Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by the Henlow Signals Museum, believed to be out of copyright. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time!

Colin Hinson
In the village of Blunham, Bedfordshire.

TF 144H (Series II)

Standard Signal Generator

MANUAL CHANGE

for

TF 144H (Series II)
STANDARD SIGNAL GENERATOR

A modified tag strip has been fitted to the a.l.c. and modulation amplifier. This has involved the relocation of some components.

A drawing of the new arrangement is given below, this replaces fig. 4.5 on page 33 of the handbook.

A. L. C. and modulation amplifier tag strip.

OPERATING AND MAINTENANCE HANDBOOK No. OM 144H (II)

 for
Standard Signal Generator TF I44H (Series II)

Types TF $144 \mathrm{H} / 4, \mathrm{TF} 144 \mathrm{H} / 4 \mathrm{R}, \mathrm{TF} 144 \mathrm{H} / 4 \mathrm{~S}$ and $\mathrm{TF} 144 \mathrm{H} / 6 \mathrm{~S}$
Copyright (C) 1963

CONTENTS

GENERAL INFORMATION

1.1 FEATURES

The TF 144 H series of signal generators give c.w. and a.m. outputs suitable for the standard measurements and tests on equipment operating in the m.f., h.f., and lower v.h.f. bands. Their good frequency stability and high-discrimination tuning are of particular advantage in testing narrowband communication receivers.

Each generator covers $10 \mathrm{kc} / \mathrm{s}$ to 72 Mc / s in twelve ranges. Eight of these ranges follow a straight-line frequency law and have a frequency cover of $2: 1$; the remaining four have a slightly greater range and one of them covers the medium-wave broadcast band. A large effective scale length is provided on the main tuning dial which has separate hand-calibrated scales for each range. Its discrimination is such that a 2% frequency change on any band occupies more than a quarter of an inch of scale length. Frequency accuracy is $\pm 1 \%$, but for greater accuracy there is a built-in crystal calibrator which gives at least 90 crystal check points throughout the twelve ranges.

An 8:1 reduction drive from the main tuning control enables easy and precise adjustment to be made, and a linear logging scale with 100 divisions attached to the main tuning control facilitates interpolation between any of the main-scale divisions. In addition to the logging scale, a fine tuning control is provided which is operative above $80 \mathrm{kc} / \mathrm{s}$ and enables incremental frequency adjustments to be made, with complete freedom from backlash, up to $\pm 0.5 \%$ of the frequency in use.

Modulation can be applied from an internal $400-\mathrm{c} / \mathrm{s}$ to $1000-\mathrm{c} / \mathrm{s}$ oscillator or from an external source. In both cases, depth is variable up to 80% over most of the frequency range.

There are two r.f. signal outlets. One supplies an output e.m.f. switchable between 2 and 2.75 volts (monitored by the meter) at very low impedance while the other supplies a variable e.m.f. between $2 \mu \mathrm{~V}$ and 2 volts via coarse and fine 50 -ohm attenuators; the output range may be extended down to $0.2 \mu \mathrm{~V}$ by using the $20-\mathrm{dB}$ Attenuator Pad accessory. A system of automatic level control keeps the carrier level constant throughout wide frequency changes.

Designed for operation from either a.c. mains or battery supplies the instrument is available in forms suitable for bench or rack mounting, as detailed below.

1.2 STANDARD AND SERVICES VERSIONS

TF $144 \mathrm{H} / 4$ and $\mathrm{TF} 144 \mathrm{H} / 4 \mathrm{R}$ are the standard bench- and rack-mounting models. The versions with suffix 'S' are Services types which are distinguished from the standard models by a sealed round meter, a Plessey Mk. IV mains supply plug, and accessories supplied.

Standard Models

TF 144H/4 : Bench mounting TF $144 \mathrm{H} / 4 \mathrm{R}$: Rack mounting

Services Models

TF $144 \mathrm{H} / 4 \mathrm{~S}:$ Bench mounting. No accessories. Joint-Service Ref. No. CT 452A.

TF 144H/6S : Bench mounting. With accessories. Ref. No. CT 452A Set.

The accessories supplied and available are described in Section 1.4.

1.3 DATA SUMMARY

FREQUENCY

Range:	$10 \mathrm{kc} / \mathrm{s}$ to $72 \mathrm{Mc} / \mathrm{s}$, in 12 bands .
Main Tuning:	Straight-line frequency law on 8 bands. Linear logging scale on slow-motion drive divides the main scale into nearly 400 divisions per band.
Calibration Accuracy:	$\pm 1 \%$.
Fine Tuning:	Calibrated directly in $\%$ frequency change. Discrimination: 1 division $=0.01 \%$. Total cover: 1%. Accuracy: $\pm 10 \%$ of scale reading for carrier frequencies below 16 $\mathrm{Mc} / \mathrm{s} ; 15 \%$ of scale reading for higher frequencies. For use at carrier frequencies above $80 \mathrm{kc} / \mathrm{s}$ only.
Crystal Check:	$400-\mathrm{kc} / \mathrm{s}$ and $2-\mathrm{Mc} / \mathrm{s}$ crystals selected automatically by band switch. Accuracy: $\pm 0.005 \%$.
Stability:	$\pm 0.002 \%$ in a ten-minute interval after warm-up.

OUTPUT

Impedance:
Calibrated Output

Direct Output:

Coarse Attenuator:

Fine Attenuator:

Attenuator Accuracy:
 Level Monitor:

Stray Radiation:
50Ω at calibrated output; v.s.w.r. better than 1.25:1.
$2 \mu \mathrm{~V}$ to 2 V e.m.f. Low outputs down to $0.2 \mu \mathrm{~V}$ using 20 dB Pad TM 5573.

Normal: approximately 2 V .
High: 2.75 V into 75Ω, directly monitored to an accuracy of $\pm 0.5 \mathrm{~dB}$ on ranges A to K or $\pm 1.0 \mathrm{~dB}$ on range L.

Eleven 10-dB steps.

Ten l-dB steps; interpolation by carrier-level control and meter.

Within $\pm 0.7 \mathrm{~dB}$ to $30 \mathrm{Mc} / \mathrm{s} ;$ within $\pm 1 \mathrm{~dB}$ to $72 \mathrm{Mc} / \mathrm{s}$.
Protected-thermocouple voltmeter. Accuracy: $\pm 0.5 \mathrm{~dB}$ absolute.

Negligible; permits full use of lowest output.

MODULATION

Internal A. M. :

Depth:
$400 \mathrm{c} / \mathrm{s}$ and $1 \mathrm{kc} / \mathrm{s}$, switch selected.
0 to 80% (dependent upon modulating frequency at low carrier frequencies - see table under External A. M.); monitored by carrier-level meter and calibrated control.

External A. M. :

Spurious A. M. on C. W. :
Spurious F.M. on C. W. :

Spurious F. M. on A. M.:

Accuracy of r.m.s. modulation: $\pm 5 \%$ modulation (i.e. 6.25% of full scale) at carrier frequencies where 80% modulation is obtainable with low distortion - see table under External A. M.

Minimum modulation frequency: $20 \mathrm{c} / \mathrm{s}$. The maximum modulating frequency and depth which can be obtained at low distortion, when the ratio of modulating frequency to carrier frequency is small is, typically, as shown in the following table :-

Carrier Frequency	Max. Mod. Frequency		
	$0-30 \%$	$30-50 \%$	$50-80 \%$
$10 \mathrm{kc} / \mathrm{s}$	$1 \mathrm{kc} / \mathrm{s}$	$400 \mathrm{c} / \mathrm{s}$	$200 \mathrm{c} / \mathrm{s}$
$100 \mathrm{kc} / \mathrm{s}$	$5 \mathrm{kc} / \mathrm{s}$	$2 \mathrm{kc} / \mathrm{s}$	$1 \mathrm{kc} / \mathrm{s}$
$1 \mathrm{Mc} / \mathrm{s}$	$20 \mathrm{kc} / \mathrm{s}$	$14 \mathrm{kc} / \mathrm{s}$	$8 \mathrm{kc} / \mathrm{s}$
$10 \mathrm{Mc} / \mathrm{s}$	$20 \mathrm{kc} / \mathrm{s}$	$17 \mathrm{kc} / \mathrm{s}$	$15 \mathrm{kc} / \mathrm{s}$
$72 \mathrm{Mc} / \mathrm{s}$	$20 \mathrm{kc} / \mathrm{s}$	$20 \mathrm{kc} / \mathrm{s}$	$20 \mathrm{kc} / \mathrm{s}$

Input requirements: approximately 6 volts into 25 kor 80% modulation.

Less than 0.1% depth.
Deviation less than $\pm 0.0001 \%$ of the carrier frequency.
At frequencies below $30 \mathrm{Mc} / \mathrm{s}$, deviation with $30 \% \mathrm{a} . \mathrm{m}$. is less than $\pm 0.01 \%$ of the carrier frequency or $\pm 100 \mathrm{c} / \mathrm{s}$, whichever is the higher.

POWER SUPPLY

(A.C. Mains or external batteries)
A. C. Mains:

Batteries:

200 to 250 volts or 100 to 130 volts, adjustable at plugtype supply-mains tapping panel. Frequency range, 40 to $100 \mathrm{c} / \mathrm{s}$; consumption, 80 watts.
L.T.: 6 volts, 2 amps. H. T.: 240 volts, up to 50 mA depending on setting of controls.

DIMENSIONS \& WEIGHT
(in bench case):

Height	Width	Depth	Weight
$13 \frac{1}{2}$ in	$20 \frac{1}{2}$ in	11 in	651 b
$(34 \mathrm{~cm})$	$(52 \mathrm{~cm})$	$(27.9 \mathrm{~cm})$	$(29.5 \mathrm{~kg})$

2 OPERATION

2.1 INSTALLATION

Take off the transparent plastic cover, if one is supplied with the instrument. If the cover is not completely removed when the instrument is operated overheating may occur. Position the instrument so that the ventilating louvres at the rear and underneath are not obstructed.

Unless otherwise specified, the instrument is despatched with its mains input circuit adjusted for immediate use on 240 volts within the frequency range 40 to $100 \mathrm{c} / \mathrm{s}$. It may also be adjusted for operation from other a.c. supply mains in the range 100 to 130 and 200 to 250 volts, or from 6 -volt $1 . t$. and 240 -volt h.t. external batteries.

2.2 CONNECTIONS

For a.c. mains operation, firstcheck or alter the mains transformer tappings as shown in Section 4.2 Connect the instrument to the power socket by means of the mains lead and plug in the r.f. lead to the R.F. OUTPUT socket. These leads are normally stowed in the two case handle recesses. A 20-dB Attenuator Pad for use with the r.f. lead when required, is clipped inside the righthand recess.

When the instrument is supplied for Services use, an adaptor Type TM 6263 is fitted into the front panel supply plug. This provides the necessary circuit linkages, and also an entry for the standard Plessey MkIV Services power lead.

For battery operation, connect up the special battery lead Type TM 6122 available as an optional accessory If the instrument is to be used in a vehicle, use a separate l.t. battery, or alternatively, check that the vehicle wiring employs a negative earth return system. Since there is no Services equivalent
for the lead Type TM 6122 the Adaptor mentioned above should be removed to make way for the McMurdo Type socket on the end of the battery lead.

Fig. 2. 1 Battery Supply Lead

2.3 WARMING UP

The specified stability of 0.002% in a $10-$ minute period is not attained until a warmup period of about 3 hours has elapsed. After switching on, and with the function switch set to any position other than CARRIER OFF, the initial drift will be of the order of 0.01% of any selected frequency per 10 -minute period. This higher order of drift will of course diminish with time. and you should therefore leave the instrument switched on during periods of intermittent use - preferably switched to the frequency range required. When changing from one frequency range to another, a period of 15 minutes or more should be allowed for maximum stability.

During the warm-up period however, you can still be assured of a high order of accuracy provided that frequency checks are made using the crystal calibrator. This particularly applies in the case of battery operation when it is undesirable to leave the instrument switched on for long periods.

1.4 ACCESSORIES

1. STANDARD MAINS LEAD

Type TM 2560CA: 6 ft long; for a.c. mains operation of TF $144 \mathrm{H} / 4$ and TF $144 \mathrm{H} / 4 \mathrm{R}$ only.
2. SERVICES MAINS LEAD - Connector Type 3429/1 (A. M. Ref. 10HA/8359) ; Admiralty Ref. A. M. 67384): 5 ft long; for a.c. mains operation of 'S' versions only.
3. BATTERY LEAD Type TM 6122: 6 ft long; for battery operation of all models.
4. OUTPUT LEAD Type TM 4969/3: 50 ohms; BNC plug - BNC plug; 5 ft long (Joint Service Ref. No. 5995-99-580$0513)$.

5. OUTPUT LEAD Type TM 4726/152: 50 ohms; BNC plug - Belling-Lee L788FP plug; 5 ft long. (Joint Service Ref. No 5995-99-580-0512).

6. 20 dB PAD Type TM 5573: 50 ohms; BNC plug - BNC socket; (Joint Service Ref. No. 5905-99-580-0510).
7. MATCHING PAD Type TM 5569: 50 to 75 ohms; BNC socket - Belling-Lee L734/P plug.

8. MATCHING PAD Type TM 6599: 50 to 75 ohms; BNC plug - Burndept PR4E plug. (Joint Service Ref. No. 5905-99-580-0511).

9. DUMMY AERIAL \& D.C. ISOLATING UNIT Type TM 6123: Input, BNC plug on 3 ft lead; output, spring-loaded terminals. For general receiver testing or for use on circuits with d.c. potentials up to 350 volts. (Joint Service designation: COUPLER SIG. GEN.; Ref. No. 6625-99-913-9483).

Accessories supplied with each version are as follows:-

TF $144 \mathrm{H} / 4$ and TF $144 \mathrm{H} / 4 \mathrm{R}: 1,4,6$.
TF 144H/4S: None
TF 144H/6S:2, 4, 6, 9.

2.4 CONTROLS: SUPPLY AND TUNING

(1) MAIN TUNING DIAL

(1A) Cursor for ranges A-F ($10-1,605 \mathrm{kc} / \mathrm{s}$).
(1B) Cursor for ranges $G-L(1-72 \mathrm{Mc} / \mathrm{s})$.
(1C) Arrow Reference Mark. Align upper cursor with this when not using crystal calibrator.
(1D) Set Cursor Control. Allows either cursor to be adjusted for standardizing scale against crystal check points - see Table in Section 2. 8.
(2) MAIN TUNING CONTROL. For laging scale calibration see Section 2.9.
(3) FINE TUNING CONTROL. Gives $\pm 0.5 \%$ incremental tuning on ranges D to L. Each scale division represents 0.01%.
(4) RANGE CONTROL. 12-position. Identification and frequency of range setected is shown in the window.
(5) PHONES JACK. Insertion of telephone plug, with Function Selector set to CRYSTAL CHECK, switches on crystal calibrator.
(6) SUPPLY PLUG. Connect lead TM 2560 CA or $3429 / 1$ for ac. mains overation, or TM 6122 for battery operation.
(7) SUPPLY SWITCH. For mains or battery operation.

FUSES. Supply: 2A, H.T.: 500 mA .

2.5 CONTROLS: MODULATION AND OUTPUT

(1) C.W. MONITORING. Adjust to SET CARRIER mark, or to 0.5 dB marks for attenuator interpolation.
(2) MOD. MONITORING. Adjust to SET MOD. mark with MODULATION SELECTOR at a SET position.

MODULATION SELECTOR. Carrier Off position removes h.t. from r.f. oscillator.
(4) $\%$ MOD. Controls internal and external modulation.
(5) EXT. MOD. TERMINALS. $25 \mathrm{k} \Omega$ impedance. About 6 volts input gives 80% modulation.
(6) INTERRUPT CARRIER. For temporarily switching off carrier without affecting output impedance or stability.
(7) COARSE ATTENUATOR. 11 steps of 10 dB .

Figures in window show :-
Black: dB relative to $1 \mu \mathrm{~V}$, to be added to figure on dial.

RedorGreen: Voltage range covered by same-coloured scale on dial.
(8) FINE ATTENUATOR. 10 steps of 1 dB .

Scales read:-
Black: dB relative to $1 \mu \mathrm{~V}$, to be added to figure shown by Coarse Attenuator.

Red or Green: Output voltage. Multiply by factor depending on range shown by Coarse Attenuator.
(9) R.F. OUTPUT. Open-circuit e.m.f. shown by attenuator controls. 50 ohms source impedance. Connector: BNC type UG291/U.
(10) DIRECT OUTPUT. 2 volts output variable only by SET CARRIER control Connector: BNC type UG290/U.

DIRECT OUTPUT SWITCH. Selects direct output level; in the NORMAL position 2 V , in the HIGH position 2.75 V With the switch at HIGH there is no output from the R. F. OUTPUT socket.

2.6 QUICK OPERATIONAL CHECK

The following sequence of operations will enable you to get the feel of the controls and to check that the r.f. oscillator, modulation circuits, monitor and crystal calibrator are working.
(1) Switch to SUPPLY ON.
(2) Turn the SET FREQ. RANGE switch to $F-535$ to $1605 \mathrm{kc} / \mathrm{s}$.
(3) Adjust the main tuning control for an indication of $1000 \mathrm{kc} / \mathrm{s}$ against the upper cursor.
(5) Set the function selector to one of the C. W. positions.
(6) Bring the meter pointer to the SET CARRIER mark by adjusting the SET CARRIER control, and note that the control is within, say, the middle third of its travel.
(5) Turn the function selector to $400 \mathrm{c} / \mathrm{s}$ MOD - SET.
(6) Bring the meter pointer to the SET
(8) MOD mark by adjusting the SET MOD control.
(5) Turn the function selector to $400 \mathrm{c} / \mathrm{s}$ MOD - USE.
(9) Rotate the \% MOD control and check that the modulation depth readings on the control scale and the meter agree.
(5) Turn the function selector to CRYSTAL CHECK.
(10) Plug headphones into the PHONES jack and check that a beat note can be heard as the main tuning dial is rocked through one or two divisions about the $1000 \mathrm{kc} / \mathrm{s}$ mark.

Check the mechanical zero setting of the meter and adjust if necessary.

Switch to SUPPLY ON and allow time to warm up.

Turn the SET FREQ RANGE control to the required range.

Bring the upper cursor line to the arrow mark by means of the SET CURSOR control. Adjust the main tuning control to bring the main dial reading to the approximate frequency required.
(7) Turn the FINE TUNING control to 0 .
(8) For maximum accuracy switch to CRYSTAL CHECK and plug headphones into the PHONES jack. Readjust the main tuning control for zero beat at the nearest crystal check point (see Section
2.8 for check point frequencies) and reset the cursor to correct the dial reading.

Tune to the exact required output frequency by adjusting the main dial to the nearest calibrated mark and interpolating by means of the logging scale on the main tuning control (see Section 2.9 for logging scale calibration).
(8) Switch to C.W. and adjust the SET
(10) CARRIER control to bring the meter pointer to the SET CARRIER mark.
(11) Adjust the OUTPUT E. M. F. controls for the required output voltage.

NOTE: Watch the meter when making large frequency changes - it may be necessary to readjust the SET CARRIER control.

2.8 USE OF CRYSTAL CALIBRATOR

To use the crystal calibrator, plug headphones into the PHONES jack and switch to CRYSTAL CHECK. Adjust the main tuning dial to obtain zero beat at the nearest check point to the wanted frequency. Then use the SET CURSOR control to align the cursor with the check point frequency indication on the dial.

Crystal check point frequencies occur as follows:-

Ranges A to D at submultiples of $400 \mathrm{kc} / \mathrm{s}$, Ranges E and F at submultiples of $2 \mathrm{Mc} / \mathrm{s}$, Ranges G and H at multiples of $400 \mathrm{kc} / \mathrm{s}$, Ranges I to L at multiples of $2 \mathrm{Mc} / \mathrm{s}$.

The actual frequencies are tabulated below.

TABLE 2.1

CRYSTAL CHECK POINT FREQUENCIES					
$\begin{gathered} \text { Range } \mathrm{A} \\ 10-20 \\ \mathrm{kc} / \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Range } B \\ 20-40 \\ \mathrm{kc} / \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Range C } \\ 40-80 \\ \mathrm{kc} / \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Range } D \\ 80-200 \\ \mathrm{kc} / \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Range } E \\ 200-535 \\ \mathrm{kc} / \mathrm{s} \end{gathered}$	$\begin{gathered} \text { Range } F \\ 535-1605 \\ \mathrm{kc} / \mathrm{s} \end{gathered}$
10	20.00	40.00	80.00	200.00	666.66
10.26	21.05	44.44	100.00	222.22	1000.00
10.53	22.22	50.00	133.33	250.00	1333.00
10.81	23.53	57. 14	200.00	285. 71	1500.00
11.11	25.00	66.66		333.33	
11.43	26.66	80.00		400.00	
11.76	28. 57			500.00	
12.12	30.77				
12.5	33.33				
12.9	36.36				
13.33	40.00				
13.79					
14.29					
14.81					
15.38					
16.00					
16.66					
17.39					
18.18					
19.05					
20.00					
Range G	Range H	Range I	Range J	Range K	Range L
1-2	2-4	4-8	8-16	16-32	30-72
Mc / s					
Check points every $400 \mathrm{kc} / \mathrm{s}$		Check points every $2 \mathrm{Mc} / \mathrm{s}$			

2.9 TUNING CONTROL LOGGING SCALE

RANGE A: $30 \mathrm{c} / \mathrm{s}$ per division
RANGE B : $60 \mathrm{c} / \mathrm{s}$ per division
RANGE C : $120 \mathrm{c} / \mathrm{s}$ per division

RANGE D

RANGE E

RANGE F

RANGE G: $3 \mathrm{kc} / \mathrm{s}$ per division
RANGE H: $6 \mathrm{kc} / \mathrm{s}$ per division
RANGE I : $12 \mathrm{kc} / \mathrm{s}$ per division
RANGE J : $24 \mathrm{kc} / \mathrm{s}$ per division
RANGE K : $48 \mathrm{kc} / \mathrm{s}$ per division

2.10 A.M. OPERATION

INTERNAL

Switch on, tune, and set output as for C. W. (see Section 2. 7).

Switch to $400 \mathrm{c} / \mathrm{s}$ MOD-SET or $1 \mathrm{kc} / \mathrm{s}$ MOD-SET and adjust the SET MOD control to bring the meter pointer from the SET CARRIER mark to the SET MOD* mark.

Switch to the adjacent USE position and set the \% MOD control to indicate the required percentage modulation on its dial.

EXTERNAL

Switch on, tune, and set-output as for C. W. (see Section 2. 7).

Connect the external modulating source to the EXT MOD and E terminals (about 6 volts for 80% modulation).

Switch to EXT MOD-SET and adjust the SET MOD control to bring the meter pointer from the SET CARRIER mark to the SET MOD* mark.
(1) Switch to EXT MOD-USE and set the $\%$ MOD control to indicate the required percentage modulation on its dial.

* Except at low carrier and high modulation frequencies. The maximum depth for lowdistortion modulation is limited when the modulation frequency exceeds a certain percentage of the carrier frequency (about 2% at $10 \mathrm{kc} / \mathrm{s}$ carrier to about 0.1% at 10 Mc s). The maximum modulation frequencies for different carrier frequencies and modulation depths are shown in the table in Data Summary - Modulation, Section l.3. When using a combination of carrier and modulation frequency that puts a limitation on the modulation depth, the 50% or 30% mark on the meter is used instead of the SET MOD mark.
For example: at $10 \mathrm{kc} / \mathrm{s}$ carrier, $400 \mathrm{c} / \mathrm{s}$ modulation, set to the $50 \% \mathrm{mark}$;
at $10 \mathrm{kc} / \mathrm{s}$ carrier, $1000 \mathrm{c} / \mathrm{s}$ modulation, set to the 30% mark;
at $\mathrm{l} \mathrm{Mc} / \mathrm{s}$ carrier, $14 \mathrm{kc} / \mathrm{s}$ modulation, set to the 50% mark.

2.11 R.F. OUTPUT ARRANGEMENTS

TABLE 2.2

The R. F. OUTPUT circuit of the Signal Generator should be regarded as a zeroimpedance voltage source in series with a resistance of 50 ohms. This is shown in Fig. 2.8 where:
E is the indicated source e.m.f., Ro is the source resistance,
R_{L} is the external load resistance
V_{L}, the voltage developed across the load, is given by

$$
V_{L}=E \cdot \frac{R_{L}}{R_{O}+R_{L}}
$$

Note: if the load is not predominantly resistive the reactive component must be taken into account and $\pm j X$ added to $R \mathrm{l}$.

Fig. 2.8
Equivalent output circuit

Table 2.2 shows the conversion factors for obtaining the load voltage from the indicated e.m.f. at different load impedances.

When using a correctly matched, i.e. $50-$ ohm, output lead its output end can be regarded as an extension to the output socket on the Generator and wide variations in load impedance do not seriously affect the calculated load voltage obtained from Table 2.2. Standing waves produced by the mismatched load can, for most purposes, be ignored.

For greatest accuracy - if the additional attenuation can be tolerated - use the $20-\mathrm{dB}$ Attenuator PadType TM 5573 between seriously mismatched loads and the output lead. This ensures that the lead is correctly terminated, and also attenuates any extraneous noise induced in the lead.

To find load voltage:

LOAD	Multiply	or	Subtract
ohms	E.M.F. by		$d B$

10	0.167	15.5
20	0.286	10.9
30	0.375	8.5
40	0.445	7.0
50	0.50	6.0
60	0.55	5.2
70	0.58	4.7
75	0.60	4.4
80	0.62	4.2
90	0.64	3.8
100	0.67	3.0
120	0.71	1.9
150	0.85	1.3
200	0.86	0.8
300	0.91	0.7
500	0.92	0.5
600	0.94	0.4
800	0.95	0.2
1000	0.98	39

OUTPUTS INTO 50-OHM LOADS

The voltage developed across a 50 -ohm load is equal to half the e.m.f. indicated on the voltage scales of the Generator output controls, or 6 dB less than $\mathrm{dB} \mu \mathrm{V}$ indication

Fig. 2.9 50 -ohm load

MATCHING TO HIGH IMPEDANCE LOADS

To present a load that is greater than 50 ohms with a signal derived from a matched source, a resistor $R s$ is added in series with the Generator output. The value of $R s$ is given by the difference between the load and Generator impedances, that is,

$$
R s=R t-R o
$$

Series resistor in circuit

Equivalent circuit

Fig. 2.10 High-impedance matching

The voltage across the load, VL_{L}, is given by

$$
V_{L}=\frac{E}{2}
$$

For the special case of a 75 -ohm load a Matching Pad, Type TM 5569 or TM 6599 , is available as an accessory and consists basically of a 25 -ohm resistor with coaxial connectors for insertion in series with the output lead.

MATCHING TO LOW-IMPEDANCE LOADS

To present a load that is less than 50 ohms with a signal derived from a matched source, a resistor $R p$ is added in parallel with the Generator output. The value of $R p$ is given by

$$
R_{p}=\frac{R o R}{R o-R}
$$

Parallel resistor in circuit

Equivalent circuit

Fig. 2.11 Low-impedance matching

The effective source e.m.f., E_{1}, is now different and is given by

$$
E_{1}=E \cdot \frac{R p}{R p+R_{o}}
$$

and the voltage across the load, V_{L}, is given by

$$
V_{L}=\frac{E_{1}}{2}
$$

MATCHING TO BALANCED LOADS

Equipment whose input circuit is in the form of a balanced winding can be fed from the Generator by using two series resistors as shown in Fig. 2.13. This method makes use of the auto-transformer effect of the centre-tapped windings and is not suitable for resistive balanced loads.

Fig. 2.12 Balanced load matching

The values of R_{1} (for use in the live lead) and R_{2} (for the earth lead) are given by

$$
\begin{aligned}
R_{2} & =\frac{Z_{L}}{2} \\
\text { and } R_{1} & =\frac{Z_{L}}{2}-50
\end{aligned}
$$

2.12 USE OF 20-dB ATTENUATOR PAD

It is recommended - provided that the reduced output e.m.f. can be tolerated - that the 20-dB Attenuator Pad TM 5573 should be permanently connected to the output end of the r.f. lead. Terminated in this way, the extraneous noise pick-up in the lead is attenuated by a factor of ten before being applied - together with the signal - across the load. This arrangement is particularly advantageous when making signal-to-noise tests on receivers at low voltage level.

With the Pad in circuit, the possibility of errors in apparent e.m.f. or output impedance, due to the presence of standing waves at the higher frequencies, is avoided since it is now impossible to seriously mismatch the r.f. lead. In fact, variations in load impedance between zero and infinity cause the effective value to depart from the correct value by as little as 1 ohm.

Fig. 2.13 Effect of $20-\mathrm{dB}$ Pad

The Pad reduces the effective source e.m.f. by a factor of 10 : therefore, the figures for load voltage obtained from Table 2.2 must be divided by 10 or reduced by 20 dB . The load voltage, V_{L}, is given by

$$
V_{L}=\frac{E}{10} \quad \frac{R_{L}}{R_{O}+R_{L}}
$$

When matching to loads other than 50 ohms, the matching resistor must be inserted on the output side of the Pad; the expressions given in Section 2. 11 then become:-

For series matching, $\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{E}}{20}$

For parallel matching,

$$
\mathrm{V}_{\mathrm{L}}=\frac{\mathrm{E}_{1}}{20}=\frac{\mathrm{E}}{20} \frac{\mathrm{Rp}}{\mathrm{Rp}+\mathrm{Ro}}
$$

2.13 USE OF DUMMY AERIAL AND D.C. ISOLATOR

Fig. 2. 14 Generator output using TM 6123

To use this dual-purpose unit as a dummy aerial, connect the EMF/l0 and E terminals to the receiver under test. The unit then simulates the impedance of a typical aerial for broadcast receivers in the l.f., m.f. and h.f. bands, and provides an open-circuit e.m.f. of one-tenth of that indicated by the Generator.

To use it as a 350 -volt d.c. isolator connect the EMF/2 and E terminals to the equipment under test. This allows the Generator output to be applied to circuits having a standing d.c. potential up to 350 volts. The open-circuit e.m.f. is half of that indicated by the Generator.

2.14 DIRECT OUTPUT

Two r.f. levels are available at the DIRECT OUTPUT socket; with the DIRECT OUTPUT switch at NORMAL an e.m.f. of 2 V is provided and with the switch at HIGH an output, which is preset during manufacture at 2.75 V (100 mW into a 75Ω load), is available. The source impedance with the switch in either position is virtually zero.

As with the R.F. OUTPUT the stated level depends on the SET CARRIER control having been adjusted to bring the pointer of the CARRIER AND MODULATION LEVEL

Section 2

meter to the SET CARRIER mark, but you will notice that adjustment to the SET CARRIER control is not usually necessary when switching from NORMAL to HIGH.

The minimam load impedance which may be presented to the DIRECT OUTPUT when switched to NORMAL is 200Ω and when switched to HIGH is 50Ω. If, for any reason, the impedance of the load is lower than these figures add a series resistor between the DIRECT OUTPUT and the cable to bring the ef-
fective impedance seen by the generator up to the minimum value.

NOTE: At high frequencies the connecting cable may amount to a quarter wavelength and then, if terminated with a high impedance this will appear as a very low impedance to the Signal Generator.

The R.F. OUTPUT is disconnected when the DIRECT OUTPUT is switched to HIGH.

3 TECHNICAL DESCRIPTION

It is intended that the description given in the CIRCUIT SUMMARY below should be read in conjunction with the Functional Diagram. Reference should be made to the Circuit Diagrams at the back of the handbook when reading the more detailed information in the subsequent sections.

3.1 CIRCUIT SUMMARY

Output from the r.f. oscillator stage, V101, is applied direct to the HIGH OUTPUT socket, and also to the R.F. OUTPUT socket via the coarse and fine attenuators. The oscillator output is also applied to the thermocouple meter for carrier level monitoring, to the grid of V102b via the a.l.c. diodes for automatic level control, and to the crystal calibrator V103.

The double-triode stage V103 acts as a crystal oscillator and mixer; its beat note outputis used - after amplification by V204a - to provide calibration markers for checking and calibrating the dial. Output to the

PHONES jack is taken from the cathode-follower triode V204b which also provides a.g.c. voltage for application to the grid of V204a via the a.g.c. diode.

Valve sections V204a and V204b, when switched for internal modulation, are arranged as a bridge-connected $R-C$ oscillator. Output from the oscillator at the anode of V204b is applied via the cathode-follower V202b to the amplifier V102b. Output from this amplifier is then applied to a further cathode-follower V102a which screen-modulates the r.f. oscillator.

3.2 R.F. OSCILLATOR

All the components associated with the oscillator stage, V102, are contained within a completely screened R.F. Box, although valves V101 to 103 are accessible from outside the R.F. Box. Range selection and appropriate circuit changes are made by means of turretswitched components as described in Section 3. 3.

Fig. 3.1 Functional Diagtain

Fig. 3.2 R. F. Oscillator - Range A (Ranges B and C are basically similar)

On ranges A to K (see Figs. 3.2 and 3.3) Vlol is connected as an r.f. oscillator using a tuned-anode circuit with an inductively coupled feed-back winding connected into the grid circuit. On the highest-frequency range, L, the circuit is changed to that of a Colpitts oscillator (see Fig. 3.4).

The level of the r.f. outputis determined by the value of the oscillator screen potential. This potential - which is derived from the cathode of V102a-depends on (i) the potential on the grid of the audio amplifier and a.1.c. valve, Vl02b, which in turn depends upon the adjustment of the SET CARRIER control RV102, preset resistor RV101, and the automatic level control voltage and (ii) the position of the SET FREQ RANGE switch, section $S(100) A h$, which selects the amount of series resistance between the oscillator screen and

Fig. 3.3 R. F. Oscillator - Range G (Ranges D to K are basically similar)
the cathode of V102a. On ranges A to H, this potential is limited by the series resistors, Rl10, R108, R185 and the neon tube V104; on ranges I, J, and K by R110, R108; and on range L, by R110 and RI85.

3.3 RANGE SWITCHING

Range switching is accomplished by selecting any one of twelve turret-mounted inductors and associated components by means of the SET FREQ RANGE control; Figs 3.2 to 3.4 show the three principal circuit arrangements. Contacts which provide the connections between the selected components and the main part of the circuit also serve to short-circuit, and earth, the tuning inductor of the next lower section not in use - this being a precaution against the production of spurious resonances.

Switch $S(100) A$, comprising seven separate sections, is ganged to the SET FREQ RANGE control and performs the following functions:-
$S(100) A f$ and $S(100) A e$:
Select the beat note output and switch the h.t. supply of the crystal calibrator V103.

S(100)Ac and S(100)Ad:
Switch the $2,000-\mathrm{kc} / \mathrm{s}$ and $400-\mathrm{kc} / \mathrm{s}$ oscillator crystals appropriate to the frequency range selected.
$S(100) \mathrm{Ab}$ and $S(100) \mathrm{Ai}$:
Route the modulating a.f. output from the cathode follower V202a to the grid of the amplifier $V 102 b$ as described in Section 3.7. For ranges A, B, and C, the filter network which includes L110 and Llll is used; for the remaining ranges, the filter network which includes L108 and L109 is used.

S(100)Ah:
Provides a coarse adjustment to the screen potential applied to the r.f. oscillator, V101. This maintains the oscillatory voltage at a constant level irrespective of the range in use.

3.4 MAIN TUNING

The main tuning dial control rotates the ganged variable capacitors C101, C102, and C103 via an 8:1 reduction gear. Capacitors C101 and C102 are permanently connected in parallel with one another, and are connected in parallel with the selected tuning inductor as the SET FREQ RANGE control is operated. On ranges A to J, all three capacitors are connected in parallel (C103 is connected in parallel with C101/Cl02 via the turret contacts 3 and 4). On range $\mathrm{K}, \mathrm{Cl} 101 / \mathrm{C} 102$ are disconnected, leaving only C 103 connected in parallel with the tuning inductor Li32. On range L, all three capacitors are connected in a series/parallel arrangement.

Fig. 3.4 R.F. Oscillator Range L

3.5 INCREMENTAL TUNING

A small variable inductor (L101) placed effectively in parallel with part of each main tuning inductor via turret contacts 3 and 5 provides an electrical incremental tuning facility. The inductance of L 101 is varied by means of the FINE TUNE control which operates a rising cam attached to the inductor core. The actual connection of Ll01 is across part of the fixed inductor (L118, L120, L122 etc.) associated with each turret section; this in turn is connected in parallel with part of the main tuning inductor. On range C and below the incremental tuning is inoperative.

3.6 MODULATION OSCILLATOR AND CATHODE FOLLOWER

When the function selector switch $\mathrm{S}(200) \mathrm{B}$ is set to the INT MOD SET and USE positions, the triode-pentode valve V204 functions in a Wien Bridge oscillator circuit. Fig. 3.5 shows the circuit switched for $400-\mathrm{c} / \mathrm{s}$ modulation. When $1,000 \mathrm{c} / \mathrm{s}$ modulation is selected, capacitor C 213 is added in series with C212, and capacitor C214 in series with $C 215$ by means of switch section S(200)Bh.

Level-stabilizing negative feedback is applied to the cathode of V204a from the anode of V204b via the thermistor TH201; positive feedback to the grid of V204a from the junction of C212/C215 (junction C213/ C214 for $1,000 \mathrm{c} / \mathrm{s}$) via $\mathrm{S}(200) \mathrm{Be}$ maintains oscillation.

When the valve is used in this way as a modulation oscillator, the cathode resistor R224 is short-circuited by the contacts of the switch wafer S(200)Bg. When CRYSTAL CHECK is selected, this resistor is restored into the circuit; V204a then functions as an audio amplifier, and V204b as a cathode follower output stage.

In the SET (internal or external modulation) switch positions, the a.f. is applied to the grid of the cathode-follower connected triode V 202a via switch wafers S(200)Ba and $S(200) B c$, and the uncalibrated SET MOD

Fig. 3.5 Modulation Oscillator Switched to $400 \mathrm{c} / \mathrm{s}-\mathrm{USE}$
control RV203. At this switch setting, and regardless of the setting of the calibrated \% MOD control RV204, RV 203 provides a means of setting up the modulation level in conjunction with the SET MOD reference mark on the meter. When the switch is moved to the USE position, the modulating voltage is then dexived from the slider of the $\%$ MOD control.

3.7 A.L.C. AND MODULATION AMPLIFIER

The valve V102 combines the functions of audio amplifier, automatic level control (a.l.c.), and cathode follower output for screen modulating the oscillator valve, V101. The circuit arrangement is showninFig. 3.6.

Fig. 3.6 A. L. C. and Modulation Amplifier

Modulating voltages are applied to the grid of V102b from V202b via either of two filter networks and the additional feed and filter components C129, CI2l and Rll6. D.C. coupling is employed between the anode of V102b and grid of the cathode follower V102a - the r.f. output carrier being then modulated by the variation in voltage output at the cathode of V102a.
A. L. C. is obtained by rectifying part of the oscillator output (via C 104 and MR102), and applying the resultant d.c. to the grid of V102b, where it is compared with the reference potential set up across R115. For any change in r.f. output, a difference voltage
appears at the anode of VIO 2 b , and hence the grid of V102a. The level at which the a.l.c. operates depends upon the adjustment of the SET CARRIER control RV 102, and the setting of the preset resistor RV101. The SET CARRIER control can be considered as a fine control adjustment to the output carrier level. Since its range of adjustment is small, there is no risk of damage to the thermocouple in the meter monitoring circuit when using the instrument, provided, of course, that the preset resistor RVlol has been previously correctly adjusted.

The heater of V102 (together with the heaters of V101 and V103) is supplied with 6.3 volts d.c. from the stabilized l.t. supply.

3.8 CRYSTAL CALIBRATOR

The purpose of the calibrator is to provide accurate audio calibration markers for standardizing the main tuning dial calibration, and hence the carrier frequency.

Double triode V103 functions as a crystal oscillator/mixer which combines a small portion of the main oscillator output with the oscillations produced by a $400-\mathrm{kc} / \mathrm{s}$ or 2 Mc/s crystal. The beat-note output from this valve is then applied via V204 to the PHONES jack.

Triode section V103b is connected in a Colpitts oscillator circuit arrangement;

Fig. 3.7 Crystal Calibrator Ranges A to D
switch section S(100)Ac (SET FREQ RANGE) control) selects the crystal frequency appropriate to the selected frequency range, while section $S(100)$ Ad short circuits the out-of-use crystal.

On ranges A to D, as shown in $F i g$. 3.7, the $400 \mathrm{kc} / \mathrm{s}$ crystal is in circuit; on ranges E and F the $2-M c / s$ crystal is used. On all these six ranges, switch wafers $S(100)$ Ae and $S(100)$ Af connect the anode load R 216 to the anode of V103a. The h.t. voltage for Vl03b is obtained via Rll 8 which bridges the two anodes on these ranges. Signal mixing takes place as a result of the stray coupling from triode section V103b.

Fig. 3.8 Crystal Calibrator Ranges I to L

On ranges G and H, the $400-\mathrm{kc} / \mathrm{s}$ crystal is in circuit; on ranges $\mathrm{I}, \mathrm{J}, \mathrm{K}$, and L , as shown in Fig. 3.8, the $2-\mathrm{Mc} / \mathrm{s}$ crystal is selected. On these six ranges, resistor R216 is connected to the anode of V103b. The triode section V103a is not energized but provides stray coupling for mixing to take place in V103b.

Switch section $S(200) B d$ breaks the h.t. supply to the crystal calibrator circuit in all positions other than CRYSTAL CHECK.

3.9 CRYSTAL CALIBRATOR AMPLIFIER

When the function selector is set to CRYSTAL CHECK, output from the crystal
calibrator is applied to V204 now functioning as an audio amplifier and cathode follower as shown in Fig. 3.9.

Fig. 3.9 V204 switched as Crystal Calibrator Amplifier

The PHONES jack is connected across the cathode follower (V204b) output at the junction of R224/223, while the signal at this junction is also rectified and applied as a.g.c. to the grid of V204a, via C216 and the a.g.c. diode, MR206. The use of a.g.c. in this circuit arrangement ensures that the level of the audio beat note, used when checking the main tuning dial calibration, remains reasonably constant over the wide frequency coverage of the Generator.

The switch sections, and associated circuit changes, are as follows :-

S(200)Be :
Transfers the grid of V204a to the output of the crystal calibrator at C 207 .

S(200)Bf:
Connects V204a screen decoupling capacitor C 209 to earth, and short-circuits the cathode resistor R 220.
$\mathrm{S}(200) \mathrm{Bg}:$
Restores the cathode follower resistor R224 to the circuit. Makes the a.g.c. operative by breaking the earth connection. Earths the junction C210/TH201.

3.10 OUTPUT ATTENUATORS

Series connected coarse and fine attenuators between the r.f. oscillator and the R. F. OUTPUT socket provide adjustment of the e.m.f. from the Generator between $2 \mu \mathrm{~V}$ and 2 volts in $1-d B$ steps. A plug-on $20-d B$.attenuator pad accessory extends the range down to $0.2 \mu \mathrm{~V}$. Of the two R. F. OUTPUT controls, the lower knob controls the coarse attenuator, in $10-\mathrm{dB}$ steps, while the dial above it provides a fine interpolation adjustment between 0 and 10 dB . When switched for $c . w$. working, a fine interpolation between the $1-d B$ steps of the attenuator can be made by making use of the $\pm 0.5 \mathrm{~dB}$ marks on the meter in conjunction with adjustment to the SET CARRIER control.

For any movement of the attenuators, the voltage range covered by the dial, and the number of $\mathrm{dB}^{1} \mathrm{~s}$ to be added to those indicated, are shown in the window adjacent to the coarse. control knob.

The coarse attenuator consists of a conventional ladder networkgiving a stepped attenuation while at the same time maintaining a 50 -ohm output impedance. A bridged T-network is used for the fine attenuator both ends of the series resistors being switched to provide a good v.s.w.r. The capacitors C146 to Cl50 connected across the shunt resistors associated with the five highestattenuation switch positions, compensate for the inductive effect exhibited by these resistors.

When the controls are moved to correspond with 126 dB , both attenuators are switched out of circuit thereby avoiding any shunting effect.

3.11 DIRECT OUTPUT

A connection between pin 7 of the turret and the DIRECT OUTPUT socket provides, in conjunction with the setting of switch S 100 c , two levels of output.

In the NORMAL position of the switch the output e.m.f. is the same as at the R.F. OUTPUT socket with both attenuators out of circuit. When Sl00c is turned to HIGH,

RV104is connected in series with the feed to the a.l.c. monitor and the level monitor, thus reducing the a.l.c. voltage and the sensitivity of the level monitor by corresponding amounts.

3.12 METER MONITORING

A panel meter continuously monitors the output from the oscillator via a thermocouple (TC102). Both c.w. and modulation reference levels are marked on the scale for use in conjunction with the SET CARRIER and SET MOD controls, in addition to the $\pm 0.5 \mathrm{~dB}$ marks referred to in Section 3. 10 .

Fixed resistors R100, R186 and R198 set the approximate heater current flowing through the thermocouple, while RV103 provides a 'set carrier' preset adjustment. Protection of the thermocouple from possible overload damage is afforded by a limiting circuit comprising MR103, MRI04 and Cl 96 which prevents the voltage across the thermocouple exceeding 6.3 volts.

3.13 POWER SUPPLIES

The instrument is designed to operate from either a.c. mains, or external h.t. (240 volts) and 1.t. (6 volts) batteries.

The internal power supplies are provided by a mainstransformer whose primary windings may be connected in series/parallelfor 100- to 130 -volt operation, or in series for 200- to 250-volt operation. Tappings on these windings permit connections to be made to suit intermediate voltages within each range.

The secondary windings LT 2 and LT 3 provide a.c. heater current for the valves V201, V202, V204 and also the pilot lamp PLP201; winding LTl supplies the valves V101, V 102 and V103 via full-wave rectifier MR205 and its associated smoothing and regulating circuits.
H.T. supply is obtained from the secondary winding of the meins transformer; full wave rectification is employed using eight
bridge-connected rectifiers MR201 to MR204 and MR207 to MR210, while resistancecapacitance smoothing is effected by means of reservoir capacitor C201 and the regulator circuit.

- Removing the mains input socket SKT202 from the front panel plug PL201, and replacing it with the battery connector socket SKT 201, automatically adjusts the circuit connections to suit the d.c. inputs. The circuit adjustments are as follows :-
(1) 'The h.t. circuit from the cathode of V201 via pins 1 and 2 of PL201 is broken. The battery supply h.t. positive is connected to pin 1.
(2) The d.c. 1.t. supply to V101, Vl02 and V103 is broken at pins 11 and 12 , and the 6 -volt battery positive supply is connected to pin 12 .
(3) The earth connection is removed from the bottom of the LT 3 heater winding, but remains connected to pin 10 so as to provide the common l.t./h.t. connection from the batteries. The 6 -volt battery supply is applied to the heaters of V202 and V 204 via the LT3 secondary winding - the voltage drop due to the resistance of the winding being negligible.

The same front panel switch $S(200) A$ is used for both main and battery operation. The fuse FS201 protects the rectified h.t. supply only.
H. T. Regulation

The h.t. is stabilized by means of a conventional series regulation valve (V201), and an error amplifier (V202).

Error voltages are sampled at the grid of V202 via the preset resistor RV 201 which forms part of a potentiometer connected across the regulated h.t. supply. The reference potential for the cathode of V 202 is obtained from the tapping at the junction of R209 and the voltage reference tube V 203.

A degree of forward control is effected by means of the V202 screen voltage connection via R204 to the unregulated h.t. supply, thus ensuring maximum stability against changes in mains input supply.

L. T. Regulation

The l.t. stabilizing circuit is similar in operation to the h.t. circuit, using a series element as the main regulator.

The transistor VT 201 functions as the series element between the negative side of the rectifier MR101 and the common heater/ chassis return circuit. Error signals are amplified by VT203 and applied to VT 201 via the emitter follower VT 202. Positive feedback forward control is applied to VT 202 via R211; the thermistor BR201 compensates for changes in temperature, while C 204 prevents instability occurring round the feedback loop.

4 MAINTENANCE

1 GENERAL

The maintenance information in this astruction book enables you to carry out nost of the setting up, testing and repairing lat may be required on this instrument.

For routine inspection of the instrument sllow the instructions given in Section 4.7 'erformance Checks.

For fault location, first refer to Section . 6 - Valve Failure and Replacement, since alves are the most likely source of trouble; ection 4.4-Static Voltages, will also help , locate a fault, as will the routine checkut in Section 4.7. Where performance is arginal, the source of trouble can often be lentified by moving to a higher primary apping on the mains transformer, which ffectively decreases the supply voltage; iis may exaggerate the weakness and make : easier to trace.

Always look out for obvious signs of zilure, such as cold valves, burnt-out esistors and other overheating symptoms, lash-over marks and blown fuses. Inspect or bad soldering and dry joints by noting hanges in performance caused by gently apping the joints with an insulated prod-bיrt e careful of high voltages.

In case of difficulties that cannot be leared by means of this instruction book, or or general advice on servicing the instrurent, please write or phone our Service epartment or nearest Area office. Always rention the type number and serial number f your instrument. (For addresses, see ear cover.)

If the instrument is being returned for epair please indicate clearly the nature of re fault or the work you require to be done.

4.2 MAINS INPUT ARRANGEMENT

The Generator is fitted with a mains transformer which has a double wound primary winding. The two sections may be connected either in series-parallel, or in series, depending on whether the instrument is to be used for 100 - to 130 -volt, or 200 - to 250 volt operation. Each primary section is tapped, and the connections brought out to a voltage adjustment panel available through an aperture at the rear of the case.

Mains input adjustments are made by means of four two-pin plugs which make contact with the connections to the transformer through a reversible masking plate. This plate is annotated on one side with voltages applicable to 100- to 130 -volt range, and on the other side with voltages applicable to the 200- to 250 -volt range. All the possible plug combinations to suit the input voltage range covered by the instrument are shown.

The instrument is normally despatched with its mains input adjusted for 240 -volt operation. To alter the input to suit the voltages within the 100 - to 130 -volt range, it is merely necessary to remove the four two-pin plugs, reverse the cover plate, and then replace the plugs so that their positions correspond to the appropriate diagram in Fig. 4. 1.

Switch off the supply before making an adjustment. The two fixing screws that secure the tapping panel to the sub chassis are at the potential of VT 201 collector which is about -5 volts d.c. relative to the main chassis.

If the plugs are stiff to remove, lubricate the pins with a thin smear of petroleum jelly.

Section 4

SUPPLY VOLTAGE PANEL
Masking plate and links must be positioned according to supply voltage, as shown:-

SUPPLY

200 V
LINKS
$\sqrt{5}$

To change

masking plate

100-130 volts a.c. SUPPLY

100 V

105 V

110 V

115 V

120 V

130 V

Fig. 4.1 Supply Voltage Plug Settings

Fig. 4.2 General Arrangement of TF 144H/4

4.3 REMOVAL OF CASE -ACCESS TO COMPONENTS

To remove the case, stand the instrument face downwards, and take out the four screws at the back and the four at the bottom of the case. Lift the case clear, complete with the aluminium trim.

All valves are now accessible, and their location is shown in Fig. 4.2. All presets can be adjusted without removing the r.f. box cover; RV101, RV103 and RV104 through holes in the bottom of the cover, C 144 and C192 through holes inside the crystal screening can.
R. F. BOX

To open the r.f. box remove the four cover fixing screws, two on each side, and lift off the cover. To get at many of the components it mayalso be necessary to remove the coil turret which can be done quite easily as follows :-
(1) Turn the turret to a position between two ranges to disengage the contacts beneath the turret. Be careful not to disturb any of the coil windings or preset controls.
(2) Undo the three screws around the drive shaft.
(3) Lift off the coil turret, watching out for the side thrust exerted by the detent spring.

To replace the turret, first make sure the drive is still between two ranges. Locate the turret so that the spigot in the shaft plate engages in the hole near the 'L' segment of the turret.

FINE ATTENUATOR

To remove the Fine Attenuator assembly:-
(1) Slacken the set-screw in the fine attenuator knob.
(2) Remove the four fixing screws of the R. F. OUTPUT socket.
(3) Remove the six fixing screws from the attenuator housing inside the r.f. box and withdraw the assembly far enough to allow its input coaxial connector to be unplugged.
(4) Completely withdraw the assembly with the output lead attached.
(5) Take off the housing after removing the four hexagon-headed screws near the rim of the housing.

When replacing the assembly note that the input lead is at the 6 o'clock position. Before tightening the set screw make sure that the dial reads 6.4 on the red scale when the switch is fully counter-clockwise.

COARSE ATTENUATOR

Replacement of resistors in the coarse attenuator is not practical. Although it is possible to get at the resistors by removing the spur gears and rear cover plate, the spring mechanism inside the attenuator will be released and can only be re-set by a procedure beyond the scope of this handbook.

4.4 STATIC VOLTAGES AND CURRENTS

The voltages on the circuit diagrams are representative of those obtained with a $20 \mathrm{k} \Omega /$ volt multi-range meter, such as an Avometer Model 8, set to its highest convenient range.

R. F. Box Voltages and Currents

Valve electrode voltages for V101 and V102 in the r.f. box are difficult to obtain since the presence of the test meter influences both the oscillatory conditions and the level of the a.l.c. voltage. Therefore, it is
better to rely on the current measurements given in the table below. The r.f. oscillator screen and modulator cathode voltages, however, can conveniently be checked by measuring the voltage to chassis from each side of
capacitor Cl12. Checking the currents and voltages against the values given in the table provides aguide to the efficiency of the oscillator over any band and will help to locate discrepancies and variations in range coils.

Range Frequency Cll2 +ve Cl12-ve \quad| R.F. Box current |
| :---: |${ }^{\dagger}$

\dagger
Measured by connecting a milliameter across the contacts of the CARRIER INTERRUPT switch and opening the switch.

Fig. 4.4 Coil turret

Fig. 4.5 A.L.C. \& Mod. Amp. tagstrip

Fig. 4.6 Monitor tagstrip

Fig. 4.3 R. F. Box interior

Section 4

4.5 VALVE FAILURE AND REPLACEMENT

If the instrument becomes faulty, valve failure is the most likely cause; to help you locate a faulty valve, the main failure symptoms for each are included in the following table. Failure of a dual-purpose valve such as V102 and V 204 can be readily diagnosed if faults are noted in both of its functions. For example: absence of crystal check points would indicate failure of either V103, the crystal oscillator, or V204, the crystal calibrator amplifier; but if modulation was also absent, this would definitely point to V204 since this valve is also the modulation oscillator.

When a valve is replaced, it is advisable to use the same type as the original fitted in the instrument: this is normally, but not necessarily, the type listed in the fourth column. If the original type is not available one of the equivalent types listed should be suitable. After fitting the new valve, carry out the performance check indicated in the last column.

Do not overlook the fact that the valvefailure symptoms and readjustments required may also apply to certain of the components associated with the valve.

After replacing any of the transistors, VT201 to VT203, carry out performance check No. 1 B .

Valve No.	Function	Symptom of Failure	Type	Equivalents	Check Ref.
V101	R.F. oscillator	Low output	QV03-12	$\begin{aligned} & 5763 \\ & \text { CV } 2129 \end{aligned}$	2C, 4A
V102	A. L. C. and mod. amplifier	Unstable output, low or distorted modulation	6 U 8	ECF 82 CV 5065	2D
V103	Crystal oscillator	Crystal check points weak	12 AU 7	ECC 82 B329 6067 CV491 CV4003	3A, 3B
V 104	Voltage Stabilizer	Low output, ranges A - H only	3L		2C
V201	H. T. Regulator	Unstable frequency, low output	6CJ6	$\begin{aligned} & \text { EL81 } \\ & \text { CV } 2721 \end{aligned}$	1A, 1C
V202	Regulator control and mod. cathode follower	Unstable frequency, low output	6U8	ECF 80 ECF 82 CV 5065	1A, 5B
V 203	Regulator reference tube	Unstable frequency, low output	5651	85A2 QS83/ 3 CV2573 CV449	1A
V204	Mod. oscillator and cal. amplifier	Low modulation, crystal check points weak	6 U 8	ECF 80 ECF 82 CV5065	5B, 3C

4.6 ADJUSTMENT OF PRESETS

Many of the operating parameters are brought within close limits by means of preset controls. These controls will not normally require adjustment except following the replacement of a valve or other component. When adjustment is necessary, it must be done in accordance with the performance check specified in the table.
Circuit

Ref. \quad Function \quad| Check Ref. |
| ---: |
| (S ection 4.7) |

RV101

RV10

RV104
RV201

RV202

L114 L115
L116L117
L119 L121
L123 L125
L127 L129
L131 L133

L118 L120
L122 L124
L126 L128
L130 L132
L1 34

C144

C152C155
C158C161
Cl64C167
Cl70C173
C176C179
C182C184

Adjust a. 1. c. voltage. 2D WARNING: Incorrect setting can burn out thermocouple.
$\begin{array}{lr}\begin{array}{l}\text { Standardize level } \\ \text { meter indication. }\end{array} & 2 \mathrm{~A} \\ \text { Set HIGH OUTPUT } & 2 \mathrm{E}\end{array}$
Set h.t. voltage. IA

Set d.c. heater voltage lB
to r.f. box.
Standardize main 4 A
tuning dial calibration
at 1 .f. end of each range.

Set frequency coverage 4B of FINE TUNING
control.

Set $2000 \mathrm{kc} / \mathrm{s}$ crystal
3A
frequency.

Standardize main 4A tuning dial calibration at h.f. end of each range.

C192

4.7 PERFORMANCE CHECKS

The following tests cover the setting-up of all circuits in the Signal Generator and the verification of the main points of performance.

Although a setting-up procedure is included for preset components in the r.f. oscillator coil turret such adjustments require a high degree of specialized experience for satisfactory results; you are therefore recommended not to make these adjust ments unless it is strictly necessary. For advice on this and other servicing matter s please consult Marconi Instruments Service Department or your local Area office - the addresses are given on the back cover.
(a) Multi-range volt-ammeter, $20 \mathrm{l} \Omega /$ volt; such as Avometer Model 8.
(b) Variable transformer, to suit supply voltage; such as Variac.
(c) D. C. supply, standardized at 2 and 2.3 . volts.
(d) Frequency meter, $400 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{Mc} / \mathrm{s}$, 0.002% accuracy; such as Marconi Instruments TF 1417, TF 1345, TME2.
(e) Valve voltmeter, a.f. to $2 \mathrm{Mc} / \mathrm{s}$; such as Marconi Instruments TF 1100 , TF 1300, TF 1041.
(f) Audio oscillator, $100 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$, 100 mV to 20 volts monitored; such as Marconi Instruments TF 1101, TF 1370.
(g) Oscilloscope, a.f. to at least $30 \mathrm{Mc} / \mathrm{s}$; such as Marconi Instruments TF 1330.
(h) A.F. Attenuator, continuously variable; such as Marconi Instruments TF 338.

1 POWER SUPPLY

1A	(a)	Check T201 primary tap agrees with supply voltage.
1B	(a)	Check T201 primary tap agrees with supply voltage.
l.t.		(a)

tap agrees with supply voltage.

Measure voltage at

 C206 +ve: 250 V d. c .Measure voltage at Pin 5 of r.f. box tagstrip: 6.5 V d.c.

Vary supply voltage $\pm 6 \%$: check h.t. variation within $\pm 0.5 \mathrm{~V}, \mathrm{l} . \mathrm{t}$. variation within $\pm 0.05 \mathrm{~V}$.

RANGE control between

 two ranges. DIRECT OUTPUT switched to NORMAL.RANGE control between two ranges. DIRECT OUTPUT switched to NORMAL.

Select C. W., RANGE A.

Check meter reads at

 SET CARRIER mark.Check meter reads at SET MOD mark.

Check SET CARRIER control can deflect meter reading beyond +0.5 dB mark. Repeat on all ranges.

Adjust RV 201.

Adjust RV 202.
H. T. : check V 201 (low emission) MR201 to MR210.
L. T. : check VT 201 , VT202, MR205.

Adjust RV 103.

Check TC102.

Check V101.
Check setting of RV101.

Fig. 4.7 H. T. Rectifier and 1.t. regulator

R. F. box tagstrip mounted on top of chassis
Fig. 4.8 H. T. regulator and V204 circuit

$\underset{\infty}{\infty}$	$\begin{gathered} \text { REF \& } \\ \text { OPERATION } \end{gathered}$	TEST EQUIPMENT - CONNECTIONS	CONTROL SETTINGS - CONDITIONS	MEASURE - TEST	IF INCORRECT ADJUST OR CHECK
2 LEVEL MONITOR (continued)					
	2D A. L. C. action	-	Select C. W., RANGE D, main tuning to mid-scale. Meter to SET CARRIER.	Tune through all ranges; check meter variation within $\pm 0.5 \mathrm{~dB}$ over any range and within 0.75 dB between ranges and that meter can be brought to SET CARRIER mark.	Adjust RV101 slightly.* Repeat Ref. 2C. *Turning RV101 too far clockwise may burn out thermocouple TCl02.
	$2 \mathrm{E}$ Set HIGH OUTPUT	(c): connect 2.75 V to DIRECT OUTPUT.	RANGE control between two ranges. DIRECT OUTPUT switched to HIGH.	First check section 2A. Check meter reads at SET CARRIER mark.	Adjust RV104.
3 CRYSTAL CALIBRATOR					
	3A Frequency	(d): couple to crystal circuit by looping wire round V103.	Select CRYSTAL CHECK (i) RANGE E (ii) RANGE A	(i) Measure frequency: $2000 \mathrm{kc} / \mathrm{s}$. (ii) Measure frequency: $400 \mathrm{kc} / \mathrm{s}$.	(i) Adjust Cl44. (ii) Adjust Cl92.
	3B Crystal volts	(e)	Select CRYSTAL CHECK (i) RANGE E (ii) RANGE A	(i) Measure volts across XT101: 2.5-16V. (ii) Measure volts across XT102: 2.5-16V.	Check crystal, V103.
$144 H / I I \text { (1b) }$	$3 C$ Cal. Amplifier A. G. C.	(f): apply $1 \mathrm{kc} / \mathrm{s}$ via capacitor to pin 1 of r.f. box tag-strip. (e): connect to plug in PHONES jack.	Select CRYSTAL CHECK RANGE control between two ranges.	Vary oscillator from 100 mV to 20 V and measure output at PHONES jack: 2 to 20 V .	Check MR206, V204, C 208 .

4A

Main Tuning

4B
Fine Tuning
(d): connect to R. F. OUTPUT.

Leave case on and allow 2 hour warm-up. Select C. W., CRYSTAL CHECK, and plug into PHONES jack. FINE TUNING to 0, SET CURSOR to bring cursor to arrow mark.

Select C. W. , main tuning to mid-scale.

Tune to selected crystal check points on each range in turn and check dial accuracy is within $\pm 1 \%$ 。

On ranges D to L in turn check FINE TUNING control cover and accuracy.

Adjust a.f. source for Lissajous zero beat. Check frequency is $400 \mathrm{c} / \mathrm{s} \pm 5 \%$.

Adjust a.f. source for Lissajous zero beat. Check frequency is $1000 \mathrm{c} / \mathrm{s} \pm 5 \%$.

At 1.f. end of any band adjust appropriate coil: LI14, L115.... L133. At h.f. end adjust appropriate trimmer: Cl52, C155.... C184.

If total cover wrong adjust appropriate coil: L118, L120L134. If error asymmetric relative to 0 mark , adjust L101 mechanical setting (see Fig. 4.3).

Check C 212 , C 215 , R227, R228.

If $400 \mathrm{c} / \mathrm{s}$ is correct, check C213, C214.

Mod. Depth

5C
Ext. Mod.
Bandwidth
(g): connect to HIGH OUTPUT.
(f), (h): connect oscillator via attenuator to EXT. MOD terminals. Set oscillator to 1000 c/s 10 V ; attenuator to 10 dB .
(e): connect to C112 tve.

Select C. W., $400 \mathrm{c} / \mathrm{s}$ MOD-SET.

Check SET MOD control can give meter reading at SET MOD mark on ranges C to L without apparent distortion.

Keep oscillator output constant; vary frequency from $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ and note that attenuator adjustment needed to keep voltmeter reading constant does not exceed $\pm 1.2 \mathrm{~dB}$.

Check a.f. voltage across RV203 is 15 V $\pm 10 \%$. Check V204, V202, C 210 .

Check filter response by transferring voltmeter to junction C127/R128.

When ordering replacement parts, always quote the TYPE NUMBER and SERIAL NUMBER of the instrument concerned.

To specify the individual parts required, state for each part the QUANTITY required and the appropriate SOS ITEM NUMBER.

For example, to order replacements for the $1 \mathrm{l} \Omega$ resistor, R 102 , and the $0.1 \mu \mathrm{~F}$ capacitor C104, quote as follows :

```
Spares required for TF 144H/4, Serial Number 000000
    l off, SOS Item 3
    l off, SOS Item 140
```

If the part required is not listed please state its location, function and description.
SOS Circuit
No. Ref.
Nype

FIXED RESISTORS

1	R100	Carbon filament	50Ω	2\%	1/4	10-TM 6714/1
2	R101	Deposited carbon	100 K	10\%	1/4	7-TM 6714/1
3	R102	11	1Ω	10\%	1/4	8-TM 6714/1
4	R103	11	1 k	10\%	1/4	8-TM 6714/1
5	R104	Carbon filament	50Ω	2\%	1/4	70-TM 5993A/1
6	R105	Deposited carbon	10Ω	10\%	1/4	19-TM 6712/1
7	R106	11	10Ω	10\%	1/4	19-TM 6712/1
8	R107	" "	$1 \mathrm{M} \Omega$	10\%	1/4	9-TM 6714/1
9	R108	" "	$22 \mathrm{k} \Omega$	10\%	1/4	8-TM 67.5
10	R109	11	$10 \mathrm{M} \Omega$	10\%	$1 / 4$	70-TM 6077
11	R110	11	10%	10\%	$1 / 4$	6-TM 6715
11/1	R111	11	$33 \mathrm{k} \Omega$	10\%	1/4	23-TM 6712/2
13	R112	11	$270 \mathrm{k} \Omega$	10\%	1/4	18-TM 6712/1
14	R113	11	$1 \mathrm{M} \Omega$	10\%	1/4	7-TM 6715
15	R114	" 1	47 k	10\%	1/4	4-TM 6715
16	R115	11	910Ω	5\%	1/4	69-TM 5993A/1
17	R116	11	10018	10\%	1/4	5-TM 6715
18	R117	" "	$1 \mathrm{M} \Omega$	10\%	1/4	7-TM 6715
19	R118	11	22 k	10\%	1/4	22-TM 6712/1

FIXED RESISTORS (continued)

20	R119	Deposited carbon	$1 \mathrm{M} \Omega$	10\%	1/4	20-TM 6712/1
21	R120	$" 1$	$1 \mathrm{M} \Omega$	10\%	1/4	20-TM 6712/1
22	R121	" 1	$33 \aleph$	10\%	1/4	23-TM 6712/1
23	R122	Carbon filament	96.25Ω	1\%	1/8	36-TM 5990
24	R123	" "	142.3Ω	1%	1/8	37-TM 5990
25	R124	" "	96.25Ω	1\%	1/8	36-TM 5990
26	R125	" 1	142.3Ω	1%	1/8	37-TM 5990
27	R126	11	96.25Ω	1%	1/8	36-TM 5990
28	R127	11	142.3Ω	1%	$1 / 8$	37-TM 5990
29	R128	11	96.25Ω	1%	1/8	36-TM 5990
30	R129	11 "	142.3Ω	1\%	1/8	37-TM 5990
31	R130	11	96.25Ω	1\%	1/8	36-TM 5990
32	R131	11	142.3Ω	1\%	1/8	37-TM 5990
33	R132	11	96.25Ω	1\%	1/8	36-TM 5990
34	R133	" 1	142.3Ω	1%	$1 / 8$	37-TM 5990
35	R134	11	96.25Ω	1%	$1 / 8$	36-TM 5990
36	R135	" "	142.3Ω	1%	$1 / 8$	37-TM 5990
37	R136	" "	96.25Ω	1%	1/8	$36-\mathrm{TM} 5990$
38	R137	" 1	142.3Ω	1%	1/8	37-TM 5990
39	R138	11	228Ω	1%	1/8	41-TM 5990
10	R139	" 1	63.3Ω	2%	1/8	39-TM 5990
± 1	R140	11	70.5Ω	2%	$1 / 8$	40-TM 5990
E2	R141	" "	65.8Ω	2%	1/8	38-TM 5990
13	R142	11	142.3Ω	1\%	$1 / 8$	37-TM 5990
14	R143	11	96.25Ω	1\%	$1 / 8$	36-TM 5990
15	R144	11	142.3Ω	1\%	$1 / 8$	37-TM 5990
16	R145	11	6.2Ω	2%	1/8	11-TM 5991
17	R146	11	13Ω	2%	1/8	12-TM 5991
18	R147	" 1	20Ω	2\%	$1 / 8$	13-TM 5991
19	R148	11	30Ω	2%	1/8	16-TM 5991
; 0	R149	11	39Ω	2%	1/8	17-TM 5991
il	R150	" 1	50Ω	2\%	$1 / 8$	19-TM 5991

SOS Circuit No. Ref.

Value Tolerance

Rating
W at $55^{\circ} \mathrm{C}$

FIXED RESISTORS (continued)

52	R151	Carbon filament	62Ω	2%	1/8	20-TM 5991
53	R152	11	75Ω	2%	1/8	21-TM 5991
54	R153	11	91Ω	2%	1/8	23-TM 5991
55	R154	11	110Ω	2%	1/8	24-TM 5991
56	R155	11	50Ω	2%	1/8	19-TM 5991
57	R156	11	50Ω	2%	1/8	19-TM 5991
58	R157	" "	400Ω	2%	1/8	27-TM 5991
59	R158	11	200Ω	2%	1/8	26-TM 5991
60	R159	11	120Ω	2\%	1/8	25-TM 5991
61	R160	" 1	82Ω	2%	1/8	22-TM 5991
62	R161	11	62Ω	2%	1/8	20-TM 5991
63	R162	11	50Ω	2%	1/8	19-TM 5991
64	R163	11	39Ω	2%	1/8	18-TM 5991
65	R164	" 1	33Ω	2%	1/8	17-TM 5991
66	R165	11	27Ω	2%	1/8	15-TM 5991
67	R166	11	24Ω	2%	1/8	14-TM 5991
68	R167	Deposited carbon	100 k	10\%	1/4	5-TM 6715
69	R168	" "	2218	10\%	1/4	23-TM 6086
70	R169	11	4.71Ω	10\%	1/4	21-TM 6712/1
71	R170	11	10 k	10\%	1/4	22-TM 6086
72	R171	11	100 k	10\%	1/4	5-TM 6715
73	R172	11	$10 \mathrm{k} \Omega$	10\%	1/4	22-TM 6086
74	R173	11	4.71Ω	10\%	1/4	21-TM 6086
75	R174	11	$4.7 \mathrm{k} \Omega$	10\%	1/4	4-TM 6144/4
76	R175	11	4.7 R /	10\%	1/4	4-TM 6144/5
77	R176	"1	$4.7 \mathrm{R} \Omega$	10\%	$1 / 4$	$4-\mathrm{TM} \mathrm{6144/6}$
78	R177	11	$4.7 \mathrm{k} \Omega$	10\%	1/4	4-TM 6144/7
79	R178	" "	4.71Ω	10\%	1/4	2-TM 6144/8
80	R179	11	$4.7 \mathrm{~K} \Omega$	10\%	1/4	2-TM 6144/9
81	R180	11	3.91Ω	10\%	1/2	3-TM 6144/10
82	R181	1%	4.7Ω	10\%	1/4	21-TM 6086
83	R182	11	$1 \mathrm{M} \Omega$	10\%	1/4	31A-TM 6144/

FIXED RESISTORS (continued)

84	R183	Deposited carbon	4.71 N	10\%	1/4	8-TM 5992
85	R184	"	4.718	10\%	1/4	8-TM 5992
86	R185	"	100Ω	10\%	1/4	17-TM 6712/1
87	R186	Carbon filament	50Ω	2%	1/4	10-TM 6714/1
88	R187	Deposited carbon	4.7182	10\%	1/2	66-TM 5993A/1
89	R188	" "	47 に	10\%	1/4	5-TM 6144
90	R189	" "	2218	10\%	$1 / 4$	6-TM 6144/1
91	R190	"	2218	10\%	$1 / 4$	6-TM 6144/2
92	R191	" "	$10 \mathrm{k} \times$	10\%	1/4	7-TM 6144/3
93	R192	" "	$22 \mathrm{k} \Omega$	10\%	$1 / 4$	6-TM 6714/1
94	R193	" "	$2.2 \mathrm{M} \Omega$	10\%	1/4	5-TM 6714/1
95	R194	" "	10Ω	10\%	1/4	67-TM 5993A/1
96	R195	" "	47Ω	10\%	$1 / 2$	68-TM 5993A/1
97	R196	" "	$100 \Omega^{*}$	10\%	1/2	24-TM 6086
97/1	R197	Carbon filament	$1 \mathrm{k} \Omega$	10\%	1/2	25-TM 6086
97/2	R. 198	" "	$150 \Omega *$	10\%	$1 / 2$	11-TM 6714/1

98	R201	Composition	10Ω	10\%	1/2	10-TM 6083
99	R202	Deposited carbon	100Ω	10\%	1/4	7-TM 6084
100	R203	" $"$	470 ®	10\%	1/4	20-TM 6084
101	R204	11	3301Ω	10\%	1/4	19-TM 6084
102	R205	11	$47 \mathrm{k} \Omega$	10\%	1/4	14-TM 6084
103	R206	Wire-wound	2Ω	5\%	$9 / 70^{\circ} \mathrm{C}$	25126-702
104	R207	Deposited carbon	220Ω	10\%	$1 / 4$	4-TM 6085
105	R208	" 11		10\%	$1 / 4$	11-TM 6084
106	R209	11	$47 \mathrm{k} \Omega$	10\%	1	13-TM 6084
107	R210	11	33Ω	10\%	1/4	3-TM 6085
108	R211	11	22 k	10\%	1/4	6-TM 6085
109	R212	11	$150 \mathrm{k} \Omega$	10\%	1/4	18-TM 6084
110	R213	11	$68 \mathrm{k} \Omega$	10\%	1/4	15-TM 6084
111	R214	Metal oxide	47Ω	10\%	2	7-TM 6085
112	R215	11	11Ω	10\%	1/4	5-TM 6085

[^0]FIXED RESISTORS (continued)

113	R216	Deposited carbon	
114	R217	$"$	$"$
115	R218	$"$	$"$
116	R219	$"$	$"$
117	R220	$"$	$"$
118	R221	$"$	$"$
119	R222	$"$	$"$
120	R223	$"$	$"$
121	R224	$"$	$"$
122	R225	$"$	$"$
123	R226	$"$	$"$
124	R227	Carbon filament	
125	R228	$"$	$"$
126	R229	Deposited carbon	
127	R230	$"$	$"$
128	R231	$"$	$"$
129	R232	$"$	$"$
130	R233	$"$	$"$

221Ω	10%
$4.7 \mathrm{M} \Omega$	10%
4701Ω	10%
2.21Ω	10%
3.31Ω	10%
1001Ω	10%
101Ω	10%
150Ω	10%
$22 k \Omega$	10%
2.21Ω	10%
$1 \mathrm{M} \Omega$	10%
1201Ω	2%
1201Ω	2%
$470 k \Omega$	10%
$2.2 k \Omega$	10%
$2.7 \mathrm{~K} \Omega$	10%
2.21Ω	10%
33Ω	10%

1	12-TM 6084
$1 / 4$	24-TM 6084
$1 / 4$	20-TM 6084
$1 / 4$	9-TM 6084
$1 / 4$	6-TM 6084
$1 / 4$	16-TM 6084
1	22-TM 6084
$1 / 4$	8-TM 6084
1	12-TM 6084
$1 / 4$	9-TM 6084
$1 / 4$	23-TM 6084
1/2	17-TM 6084
1/2	17-TM 6084
1/4	20-TM 6084
1/4	9-TM 6084
$1 / 4$	10-TM 6084
1/4	11-TM 6085
$1 / 4$	57-TF 144H

SOS Gircuit
No. Ref.
Type
Value Tolerance

Rating
W at $70^{\circ} \mathrm{C}$
Works Ref.

VARIABLE RESISTORS

131	RV101	Wire-wound	$30 \mathrm{l} \Omega$	2	$24-\mathrm{TM} 6712 / 1$
132	RV102	Wire-wound	$5 \mathrm{l} \Omega$	3	$65-\mathrm{TM} 5993 \mathrm{~A} / 1$
133	RV103	Composition	$1 \mathrm{k} \Omega$	$1 / 4$	$25-\mathrm{TM} 6712 / 1$
$133 / 1$	RV104	Composition	100Ω	$1 / 4$	$26-\mathrm{TM} 6712 / 1$
134	RV201	Wire-wound	$30 \mathrm{k} \Omega$	2	$25-\mathrm{TM} 6084$
135	RV202	Wire-wound	500Ω	2	$9-\mathrm{TM} 6085$
136	RV203	Wire-wound	$50 \mathrm{k} \Omega$	3	$58-\mathrm{TF} 144 \mathrm{H} / 4$
137	RV204	Wire-wound	$50 \mathrm{k} \Omega$	3	$58-\mathrm{TF} 144 \mathrm{H} / 4$

Rating Volts d.c.

;APACITORS

38	C100	Ceramic	$0.01 \mu \mathrm{~F}$	$\begin{aligned} & +80 \% \\ & -20 \% \end{aligned}$	350	75-TM 5993A/1
	C101		200 pF			
39	C102	3-gang variable	200 pF			74-TM 5993A/1
	C103		200 pF			
40	C104	Paper	$0.1 \mu \mathrm{~F}$	20\%	250	13-TM 6714/1
41	C105	"	$0.1 \mu \mathrm{~F}$	20\%	250	13-TM 6714/l
42	C106	Lead-through	4, 700 pF	Min	350	17-TM 5992
43	C107	Paper	$0.1 \mu \mathrm{~F}$	10\%	250	22-TM 5992
45	C108	Lead-through	$4,700 \mathrm{pF}$	Min	350	17-TM 5992
46	C109	Ceramic	$4,700 \mathrm{pF}$	Min	500	18-TM 5992
47	Cl10	"	47 pF	10\%	750	7E-TM 6077
48	Cl11	"	47 pF	10\%	750	27-TM 6712/1
49	C112	Electrolytic	$1 \mu \mathrm{~F}$	20\%	275	16-TM 6715
50	Cl13	Lead-through	4,700 pF	Min	350	17-TM 5992
51	C114	"	$4,700 \mathrm{pF}$	Min	350	17-TM 5992
52	C115	Ceramic	$4,700 \mathrm{pF}$	Min	500	18-TM 5992
53	C116	Electrolytic	$1 \mu \mathrm{~F}$	20\%	275	16-TM 6715
54	C117	Lead-through	4,700 pF	Min	350	17-TM 5992
55	C118	Paper	$0.1 \mu \mathrm{~F}$	20\%	250	22-TM 5992
56	C119	Lead-through	4,700 pF	Min	350	17-TM 5992
57	C120	Ceramic	4,700 pF	Min	500	18-TM 5992
58	C121	"	120 pF	10\%	750	14-TM 6715
59	C122	Paper	1,000 pF	10\%	400	23-TM 5992
60	C123	Lead-through	200 pF	20\%	500	21-TM 5992
60/1	Cl24	Ceramic	10 pF	0.5 pF	750	76-TM 5993A/1
61	C125	Paper	2,000 pF	10\%	350	25-TM 5992
62	C126	Lead-through	200 pF	20\%	350	20-TM 5992
63	C127	"	200 pF	20\%	350	20-TM 5992
64	C128	Paper	$1,000 \mathrm{pF}$	10\%	400	23-TM 5992
65	C129	"	$0.01 \mu \mathrm{~F}$	20\%	400	15-TM 6715
66	C130	"	$1,000 \mathrm{pF}$	20\%	400	13-TM 6715
67	C131	"	$0.01 \mu \mathrm{~F}$	10\%	150	24-TM 5992

SOS No. Ref.

Rating Volts d.c.

CAPACITORS (continued)

168	C132	Lead-through	200 pF	20\%	350	20-TM 5992
169	C133	Ceramic	470 pF	20\%	500	28-TM 5992
170	C134	Paper	$0.02 \mu \mathrm{~F}$	10\%	150	26-TM 5992
171	C135	Lead-through	200 pF	20\%	350	20-TM 5992
172	C136	"	200 pF	20\%	500	21-TM 5992
173	C137	Paper	$0.01 \mu \mathrm{~F}$	10\%	150	24-TM 5992
174	C138	Ceramic	4.7 pF	10\%	750	28-TM 6712/1
175	C139	Paper	$0.1 \mu \mathrm{~F}$	20\%	250	31-TM 6712/1
176	C140	Lead-through	4,700 pF	Min	350	17-TM 5992
177	C141	1	4,700 pF	Min	350	17-TM 5992
178	C142	Ceramic	$4,700 \mathrm{pF}$	Min	500	18-TM 5992
179	C143	"	270 pF	10\%	500	29-TM 6712/1
180	C144	Trimmer	2-19 pF		500 V pk	32-TM 6712/1
180/la	C145	Ceramic	470 pF	10\%	500	26361-031
182	C146	"	4.7 pF	10\%	750	36-TM 5991
183	C147	"	10 pF	10\%	750	37-TM 5991
184	C148	1	15 pF	10\%	750	38-TM 5991
185	C149	"	18 pF	10\%	750	39-TM 5991
186	C150	"	30 pF	10\%	750	40-TM 5991
187	C151	"	4.7 pF	10\%	750	12-TM 6715
188a	C152	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	9-TM 6144
189	C153	Ceramic	82 pF	5\%	750	31-TM 6086
190	C154	Paper	220 pF	20\%	600	29-TM 5992
191a	C155	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	9-TM 6144/1
192	C156	Ceramic	91 pF	5\%	750	32-TM 6086
193	C157	"	$4.7 \mathrm{pF} \pm 0.5$	pF	750	26321-052
194a	C158	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	9-TM 6144/2
195	C159	Ceramic	82 pF	5\%	750	31-TM 6086
195/1	C160	Paper	200 pF	20\%	600	26174-116
197a	C161	Trimmer	4-20.5 pF		500 V pk	9-TM 6144/3

Volts d.c. Works Ref.

CAPACITORS (continued)

198	C163	Ceramic	1,000 pF	$\begin{aligned} & +40 \% \\ & -20 \% \end{aligned}$	500	8-TM 6144/4
199a	C 164	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	12-TM 6144/4
200	Cl66	Ceramic	1,000 pF	$\begin{aligned} & +40 \% \\ & -20 \% \end{aligned}$	500	8-TM 6144/5
201a	C167	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	12-TM 6144/5
202	C169	Ceramic	$1,000 \mathrm{pF}$	$+40 \%$	500	8-TM 6144/6
203a	C170	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	12-TM 6144/6
204	C171	Ceramic	91 pF	5\%	750	$32-\mathrm{TM} 6086$
205	C172	"	1,000 pF	$\begin{aligned} & +40 \% \\ & -20 \% \end{aligned}$	500	8-TM 6144/7
206a	C 173	Trimmer	4-20.5 pF		500 V pk	12-TM 6144/7
207	C174	Ceramic	91 pF	5\%	750	$32-\mathrm{TM} 6086$
208	C175	"	220 pF	$\begin{aligned} & +40 \% \\ & -20 \% \end{aligned}$	500	8-TM 6144/8
209a	C 176	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	12-TM 6144/8
210	C 177	Ceramic	82 pF	5\%	750	$31-\mathrm{TM} 6086$
211	C178	"	220 pF	$\begin{aligned} & +40 \% \\ & -20 \% \end{aligned}$	500	8-TM 6144/9
212a	C179	Trimmer	4-20.5 pF		500 V pk	12-TM 6144/9
213	C180	Ceramic	100 pF	5\%	750	$33-\mathrm{TM} 6086$
214	Cl81	"	470 pF	$+40 \%$	500	9-TM 6144/10
215a	C 182	Trimmer	$4-20.5 \mathrm{pF}$		500 V pk	12-TM 6144/10
216	C183	Ceramic	10 pF	5\%	750	29-TM 6086
217	C184	Trimmer	2-11 pF		500 V pk	36-TM 6086
218	C185	Polystyrene	150 pF	5%	350	$30-\mathrm{TM} 6086$
219	C187	Ceramic	. $01 \mu \mathrm{~F}$	$\begin{aligned} & +80 \% \\ & -20 \% \end{aligned}$	350	15-TM 6714/1
220	C188	"	$0.01 \mu \mathrm{~F}$	20\%	400	10-TM 6144
221	C189	"	$0.01 \mu \mathrm{~F}$	20\%	400	10-TM 6144/1
222	C190	"	$0.01 \mu \mathrm{~F}$	20\%	400	10-TM 6144/2
223	C191	"	$0.005 \mu \mathrm{~F}$	20\%	400	11-TM 6144/3
224	C192	Trimmer	$10-60 \mathrm{pF}$		350	$33-T M 6712 / 1$
225	C193	Ceramic	10 pF	5%	750	29-TM 6086
226	C194	"	10 pF	5%	750	29-TM 6086
227	C195	Paper	$0.1 \mu \mathrm{~F}$	20\%	250	13-TM 6714/1
228	C 196	'	$0.1 \mu \mathrm{~F}$	20\%	250	13-TM 6714/1

.
,

CAPACITORS (continued)

229	C 201	Electrolytic	$50 \mu \mathrm{~F}$	$\begin{aligned} & +50 \% \\ & -20 \% \end{aligned}$	500	21 -TM 6083
230	C202	Electrolytic	3,000 $\mu \mathrm{F}$	$\begin{aligned} & +100 \% \\ & -20 \% \end{aligned}$	25	22-TM 6083
231	C 203	Paper	$0.25 \mu \mathrm{~F}$	20\%	150	38-TM 6084
232	C204	"	$0.05 \mu \mathrm{~F}$	20\%	150	18-TM 6085
233	C 205	"	$0.1 \mu \mathrm{~F}$	20\%	250	37-TM 6084
234	C206	Electrolytic	$32 \mu \mathrm{~F}$	$\begin{aligned} & +50 \% \\ & -20 \% \end{aligned}$	450	41 -TM 6084
235	C207	Ceramic	$0.01 \mu \mathrm{~F}$	10\%	350	36-TM 6084
236	C208	"	$0.01 \mu \mathrm{~F}$	10\%	350	36-TM 6084
237	C209	Paper	$0.1 \mu \mathrm{~F}$	20\%	250	37-TM 6084
238	C210	Electrolytic	$1 \mu \mathrm{~F}$	20\%	275	39-TM 6084
239	C 211	Ceramic	$0.01 \mu \mathrm{~F}$	10\%	350	36-TM 6084
240	C212	Polystyrene	$3,300 \mathrm{pF}$	2%	125	35-TM 6084
241	C213	"	2,200 pF	2\%	125	34-TM 6084
242	C214	1	2,200 pF	2%	125	34-TM 6084
243	C215	"	$3,300 \mathrm{pF}$	2%	125	35-TM 6084
244	C 216	Paper	$0.1 \mu \mathrm{~F}$	20\%	250	37-TM 6084
245	C 217	Paper	$0.05 \mu \mathrm{~F}$	20\%	250	40-TM 6084
246	C218	Electrolytic	$1 \mu \mathrm{~F}$	20\%	275	39-TM 6084

TRANSFORMERS \& INDUCTORS

247	T201	Mains Input Transformer	1-TM 6083
248	L101	Fine Tuning Coil	7-TM 6077
249	L102	Filter Coil	42-TM 5992
250	L103	"	42-TM 5992
251	L104	"	38-TM 5992
252	L105	"	38-TM 5992
253	L106	"	39-TM 5992
254	L107	"	39-TM 5992
255	L108	"	40 -TM 5992
256	L109	"	40-TM 5992
257	L110	"	37-TM 5992
258	L111	"	37-TM 5992
259	L112	"	41-TM 5992
260	L113	"	41 -TM 5992
261	L114	Range A Tuning Coil	12-TM 6144
262	L115	Range B	20-TM 6144/1
263	L116	Range C	21-TM 6144/2
264	L117	Range D	22-TM 6144/3
265	L118	Filter Coil	23-TM 6144/3
266	L119	Range E Tuning Coil	15-TM 6144/4
267	L120	Filter Coil	18-TM 6144/4
268	L121	Range F Tuning Coil	26-TM 6144/5
269	L122	Filter Coil	18-TM 6144/5
270	L123	Range G Tuning Coil	27-TM 6144/6
271	L124	Filter Coil	18-TM 6144/6
272	L125	Range H Tuning Coil	31 -TM 6144/7
273	L126	Filter Coil	18-TM 6144/7
274	L127	Range I Tuning Coil	15-TM 6144/8
275	L128	Filter Coil	18-TM 6144/8
276	L129	Range J Tuning Coil	27-TM 6144/9
277	L130	Filter Coil	18-TM 6144/9

TRANSFORMER \& INDUCTORS (continued)

278	L131	Range K Tuning Coil	$29-\mathrm{TM} 6144 / 10$
279	L132	Filter Coil	$18-\mathrm{TM} 6144 / 10$
280	L133	Range L Tuning Coil	$30-\mathrm{TM} 6144 / 11$
281	L134	Filter Coil	$32-\mathrm{TM} 6144 / 11$
282	L135	"	$31-\mathrm{TM} 6144 / 11$

VALVES \& VALVE HOLDERS

V101
Tetrode, type QV03-12
B9A holder for V101, with screw-on screening can
Earthing gasket, to fit under V101 can
Triode pentode, type 6U8 (ECF82)
B9A holder for V102, with screw-on screening can
Earthing gasket, to fit under V102 can

Double triode, type 12AU7 (ECC 82)
B9A holder for V103, with screw-on screening can
Earthing gasket, to fit under V103 can

Neon, type 3L

Pentode, type 6CJ6 (EL81)
Holder for V201, type B9A
Retainer for V201, including spring
Top cap connector for V201

47-TM 6712/1
36-TM 6712/1
TB 38141

46-TM 6712/1
35-TM 6712/1
TB 38141

48-TM 6712/1
35-TM 6712/1
ТВ 38141

19-TM 6715

75-TM 6084
57-TM 6084
60-TM 6084
61-TM 6084

VALVES \& VALVE HOLDERS (continued)

V202 Triode pentode, type 6U8 (ECF 82)
76-TM 6084
Holder for V202, type B9A
Retainer for V 202
57-TM 6084
58-TM 6084

77-TM 6084
56-TM 6084
59-TM 6084

76-TM 6084
Holder for V204, type B9A 57-TM 6084
Retainer for V204
58-TM 6084

CRYSTALS, HOLDERS \& SCREENING CANS

305
306
307

308
309
310
311

XT101 Crystal, 2,000 kc/s
Holder for XT 101
Clip, to retain XTl01

Crystal, $400 \mathrm{kc} / \mathrm{s}$
Holder for XT 102
Clip, to retain XT102
Screening can for crystals

38-TM 6712
40-TM 6712
41-TM 6712

39-TM 6712
40-TM 6712
41 -TM 6712
TB 36644

312	VT 201	Germanium Power, type OC 25	28-TM 6085
313	VT 202	Germanium Power, type OC 25	28-TM 6085
314		Mica washer and two nylon bushes for VT 202	30-TM 6085
315	VT203	Germanium A. F., type OC71	29-TM 6085

SEMICONDUCTOR DIODES

316
317
318
319
320
321
322
323

MR101
MR102
MR103
MR 104
MR 201
MR 202
MR 203
MR 204
MR 205
MR 206
MR 207
MR208
MR 209
MR210

Gold-bonded, type HD 1870
11
11
$11 \quad 11$
Silicon, type XU 604 (1N 540)
" 1
$11 \quad 11$
$11 \quad 11$
$11 \quad 11$
11
Selenium, type M107
Germanium general purpose, CV 425
Silicon, type XU 604 (1N 540)

11

11

11

11

11

16-TM 6714
16-TM 6714
16-TM 6714
16-TM 6714
32-TM 6083
32-TM 6083
32-TM 6083
32-TM 6083
31-TM 6083
52-TM 6084
32-TM 6083
32-TM 6083
$32-\mathrm{TM} 6083$
32-TM 6083

330	TH201	Bead-type A15	$51-\mathrm{TM} 6084$
331	BR201	Rod-type CZ3	$10-\mathrm{TM} 6085$
332	TC102	V.H.F. Thermocouple	$10-\mathrm{TM} 6712$

LAMP \& HOLDER
$\left.\begin{array}{lll}333 & \text { PLP201 } & \text { Pilot Lamp, 6.3 V, 0.15 A }\end{array}\right] 68-\mathrm{TF} \mathrm{144H/4}$

FUSES \& HOLDERS

335	FS201	H. T. fuse, 500 mA	$23411-256$
336		Fuse-holder for FS201	TB 24330/1
337	FS202	Mains fuse, 2 A	$91-\mathrm{TF} 144 \mathrm{H} / 4$
338		Fuse-holder for FS202	TB $24330 / 1$

METER

339	M201	Meter, rectangular, for TF $144 \mathrm{H} / 4$ or $\mathrm{H} / 4 \mathrm{R}$	TM $3970 / 99$
340	M201	Meter, round, sealed, for $T F 144 H / 4 S$ or $-H / 6 S$	$1-T M 6294$

JACK, PLUGS \& SOCKETS \& TERMINALS

JK201 PHONES jack
PLi01 BNC plug for coarse attenuator
SKT102 BNC socket for fine attenuator
PL201 12-pin SUPPLY plug
SKT201 12-pin battery socket
SKT202 12-pin mains socket
Supply adaptor for PL201, for TF $144 \mathrm{H} / 4 \mathrm{~S}$, TF 144H/6S
SKT101 BNC socket, DIRECT OUTPUT
Cap and chain for SKTl01
SKT103 BNC socket, R.F. OUTPUT
TP201 EXT. MOD. terminal
TP202 E. terminal

SWITCHES

354
$354 / 1$
355
356
357

S(100)A Wafer switch, FREQ. RANGE
S(100)B Wafer switch, OUTPUT E.M.F. (fine)
S(100)C Wafer switch, DIRECT OUTPUT
S(200)A Switch, SUPPLY
S(200)B Wafer switch, function selector
S(200)C Switch, INTERRUPT CARRIER

18-TM 5993A/1
49-TM 5991
110-TM 5993A/1
69-TF $144 \mathrm{H} / 4$
2-TM 6084
$66-$ T F $144 \mathrm{H} / 4$

KNOBS DIALS \& DRIVES

Main Tuning Control

358
359
360
361
362
363
364

KNOBS, DIALS \& DRIVES (continued)

Fine Tuning Control

Dial, blank
Cursor
Knob
TB 31390
TB 25273/9
TB 17848/4

Frequency Range Control
Knob
ТВ 17848/13
Chain drive
87-TM 5993A/1

Output E. M. F. Controls

Dial
Cursor
Knob, for fine attenuator
Knob, for coarse attenuator

Function selector knob
SET CARRIER knob
SET MOD knob
\% MOD Control
Dial
Cursor
Knob

TB 31042
TB 25273/1
TB 23920/9
ТВ 17848/4

TB 17848/3
TB 17848/3
TB 17848/3

TB 31516
TB 25273/9
ТВ 23920/9

MISCELLANEOUS

Turret contact strip assembly (with 6 spring fingers)	TB 36672
Turret contact strip assembly (with 4 spring fingers)	TB 36673
Turret detent spring	TB 29926
Ball-race for detent spring	$80-\mathrm{TM} \mathrm{5993A/1}$
Earthing gasket, monel-metal mesh, for r.f. box cover	113-TM 5993A/1
Mains tapping panel assembly, with plugs	TC 32089
Insulating spacer, supporting 1.t. regulator chassis	TB 25002/146
Insulating washer, for l.t. regulator chassis screws	TВ 2706/153
Instrument case, for TF $144 \mathrm{H} / 4,-\mathrm{H} / 4 \mathrm{~S},-\mathrm{H} / 6 \mathrm{~S}$	TE 26860/1
Front panel surround, for TF $144 \mathrm{H} / 4$	TC 37819/1
Front panel surround for TF 144H/4S and TF 144H/6S	TC 37819/2
Aluminium trim, to fit between case and surround, for TF $144 \mathrm{H} / 4,-\mathrm{H} / 4 \mathrm{~S},-\mathrm{H} / 6 \mathrm{~S}$	TD 23713/8
Dust cover, for TF $144 \mathrm{H} / 4 \mathrm{R}$	TE 31517
Cover plate, for access to transformer tapping panel	TB 30875
Plastic cover	98 TF 144H/4
Panel rail, for TF 144H/4R	TC 32885
Panel pillar, for TF $144 \mathrm{H} / 4 \mathrm{~S}$, -H/6S	TB 33086
Case foot	TA 11420

1. COMPONENT VALUES

Resistor: No suffix = ohms. $K=$ kilohms. $M=$ megohms. Capacitors : No suffix = microfarads. $\quad p=$ picofarads. * Value selected during test; nominal value shown.
2. VOLTAGES

These are d.c. and relative to chassis except where otherwise indicated. Voltmeter: $20 \mathrm{k} \Omega / \mathrm{V}$ model on highest convenient range (X) : switched to CRYSTAL CHECK
(M) : switched to any MOD position
3. SYMBOLS

- preset component

千 arrow indicates clockwise rotation of knob
EXT panel marking
(1) connections on r.f. box tagstrip
-o supply plug and socket connections.
SKT 201 : battery socket
SKT 202 : a.c. mains socket
4. SWITCHES

Rotary switches are drawn schematically. Numbers indicate control knob setting.

S200B

Sequence of sections

Plan of sections viewed from knob end with knob fully counter-clockwise.

Fig.4.10 COIL TURRET

1. COMPONENT VALUES

Resistors: No suffix = ohms. $k=$ kilohms. $M=$ megohms. Capacitors: No suffix = microfarads. $p=$ picofarads. *Value selected during test; nominal value shown.
2. VOLTAGES

These are d.c. and relative to chassis except where otherwise indicated.
Voltmeter : $20 \mathrm{k} / \mathrm{V}$ model on highest convenient range
(A) : Range A with meter at SET CARRIER
(A-F) : Ranges $A-F$.
(G-L) : Ranges G - L.
3. SYMBOLS

- preset component
\uparrow arrow indicates clockwise rotation of knob
EXT panel marking
(1) connections on r.f. box tagstrip

4. SWITCHES

Rotary switches are drawn schematically. Numbers or letters, indicate control knob setting.

S100A

Sequence of sections.

b

C

f

h

i

e

Plan of sections viewed from knob end with knob fully counter-clockwise.

DECIBEL CONVERSION TABLE

Ratio Down

voltage	POWER	DECIBELS	voltage	POWER
1.0	1.0	0	1.0	1.0
. 9886	. 9772	$\cdot 1$	1.012	1.023
. 9772	. 9550	- 2	1.023	1.047
. 9661	. 9333	. 3	1.035	1.072
. 9550	. 9120	4	1.047	1.096
. 9441	-8913	. 5	1.059	$1 \cdot 122$
. 9333	. 8710	. 6	1.072	$1 \cdot 148$
. 9226	8511	. 7	1.084	$1 \cdot 175$
. 9120	. 8318	- 8	1.096	$1 \cdot 202$
. 9016	. 8128	9	$1 \cdot 109$	1.230
. 8913	. 7943	1.0	$1 \cdot 122$	1.259
. 8710	. 7586	1.2	1.148	1.318
. 8511	. 7244	1.4	$1 \cdot 175$	$1 \cdot 380$
. 8318	. 6918	1.6	$1 \cdot 202$	1.445
. 8128	. 6607	1.8	1.230	1.514
. 7943	.6310	2.0	1.259	1.585
. 7762	. 6026	$2 \cdot 2$	1.288	1.660
. 7586	. 5754	2.4	$1 \cdot 318$	1.738
. 7413	5495	2.6	1.349	1.820
. 7244	5248	2.8	1.380	1.905
. 7079	. 5012	3.0	1.413	1.995
. 6683	. 4467	3.5	1.496	2.239
. 6310	. 3981	4.0	1.585	2.512
. 5957	. 3548	4.5	1.679	2.818
. 5623	. 3162	5.0	1.778	3.162
. 5309	- 2818	5.5	1.884	3.548
. 5012	. 2512	6	1.995	3.981
. 4467	. 1995	7	2.239	$5 \cdot 012$
. 3981	- 1585	8	2.512	$6 \cdot 310$
. 3548	- 1259	9	2.818	7.943
-3162	-1000	10	$3 \cdot 162$	10.000
-2818	. 07943	11	3.548	12.59
-2512	. 06310	12	3.981	15.85
-2239	. 05012	13	4.467	19.95
. 1995	. 03981	14	5.012	$25 \cdot 12$
-1778	. 03162	15	$5 \cdot 623$	31.62

DECIBEL CONVERSION TABLE (continued)

Ratio Down
Ratio Up

VOLTAGE	POWER	DECIBELS	Voltage	POWER
. 1585	. 02512	16	6.310	39.81
. 1413	. 01995	17	7.079	$50 \cdot 12$
- 1259	. 01585	18	7.943	63.10
. 1122	. 01259	19	8.913	79.43
. 1000	. 01000	20	10.000	$100 \cdot 00$
. 07943	6.310×10^{-3}	22	12.59	158.5
. 06310	3.981×10^{-3}	24	15.85	$251 \cdot 2$
. 05012	2.512×10^{-3}	26	19.95	398.1
. 03981	1.585×10^{-3}	28	$25 \cdot 12$	631.0
. 03162	1.000×10^{-3}	30	31.62	1,000
. 02512	6.310×10^{-4}	32	39.81	1.585×10^{3}
. 01995	3.981×10^{-4}	34	$50 \cdot 12$	2.512×10^{3}
. 01585	2.512×10^{-4}	36	63.10	3.981×10^{3}
. 01259	1.585×10^{-4}	38	79.43	6.310×10^{3}
. 01000	1.000×10^{-4}	40	$100 \cdot 00$	1.000×10^{4}
7.943×10^{-3}	6.310×10^{-5}	42	$125 \cdot 9$	1.585×10^{4}
6.310×10^{-3}	3.981×10^{-5}	44	158.5	2.512×10^{4}
5.012×10^{-3}	2.512×10^{-5}	46	199.5	3.981×10^{4}
3.981×10^{-3}	1.585×10^{-5}	48	251.2	6.310×10^{4}
$3 \cdot 162 \times 10^{-3}$	1.000×10^{-5}	50	316.2	1.000×10^{5}
2.512×10^{-3}	6.310×10^{-6}	52	398.1	1.585×10^{5}
1.995×10^{-3}	3.981×10^{-6}	54	501.2	2.512×10^{5}
1.585×10^{-3}	2.512×10^{-6}	56	631.0	3.981×10^{5}
1.259×10^{-3}	1.585×10^{-6}	58	794.3	6.310×10^{5}
1.000×10^{-3}	1.000×10^{-6}	60	1,000	1.000×10^{6}
5.623×10^{-4}	3.162×10^{-7}	65	1.778×10^{3}	3.162×10^{6}
3.162×10^{-4}	1.000×10^{-7}	70	3.162×10^{3}	1.000×10^{7}
1.778×10^{-4}	3.162×10^{-8}	75	5.623×10^{3}	3.162×10^{7}
1.000×10^{-4}	1.000×10^{-8}	80	1.000×10^{4}	1.000×10^{8}
5.623×10^{-5}	3.162×10^{-9}	85	1.778×10^{4}	3.162×10^{8}
3.162×10^{-5}	1.000×10^{-9}	90	3.162×10^{4}	1.000×10^{9}
1.000×10^{-5}	1.000×10^{-10}	100	1.000×10^{5}	1.000×10^{10}
3.162×10^{-6}	1.000×10^{-11}	110	3.162×10^{5}	1.000×10^{11}
1.000×10^{-6}	1.000×10^{-12}	120	1.000×10^{6}	1.000×10^{12}
3.162×10^{-7}	1.000×10^{-13}	130	3.162×10^{6}	1.000×10^{13}
1.000×10^{-7}	1.000×10^{-14}	140	1.000×10^{7}	1.000×10^{14}

[^0]: * Nominal value; actual value selected during test.

