Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

OSCILLOSCOPE TYPE 13A

TECHNICAL HANDBOOK - OPERATOR'S INSTRUUCTIONS

CAPABILITIES

1. This instrument is a double-beam oscilloscope designed to display waveforms of frequency $2 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mo} / \mathrm{s}$ and pulses from 1 microsecond to several milliseconds duration on a linear time scale. The C.R.T. Y-plate deflection sensitivity is 30 volts per centimetre, approximately. Two amplifiers are incorporated and may be used to amplify the $\Psi 1$ and $Y 2$ inputs independently or may be switched in cascade to the Y1 plate only. Brief data on the gain and bandwidth in the various switah positions is given in Table 1. (For more complate information refer to Tels $Y 052$ Fig 2.) A Y2 attenuator giving ratios up to 1 to 16 is also fitted. The socket mariked $50 \mathrm{c} / \mathrm{s}$ supplies a waveform nominally 50 volts peak-to-peak for calibration of Y-plate deflection sensitivity.

Amplifier	Gain	Frequency limits at 3 db down
A1	27	$80 \mathrm{c} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$
A2	27	$80 \mathrm{c} / \mathrm{s}$ to $550 \mathrm{kc} / \mathrm{s}$
2 A 1	750	$80 \mathrm{c} / \mathrm{s}$ to $550 \mathrm{kc} / \mathrm{s}$
2 A 1 HF	60	$9 \mathrm{~s} / \mathrm{s}$ to $5.5 \mathrm{Mc} / \mathrm{s}$
X1	30	80 s to $400 \mathrm{kc} / \mathrm{s}$

Table 1 - Amplifier performance

PRELTMTNARY

Cheak that the mains input voltage tapping is correctly set before switching on the instrument.
2. Remove the front cover, viewing hood and graticule, stand the instrument face downwards, release the two holding nuts at rear and remove the case. The two mains transformers are at the rear on the lower chassis; the primary tappings must be wired for the appropriate mains voltage according to Fig 2.
3. Ensure that all valves are firmly in their holders and the retainers and top cap conneotion are in place. Refit the case before connecting to the mains.

Fuses

4. Check that the fuses on the front panel are intact and of the correct value for the mains voltage setting. For 230 volt connection use 2 A fuses and for 115 volt connection use 3A fuses. Spare fuses are stowed below the C.R.T. connecting board and are accessible through the rear door.

Fit a suitable threemin plug to the mains connector. The mains lead core is colour coded:- Red - phase Blue - neutral Green - earth

x $\frac{7-051}{1-2}$

CONNECTION FOR IISV OPERATION

Fig 2 - Mains transformer connections

Switching on

5. Connect to the mains and set POWER switch to L.T. Allow one minute for valve and C.R.T. heaters to reach working temperature. Switch POWER switch to H.T.
6. If the instrument has not been in use for a considerable time, at least 30 minutes at L.T. mast be allowed for the instrument to dry out before switching to H.T.

Earthing connections

7. The oscilloscope EARTH terminal and socket are internally connected to its chassis and case. The chassis is also connected to earth via the third pin of the mains plug.
8. If the oscilloscope earth terminal is connected to the chassis of the instrument under test, all input voltages will be referred to oscilloscope chassis earth. Where the waveform to be displayed must be measured relative to a potential other than earth it is necessary to employ a blocking capacitor in the earth connecting lead or an isolating transformer.

CONTROLS
(Figs 1, 101 - Tables 2, 3, 4)
9. All the controls are on the front panel of the instrument (Fig 1) and are listed in Table 2. The block diagram (Fig 101) shows diagrammatically the timebase and input circuit switching and should be studied in conjunction with Tables 3 and 4.

Table 2 - Controls

Control	Description	Function
AIPLITUDE	Potentiometer	Controls the length of the time-base trace
MRIG SYNC	6-position switch	Selects the source of the time-base synchronising voltage
SYNC AMP	Potentiometer	Controls the amplitude of the synchronising signal fed to the time-base circuits
CAL MARKERS	3-position switch	Connects (a) Position 2, 1 μ second and
POWER	(b) Position 3, 10 μ second marker pips which are displayed on both traces	

Table 2 (contd)

Control	Description	Function
BRILITIANCE	Potentiometer	Controls the brightness of the traces on the C.R.T.
mocus	Potentiometer	Controls the focus of the traces
X SHIFT	Potentiometer	Controls horizontal position of both C.R.T. traces
Y1 SHIFT	-	Controls the vertical position of the Y 1 trace
Y2 SHIFT	-	Controls the vertical position of the Y2 trace
Y platet SELECTOR	5-position switch	Determines the type of connection made from the front panel sockets to the Y-plates. See Table 3
$\begin{aligned} & \text { A1 GATN } \\ & \text { A2 GATN } \\ & \hline \end{aligned}$	Potentiometer	Controls the gain of the A1 amplifier Controls the gain of the A2 amplifier
Y2 ATTHN	5-position switch	Controls the attenuation of the signal to the Y2 plate only
PROBE SELECTOR	6-position switch	Connects the probe socket to the plates. See Table 4
VELOCITY RANGE	7-position switch	(a) Determines whether the internal or an external time-base is in use. (b) Gives a coarse control of internal timebase speed
FINE VELOCITY	Potentiometer	Gives a fine control of internal time-base speed
FLY BACK	Potentiometer	Gives an extra fine control of internal timebase speed

Y-Plate deflection controls

Check that the Y2 ATTEN control is in the $1 \div 1^{\prime}$ position.
10. Set the Y PLATE. SELEGTOR switch to the positions shewn in column 1 of Table 3 for use with the front panel sockets shown in column 4. The amplitude of the trace displayed is then controlled as indicated in colum 6. Set AMPLITUDE control fully clockwise.

(1)	(2)	(3)	(4)	(5)	(6)
Y-plate selector switch setting	SYNC selector setting	Connections made			
		To deflector plate	From front panel socket	Via	Controlled by
D.C.	Y1	Y1	Y1	Direct	-
	Y2	Y2	Y2	Direct	Y2 ATTEN
A.C.	Y1	Y1	$\Psi 1$	Blocking capacitor 500 V d.c. Wkg	-
	Y2	Y2	Y2	Blocking capacitor 500 V d.c. Wkg	Y2 ATTEN
A1 A2	Y1	Y1	A1	A1 amplifier	A1 GAIN
	Y2	Y2	A2	A2 amplifier	A2 GAIN
A	Y1	Y1	A1	A1 and A2 amplifiers in cascade	A1 GAIN and A2 GATN
	Y2	Y2	Y2	Blooking capacitor	Y2 ATTEN
A1 H	Y1	Y1	A1	A1 and A2 amplifiers in cascade with improved H.F. response	A1 GAIN
	Y2	Y2	Y2	Blocking capacitor	Y2 ATTEN

Table 3 - Y plate selector switch settings
11. The Y2 ATTENUATOR switch may be used to reduce the amplitude of signals fed. direct or via a blocking capacitor to the Y2 plates. This is not a precision attenuator and must not be used for measuring purposes; it also introduces distortion at the higher audio and video frequencies. For a complete specification of the Y2 attenuator characteristics refer to Tels Y 054 paras 16 to 20.
12. The shift networks are connected in all positions of the Y PLATE SELFCTOR but their impedance is high. When, therefore, the D.C. position is in use the Y-SHIFT controls will be inoperative unless the external source of work voltage also has a high impedance.
13. When one trace only is required the other may be moved off the screen by use of the appropriate shift control. To avoid defocussing of the wanted trace, the Y2 trace should be moved upward or the Y1 trace downward.

THE CATHODE FOLLONER PROBE

14. The probe has a high input impedance and should be used where it is necessary to minimize the effect on the circuit being tested of connecting the oscilloscope. The nominal input resistance is over 5 M with a shunt capacitance less than 5 pF . The probe connector plugs into the PROBE socket on the front panel. Distortion of wave traces may result from using switch settings other than those listed in Table 4.

PROBE SHTECTCR setting	Y-plate selector switch setting	Probe output connected to	Controlled by	Remarks
Y1 Y2 level	As required (See remarks colum)	Beam splitter plate	-	Produces equal and opposite deflection of both beams. Other signals may be superimposed by connecting according to Table 3. External sync connection required
Y1	$\begin{aligned} & \text { D.C. or } \\ & \text { A.C. } \end{aligned}$	Y1 plate	-	A d.c. blooking capacitor may be inserted, if rerequired between probe tip and circuit under test. Set sync selector to Y1
Y2	$\begin{gathered} \text { D.C. or } \\ \text { A.C. } \end{gathered}$	Y2 plate	Y2 ATTEN	A a.c. blocking capacitor may be inserted, if required between probe tip and circuit under test. Set sync selector to Y2
A1	A1 A2	Y1	A1 GAIN	Set Y PLATE SELECTOR for required amplification Set SYNC SELECTOR to Y 1
	$2 \mathrm{A1}$	Y1	A1 GAIN and A2 GAIN	
	$2 \mathrm{~A} 1 \mathrm{H} . \mathrm{F}$.	Y1	A1 GAIN	
A2	A 1 A2	Y2	A2 GAIN	Set SYNC - SELECTOR to Y2

Table 4 - Probe selector switch settings

FUNCTION OF X DFFLECTION AND TIUE-BASE CONTROLS

15. These controls are down the left of the front panel with the exception of the X-SHIFT. Since they are applied simultaneously to both beams, they always bear the
correct time relation to each other. The horizontal sweep may be produced by:-
(a) An external signal direct, or amplified approximately $j 0$ times
(b) A linear time-base synchronised with the input waveform
(c) A single stroke linear time-base triggered by the input signal

EXTHRNAL SWEEP

16. To apply an external sweep, connect the input to the X1 socket on the front panel and set the VELOCITY RANGE switch to X TIMES 1 or X TIMES 30 according to the gain required to produce adequate horizontal deflection.

IINEAR TTIE-BASE

17. The linear time-base controls are marked VELOCITY RANGE, FINE VELOCITY, AMPLITUDE and FIYBACK. The last named control affects the time of the flyback and is used as an extra fine control of the repetition frequency.
18. The SINC AMP control adjusts the amplitude of the synchronising signals selected by the TRIG SYNC switch. At Y2, Y1 and $50 \mathrm{o} / \mathrm{s}$ the sync signal is derived internally, whilst at EXT a synchronising signal must be fed into the SYNC socket. To ensure adequate synchronising of the timembase it is essential that the TRIG-SXNC switch is set to pick up the signal from the Y-plate in use, or the SYNC socket as appropriate.

Single-stroke time-base

19. With the TRIG-SINC switch at +ve or -ve the time-base becomes a single-stroke circuit triggered by a positive or a negative wavefront as required. This facility is'intended for the display of short pulses or transients. A signal amplitude of about 30 volts is necessary for triggering and a delay occurs between the trigger pulse and the commencement of the trace. This delay is about $1 / 4$ microsecond for negative triggering and 1 microsecond for positive.

DIRECT CONNECIION TO CATHODE RAY TUBE

NOTE:- Safety precaution. Switch off oscilloscope and wait 10 seconds before touching any connections on rear panel.
20. A door at the rear of the cabinet gives access to the C.R.T. connections. When connecting direct to a deflector plate a d.c. path to chassis earth not greater than 5 megohms must be provided.
21. For brightness modulation the modulating waveform must be connected to the GRID via a blocking capacitor rated at not less than 1200 volts d.c. A 3.3 megohm earth leak resistor (R75) is fitted behind the terminal panel and no additional resistor should be connected.
22. Alternatively brightness modulation may be applied to the cathode via a blocking capacitor rated at not less than 1200 volts d.c. In this case, the cathode circuit must be completed by connecting a 100 kn resistor between the cathode and negative E.H.T. line. Access to the negative E.H.T. line is most easily obtained
at the BRILLIANCE control (rear of front panel) at the junction of R71 and R74.

CAITBRATION MARKFRS

23. To measure the time duration of pulses or other waveforms, turn the CAL MARKERS switch to 1μ SEC or 10μ SEC when marker pulses of the selected time spacing will be superimposed on existing waveforms. Since the marker pulses are fed on to the splitter plate, between the two Y plates, they appear on both beams and do not interfere with signals connected to the Y-plates.

Note: The next page is Page 1001

Issue 1, 3 Jan 56

EHECTRTCAI AND MECHANICAL
THETECOMMUNICÁIIONS
ENGINEFRRING REGULATIONS
(By Command of the Army Council)
OSCILLOSCOPE, TYPE 13A

Note: This page 0 will be filed imeciately in front of page 1 , Issue 1 , dated 3 Jan 56.

1. The following amendment will be made to the Regulation.
2. Page 1004, Fig 1005, nomenclature of S6,

Reading in a clockwise direction the figures should read:-

$$
\div 16, \div 8, \div 4, \div 2, \div 1 . \quad \text { if Burm 3-6-65 }
$$

$267 / 8 / 142$
Issue 1, 8 Oct 56
Page 0
Distribution - Class 930. Code No 6

Paras

BRIEF TECHNICAL DESCRIPIION		-	-*				1-7
Introduction			-				
Power requirements ..		-	-	\bullet			2
Electrical			-	\bullet			3-7
TEGHNICAL DESCRIPPION		-	-	\bullet		\bullet	8-37
Power unit -. -t	$\bullet \bullet$	-	-	-			8,9
Cathode ray tube circuit	-		.	-			10, 11
	\bullet	$\bullet \bullet$.	-	-	-.	12-29
Time-base oircuit	-	-	-	12-14
The flip-flop, '(Multivibrator) V3,	V4	\bullet	-	-	-	\bullet	
Triggered timo-base operation	-	-	.	-	-	-.	16-18
Sweep velocity control	-	\bullet	-*	-	-	-	19
Contral of flymback time	\bullet	-	.	-•	-	\bullet	20
Amplitude control \quad -	-	\bullet	-	-	-	-.	21
Flymback blackout	-.	-	.	-	-	\bullet	22
External time-base operation	-	-	.	-	-	\bullet	23-25
Time calibrating oircuit ...	-	.	.	-	.	-	26-29
VERRIICAL DEFHLECTION INPUT CIRCUITS		-	-	\cdots		-	30-37
Amplifiers	-.		-			-	31-33
Y2 Attemator	\bullet	-	-	-	-	-	34-35
Cathode follower probe ..	-	-•	-	-	.	-	36, 37

INDEX TO FIGURES

Fig No.
Page

1.	Oscilloscope type 13A	3
2.	Frequenoy response of Y amplificer	4
3.	Basic circuit of miller time-base valve	5
40	Time-base circuit simplified	7
5.	Time-base waveforms (Theoretical)	7
1001.	Power supply circuit diagram	1001
1002.	Power unit component layout	1002
1003.	Cathode follower probe circuits	$\$ 003$
1004.	Probe assembly. Component layout	1003
1005.	CRT, AMP, and TB circuit diagram	1004
1006.	Plan view of oscilloscope	1009
1007.	Power unit connecting panel	1010
1008.	Front panel component layout	1011
1009.	Time-base and calibrator assembly, compenent layout	1012
1010.	Amplifier assembly, component layout	1013
1011.	Valve and CRT base connections	1013

2. Frequienoy response of Y ampliffier . $\quad 4$
3. Basic circuit of miller time-base valve . 5
4. Time-base circuit simplified

Time-base waveforms (Theoretical) 7
Power supply circuit diagram 1001
Power unit component layout 1002
Cathode follower probe circuits $\$ 003$
Probe assembIy. Component layout . 1003
CRT, AMP, and TB circuit diagram . 1004
Plan view of oscilloscope . . 1009
Power unit connecting panel " 1010
Front panel component layout . 1011
Amplifier assembly, component layout 1013
Valve and CRT base connections. 1013

Table No.		Page
1001.	Component Values	1005
1002.	Valve test data	1014

BRIEF TECHNICAL.DESCRIPTION

Introduction

1. The Oscilloscope, type 13A is a portable general purpose doublembeam cathode ray instrument incorporating a linear time-base, deflection amplifiers and attenuator, time marker circuit and built-in power supplies.

The instrument is intended for the visual display of electrical voltage waveforms and of any cyclic function which may be represented by a voltage. It is suitable for use in tropical climates, The oscilloscope is housed in a ventilated sheet steel case. All controls and input sockets are situated on the front panel; a door at the rear of the case gives direct access to the C.R.I. base comnections. A removable front cover protects the controls and tube face when not in use; this cover contains stowing clips for all leads and the cathodemfollower probe.

Power requirements

2. The instrument is designed to operate from 115V or 230V 500/s A.C. supply; its power consumption is 160 watts.

Electrical
3. The time-base is linear and when freemunning, oan operate at recurrence frequencies from $2 \mathrm{c} / \mathrm{s}$ to $750 \mathrm{kd} / \mathrm{s}$; the sweep velocity being sufficiently high to permit investigation of waveforms having recurring frequencies up to $10 \mathrm{Md} / \mathrm{s}$. The time-base may be synahronised with the waveform. Calibration markers at intervals of one or ten microseconds may be superimposed on both traces.
4. The time-base sawtooth waveform is available externally for the operation of a wobbulator or any similar purpose. External deflection may be applied to the X1 plate direct or through the amplifier giving a fixed gain of $x 30$. The timebase will also operate as a single-stroke circuit triggered by either +ve or -re wavefronts; it is then suitable for monitoring pulses or transient waveforms from one microsecond to severel millieeconds duration.
5. The input to the Y deflector plates of the $C \mathbb{R} . T$. may be direct (d.c. or a.c. connection) or amplified by the separate Yt and Y2 amplifiers having gains of up to x27, subject to falling-off at the high video frequencies. Typical amplifier characteristic curves are shewn in Fig 2. The amplifiers may also be switched in casoade to the Y1 plate, giving a gain up to $\times 750$. For improved response the cascade connected amplifiers are HF compensated in the $2 A 1$ HF position when a gain up to $x 60$ is available; in this condition waveforms containing frequenoy components up to $10 \mathrm{Md} / \mathrm{s}$ may be displayed with fair accuracy.

r $\frac{\mathrm{y}-052}{1-1}$

Fig 1 - Oscilloscope 13A - Front Panel

Fig 2 - Frequency response of I Amplifiers
6. For investigation of large waveforms a switohed attenuator is included in the circuit to the Y2 plate. The attenuator does not have a good H.F. response.
7. A cathode-follower probe having a good H.F. response is provided for making connection to radio-frequency and high impedance circuits.

THEHNICAL DESCRIPIION

Power unit
(Fig 1001)
8. The mains input is to the 3-pole plug at the rear of the oscilloscope. Separate transformers, T1 and T2, are used for H.T. and L.T. supplies. The L.T. transformer may be switched on independently of the H.T., this allows the valve heaters to be switched on for a warming up period before use. T2 also supplies a 50 V peak-tompeak $50 \mathrm{~d} / \mathrm{s}$ sine wave for Ψ calibration. Each transformer is separately protected by cartridge fuses situated on the front panel. Details of the connections to be altered when changing from 230 V to 115 V mains supply are given in Tels Y 051. A red pilot lamp on the front panel indicates that power is applied to T 2 .
9. The H.T. power pack is of conventional design consisting of the full-wave rectifier valve, V8 (CV378) and the two-stage IC ripple filter. The H.T. voltage
during normal operation is approximately +430 V to the amplifier unit; ${ }^{\text {a }}$ this is reduced to +380 V for the time-base by the decoupling resistor, R26. The E.H.T. power pack supplies -1200 V to the C.R.T. network from the half-wave rectifier valve, V11 (CV1120) and an RC ripple filter comprising R79, C56, C57.

Cathode Ray Tube Circuit

10. The C.R.T. is operated with its final anode and deflector plates at about earth potential and with a large negative voltage applied to the aathode and grid. This, the normal practice in cathode ray oscilloscopes, simplifies connection to the defleotor plates and minimises hand aapacity effects on the soreen.
11. The appropriate potentials for the tube electrodes are obtained from the resistor chain, R56 to R62, R71 and R77, connected between the +430V and -1200 V lines. The mostnegative electrode is the grid, the potential of which is controlled by the BRITLIANCE potentiometer, R77. The FOCUS control, R62, varies the voltage of the second anode. Shift voltages, both positive and negative, are obtained from R73, R69 and R63 for X shift, Y1 shift and Y2 shift respectively.

HORIZONTAL DEFHECTION CIRCUITS
(Figs 3, 4, 5, 1005)

Time-base circuit

12. The time-base circuit employs a Miller stage, V5, triggered by the flip-flop circuit, V3 and V4. The basic circuit of the Miller stage is shewn in Fig 3.

Initially, anode current is out off by a negative bias on the suppressor grid. The anode is at H.T. potential and the control. grid is at oathode potential approxi lately, since grid current is flowing through Rg . C is therefore charged to full H.T. potential.
13. The suppressor grid bias is lifted to cathode potential, anode current commences to flow and the anode potential falls suddenly. Theicontrol grid potential is taken negative with the anode potential, tending to reduce the anode current. The rapid fall in anode potential is arrested by the negative feedback to the control grid. The initial anode voltage drop must be less than the grid base of the valve, since the anode valtage
could not continue to fall if the anode current were cut off. The anode current is now under the control of the grid voltage and any further change in either anode or grid voltage depends on C discharging through R_{g}. The current through R_{g} is $\frac{V_{h t}-V_{g}}{R_{g}}$ and since V_{g} is very small compared with $V_{h t}$, the current is very nearly equal to $\frac{V_{h t}}{R_{g}}$ and is therefore almost constant. Since the grid potential is negative with respect to the cathode, no grid current oan flow and the ourrent flowing through R_{g} must be that through C. The voltage across C is $V_{a} \nabla_{V_{g}} g^{\bullet}$ If A is the stage gain, $V_{c}=(1+A) V_{g}$ and since the current through $C, \frac{V_{h t}}{R_{g}}$
is almost constant, C will discharge almost linearly causing the grid potential to rise at a constant rate.
14. The rise of the grid potential is almost linear during the sweep and is accompanied by an amplified negative-going sweep at the anode. The sweep will continue linearly until the anode falls almost to cathode potential, or until the suppressor grid is once again driven negative by external control. The latter method of ending the sweep is employed in the oscillosoope, the negative bias being again applied to the suppressor grid, outting off anode current. The anode now returns to H.T. potential and C is charged by grid current. The Niller valve is now ready to conmence the next sweep.
The 'flip-flop', (multivibrator) V3, V4
15. Referring to the simplified time-base diagram Fig 4, the time-base valve, V5, is connected in the cathode load of V4. During the trace, with SW1d set at free-running, the flip-flop is in the stable condition with V3 conducting and the anode at a low potential. V_{4} grid is connected to V 3 anode and V_{4} oathode is at H.T. potential at the start of the trace. V_{4} is thus out off, until the sweep voltage approaches the grid potential of $V 4$ when the valve starts to conduct and the anode potential falls. The normal flip-flop action takes place and a rapid changeover occurs to the condition where V4 conducts and V3 is cut off. The negative pulse from V_{4} anode is also applied to V5 suppressor to cut off the time-base velve, which returns rapidly to starting point. The flip-flop re-sets as 07 discharges through R6 and V3 grid potential rises.
Triggered time-base operation
(Figs 4, 1005)
16. With the TRIG SNNC switch in position 1 (-me) or position 2 (+ve) the cirouit is modified for triggered operation by the application of a fixed bias of -20 volts to $V 3$ grid and V5 suppressor. Under these conditions V3 is cut off and V4 conducting. The Miller valve, V5, also conducts moderately but the timebase sweep cannot commence because V_{4} is effectively short-aircuiting V 5 anode load, R20. The time-base capacitor is charged nearly to the full H.T. potential and the circuit remains stable in this condition.
17. With the TRIG SYNC switch in the +VE position, a triggering signal applied to the SINC socket, SK1 is differentiated by C1, R3 (time-constant $4.7 \mu \mathrm{sec}$) to form steep fronted trigger pulses. The series diode passes only the positive pulses which are applied to VI grid via SW1 $/ 2$ and $\mathrm{SW} / \mathrm{d} / 2$ momentarily raising the grid potential so that V3 conducts. The flip-flop rapidly changes over to cut off $V 4$ allowing $V 5$ to begin the sweep. The trigger pulse is of short duration

Fig 4 - Time-base circuit, simplified

WOIE:- SHAPE MDAMPLITUDE OF THESE WAVEFORMS WKL DEPEND ON
T $\frac{Y-052}{1} \frac{-5}{6}$ THE SETTING OF VELOCITY, AMPLITUDEAM FLYEACK CONTROLS

Fig. 5 - Time-base waveforms (theoretical)
and the sweep can only continue whilst V4 remains cut off; that is whilst V3 conducts. Continuation of the sweep is ensured by switching the circuit C5, R9 across 07 to increase the flip-flop delay time to more than the time of the sweep. V3 then conducts until C5 and C7 discharge. The time-base sweep is terminated when the reduction in V5 anode potential causes V4 to conduct; the flip-filop reverses and the original conditions are restored ready for the next trigger pulse.
18. With the TRIG SYNC switch in the -VE position, negative trigger pulses are passed via V2, SW1b/1 and C3, to the grid of V4 and the flip-flop operates in a similar manner since $V 4$ anode valtage rises causing $V 3$ to conduct as described above.

Sweep velocity control
19. This is effected by changing the time-constant of the Miller valve circuit by SW3 (VELOCIIT RANGE) and R13 (FINE VELOCIIT).

Control of fly-back time
20. Druing the fly-back, the time-base capacitor is charged through V4. R11 is made variable to enable the charging time to be altered to provide a very fine control of the repitition rate independently of sweep velocity.

Amplitude control.
21. The potential of V4 grid is varied by R8 which controls the point during the sweep at which V 4 starts to conduct and thus determines the sweep amplitude.

Fly-back blackout

22. The voltage waveform at V_{4} anode approximates to a square-wave; this is applied to the grid of the C.R.T. and alternately brightens the trace during the sweep and recuces the brightness during the fly-back.

External time-base operation
(Fig 1005)
23. In positions 3 to 7 of the VELOCIIT RANGE switch the internal time-base waveform is available for external use at the X1 socket on the front panel.
24. With the VEHOCITY RANGE switch in position 2 the $X 1$ socket is connected via the $0,25 \mu F$ capacitor $C 8$ to $V 5$ anode and thence to the X1 plate for horizontal deflection by an external waveform. V5 is biassed to cut-off.
25. For amplification of horizontal deflection signals with the VELOCIITY RANGE switch in position 1 (K30) V5 is converted into a video amplifier stage with R17 (22 kn) anode load, R16 ($2,2 \mathrm{M} \Omega$) grid leak, the cathode bias resistor, R21 (330ת) by-passed by $C 14(0,005 \mu F)$; the gain is about 30 and is fixed. Signal input is via the X1 socket.

Time calibrating circuit
26. The time marker generator consists of V6 and V7, two double-triode valves. V7A is a Hartley oscillator, the tuned circuit consisting of C19 and either If for $100 \mathrm{kc} / \mathrm{s}$ or L 2 for $1 \mathrm{Mc} / \mathrm{s}$ operation corresponding to marker intervals of 10 micro-seconds and 1 micro-second respectively.
27. During the fly-back period V6B is cut off by a negative voltage from $V 4$ anode so that V6B anode is at H.T. voltage and V6A conducts heavily, the grid being connected to V6B anode. The oscillatory circuit is thus virtually shortmeircuited by the valve V6A and calibration marks are not generated.
28. When the time-base sweep starts, a positive squaremave is applied to V6B grid; V6B anode voltage falls and V6A is cut off removing the damping from the LC circuit which then oscillates simusoidally.
29. The resulting sine wave is applied to the grid of the pulse-forming amplifier, V7, through C23. The grid biasses back, until only the positive peaks of the sine wave cause $V 7 B$ to conduct, producing short negative pulses at the anode. These pulses are connected via C 25 to the $C . R . T$. beam-splitter plate.

VERTICAL DEFWECIION INPUT CIRCUITS
30. The input circuit of the Y-plates is determined by the Y PLAME SHITCHOR switch giving in succession, d.c. connection (direct to Y plates). A.C. connection (via $0.25 \mu \mathrm{~F}$ capacitors): A1 A2 (one stage of amplification on each Y-plate input, independently); $2 A 1$ (two stages of amplification in cascade to Y1 plate); and 2 A 1 HF (two stages in cascade with extra H.F. compensation).

Amplifiers
31. In the A1 A2 position of the Y PLATE SFHFCTOR switch a single stage of ampm lification is applied to each Y-plate. V9 is the A1 amplifier and V10 the A2 ampm lifier; they are conventional RC coupled video amplifiers with 3,000n anode loads and H.F. compensation supplied by the inductances L5, L6 and L7. The principal cathode bias resistors of 120Ω are by-passed by $50 \nmid \mathrm{~F}$ electrolytic capacitors, C 36 and C41. The variable resistors, C 38 and R 48 , in the cathode leajs are not by-passed and function as gain controls by introducing a variable amount of degeneration.
32. In the $2 A 1$ position V9 and V10 are connected in cascade to the Y1 plate. Both the $A 1$ and A2 GAIN controls are operative in controlling the gain of the combination which may be varied between 8 and 750.
33. The $2 A 1 \mathrm{H} . \mathrm{F}^{2}$ position connects V9 and V10 in cascade to the Y1 plate but introduces circuit changes to improve the high frequency response at the expense of the gain which is reduced to a maximum of 60 . These changes are the introm duction of negative feedback from V10 anode via R46 and C38 to V9 cathode and the removal of $I 6$ to increase the frequency at which H.F. compensation takes effect. At the same time the A2 gain control is short-circuited. Fig 2 shows the frequency response of the amplifiers in terms of peak-tompeak spot deflection for a given rom.s. imput.

Y2 attemator
34. In normal use Y2 ATYEN switch $S 6$ is left in position 5, marked $\% 1$.

Large amplitude waveforms may be attenuated by a factor of 2, 4, 8 or 16 selected by SW6 which alters the tapping point on the resistance chain, R64-68. At high frequencies the stray capacitance across the resistors would tend to
assume control, so the capacitors, C48-50, have been included to offset this. The attemator steps however, are not accurate, especially above $100 \mathrm{kc} / \mathrm{s}$.
35. The bottom of the attenuator is returned to the slider of the $Y 2$ shift potentiometer and is decoupled by C51. The setting of the shift potentiometer therefore affects the accuracy of the attenuation steps on d.c. and very low frequencies, especially in the 8 and 16 positions.

Cathode-follower probe

36. The cathode-follower mrobe supplied as an accessory with the oscilloscope comprises a miniature pentode, V12, (CV 136) arranged in a cathode-follower circuit in a compact assembly at the end of a 3 foot connecting cable. It is used for investigating circuits where operating conditions would be affected if a Y-plate or Y-amplifier and the imput leads were directly connected. The input capacitance of the oathoderfollower is less than 5 pF and the input resistance better than 5 Mn , compared with 80pr and 3.3Min for direct Y-plate connection.
37. ITE PROBE SEHECTOR switch, SW4, switches the input from the cathodemfollower probe to either Y-plate or to either amplifier; but in position 2 the imput is connected to the C.R.T. splittermplate to give equal and opposite deflections on both traces.

Fig 1001 - Power supply, cirouit diagram

Fig 1002 - Power supply unit, component layout

Fig 1003 - Oathoue follower probe cirouits

Fig 1004 - Probe assembly, oomponent layout

Table 1001 - Components (contd)

Circuit Ref	Value	Tole an Rat	ance	Type	$\begin{aligned} & \text { Location } \\ & \text { (Fig 1005) } \end{aligned}$	Remarks
RESISIORS						
R48	750Ω	$\pm 10 \%$	$3 W$	variable wire-wound	G10	A2 Gain
R49	100,	$\pm 10 \%$	1/2W	composition	F8	
R50	22k2	$\pm 5 \%$	6 W	wire-wound	G6	
R51	1102	± 20	1/4N	composition	G8	
R52	$1.5 \mathrm{k} \Omega$	$\pm 10 \%$	6 W	wire-wound	G6	
R53	1.5kn	$\pm 10 \%$	6 W	wire-wound	G7	
R54	22Ω	$\pm 20 \%$	1/4W	composition	G8	
R55	120Ω	$\pm 10 \%$	1/2W	oomposition	G9	
R56	100 k /	± 20	1/2W	composition	M6	
R57	270k Ω	$\pm{ }^{+10 \%}$	1/2W	composition	147	
R58	47 kR	$\pm 20 \%$	$1 / 4 \pi$	composition	M7	
R59	22kn	$\pm 20 \%$	1/4N	composition	M8	
R60	$470 \mathrm{k} \Omega$	$\pm 20 \%$	1/2W	- composition	M8	
R61	$100 \mathrm{k} \Omega$	$\pm 20 \%$	1/2W	composition	M9	
R62	500k	$\pm 10 \%$	1.1/2W		M10	Focus
R63	2.5M/	$\pm 10 \%$	3/4N	variable composition	M8	Y2 Shift
R64	2.2Mn	+5\%	$1 / 4 \pi$	composition	N5	
R65	1.1 M	$\pm 5 \%$	$1 / 2 \mathrm{~W}$	composition	N6	
R66	$560 \mathrm{k} \Omega$	$\pm 5 \%$	1/4W	composition	N6	
R67	$270 \mathrm{k} \Omega$	± 5	1/2W	oomposition	N7	
R68	270 kR	+5\%	1/2W	composition	$\stackrel{N}{7}$	
R69	2.51Ω $3.3 \mathrm{M} \Omega$	$+10 \%$ $+20 \%$	3/4W	variable composition	N8	Y1 Shift
R70 R71	$3.3 \mathrm{M} \Omega$ $100 \mathrm{k} \Omega$	\pm	1/4W	composition composition	09	
R72	470k	$\pm 20 \%$	1/4W	composition	P8	
R73	2.5 Na	± 10	3/4W	variable composition	P8	X Shift
R74	100 k 2	$\pm 20 \%$	1/4W	composition	P10	
R75	3.3 Ma	$\pm 20 \%$	1/4N	composition	R10	
R76	470 kn	$\pm 20 \%$	1/4VI	composition	S10	
R77	50 k ?	$\pm 10 \%$	1.1/2W	variable composition	S10	Brilliance
R78	$10 \mathrm{k} /$	$\pm 20 \%$	1/4W	composition	S9	
R79	47 kR	$\pm 20 \%$	1/4W	composition	Fig 1001	
R80	3.3 Mn	$\pm 20 \%$	1/4N	composition	R9	
R81	2.2Mn	$\pm 20 \%$	1/4W	composition	Fig 1003	
R82	470Ω	± 10	1/2W	composition	$\text { Fig } 1003$	
R83 R84	470Ω 228	$\pm 10 \%$ $\pm 10 \%$	1/2W	composition	$\text { Fig } 1003$	

Table 1001 - Ccmponents (contd)

Circuit hef	Value		rance d ing	Type	$\begin{aligned} & \text { Location } \\ & \text { (Fig 1005) } \end{aligned}$
CAPAGITORS					
01	100 pF	$\pm 10 \%$	500V d.c.	ceramic	C1
C2	0.01~F	$\pm 20 \%$	1000V d.c.	paper	C3
C3	$0.001 \mu \mathrm{~F}$	$\pm 20 \%$	1000 V d.c.	paper	D4
C_{4}	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	D5
05	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	E1
C6	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper, tubular, wire ends	F3
${ }^{C} 7$	470pF	$\pm 10 \%$	500 N d.c.	ceramic	F4
68	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 d d.c.	paper, tubular, wire ends	K1
C9	2.2 pF	$\pm 25 \%$	500 V d.c.	caramic	H3
C10	100 pF	$\pm 10 \%$	500 V d.c.	ceramic	J3
011	$0.002 \mu \mathrm{~F}$	$\pm 20 \%$	1000V d.c.	paper	J3
C12	0.0024 F	$\pm 20 \%$	1000V d.c.	paper	K3
C13	0.004 F	$\pm 20 \%$	1000V d.c.	paper	K3
${ }^{C 14}$	$0.005 \mu \mathrm{~F}$	$\pm 20 \%$	1000V d.c.	paper, tubular, wire ends	I_{4}
015	$0.25 \mu \mathrm{~F}$	± 200	350 V d.c.	paper, tubular	I3
016	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper, tubular, wire ends	L3
017	4 4 F	$\pm 20 \%$	600 V d.c.	paper, block, type 4501	L1
018	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	1500 d d.c.	paper, blook	H1
C19	47pF	$\pm 5 \%$	500 V d.c.	ceramic	N4
C20	27 pF	$\pm 10 \%$	500 V d.c.	ceramic	N3
021	$0.1 \mu \mathrm{~F}$	± 20	500 d d.c.	paper	02
C 22	22p ${ }^{\text {F }}$	$\pm 10 \%$	500 V d.c.	ceramic	03
023	22pF	$\pm 10 \%$	500 V d.c.	ceramic	P_{4}
C24	$0.005 \mu \mathrm{~F}$	$\pm 20 \%$	1000 V d.c.	paper, tubular, wire ends	P3
C25	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	Q3
C26	4 HF	± 20	600 V d.c.	paper, blook, type 4501	Fig 1001
C27	$4{ }^{4} \mathrm{~F}$	$\pm 20 \%$	600 V d.c.	paper, block, type 4501	Fig 1001
C28	4 H	$\pm 20 \%$	600 d d.c.	paper, block, type 4501	Fig 1001
029	$4{ }_{4} \mathrm{~F}$	$\pm 20 \%$	600 V d.c.	paper, blook, type 4501	Fig 1001
C30	4 HF	$\pm 20 \%$	600 V d.c.	paper, blook, type 4501	Fig 1001
031	4 HF	$\pm 20 \%$	600 N d.c.	paper, block, type 4501	Fig 1001
032	$4 \sim 7$	$\pm 20 \%$	600 V d.c.	paper, block, type 4501	Fig 1001
033	0		5007	paper tubular wire ends	
034	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper, tubular, wire ends	B8
C35	44 F	± 20	600 V d.c.	paper, block, type 4501	C7
C36	50quF	$\begin{aligned} & +50 \% \\ & -20 \% \end{aligned}$	12 t d.c.	electrolytic, metal cased, tubular	E9
037	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	E7
038	$1 \mu \mathrm{~F}$	$\pm 20 \%$	600 V d.c.	paper, block	F9
039	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	350 V d.c.	paper, tubular	F8
C40	4 4 F	$\pm 2 \%$	600 V d.c.	paper, block	G7
C41	509 HF	$\begin{aligned} & +50 \\ & +50 \\ & -20 \% \end{aligned}$	12 V d.c.	electrolytic, metal cased, tubular	H9
Cl_{42}	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	H6
043	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper, tubular, wire ends	G5

Table 1001 - Components (contd)

Cirouit Ref	Value	Toler and Rat	$\begin{aligned} & \text { ance } \\ & \text { d } \\ & \text { ing } \end{aligned}$	Type	Location (Fig 1005)
CAPACITORS					
C44	$0.1 \mu \mathrm{~F}$	± 208	500V d.c.	paper	J7
C45	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	$J 7$
046	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper, tubular, wire ends	17
${ }^{6} 47$. $5 \mu \mathrm{~F}$	$\pm 20 \%$	350 Na d.c.	paper	N9
048	22pF	$\pm 10 \%$	500 V d. c_{*}	ceramic	N5
${ }^{0} 49$	10pF	$\pm 10 \%$	500 V d.c.	ceramic, tubular, insulated	N6
C50	2.2 pF	$\pm 25 \%$	500 V d.c.	ceramic	N6
051	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	N8
C52	$0.1 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	08
053	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	500 V d.c.	paper	P8
054	$0.25 \mu \mathrm{~F}$	+20\%	1500 V d.c.	paper, tubular, impregnated	Q10
055	$0.25 \mu \mathrm{~F}$	± 208	1500 d d.c.	paper, tubular, impregnated	S10
056	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	1500 N d.c.	paper, tubular, inpregnated	Fig 1001
C57	$0.25 \mu \mathrm{~F}$	$\pm 20 \%$	1500V d.c.	paper, tubular, impregnated	Fig 1001
$\begin{aligned} & C 58 \\ & 059 \end{aligned}$	0.024 F	$\pm 25 \%$	350V d.c.	paper, tubular, type 5190	$\text { Fig } 1003$
	27pF	$\pm 10 \%$	500 N d.c.	oeramic	$N 7$
INDUCTORS					
I. 1	20 nfH			oscillator inductor	
I2	2094 ${ }^{\text {H }}$			oscillator, inductor	P4
L3	8.5H			smoothing choke	Fig 1001
L_{4}	8.5 H			smoothing choke	Fig 1001
L5	189 ${ }^{\text {H }}$			R.F. inductor	D7
L6	654 H			R.F. inductor	D7
L7	$65 \mu \mathrm{H}$			R.F. inductor	G7
SWITCHES					
SW1 a				Trig-sync	B3
b				Trig-sync	D3
c				Trig-sync	D2
d				Trig-sync	D2
SW2a				Velocity range	H2
b				Velocity range	${ }^{3} 4$
0				Velocity range	MH_{4}
${ }^{\text {d }}$				Velocity range	K2
SW3a				Y plate selector	C5
b				Y plate selector	W9
				Y plate selector	D9
e				Y plate selector	H7
\pm				Y plate selector	F7
g				Y plate selector	H9
$\frac{h}{j}$				Y plate selector Y plate selector	- K 7

Table 1001 - Components (contd)

Circui九 Ref	Value	$\begin{aligned} & \text { Tolerance } \\ & \text { Rand } \end{aligned}$	Type	$\begin{aligned} & \text { Location } \\ & (\mathrm{Fi} \text {) } 1005 \text {) } \end{aligned}$
SWITCHES				
SW4a			Probe selector	B6
b			Probe selector	B7
SW5a			Cal markers	Q4
b			Cal markers	P4
c			Cal markers	R3
d			Cal markers	P2
e			Cal markers	Q4
			Y2 atten	06
SW7a			Power	Fig 1001
b			Power	Fig 1001

1 - Timebase
3 - CRT Connecting link panel
$5-\mathrm{V}$
$7-\mathrm{V} 10$

2 - Calibrator
4-Mains socket (under)
6 - Amplifier unit
8 - CRT base connector
Fig 1006 - Plan view of Oscilloscope

Fig 1007 - Power supply unit, connecting panel

Fis 1009 - Time-base and oalibrator assembly, component layout

Fig $1010=$ Amplifier assembly, component layout

$V 1, V_{2}$	$\sqrt{ } 3, \sqrt{4, V 5}$	$\mathrm{V}, \mathrm{V} 7$	V8
CVIO92	CVI73 CVIO91	CVI988	CV 378

	V9,VIO	VII	VI2	CRT I
fr $\frac{\text { P-082 }}{1-1011}$	cv9	evilio	CV136	cv 1596

Fig 1011 - Valve and C.R.T. base connections

Table 1002 - Valve data

Oircuit Ref	Inter service type	Commercial equivalent
V1, V2	CV1092	FA50
V3, V5	CV1 091	EF50
V4	CV173	DDR2
V6, V7	CV1988	6SIN7GIL
V8	CV378	R231
V9, V10	CV9	A160
V11	CV1120	SU2150A
V12	CV136	DDR7

57/Maint/2819

OSCILIOSCOPE, TYPE 13A TECHNICAL HANDBOOK - FIELD AND BASE REPAIRS

DISMANTLITNG AND RE-ASSEMBLING INSTRUCTIONS
Removal of front cover and case

1. Disconnect the mains lead from the rear of the instrument, release the two side clips and remove the front cover, viewing hood and graticule. Tilt the oscilloscope forward allowing it to stand on the front panel protecting spisots; unscrew the two slotted nuts at the rear and lifft off the case.

Removal of C.R.T. and mumetal screen
2. Remove the viewing hood and graticule; remove the four No. 4 B.A. sorews securing the graticule housing and remove the housing. Unsolder the red earth lead from the mumetal shield and carefully pull off the $12-\mathrm{pin}$ C.R.T. base socket and allow it to hang on the wiring. Slacken of f the two No. 2 B.A. screws holding the rubber lined clamp on the C.R.T. base; withdraw the tube and mumetal screen through the hole in the front panel.

Removal of power unit

3. To obtain access to the power unit for component replacement proceed as follows:-
(a) Remove covers and lay oscilloscope on its left side. (as seen from the front).
(b) Loosen the clip at the rear of the chassis which secures the screened mains leads (Uniflexmet) to the chassis.
(c) Unsolder resistor, R1 (100ks 1/4W) from the $50 \mathrm{c} / \mathrm{s}$ socket on the front panel.
(d) Remove the sixteen No. 4 B.A. screws which hold the power unit to the cormer plates of the other units.
(e) Remove the three No. 6 B.A. screws and nuts which secure the power unit screen to the amplifier chassis.
(f) Taking care not to strain the connecting leads, swing the power chassis about its front edge through approximately a right angle. The components are now readily accessible.
(g) If the complete removal of the power unit chassis is necessary, loosen the clamp securing the Uniflexmet mains leads to the front of the power unit and unsolder all the leads connectincs the remainder of the oscilloscope to the power unit connecting panel. Refer to Tels Y 052 Fig 1007.
(h) To re-assemble, reverse the above procedure.

Removal of the front penel

4. It is impossible to remove the front panel as a unit; to obtain access to the front panel components first remove the power unit, C.R.T. and valves then proceed as follows:-
(a) Unscrew and remove the four front panel protecting spigots.
(b) Turn the CAL MARKERS switah to OFF, remove the forward screw of the spindle coupling and extract the extension spindle and oontrol knob.
(o) Turn the Y-plate selector to D.C. and remove the control knob and the spindle bush fixing nut.
(d) Ease the front panel forward as far as the wiring will permit.
5. At this stage it is possible to reach the majority of the components and terminals but should it be found necessary, the front panel may be removed from the components as follows:-
(a) Remove the remainder of the control knobs and the spindle bush securing nuts, taking care to prevent the controls behind the panel from rotating and straining the wiring connections. Remove also the four No. 6 B.A. countersunk screws securing the probe socket and the three similar screws securing the fuse and indicator lamp assembly.
(b) Lift the panel clear of the control spindles. It is now attached only to the input sockets and earth terminal and may be swung round through about 90 degrees.
6. When replacing the panel care must be exercised to ensure that:-
(a) Wires are not trapped between controls and the panel, particular care is necessary in the case of the: FINE VELOCIITY, SYNC AMP, X SHIFT and Y1 SHIFT which have component mounting brackets secured with them.
(b) Controls are correctly oriented before tightening up the fixing nuts. Dismantling the cathode-follower probe
7. Remove the ten No. 8 B.A. countersunk screws securing the sides of the cover to the end pieces; remove the covers.

TESTS AND ADJUSTMENTS
Adjustment of calibration marker circuit
8. A Calibrator, crystal, No. 7 and a pair of headphones are required. The crystal calibrator must have been recently adjusted according to the instructions printed on the rear of the instrument.
9. Remove the covers from the oscilloscope, connect to the mains and switch on; set VELOCIIT RANGE to X TINES 1 and CAL NARKERS to $1 \mu S E C$.
10. Connect batteries and headphones to the crystal calibrator; set FII switch to $O N$, MOD switch to $O F F$ and frequency selector switch to $1,000 \mathrm{kc} / \mathrm{s}$. Connect together the EARTH terminals of the crystal oalibrator and oscilloscope and connect an insulated lead to the A terminal of the crystal calibrator. Loosely couple this lead to L1 and I2 by holding it within about on inch of the coils.
11. Listen on the phones to the audio beat note due to the crystal calibrator and cal marker oscillators. If there is an audible note then the cal marker oscillator is within 1% of $1 \mathrm{Mc} / \mathrm{s}$ which is sufficiently accurate and no adjustment is required.
12. Ensure that the beat note is due to the cal marker oscillator and not some spurious signal by switching the oscilloscope POWER switch to $\mathrm{I}_{0} \mathrm{~T}_{4}$, when the note should cease. Return the switch to H.T.
13. If no note is heard carefully remove the wax to free the adjustable iron oore of I2 and using a non-metallic screwdriver, rotate the core unitl a whistle is heard. Adjust to approximately zero beat and re-fix the core with molten wax.
14. Switch the crystal calibrator to $100 \mathrm{kc} / \mathrm{s}$ and the oscilloscope CAL MARKER to $10 \mu \mathrm{SEC}$. Carefully remove the wax to free the adjustable iron dust core of L1 and loosely couple the crystal calibrator by holding the A lead of the calibrator within about one inch of the coil.
15. Listen for a note in the phones and using a non-magnetic screwdriver, rotate the core of L1. A series of beats should be heard, the fundamental being very much louder than any of the harmonics. Tune L1 to approximately zero beat with the fundamental frequency and seal the core with molten wax.

Y2 attenuator tests

16. The following instruments are required:-

Voltmeter, valve, No. 2 or No. 3
Oscillator, video, No. 2 or other source providing a signal of approximately $75 \mathrm{c} / \mathrm{s}$ and $100 \mathrm{kc} / \mathrm{s}$ at a variable amplitude of the order of 30 volts .
17. Connect the IOW terminal of the video oscillator to the oscilloscope chassis and the HIGH terminal to the Y2 socket on the oscilloscope front panel with the Y PLATE SELECTOR set to D.C. The oscilloscope need not be connected to the mains supply.
18. Connect the valve-voltmeter earth terminal to the oscilloscope chassis and the HIGH terminal to the Y2 terminal on the C.R.T. connecting panel at the rear of the oscilloscope, leaving the Y2 link in position. Set the oscillator to $75 \mathrm{c} / \mathrm{s}$.
(a) Set the Y2 ATTENUATOR to $\div 1$ and the valve-voltmeter RANGE SEIECTOR to 50V. Adjust the oscillator output to make the valve-voltmeter reading 30 volts.
(b) Switch the Y 2 ATTENUATOR to $\div 2$ and record the valve-voltmeter reading.
(c) Set the valve-voltmeter RANGE MUITIPITER to 15 volts and adjust the oscillator output to make the valve-voltmeter reading 10 volts.
(d) Switch the $Y 2$ ATTENUATOR to $\div 4$ and record the valve-voltmeter reading.
(e) Set the valve-voltmeter RANGE MUITIPLIER to 5 volts and adjust the oscillator output to make the valve-voltmeter reading 4 volts.
(f) Switch the $Y 2$ ATHENUATOR to $\div 8$ and record the valve-voltmeter reading.
(g) Adjust the oscillator output to make the valve-voltmeter reading 2 volts.
(h) Switch the Y2 ATTENUATOR to $\div 16$ and record the valve-volmeter reading.
19. Disconnect the valve-voltmeter input lead from the $Y 2$ terminal. Connect the valve-voltmeter probe HIGH and IOW terminals to the Y2 and EARTH terminals respectively at the rear of the oscilloscope using short connecting leads. Set the oscillator to $100 \mathrm{kc} / \mathrm{s}$ and repeat para 18 (a) to (h).
20. The readings obtained in para 18 and para 19 should lie within the limits shown in Table 1 column 6. This represents a tolerance per step of 10% at $75 \mathrm{c} / \mathrm{s}$ and 20% at $100 \mathrm{kc} / \mathrm{s}$.

(1)	(2)	(3)	(4)	(5)	(6)
Oscillator frequency	Valve- Voltmeter range	Y2 ATTEN Initial setting	Valve- voltmeter Initial Reading	Y2 ATPEN switched to:	Voltmeter Final Reading
$75 \mathrm{c} / \mathrm{s}$	50 V	$\div 1$	30 V	$\div 2$	$13.5-16.5 \mathrm{~V}$
$75 \mathrm{c} / \mathrm{s}$	15 V	$\div 2$	10 V	$\div 4$	$4.5-5.5 \mathrm{~V}$
$75 \mathrm{c} / \mathrm{s}$	5 V	$\div 4$	4 V	$\div 8$	$1.8-2.2 \mathrm{~V}$
$75 \mathrm{c} / \mathrm{s}$	5 V	$\div 8$	2 V	$\div 16$	$0.9-1.1 \mathrm{~V}$
$100 \mathrm{kc} / \mathrm{s}$	50 V	$\div 1$	30 V	$\div 2$	12
$100 \mathrm{kk} / \mathrm{s}$	15 V	$\div 2$	10 V	$\div 8 \mathrm{~V}$	
$100 \mathrm{kc} / \mathrm{s}$	5 V	$\div 4$	4 V	$\div 4$	$4-6 \mathrm{~V}$
$100 \mathrm{kc} / \mathrm{s}$	5 V	$\div 8$	2 V	$\div 8$	$1.6-2.4 \mathrm{~V}$

Table 1 - Y2 Attenuazor test data

Time-base ranges, free-running
21. By suitable adjustment of the controls the time-base repetition frequency should cover the range $2 \mathrm{c} / \mathrm{s}$ to $750 \mathrm{kc} / \mathrm{s}$; the adjacent ranges should overlap. A minimum trace length of 7 cm should be obtainable at all frequencies. See Table 2 for nominal ranges.

VEIOCITY RANGE switch position	Frequency	
	min	\max
$10 \mathrm{c} / \mathrm{s}$	$2 \mathrm{c} / \mathrm{s}$	$100 \mathrm{c} / \mathrm{s}$
$100 \mathrm{c} / \mathrm{s}$	$100 \mathrm{c} / \mathrm{s}$	$800 \mathrm{c} / \mathrm{s}$
$1 \mathrm{kc} / \mathrm{s}$	$800 \mathrm{c} / \mathrm{s}$	$5 \mathrm{kc} / \mathrm{s}$
$10 \mathrm{kc} / \mathrm{s}$	$5 \mathrm{kc} / \mathrm{s}$	$80 \mathrm{kc} / \mathrm{s}$
$100 \mathrm{kc} / \mathrm{s}$	$30 \mathrm{kc} / \mathrm{s}$	$750 \mathrm{kc} / \mathrm{s}$
Table 2 - Time-base ranges		

Amplifier frequency response tests

22. With the gain control at maximum the figures shown in Table 3 should be obtained.
Page 4 Issue 1, 3 Jan 56

Notes: 1. This Issure 2, pages 5 and 6, supersedes Issue 1, page 5, dated 3 Jan 56 and Issue 1, page 0 , dated 3 Aug 56.
2. Table 3 has been amended, the latter hall of para 22 amended and remumbered para 23, Table 4 is additional and paras $23-25$ have been re-numbered to paras $2 l-26$.

Input socket	Y-plate selector switch	Response relative to $1 \mathrm{kc} / \mathrm{s}$ not wrorse than			
		$1 \mathrm{kc} / \mathrm{s}$	50c/s	500kc/s	$1 \mathrm{Mc} / \mathrm{s}$
A1	A1A2	OAB	-1ab	-	-3.5dB
A1	2 A 1	OdB	-6dB	-	-7dB
A1	2A1HF	0 ab	$-1 \mathrm{CB}$	-	$-18 B$
A2	A1A2	0 OB	$-1 d B$	-	-7dB
X1	X $30 *$	OAB	$-1 \mathrm{CB}$	-8dB	-
* Refers to velocity range switch					

Table 3 - Ampliffier frequency response

23. The response when using the cathode follower probe as compared with the response without the probe at $1 \mathrm{kc} / \mathrm{s}$, input at A1 and Y-plate selector switch at 2 AlHF should not exceed the figures quoted in Table 4 .

Input socket	Y-plate selector switoh	$1 \mathrm{kc} / \mathrm{s}$	$50 \mathrm{c} / \mathrm{s}$	$1 \mathrm{Mc} / \mathrm{s}$
$A 1$	$2 A 1 \mathrm{HF}$	-1.6 dB	-4.6 dB	-3.1 dB

Table 4 - Amplifier frequency response with probe

Amplifier linearity tests

24. Set VELOCITY RANGE to X TINES 1, FLYBACK fully clockwise and earth the A2 socket. Apply an input of 100 V at $1 \mathrm{kc} / \mathrm{s}+5 \%$ between X1 terminal and E on the c.r.t. connecting panel at the rear of the oscilloscope. Conneot a resistance attenuator so as to enable a fraotion of this voltage to be applied to the amplifier under test.
(a) d1 amplifier. Switch Y FLATE SELECTOR to A1A2. Connect the attenuated input to the A1 socket and adjust the two voltayes to obtain a trace on the cor.t. screen 6 cm in length and at an angle of 45 degrees to the vertical. The trace so obtained must not deviate from a straight line by more than $\pm 2 \mathrm{~mm}$.
(b) A2 amplifier. Set A2 GAIN to maximum, A1 GAIN to minimm, connect A1 socket to earth. Connect the attenuated input to A2 socket and adjust the two voltages to obtain a 6 cm trace at 45 degrees. The trace so obtained must not deviate from a straight line by more than $\pm 2 \mathrm{~mm}$.

Hum test
25. Connect A1, A2 and Y2 sockets to E socket and also to a good earth point. Under these conditions the residual mains hum on the $Y 1$ trace must not exceed 1 mm for any setting of the Y PLATE SELECTOR switch except 2A1. At $2 A 1$ it must not exceed 4 mm .

FIELD REPATRS
Permitted repains
26. The following components will not be removed or replaced in field workshops:-
(a) Capacitors C19, C 23
(b) Inductors L1, L2

Note: The next page is Page 1001

267/8/804
ME8/706

Table 1001 - Settings of controls for voltage testing

Control	Position of controls except where stated otherwise
POWER switch	H.T.
CAL MARKERS	OHF
FIYBACK	Centralised
TRIG SYNC	EXT
AivPlituide	Centralised
VELOCITY RANGE	$1 \mathrm{kc} / \mathrm{s}$
FTINE VELOCITY	Position 10
SINC AIPP	Anti-clockwise
Y1 SHIFT Y2 SHIFT X SHIFT	Trace centralised
FOCUS BRILLIANCE	Adjusted for clear trace
$\begin{aligned} & \text { A1 GAIN } \\ & \text { A2 GAIN } \end{aligned}$	Clockwise
Y PLATE SEIECTOR	A1 A2
Y2 ATTEN	$\div 1$
PROBE SELECTOR	OFF

 230 V and controls as in Table 1001

Test point	Reading	Setting of AVO 7 - range	Remarks
Heater voltages at valve pins			
V1 to V7	6.3 V	A.c. 10 V	$\pm 0.3 \mathrm{~V}$ r.m.s.
V9, V10 and C.R.T.	4.0 V	a.c. 10 V	+0.2V r.m.s.
V11	2.0 V	a.a. 10 V	+0.1V r.m.s.
V8	5.0 V	a.c. 10 V	¥0.25V r.m.s.
V12 at pins C and E of PROBE socket	6.3 V	a. ${ }_{\text {c. }} 10 \mathrm{~V}$	$\pm 0.3 \mathrm{Y}$ r.m.s.
V8 pin 8 (cathode)	+475V	d.c. 1,000V	
L3, L4 junction	+450V	a.c. 1,000V	
C26	430 V	d. c. 1,000V	$\pm 10 \%$

TELECOMMUNICATIONS
EIECTRICAL AND MECHANICAL Y 054

Table 1002 (contd)

Test point	Reading	Setting of AVO 7 - range	Remarks
C17 ${ }^{-}$	380V	d.c. $1,000 \mathrm{~V}$	$\pm 10 \%$
C57.	-1200	d.c. $4,000 \mathrm{~V}$	$\pm 10 \%$ (use multiplier)
C56	-1000	d.c. 1,000V	$\pm 10 \%$ with BRILILIANCE control clockwise
50V 50c/s socket	17.85 V	a.c. 100 V	$\pm 5 \%$ r.m.s.
C.R.T. pin 6 (A2)	$\begin{aligned} & -250 \mathrm{~V} \\ & -740 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	FOCUS anti-clockwise FOCUS clockwise
C.R.T. pin 7 (A4)	$+4 \mathrm{OV}$	d.c. 1,000V	
C.R.T. link panel X2 terminal	$\begin{array}{r} -190 \mathrm{~V} \\ +100 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { d. c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \\ & \hline \end{aligned}$	X SHIFT anti-clockwise X SHIFT clockwise
C.R.T. link panel Y1 terminal	$\begin{aligned} & +40 \mathrm{~V} \\ & -35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	Y1 SHIFT anti-clockwise Y1 SHIFI clockwise
C.R.T. link panel Y2 terminal	$\begin{array}{r} -30 \mathrm{~V} \\ +30 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { a.c. } 1,000 \mathrm{~V} \\ & \text { a.c. } 1,000 \mathrm{~V} \end{aligned}$	Y2 SHIFT anti-clockwise Y2 SHIFT clockwise
C.R.T. link panel GRID terminal	$\begin{aligned} & -800 \mathrm{I} \\ & -760 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	BRILLIANCE anti-clockwise BRILLIANCE clockwise
C.R.T. link panel CATHODE terminal	-820V	a.c. 1,000V	
V3 pin 3 (anode)	$\begin{array}{r} +15 \mathrm{~V} \\ +250 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	AMPIITUDE clockwise AMPIIIUDE anti-clockwise
V3 pin 2 (screen)	+110V	d.c. 1,000V	
V4 pin 3 (anode)	+380V	d.c. 1,000V	
V4 pin 2 (screen)	+380V	d.c. 1,000V	
V4 pin 6 (cathode)	+175V	d.c. 1,000V	
V5 pin 3 (anode)	$\begin{aligned} & +300 \mathrm{~V} \\ & +140 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	ARPLITUDE anti-clockwise AMPIITUDE clockwise
V5 pin 2 (screen)	+320V	a.c. 1,000V	
V5 pin 6cecenthode)	+3V	d.c. 10\%	VELOCIIY RANGE set to X 30
V6 pin 2 (anode (a))	$+310 \mathrm{~V}$	$\text { d.c. } 1,000 \mathrm{~V}$	GAL MARKERS switch set to $10 \mu \mathrm{SEC}$

Table 1002 (conta)

Test point	Reading	Setting of AVO 7 - range	Remarkis
V6 pin 5 (anode (b))	+50V	d.c. $1,000 \mathrm{~V}$	
$V 7 \text { pin } 2 \text { (anode }(a))$	$+185 \mathrm{~V}$	d.c. 1,000V	CAL MARKERS switch set
V7 pin 5 (anode (b))	+290V	d.c. $1,000 \mathrm{~V}$	
V9 top cap (anode)	$\begin{aligned} & +215 \mathrm{~V} \\ & +240 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} \text { d.c. } & 1,000 \mathrm{~V} \\ \text { d.c. } & 1,000 \mathrm{~V} \end{array}$	A1 GAIN clockwise A1 GAIN anti-clockwise
v9 pin 7 (screen)	$\begin{aligned} & +300 \mathrm{~V} \\ & +320 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	A1 GAIN clockwise A1 GAIN anti-clockwise
V9 pin 6 (cathode)	$\begin{aligned} & +10 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} \text { d.c. } & 100 \mathrm{~V} \\ \text { d.c. } & 100 \mathrm{~V} \end{array}$	A1 GAIN clockwise A1 GAIN anti-clockwise
V10 top cap (anode)	$\begin{aligned} & +250 \mathrm{~V} \\ & +280 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \\ & \hline \end{aligned}$	A2 GAIN clockwise A2 GAIN anti-olockwise
V10 pin 7 (screen)	$\begin{aligned} & +275 \mathrm{~V} \\ & +290 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { d.c. } 1,000 \mathrm{~V} \\ & \text { d.c. } 1,000 \mathrm{~V} \end{aligned}$	A2 GAIN clockwise A2 GAIN anti-clockwise
V10 pin 6 (cathode)	$\begin{aligned} & +10 \mathrm{~V} \\ & +52 \mathrm{~V} \end{aligned}$	$\begin{array}{ll} \text { d.c. } & 100 \mathrm{~V} \\ \text { d.c. } & 100 \mathrm{~V} \end{array}$	A2 GAIN clockwise A2 GAIN anti-clockwise
PROBE socket pin 1	+320V	d.c. 1,000V	PROBE SEIECTOR switoh set to Y1 Y2 plug withdrawn

Note: Deviations from the above test figures of the order of 10% are to be expected in practice.

57/Maint/2819

Redesignation of ENERs

Information

1. To maintain the proper sequence of EMER numbers, it is intended that:-
(a) all future issues of EMERs on this equipment will be published in the series Tels Y 050 - Y 059 and
(b) the current EMERs will be redesignated.

Issue 1, 1 Jul 55

```
Distribution - Class 930. Code Nc. 6
```


Action

2. The following EMERs will be redesignated as shewn.

Present designation					New designation (e)
	EIMER designation (a)	Pages (b)	Issue No. (c)	Date (a)	
1	- Tels Y 800/4	1-2	1	26 Nov 53	Tels Y 050

57/Maint/6670
END
Page 2
Issue 1, 1 Jul 55

OSCTHLOSCOPE, TYPE 13A

TECHNICAJ HANDBOOK - MISCELEANEOUS INSTRUCTION

SUB-TITLE: AMPLTTUDE control - replacement of 50 kS potentiometer (RV8)

1. Introduction

The AMPLITUDE control potentiometer, (RV8), Cat No $\mathrm{Z1} / \mathrm{ZA} 40491$ has proved unsatisfactory in service. As and when this control becomes unserviceable it is to be replaced by a potentiometer of similar ohmic value but of larger wattage dissipation and improved construction.

2. Items affected

```
Oscilloscope, type 13A Z4/10S-831
    AMPLITUDE control potentiometer (RV8) 21/ZA 40491
```


3. Action required by:-

(a) Units authorized to carry out field or base repairs
(i) As and when potentiometer, RV8, (Cat No Z1/ZA 40491) is found to be unserviceable, demand stores as detailed in para $4 \bullet$
(ii) On receipt of stores, fit as replacement for unserviceable item.
(iii) On overhaul, examine the equipment. If potentiometer Z1/ZA 40491 is fitted as RV8, replace by the new type potentiometer, demanding stores and fitting on receipt.

4. Stores

Stores will be demanded through normal Ordnance channels quoting this Misc Instr and equipment serial number on the indent.
(a) Stores to be demanded

$\begin{gathered} \text { VAOS, } \\ \text { Section } \end{gathered}$	Part No	Designation.	$\frac{\text { Qty }}{\frac{\text { eq eqst }}{}}$
Z1	5905-99-932-5797	Resistor, variable, w.W॰\& rotary, toroidal, $50 \mathrm{k} \Omega, \pm 10 \%, 5 \mathrm{~W}$, linear	1

5. EMER amendments

An amendment to Tels Y 052, Table 1001 will be issued as a separate regulation. INST/O 13A/O1

