the harmonic number band code chart on the schematic diagram
2 DECODER DRIVER
A6U11 is an integrated circuit transistor array with five transistors, U11A through U11E. Each transistor is a driver for one of the band code bits. A positive voltage from the shaft encoder biases a driver "on" and results in a negative voltage being applied to the decoder circuitry (approximately -12.6 volts). An open circuit from the shaft encoder biases a decoder driver "off". In the "off" condition the collector of the decoder driver is pulled negative (approximately -11 volts in a no-load condition) by the decoder logic voltages.

3 LOGIC POWER SUPPLY

Breakdown diode CR7 establishes the reference voltage on the base of transistor Q6. Q6 and Q7 form a Darlington pair, with the output voltage at the emitter of Q7 being about one volt more negative than the base voltage of Q6. The output, approximately -7.0 V , is This results in a positive 5.6 V -supply for the decoder logic.

4 DECODER LOGIC

Integrated circuits U3 through U10 decode and provide the frequency scale position information from the shaft encoder and provide control signals, F1 through F17, to control instrument operation. The control signals provide either -12.6 volts or an open circuit. Signals F1 through F10 are applied to the Input Mixer Gain Compensation, Network A16, to set the gain of the 50 MHz variable gain amplifier for each of the bands. Signals F13 through F15 are applied to the same resistor network and control the bias current for the diode in the first converter. Signal F13 sets the bias for bands $n=1$ and Sheets 2 and 5.) Signals F16 and F17 control gain steps of 5 and 15 dB in the 50 MHz variable gain amplifier. The 5 dB step (F17) is activated for all bands except the $\mathrm{n}=1 \pm$ 550 MHz IF bands. The 15 dB step (F16) is activated for the $\mathrm{n}=3 \pm$ through $\mathrm{n}=10 \pm$ bands. Signal F11 is -12.6 volts on the $\mathrm{n}=1 \pm 550 \mathrm{MHz}$ IF bands and controls IF switching relays K 2 and K3 and also removes voltage from the 1.5 GHz oscillator (see Service Sheet 3). Signal F12 controls the external mixer relay K1 and is -12.6 volts on the $n=6 \pm$ and $n=10 \pm$ bands.

The decoder functions as negative logic with " 1 " $=-12.6$ volts, (the activating state) and " 0 " = a voltage more positive than the -12.6 volts. The output signals F1 through F16 all come from logic elements that have open collector outputs. In the " 1 " state the logic circuit will supply -12.6 volts for activating the function controlled by that will signal. In the connected circuitry and can vary from about -11 volts to a positive voltage.

SERVICE SHEET 11 (cont'd)

The following charts provide logic level information for integrated circuits A6U3 through A6U10. " 1 " $=-12$ volt with " 0 " = a more positive level.

TROUBLESHOOTING PROCEDURE
When a malfunction has been isolated to the band code switch logic circuitry or to isolate a malfunction in the circuitry, perform the following procedure. Remove power from the
install Band Buffer Assy A6 on an extender board.
EQUIPMENT REQUIRED
Digital Voltmeter HP 3440A/3444A
Extender Board
Logic Clip HP 5060-0258

Logic Clip 5060-0258
HP 10528A

1 FREQUENCY SHAFT ENCODER TROUBLESHOOTING
1-a. Connect the digital voltmeter test leads to pin 2 on the extender board (XA6-2) and chassis ground. Apply power to the analyzer and press Band Switch Lever to rotate the frequency band shaft encoder through each band. Check for +20 -volts on bands $\mathrm{n}=2^{+}, 2-, 4+$ and 4 -. If voltage is not present, check at A1A4S1 A (printed circuit switch on right end of frequency scale drum).
1-b. In the same manner, check for +20 volts at XA6 pins $3,4,5$ and 6 . Voltage should be present as shown in the harmonic number band code chart on the schematic diagram.

2 DECODER DRIVER TROUBLESHOOTING

Check decoder driver A6U11. The collector voltage will vary from a nominal value of -12.4 volts, transistor "on" $(+20$ volts on XA6 pins from shaft encoder) to approximately -11 volts with the transistor "off". Check the collector voltage of each transistor in A6U11 in both "on" and "off" conditions. A defective decoder
logic module will normally pull the collector voltage of the associated driver transistor toward the -7.0 volt logic power supply output when the driver transistor is in the "off" condition.

LOGIC POWER SUPPLY TROUBLESHOOTING

Check logic power supply transistors A6Q6, A6Q7 and associated components.

4 DECODER LOGIC TROUBLESHOOTING

4-a. Decoder logic modules A11U3, U4, U5, U8, U9 and U10 can be checked for proper operation using HP 10528A Logic Clip providing the CAUTIONS listed in Logic Clip Manual are followed. Before connecting the Logic Clip, check to ensure that the Check suspected modules for proper operation using charts in Theory of Operation.

SERVICE SHEET 11 (cont'd)

Note

When using the Logic Clip a Logic " 0 " is indicated by a lighted diode and a Logic " 1 " is indicated by unlighted diode. With -12.6 volts applied to the normal ground pin and -7.0 volts applie the VCC pins, the modules performing as if connected to +5.6 volt source.

4-b. Check decoder logic modules A6U6 and A6U7 (relay driver modules) for proper operation using a voltmeter or oscilloscope. Check module operation against the charts in Theory of Operation. For example, with 12.4 volts applied to pins 2 and 7 of volts) the output at pin should be a logic " 1 " -12.4 volts. The output at pin 5 should be a logic " 0 " or zero volts. Check A6U6 in a similar manner.

Note

The output from the A6U6 and A6U7 modules are eithe 0 or -12 . The output from modules A6U3 - U5 and U8 - U10 are at -12 when active and at a floating voltage level when not active.

REPAIR INSTRUCTION

The A16 Gain Network is mounted on the A6 Band Buffer Assy This network is factory-selected to match the mixer in the First Converter Assy A12 and should remain with the converter. If the A6 assember is isembly layer circuit traces. Use extreme care when replacing components

See Figure 8-4 for pin numbering of logic modules.

SERVICE SHEET 11 (cont'd)

Logic Module A6U3 Pin Numbers																Logic Module A6U4 Pin Numbers															
BANO	1	2	3	4	5	6	7	8	9	10		12		14		BAND	1	2	2	3	4	5	6	7	8	9		11	12	213	314
$\mathrm{n}=10$	1	0	0	0	1	0	1	1	1	0	0	1	1	0		$\mathrm{n}=10+$	1	0	0	0	1	1	0	1	0	1	1	1	0	1	10
$\mathrm{n}=10$	1	1	0	0	1	1	1	0	1	0	0	0	1	0		$\mathrm{n}=10$.	1	0	0	0	1	1	0	1	0	1	1	1	0	1	1
$\mathrm{n}=6+$	1	0	0	0	1	0	1	1	1	0	0	1	1	0		$\mathrm{n}=6+$	1	0	0	0	1	1	0	1	0	1	1	1	0	1	1
$\mathrm{n}=6$.	1	1	0	0	1	1	1	0	1	0	0	0	1	0		$\mathrm{n}=6$ -	1	0	0	0	1	1	0	1	0	1	1	1	0	1	1
$\mathrm{n}=4+$	1	0	0	0	1	0	1	1	1	0	0	1	1	0		$\mathrm{n}=4+$	0	1	1	0	1	0	1	1	1	1	1	0	0	1	1
$\mathrm{n}=4$ -	1	1	0	0	1	1	1	0	1	0	0	0	1	0		$\mathrm{n}=4$.	0	1	1	0	1	0	1	1	1	1	1	0	0	1	1
$\mathrm{n}=3+$	1	0	0	1	0	0	1	1	0	0	0	1	1	0		$\mathrm{n}=3+$	1	0	0	0	1	1	0	1	1	1	1	0	0	1	10
$\mathrm{n}=3$.	1	1	0	0	0	1	1	0	0	1	0	0	1	0		$\mathrm{n}=3$ -	1	0	0	0	1	1	0	1	1	1	1	0	0		
$\mathrm{n}=2+$	0	0	1	0	1	0	1	1	1	0	0	1	0			$\mathrm{n}=2+$	1	0	0	0	1	0	1	1		1		0	1		
$\mathrm{n}=2$.	0	1	0	0	1	1	1	0	1	0	1	0	0				1	0	0	0	1	0	1	1	1	1	1	0	1	0	0
$\mathrm{n}=1+$	1	0	0	0	1	0	1	1	1	0	0	1	1			$\mathrm{n}=1+$	1	0	0	0	1	1	0	1	1	0	0	1	0		10
$\mathrm{n}=1$.	1	1	0	0	1	1	1	0	1	0	0	0	1			${ }^{n}=1$.	1	0	0	0	1	1	0	1	1	0	0	1	0		
$\mathrm{n}=1+$	1	0	0	0	1	0	1		1			1	1			$\mathrm{n}=1+$	1	0	0		0	1	0	1	0	1	1	1	0		
$\mathrm{n}=1$ *	1	1	0	0	1	1	1	0	1	0	0																				
			Logic	Mod	dule	A6U	5 P	in N	Numb											Logic	c Mo	odul	le A	$6 \cup 6$	Pin	Num	mbers				
band	1	2	3	4	5	6	7	8	9	10	11	12	13	14		band			1		2		3	4		5			7		8
$\mathrm{n}=10$	1	0	0	0	1	0	1	1	1	0	0	1	1			$\mathrm{n}=10+$			0		0		0	1		0	0	0	0		0
$\mathrm{n}=10$	1	1	0	0	1	1	1	0	1	0	0	0	1	0		$\mathrm{n}=10$ -			0		0		0	1		0	0	0	0		0
$\mathrm{n}=6+$	1	0	0	0	1	0	1	1	1	0	0	1	1	0		$\mathrm{n}=6+$			0		0		0	1		0	0	0	0		0
$\mathrm{n}=6$ -	1	1	0	0	1	1	1	0	1	0	0	0	1			$\mathrm{n}=6$.			0		0		0	1		0	0	0	0		0
$\mathrm{n}=4+$	0	0	1	0	1	0	1	1	1	0	0	1	0	0		n=4+			0		0		0	1		0	0	0	0		0
$\mathrm{n}=4$.	0	1	0	0	1	1	1	0	1	0	1	0	0	0		$\mathrm{n}=4$.			0		0		0	1		0	0	0	0		0
$\mathrm{n}=3+$	1	0	0	0	1	0	1	1	1	0	0	1	1	0		$\mathrm{n}=3+$			0		0		0	1		0	0	0	0		0
$\mathrm{n}=3$ -	1	1	0	0	1	1	1	0	1	0	0	0	1	0		$\mathrm{n}=3$			0		0		0	1		0	0	0	0		0
$\mathrm{n}=2+$	1	0	0	0	1	0	1	1	1	0	0	1	1			$\mathrm{n}=2+$			0		0		0	1		0		0	0		0
$\mathrm{n}=2$.	1	1	0	0	1	1	1	0	1	0	0	0	1			$\mathrm{n}=2$.			0		0		0	1		0	0	0	0		0
$\mathrm{n}=1+$	1	0	0	0	1	0	1	1	1	0	0	1	1			-1+			0		0		0	1		0	0	0	0		0
$\mathrm{n}=1$.	1	1	0	0	1	1	1	0	1	0	0	0	1			$\mathrm{n}=1$.			0		0		0	1		0		0	0		0
$\mathrm{n}=1+$	1	0	0	1	0	0	1	1	0	0	0	1	1			$\mathrm{n}=1{ }^{*}$			0		1		1	1		1		1	0		0
$\mathrm{n}=1$ *	1	1	0	0	0	1	1	0	0	1	0	0	1			$\mathrm{n}=1$ *			0		1		1	1		1	1	1	0		0

SERVICE SHEET 11 (cont'd)

Logic Module A6U7 Pin Numbers															Logic Module A6U8 Pin Numbers																
BAND		1		2	3	3	4		5	6		7		8		ND	1	1	2	34	4	5	6	7	8	9	10	11	12		
$\mathrm{n}=10+$		0		1	1	1	1		1	0	0	1		0		10+	0	0	0	10	0	0	1	1	1	1	0	0	1	1	
$\mathrm{n}=10$.		0		1	1	1	1		1	0	0	1		0	$\mathrm{n}=10$	10	0	0	0	1	0	1	1	1	1	0	0	0	1	1	0
$n=6+$		0		1	1	1	1		1	0	0	1		0	$\mathrm{n}=6+$	${ }^{+}$	0	0	0	1	0	0	1	1	1	1	0	0	0	1	0
$\mathrm{n}=6$.		0		1	1	1	1		1	0	0	1		0	$\mathrm{n}=6$ -		0	0	0	1	0	1	1	1	1	0	0	0	0	1	
$\mathrm{n}=4+$		0		0	0		1		1	1	1	0		0	$n=4+$		1	1	10	00	0	0	1	1	1	1	0	1	0	0	
$\mathrm{n}=4$.		0		0	0	0	1		1	1	1	0		0	$\mathrm{n}=4$.	4.	1	1	0	0	0	1	1	1	1	0	0	1	0	0	
$n=3+$		0		0	0	0	1		1	1	1	0		0	$\mathrm{n}=3+$	$3+$	0		0	00	0	0	1	1	1	1	0	1	0	0	0
$\mathrm{n}=3$ -		0		0	0)	1		1	1	1	0		0	$\mathrm{n}=3$ -		0		10	0	0	1	1	1	1	0	0	1	0	0	0
$\mathrm{n}=2+$		0		0	0	O	1		0	0	0	0		0	$\mathrm{n}=2+$		1		0	00	0	0	1	1	1	1	0	1	0	0	0
$\mathrm{n}=2$.		0		0	0		1		0	0	0	0		0	$\mathrm{n}=2$.		1		0	0	0	1	1	1	1	0	0	1	0	0	
$\mathrm{n}=1+$		0		0	0		1		0	0	0	0		0	$\mathrm{n}=1+$		0	0	1	11	1	0	0	1	0	1	0	1	0	0	
$n=1$.		0		0	0		1		0	0	0	0		0	$\mathrm{n}=1$.		0	0	1	10	0	1	0	1	0	0	1	1	0	0	0
$\mathrm{n}=1{ }^{*}$		0		0	0		1		0	0		0	0	0	$\mathrm{n}=1+$	${ }^{*}+$	0	0	01	10	0	0	1	1	1	1	0	0	1	0	0
$\mathrm{n}=1$ *		0		0	0		1			0		0		0	$\mathrm{n}=1 *$		0	0	0	10	O	1	1	1	1	0	0	0	1	0	0
			Logic	c Mod	dulu	A6	609 P	Pin N	Numb	bers										Logic	ic Mod	dule	A6	$6 \cup 10$	Pin	Num	mbers				
BAND	1	2	3	4	5	6	7	8	9	10	11	12	13		BAN	ND	1	1	2	3	4	5	6	7	8	9	10	11	12	13	
$\mathrm{n}=10+$	1	0	1	1	1	1	1	1	1	0	1	1	0		$\mathrm{n}=10$	$10+$	1	1	0	0	1	0	1	1	0	1	1	0	0	1	
$\mathrm{n}=10$.	1	0	1	1	1	1	1	1	1	0	1	1	0		$\mathrm{n}=10$		1	1	0	0	1	0	1	1	1	0	1	0	0	1	
$\mathrm{n}=6+$	1	1	1	1	1	1	1	1	1	0	1	1	0	0	$\mathrm{n}=6+$		0	0	1	0	1	0	1	1	0	1	1	0	0	1	0
$\mathrm{n}=6$.	1	1	1	1	1	1	1	1	1	0	1	1	0		$\mathrm{n}=6$ -		0	0	10	01	1	0	1	1	1	0	1	0	0	1	0
$n=4+$	0	1	1	0	0	0	1	1	0	1	1	0	1	0	$\mathrm{n}=4+$		0	0	1	10	0	1	0	1	0	1	1	0	0	1	0
$\mathrm{n}=4$.	0	1	1	0	0	0	1	1	0	1	1	0	1	0	$\mathrm{n}=4$.		0	0	1	1	0	1	0	1	1	0	1	0	0	1	0
$\mathrm{n}=3+$	0	1	1	1	0	1	1	1	1	1	0	0	0		$\mathrm{n}=3+$		0	0	1	10	0	0	1	1	0	1	1	0	0	1	0
$\mathrm{n}=3$.	0	1	1	1	0	1	1	1	1	1	0	0	0		$\mathrm{n}=3$ -			0	1	1	0	0	1	1	1	0	1	0	0	1	0
$n=2+$	0	1	1	0	1	1	1	0	0	0	1	1	1		$\mathrm{n}=2+$			0	10	0	1	1	0	1	0	,	1	0	0	1	0
$\mathrm{n}=2$ -	0	1	1	0	1	1	1	0	0	0	1	1	1		$\mathrm{n}=2$.		0	0	0	01	1	1	0	1	1	0	1	0	0	1	0
$\mathrm{n}=1+$	0	1	1	1	1	1	1	1	1	0	1	1	0		$\mathrm{n}=1+$		0	0	10	01	1	0	1	1	0	1	1	0	0	1	0
$\mathrm{n}=1$.	0	1	1	1	1	1	1	1	1	0	1	1	0		$\mathrm{n}=1$.		0	0	10	01	1	0	1	1	1	0	1	0	0	1	0
$\mathrm{n}=1+$	0	0	0	1	1	1	1	1	1	0	1	1	0		$\mathrm{n}=1{ }^{*}$			1	0	0	1	0	1	1	0	1	1	0	1	0	
$n=1 *$	0	0	0	1	1	1	1	1	1	0	1	1	0		$n=1 *$		1	1	0	0	1	0	1	1	1	0	1	0	1	0	0

Figure 8-55. Logic State Versus Harmonic Band Number

SERVICE SHEET 12

THEORY OF OPERATION

SCAN WIDTH ATTENUATOR

Service Sheet 12 contains the schematic diagram for that part of the SCAN WIDTH switch which functions as a precision resistive voltage divider to determine the scan width per division. For narrow scan widths (2 kHz to 500 kHz , PER DIVISION) the sweep ramp from the $1 / \mathrm{n}$ attenuator is attenuated and applied to the tuning stabilizer circuit where it is combined with the voltage from the FINE TUNE control The narrow sweep plus fine tune voltage from the tuning stabilize circuits is applied to the YIG oscillator tickler coil (see Service Sheet 9) For wide scan widths (1 MHz to 200 MHz , PER DIVISION) the sweep ramp is attenuated and applied to the YIG driver circuits where it is combined with the voltage from the FREQUENCY control. This sweep plus tune signal voltage is applied to the main coil of the YIG oscillator (see Service Sheet 7). The attenuation factor for each position of the SCAN WIDTH switch is contained in the Simplified Scan Width Voltage Divider Circuit.

TROUBLESHOOTING PROCEDURE

SCAN WIDTH ATTENUATOR

There are no active components in the voltage divider circuit. The sweep voltage from the IF Section can be used to check the divider circuitry. With the $\mathrm{n}=1$ BAND selected and SCAN MODE set to SINGLE, -5.00 volts is appiied to the input of the scan width attenuator. This voltage is available for measurement at the SCAN IN/OUT connector on the IF Section and can be traced through the switching and $1 / \mathrm{n}$ attenuator circuitry on Service Sheet 8 to the circuitry shown on Service Sheet 12. The attenuator output on the 93 wire can be measured at A5TP5 and the 938 wire can be measured at A4TP5. Use a digital voltmeter such as the HP $3440 / 3443$ to measure the attenuator output. The chart associated with the simplified schematic contains the voltage level for each position of the SCAN WIDTH PER DIVISION switch. Connector A1P6 can be removed to isolate the voltage divider from the active circuits and an ohmmeter used for point-to-point measurements. For narrow sweep widths, 500 kHz or less, connect between A1P6 pin 37 and pin 39. For wide sweep widths connect between pins 37 and 38 . Use the simplified circuit diagram to assist in checking the series resistance between the pins of A1P6 and to chassis ground. (See connector illustration facing Service Sheet 16.)

EQUIPMENT REQUIRED
Volt-Ohm-Ammeter
HP 412A
Digital Voltmeter
HP 3440A/3443 Service Kit HP 08555-6007

TEST PROCEDURE

Perform the troubleshooting procedure listed above and compare voltages with those listed in schematic diagram chart. Perform a point-to-point check to isolate to the component level.

SERVICE SHEET 12 (cont'd)

SCAN WIDTH	S1	S2	S3	Attenuation Factor	Output Voltage *	
200 MHz	-	1	-	Eo $=$ Ein	-5.00 Vdc	
100 MHz	1	2	-	Eo $=\operatorname{Ein} / 2$	-2.50 Vdc	93 wire
50 MHz	1	3	-	Eo $=\operatorname{Ein} / 4$	-1.25 Vdc	to YIG
20 MHz	1	4	-	Eo $=0.1 \mathrm{Ein}$	-500 mVde	Driver
10 MHz	2	2	-	Eo $=.05 \mathrm{Ein}$	- 250 mVdc	Sweep
5 MHz	2	3	-	Eo $=.025$ Ein	$-125 \mathrm{mVdc}$	Buffer
2 MHz	2	4	-	$\mathrm{Eo}=.01 \mathrm{Ein}$	- 50 mVdc	A5TP5
1 MHz	3	2	-	$\mathrm{Eo}=.005 \mathrm{Ein}$	- 25 mVdc	
500 kHz	1	5	2	Eo $=\operatorname{Ein} / 4$	$-1.25 \mathrm{Vdc}$	938 wire
200 kHz	1	5	3	Eo $=0.1 \mathrm{Ein}$	$-500 \mathrm{mVdc}$	to Scan +
100 kHz	2	5	1	Eo $=.05 \mathrm{Ein}$	-250 mVdc	Fine Tune
50 kHz	2	5	2	Eo $=.025 \mathrm{Ein}$	-125 mVdc	Summing
20 kHz	2	5	3	$\mathrm{Eo}=.01 \mathrm{Ein}$	- 50 mVdc	Ampl.
10 kHz	3	5	1	Eo $=.005$ Ein	- 25 mVdc	A4TP5
5 kHz	3	5	2	Eo $=.0025 \mathrm{Ein}$	- 12.5 mVdc	
2 kHz	3	5	3	Eo $=.001 \mathrm{Ein}$	- 5 mVdc	

See Troubleshooting Procedure for measurement condition.

Figure 8-59. Scan Width Switch Assembly A1A2

SERVICE SHEET 13

theory of o
Service Sheet 13 contains the schematic diagram for the RF Section Analogic circuit.
Refer to the IF Section Operating and Service Manual for the balance of the Analogic
 SCAN TIME PER DIVISIIN and VIDEO FILTER switches in the IF Section. Whe
he swithes are set to any combination of positions which do not permit accurate
 The light will be on when the BANDNIDTH is too narrow or the SCAN WIDTH PER
DIVISION is too wide for the position of the VIDEO FLTER and SCAN TIM

 along with the VIDEO FILTER and SCAN TIME SER DIVIIIION resisivie enewacrks
athe IF Section). With a BANDWIDTH switch setting of 300 kHz and a SCAN

 200 MHz PER DIIIIINN or the BANDW
ddititional resistors are switched in the circuit.
In the FULL scan mode of operation, only resistors R18 and R19 are in parallel with
the resistive networks in the IF Section.
 troubleshooting procedure
When a maluunction has ben isolated to the R Section Analogic circuit or to isolate
nalfunction in the RF Section Analogic circuit, perform the following procedu
 Equipuent required
pigital Voltmeter

HP $3440 \mathrm{~A} / 3444 \mathrm{~A}$

analogic troubleshooting

1.a. Connect the digital voltmeter test leads to A1P6 pin $67(907-10$ Vdcc) and pin 25
(957 analogic line). (See connector illustrations facing Service Sheet 16. . Set digital

SERVICE SHEET 13 (cont'd
oltmeter FUNCTION to OHMS and RANGE to 100 S . Set RF SECTION SCAN
IIDTH to PER DIVISION, SCAN WIDTH PER DIVISION to 2 kHz and

Readings should be within 5% of the values shown.
1-b. Connect the digital voltmeter between A1P6, pin 67 and pin 24 (956
analogic line). Rotate SCAN WIDTH PER DIVIIIION switch from 200 MHz back ${ }_{c}^{\text {analogic }} \mathbf{2} 2 \mathrm{kHz}$.
-c. Rotate BANDWIDTH switch from 300 kHz through 0.1 kHz and compare

 2 switch troubleshooting
2.a. With SCAN WIDTH switch in the PER DIVISION and in FULL scan modes,
neasure resistance between A1PG, pin 67 (907 wire) and A1P6, pin 26 (958 Nires), to cesteck the - - - 0 veen suppoly pit the If Section
be 0 ohms. In ZERO scan, resistance should be infinity.
2-b. With the switches set as in 2 2.a, measure the resistance between A1PG -67 (90
 Resistance should be approximately 3160 ohms (AAAR2R20.
and PER DIVISION modes and infinity in ZERO scan mode.

gure 8.61. Bandwidth Switch Assembly A1A

SERVICE SHEET 13 (cont'd)

SCAN WIDTH
PER DIVISON (a)
(907 Wire, AIP6-67)

MHz

\section*{| 300 kH |
| :---: |
| 100 kH |
| 30 kH |}

300 kk
$\begin{array}{c}3 \mathrm{kH} \\ 10 \mathrm{kH} \\ 3 \mathrm{kH} \\ 3 \mathrm{kH}\end{array}$

sCAN WIDTH

 44.3 K 35 $29 . \mathrm{FK}$ 26 FK 2.5 FK 22.9 K 2.1 K
 ${ }_{19.7 \mathrm{~K}}^{20.8 \mathrm{~K}}$

Simplified Diagram Switching Logic

CAN WIDTH PER DIVISION	${ }_{\text {Switches Closed }}^{\text {None }}$	$\underset{\text { Switch }}{\text { Bandwidth }}$	Switches Closed
${ }_{20}^{10 \mathrm{kHzz}}$	${ }_{1,2}$	${ }_{0}^{0.1}$kHzz 0.3 kHz	$\underset{\substack{1,2,2,3,4 \\ 1,2,3}}{ }$
50 kHz	${ }_{1,2,2,4}$	${ }_{3}^{1 \mathrm{kHz}}$	
	7	10 kHz	${ }_{2,3,4}$
0.5 MHz	$1,2,7$	(30 kHz 100 kHz	
${ }^{1}$		${ }^{1000 \mathrm{kHzz}}$	$\stackrel{2}{\text { None }}$
${ }^{5} \mathrm{MHz}$			
	${ }_{1}^{1,6} 1,{ }_{1}$		
50 MHz	${ }_{1,2}^{1,2,3,6}$		
(${ }_{\text {con }}^{100 \mathrm{MHz}}$	${ }_{\substack{1,2,3,4,6 \\ 1,2,3,4,6}}$		
		RF Sect	Analogic

Service

SERVICE SHEET 14

THEORY OF OPERATION

Service Sheet 14 contains the schematic diagram for the BANDWIDTH switching, which determines the bandwidth of the 3 MHz IF in the IF Section. The AMPL CAL circuit is also contained on the schematic.

The RF Section contains only the voltage switching circuitry for the IF Section. Actual bandwidth switching is accomplished in the IF Section with diode switches.

1 P/O SCAN WIDTH SWITCH

The switch section shown provides -12.6 volts to the Bandwidth Switch Assembly for use in selecting the desired bandwidths when the analyzer is operated in the ZERO or PER DIVISION modes. In the FULL scan mode this switch removes the -12.6 volts from the Bandwidth Switch and connects it directly to the 923 control line to select the 300 kHz bandwidth.

SERVICE SHEET 14 (cont'd)

Set analyzer SCAN WIDTH to FULL and BANDWIDTH to 300 kHz . Resistance should be 0 ohms. Set SCAN WIDTH to ZERO. Resistance between A1P6, pin 66 and pin 53 should be 10 ohms (A1A1R1). Switch SCAN WIDTH to PER DIVISION, resistance should remain 10 ohms. Check each of the other bandwidth switching lines by checking between A1P6, pin 66 , and pins $53,52,51,50,49$, 48 , and 47 . Note there is no 3 kHz switching line (see schematic diagram).

Connect meter leads to A1P6, pin 66 and pin $47(0.1 \mathrm{kHz}$ bandwidth selection line). Resistance should be 100 ohms for all positions of the BANDWIDTH switch except 0.1 kHz . Measure resistance between pin 66 and pins $48,49,51$, and 52 Resistance should be 100 ohms for all positions of the BANDWIDTH except that position associated with the selection under test.

Check the AMPL CAL line by measuring resistance between A1P6, pins 68 and 23. Actual value will depend on setting of AMPL CAL potentiometer.

SERVICE SHEET 15

THEORY OF OPERATION

Service Sheet 15 contains the schematic diagram for the Switching Regulator Assy A9 and the $+10,+20$ Volt Regulator Assy A8. The +100 volt supply, from the Display switching regulator is used as it is much more efficient than a conventional serie regulator when there is a large difference between input and output voltages. (In this case power consumption is approximately 22 watts less than it would have been if conventional series regulator had been used.

The +20 volt switching regulator output is not used directly to power any circuits in the instruments, but is reduced to +20 and +10 volts by conventional series voltage regulators. These "post" regulators provide better regulation and lower ripple than
switching Regulator
A simplified switching regulator circuit is shown below. When switch S is closed capacitor C is charged through inductor L , toward the input voltage level. However before C reaches the input level, S is opened. When S is opened, diode D provides a path for current which had been established in L. By operating S at a fast rate the une is developed across the load The average voltage level is dependent on the ratio f the "on" to "off" time of switch S.

Figure 8-67. Switching Regulator Simplified Diagram

SERVICE SHEET 15 (cont'd)

switching regulator is filtered by A8L1 and C1, to reduce the 100 kHz rppple efore being applied to the regulator circuits
2-a. +20 VOLT REGULATOR
Transistor Q2 is the series regulator and functions as a variable resistance in series with the output. The conduction of this transistor is controlled by operationa mplifier U2.
A fixed reference voltage from breakdown diode CR1 is filtered by R1 and C2 and applied to pin 3 of U 2 . The voltage from an adjustable voltage divider, on the controlling the output voltage.
Operational amplifier U2 functions as a comparison and control amplifier. U2 will control the conduction of Q2 such that the voltage at pin 2 is kept within a few these voltages due to offset voltage error). This action will keep the output voltage essentially constant.
When the current requirements of the external circuitry increases, the outpu voltage will decrease and cause a reduction of the voltage at pin 2 of U 2 . This wil ause an increase in the voltage at pin 6 of U 2 , Q2 will conduct more heavily and the output voltage will increase to very near the original level. Due to the larg gain of U2, only a very small voltage decrease at pin 2 is necessary to greatly
ncrease conduction of Q2.

R3 and C3 roll off the frequency response of the feedback loop to prevent the circuit from oscillating.
Over current protection is provided by the current limiter in the Switching Regulator Assembly A9.
Overvoltage protection for both the regulator and external circuits is provided by "Crowbar" circuit. SCR CR7 will short the output of the regulator to ground if the output voltage should rise to approximately 24.2 volts. At this voltage CR8
will conduct current into the gate of the SCR turning it on. The SCR will remain will conduct current into the gate of the SCR turning it on. The SCR will remain in conduction until power to the regulator is removed. R11 prevents the SCR oltage from being developed across the +20 volt line if a negative supply should short to the line.
2-b. +10 VOLT REGULATOR
The operation of the +10 volt regulator circuit is identical to that of the +20 vol egulator; except for the circuitry on the inputs of the operational amplifier. The eference voltage at pin 3 of U 1 is obtained by the R 7 and R8 voltage divide rom the +20 volt sense line. The voltage at pin 2 of U1 is obtained directly from he +10 volt sense line, not through a voltage divider. The voltage adjust establishing a +10 volt reference at pin 2 of U1.

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to the switching regulator and $+10 /+20$ power supply circuitry or to isolate a malfunction in the circuitry, perform the ower Supply Assy A8 on an extender board.

SERVICE SHEET 15 (cont'd

EQUIPMENT REQUIRED

Digital Voltmeter
HP 3440A/3444A

Power Supply (100 ohm and 500 ohm 20 watt resistor connected in paralle) $6 .{ }^{\circ}$
SWITCHING REGULATOR TROUBLESHOOTING
1 -a. A malfunction in the switching regulator will normally blow the +100 volt fuse in the Display Section power supply. To isolate the malfunction to the switching regulator, remove the $+10 ;+20$ volt power supply and measure the open circuit voltage at A9C2. Open circuit voltage should be $+30 \pm 1.5$ volts. If correct voltage is observed, connect a resistive load between A9C2 and chassis ground. ± 1 volt. If correct voltage is obtained under load, proceed to test procedure 2

1-b. If normal voltages were not obtained in step 1-a, remove power from analyzer and remove switching regulator from chassis (see removal procedure). Connect the HP 6205 B Power Supply to provide +100 volts to the switching regulator. Connect the 83 -oh
1- If the (1 (b) check diodes $49 \mathrm{A1CR} 2$ through CR 4 and transistors $Q 2$ and $Q 3$ for shorts. If the output voltage is low or high check transistor array A9A1U1.
1-d. Use the typical voltage levels and waveforms below to isolate to the system operation is marginal Voltages and waveforms are for a
stem operating under normal load condition.
$2+10,+20 \mathrm{~V}$ POWER SUPPLY TROUBLESHOOTING
2-a. Install Power Supply Assy A8 on extender board. Note: Power Supply Assy secured to Interconnect Assy A10 with two screws. With power remove check resistance at A8 pins 5 and 3 to chassis ground. Typical values, pin 5 to chassis 750 ohms, pin 3 to chassis 2.2 K ohms. Typical values from XA8 pin 5 to chassis
810 ohms and pin 3 to chassis 2.3 K ohms with power supply assy removed from chassis. Install power supply on extender board, apply power and check voltage level at test points 1 and 2.
20 b . The voltage regulators function as a "closed loop". Generally, malfunction of almost any component may affect dc levels at all points in the circuit. Likewise a malfunction in either supply could affect the other. The +10 volt supply can be
isolated from the +20 volt supply by removing one end of resistor A8R 7 . The +20 isolated from the +20 volt supply by removing on
volt supply can then be checked independently.

2 -c. Generally, if the output is completely missing or consistently high, the series regulator should be checked first for an open or shorted condition. Also, if voltage is high the SCR crowbar should be checked
2-d. The HP 3440/3443A should be used to check for the presence or absence o dc levels. The HP 412 A should be used for point-to-point resistance measurements.

2-e. After repairs have been accomplished, perform the power supply adjustmen procedure in Section V. Secure the power supply to the interconnect assembly with the two screws removed in step 2 -a above.

Figure 8-69. Switching Regulator Board Assembly A9A1

Figure 8-70. $+10 /+20$ Volt Power Supply Assembly A8

SERVICE SHEET 15 (cont'd)

A9 Switching Regulator Voltage Measurements
Conditions: Switching Regulator removed from RF Section. +100 volts applied A9C1, 83-ohm load connected across output. (A 100 -ohm and 500 -ohm 20 -watt resistor connected in parallel, provide a load equivalent to a normal supply load.) Typical Vdc levels indicated.

TPA		+26.15						
A9A1U1	Pin 1	+26.25	Pin 5	+26.60	Pin 9	+27.0	Pin 13	+26.25
	Pin 2	+19.96	Pin 6	+26.83	Pin 10	+26.25	Pin 14	+30.66
	Pin 3	+19.30	Pin 7	+26.25	Pin 11	+27.85		
	Pin 4	+19.96	Pin 8	+26.60	Pin 12	+26.60		
		Emitter		Base		Collector		
A9A1Q1		+99.2		+99.4		+99.3		

Waveforms: A9 Switching Regulator
Conditions: Same as for voltage measurements

A

A9A1Q1 Emitter

 Volts/Div: 10Time/Div: $5 \mu \mathrm{sec}$

A9A1U1E Base Volts/Div: 2 Volts/Div: 10 Time/Div: $5 \mu \mathrm{sec}$ Time/Div: $5 \mu \mathrm{sec}$

REMOVAL AND REPLACEMENT PROCEDURES
See Service Sheet 18

Figure 8-68. Switching Regulator Assembly A9
service sheet 16

	$\begin{array}{\|c} \text { Wirer } \\ \text { Wore } \\ \text { Code } \end{array}$	Function	то	Serice
$\frac{1}{2}$	${ }_{903}$	- ${ }_{\text {- }}$	${ }_{\substack{\text { P2, } \\ 114 \mathrm{Cb}}}$	${ }_{10}^{2}$
3	${ }_{908}$	External Mixiere Bias	A12	2
${ }_{5}^{4}$	${ }_{967}^{996}$	Signal Identifier Attenuator Output		${ }_{13}^{6}$
${ }_{7}^{6}$		${ }_{\text {Onen }}^{\substack{\text { Open } \\ \text { Attenuator Driver Triger }}}$	${ }^{10.4}$	2
9	${ }_{95}$	Ateenuato Driver Output	${ }_{\substack{\text { Alo. } \\ \text { A10.95 }}}$	${ }_{7}^{2}$
${ }_{10}$	${ }_{98}^{95}$	Noise Filter Control	${ }_{\text {A10.98 }}$	7
11	901	Frequency Tune Pot. Output	${ }^{\text {A10.901 }}$	1
${ }_{13}^{12}$	${ }_{906}^{904}$	Vcxo Sweep friver outp	${ }_{\text {A10.006 }}^{\text {A10.94 }}$	${ }_{9}^{10}$
${ }_{15}^{14}$	${ }_{915}^{914}$	${ }_{\text {A }}^{\text {A Bit Band Code }}$	A10.914 ${ }_{\text {A10.915 }}$	111
${ }_{16}$	${ }_{916}$		${ }_{\text {A10 }}$ A10.916	11
${ }_{18}^{17}$	${ }_{918}^{917}$	${ }_{\text {D }}^{\text {D Bit Band Code }}$	${ }^{\text {A10.917 }}$	${ }_{611}^{11}$
19		Open		
20	3	-5 to +5 Sweep Ramp	${ }^{\text {P }}$. 6	7,8
		Linear Gain Compensation Control	${ }_{\substack{\text { P3, } \\ \mathrm{P} 3 \\ \hline \\ \hline}}$	
${ }_{23}^{22}$	${ }_{96}^{6}$	Linear Cain Compensation Control	${ }_{\substack{\text { P3, } \\ \text { P3,29 }}}$	14
${ }_{25}^{24}$	${ }_{\substack{956 \\ 957}}$	Video Filter Analagic ine	(${ }_{\substack{\text { P3, } 38 \\ P 3.30}}$	${ }_{13}^{13}$
${ }_{26}^{25}$	${ }_{958}^{997}$	Norma A. Alagogiciline	${ }_{\substack{\text { P3,39 } \\ \text { P3, }}}$	${ }_{13}^{13}$
${ }_{28}^{27}$	${ }_{92}^{91}$	Attenator Switcting Votaege 40 dB	${ }_{\text {A13 }}{ }_{\text {A13 }}$	$\stackrel{2}{2}$
${ }_{29}^{28}$	${ }_{93}$		${ }_{\text {A13 }}{ }^{\text {A13 }}$	${ }_{2}^{2}$
30	94	Attenuator Swithing voltage 20 dB	${ }^{\text {A13 }}$	${ }_{2}$
	${ }_{96}^{95}$	Attenuator Switching Voltage 10 dB	${ }^{413}$	${ }_{2}^{2}$
${ }_{33}^{32}$		Attenuator Switching Votage 10 dB	${ }^{113}$	2
${ }_{34}^{34}$	${ }_{921}^{923}$	Freauncy Tune Pot. 1.15 .2 Volts	${ }^{\text {A10 }} 10.923$	7
${ }_{36}^{35}$			${ }_{\text {A }}^{\text {A10.925 }}$	
37 38 38	${ }_{\substack{926 \\ 929}}$	(1/n Atten. Sweep output	${ }_{\text {A10 }}^{\text {A10.926 }}$	12
${ }_{39}^{38}$		Scan Atten (Narrow Scan Output)	A10.928 10.922	9/12
${ }_{40}$	${ }_{934}$	Sweep Buffer Output	A10.934	7
	${ }_{936}^{935}$	$\underbrace{\substack{\text { Sweep pus } \\ \text { Tune Signal }}}_{\text {STweep plus Tune Ampl Input }}$		
${ }_{43}^{42}$	${ }_{937}^{996}$	Sweep pus fune signal	${ }_{\text {A10.937 }}$	7
${ }_{45}^{44}$	938		A10.938	6
${ }_{46}$				
${ }_{48}^{47}$	${ }_{9}^{913} 9$	${ }_{0}^{0.1} \mathrm{Hzzz}$ Bandw widh Control	${ }_{\substack{\text { P3, } \\ \text { P3 }}}$	${ }_{14}^{14}$
${ }_{49}^{48}$	914	${ }_{\text {a }}$	${ }_{\text {P3 }}$	${ }_{14}^{14}$
50	916	10 kHz Bandwidth Control	${ }^{\text {P3. } 25}$	14
${ }_{52}^{51}$	${ }_{918}^{917}$	30 kHz Bandwidth Control 100 kHz Randwidth Control	${ }_{\substack{\text { P3.26 } \\{ }_{\text {P3 }}}}$	${ }_{14}^{14}$
${ }_{54-60}^{53}$	923	${ }^{3000 \mathrm{kHz} \text { Bandwidth Control }}$ Open	${ }^{\text {P3. } 28}$	14

SERVICE SHEET 16 (cont'd

SERVICE SHEET 16 (cont'd

${ }^{\text {From P6 }}$ Pin N	Wire Color	Function	то	Serice
${ }_{3}^{32}$	${ }_{96}^{95}$	Attenuator Switching Voltage, 10 dB Attenuator Switching Voltage, 10 dB		${ }_{2}^{2}$
-		${ }^{\text {Open }}$ Freanece T	A1AAR1	
${ }_{35}$	${ }_{924} 9$	Frequency Tune Pot. 7.3 V V	A1AAR	
${ }_{\substack{36 \\ 37}}$	${ }_{926}^{925}$	Per Division Sweep input	${ }_{\text {A }}$ AALASSL-2F8	${ }_{12} 12$
398	${ }_{928}^{927}$	Yig Driver Sweep Input		${ }_{9}^{7 / 12}$
${ }_{41}^{40}$	934 935 35	(ty		7
${ }_{43}^{41}$	- ${ }_{936}^{936}$		为	7
${ }_{44}^{43}$	${ }_{938}^{937}$			6
${ }_{47}^{46}$	${ }_{913}$	${ }_{0}^{0 \text { Open }} 0.1 \mathrm{~Hz}$ Bandwidth Control	A1A151.1R1	
		0.3 kHz Bandwidth Control	${ }^{\text {A1A1151.182 }}$	
49 50	915 916	${ }_{1}^{1} 1 \mathrm{kHz}$ Bandwidith Control		${ }_{14}^{14}$
	917	30 kHz Bandwidh Control	${ }^{\text {A1A1151-1P6 }}$	
${ }_{5}^{52}$	${ }_{923}^{918}$	100 khzz Bandwidh Control 300 kHz zandwidth Control		${ }_{14}^{14}$
${ }_{54}^{54}$-60				
${ }_{62}^{61}$	${ }_{948}^{945}$	Silenal Identifire Atenuator		
63 64 6	${ }_{978}^{968}$	${ }_{\text {Sweep }}^{\text {Suus Tune or Full Scan }}$ Ful Scan Frequency Marker		7
${ }_{65}^{65}$		${ }^{\text {Open }}$	113351.451^{12}	
${ }^{67}$	${ }_{907}^{97}$	${ }^{-12006}$ Supply		
		$\underset{+}{+20 \mathrm{~V} \text { Supply }}$	${ }_{\text {A1A1R11 }}^{\text {AlR3 }}$	- ${ }_{2}^{14}$
${ }_{71}^{70}$			A1	
${ }_{73}$		${ }_{\text {Open }}$		
${ }_{74}^{73}$		${ }_{\text {Onem }}^{\text {Open }}$ Log Rel Level Lamp. No. 1		
75		${ }_{\text {Log }}$ Lofet Level Lamp No. 2		
${ }_{76}^{76}$	${ }_{938}^{937}$	${ }^{\text {Log Ref Level Lamp No. }{ }^{\text {a }} \text {, }}$		
78 79	9945	${ }_{\text {Log Ref }}$ Level Lamp No. 5	A113351-4R6	2
79	${ }_{946}$	Logr Ref Level Lamp No. 6	A1A3S1-485	

- pins not useo

CONNECTOR J6/APPG

Figure 8-72. Connector Pin Location Diagram
$\underset{\substack{\text { Senvice } \\ \text { Shlet Tic }}}{\text { and }}$

SERVICE SHEET 18

REMOVAL AND REPLACEMENT INSTRUCTIONS

CAUTION

While working with and around the semi-rigid coaxial cables in the RF Section, do not bend the cables more than necessary. Do not torque the
RF connectors to more than 2 inch-pounds. Be especially careful when working on the connectors on the first converter

NPUT ATTENUATOR A13 REMOVAL AND REPLACEMENT PROCEDURE

1. Remove top cover (MP5) by removing six flat head screws.
2. Remove bottom cover (MP6) by removing four flat head screws
3. Remove Front Panel Assy A1. The front panel assy is secured to the left side gusset (MP1) near the top front corner by one flat head screw and to the yok assy (MP12) by two flat head screws. Disconnect front panel connector plug A1P6. Lift the front panel assy straight up while pulling out on the left side gusset.
4. Remove the right side gusset (MP4) by removing all the screws on the outside No. 6 flat head screws securing the gusset No. 6 flat head screws securing the gusset.
5. Disconnect the LO OUT cable from the Tuning Stabilizer Assy A14 (Cable W20 at A14J2). Disconnect the LO IN cable from the tuning stabilizer (Cable W19 a A14J1).
6. Remove one pan head screw securing the tuning stabilizer casting to the fron stabilizer casting to the rear panel (MP2)
7. Remove two pan head screws securing the attenuator to the main deck (MP8)

CAUTION

Be especially careful not to bend or damage the cables and connectors in Be especially caref
the following steps.
8. Disconnect the cable from the attenuator input (W1 at A13J1). Disconnect the cable from the attenuator output (W2 at A13J2).
9. Slide the attenuator out the right side of the instrument.
10. Unsolder and remove the six wires connected to the attenuator. Note orientation of attenuator and wires.
11. Place the replacement attenuator in the same position as in step 10 and solder the six wires removed in step 10. (See Figure 8-14.)
2. Slide attenuator into position. Care must be taken to position the wires going to the attenuator so that the wires are not pinched between the attenuator and the second converter housing.
13. Complete the installation by reversing the procedures in steps 1 through 8 . In steps 4 and 6 do not tighten the screws until all the screws are in place.

Note
Do not remove First Converter until replacement units are on hand. See
steps 15 and 16 below, steps 15 and 16 below.

SERVICE SHEET 18 (cont'd

FIRST CONVERTER A12 REMOVAL AND REPLACEMENT PROCEDURE

1. Remove top cover (MP5) by removing six flat head screws

Cut the two tie wraps securing Filter FL2 to the semi-rigid coaxial cables
3. Unsolder the wires from the first converter.
a. 908 wire from EXT BIAS terminal
b. 913 wire from DIODE BIAS terminal
c. Two 907 wires from EMITTER BIAS terminal
d. Two 912 wires from +10 terminal
4. Remove the two pan head screws securing the first converter suppor (MP3) to the right side gusset (MP4).

CAUTION

Be especially careful not to bend or damage
cables and connectors in the following steps.
5. Disconnect EXT IF Cable W6 from first converter connector A12J3.
6. Disconnect the LO OUT Cable W4 from the first converter connector A12J5
7. Disconnect LO IN Cable W4 from first converter connector A12J5
8. Disconnect IF OUT Cable W8 from the first converter connector A12J6. Disconnect the other end of Cable W8 from Relay K1J1 and remove cable
9. Disconnect EXT MIXER Cable W3 from first converter connector A12J2
0. Disconnect INPUT Cable W2 from first converter connector A12J1.

1. Remove first converter and converter support from the RF Section.
2. Remove the three flat head screws securing the first converter to the support.
3. Remove Band Buffer Board Assy A6.
4. Remove the Input Mixer Gain Compensation Network Assy A16 from the band buffer board by removing one screw and pulling the gain network assy out.
5. Package both First Converter Assy A12 and Input Mixer Gain Compensation Network Assy A16 in the reusable container in which th replacement assemblies were shipped.
6. Return defective units for factory repair and credit.
7. Replace the two units by reversing the procedure in steps 1 through 14 .

\[

\]

SECOND CONVERTER A11 REMOVAL AND REPLACEMENT PROCEDURE

1. Remove top cover (MP5) by removing six flat head screws.
2. Remove bottom cover (MP6) by removing four flat head screws.

SERVICE SHEET 18 (cont'd)

3. Remove Front Panel Assy A1. The front panel assy is secured to the left side gusset (MP1) near the top front corner by one flat head screw and to the yoke assy (MP12) by two flat head screws. Disconnect front panel connector plug A1P6. Lift the front panel assy straight up while pulling out on the left
side gusset. side gusset.
4. Loosen the LO IN Cable W4 at the first converter connector A12J5 Disconnect the other end of this cable from the YIG oscillator connecto

5. Disconnect Cable W12 from Relay K2J2 and Relay K3J2. (Cable W12 removed for access to K2J3 connector.) Disconnect the black flexible Cable W16 from Relay K2s3.
6. Remove three pan head screws securing Isolator AT6 to rear panel (MP2). panel.
7. Remove three pan head screws securing bottom flange of main deck (MP8) to the Interconnect Board A10.
8. Remove two flat head screws securing right side gusset (MP4) to yoke assy (MP12). Remove two flat head screws securing right side gusset to rear panel
9. Carefully separate the right side of the RF Section from the left side
10. Disconnect LO OUT Cable W20 from the tuning stabilizer connector A14J2 Disconnect LO IN Cable W19 from connector A14J1.
11. Loosen Cable W9 at Relay K1J3. Disconnect Cable W9 (input to Notch Filter A11FL1) from
from A11J5.
12. Disconnect the three cables from the top of the second converter. (Cable W15 from A11J3, Cable 14 from A11J2 and Cable W13 from A11J1.)
13. Remove one pan head screw securing the tuning stabilizer assy to the front of the main deck (MP8). Remove two pan head screws securing tuning stabilizer the way.
14. Remove the main deck (MP8) by removing the five flat head screws securing it to the attenuator and the second converter.
15. Carefully remove the second converter assy.
16. To replace the second converter, reverse the above procedure. Be careful not to pinch wires between the various assemblies.

SECOND CONVERTER MIXER AND OUTPUT ASSY A11A2

REMOVAL AND REPLACEMENT PROCEDURE

Note

The Mixer and Output Assy A11A2 can be renoved without having to remove

1. Remove the top cover (MP5) by removing six flat head screws.
2. Cut the two tie wraps securing Filter FL2 to the semi-rigid coaxial cables.

Second Converter Casting Illustrated Parts Breakdown

SERVICE SHEET 18 (cont'd)

3. Loosen the LO IN Cable W4 at the first converter connector A12J5. Disconnect the other end of Cable W4 from YIG oscillator connector A3J1. Lift the end of the cable removed from A3J1 up above the first converter and disconnect the cable from the first converter.
4. Disconnect the EXT MIXER Cable W3 from the first converter connector A12J2.
5. Disconnect Cable W14 from the second mixer and output assy connector A11J2. Disconnect the other end of Cable W14 from relay connector K2J1.
6. Position the wires going to the first converter out of the way of the second mixer and output assy.

CAUTION

Use care in removing the second mixer and output assy to avoid damaging the diode mounted on the bottom of the assy. Do not force the assy.
7. Remove the four socket cap screws from the assy. Lift the unit straight up until it touches the first converter, then rotate it so the RF connector A11J2 turns and faces toward the rear of the instrument. Carefully lift the assy up and out of the instrument.
8. To replace the second converter mixer and output assy, reverse the above procedure.

THIRD CONVERTER A2 REMOVAL AND REPLACEMENT PROCEDURE

1. Remove top cover (MP5) by removing six flat head screws
2. Remove bottom cover (MP6) by removing four flat head screws.
3. Remove the top cover of the third converter by removing six pan head screws.
4. Disconnect the three coaxial cables from the top of the third converter; Cable W18 from A2J2, Cable W24 from A2J4, and Cable W16 from A2J1.
5. Remove nut and washer securing connector A2J1 to third converter casting.
6. Remove the three pan head screws near A2J1.
7. Unsolder the +20 volt jumper wire between A 2 C 1 and A 2 C 13 . (Available through hole in left side gusset.)
8. Unsolder the input wire to the 50 MHz Amplifier Board A2A5. This wire comes from underneath the board to the pad marked "IN" near input match capacitor A2A5C2.
9. Remove the two side and four bottom screws securing the third converter casting to the left side gusset and the Interconnect Board A10.
10. The top casting, containing the 50 MHz amplifier, can be lifted up and tilted out of the way.
11. With the top casting tilted out of the way, the 550 MHz Amplifier A2A1 and the $550 / 50 \mathrm{MHz}$ Mixer A2A3 are exposed. (See Figure 8-22.)
12. Unsolder the three wires going to feedthru capacitors A2C2, A2C3, and A2C4.
13. Lift the third converter straight up and remove the red cable W17 from connector A2J3.
14. The converter can be lifted out and away from the chassis.
15. To remove the top casting, disconnect the wires at feedthru capacitors A2C8, A2C9, A2C10, A2C11, and A2C12.

SERVICE SHEET 18 (cont'd)

16. Remove bottom cover by removing two screws to gain access to the 500 MHz LO Drive A2A2 and the 500 MHz LO A2A4.
17. Reverse the above steps ${ }^{+}$oreplace the third converter.

SWITCHING REGULATOR A9 REMOVAL \& REPLACEMENT PROCEDURE

1. Push wiring harness away from the two nuts that secure the switching regulator to the board shield (MP14) and remove the nuts with an open end wrench.
2. Remove the two screws securing the $+10,+20$ Regulator Assy A8 to the Interconnect Board A10. Remove the $+10,+20$ regulator board.
3. Lift the Switching Regulator Assy A9 out and disconnect the two wires. The yellow (4) wire from the +26 V output and the White-Red (92) wire from the +100 V input.
4. To replace the switching regulator reverse the above procedure. When installing the nuts in step 1, it is easiest to install the lower nut from the bottom of the RF Section.

TUNING STABILIZER A14 REMOVAL \& REPLACEMENT PROCEDURE

1. Remove top cover (MP5) by removing six flat head screws.
2. Remove bottom cover (MP6) by removing four flat head screws.
3. Remove Front Panel Assy A1. The front panel is secured to the left side gusset (MP1) near the top front corner by one flat head screw and to the yoke assy (MP12) by two flat head screws. Disconnect the front panel connector plug (A1P6). Lift the front panel assy straight up while pulling out on the left side gusset.
4. Disconnect the LO OUT Cable W20 from A14J2. Disconnect the LO IN Cable W19 from A14J1.
5. Unsolder the wires going to feedthru capacitors on the tuning stabilizer. (ERROR OUT 958 wire, +20 902 wire, -10907 wires (2), +10 912 wire, SWEEP IN 903 wire, +20 SWITCHED 948 wire, and GND LUG 901 and 0 wires.)
6. Remove one pan head screw securing the tuning stabilizer casting to the front of main deck (MP8).
7. Remove one pan head screw securing tuning stabilizer casting to rear panel (MP2).
8. Remove two pan head screws securing tuning stabilizer casting to right side gusset (MP4).
9. To replace the tuning stabilizer reverse the above procedure.

Ref Des.	\|tem No.	Description	HP Part ${ }^{\text {O }}$.
Allc1	1	C: FXX CER 5000 PF $80.20 \% 200 \mathrm{VDCW}$	0160.3036
Al1c2	1	C : FXO CER $5000 \mathrm{PF} 880.20 \% 200 \mathrm{~V}$	0160.3036
All MPI	2	Screw Pan ho slot or $0.80 \times 0.88^{\prime \prime}$	
Allu1	3	CONNECTOR: RF S50.OHM SCREW ON TYPE	12550829
A11]2	M	SEE A1 1 a 2 I2	
A11]3	3	CONNECTOR: RF 50-OHM SCREW ON TVPE	${ }^{12550.0829}$
A11.14	3	CONNECTOR: RF 50.OHM SCREW ON TYPE	${ }^{12550.0829}$
A1115	3	CONNECTOR: RF 50 OHM SCREW ONTYPE	${ }^{1250.0829}$
$\mathrm{Al1MP2}^{\text {a }}$	4	SCREW: PAN HD POzI OR $4.40 \times 0.500^{\prime \prime} \mathrm{LG}$	2200.0111
A $11 \mathrm{MP3}^{\text {P }}$	5	SCREW: SST PAN HAD POZII DR $4.40 \times 0.875^{\prime \prime} \mathrm{LG}$	2200.0117
A11MP6	6	SCREW: FLAT HAD POZII OR $4.40 \times 0.250^{\prime \prime} \mathrm{LG}$	2200.0140
A11 MP4	7	SCREW: FLAT HD POZZI OR $4.40 \times 0.885^{\prime \prime} \mathrm{LG}$	2200.0172
A11 MP5	8	SCREW: PAN HD POZII DR $6.32 \times 3 / 8$ W/LK	2360.017
A11 MP7	9	NUT: HEX STL $10.32 \times 3 / 8$	27400003
A11MP8		SCREW: SOCKET CAP 4.40 THREAD	3030.0151
${ }^{\text {Al1 } 1199}$	11	SCAEW: SET 10.32 UNF 2A THREAD	3030.0397
A11 MP10		INPut output Loop	${ }^{08555.00033}$
A11M	13	SUPPort. SLOT FILT	08555-20002
A11M	14	SCREW: TUNING	${ }^{08555-20019}$
A11 MP17	15	Cavity block: secono	5.2
A11MP13	16	cap. outer element	08555-20040
All $^{\text {APP }} 14$		CAP INNER ELEMENT CAP OIELECTRIC	O8555.-2009
A11MP 1	18	COVER PLate secono converter	
AIIFL1	20	LINESLOT FLITER	08555-20065
A11A3	21	board assy second converter filter	08555.60062
Allal	22	OSCILLATOR ASSY: 1.56 Gz	${ }^{08555.60068}$
A11A2	${ }^{23}$	SECONO MIXER OUTPUTASS	${ }^{08555.60069}$
Al1alci	A	C: FXO CER 0.4PF 0.1% \% 500 VOCW	016
A1AA1 R2	B	R: FXD MET FLM 464 OHM 1\%1/8W	
A1AAR3	${ }^{\text {B }}$	R. FXD MET FLM $4640 \mathrm{HM} 1 \% 1 / 8 \mathrm{~L}$	${ }^{06988.082}$
${ }^{\text {AlA A1P1 }}$	c	C. FXO MET FLM $100 \mathrm{HM} 1 \% 18 \mathrm{~mW}$	-
A11A101	O		1854.2922 1854.0292
A11A1MPP	E	holoer transistor	${ }^{08555-20038}$
Al1all		coupling. secono lo loop	${ }^{08555.00012}$
A11A2C1	G	c. FXD CER 1000 PF $20 \% 100 \mathrm{VDCW}$	$0160 \cdot 2327$
A11A2C2	H	C. FXD MICA $15 \mathrm{PFF} 10 \%$ 250 V VCW	${ }^{0166-3550}$
A11A2C3	J	C: FFD MICA $33 \mathrm{PFP} 10 \% 250 \mathrm{VOCW}$	${ }^{0160.3551}$
A11 A2MP4		SCREW. PAN HO POZI OR 2.56×0 250" LG	${ }^{0520.0128}$
A11A2811	L	${ }^{\text {R FXX FLM }} 500 \mathrm{OHM} 2 \%$ 1/8W	0698.723
A11A232	M	CONNECTOR R R 50.0 HM SCREW ON TYPE	${ }^{1250.0829}$
A11 A2MP3	N	CONNECTOR SIISLE CONTACT	${ }^{1251.15563}$
A1A A2CR1	0	OIOOE. HOT CARRIER	${ }^{1901.0633}$
A11A2L1	${ }^{\text {P }}$	COILCHOKE O.39 UH 10\%	100.2254
A11 A2MP1	${ }^{\text {R }}$	LIO: RESONATOO HOUSİG	${ }^{08555-00331}$
A11A2MP2	s	resonator housing	08555.20036

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
			CHASSIS PARTS		
MP1	08555-00024	1	GUSSET:LEFT	28480	08555-00024
MP2	08555-00022	1	PAMEL: REAR	28480	08555-00022
MP2	08555-00002	1	SHIELDICONNECTOR	28480	08555-00002
MP3	08555-00018	1	SUPPORTBIST CONVERTER	28480	08555-00018
MP4	08553-00023	1	GUSSETIRIGHT	28480	08555-00023
MPS	08555-00016	1	COVER TOP	28480	08555-00016
MP6	08555-00017	1	COVER:BOETIOM	28480	08555-00017
MP6	5040-0274	1	FOOT, PLUG-IN	28480	5040-0274
MP7	08555-20001	1	PLATEICONNECTOR	28480	08555-20001
MP8	08555-00019	1	DECK:MAIN	28480	08555-00019
Mp9	08555-20027	4	SPACERIYIG COVER	28480	08555-20027
MP10	08555-00025	1	COVER aYIG	28480	08555-00025
MP11	28555-00042	1	BASEIYIG	28480	$08555-00042$
MP12	0510-0045	6	RING:RETAINING FOR 0.188 m DIA SHAFT	79136	$5133-18-5-100-8$
MP12	1460~1205		SPRING: TORSION	28480	1460-1205
MP12	3050-0032	2	WASHER:FLAT O.189mID, FOR 110 HDW	00000	OBD
MP12	08555-00026	1	YOKE	28480	08555-00026
MP12	08555-00027	1	LATCHzRIGHT	28480	08555-00027
MP12	08555-00028	1	LATCH:LEFT	28480	08555-00028
$\begin{aligned} & \text { MP13 } \\ & \text { MP13 } \\ & \text { MP14 } \end{aligned}$	$\begin{gathered} 08555-00029 \\ 0400-0018 \\ 08555-00021 \end{gathered}$	$\begin{aligned} & 1 \\ & 4 \\ & 1 \end{aligned}$	STIFFEMER2BRACKET GR OMMET:CHANNEL U-SHAPED SHIELDBBARD	28480 95987 28480	08555-00029 WG- 101 08555-00021

Figure 8-76. Chassis Sheetmetal Illustrated Parts Breakdown

[^0]: ${ }^{\text {ved) }}$

