Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by the Henlow Signals Museum, believed to be out of copyright. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time!

Colin Hinson
In the village of Blunham, Bedfordshire.

## AIR PUBLICATION <br> 117K-0104-13D

(Formerly A.P.4837AG, Vol. 1)

## OSCILLOSCOPE SET, CT536

GENERAL AND TECHNICAL INFORMATION AND SCALE OF SERVICING SPARES

BY COMMAND OF THE DEFENCE COUNCIL -TDunnett.

Ministry of Defence
FOR USE IN THE
ROYAL AIR FORCE
(Prepared by the Ministry of Technology)

FOR OFFICIAL USE ONLY
A.L.2. July 68
$\qquad$

## TYPE 64 MOD 165K OSCILLOSCOPE

## Tektronix, Inc.

S.W. Millikan Way

## WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

Copyright © 1964 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.



## PREFACE

The reference number of this publication was altered from AP 4837AG to AP 117K-0104-1 in Nov 67 and to AP $117 \mathrm{~K}-0104-13 \mathrm{D}$ in July 68 . No general revision of page captions has been undertaken, but the code appears in the place of the earlier AP reference on new or amended leaves issued subsequent to that date.
OSCILLOSCOPE SET CT536 6625-99-952-2040
comprising of the following main items and accessories.

## TTEM

CASE, OSCILLOSCOPE
(containing)
Oscilloscope
Amplifier, Trigger Pulse
Time Base Unit
Cable Assembly, Power Electrical

Filter, Polarized Light
Instruction Manual
CASE, OSCILLOSCOPE
ACCESSORIES (containing)
Prod, Test

- Lead, Test

Lead, Electrical
Lead, Test
Tip, Test Prod
Probe, Holder
Tip, Test Prod
Centre Pin
C1ip, Electrical
Tip, Test Prod
Tip, Test Prod
Tip, Test Prod
Tip, Test Prod
Cable Assembly Radio Freq
Adaptor BNC to BSM Adaptor
Adaptor Connector

| PART NO |
| :---: |
| CN 36196 |
| TYPE 647 |
| TYPE 10A2 |
| TYPE 11B2 |
| 161-0024-03 |
| 378-0540-08 |
| - - |
| CN 36209 |
| 010-0130-00 |
| 175-0125-00 |
| 175-0124-00 |
| 175-0263-00 |
| 013-0071-00 |
| 352-0068-00 |
| 013-0052-00 |
| 214-0325-00 |
| 344-0046-00 |
| 206-0060-00 |
| 206-0105-00 |
| 134-0013-00 |
| 206-0015-00 |
| 012-0076-00 |
| 103-0036-00 |
| 103-0033-00 |

NSN
6625-99-952-2209

6625-99-952-2196
6625-99-952-2194
6625-99-952-2193
6625-00-060-9051

5895-00-477-7836

-     - 

6625-99-952-2208
6625-00-078-5219
6625-01-016-8693
5995-00-978-8538
6625-00-771-5495
6625-00-798-1515
6625-00-980-9301
6625-00-788-6815
6625-00-788-6811
5940-00-983-8310
6625-00-983-6437
6625-00-964-9327
6625-00-830-5719
6625-00-798-1508
6625-00-916-8025
5825-99-196-8722
5935-00-665-6544

NO. OFF
1

1
1
1
1

AL5. Oct 86

LIST OF CONTENTS

## PRELIMINARIES

Amendment record sheet

PART 1

## TYPE 647 OSCILLOSCOPE

## Section 1 Characteristics

2 Operating instructions
3 Circuit description
4 Maintenance
5 Calibration
6 Parts list and schematics

PART 2
TYPE 10A2 DUAL-TRACE AMPLIFIER
Section 1 Characteristics
2 Operating instructions
3 Circuit description
4 Maintenance and calibration
5 Parts list and schematics

PART 3
TYPE 11B2 TIME BASE
Section 1 Characteristics
2 Operating instructions
3 Circuit description
4 Maintenance and calibration
5 Parts list and schematics

PART 4
P6008 PROBE
Section 1 Characteristics
2 Operating instructions
3 Circuit description
4 Maintenance and calibration
5 Parts list and schematics

RESTRICTED

## TYPE 647 OSCILLOSCOPE

## SECTION 1

## CHARACTERISTICS

## General Information

The Tektronix Type 647 is a general purpose, high-performance oscilloscope designed to operate under severe environmental conditions. The oscilloscope requires a Tektronix 10-Series vertical plug-in unit in the left-hand compartment and a Tektronix 11-Series horizontal plug-in unit in the right-hand compartment.

The electrical characteristics listed below are those of the Type 647, independent of the plug-in units. The environmental characteristics apply to the Type 647 and its plug-in units as a system.

## NOTE

Range I and Range II, referred to in certain parts of this section, are the ambient air temperature ranges that apply for a particular characteristic. These ranges are-Range $\mathrm{I}: 0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$, Range II: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

## Vertical Amplifier (Range I)

## Sensitivity

$300 \mathrm{mv} / \mathrm{cm}, \pm 1 \%$, through $186 \Omega$ push-pull.

## Risetime

$$
5.5 \mathrm{nsec}, \pm 7 \%
$$

## Bandwidth

Dc to -3 db at $64 \mathrm{mc}, \pm 7 \%$.

## Display Linearity

A 2 cm centered signal will not change amplitude over $\pm 1 \mathrm{~mm}$ when offset to top or bottom of graticule.

## Trace Finder

Compresses display to bring it within graticule area. Used to determine nature of improper deflection signal. Pushbutton also actuates trace-finder switch in Horizontal Amplifier. See Section 2.

## Horizontal Amplifier

## Sensitivity

$$
347 \mu \mathrm{a} / \mathrm{cm} \text { per side, } \pm 1 \% \text {, push-pull. }
$$

## Maximum Calibrated Deflection Rate

$10 \mathrm{nsec} / \mathrm{cm}$.

## Bandwidth

Dc to -3 db at 3 mc , or higher.

## Trace Finder

See "Trace Finder" in Vertical Amplifier characteristics.

## Single-Sweep Reset

Connection between 1101 on the rear panel and the 11Series plug-in unit interconnecting socket provides for external reset of the single-sweep circuit in certain plug-in units. See J101 under "Rear Panel Connectors" in Section 2.

## Cathode-Ray Tube

Type
T6470-31-1.

## Phosphor

Type 31 normally supplied.

## Accelerating Potential

14 kv.

## Graticule Area

$6 \times 10 \mathrm{~cm}$.

## Graticule Markings

Internally marked in 6 vertical and 10 horizontal 1 -cm spaces. 2 -mm divisions marked on the vertical and horizontal centerlines. No parallax.

## Graticule Illumination

Variable edge-lighting produces white (no filters) or red (with filters) graticule markings.

## Unblanking

Bias-type, dc-coupled from 11-Series plug-in unit.

## Crt Grid Z-Axis Modulation

Dc-coupled from rear-panel CRT GRID binding post. Input resistance about $22 \mathrm{k} \Omega$. Bandwidth for small signals is dc to -3 db at 10 mc , or higher. Typically, $\pm 2$ volts peak will produce a visible change in display brightness.

## Crt Cathode Z-Axis Modulation

Ac-coupled from rear-panel CRT CATHODE binding post. Input time constant is about $330 \mu \mathrm{sec}(0.015 \mu \mathrm{f}$ and $22 \mathrm{k} \Omega)$. Typically, a $\pm 3$-volt, fast-rise pulse will produce a visible change in display brightness.

## Multi-Trace Chop Blanking

Crt circuitry permits multi-trace plug-in units, operating in chopped mode, to momentarily blank the display while switching between input channels.

## Trace Rotation Control

Permits alignment of the trace with the graticule lines.

## I-Kc Calibrator

## Output Voltage Range

Square waves, 0.2 mv to 100 v peak-to-peak and 100 vdc .

Output Voltage Accuracy
(Load resistance $10 \mathrm{meg} \Omega$ or higher)

| (Load resistance |  |  |  |
| :---: | :---: | :---: | :---: |
| 0.1 and 100 VOLTS | All Other Voltages |  |  |
| Range I | Range II | Range I | Range II |
| $\pm 1 \%$ | $\pm 1.5 \%$ | $\pm 2 \%$ | $\pm 3 \%$ |

## Output Resistance

0.2 mVOLTS to 0.1 VOLTS:
$50 \Omega, \pm 0.25 \%$
0.2 VOLTS:
$50 \Omega, \pm 1 \%$
0.5 to 100 VOLTS:

Varies with switch setting; about $4 \mathrm{k} \Omega$ maximum.

## Current Through Loop

Square wave at 5 ma peak-to-peak, $\pm 1.5 \%$.

## Frequency

$1000 \mathrm{cps}, \pm 0.1 \%$ (Range II).

## Duty Factor

$0.5, \pm 0.1 \%$ (Range II).

## POWER REQUIREMENTS

## Voltage Ranges

95 to 122 vac
190 to 244 vac
100 to 130 vac
200 to 260 vac
106 to 137 vac
212 to 296 vac
When shipped, instrument is wired for voltage range indicated on rear panel. Voltage range can be changed; see diagram attached to power transformer and fuse data provided in Section 4.

## Line Voltage Distortion

For proper power supply operation at the lower line voltage limit, the line-voltage sine wave distortion must not exceed $1 \%$.

## Line Frequency

50 to $400 \mathrm{cps}, \pm 10 \%$.

## Power Consumption

About 185 watts (with Type 10A2 and Type 11B2 plug-in units and 117-volt line).

## Power Output Connector J101

Provides power from the regulated supplies of the Type 647 for operating external devices. Also provides an input connection for an external signal to reset the single-sweep circuit in certain 11-Series plug-in units. See Section 2.

## ENVIRONMENTAL CHARACTERISTICS

## Operating

## Temperafure

$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ continuous when the instrument is not tipped more than $20^{\circ}$ in any direction from level position. Other positions require a decrease in maximum temperature. If operating at $-30^{\circ} \mathrm{C}$, allow 30 minutes for stabilization.

If simultaneously operated at maximum altitude and maximum line voltage in a particular operating voltage range, maximum operating temperature must be limited to $+55^{\circ} \mathrm{C}$. A self-resetting thermal cutout disrupts instrument power if internal temperature becomes excessive.

## Altitude

15,000 feet, maximum.

## Vibration

0.025 inch peak-to-peak, $10-55-10 \mathrm{cps}$ ( 4 G 's) for 15 minutes on each axis in one-minute sweeps.

## Non-Operating

## Temperature

$$
-55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}
$$

## Altitude

50,000 feet, maximum.

## Humidity

Meets Mil-Std-202B, method 106A through five cycles (120 hours), freezing and vibration excluded.

## Shock

20 G's, one-half sine, for 11 milliseconds. Two shocks each direction along each of the three major axes (total of 12 shocks).

## Vibration

Same as under "Operating".

## Transit

Meets National Safe Transit type of test when factory packaged: Vibration for one hour at slightly greater than 1 G. 30 -inch drops on corners, edges, and flat surfaces.

## MECHANICAL CHARACTERISTICS

## ACCESSORIES INCLUDED

## Construction

Front panel is photo-etched, anodized aluminum. Chassis is aluminum-alloy.

## Dimensions

14.5 inches high.

10 inches wide.
23 inches deep.
Weight
40.5 pounds, net.
Tektronix

Part No.2-Instruction Manuals
1-Polarized Filter ..... 378-540
1-3-Conductor Power Cord ..... 161-013
1-3-Wire to 2-Wire Adapter ..... 103-013
1—BNC to Binding Post Adapter ..... 103-033
1—20-Inch $50 \Omega$ Coaxial Cable ..... 012-076


## SECTION 2

## OPERATING INSTRUCTIONS

## Introduction

The Type 647, when combined with a 10-Series and an 11-Series plug-in unit, is a complete oscilloscope system. The 10 -Series plug-in unit can be operated only in the left compartment and the 11-Series in the right.

This section of the manual describes the function of each control and connector on the Type 647, as well as general operating information.

## Operating Temperature

The Type 647 Oscilloscope can be stored where the ambient air temperature is between $-55^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$, and operated where the ambient air temperature is between $-30^{\circ} \mathrm{C}$ and $+65^{\circ} \mathrm{C}$. After storage at temperatures beyond the operating limits, be certain to allow the chassis temperature to come within the operating limits before power is applied.

Proper cooling of the Type 647 depends on convection. It is important to choose a location for operation where the required air flow, particularly to the bottom and rear of the instrument, is not restricted. Moreover, if operated when the ambient temperature is near $+65^{\circ} \mathrm{C}$, the instrument must not be tilted more than $20^{\circ}$ in any direction from the level position.

When the instrument is operated both at maximum altitude and maximum line voltage in a particular operating voltage range, limit the maximum operating temperature to $+55^{\circ} \mathrm{C}$.

## FIRST-TIME OPERATION

The following describes one way to properly set the FOCUS, ASTIGMATISM, and TRACE ROTATION controls.

1. Install the plug-in units.
2. Set the Type 647 INTENSITY control fully counterclockwise and apply power to the instrument. Allow several minutes for warmup.
3. Set the controls on the plug-in units and the Type 647 INTENSITY control for a free-running, vertically-centered trace of moderate intensity.
4. Set the controls on the 11-Series plug-in unit for a 100 $\mu \mathrm{sec} / \mathrm{cm}$ sweep rate.
5. Set the controls on the 10 -Series plug-in unit for a vertical sensitivity of 0.05 volt $/ \mathrm{cm}$.
6. Set the IKC CALIBRATOR switch to .2 VOLTS and attach a cable from the CAL OUT connector to the vertical input.
7. Set the controls on the 11 -Series plug-in unit for a triggered display.
8. With the FOCUS and ASTIGMATISM controls set at midrange, set the INTENSITY control so that part of the vertical portion of the trace can be seen.
9. Set the ASTIGMATISM control so that the horizontal and vertical portions of the display are equally focused, but not necessarily well focused.
10. Set the FOCUS control so that the vertical portion of of the trace is as thin as possible.
11. Repeat steps 9 and 10 for best results. Make the final settings with the INTENSITY control set for the desired display brightness.

## NOTE

To check for proper setting of the ASTIGMATISM control, slowly turn the FOCUS control back and forth through its optimum setting. If the ASTIGMATISM control is properly set, the horizontal and vertical portions of the trace will individually come into sharpest focus at the same position of the FOCUS control. This setting of the ASTIGMATISM control should be correct for any type of display. However, it may be necessary to reset the FOCUS control slightly if a large change is made in the INTENSITY control setting.
12. Disconnect the input signal and obtain a free-running, vertically-centered trace.
13. If necessary, set the TRACE ROTATION control (a screwdriver adjustment concentric with the ASTIGMATISM control) so that the trace is parallel with the graticule lines.

## FUNCTION OF CONTROLS

INTENSITY

FOCUS

TRACE
ROTATION

ASTIGMATISM Adjusted so that the vertical and horizontal portions of a display are individually brought into sharpest focus at the same position of the FOCUS control.
Permits control of display brightness. Lowest useable brightness is generally best for precise measurements since trace thickness decreases as intensity decreases.

Adjusted in conjunction with the ASTIGMATISM control to obtain sharp display definition. See "First-Time Operation" lat left) for a recommended adjustment method.

A screwdriver adjustment concentric with the ASTIGMATISM control. Permits the operator to offset any trace filt introduced by the earth magnetic field.

SCALE ILLUM Permits brightness of the graticule markings to be varied.

1 KC Permits selection of the accurate peakCALIBRATOR

HORIZ
POSITION
and VERNIER

TRACE FINDER When excessive deflection or improper centering result in loss of display, push the TRACE FINDER button so that the display is compressed within the graticule area. Center the display with the positioning controls and establish a vertical deflection amplitude of about 4 cm or less. Release the TRACE FINDER button. The display should then be restored.

OFF- Line switch for oscilloscope. Pilot lamp POWER ON to-peak square-wave voltage available at the CAL OUT connector. 100 -volts dc and 5 -ma square wave (through the current loop) also provided. Square-wave frequency is an accurate 1 kc . (See the discussion under " 1 KC CALIBRATOR" in this section.)
Used to move the display horizontally. These controls are electrically part of whichever 11-Series plug-in unit is installed in the Type 647. brightness can be varied by turning the bezel on the lamp housing.

## 1-KC CALIBRATOR

The following characteristics of the $1-\mathrm{Kc}$ Calibrator provide a convenient means of verifying the accuracy of an oscilloscope system:

1. Accurate peak-to-peak and dc voltage output.
2. Accurate 5 ma peak-to-peak closed-loop current signal.
3. Accurate frequency.
4. Square-wave output signal.

## Voltage

The 1-Kc Calibrator provides peak-to-peak voltages from $200 \mu$ volts to 100 volts into high-resistance loads. With switch settings of .2 VOLTS and below, the output source resistance is $50 \Omega$ as indicated by the voltages printed in red on the panel of the Type 647. The voltage across a $50 \Omega$ termination will then be accurate at one-half the value indicated by the switch setting, provided the termination resistance is an accurate $50 \Omega$.

The +100 -volt de output of the calibrator has many uses, limited only by its current capability. The load resistance should be as high as possible (the output voltage will drop to 99 volts at about $35 \mathrm{k} \Omega$ ).

## Current

The current loop, located above the CAL OUT connector, provides a 5 -ma peak-to-peak square wave which can be
used for calibrating and checking current-probe systems such as the $\mathrm{P} 6016 / 131$. This current signal is obtained by clipping the probe through the loop and by setting the 1 KC CALIBRATOR switch to the first position clockwise from OFF.

The arrow on the front panel above the current loop indicates conventional current: + to - .

## Frequency

The 1 Kc Calibrator is crystal controlled so that the frequency is accurate at 1 ke and the duty factor is stable at 0.5 . Thus, the calibrator signal can be used as a time reference for checking or calibrating the basic sweep rate adjustments of 11-Series plug-in units such as the Type 11B2.

## Wave Shape

The calibrator square-wave output signal can be used as a reference wave shape when checking or adjusting the compensation elements in passive, high-resistance, voltage probes. Since the flat-top characteristic of the square wave is known, the probe compensation is adjusted so that the signal delivered by the probe produces a flat-topped squarewave display.

## REAR-PANEL CONNECTORS

## J101

Ten-contact connector $\mathrm{JlO1}$ on the rear panel of the Type 647 provides power from the regulated low-voltage supplies for operating external devices and the signal input connection for external single sweep reset of certain 11 Series plug-in units such as the Type 11B2. Mating connectors for $\mathrm{JlO1}$ are available from Tektronix by part number 131-300.

| J101 <br> Contact | Voltage | 'Maximum <br> Current* |
| :---: | :---: | :---: |
| A | -75 v | 50 ma |
| B | -15 v | 20 ma |
| C | ground |  |
| D | +15 v | 200 ma |
| E | +100 v | 20 ma |
| F | Single sweep |  |
| reset input. |  |  |
| G | nc |  |
| J | nc |  |
| K | nc |  |

*When the Type $10 A 2$ and 11B2 plug-in units are used.
Fig. 2-1 illustrates two ways to provide an external singlesweep reset pulse suitable for the Type 11B2 plug-in unit.

## CRT CATHODE

The ac-coupled CRT CATHODE input connector permits intensity (Z-axis) modulation of the crt display. The input time-constant is about $330 \mu \mathrm{sec}(0.015 \mu \mathrm{fd}$ and $22 \mathrm{k} \Omega)$ which corresponds to a low-frequency response at the crt cathode of -3 db at about 500 cps .

Display intensity increases during negative-going changes in the modulating signal and decreases during positivegoing changes. Generally, at least 5 -volts peak signal amplitude is required for visible display modulation, depending on the intensity level of the unmodulated display.

## CRT GRID

The CRT GRID connector permits gating or modulating the intensity of the crt display through the wide-band, decoupled Z-Axis Amplifier in the Type 647. Since the amplifier inverts the signal, negative voltages increase display intensity and positive voltages decrease intensity. The voltage magnitude required for visible modulation depends on the intensity level of the unmodulated display; typically, a 2 -volt signal will produce a visible change in the brightness.


Fig. 2-1. Two means of providing an external single sweep reset pulse.


Fig. 2-2. Crt face-plate assembly.

## SECTION 3

## CIRCUIT DESCRIPTION

## Introduction

This section of the manual contains descriptions of each circuit in the Type 647 Oscilloscope. Block diagrams are included in each description to show the major stages of the circuit and the signal flow.

A complete block diagram, showing the relationship between major circuits in the Type 647, is located in Section 6. Complete schematics for each circuit are also located in Section 6.

## VERTICAL AMPLIFIER

The Type 647 Vertical Amplifier block diagram is shown in Fig. 3-1. It is a dc-coupled push-pull voltage amplifier having a maximum gain of about 42. A delay line is provided so that the rising portion of a fast-rise event which internally triggers a sweep will be displayed on the crt. RC networks in the emitter circuits provide the high-frequency peaking required to obtain broadband operation.

If the display is driven out of the graticule area by an excessive deflection signal, the TRACE FINDER button may
be pressed to actuate switches in the vertical and horizontal amplifiers. The vertical deflection signal is compressed within the limits of the graticule so that the direction of the display loss can easily be determined.

The $186 \Omega$ delay line delays the vertical signal for about 140 nanoseconds. The Phase and Amplifude Equalizers compensate for distortion introduced by the delay line.

The VERT GAIN control R414 delivers the required portion of the vertical deflection signal to Q423 and Q433. These emitter followers drive Q444 and Q454 which form a paraphase amplifier with R445, R447, R457, and R448 as the basic common-emitter elements. The series-parallel RC components in the common-emitter circuit maintain the stage gain at high frequencies. DAMPING control R456D is set to obtain critical damping of the compensation network. VERT CENT control R441 is set to balance the amplifier.

When the TRACE FINDER button is pressed, the dynamic range of the Q444-Q454 stage is decreased. This limits the vertical deflection to less than $\pm 3$ centimeters.

The Q444-Q454 collectors drive parallel, push-pull amplifiers Q464A-Q474A and Q464B-Q474B. The common-emitter circuits of these amplifiers are compensated for high frequencies in much the same manner as the previous stage.


Fig. 3-1. Vertical Amplifier block diagram.

The collectors of the parallel, push-pull amplifiers provide current drive to the emitters of output amplifiers Q484 and Q494. Feedback to the bases of Q484 and Q494 permits the output voltage swing to be shared by the driver stage.

## HORIZONTAL AMPLIFIER

The Type 647 Horizontal Amplifier block diagram is shown in Fig. 3-2. The de-coupled amplifier consists of two independent current-driven operational amplifiers. A 1-ma change in input current will produce about 22 -volts change in the output voltage with the HORIZ GAIN control set to midrange. The feedback circuit in each operational amplifier is compensated for best high-frequency response.

If the display is driven off the graticule by an excessive deflection signal, the TRACE FINDER button may be pressed to actuate switches in the horizontal and vertical amplifiers. When the switch in the horizontal amplifier is actuated, one of the operational amplifiers is disabled so that the overall sensitivity decreases by two-to-one. The clipping levels of the remaining operational amplifier will compress the horizontal deflection within the limits of the graticule.

Current-driven operational amplifiers, such as those used in the Type 647, have a low input impedance due to the negative feedback. Any change in the input current results in a nearly equal change in the feedback current. Since the open-loop sensitivity of the operational amplifier is very high, a minute difference between the input and feedback currents is sufficient to control a large voltage swing at the output.

The feedback impedance value determines the magnitude of the output voltage swing according to Ohm's law as follows:

$$
\frac{\Delta \mathrm{V}_{\text {output }}}{\mathrm{Z}_{\text {feedback }}}=\Delta \mathrm{I}_{\text {feedback }} \approx \Delta \mathrm{I}_{\text {input }}
$$

D361, D371, D362, and D363 limit the dynamic input current range to about 5.5 ma per side; a range adequate to provide horizontal deflection to about 2.5 cm beyond the edges of the graticule. D360 shunts excess signal current when D361 and D362 are off due to excess deflection to the left of the graticule.
The voltage at the junction of Zener diode D397 and R396 is about +120 volts. Clamp diode D395, connected to this voltage, prevents the output of the Q373-Q374 amplifier from going higher than +120 volts. Diode D396 serves the same purpose for the Q393-Q394 amplifier.

When the TRACE FINDER button is pushed, a known current is supplied to the Q393-Q394 amplifier which sets the output voltage at +55 to +75 volts. This is approximately the same voltage as would be produced by a "zero deflection" input signal. With one of the two dynamic deflection signals eliminated, the observed deflection is reduced two-to-one and the dynamic range of the Q373-Q374 amplifier, working alone, is insufficient to deflect the beam beyond the graticule limits.

HORIZ CENT is set so that the spot will be centered in the graticule when a "zero deflection" current signal is applied to the Horizontal Amplifier.


Fig. 3-2. Horizontal Amplifier block diagram.

Variable capacitors C377 and C378 and C379 are set to provide the best amplifier linearity and correct response at high sweep rates.

## LOW-VOLTAGE POWER SUPPLY

The Type 647 Low-Voltage Power Supply consists of two positive and two negative interdependent accurately-regulated supplies and one positive unregulated supply. See Fig. 3-3. The most negative supply, -75 volts, is regulated by reference to a Zener diode, while the remaining regulated supplies are referenced to the -75 -volt supply. The supplies are also dependent on one another since the error amplifier in each supply is powered by at least one of the other supplies.

The basic operating principle of the supplies is illustrated in Fig. 3-4. A variable resistance, in series with the load across an unregulated dc source, is varied as required so the supplied current will produce the proper voltage across the load. Control of the series resistance element, a transistor, is provided by the error amplifier which constantly compares the voltage across the load to a reference voltage. The error amplifier must detect a constant relationship between the output and reference voltages and will adjust the series resistance value as required to maintain that relationship.

With a line voltage near the center of the instrument operating range, the voltage across C612 in the -75 -volt supply is about 105 volts dc. Of this voltage, 75 volts is across the load and the remainder is across the series combination of R613, R637, and Q637.

Since the Q637 emitter current is also the load current, its magnitude determines the output voltage across the load. The output voltage is sampled by divider R630-R631-R632R634 and sets the Q614B base voltage. If the voltage across the load begins to change, the Q614B base voltage will change. The Q614A collector current will then change due to common-emitter coupling between Q614A and Q614B. The variation in Q614A collector current is amplified by Q623-Q633 and changes the Q637 current, restoring the voltage across the load to the proper value.

This negative feedback causes voltage comparator Q614AQ614B to seek a condition of equal base voltages. The Q614A base voltage is fixed at about - 9 volts by Zener diode D609. Thus, the voltage comparator forces the supply to provide an output voltage which, when divided by R630-R631-R632-R634, will also be -9 volts at the Q614B base.
It is important to note that the voltage comparator will have equal base voltages with any setting of -75 VOLTS adjustment R631 even though the output voltage may not be exactly -75 volts. To obtain a -75 -volt output, R631 is set so that the resistive division ratio equals the ratio of 9 volts to the desired output voltage.

The high gain of the error amplifier at dc gives the supply a high degree of de stability.

One difference between the -75 -volt supply and the three remaining regulated supplies is in the way the voltage comparators are connected. For example, in the +100 volt supply, divider R730-R731-R732 is connected between the -75 -volt reference and the +100 -volt output. Since the


Fig. 3-3. Low-Voltage Power Supply block diagram.

## Circuit Description-Type 647 Mod 165K



Fig. 3-4. Series regulated supply principle.
emifter of Q714 is connected to ground, any change in the +100 -volt output will change the Q714 base current. This same form of voltage comparator is used in the +15 -volt supply.
In the - 15 -volt supply, two connections are interchanged from those in the two positive voltage supplies. The emitter of Q667 is connected to ground and the emitter of Q644 is connected to the supply output. However, the operation is the same as in the +15 - and +100 -volt supplies; any change in the -15 -volt output will produce a change in the Q644 emitter current.

## CRT CIRCUIT

The Crt Circuit consists of a cathode-ray tube, its regulated high-voltage power supply, and a Z-axis (intensity) modulation amplifier. See Fig. 3-5. The crt requires operating voltages of +11.8 kv (post accelerator), -2.2 kv (cathode), -2.25 kv variable (control grid), and several lesser variable and fixed voltages for control of focus, astigmatism, geometry, etc.
The high-voltage power supply contains a controlled-amplitude oscillator which drives a step-up transformer. Rectifiers in the transformer secondaries provide the three high voltages for the crt. Negative feedback from the $-2.2-\mathrm{kv}$ supply through a voltage comparator regulates the oscillator output amplitude so that the -2.2 kv remains constant with variations in load. To protect the oscillator transistor from excessive dissipation, a protection circuit turns off the oscil-
lafor for about 4 seconds if the $-2.2-\mathrm{kv}$ supply is overloaded.

The correct ratio between the crt cathode supply voltage and the control-grid and post-accelerator supply is established by the turns ratio of the high-voltage transformer and by the CRT GRID BIAS calibration control which has the effect of a variable volts per furn ratio.
The Z-axis (intensity modulation) amplifier permits changing the crt control grid bias so that the display brightness can be controlled. The amplifier output is connected to the positive end of the floating high-voltage crt control-grid supply, and can vary the grid over a range of about 90 volts. The current input signal for the dc-coupled amplifier is obtained from the INTENSITY control, either or both plug-in units, and/or an external source through the CRT GRID connector on the rear of the instrument. Sensitivity of the wide-band, negative feedback amplifier is about $30 \mathrm{v} / \mathrm{ma}$.

## High-Voltage Power Supply

Q820 and the T820 primaries form an Armstrong oscillator. Q804 is a shunt regulator of the Q820 base drive. If Q804 conducts heavily, the base current and therefore the collector current of Q820 decrease. This decreases the ampere-turns ratio in the T 820 primary, which results in a decrease in the dc high voltages developed in its secondaries. Conversely, if the Q804 conduction decreases, the magnitude of the dc high voltages will increase.


Fig. 3-5. Crt Circuit block diagram.

The conduction level of Q804 is controlled by error amplifier Q803A-Q803B which monitors the output of the $-2.2-\mathrm{kv} \mathrm{crt}$ cathode supply and compares it with the $+100-$ volt supply. When HIGH VOLTAGE control R801 is set so that the output high voltage is -2.2 kv , there is a 110 $\mu$ ampere current through resistors R802A-R802F. Any change in the crt cathode voltage will change the R802A-R802F current. An amplified current change at oscillator Q820 will cause a change in the oscillator output amplitude, restoring the high voltage to the proper value.
The Q814A-Q814B multivibrator protects oscillator Q820 from damage by attempting to correct for certain abnormal loads, such as accidental shorting of the high voltage during maintenance. In attempting to correct for overloads, the dissipation rating of transistor Q820 could be exceeded.
Under normal conditions, Q814A is saturated and Q814B is off. The low Q814A collector voltage holds off diode D811 and transistor Q814B. With Q814B off, capacitor C81 8 is charged to about 29 volts.
If the $-2.2-\mathrm{kv}$ supply goes out of regulation with a decrease in output voltage, the voltage at the junction of R810 and D815 will become more negative. This turns on diodes D815 and D816, diverting R817 current from the base of Q814A. The Q814A collector voltage then rises, turning on Q814B.
When Q814B turns on, its collector drops and the charge on C818 furns off D817 and Q814A. This positive feedback drives Q814B into saturation. When Q814A turns off, diode

D811 turns on, clamping the Q804 base at a level which turns off oscillator Q820. Diodes D815 and D816 prevent the D81 1 furn-on from turning on Q814A.

When Q814B turns on, C818 begins to discharge through R817. The charge will have decreased sufficiently in about 4 seconds to turn on Q814A. Positive feedback (via the Q814B collector and C818) will drive Q814A into saturation and turn off Q814B and D811.
When D811 turns off, Q804 turns on oscillator Q820. Since no high voltage was produced while the oscillator was off, the error amplifier causes Q820 to immediately produce a very high-amplitude output. If the cause of the original overload has been removed, the crt cathode voltage will rapidly increase to -2.2 kv . The error amplifier will then decrease the Q820 output amplitude to the normal level before the temperature of transistor Q820 has risen enough to cause damage.
The protection circuit will not respond to this momentarily large error signal at the Q804 base. When Q814B turns off, C818 must be recharged. A major portion of the required charge current is supplied by Q814A base current. Thus, Q814A will be unaffected by the Q803B collector current level for about 250 milliseconds while the C818 charge is being restored. Then, if the high-voltage overload still exists, the Q803B error signal will again actuate the protection circuit.
Since only the $-2.2-\mathrm{kv}$ supply is regulated directly, the correct crt control-grid and post-accelerator supply voltages


Fig. 3-6. 1-Kc Calibrator block diagram.
are established by the turns ratio of transformer T820 and by the setting of CRT GRID BIAS R832. The high-voltage oscillator will produce whatever amplitude is required to maintain the correct voltage at the negative end of C832, regardless of the voltage value at the positive end of C832. For example, if the $R 832$ setting is changed from zero to +100 volts, the high-voltage oscillator amplitude must increase to produce an additional 100 volts across C832. The increased oscillator amplitude will also increase the voltage across C822 in the crt control-grid supply. But since the voltage at the positive-end of C822 does not vary with the setting of CRT GRID BIAS R832, the full variation appears at the crt control grid. The setting of R832 has only a slight affect on the post-accelerator supply (voltagetripler) voltage.

## Z-Axis Amplifier

The voltage at the positive end of C827 in the crt controlgrid supply can be varied with no affect on the voltage across the capacitor. By varying the voltage at the positive end of C827, the crt bias and therefore the display brightness can be varied. The multiple-input $Z$-axis modulation amplifier provides the means for varying this bias.

Q894 provides current drive to an operational amplifier consisting of Q883 and Q874. The operational amplifier drives emitter follower Q873 which sets the voltage at the positive-end of the control grid high-voltage bias supply.

Four sources can vary the Q894 emitter current:

1. The INTENSITY control.
2. The unblanking signal from the 11 -Series plug-in unit.
3. The chopped-mode blanking pulse from the 10 -Series plug-in unit.
4. An external source connected to the rear-panel CRT GRID binding post.

Since the operational amplifier negative feedback via R878 makes the Q883 base a low-impedance point, the Q894 collector and Q883 base voltages are essentially constant. When any of the four current sources increases the Q894 current, the D886 current will increase causing a decrease in the Q883 and Q874 currents. The Q874 collector voltage will then rise to a level where, according to Ohm's Law:

$$
\Delta \mathrm{V}_{\mathrm{Q} 874 \text { collector }}=\mathrm{R}_{\mathrm{R} 878} \times \Delta \mathrm{I}_{\mathrm{D886}}
$$

Thus $\Delta I_{R 878}$ essentially equals $\Delta I_{D 886} .\left(\Delta I_{R 878}\right.$ is less than $\Delta \mathrm{I}_{\mathrm{D886}}$ by an amount equal to $\Delta \mathrm{I}_{\mathrm{D886}}$ divided by the operational amplifier open-loop gain. Since this gain is quite high, the difference is slight.) The Q874 collector voltage
is applied to emitter follower Q873 which sets the crt con-trol-grid voltage.

Capacitors C878, C877, and C879 provide control over the high-frequency response of the amplifier. During a rapid positive-going change at the emitter of Q873, C874 turns off diode D874 and boot-straps R874 to a more positive voltage, enabling the Q873 base current to rise rapidly. During a rapid negative-going change at the collector of Q874, Q873 may momentarily turn off and diode D873 will turn on to pull down the Q873 emitter voltage.

Diode D884 will clamp the Q894 collector at about +2 volts if an excessive input signal drives Q894 near turnoff. Diodes D870 and D871 protect the amplifier from the high voltage across C827 in the event that the crt control grid is shorted to chassis.

Trace rotation coil L861 provides the means for rotating the display to align the trace with the internal graticule.

## 1-KC CALIBRATOR

As shown in Fig. 3-6, the calibrator consists of a crystalcontrolled 4 -kc oscillator driving a bistable multivibrator which has clamped output levels of zero and +100 volts. These clamp levels provide a precise 100 -volt peak-to-peak square wave which may be selected for output or divided to one of 17 lower amplitudes by a precision attenuator. 100 -volts de and a 5 -ma square-wave output through a current loop are also available.

The clipped output of crystal-stabilized oscillator Q910Q924 is applied to the bistable mulitivibrator through capacitors C924 and C925. Assume that Q935 has just switched off and Q945 has just switched on. When Q935 turned off, the positive-going change at its collector turned on diode D933. C924 then charges through R933 and places a substantial reverse bias on D932.

When Q945 turned on, the negative-going change at its collector turned off D943. C925 then began to discharge through R942. The discharge period is such that the nega-tive-going portion of the first oscillator cycle following Q945 turn-on does not turn on D942. But after skipping one cycle, the C925 charge is depleted and D942 furns on during the fast, negative-going change in the second oscillator cycle. This diverts current from the Q945 base, causing the multivibrator to switch states.

Since only every other cycle of the oscillator signal causes the multivibrator to switch states, the frequency division factor is 4 , instead of the usual 2.

When Q945 is on, its collector voltage is about -14 volts which turns off D948, since the attenuator series resistors are returned to chassis. When Q945 is off, D944 is off and R947 turns on both D947 and D948. The voltage across the series combination of D947 and R946 will essentially equal the voltage across D948. Thus, the voltage at the junction of D948 and R948B will switch between an accurate +100 volts, established by the 100 -volt supply, and zero volts.

The attenuator accurately divides the basic 100 -volt square wave to lower amplitudes and provides an accurate $50 \Omega$ output resistance with a switch sefting of .2 VOLTS and below. If the $50 \Omega$ output is terminated in $50 \Omega$, the peak voltage across the termination will be one-half that indicated by the switch setting.

100 -volts $d c$ is available for use as a reference when the -15-volt supply is disconnected from the Q935 and Q945 emitters by the switch.

When the attenuator switch is set to the 5 -ma squarewave position, an accurate 5 ma through the current loop is switched on and off. The accuracy of this current is established by the accurate $20-k \Omega$ series resistance of attenuator resistors R948B through R948K.

# SECTION 4 <br> MAINTENANCE 

## PREVENTIVE MAINTENANCE

## Cleaning the Interior

Internal cleaning should precede calibration since the cleaning process could alter the setting of certain calibration controls.

One way to clean the interior is by vacuum and/or lowpressure compressed air (high-velocity air could damage certain components). Hardened dirt may be removed with a soft paint brush, cotton-tipped swab, or cloth dampened with a water and mild detergent solution. Pay special attention to high-voltage circuits where conductive dust can cause arcing.

The contacts on the plug-in interconnecting jacks and plugs should be lightly lubricated with an oil of the type used on rotary-switch contacts. To extend the life of the contacts, clean and relubricate if the oil becomes contaminated with abrasive dust.

The plug-in unit frame-rod contact springs (located just inside the upper corners of the plug-in unit compartments) should be lubricated with a grease of the type used on rotary-switch detents (e.g. Beacon No. 325).

## Visual Inspection

The instrument should be inspected occasionally for such defects as poor connections, broken or damaged ceramic terminal strips, improperly seated tubes or transistors, and heat-damaged parts. The remedy for most visible defects is obvious. But overheating is usually a symptom of other unseen defects and unless the cause is determined before parts are replaced, the damage may be repeated.

## Tube and Transistor Checks

Periodic preventive maintenance checks on the tubes and transistors used in the instrument are not recommended. The circuits within the instrument generally provide the most satisfactory means of checking tube or transistor performance. Performance of the circuits is thoroughly checked during recalibration so that substandard tubes and transistors will usually be detected at that time.

## Recalibration

To insure accurate measurements, the instrument calibration should be checked after each 500 hours of operation or every six months if used intermittently. Complete calibration instructions are contained in Section 5 of this manual.

The calibration procedure can be helpful in isolating major troubles in the instrument. Moreover, minor troubles not apparent during regular operation may be revealed and corrected during calibration.

## Cleaning the Exterior

Loose dust may be removed with a cloth and a dry paint brush. Water and mild detergents such as Kelite or Spray White may be used. Abrasive cleansers should not be used.
The graticule and crt face-plate may be cleaned with a soft, lint-free cloth dampened with denatured alcohol.

## COMPONENT REPLACEMENT

## General Information

Certain parts in the instrument are best replaced if definite procedures are followed as outlined in the following paragraphs.
Many electrical components are mounted in a particular way to reduce or control stray capacitance and inductance. When selecting replacement parts, it is important to remember that the physical size and shape of a component may affect its performance at high frequencies. After repair, portions of the instrument may require recalibration; see Section 5.

## Standard Parts

Many components in the instrument are standard electronic parts available locally. However, all parts can be obtained through your Tektronix Field Engineer or Field Office. Before purchasing or ordering, consult the parts list to determine the value, tolerance, and rating required.

## Special Parts

Some parts are manufactured or selected by Tektronix to satisfy particular requirements, or are manufactured for Tektronix to our specifications. These and most mechanical parts should be ordered directly from your Tektronix Field Engineer or Field Office. See "Parts Ordering Information" and "Special Notes and Symbols" on the first page of Section 6.

## Soldering

Special silver-bearing solder is used to establish a bond to the ceramic terminal strips in Tektronix instruments. This bond may be broken by repeated use (especially if ordinary tin-lead solder is used) or by excessive heating. We recommend solder containing about $3 \%$ silver. A small supply of this solder is provided on a spool mounted inside the instrument. Additional silver-bearing solder is usually available locally or may be purchased in one-pound rolls through your Tekrtonix Field Engineer or Field Office. Order by part number 251-514.

## Soldering To Ceramic Strips:

1. Use a wedge-shaped soldering-iron tip about $1 / 8$-inch wide. This will allow you to apply heat directly to the solder in the terminal without touching the ceramic, thereby reducing the amount of heat required.
2. Maintain a clean, properly tinned tip.
3. Use a hot iron for a short time. A 50- to 75 -watt iron with good heat storage and transfer properties is adequate.
4. Avoid putting pressure on the strip with the soldering iron or other tools. Excessive pressure may cause the strip to crack or chip.

## Ceramic Terminal Strips

Fig. 4-1 shows an assembled ceramic terminal strip. Replacement strips with studs attached are supplied under a single part number and spacers under another number. The original spacers may be reused if undamaged.


Fig. 4-1. Ceramic strip assembly.

Usually, a strip can be pried out of the chassis or pulled out with a pair of pliers. In some cases, you may choose to use a hammer and punch to drive out the studs from the opposite side of the chassis.

When the damaged strip has been removed, place new or used (but undamaged) spacers in the chassis holes. Then carefully force the studs of the new strip into the spacers until they are completely seated. If necessary, use a softfaced mallet, tapping lightly directly over the stud area of the strip.

## Switch Replacement

Individual wafers normally are not replaced in switch assemblies. Replacement switches may be ordered from Tektronix either unwired or with the associated wires and components attached. See parts list, Section 6.

When soldering leads to a switch, do not let solder flow around and beyond the terminal rivet as this may destroy the contact spring tension.

## Tubes and Transistors

Tubes and transistors should not be replaced unless actually defective. When a defect is suspected, it is suggested that circuit conditions be checked first to be certain that a replacement tube or transistor will not be immediately destroyed. In some cases, these checks will also show whether or not the tube or transistor is at fault.

When circuit conditions are known to be safe, install a tube or transistor of the same type that is known to be good and check for proper operation. If the original tube or transistor proves acceptable, return it to its original socket to avoid unnecessary recalibration.

## Cathode-Ray Tube and Shield

The following procedure outlines the removal and replacement of the crt. Supplementary steps for removal and replacement of the crt shield are included. Replacement of certain components on the adjacent chassis is easier with the shield removed.

## WARNING

Use care when handling a crt. Avoid striking it on any object that might cause it to crack and implode. Flying glass from an imploding crt can cause serious injury. Safety glasses or a plastic face mask are recommended.

## To Remove the Crt:

1. Remove the four bezel nuts and the bezel.
2. Slip off the face-plate shield.
3. Remove the high-voltage anode connector.
4. Remove the four deflection-plate leads. Be careful not to bend the crt connector pins.
5. Open the rear radiator door and remove the crt base socket.
6. Loosen the base clamp screw.
7. Start the crt forward by pressing on the crt base center pin.
8. Remove the crt.

## To Replace the Crt:

1. Insert the crt.
2. All four edges of the flange around the crt face-plate should touch the front panel of the instrument, but must not be forced. Instead, the crt base clamp should be repositioned so that all four edges of the flange contact the front panel at the same time when the crt is inserted. The crt base clamp is held in place by two allen-head machine screws which are accessible from the rear of the instrument through holes in the power-supply chassis. Loosen the screws and reposition the clamp as required. When the physical alignment of the crt is correct, tighten the machine screws and proceed with the next step. Do not tighten the clamp to the crt base at this time.
3. Replace the base socket, deflection plate leads, and anode lead.
4. Clean the crt face-plate and face-plate shield, and then mount the face-plate shield and the bezel. Tighten the four bezel nuts.
5. Push lightly on the crt base socket to be certain that the crt is as far forward as it will go and then tighten the base clamp.

## To Remove and Replace the Crt Shield:

1. With the crt removed, take out the four screws holding the front end of the shield and the two screws holding the rear.
2. Remove the grommet from the anode connector opening.
3. Slide the shield out so that the Trace Rotation Coil leads are accessible. Unsolder the leads, noting the polarity for reinstallation. The shield can now be separated from the instrument.
4. To reinstall the shield, reverse the above procedure.

## CORRECTIVE MAINTENANCE

## Troubleshooting Aids

This manual and the instrument contain many features intended to speed and simplify maintenance.

The schematics in Section 6 provide a circuit reference number for each electrical component as well as important operating voltages, signals, and conditions for their measurement. The range of circuit reference numbers associated with a particular schematic appear on that schematic. The block diagram provides an overall picture of instrument operation.

Most of the wire in the instrument is color striped to aid in circuit tracing. All regulated low-voltage power supply leads are coded as follows:

1. The basic wire color indicates voltage polarity: fan for negative, white for positive.
2. The stripe colors indicate supply voltage according to the standard EIA color code. Stripes are read in order of decreasing width.


Fig. 4-2. Siandard EIA color code for metal film resistors.


Fig. 4-3. Diode polarities.

For example, the -75 -volt supply leads are tan wire (negative) bearing stripes of violet (seven), green (five), black (no zero).

The instrument contains a number of stable metal-film resistors identified by their gray background color and color coding. If a resistor has three significant figures and a multiplier, it will be EIA color coded. If it has four significant figures and a multiplier, the value will be printed on the resistor. For example, a 333 k resistor will be color coded, but a 333.5 k resistor will have its value printed on the resistor body. The color coding sequence is shown in Table $4-1$ and Fig. 4-2.

TABLE 4-1
Color Code Sequence

| Color | 1st <br> Sig. <br> Fig. | 2nd <br> Sig. <br> Fig. | 3rd <br> Sig. <br> Fig. | Multiplier | ( $\pm$ ) \% <br> Tolerance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Black | 0 | 0 | 0 | 1 | - |
| Brown | 1 | 1 | 1 | 10 | 1 |
| Red | 2 | 2 | 2 | 100 | 2 |
| Orange | 3 | 3 | 3 | 1,000 | - |
| Yellow | 4 | 4 | 4 | 10,000 | - |
| Green | 5 | 5 | 5 | 100,000 | 0.50 |
| Blue | 6 | 6 | 6 | $1,000,000$ | 0.25 |
| Violet | 7 | 7 | 7 | $10,000,000$ | 0.10 |
| Gray | 8 | 8 | 8 | $100,000,000$ | 0.05 |
| White | 9 | 9 | 9 | $1,000,000,000$ | - |
| Gold |  |  |  | 0.1 | 5 |
| Silver |  |  |  | 0.01 | - |
| No Color |  |  |  |  | 10 |

Switch wafers shown on the schematics are coded to indicate the physical positions of the wafers on a rotary switch. The number portion of the code refers to the wafer position as counted from the front- or driven-end of the switch shaft. Letters $F$ and $R$ indicate whether the front or rear of the wafer is used to perform the particular switching function.

Important test points are marked (e.g. TP374) on the schematics and on the instrument chassis. Pictures on a fold-out page following the schematics show the general locations of these test points.

Fig. 4-3 identifies the polarity of the various diode types used in the instrument.

The following chart lists the proper current ratings for fuses in the Type 647.

| Fuse | 117-Volt Range | 234-Volt Range |
| :--- | :--- | :--- |
| F601 | 3 amp slow-blow | 1.5 amp slow-blow |
| F602 | 4 amp slow-blow |  |
| F613 | 0.5 amp fast-blow |  |
| F703 | 0.75 amp fast-blow |  |
| F743 | 0.75 amp fast-blow |  |
| F820 | 2 amp fast-blow |  |

## SECTION 5

## CALIBRATION

## Introduction

This section of the manual contains a complete calibration procedure for the Type 647 Oscilloscope. The instrument will not require frequent recalibration, but occasional adjustments will be necessary as components age or are replaced.

Calibration is a valuable part of preventive maintenance since many types of minor froubles may be discovered and corrected before they become serious enough to disable the instrument. Major troubles are often more easily isolated to a particular section of the instrument by attempting calibration.

## Equipment Required

1. Tektronix Type 10/11M1 Test Unit.
2. Tektronix 11 -series time base plug-in unit.
3. Autotransformer such as Variac or Powerstat. Required characteristics: Output voltage range covering the full linevoltage range of the Type 647. Volt-ampere rating of at least 500.
4. Ac voltmeter, calibrated in rms, for minitoring the autotransformer output. Required characteristics: $2 \%$ accuracy over the full line-voltage range of the Type 647.
5. Dc voltmeter such as the Fluke Model 803 or the Electro Instruments Model Eitronic 880. Required Characteristics: Input resistance at least 1 megohm. Accuracy at least $\pm 0.05 \%$ of reading between 100 millivolts and 100 volts.
6. Oscilloscope such as the Tektronix Type 540- or 550series with a Type D Plug-In and a Type L Plug-In. Required characteristics: Type D Plug-In-Maximum calibrated sensitivity of at least 5 mvolts/div. Type L Plug-In-Bandpass of at least 20 mc .
7. Dc voltmeter. Required characteristics: Range to at least 2.5 kv full scale. Input resistance of at least $20 \mathrm{k} \Omega / \mathrm{v}$. Accurate within $2 \%$ at 2.2 kv and within $10 \%$ at 300 volts.
8. Time-mark generator such as the Tektronix Type 180A. Required characteristics: Marker intervals of 1 millisecond and 20 nanoseconds ( $50-\mathrm{mc}$ sine wave). Accuracy of at least $\pm 0.01 \%$.
9. Constant-Amplitude Signal Generator, Tektronix Type 190A or 190B. Signal Generator used must provide a 200 millivolt signal variable in frequency from 500 kc to 50 mc . The signal amplitude must remain constant ( 200 mv ) over the entire frequency range.
10. TU-5 Pulser complete kit, Tektronix Part No. 015-043, contains the following ifems*:
[^0]|  | Qty. Description | Part Number |
| :---: | :---: | :---: |
| $1$ | TU-5 Pulser (alone) with BNC plug-and jack connector fittings. | 015-038 |
| $1$ | 50 -ohm termination with BNC plug-and jack connector fittings. | 011-049 |
| $1$ | 50-ohm 10:1 T attenuator, $1 / 2 \mathrm{w}$, with BNC plug-and-jack connector fittings. | 010-314 |
| $1$ | Connector adapter with UHF-plug and BNC-jack connector fittings. | 103-015 |
| $1$ | 50 -ohm (nominal impedance) coaxia cable, 42" long, with a BNC connecto on each end. | 102-057 |
| 11. Tektronix $50 \Omega 5 \mathrm{XT}$ attenuator: part number 011-060. |  |  |
| 12. Miscellaneous |  |  |
| 1-Insulated screwdriver: part number 003-001. |  |  |
| 1-Adapter, BNC to alligator clips: part number 013076. |  |  |

## PRELIMINARY PROCEDURE

1. Remove the covers from the Type 647.
2. Disengage the captive screws which hold the heatsink door closed.
3. Install the Type $10 / 11 \mathrm{MI}$ plug-in unit in the horizontal compartment of the Type 647.
4. Connect the Type 647 and the ac voltmeter to the powerline autotransformer output.
5. Connect the autotransformer to the appropriate linevoltage source and set for an output near the center of the line-voltage range for which the Type 647 is wired.
6. Set the controls on the Type 647 and Type $10 / 11 \mathrm{Ml}$ as listed in Table 5-1.

TABLE 5-1
Type 647

| INTENSITY | Counterclockwise |
| :--- | :--- |
| FOCUS | Midrange |
| ASTIG | Midrange |
| SCALE ILLUM | Counterclockwise |
| I KC CALIBRATOR | OFF |
| HORIZ POSITION | Midrange |
| $\quad$ Type $10 / 11 \mathrm{MI}$ |  |
| Horiz Cal | 5 |
| Load | Zero |
| Source (voltage) | $-75 v$ |
| $\quad$ (function) | Gnd |
| Pulse Rate | OFF |

7. Turn on the instrument power and allow several minutes for warmup.

## NOTE

Pictures on a fold-out page preceding the schematics show the location of each calibration control and each of the numbered test points listed in the schematics.

## CHECK AND ADJUSTMENT PROCEDURE

## Low-Voltage Power Supplies

## 1. Adjust Voltage; Check Ripple and Regulation NOTE

The following ripple checks can produce erroneous indications unless ground-loop hum is minimized. To minimize hum the Type 647 and the ripplemonitoring test oscilloscope should be powered from the same convenience outlet.

Proper power supply operation at the lower linevoltage limit requires that the line-voltage sine wave contains less than $1 \%$ distortion.
a. Connect the dc voltmeter between TP632 in the -75volt supply and ground. Connect the ground lead to the power supply chassis as near as possible to the test point. Adjust -75 VOLTS R631 for a meter reading of -75 volts.

## CAUTION

Do not reset the -75 v control unless the power supply voltages are actually out of tolerance (see Table 5-2) or you are planning to perform a complete calibration of the instrument.
b. Connect a coaxial cable from the Output connector on the Type $10 / 11 \mathrm{Ml}$ to the input connector on the plug-in of the test oscilloscope. Set the test oscilloscope controls to trigger and display automatically a line-frequency waveform with an amplitude of 5 mvolts or less. The waveform must be dc-coupled into the vertical amplifier of the test oscilloscope.
c. With the Source function switch on the Type $10 / 11 \mathrm{Ml}$ set at Gnd, position the trace on the test oscilloscope to a convenient reference point. With the test oscilloscope and plug-in set as in step (b), each 5 mvolts of deflection away from the reference point will indicate $0.1 \%$ of error in the
supply voltage. The allowable error in each supply can be found in Table 5-2
d. Set the Source function switch on the Type $10 / 11 \mathrm{Ml}$ to Dc Error and reset R631 ( -75 VOLTS) for no deflection of the trace on the test oscilloscopes as the Source function switch is moved between the Gnd and Dc Error positions.
e. Set the 10/11M1 Source function switch to De Error and the Load switch to Full. Check that the trace deflection does not equal more than $0.1 \%$ providing the supply was adjusted in step (d). Set the Load switch to Zero and the Source function switch to Ripple.
f. With the power-line autotransformer set for a linevoltage near the center of the Type 647 operating range (indicated on a metal tag on the rear panel), check that the ripple is within the limits given in Table 5-2.
g. Set the power-line autotransformer for the lower linevoltage limit (design-center voltage less $10 \%$ ) of the Type 647 and the $10 / 11 \mathrm{Ml}$ Load switch to Full. Check that the ripple is within the limit given in Table 5-2.
h. Set the power-line autotransformer for the upper linevoltage limit (design-center $+10 \%$ ) of the Type 647 and the $10 / 11 \mathrm{MI}$ Load switch to Zero. Check that the ripple is within the limits given in Table 5-2 in each of the four regulated supplies.
i. Reset the power-line autotransformer for a line voltage near the center of the Type 647 operating range Disconnect the voltmeter and reset the Type $10 / 11 \mathrm{Ml}$ controls to the positions listed in Table 5-1 except for the Source voltage switch.
i. Repeat steps (a) through (i) for each remaining supply in the order listed in Table 5-2. Be sure to adjust the supplies in the order listed and then recheck all supply voltages. It may be necessary to adjust the supplies a second time.
After the regulation checks have been made on the - 15 volt supply, the test oscilloscope may be disconnected from the Type $10 / 11 \mathrm{Ml}$ plug-in. The +300 -volt supply is checked using the dc voltmeter at TP742. The ripple is checked at TP742 by connecting a probe between the test point and the test oscilloscope.

## Crt Circuit

## 1. Adjust HIGH VOLTAGE R801

a. Connect the high-voltage dc voltmeter between the chassis and the HV TEST POINT TP833.
b. Adjust R801 for an exact 2.2 kv meter indication.

TABLE 5-2

| Supply <br> Voltage | Test <br> Point | Tolerance at <br> Midrange <br> Line Voltage | Maximum <br> Ripple <br> (mv p-p) | Voltage <br> Control |
| :---: | :---: | :---: | :---: | :---: |
| -75 v | TP632 | $\pm 0.3 \%$ | 2 | -75 VOLTS R631 |
| +100 v | TP737 | $\pm 0.5 \%$ | 2 | +100 VOLTS R731 |
| +15 v | TP697 | $\pm 0.5 \%$ | 1.5 | +15 VOLTS R691 |
| -15 v | TP644 | $\pm 0.5 \%$ | 1.5 | -15 VOLTS R661 |
| +300 v | TP742 | $\pm 10 \%$ | 10 v | Unregulated |

## 2. Check High-Voltage Regulation

a. Set the power-line autotransformer for the lower-limit operating voltage of the Type 647.
b. With the crt beam positioned off-screen, slowly turn the INTENSITY control from stop to stop several times and check that the high voltage remains constant.

## NOTE

Few high-voltage meters will resolve the slight voltage change (less than 10 volts) that normally occurs. Hence, unless a high-resolution meter is used, no change in the high voltage should be detected.
c. Reset the power-line autotransformer for a voltage near the center of the Type 647 operating range.
d. Reset the INTENSITY control counterclockwise and disconnect the voltmeter.

## 3. Adjust CRT GRID BIAS R832

a. set:
$\begin{array}{ll}\text { CRT GRID BIAS R832 } & \text { Counterclockwise } \\ \text { POSITION (Type 10/11MI) } & \text { Midrange }\end{array}$
b. Set the INTENSITY control so the knob-pointer indicates 8.5.
c. Turn CRT GRID BIAS clockwise to obtain a dim spot.
d. Reset the INTENSITY control to 0 .

## 4. Adjust TRACE ROTATION (front panel)

a. Remove the Type $10 / 11 \mathrm{M1}$ from the horizontal compartment and install a 10 -series plug-in in the vertical compartment and an 11-series plug-in in the horizontal compartment.
b. Set the 11 -series plug-in for a free-running sweep with a rate of 1 msec .
c. Set the INTENSITY control for a trace of moderate brightness.
d. Center the trace vertically and horizontally.
e. Set the FOCUS control for minimum trace thickness.
f. Adjust TRACE ROTATION (front panel) so that the trace is parallel with the horizontal graticule lines.

## 5. Adjust GEOMETRY R863

a. Set:

| 1 KC CALIBRATOR | 2 VOLTS |
| :--- | :--- |
| Input coupling (10-series) | Ac |
| Time/cm (11-series) | 1 msec |
| Trigger mode (11-series) | Automatic |
| Source (11-series) | Internal |

b. Connect a coaxial cable between the CAL OUT connector and the vertical input connector.
c. Set the volts $/ \mathrm{cm}$ switch ( 10 -series) to .2 and turn the variable control counterclockwise to obtain a $6-\mathrm{cm}$ display amplitude.
d. Set the 11 -series trigger level control, if used, for a triggered display.
e. Set the FOCUS and ASTIG controls for a well defined display.
f. Adjust GEOM R863 so that the row of pulse tops and the row of pulse bottoms form straight lines.
g. Increase the intensity to observe the vertical lines of the display.
h. Adjust R865 (Y AXIS ALIGN) so that the vertical lines of the pulses are perpendicular to the horizontal graticule lines.
i. Set the INTENSITY control counterclockwise and remove the signal connection.

## 6. Adjust Z-Axis Amplifier High-Frequency Response C879

a. Set:

Time $/ \mathrm{cm}$ (11-series) $.5 \mu \mathrm{sec}$
Trigger mode (11-series) Free running
b. Set the INTENSITY control for a dim trace.
c. Horizontally position the trace so the left end is near the center of the graticule.
d. Slowly turn C879 and note the action of the adjustment. A small segment (about 1 -millimeter long) at the left end of the trace should vary in brightness.
e. Adjust C 879 so the brightness of the trace segment most nearly matches that of the remainder of the trace.
f. Set the INTENSITY control to 4 and the time/cm control of the 11 -series plug-in to $.1 \mu \mathrm{sec}$.
g. Connect a 10X probe from the test oscilloscope (with 20 mc plug-in installed) to TP873 and observe a pulse about 35 volts high with a dc level of about +10 volts. Set the sweep rate of the test oscilloscope to $1 \mathrm{msec} / \mathrm{cm}$.
h. Rotate the INTENSITY control from 0 to 8.5 and observe a pulse which varies from zero volts amplitude with a dc level of +10 volts to an amplitude of about +55 volts with a dc level of +40 volts.
i. Set the INTENSITY control to obtain a pulse with a 30 -volt amplitude at TP873.
i. Check the risetime of the pulse in step (i); it should be less than 50 nsec . The overshoot on the pulse should be less than $3 \%$.
k. Turn the INTENSITY control fully clockwise. Set the trigger mode control of the 11 -series plug-in to single sweep, and position the spot off the crt.
I. Connect the output of a Type 190B to the CRT GRID connector.
m. Adjust the Type 190B controls to obtain a 4 -volt 50 -kc signal at TP873.
n. Adjust the test oscilloscope so that the 4 -volt 50 -kc signal is ac coupled into the test oscilloscope and will produce a 4-division display.
o. Increase the Type 190B output frequency to 10 MC and check the display of the test oscilloscope for a signal amplitude of at least 2.8 divisions.
p. Disconnect the Type 190B and test oscilloscope.
q. Set the INTENSITY control for normal trace brightness.

## 7. Check Alternate Sweep and Chopped Blanking

a. Do not do this check unless your 10 -series plug-in has alternate and/or chopped provisions.
b. Set:

| Mode (10-series) | Alternate |
| :--- | :--- |
| Time $/ \mathrm{cm}$ (11-series) | $.5 \mu \mathrm{sec}$ |
| Trigger mode (11-series) | Free running |

c. Check for dual trace in all sweep rates.
d. Set the mode switch (10-series) to chopped, the time/ cm switch (11-series) to $5 \mu \mathrm{sec}$, and the trigger mode switch (11-series) to normal.
e. Adjust the trigger level control (1)-series) to obtain a stable display and check for no vertical lines being visible at normal intensity.

## 1-Kc Calibrator

## 1. Check Voltage Accuracy

a. Turn off the instrument power and remove transistor Q945.
b. Restore instrument power.
c. Connect the precision dc voltmeter to the CAL OUT connector with a coaxial cable.
d. Set the 1 KC CALIBRATOR switch to 100 VOLTS or 100 VDC and check that the output dc voltage is between 99 and 101 volts.

## NOTE

The accuracy of the 1 Kc Calibrator 100 -volt output is dircetly determined by the accuracy of the +100 -volt power supply.
e. Check the output voltage at each switch setting listed in Table 5-3.

TABLE 5-3

| 1 KC <br> CALIBRATOR | Tolerance |
| :---: | :---: |
| 50 VOLTS | $49-51 \mathrm{v}$ |
| 20 VOLTS | $19.6-20.4 \mathrm{v}$ |
| 10 VOLTS | $9.8-10.2 \mathrm{v}$ |
| 5 VOLTS | $4.9-5.1 \mathrm{v}$ |
| 2 VOLTS | $1.96-2.04 \mathrm{v}$ |
| 1 VOLT | $0.98-1.02 \mathrm{v}$ |
| .5 VOLT | $0.49-0.51 \mathrm{v}$ |
| .2 VOLT | $0.196-0.204 \mathrm{v}$ |
| .1 VOLT | $0.099-0.101 \mathrm{v}$ |

## NOTE

Due to the type of attenuator used in the 1 Kc Calibrator, the remaining voltages need not be checked.
f. Turn off the instrument power and install transistor Q945.
g. Restore instrument power.

## 2. Check Frequency Accuracy

a. Set:

| 1 KC CALIBRATOR (647) | 1 VOLTS |
| :--- | :--- |
| Volts/cm (10-series) | 2 |
| Mode (10-series) | To display one |
| channel only |  |
| Time/cm (11-series) | 1 msec |
| Trigger mode (11-series) | Normal |
| Trigger level (11-series) | 0 |
| Coupling (11-series) | Ac low-frequency |
|  | reject |
| Source (11-series) | External |

b. There should not be a trace on the crt. Connect a coaxial cable between the CAL OUT and the trigger input (11-series) connectors. There should now be a trace on the crt.
c. Apply 1-millisecond and 1 -second markers from the Type 180A to the vertical input. Set the trigger level control on the 11 -series plug-in for the most stable display.
d. Check the frequency accuracy by checking the drift of the 1 -millisecond markers across the crt for a period of 10 seconds, using the 1 -second markers to count the 10 -second time period. There should be no more than 5 cm of drift in the 10 -second time period.
e. Remove the signal connections.

## Horizontal Amplifier

## 1. Adjust HORIZ CENT R364

a. Remove the 10 - and 11 -series plug-ins from the Type 647 and install the Type $10 / 11 \mathrm{Ml}$ in the horizontal compartment.
b. Set Type $10 / 11 \mathrm{MI}$ :

| Horiz Cal | 5 |
| :--- | :--- |
| Load | Zero |
| Pulse Rate | Off |
| Position | Midrange |

c. Set the INTENSITY, FOCUS, and ASTIG controls for a fine and dim spot.
d. Adjust R364 HORIZ CENT to position the spot on the center vertical graticule line.

## 2. Adjust HORIZ GAIN R377

a. Set the Type $10 / 11 \mathrm{Ml}$ Horiz Cal to 1 and adjust R377 HORIZ GAIN to place the spot on the first centimeter line.

Set the Horiz Cal to 9 and check that the spot is on the ninth centimeter line; if it is not adjust the HORIZ GAIN until the spot is on the first and ninth centimeter graticule lines as the Type $10 / 11 \mathrm{Mi}$ Horiz Cal control is switched between 1 and 9.
b. Recheck the HORIZ CENT to insure that the spot is still on the center vertical graticule line when the Type 10/11M1 Horiz Cal control is set to 5 .

## 3. Adjust C378, C377, and C397

a. Remove the Type $10 / 11 \mathrm{M1}$ from the Type 647 and install an 11 -series plug-in in the horizontal compartment and a 10 -series plug-in in the vertical compartment.
b. Set:

| Input coupling (10-series) | Ac |
| :--- | :--- |
| Volts/cm (10-series) | 2 |
| Time/cm (11-series) | $.2 \mu \mathrm{sec}$ |
| Trigger mode (11-series) | Normal |
| Source (11-series) | Internal |

c. From the Type 180A, apply a 50 MC sine-wave signal to the vertical input connector of the 10 -series plug-in and adjust the trigger level control of the 11 -series plug-in for a stable display.
d. Set the HORIZ POSITION so that the display is centered. Turn the 11 -series plug-in magnifier so that a sweep rate of $20 \mathrm{nsec} / \mathrm{cm}$ is achieved.
e. Push the TRACE FINDER and adjust C397 for best linearity.
f. Release the TRACE FINDER and set the sweep rate to 10 nsec .
g. Set the HORIZ POSITION control to position the first five centimeters of sweep to the left of the first centimeter graticule line.
h. Adjust C377 so that the 1 cycle $/ 2 \mathrm{~cm}$ display has a peak lined up with the first and ninth centimeter graticule lines. The peaks between the first and ninth graticule lines should be within $\pm 2 \mathrm{~mm}$ of their respective graticule lines.
i. Repeat steps (d), (e), (f), (g), and (h) to obtain optimum linearity and timing.
j. Remove input signal.

## Vertical Amplifier

## 1. Adjust VERT CENT R441

a. Remove the 10 -series plug-in from the vertical compartment and install the Type $10 / 11 \mathrm{M} 1$ into that compartment.
b. Set:

Vertical (Type 10/11MI)
Pulse Rate (Type 10/11M1)
Position (Type 10/11MI)

Time Mark
Off
Midrange

| Magnifier (11-series) | Off |
| :--- | :--- |
| Trigger mode (11-series) | Normal |
| Trigger level (11-series) | 0 |
| Source (11-series) | External |
| Display (11-series) | Time base |

c. Adjust R441 VERT CENT to position the spot on the center horizontal graticule line.

## 2. Adjust VERT GAIN R414

a. Set the Type $10 / 11 \mathrm{Ml}$ Vertical to +3 cm Dc Calibrate and adjust R414 VERT GAIN to place the spot on the top graticule line. Set the Vertical to -3 cm Dc Calibrate and check that the spot is on the bottom graticule line; if it is not adjust the VERT GAIN until the spot is on the top and bottom graticule lines as the Type 10/ 11M1 Vertical control is switched between +3 cm and -3 cm Dc Calibrate positions.
b. Recheck the VERT CENT to insure the spot is still on the center horizontal graticule line when the Type $10 / 11 \mathrm{Ml}$ Vertical control is set to Time Mark.

## 3. Adjust Vertical-System High-Frequency Response

a. Set:

Vertical (Type 10/11M1)
Pulse Rate (Type 10/11M1)
Amplitude (Type 10/11MI)
Position (Type 10/11MI)

Trigger mode (11-series)
Slope (11-series)
Coupling (11-series)
Source (11-series)

+ Pulse Polarity
One of the middle ranges
To obtain a $4-\mathrm{cm}$ high pulse.
To position top of pulse 2 cm above horizontal centerline.
Automatic $+$ Ac low - frequency reject Internal
b. Adjust the trigger level for a stable display.
c. Adjust sweep rate of 11 -series plug-in to obtain enough magnification to see the effect of the adjustment being made.
d. Adjust the high-frequency compensation:

1. Adjust R456D DAMPING to produce ringing on the front corner of the pulse, and then turn the control back until the ringing just disappears.
2. Adjust C484 and then C467 to make the front 10-50 nsec region of pulse top as straight and level as possible.
3. Adjust C456D to make the front pulse corner appear square with less than $1 / 2 \mathrm{~m}$ of overshoot, rolloff, or ringing.
e. Repeat the adjustments in step (d) until the best possible response is obtained. It may be necessary to slightly readjust R456D DAMPING to obtain minimum aberrations in the top of the waveform.


Fig. 5-1. Measuring positive going pulse risetime.
f. Set the 11 -series plug-in for a sweep rate of $10 \mathrm{nsec} /$ cm.
g. Check the risetime of the display (see Fig. 5-1); it should measure 6 nsec or less, from the $10 \%$ point to the 90\% point.

## 4. Check Vertical-System Negative Response

a. Set:

Vertical (Type 10/11M1)
Amplitude (Type 10/11M1)
Position (Type 10/11M1)

Slope (17-series)
b. Check for the same response as seen in steps (d) and (e).
c. If necessary readjust R456D, C484, C467, and C456D slightly to obtain the same pulse shape in the negative polarity as in plus polarity.
d. Set the 11 -series plug-in for a sweep rate of $10 \mathrm{nsec} /$ cm .
e. Check the negative risetime of the display (see Fig. $5-2$ ); it should measure 6 nsec or less, from the $10 \%$ point to the $90 \%$ point.

## 5. Check Step Response Variation and Amplitude and Dynamic range ( $\pm 9 \mathrm{~cm}$ )

a. Set:

Vertical (Type 10/11M1)
Amplitude (Type 10/11M1)
Position (Type 10/11M1)

Slope (11-series)

- Pulse Polarity

To obtain a 6 cm high pulse.

To position bottom of pulse on bottom graticule line.
$+$


Fig. 5-2. Measuring negative going pulse risetime.
b. Vary the Type $10 / 11 \mathrm{Ml}$ Amplitude control and check for step reponse variations.
c. Set the Amplifude control as in step (a).
d. Check for less than 2 mm of overshoot on the bottom of the waveform.
e. Position the bottom of the pulse to the top graticule line. The rolloff at the front bottom corner should be less than 2 mm .
f. Set:

Vertical (Type 10/11M1) $\quad+$ Pulse Polarity
Position (Type 10/11M1) To position top of pulse to top graticule line.
g. Do steps (b) and (c) for the + pulse.
h. Check for less than 2 mm of overshoot on the top of the waveform.
i. Position the top of the pulse to the bottom graticule line. The rolloff of the top corner should be less than 2 mm .
i. Position the top of the pulse 1 cm above the centerline and then adjust the pulse amplitude to obtain a 2 cm high pulse.
k. Position the pulse to the top and bottom areas of the graticule and note the compression or expansion of the display. The total compression and expansion must be less than $1 / 2 \mathrm{~mm}$.

## 6. Check Delay Line Aberrations and Termination

a. Set:

Vertical (Type 10/11M1) + Pulse Polarity
Amplitude (Type 10/11M1) To obtain a 4 cm high pulse.
Position (Type 10/11MI)
To center pulse on crt.
Slope (11-series)
b. Check the aberrations on the bottom of the waveform. They should not exceed $1 / 2 \mathrm{~mm}$ in height.
c. Remove the Type $10 / 11 \mathrm{M1}$ and install a 10 -series plugin in the vertical compartment.
d. Set:

| Position (10-series) | Midrange |
| :--- | :--- |
| Volts/cm (10-series) | .01 |
| Input coupling (10-series) | Dc |
| Time/cm (11-series) | $0.1 \mu \mathrm{sec}$ |
| Magnifier (11-series) | Off |
| Trigger Mode (11-series) | Normal |
| Slope (11-series) | + |
| Coupling (11-series) | Ac low-frequency |
|  | $\quad$ reject |
| Source (11-series) | Internal |

e. Connect a Type TU-5 Pulser to the test oscilloscope 1 KC Cal Out connector with a 50 -ohm coax cable and set the test oscilloscope Calibrator to 100 VOLTS. DO NOT use the Type 6471 KC CALIBRATOR. It will not run the Type TU-5.
f. Connect the Type TU-5 to the vertical input connector of the 10 -series plug-in through a 5 XT attenuator and a 50 -ohm termination.
g. Adjust the Type TU-5 until it generates a fast-rise pulse on the crt of the Type 647.
h. Adjust the trigger level control to obtain a stable display.
i. Check the top of the waveform for overshoot, rolloff or ringing. Any that appears should be less than 0.025 X waveform amplitude, above the top of the waveform.
i. With the variable on the 10 -series plug-in, adjust the waveform so that it is 4 cm high.
k. Position the $4-\mathrm{cm}$ high waveform to the center of the crt.

1. Set the sweep rate of the 11 -series plug-in to $10 \mathrm{nsec} /$ cm .
m . Measure the risetime of the waveform. It should be less than 7 nsec from the $10 \%$ point to the $90 \%$ point.
n. Remove the Type TU-5 and set:

Volts/cm (10-series)
.01
Variable (10-series)
Time/cm (11-series)
Magnifier (11-series)
Calibrated
1 msec
Off
o. Apply a $50-\mathrm{ke}$ signal from a Type 190 B through a 50 -ohm coax cable and a 50 -ohm termination to the vertical input connector of the 10 -series plug-in.
p. Adjust the amplitude of the Type 190 B signal to obtain a $4-\mathrm{cm}$ high signal.
q. Increase the output frequency of the Type 190B to 50 MC and check for at least a 2.8 cm signal still remaining on the crt of the Type 647.

## Miscellaneous Checks

## 1. Check External Crt Cathode Input

a. Remove ground strap between CRT CATHODE and GND.
b. Connect a jumper between the CRT CATHODE and CAL OUT connectors.
c. Set:

| Magnifier (11-series) | Off |
| :--- | :--- |
| Time $/ \mathrm{cm}(11$-series) | 1 msec |
| Trigger Mode (11-series) | Free running |

d. Set the 1 KC CALIBRATOR to 5 VOLTS and check for intensity modulation.
e. Remove jumper and reconnect the ground strap between the CRT CATHODE and GND connectors.

## 2. Check External Crt Grid Input

a. Set:

| Magnifier (11-series) | Off |
| :--- | :--- |
| Time $/ \mathrm{cm}$ (11-series) | 1 msec |
| Trigger mode (11-series) | Free running |

b. Set the 1 KC CALIBRATOR to 5 VOLTS and connect a jumper from the CAL OUT connector to the CRT GRID connector.
c. Check for intensity modulation.
d. Remove the jumper.

## 3. Check J101 For Voltages and External Single Sweep Reset

a. Check for proper voltage at pins A through E. See Table 5-4.
b. Set the 1 KC CALIBRATOR to 5 VOLTS and connect a coax cable between the CAL OUT connector and the vertical input connector on the 10 -series plug-in.
c. Set:

Volts/cm (10-series)
Trigger Mode (1 1 -series)
Trigger level (11-series)
Trigger level (11-series)

## 2

Norma!
For a stable display Internal
d. After obtaining a stable display set the trigger mode switch on the 11 -series plug-in to single sweep.
e. Remove the coax cable or set the input coupling (10series) to ground and push the reset button on the 11 -series plug-in.
f. Check that the ready neon lights and remains stable.
g. Reconnect the coax cable or reset the input coupling ( 10 -series) to ac and note that one sweep occurs and that the ready light extinguishes.
h. Remove all connections.

TABLE 5-4

| A | -75 v |
| :---: | :---: |
| B | -15 v |
| C | ground |
| D | +15 v |
| E | +100 v |

# SECTION 6 <br> PARTS LIST and DIAGRAMS 

## PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix Field Office.
Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number including any suffix, instrument type, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix Field Office will contact you concerning any change in part number.

| a or amp | amperes | mm | millimeter |
| :---: | :---: | :---: | :---: |
| BHS | binding head steel | meg or M | megohms or mega (109) |
| C | carbon | met. | metal |
| cer | ceramic | $\mu$ | micro, or $10^{-6}$ |
| cm | centimeter | $n$ | nano, or $10^{-9}$ |
| comp | composition | $\Omega$ | ohm |
| cps | cycles per second | OD | outside diameter |
| crt | cathode-ray tube | OHS | oval head steel |
| CSK | counter sunk | p | pico, or $10^{-12}$ |
| dia | diameter | PHS | pan head steel |
| div | division | piv | peak inverse voltage |
| EMC | electrolytic, metal cased | plstc | plastic |
| EMT | electroyltic, metal tubular | PMC | paper, metal cased |
| ext | external | poly | polystyrene |
| f | farad | Prec | precision |
| F \& 1 | focus and intensity | PT | paper tubular |
| FHS | flat head steel | PTM | paper or plastic, tubular, molded |
| Fil HS | fillister head steel | RHS | round head steel |
| g. or G | giga, or $10^{9}$ | rms | root mean square |
| Ge | germanium | sec | second |
| GMV | guaranteed minimum value | Si | silicon |
| h | henry | $\mathrm{S} / \mathrm{N}$ | serial number |
| hex | hexagonal | $\dagger$ or T | tera, or $10^{12}$ |
| HHS | hex head steel | TD | toroid |
| HSS | hex socket steel | THS | truss head steel |
| HV | high voltage | tub. | tubular |
| ID | inside diameter | v or V | volt |
| incd | incandescent | Var | variable |
| int | internal | w | watt |
| $k$ or K | kilohms or kilo ( $10^{3}$ ) | w/ | with |
| kc | kilocycle | w/o | without |
| m | milli, or $10^{-3}$ | WW | wire-wound |
| mo | megacycle |  |  |

## SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number.
000 X Part removed after this serial number.
*000-000 Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, or reworked or checked components.

Use $000-000$ Part number indicated is direct replacement.
(1) Internal screwdriver adjustment.

Front-panel adjustment or connector.



EXPLODED VIEW (Cont'd)





CABLE HARNESS AND CERAMIC STRIP DETAIL


CABLE HARNESS AND CERAMIC STRIP DETAIL (Cont'd)




ELECTRICAL PARTS

Values are fixed unless marked Variable.

Tektronix
Ckt. No. Part No. Description S/N Range

## Bulbs

| B604 | $150-029$ | Incandescent G.E. 349 |
| :--- | :--- | :--- |
| B605 | $150-029$ | Incandescent G.E. 349 |
| B606 | $150-029$ | Incandescent G.E. 349 |
| B852 | $150-030$ | Neon NE-2V |
| B853 | $150-030$ | Neon NE-2V |
| B854 | $150-030$ | Neon NE-2V |

SCALE ILLUM POWER ON

## Capacitors

Tolerance of all electroytic capacitors as follows (with exceptions):
Tolerance of all electrolytic capactors as follows (with exceptions):

$$
\begin{aligned}
3 V-50 V & =-10 \%,+250 \% \\
51 V-350 V & =-10 \%,+100 \% \\
351 V-450 V & =-10 \%,+50 \%
\end{aligned}
$$

| C365 | $283-068$ | $.01 \mu f$ | Cer |  | $500 v$ |
| :--- | ---: | :--- | ---: | :--- | :--- |
| C366 | $283-068$ | $.01 \mu f$ | Cer |  | $500 v$ |
| C377 | $281-095$ | $.2-1.5 \mathrm{pf}$ | Teflon | Var |  |
| C378 | $281-077$ | $1.3-5.4 \mathrm{pf}$ | Air | Var |  |


| C397 | 281-095 | .2-1.5 pf | Teflon | Var |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C398 | 285-572 | . 1 Mf | PTM |  | 200 v |  |
| C404A | 281-503 | 8 pf | Cer |  | 500 v | $\pm 0.5 \mathrm{pf}$ |
| C404B | 281-503 | 8 pf | Cer |  | 500 v | $\pm 0.5 \mathrm{pf}$ |
| C404C | 283-557 | 200 pf | Mica |  | 500 v | 10\% |
| C406A | 281-503 | 8 pf | Cer |  | 500 v | $\pm 0.5 \mathrm{pf}$ |
| C406B | 281-503 | 8 pf | Cer |  | 500 v | $\pm 0.5 \mathrm{pf}$ |
| C406C | 283-557 | 200 pf | Mica |  | 500 v | 10\% |
| C417 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |
| C443 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C445 | 281-592 | 4.7 pf | Cer |  |  | $\pm 0.5 \mathrm{pf}$ |
| C456B | 281-603 | 39 pf | Cer |  | 500 v | 5\% |
| C456D | 281-081 | 1.8-13 pf | Air | Var |  |  |
| C456E | 281-602 | 68 pf | Cer |  | 500 v | 5\% |
| C456F | 281-602 | 68 pf | Cer |  | 500 v | 5\% |
| C464 | 281-603 | 39 pf | Cer |  | 500 v | 5\% |
| C465 | 281-576 | 11 pf | Cer |  | 500 v | 5\% |
| C466 | 281-586 | 25 pf | Cer |  | 500 v | 5\% |
| C467 | 281-079 | 1.5-9.1 pf | Air | Var |  |  |


|  |  | Capacitors (Cont'd) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ckt. No. | Tektronix Part No. |  | Description |  |  |
| C469 | 283.081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |
| C474 | 281-603 | 39 pf | Cer |  | 500 v |
| C475 | 281-576 | 11 pf | Cer |  | 500 v |
| C476 | 281-603 | 39 pf | Cer |  | 500 v |
| C483 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |
| C484 | 281-076 | 1.2-3.5 pf | Air | Var |  |
| C601 |  |  |  |  |  |
| $\left.\begin{array}{l} \text { C602 } \\ \text { C603 } \end{array}\right\} \dagger$ |  |  |  |  |  |
| C609 | 290-171 | $1 \mathrm{CJ} \mu \mathrm{f}$ | EMT |  | 12 v |
| C610 | 285-644 | . $033 \mu \mathrm{f}$ | PTM |  | 600 v |
| C611 | 285-572 | . $1 \mu \mathrm{f}$ | PTM |  | 200 v |
| H24C612290-0169-01 | 20676 | $400 \mu \mathrm{f}$ | EMC |  | 250 v |
| C615 | 285-623 | . $47 \mu \mathrm{f}$ | PTM |  | 100 v |
| C622 | 285-569 | . $01 \mu \mathrm{f}$ | PTM |  | 200 v |
| C631 | 290-198 | $17 \mu \mathrm{f}$ | EMT |  | 150 v |
| Аи4C642290-0186-01 | 2986 | $3900 \mu \mathrm{f}$ | EMC |  | 30 v |
| C660 | 283-078 | . $001 \mu \mathrm{f}$ | Cer |  | 500 v |
| C661 | 290-162 | $22 \mu \mathrm{f}$ | EMT |  | 35 v |
| C663 | 285-598 | . $01 \mu \mathrm{f}$ | PTM |  | 100 v |
| AL4C67229:-0186-01 | 2038 | $3900 \mu \mathrm{f}$ | EMC |  | 30 v |
| C690 | 283-078 | . $001 \mu \mathrm{f}$ | Cer |  | 500 v |
| C691 | 290-162 | $22 \mu \mathrm{f}$ | EMT |  | 35 v |
| C692 | 283-078 | . $001 \mu \mathrm{f}$ | Cer |  | 500 v |
| C694 | 283-081 | . 1 Mf | Cer |  | 25 v |
| C701 | 285-644 | . $033 \mu \mathrm{f}$ | PTM |  | 600 v |
| AL4C702 290-0169-01 | 20 | $400 \mu \mathrm{f}$ | EMC |  | 250 v |
| C714 | 285-622 | . $1 \mu \mathrm{f}$ | PTM |  | 100 v |
| C731 | 290-198 | $17 \mu \mathrm{f}$ | EMT |  | 150 v |
| C739 | 281-524 | 150 pf | Cer |  | 500 v |
| C741 | 285-644 | . $033 \mu \mathrm{f}$ | PTM |  | 600 v |
| $A_{2} \leq c i 40$ | 285-0644-00 | 0.033 uF Pr | PTM |  | 600 r |
| C742 | 290-202 | $170 \mu \mathrm{f}$ | EMC |  | 250 v |
| C743 | 290-171 | $100 \mu \mathrm{f}$ | EMT |  | 12 v |
| C744 | 285-598 | . $01 \mu \mathrm{f}$ | PTM |  | 100 v |
| C745 | 285-587 | . $1 \mu \mathrm{f}$ | PTM |  | 600 v |
| C802 | 283-010 | . $05 \mu \mathrm{f}$ | Cer |  | 50 v |
| C803 | 283-010 | . $05 \mu \mathrm{f}$ | Cer |  | 50 v |
| C811 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |
| C815 | 285-598 | . $01 \mu \mathrm{f}$ | PTM |  | 100 v |
| C818 | 290-189 | $33 \mu \mathrm{f}$ | EMT |  | 35 v |
| C820 | 290-117 | $50 \mu \mathrm{f}$ | EMT |  | 50 v |
| C821 | 285-623 | . $47 \mu \mathrm{f}$ | PTM |  | 100 v |
| C822 | 283-042 | . $015 \mu \mathrm{f}$ | Cer |  | 3000 v |
| C827 | 283-042 | . $015 \mu \mathrm{f}$ | Cer |  | 3000 v |
| C831 | 285-572 | . $1 \mu \mathrm{f}$ | PTM |  | 200 v |
| C832 | 283-042 | . $015 \mu \mathrm{f}$ | Cer |  | 3000 v |
| C833 | 283-044 | . $001 \mu \mathrm{f}$ | Cer |  | 3000 v |

$\dagger$ Furnished as a unit with *119-028 (Line Filter).

Capacitors (Cont'd)

| Ckt. No. | Tektronix Part No. | Description |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C835 | 281-556 | 500 pf |  | Cer |  | 10,000 v |  |
| C836 | 281-556 | 500 pf |  | Cer |  | $10,000 \mathrm{v}$ |  |
| C837 | 281-556 | 500 pf |  | Cer |  | 10,000 v |  |
| C838 | 283-096 | 500 pf |  | Cer |  | $20,000 \mathrm{v}$ |  |
| C844 | 283-042 | . $015 \mu \mathrm{f}$ |  | Cer |  | 3000 v |  |
| C845 | 283-042 | . $015 \mu \mathrm{f}$ |  | Cer |  | 3000 v |  |
| C846 | 283-042 | . $015 \mu \mathrm{f}$ |  | Cer |  | 3000 v |  |
| C851 | 285-572 | . $1 \mu \mathrm{f}$ |  | PTM |  | 200 v |  |
| C854 | 283-042 | . $015 \mu \mathrm{f}$ |  | Cer |  | 3000 v |  |
| C863 | 283-079 | . $01 \mu \mathrm{f}$ |  | Cer |  | 250 v |  |
| C864 | 285-572 | . $1 \mu \mathrm{f}$ |  | PTM |  | 200 v |  |
| C870 | 283-079 | . $01 \mu \mathrm{f}$ |  | Cer |  | 250 v |  |
| C874 | 281-543 | 270 pf |  | Cer |  | 500 v | 10\% |
| C877 | 281-534 | 3.3 pf |  | Cer |  |  | $\pm .25 \mathrm{pf}$ |
| C878 | 281-500 | 2.2 pf |  | Cer |  | 500 v | $\pm 0.5 \mathrm{pf}$ |
| C879 | 281-005 | 1.5-7 pf |  | Cer | Var |  |  |
| C882 | 285-569 | . $01 \mu \mathrm{f}$ |  | PTM |  | 200 v |  |
| C891 | 283-080 | . $022 \mu \mathrm{f}$ |  | Cer |  | 25 v |  |
| C902 | 285-627 | . $0033 \mu \mathrm{f}$ |  | PTM |  | 100 v | 5\% |
| C903 | 285-626 | . $0015 \mu \mathrm{f}$ |  | PTM |  | 100 v |  |
| C914 | 285-622 | . $1 \mu \mathrm{f}$ |  | PTM |  | 100 v |  |
| C916 | 290-026 | $5 \mu \mathrm{f}$ |  | EMT |  | 25 v |  |
| C923 | 283-081 | . $1 \mu \mathrm{f}$ |  | Cer |  | 25 v |  |
| C924 | 285-627 | . $0033 \mu \mathrm{f}$ |  | PTM |  | 100 v | 5\% |
| C925 | 285-627 | . $0033 \mu \mathrm{f}$ |  | PTM |  | 100 v | 5\% |
| C926 | 290-026 | $5 \mu \mathrm{f}$ |  | EMT |  | 25 v |  |
| C935 | 281-519 | 47 pf |  | Cer |  | 500 v | 10\% |
| C936 | 283-081 | . $1 \mu \mathrm{f}$ |  | Cer |  | 25 v |  |
| C937 | 283-081 | . $1 \mu \mathrm{f}$ |  | Cer |  | 25 v |  |
| C945 | 281-504 | 10 pf |  | Cer |  | 500 v | 10\% |
| C946 | 285-572 | . $1 \mu \mathrm{f}$ |  | PTM |  | 200 v |  |
| C948A | 281-534 | 3.3 pf |  | Cer |  |  | $\pm .25 \mathrm{pf}$ |
| C948K | 281-525 | 470 pf |  | Cer |  | 500 v |  |
| C948Z | 281-523 | 100 pf |  | Cer |  | 350 v |  |
|  | Diodes |  |  |  |  |  |  |
| D360 | 152-141 | Silicon | 1N3605 |  |  |  |  |
| D361 | 152-141 | Silicon | 1N3605 |  |  |  |  |
| D362 | 152-141 | Silicon | 1N3605 |  |  |  |  |
| D363 | 152-141 | Silicon | 1N3605 |  |  |  |  |
| D371 | 152-141 | Silicon | 1N3605 |  |  |  |  |
| D374 | 152-126 | Zener | 1N3024A | 15 v |  |  |  |
| D395 | *152-061 | Silicon | Tek Spec |  |  |  |  |
| D396 rive | *152-061 | Silicon | Tek Spec |  |  |  |  |
|  | - 152.060 | Zener | 1M20Z10 | 20 v |  |  |  |
| D609 iso | 152-124 | Zener | 1N938A | 9 v |  |  |  |
| D611 | *152-061 | Silicon | Tek Spec |  |  |  |  |
| D612A,B,C,D, | 152-066 | Silicon | 1N3194 |  |  |  |  |
| D636 | 152-096 | Zener | 1N2997B | 51 v |  |  |  |

S/N Range

Diodes (Cont'd)

| Ckt. No. | Tektronix Part No. |  |  | Description |
| :---: | :---: | :---: | :---: | :---: |
| D642A,B,C,D | 152-113 | Silicon | 40108 |  |
| D669 | 152-141 | Silicon 1 | N3605 |  |
| D672A,B,C,D | 152-113 | Silicon IN | N3605 |  |
| D699 | 152-141 | Silicon RC | RCA40108 |  |
| D702 | 152-066 | Silicon 1 | N3194 |  |
|  | 152-135 | Zener 11 | 1N3042A | 82 v |
| D716 | 152-134 | Zener 1 | 1N3044A | 100 v |
| D736 | 152-133 | Zener 1 | 1N3001B | 68 v |
| D737 | 152-066 | Silicon 1 | 1N3194 |  |
| D739 | 152-141 | Silicon 1N | N3605 |  |
| D742 | 152-066 | Silicon 1 N | N3194 |  |
| D743 | 152-066 | Silicon IN | N3194 |  |
| D745 miremarive | 152-066 | Silicon 1N | N3194 |  |
|  | 152-119 | Zener 1 | 1N969A | 22 V |
| D811 | 152-141 | Silicon 1N | N3605 |  |
| D815 | 152-141 | Silicon 1 N | N3605 |  |
| D816 | 152-141 | Silicon 1 | N3605 |  |
| D817 | 152-141 | Silicon 1N | N3605 |  |
| P24D820152-0290-00 | 152-04 | Zener 1 | 1N3016A | 6.8 v |
| D870 | 152-002 | Silicon 1 | N1329 |  |
| D871 | 152-002 | Silicon 1 | N1329 |  |
| D872 | *152-061 | Silicon Tek | -ek Spec |  |
| D873 | 152-141 | Silicon 11 | N3605 |  |
| D874 | *152-061 | Silicon Te | ek Spec |  |
| D884 | 152-141 | Silicon 1 | N3605 |  |
| D886 | 152-141 | Silicon 1 | N3605 |  |
| D891 | 152-141 | Silicon 1 | N3605 |  |
| D932 | 152-141 | Silicon 1 | N3605 |  |
| D933 | 152-141 | Silicon 1 N | N3605 |  |
| D942 | 152-141 | Silicon 1 | N3605 |  |
| D943 |  | Silicon IN | N3605 |  |
| D944 | *152-061 | Silicon Te | ek Spec |  |
| D947 | *152.061 | Silicon Te | ek Spec |  |
| D948 | 152-141 | Silicon 1 | N3605 |  |
|  |  |  |  | Fuses |
| F601 | 159-005 | 3 Amp | 3AG | Slo-Blo |
| F602 | 159-027 | 4 Amp | 3AG | Slo-Blo |
| F613 | 159-025 | . 5 Amp | 3AG | Fast-Blo |
| F703 | 159-042 | . 75 Amp | 3AG | Fast-Blo |
| F743 | 159-042 | .75 Amp | 3AG | Fast-Blo |
| F820 | 159-021 | 2 Amp | 3AG | Fast-Blo |

Inductors

| Ckt. No. | Tektronix Part No. | Description |  |  | S/N Range |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L394 | 108-254 | $600 \mu \mathrm{~h}$ |  |  |  |
| LR400 | *108-278 | . $3 \mu \mathrm{~h}$ | (wound on a $3.3 \Omega, 5 \%$ | resistor) |  |
| LR401 | *108-278 | . $3 \mu \mathrm{~h}$ | (wound on a $3.3 \Omega, 5 \%$ | resistor) |  |
| L403 | *119-029 | Delay Line Assembly |  |  |  |
| L404 | *108-220 | . $15 \mu \mathrm{~h}$ |  |  |  |
| 1405 | *108-277 | . $07 \mu \mathrm{~h}$ |  |  |  |
| L406 | *108-220 | . $15 \mu \mathrm{~h}$ |  |  |  |
| L407 | *108-088 | $3.2 \mu \mathrm{~h}$ |  |  |  |
| L414 | *108-182 | . $3 \mu \mathrm{~h}$ |  |  |  |
| L443 | *108-088 | $3.2 \mu \mathrm{~h}$ |  |  |  |
| L469 | *108-260 | . $1 \mu \mathrm{~h}$ |  |  |  |
| 1479 | *108-260 | . $1 \mu \mathrm{~h}$ |  |  |  |
| L487 | 276-532 | Core, Shield Bead |  |  |  |
| L497 | 276-532 | Core, Shield Bead |  |  |  |
| L861 | *108-279 | Beam Rotator (X-Axis) |  |  |  |
| L865 | *108-295 | Beam Rotator (Y-Axis) |  |  | X450-up |

## Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

| $\begin{aligned} & \text { R350A } \\ & \text { R350B } \end{aligned}$ | 311-401 | 1 k 5 k | $2 w$ $2 w$ | Var Var |  | HORIZ POSITION VERNIER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R360 | 324-317 | 19.6 k | 1 w |  | Prec | 1\% |
| R361 | 323-302 | 13.7 k | 1/2w |  | Prec | 1\% |
| R362 | 323-347 | 40.2 k | 1/2w |  | Prec | 1\% |
| R363 | 323-338 | 32.4 k | $1 / 2 w$ |  | Prec | 1\% |
| R364 | 311-400 | $2 \times 500$ |  | Var |  | HORIZ CENT |
| R365 | 302-274 | 270 k | 1/2w |  |  |  |
| R366 | 302-274 | 270 k | $1 / 2 w$ |  |  |  |
| R367 | 301-153 | 15 k | 1/2w |  |  | 5\% |
| R370 | 323-352 | 45.3 k | 1/2w |  | Prec | 1\% |
| R371 | 323-237 | 2.87 k | 1/2w |  | Prec | 1\% |
| R373 | 301-222 | 2.2 k | 1/2w |  |  | 5\% |
| R374 | 308-178 | 15 k | 8 w | WW |  | 5\% |
| R376 | 324-296 | 11.8 k | 1 w |  | Prec | 1\% |
| R377 | 311-326 | 10 k |  | Var |  | HORIZ GAIN |
| R378 | 321-251 | 4.02 k | 1/8 w |  | Prec | 1\% |
| R379 | 321-251 | 4.02 k | 1/8w |  | Prec | 1\% |
| R390 | 324-289 | 10 k | 1 w |  | Prec | 1\% |
| R391 | 323-237 | 2.87 k | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |
| R393 | 301-822 | 8.2 k | $1 / 2 w$ |  |  | 5\% |
| R394 | *310-615 | 8.8 k | 10 w | WW |  | 1\% |
| R396 | 324-296 | 11.8k | 1 w |  | Prec | 1\% |
| R397 | 302-104 | 100 k | $1 / 2 w$ |  |  |  |
| R398 | 301-270 | $27 \Omega$ | $1 / 2 w$ |  |  |  |
| R404 | 321-047 | $30.1 \Omega$ | 1/8w |  | Prec | 1\% |
| R406 | 321-047 | $30.1 \Omega$ | 1/8w |  | Prec | 1\% |

Resistors (Cont'd)

| Ckt. No. | Tektronix Part No. |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R407 | 315-751 | $750 \Omega$ | $1 / 4$ w |  |  |
| R410 | 321-121 | $178 \Omega$ | 1/8w |  | Prec |
| R411 | 321-121 | $178 \Omega$ | 1/8w |  | Prec |
| R414A, B | 311-379 | $2 \times 200 \Omega$ |  | Var | WW |
| R416 | 322-171 | $590 \Omega$ | 1/4w |  | Prec |
| R417 | 322-187 | $866 \Omega$ | 1/4 w |  | Prec |
| R421 | 315-151 | $150 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R423 | 315-391 | $390 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R425 | 315-221 | $220 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R433 | 315-391 | $390 \Omega$ | $1 / 4 w$ |  |  |
| R441 | 311-389 | $2 \times 10 \mathrm{k}$ |  | Var |  |
| R442 | 315-472 | 4.7 k | $1 / 4 \mathrm{w}$ |  |  |
| R444 | 323-105 | $121 \Omega$ | 1/2w |  | Prec |
| R445 | 322-093 | $90.9 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec |
| R447 | 323-607 | $600 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |
| R448 | 303-121 | $120 \Omega$ | 1 w |  |  |
| R452 | 315-472 | 4.7 k | $1 / 4 \mathrm{w}$ |  |  |
| R454 | 323-105 | $121 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |
| R456B | 315-680 | $68 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R456D | 311-095 | $500 \Omega$ |  | Var |  |
| R456E | 321-195 | 1.05 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R456F | 315-822 | 8.2 k | $1 / 4 \mathrm{w}$ |  |  |
| R457 | 323-607 | $600 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |
| R458 | 301-472 | 4.7 k | $1 / 2 \mathrm{w}$ |  |  |
| R465 | 321-097 | $100 \Omega$ | 1/8 w |  | Prec |
| R466 | 315-151 | $150 \Omega$ | 1/4 w |  |  |
| R467 | *310-610 | $970 \Omega$ | 2 w | Mica Plate |  |
| R468 | *310-610 | $970 \Omega$ | 2 w | Mica Plate |  |
| R469 | 301-100 | $10 \Omega$ | $1 / 2 \mathrm{w}$ |  |  |
| R475 | 321-097 | $100 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |
| R476 | 315.151 | $150 \Omega$ | 1/4 w |  |  |
| R477 | *310-610 | $970 \Omega$ | 2 w |  |  |
| R478 | *310-610 | $970 \Omega$ | 2 w | Mica Plate |  |
| R480 | 323-245 | 3.48 k | $1 / 2 w$ |  | Prec |
| R481 | *310-609 | 4 k | 2 w | Mica Plate |  |
| R482 | 323-207 | 1.4 k | $1 / 2 \mathrm{w}$ |  | Prec |
| R483 | 301-100 | $10 \Omega$ | $1 / 2 w$ |  |  |
| -94. R484A |  | $1400 \Omega$ | 20 w | Mica Plate | Center Tapped |
| R490 |  | 3.48 k | 1/2w |  | Prec |
| R491 | *310-609 | 4 k | 2 w | Mica Plate |  |
| R492 | $323-207$ | 1.4 k | $1 / 2 w$ |  | Prec |
| R601 | 302-105 | 1 meg | 1/2w |  |  |
| R604 | 311-377 | $25 \Omega$ | 12.5 w | Var |  |
| R607 | 304-333 | 33 k | 1 w |  |  |
| R609 | 324-284 | 8.87 k | 1 w |  | Prec |
| R610 | 304-333 | 33 k | 1 w |  |  |
| R611 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |

Resistors (Cont'd)

| Ckt. No. | Tektronix Part No. |  | Descri |  | S/N Range |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R612 | 323-368 | 66.5 k | 1/2w |  | Prec | 1\% |  |
| R613 | 307-009 | 4.7 ת | 1 w |  |  |  |  |
| R614 | 323-418 | 221 k | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |
| R615 | 302-102 | 1 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R622 | 302-331 | $330 \Omega$ | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R623 | 302-333 | 33 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R630 | 308-254 | 1.37 k | $1 / 2 w$ |  | WW | 1\% |  |
| R631 | 311-421 | 1 k |  | Var | WW | -75 VOLTS |  |
| R632 | 308-259 | 10.7 k | 1 w |  | WW | 1\% |  |
| R633 | 302-333 | 33 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R634 | 322-147 | $332 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec | 1\% |  |
| R636 | 304-470 | $47 \Omega$ | 1 w |  |  |  |  |
| R637 | 308-123 | $20 \Omega$ | 5 w |  | WW | 5\% |  |
| R642 | 302-103 | 10 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R644 | 316-224 | 220 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R649 | *308-087 | . $5 \Omega$ | 1 w |  | WW | 1\% |  |
| R653 | $316-683$ | 68 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R660 | 308-257 | 5.11 k | $1 / 2 \mathrm{w}$ |  | WW | 1\% |  |
| R661 | 311-378 | $250 \Omega$ |  | Var | WW | -15 VOLTS |  |
| R662 | 308-263 | 15.4 k | $1 / 2 \mathrm{w}$ |  | WW | 1\% |  |
| R663 | 306-271 | $270 \Omega$ | $2 w$ |  |  |  |  |
| R664 | 302-223 | 22 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R669 | 323-391 | 115 k | $1 / 2 w$ |  | Prec | 1\% |  |
| R672 | 302-103 | 10 k | 1/2w |  |  |  |  |
| R674 | 316-184 | 180 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R679 | 308-244 | . $3 \Omega$ | 2 w |  | WW |  |  |
| R683 | 302-223 | 22 k | $1 / 2 w$ |  |  |  |  |
| R690 | 308-255 | 3.65 k | $1 / 2 \mathrm{w}$ |  | WW | 1\% |  |
| R691 | 311-378 | $250 \Omega$ |  | Var | WW | +15 VOLTS |  |
| R692 | 308-261 | 15 k | 1 w |  | WW | 1\% |  |
| R693 | 302-273 | 27 k | 1/2w |  |  |  |  |
| R694 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R699 | 323-385 | 100 k | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |
| R702 | 304-473 | 47 k | 1 w |  |  |  |  |
| R703 | 308-179 | $5 \Omega$ | 5 w |  | WW | 5\% |  |
| R714 | 302-103 | 10 k | $1 / 2 w$ |  |  |  |  |
| R716 | 316-224 | 220 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R719 | 302-473 | 47 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R723 | 302-333 | 33 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R730 | 308-264 | 21.5 k | 1 w |  | WW |  |  |
| R731 | 311-380 | $500 \Omega$ |  | Var | WW | +100 VOLTS |  |
| R732 | 308-260 | 13.3 k | 1 w |  | WW |  |  |
| R733 | 302-333 | 33 k | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R736 | use 308-223 | $35 \Omega$ | 3 w |  | WW | 5\% |  |
| R737 | 308-279 | $20 \Omega$ | 5 w |  | WW |  |  |
| R739 | 323-387 | 105 k | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |

Resistors (Cont'd)

|  | Tektronix |  |  |  |
| :--- | ---: | :--- | :--- | :--- |
| Ckt. | No. | Part No. |  | Description |

Resistors (Cont'd)

| Ckt. No. | Tektronix Part No. |  | Description |  |  | S/N | Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R852 | 302-101 | $100 \Omega$ | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R853 | 301-223 | 22 k | $1 / 2 \mathrm{w}$ |  |  | 5\% |  |
| R854 | 302-105 | 1 meg | 1/2w |  |  |  |  |
| R855 | 302-101 | $100 \Omega$ | $1 / 2 \mathrm{w}$ |  |  |  |  |
| R856 | 302-104 | 100 k | 1/2w |  |  |  |  |
| R861 $\dagger$ | 311-412 | $2 \times 1 \mathrm{k}$ |  | Var | WW | TRACE ROTATION |  |
| R863 | 311-110 | 100 k |  | Var |  | GEOMETRY |  |
| R864 $\dagger$ | 311-412 | 100 k |  | Var | WW | ASTIGMATISM |  |
| R865 | $311-458$ | 5 k |  | Var | WW | 5\% | X450-up |
| R870 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R871 | 316-102 | 1 k | $1 / 4 w$ |  |  |  |  |
| R873 | 306-333 | 33 k | 2 w |  |  |  |  |
| R874 | 305-622 | 6.2 k | 2 w |  |  | 5\% |  |
| R875 | 308-178 | 15k | 8 w |  | WW | 5\% |  |
| R876 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R878 | 323-335 | 30.1 k | $1 / 2 w$ |  | Prec | 1\% |  |
| R882 | 315-202 | 2 k | $1 / 4 \mathrm{w}$ |  |  | 5\% |  |
| R884 | 316-332 | 3.3 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R885 | 321-379 | 86.6 k | 1/8 w |  | Prec | 1\% |  |
| R886 | 324-317 | 19.6k | 1 w |  | Prec | 1\% |  |
| R891 | 316-682 | 6.8 k | 1/4 w |  |  |  |  |
| R892 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R893 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R894 | 301-223 | 22 k | 1/2w |  |  | 5\% |  |
| R895 | 322-229 | 2.37 k | $1 / 4 \mathrm{w}$ |  | Prec | 1\% |  |
| R896 | 321-253 | 4.22 k | 1/8 w |  | Prec | 1\% |  |
| R897 | $311-011$ | 5 k |  | Var |  | INTENSITY |  |
| R902 | 316-183 | 18k | 1/4 w |  |  |  |  |
| R903 | 316-183 | 18 k | $1 / 4$ w |  |  |  |  |
| R904 | 316-332 | 3.3 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R911 | 316-103 | 10 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R914 | 316-222 | 2.2 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R916 | 316-472 | 4.7 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R921 | 316-103 | 10 k | $1 / 4$ w |  |  |  |  |
| R923 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R924 | 315-222 | 2.2 k | $1 / 4 \mathrm{w}$ |  |  | 5\% |  |
| R926 | 315-272 | 2.7 k | $1 / 4 \mathrm{w}$ |  |  | 5\% |  |
| R931 | 316-683 | 68 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R932 | 323-483 | 1.05 meg | 1/2w |  | Prec | 1\% |  |
| R933 | 316-103 | 10 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R934 | 316-152 | 1.5 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R935 | 316-392 | 3.9 k | 1/4w |  |  |  |  |
| R937 | 302-100 | $10 \Omega$ | $1 / 2 w$ |  |  |  |  |
| R941 | 316-683 | 68 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R942 | 323-483 | 1.05 meg | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |
| R943 | 316-103 | 10 k | $1 / 4 \mathrm{w}$ |  |  |  |  |

$\left.\begin{array}{lrlll}\text { Ckt. No. } & \begin{array}{c}\text { Tektronix } \\ \text { Part No. }\end{array} & & \text { Description }\end{array}\right]$

## Switches

Unwired Wired

| SW360 | $260-516$ |
| :--- | :--- |
| SW458 | $260-516$ |
| SW601 | $260-515$ |
| SW948 | $260-536 * 262-569$ |


| Push Button | TRACE FINDER |
| :--- | :--- |
| Push Button | TRACE FINDER |
| Toggle | POWER ON |
| Rotary | 1 KC CALIBRATOR |

Thermal Cutout

Thermal Cutout $187^{\circ}$

## Transformers

| AL4 T600才ose=0503-00 | * |
| :---: | :---: |
| T601 | *120-331 |
| T601 | *120-339 |
| T820 | *120-332 |

Line Filter
L.V. Power
L.V. Power H.V. Power

## Transistors



| Ckt. No. | Tektronix Part No. | Description |
| :---: | :---: | :---: |
| Q423 | *151-127 | Selected from 2N2369 |
| Q433 | *151-127 | Selected from 2N2369 |
| Q444 | *151-127 | Selected from 2N2369 |
| Q454 | *151-127 | Selected from 2N2369 |
| Q464A | *151-127 | Selected from 2N2369 |
| Q464B | *151-127 | Selected from 2N2369 |
| Q474A | *151-127 | Selected from 2N2369 |
| Q474B | *151-127 | Selected from 2N2369 |
| $\begin{aligned} & \text { Q484 } \\ & \text { Q494 } \end{aligned}$ | *153-524 | Matched pair |
| Q614 | *151-104 | Replaceable by 2 N 2913 |
| Q623 | *151-096 | Selected from 2N1893 |
| Q633 | *151-096 | Selected from 2N1893 |
| Q637 | 151-113 | 2N1488 |
| Q644 | *151-126 | Replaceable by 2N2484 |
| Q653 | *151-103 | Replaceable by 2N2219 |
| Q659 | *151-103 | Replaceable by 2N2219 |
| Q663 | *151-103 | Replaceable by 2N2219 |
| Q667 | 151-112 | 2N1489 |
| Q674 | *151-126 | Replaceable by 2N2484 |
| Q683 | *151-103 | Replaceable by 2 N 2219 |
| Q689 | *151-103 | Replaceable by 2 N 2219 |
| Q693 | 151-125 | 2N1701 |
| AL4 Q697 iSi- $0440-00$ | 1 开 | 152-04 Westinghouse |
| Q714 | *151-126 | Replaceable by 2 N 2484 |
| Q723 | *151-103 | Replaceable by 2N2219 |
| Q733 | *151-103 | Replaceable by 2N2219 |
| AL4Q737-31-0209-00 | 1577 | 151-07 Westinghouse |
| Q803 | *151-104 | Replaceable by 2 N 2913 |
| Q804 | *151-103 | Replaceable by 2N2219 |
| Q814A | *151-103 |  |
| Q814B | *151-103 | Replaceable by 2N2219 |
| Q820 | 151-112 | 2N1489 |
| Q873 | *151-124 | Selected from TA1938 |
| Q874 | *151-124 | Selected from TA1938 |
| Q883 | *151-108 | Replaceable by 2 N 2501 |
| Q894 | *151-108 | Replaceable by 2N2501 |
| Q910 | *151-126 | Replaceable by 2N2484 |
| Q924 | *151-103 | Replaceable by 2N2219 |
| Q935 | *151-103 | Replaceable by 2N2219 |
| Q945 | *151-124 | Selected from TA1938 |

## Electron Tubes

|  | Tektronix | Description | S/N Rarige |
| :--- | ---: | :--- | :--- |
| Ckt. No. | Part No. |  |  |
|  |  |  |  |
| V822 | $154-051$ | 5642 |  |
| V832 | $154-051$ | 5642 |  |
| V842 | $154-051$ | 5642 |  |
| V852 | $154-051$ | 5642 |  |
| V859 | $* 154-424$ | CRT T6470-31-1 Standard Phosphor |  |
| V859 | $* 154-448$ | CRT T6470-31-1 | 100-449 |
| V862 | $154-051$ | 5642 | $450-$ up |

## Crystal

Y900 158-015 4 KC





T801 TRANSFORMER DETAILS




REFERENCE DRAWINGS
(1) Horizontal Amplifier
(2) VERTICAL AMPLIFIER
(3) POWER SUPPLY

ब CRT CIRCUIT



PART 2

## TYPE 10A2 DUAL-TRACE AMPLIFIER

## TYPE <br> 1042 MOD 165K DUAL-TRACE AMPLIFIER

Tektronix, Inc.
S.W. Millikan Way - P. O. Box 500 - Beaverton, Oregon - Phone MI 4-0161 - Cables: Tektronix

Tektronix International A. G.
Terrassenweg IA - Zug, Switzerland -

## WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

Copyright © 1964 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.



## SECTION 1

## CHARACTERISTICS

## General Information

The Type 10A2 Dual-Trace Amplifier plug-in unit is part of a wide-band oscilloscope system designed for severe environmental operation and storage. It contains two identical vertical preamplifiers that can be used singly or combined for a variety of measurements. The Type 10A2 operates in the Type 647 Oscilloscope.

## ELECTRICAL

The following electrical characteristics are divided into general operating characteristics and environmental specifications. All data applies to the Type 10A2 as operated in a Type 647 Oscilloscope.

## Deflection Factors

Each channel has eleven calibrated steps from $10 \mathrm{mv} / \mathrm{cm}$ to 20 volts $/ \mathrm{cm}$ in a $1,2,5$ sequence. A variable control with at least a 2.5:1 uncalibrated range extends the maximum deflection factor to 50 volts $/ \mathrm{cm}$.

## Calibration Accuracy

Adjustable to $0 \%$ at $10 \mathrm{mv} / \mathrm{cm}$ at the front panel.

## Attenuation Accuracy

$$
\pm 2 \% \text { from }-30^{\circ} \mathrm{C} \text { through }+65^{\circ} \mathrm{C}
$$

## Risetime $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$

Typically 6.4 nsec , never longer than $7 \mathrm{nsec}, 10 \%$ to $90 \%$, for all positions of VOLTS/CM switch. ( $50 \Omega$ signal source impedance with $50 \Omega$ termination at the Type 10A2 input.)

## Frequency Response $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ )

Dc to 50 mc minimum. Ac Coupled: 2 cps to 50 mc minimum.

## Input Impedance

1 megohm paralleled by 20 pf .

## Maximum Input Voltage

600 volts combined dc and ac peak.

## Operating Modes

Channel 1 only, normal or inverted.
Channel 2 only, normal or inverted.

Alternate between channels.
Chopped between channels at 1-mc rate.
Added algebraically.

## Channel Isolation

At least 80 db up to 20 mc (input circuits).

## Algebraic Addition Common-Mode Signal

Maximum of 50 X the VOLTS/CM switch setting (limited to 600 volts at 20 volts $/ \mathrm{cm}$ ) for linear display operation.

## Algebraic Subtraction Common-Mode Rejection Ratio

At least 20:1 for common-mode signals up to 10 cm from dc to 25 mc .

## Trace Drift

At $25^{\circ} \mathrm{C}$ ambient temperature: Typically $2 \mathrm{~mm} / \mathrm{hr}$ after 15-minute warmup.

## Internal Triggering Information

Internal triggering information to the time-base plug-in unit can be selected from the common output amplifier or from the Channel 2 input signal only. Signal to the time base allows reliable internal triggering to a frequency beyond 50 mc .

## Channel 2 Output Signal

Front-panel BNC connector labeled CH 2 OUT provides a dc-coupled signal from Channel 2. Output level centered at ground. Output signal: $100 \mathrm{mv} / \mathrm{cm}$ related to crt display. Output impedance: $100 \Omega$.

## ENVIRONMENTAL

TABLE 1-1

| Characteristic | $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: |
| Ac Gain Stability | $\pm 1.5 \%$ | $\pm 3 \%$ |
| $\quad$ Display Signal | $\pm 1 \%$ | $\pm 2 \%$ |
| CH 2 OUT Signal | $\pm 1 \%$ |  |
| 3-db Bandwidth |  |  |
| Display Signal <br> CH 2 OUT into $50 \Omega$ | 50 mc, minimum | 40 mc, minimum |
| Chopped Minimum Mode | 20 mc, minimum |  |
| Frequency, 1 Mc | $\pm 10 \%$ | $\pm 15 \%$ |
| Dc Trace Displacement | $1 \mathrm{~cm} / 20^{\circ} \mathrm{C}$ | $<1 \mathrm{~cm} / 20^{\circ} \mathrm{C}$ |

## Storage

The Type 10A2 Dual-Trace Amplifier can be stored alone, or in the Type 647 Oscilloscope at any temperature between $-65^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$. After storage at either extreme, the instrument must be allowed sufficient time for all components to return to the operating ambient temperature range of $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

## MECHANICAL

## Construction

Aluminum-alloy chassis with chrome-plated brass side rails.

## Finish

Photo-etched, anodized aluminum panel.

## Dimensions

$61 / 4$ inches high, $41 / 4$ inches wide, $141 / 4$ inches deep

## Weight

5 pounds net.

## Accessories

2—Instruction Manuals-Tektronix Part No. 070-376.

## OPERATING INSTRUCTIONS

## FUNCTION OF FRONT PANEL CONTROLS

AC-DC-GND<br>VOLTS/CM<br>VARIABLE VOLTS/CM

UNCAL

POSITION
PULL TO
INVERT
MODE A five-position switch that sets the mode of operation. The positions are as follows:

CH 1: Connects the internal circuits to operate Channel 1 only. The signal in Channel 2 is still applied to the CH 2 OUT connector.

CH 2: Connects the internal circuits to operate Channel 2 only.

ALTER: Sets the amplifier channels to display on alternate sweeps. For example, the first sweep would be the Channel 1 signal; the second sweep the Channel 2 signal. The flicker between channels will depend on the sweep rate.

CHOP: Electronic switching changes the display between channels at a 1 -mc rate. Each display segment lasts for about 0.5 $\mu \mathrm{sec}$.

ADDED: The algebraic sum of the Channel 1 and Channel 2 signals will be displayed with the MODE switch in this position. To measure the algebraic difference between signals, use one PULL TO INVERT knob.

TRIGGER A two-position switch that selects the trigger signal to the time-base plug-in unit trigger circuits. Either Channel 2 or the signal driving the crt vertical deflection plates can be selected.

GAIN

VAR ATTEN BAL

A screwdriver adjustment that permits the gain of the channel to be correctly set.

A screwdriver adjustment that balances the amplifier so that with no signal applied there is no vertical shift of the trace as the VARIABLE VOLTS/CM control is turned.

## FIRST-TIME OPERATION

The Type 10A2 should be inserted into the left-hand (Y-axis) opening of the Type 647 Oscilloscope. A time-base plug-in unit such as the Type 11B2 should be inserted in the right-hand (X-axis) opening.

The following procedure will help you become familiar with the Type 10A2 operation:

1. Set the front-panel controls as follows:

| AC-DC-GND | DC (both channels) |
| :--- | ---: |
| VOLTS/CM | .01 (both channels) |
| VARIABLE | CALIB (both channels) |
| POSITION | Midrange (both channels) |
| MODE | CH 1 |
| PULL TO INVERT | Pushed in (both channels) |
| TRIGGER | NORM |

2. Apply a $20-\mathrm{mv}$ signal from the oscilloscope calibrator to both Type 10A2 input connectors. Adjust the time-base controls for a stable display. Use ac low-frequency reject internal-trigger coupling. The display will be a rectangular waveform 2 divisions in amplitude. With the Channel 1 POSITION control, move the display above the graticule centerline.
3. Turn the MODE switch to CH 2 . A similar two-division waveform will be displayed. With the Channel 2 POSITION control, move the display below the graticule centerline.
4. Set the MODE switch to ALTER. If necessary, adjust the time-base triggering for a stable display. Both signals should be displayed. The switching rate will depend on the sweep rate.
5. Set the MODE switch to CHOP, and the TRIGGER switch to CH 2 ONLY . If necessary, adjust the time-base triggering for a stable display. Two separate traces should appear.
6. Set the MODE switch to ADDED. There should be one display 4 divisions in amplitude. This is the addition of the Channel 1 and 2 waveforms ( 2 divisions each). Notice that either POSITION control can move the trace vertically.
7. Pull the Channel 1 PULL TO INVERT switch. Free run the time base. The display should be a straight line, indicating the algebraic difference between the two signals. Since the signal amplitudes are equal, the difference is zero.

## Variable Attenuator Balance and Gain Adjustment

Before the Type 10A2 is used for accurate measurements, the VAR ATTEN BAL and GAIN controls (front-panel screwdriver adjustments) for each channel should be checked and adjusted as necessary. The GAIN should also be checked each time the Type 10A2 is moved from one Type 647 Oscilloscope to another.

If the variable de balance of a channel is not properly set, the position of a no-signal trace will shift vertically as the VARIABLE VOLTS/CM control of that channel is turned.

Adjust the VAR ATTEN BAL control as follows:

1. Set both AC-DC-GND switches to GND.
2. Set the MODE switch to CH 1 and position a free-running sweep to the center of the crt.
3. Adjust the Channel 1 VAR ATTEN BAL control to a point where there is no trace shift as the VARIABLE VOLTS/ $C M$ control is turned throughout its range.
4. Repeat the preceding steps for Channel 2.

Set the GAIN control as follows:

1. Set the TRIGGER switch to NORM.
2. Set the Channel 1 AC-DC-GND switch to $D C$ and the MODE switch to CH 1 .
3. Set the Channel 1 VOLTS/CM switch to .01 (or other required position) and the VARIABLE control to CALIB.
4. Set the time-base plug-in unit for a free-running 0.1 $\mathrm{msec} / \mathrm{cm}$ sweep.
5. Apply 50 mv (or other required value) from the oscilloscope calibrator to the Channel 1 input connector.
6. There should be 5 cm of display; if not, adjust the GAIN control.
7. Repeat the preceding steps for Channel 2 GAIN adjustment.

## General Operation

Either of the two preamplifier channels can be used independently by setting the MODE switch to CH 1 or CH 2 and connecting the signal to be observed to the appropriate input. Table 2-1 lists several input systems suitable to the Type 10A2 input. Fig. $2-1$ shows a block diagram of the input when using Method 7 of Table 2-1.

TABLE 2-1
Signal Coupling Methods

| Method | Advantages | Limitations | Accessories Required | Source Loading. See Fig. 2-2 \& 2-3, Input $R_{p} \& C_{p}$ Curves. | Precautions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Open test leads. | Simplicity. | Limited frequency response. Subject to stray pickup. | BNC to Banana Jack adapter (103-033). Two test leads. | $1 \mathrm{meg} \Omega \& 20 \mathrm{pf}$ at input, plus test leads. | Stray pickup. |
| 2. Untermina $\dagger$ e $d$ coax cable. | Full sensitivity. | Limited frequency response. High capacitance of cable. | Coax cable with BNC connector(s). | 1 meg $\Omega \& 20 \mathrm{pf}$ plus cable capacitance. | High capacitive loading. |

TABLE 2-1 (cont'd)

| Method | Advantages | Limitations | Accessories Required | Source Loading. See Fig. 2-2 \& 2-3, Input $R_{p} \& C_{p}$ Curves. | Precautions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3. Terminated coax cable. Termination at 10A2 input. | Full sensitivity. Total 10A2/647 bandwidth. Relatively flat-response resistive loading. Long cable with uniform response. | Presents $\mathrm{R}_{\mathrm{o}}$ (typically $50 \Omega$ ) loading at end of coax. May need blocking capacitor to prevent dc loading or damage to termination. | Coax cable with BNC connector(s). $\mathrm{R}_{0}$ termination at 10A2 input. (BNC $50 \Omega$ Termination 011049). | $\mathrm{R}_{\text {o }}$ plus 20 pf at 10A2 end of coax can cause reflections. | Reflection from 20 pf at input. Dc and ac loading on test point. Power limit of termination. |
| 4. Same as 3, with coax attenuator at termination. | Less reflection from 20 pf at termination. | Sensitivity is reduced (increased deflection factor). | BNC coaxial attenuators. | $\mathrm{R}_{\circ}$ only. | Dc and ac loading on test point. Power limit of attenuator. |
| 5. Tap into terminated coax system. (BNC Tee: UG-274/U at 10 A2 input.) | Permits signal to go to normal load. De or ac coupling without coaxial attenuators. | 20-pf load at tap point. | BNC Tee and BNC connectors on signal cables. | $1 \mathrm{meg} \Omega \& 20 \mathrm{pf}$ at tap point. | Reflections from 20 pf input. |
| 6. $10 \mathrm{X}, 10 \mathrm{meg} \Omega$ probe. <br> 100X, $9.1 \mathrm{meg} \Omega$ probe. $1000 \mathrm{X}, 100 \mathrm{meg} \Omega$ probe. | Reduced resistive and capacitive loading; nearly full bandwidth of $10 \mathrm{~A} 2 / 647$. | X0.1 sensitivity. X0.01 sensitivity. X0.001 sensitivity. | P6006, P6008, P6003: 10X (P6005 is 100X, P 6015 is 1000 X ). | P6006: $\approx 7 \mathrm{pf}, 9$ <br> meg $\Omega$. <br> P6008: $\approx 7$ pf, 10 <br> meg $\Omega$. <br> P6003: 12 pf, 10 meg $\Omega$. <br> P6005: 26 pf, 9.1 meg $\Omega$. <br> P6015: 3 pf, 100 meg $\Omega$. | Check probe frequency compensation. Use square wave frequency less than 5 kc , preferably 1 kc . |
| 7. $500 \Omega$ and $5 \mathrm{k} \Omega$ probes. (Must be terminated in 50 $\Omega$ at 10A2 input.) | Reduced capacitive loading to about 0.7 pf. Bandwidth that of 10A2/647. | Resistive loading. X 0.1 or X 0.01 sensitivity. May need blocking capacitor to prevent dc loading or damage to termination. Limited low-frequency response when ac coupled. See Fig. 2-1. | $\begin{aligned} & \text { P6043: 10X. } \\ & \text { P6035: 100X. } \\ & \text { Items in Fig. 2-1. } \end{aligned}$ | P6034: $500 \Omega, 0.7$ pf. <br> P6035: 5 k $\Omega, 0.6$ pf. <br> See $R_{p}$ \& $C_{p}$ curves in Fig. 2-2. | Dc and ac loading. <br> Voltage rating of probe. |
| 8. Current transformer. Terminated in $50 \Omega$ at 10 A2. Bandwidth that of 10A2/647. | Current transformer can be permanent part of test circuit. Less than 2.2 pf to test circuit chassis. Measure signal currents in transistor circuits: CT-T-20 amps pk. <br> CT-2-100 amps pk. | RMS current rating: <br> CT-1-0.5 amp. CT-2-2.5 amps. Sensitivity: CT-1-5 mv/ma. CT-2—1 mv/ma. | CT-1: Coax. adapter and BNC termination. CT- <br> 2: Nothing extra (perhaps additional coax. cable for either transformer). | CT-1: Insertion; $1 \Omega$ paralleled by about $5 \mu \mathrm{~h}$. Up to 1.5 pf . CT-2: Insertion; $0.04 \Omega$ paralleled by about $5 \mu \mathrm{~h}$. Up to 2.2 pf. | Not a quick-connect device. CT-1: low-frequency limit about 75 kc . <br> CT-2: low-frequency limits about 1.2 kc , and is $1 / 5$ th as sensitive as the CT-1. |



Fig. 2-1. Recommended component sequence when using the P6034 or P6035 Probe.


Fig. 2-2. Nominal input resistance $\left(R_{p}\right)$, and capacitive reactance $\left(X_{p}\right)$, of several aftenuator probes when properly compensated and used with a Type 10A2.

## CIRCUIT DESCRIPTION

## General Information

The Type 10A2 Dual-Trace Amplifier is a wide-band vertical plug-in unit for the Type 647 Oscilloscope.

The VOLTS/CM attenuators permit large signal amplitudes to be reduced before being amplified. Drift and noise characteristics are the same for all positions of the VOLTS/CM switch since the amplifier gain is not changed when switching between various deflection factors.

The Input Amplifiers raise the signal level before positioning is added. The Input Amplifier essentially changes the input voltage signal to an internal current signal. Thus, the positioning is by current offset of the Input Amplifier output. The PULL TO INVERT switch is between the Input Amplifier and the POSITION control to permit inverting the display without inverting the POSITION control action.

The Channel 2 Input Amplifier sends an isolated signal to the Channel 2 Trigger Amplifier. The Channel 2 Trigger Amplifier sends the Channel 2 signal to both the Trigger Amplifier (for internal triggering) and to the front-panel CH 2 OUT connector.

The Switching Circuit accepts one channel at a time or both channels together for use by the Output Amplifier. The MODE switch sets the Switching Circuit operating conditions.

The Output Amplifier sends an isolated output signal to the Trigger Amplifier for internal triggering.

The Trigger Amplifier receives information from either the Channel 2 Trigger Amplifier or the Output Amplifier through the TRIGGER switch. Thus, the time-base plug-in unit can be triggered either from the (composite) vertical information, or from Channel 2 information only.

## Input Circuit

The Type 10A2 input connectors are the BNC type. The input signals pass through frequency-compensated voltage dividers, except at 0.01 volt $/ \mathrm{cm}$. All deflection factors present 1 meg? paralleled by 20 pf to the input circuit (see Fig. $2-2$ and Fig. 2-3). Each position of the VOLTS/CM switch (see Attenuators schematic) is individually adjustable for input capacitance and frequency compensation. This system permits the full bandpass of the instrument to be used at all deflection factors.

Each attenuator is made up of two or three resistors in series and two capacitors in series, forming a frequencycompensated attenuator. An additional small shunt input capacitor permits adjusting each attenuator to exhibit a 20 pf input.

## Channel 1 Input Amplifier

Input tube V133 is a cathode follower that drives the Input Amplifier. The plate voltage for V133 comes from cascaded emitter followers Q123 and Q133. By adjusting the plate voltage of V133, its cathode voltage is set to the correct value of about +1.2 volts. Any grid current of V133 is offset by a small negative voltage set by R117, the CH 1 GRID CURRENT ZERO internal control.

The cathode voltage of V133 is adjusted to be equal to the voltage at the junction of R135-R136. The GAIN (R138) and VARIABLE (R144) resistors have no dc current through them. Thus, either control can be turned without shifting the crt display vertically. The base current of Q154 (that would otherwise apply current to the VARIABLE control) is canceled by R140, the Q154 BASE CURRENT internal control.

By proper adjustment of the plate voltage and grid current of V133 and the base current of Q154, the GAIN and VARIABLE controls pass no de current when the input signal is zero.

Q154 is one-half of a paraphase amplifier stage (with fixed emitter degeneration) that drives a second push-pull amplifier stage (Q174-Q184). The CH 1 GAIN RANGE control in the emitter circuit of Q174-Q184 permits adjusting the total Input Amplifier gain so the front-panel GAIN control has its proper range of adjustment.

The dc balance of the two amplifier stages is set at the base of Q164 by CH 1 INV BAL control R160. R160 is adjusted during calibration, using the PULL TO INVERT switch to check the amplifier balance.

The dc level of the push-pull output leads of the Input Amplifier is set by varying the supply voltage to Q154Q164 with the CH 1 COM MODE CURRENT control R150.
First-order temperature compensation of Q174-Q184 is by D157 in the base ground-return lead. The change in voltage across D157 with temperature is almost equal to and is opposite the change across the base-emitter diodes of Q174-Q184.

Protection for Common Base stage Q304-Q314 from overdrive is by D192-D193. Should the signal to one of the common-base amplifiers be great enough to reverse bias its emitter-base junction, one of the diodes will conduct. Conduction of D192 or D193 prevents the reverse biasing, and assures a rapid amplifier recovery after overload.

## Signal Tracing vs Current Gain

Correct analysis of the Input Amplifier requires consideration of both current gain and voltage gain. To show the true conditions, Table 3-1 lists voltage and current signals in one-half the Input Amplifier.

TABLE 3-1
Approximate Voltage and Current Gains of One-Half the Input Amplifier

| Test Point | Approximate <br> Impedance | $\mathrm{Mv} / \mathrm{Cm}$ | $\mathrm{Ma} / \mathrm{Cm}$ | Gain: $\mathrm{A}=$ Voltage, $\mathrm{G}=$ Current |
| :--- | :---: | :---: | :---: | :---: |
| Q154 Base | $2600 \Omega$ | 5.7 | 0.0022 | (Q154 and Q174 $\beta \approx 40$ each) |
| Q154 Collector | $114 \Omega$ | 10 | 0.088 |  |
| Q174 Base | $2400 \Omega$ | 10 | 0.0042 | Q154B to Q174B: $A=1.75, G=1.95$ |
| Q174 Collector | $95 \Omega$ | 16 | 0.168 | Q154B to Q174C: $A=2.8, G=76.4$ |

Q174 collector drives common-base amplifier Q304 through R190 and R192 (PULL TO INVERT switch pushed in). About a $1 \mathrm{mv} / \mathrm{cm}$ signal can be measured at the emitter of Q304 even though it is being driven at $0.168 \mathrm{ma} / \mathrm{cm}$.

Fig. 3-1 shows the de current and voltage conditions of the switching diodes, except for the ADDED mode of operation. Fig. 3-1 and the Channel 1 Input Amplifier schematic shows that measuring the de level or signal voltage at the collector of Q174 does not indicate that Channel 1 is being displayed.

## Common-Base Stage of Switching Circuit

The "pentode-like" characteristics of the collectors of Q304-Q314, and their common-base circuit, permit their collector voltages to be changed without affecting the Input Amplifier. Switching multivibrator Q345-Q355 diverts the collector current of the common-base stage of the channel not being displayed. Fig. 3-1 shows that the common base stage current is independent of operating mode.

Added mode of operation combines the output of both input amplifiers. (See Fig 3-2.) This requires 12 ma in each base lead from the Q413-Q423 input circuit. R318 and R338 are placed in parallel with the current supply to commonbase stages R411-R317 on one side and R421-R337 on the other. The dc current through resistors normally used for
single-channel operation remains the same. The switching multivibrator is set so it does not supply current to either channel common-base stage.

## Output Amplifier

The voltage level at the base of Q413-Q423 ( +6.6 volts) is set by the emitter return voltage of Q434-Q444. The base-emitter diode drop of each transistor is about 0.7 volt which elevates the 5.1 volts at the emitters of Q434Q444 to 6.6 volts at the bases of Q413-Q423.

Q413 and Q423 are emitter followers with shunt feedback for stabilized current gain. Their emitters are isolated so they are not in push-pull. Q434-Q444 emitters are also isolated, but feedback to their bases makes them part of push-pull output pair Q454-Q464. The static current of the Output Amplifier three transistor pairs, and thus the com-mon-mode de output voltage, is set at the bases of Q413Q423 by MAIN AMP CURRENT control R336.

Feedback resistors R450 and R460 set the current gain of output transistors Q434-Q444 and Q454-Q464 to a low value so the multi-stage current gain will be virtually independent of transistor beta throughout the required temperature and frequency ranges.

Table 3-2 shows the voltage gain and current gain data for the Output Amplifier.

## TABLE 3-2

Approximate Voltage and Current Gains of One-Half the Output Amplifier

| Test Point | Approximate <br> Impedance | $\mathrm{Mv} / \mathrm{Cm}$ | $\mathrm{Ma} / \mathrm{Cm}$ | Gain: $\mathrm{A}=$ Voltage, $\mathrm{G}=$ Current |
| :--- | :---: | :---: | :---: | :---: |
| Q413 Stage Input |  | $\approx 3$ | 0.132 |  |
| Q434 Stage Input | $5 \Omega$ | $\approx 1.6$ | 0.317 | Q413 stage input to Q434 <br> stage input: $\mathrm{A} \approx 0.53, \mathrm{G}=2.4$ |
| Q434 Collector | $.154 \Omega$ | $\approx 48$ | 0.312 |  |
| Q454 Base | $1.7 \mathrm{k} \Omega$ | $\approx 48$ | 0.028 | (Z and Ma/Cm only theoretical.) |
| Q454 Collector | $46 \Omega$ | 75 | 1.62 | Q 434 stage input to Q454C: <br> $\mathrm{A}=48, \mathrm{G}=5.3$. |
| Type 647 Input |  |  |  |  |



Fig. 2-3. Type $10 A 2$ nominal input resistance and capacitive reactance vs frequency at any position of the VOLTS/CM switch.

## Input Coupling

To display both the ac and dc components of an applied signal, set the appropriate AC-DC-GND switch to DC; to display only the ac component of a signal, set the switch to $A C$. In the AC position of the switch, the dc component of the signal is blocked by a capacitor in the input circuit. The low-frequency ac -3 -db point is about 2 cps when the source impedance is low. Therefore, some low-frequency distortion of signals with components near this frequency can be expected when using the $A C$ position. When using a $10 \times 10$ meg $\Omega$ probe, the low-frequency response is about 0.2 cps in the AC position.

## Deflection Factor

The amount of vertical deflection produced by a signal is determined by the signal amplitude, the attenuation factor (if any) of a probe, the setting of the VOLTS/CM switch, and the setting of the VARIABLE VOLTS/CM control. Calibrated deflection factors indicated by the VOLTS/CM switch apply only when the VARIABLE control is set fully clockwise to the CALIB position.
The range of the VARIABLE VOLTS/CM control is at least 2.5:1 to provide variable (uncalibrated) vertical deflection factors between calibrated settings of the VOLTS/CM switch.

The VARIABLE VOLTS/CM control extends the vertical deflection factor of the Type 10A2 to above 50 volts $/ \mathrm{cm}$.

## Dual Trace Operation

The choice of alternate or chopped mode of operation can be made from the following discussions and Table 2-2.

Displaying Two Non-Repetitive Signals. The chop mode of operation allows good resolutions of non-repetitive signals to be obtained using sweep rates as fast as $10 \mu \mathrm{sec} /$ cm . The $10 \mu \mathrm{sec} / \mathrm{cm}$ sweep rate is probably the fastest sweep rate you will want to use and still get good resolution. Thus, non-repetitive signals up to 0.1 msec duration will produce a useful display with about 100 segments making up each trace.

To obtain useful displays when observing fast non-repetitive signals with the faster sweep rates, use one-channel operation.

Displaying Two Repetitive Signals. When displaying two repetitive signals using the alternate mode of operation, use sweep rates of $0.5 \mathrm{msec} / \mathrm{cm}$ or faster. When viewing a repetitive display from signals 250 cps or higher, alternate mode of operation produces an uninterrupted display (the

TABLE 2-2
Dual-Trace Internal Triggering

| Signals | MODE <br> Switch | TRIGGER <br> Switch | Time-Base <br> Triggering |
| :--- | :---: | :---: | :---: |
| 1. Two of same or har- <br> monically related fre- <br> quency, 250 cps and <br> above. (Lower frequen- <br> cy into Channel 2.) | ALTER | CH 2 <br> ONLY | AC |
| 2. Two of same or har- <br> monically related fre- <br> quency, anywhere with- <br> in full bandwidth.* | CHOP | CH 2 | AC, DC, or |
| 3. Two of dissimilar <br> (not harmonically relat- <br> ed) frequency, 1 kc and <br> above | ALTER | NORM | AC LF REJ |
| only |  |  |  |

* Occasionally the signals will be harmonically related to the chopping rate, then at sweep rates above $10 \mu \mathrm{sec} / \mathrm{cm}$ the chop segments may be too obvious.
alternate-mode switching cycle is sufficiently fast to produce an apparently steady display). If slower sweep rates are used for viewing signals 250 cps or lower, the alternatemode switching cycle becomes more apparent and you may prefer to use chopped mode of operation.


## Voltage Measurements

To measure the voltage between two points on a signal (such as peak-to-peak ac volts), measure the vertical distance in graticule divisions between the two points and multiply by the setting of the VOLTS/CM switch and the attenuation factor, if any, of a probe. Be certain that the VARIABLE VOLTS/CM control is in the CALIB position.
For example, assume you use a 10X probe with the VOLTS/CM switch set to .02 , and your display has a vertical deflection of 4 cm . In this case, 4 divisions $X 0.02$ volt/ $\operatorname{div}=0.08$ volt. This voltage times the probe attenuation factor of 10 shows a true peak-to-peak voltage of 0.8 volt.

To measure the dc level at a given point on a waveform, proceed as follows:

1. Set the VOLTS/CM switch so that the expected voltage (at the input connector) is not more than six times the setting. Be sure the VARIABLE VOLTS/CM control is in the CALIB position.
2. Set the time-base controls so that the sweep free runs.
3. Set the AC-DC-GND switch to GND, and use the POSITION control to align the trace with one of the graticule lines. This line is a ground (or zero) reference. The position selected for this reference line depends on the polarity and amplitude of the signal to be measured. Do not move the POSITION control once the reference line has been established.
4. Set the AC-DC-GND switch to DC.
5. Apply the signal to the input connector and set the time-base triggering controls for a stable display.
6. Measure the vertical distance, in major graticule divisions, from the ground (zero) reference line to the point on the waveform that you wish to measure.
7. Multiply this distance by the setting of the VOLTS/CM switch and any probe attenuation factor. This is the instantaneous dc level of the point measured.
Check the zero reference line at any time by setting the AC-DC-GND switch to GND. It is not necessary to disconnect the signal probe from the Type 10A2. To use a reference other than zero, set the AC-DC-GND switch to DC and touch the signal probe to the reference voltage; then use the POSITION control to align the trace with a reference graticule line.

## Voltage Comparison Measurements

In some applications, a set of vertical deflection factors other than those set by the VOLTS/CM switch need to be used. This is convenient for measuring signals that are multiples of fractional voltages between VOLTS/CM switch positions. To establish a set of deflection factors based on some specific voltage, use the following procedure:

1. Apply the new voltage reference signal to either Type 10A2 input connector. Set the VOLTS/CM switch and the VARIABLE control so that the display covers an exact number of graticule divisions. Do not move the VARIABLE control.
2. Divide the amplitude of the reference signal (in volts) by the product of the deflection established in step 1 (in centimeters) and the setting of the VOLTS/CM switch. The result is the deflection Conversion Factor.
Conversion Factor $=$
Amplitude of reference signal (in volts)
Amount of deflection $X$ VOLTS/CM switch setting
3. To calculate the true deflection factor at any position of the VOLTS/CM switch, multiply the switch setting by the deflection Conversion Factor:

True Deflection Factor $=$
VOLTS/CM switch setting $X$ Conversion Factor
This new set of deflection factor values applies to this channel only, and only if the VARIABLE control is not moved.

## Accurate Dc Millivolt Measurements

Operation of the Type 10 A 2 at $0.01 \mathrm{mv} / \mathrm{cm}$ may be quite common when working with 50 -ohm coaxial systems near the upper frequency limit of the Type 647 system. Measurement accuracy requires careful attention to both the VAR ATTEN BAL adjustment and the input-stage grid current. The VAR ATTEN BAL adjustment must be made first as described under "First-Time Operation" in this section.
To check the input-stage grid current, warm up the Type 10A2 at least 10 minutes. Check grid current as follows:

1. Set the MODE switch to the channel in use.
2. Adjust the VAR ATTEN BAL control.
3. Set the VOLTS/CM switch to .01, VARIABLE to CALIB, and input selector to GND.
4. Center a free-running sweep. Switch input selector to DC and watch for a trace shift. If the trace shifts, you may wish to touch-up the internal GRID CURRENT ZERO adjustment in the affected channel. See Section 4, "Dc Adjustments", step 10.


Fig. 3-1. De current flow and voltage levels at switching diodes for a centered trace. A: Channel 1 displayed. B: Channel 2 displayed.

## Channel 2 Input Amplifier

The Channel 2 Input Amplifier is identical with that of Channel 1, except for the trigger takeoff point in the emitter circuit of Q274-Q284. The emitter-circuit resistors are different than in Channel 1 to keep the emitter degeneration the same while providing the trigger takeoff as if from an emitter follower. The Channel 2 trigger signal goes first to the base terminals of Q504-Q514, then to the TRIGGER switch.

## Trigger Amplifiers

The Channel 2 Trigger Amplifier and the Trigger Amplifier are similar with low input impedance and high current output. Each has a stabilizing feedback loop that keeps the stage current gain virtually independent of transistor parameter changes throughout the required temperature and
frequency ranges.
Signal voltage and current data for both amplifiers is in Table 3-3. The information is based upon the TRIGGER switch being at CH 2 ONLY.

## Dual-Trace Switching Multivibrator

The dual-trace multivibrator transistors Q345-Q355 conduct current only when the MODE switch is at either CHOP or ALTER. In the Chopped mode, the emitter leads are connected to the -15 -volt supply through R345-R355 and the primary of T371. The multivibrator free runs and the blanking amplifier delivers an output signal. In the Alternate mode, the multivibrator emitter leads are connected to the -15 volt supply through D348-D358 and R364-Q364. The multivibrator is then bistable and the blanking amplifier is inoperative.

TABLE 3-3

## Approximate Voltage and Current Gain of One-Half the Trigger Amplifiers

| Test Point | Mv/Cm | Ma/Cm | Gain: $A=$ Voltage, $G=$ Current |
| :--- | :---: | :---: | :---: |
| Q504 Stage Input | 0.8 | 0.042 |  |
| Q523 Base | 19 |  |  |
| Q523 Emitter | 17 | 1.0 | Q504 stage input to Q523E: $\mathrm{A} \approx 22, \mathrm{G}=24$ |
| Q554 Stage Input | $\approx 1.5$ | 0.10 |  |
| Q574 Base | 50 |  |  |
| Q574 Collector | 100 | 1.13 | Q554 stage input to Q574C: $\mathrm{A} \approx 70, \mathrm{G}=11$ |



Fig. 3-2. Dc current flow and voltage levels for Added mode operation.

The voltages at the multivibrator test points are listed for all modes of operation in Table 3-4. The emitter voltages listed in Table 3-4 do not indicate transistor conduction for the Ch 1, Ch 2 or Added modes, but rather are a measure of the base voltage set by the base divider resistors.

TABLE 3-4
Switching Multivibrator Conditions

|  |  | MODE |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Test Point | CH 1, CH 2 | ALTER | CHOP | ADDED |  |
| TP345 | $+2.8^{*}$ | +8.8 | +6.5 | +6.5 | +2.8 |
| TP355 | +8.8 | +2.8 | +6.5 | +6.5 | +2.8 |
| Q345 Emitter | +2.0 | +2.0 | +0.9 | +1.8 | +2.0 |
| Q355 Emitter | +2.0 | +2.0 | +0.9 | +1.8 | +2.0 |

* Meter: 20,000 $\Omega$ /volt.


## Chopped-Mode Operation

The multivibrator is a non-saturating form with the switching time-constant network connected between emitters. The capacitors in the base circuits are for coupling only.

Chopped-mode multivibrator waveforms are shown in Fig. 3-3. They show that the emitter of conducting Q345 (Q345E) rests at 2.5 volts until the emitter voltage of Q355 (Q355E) falls to -1.6 volts at the flip point. As the flip action begins, Q345 cuts off; its collector goes positive (TP345) taking the base and emitter of ${ }^{\text {Q }} \mathrm{Q} 355$ positive. As
the emitter of Q355 rises, it takes the emitter of Q345 to +4.3 volts via C348, assuring that Q345 goes deep into cutoff. Then the RC fall of C348-R345 takes the Q345 emitter negative (the slope from +4.3 to -1.6 volts). As soon as the Q345 emitter drops below its base voltage, the multivibrator flips back to the first condition.

## NOTE

Fig. 3-3 through Fig. 3-8 were taken with a Tektronix C-12 Camera, a Type 535A Oscilloscope with Type CA Dual-Trace Plug-In Unit, and two $10 \mathrm{X}, 10 \mathrm{meg} \Omega$ probes. The oscilloscope was externally triggered from TP345 and the plug-in unit operated in the Alternate mode.

## Crt Blanking

The Type 647 crt is blanked during the brief Choppedmode switching time of the Type 10A2. The blanking pulse is generated by Q374, Q383, and Q390.

Q374 is energized by the MODE switch and turns on briefly each time the Q345-Q355 multivibrator switches. As the multivibrator flips, the positive pulse from the multivibrator emitters is coupled through T371, in phase, to the base of Q374. Q374 turns on to saturation and its collector falls to about -12 volts (see Fig. 3-4). The signal to the base of Q383 is greatly attenuated by R374 and R375 in series to ground. As the voltage across T371 collapses, Q374 is turned off and held off by the stored charge on C371 until the next multivibrator pulse turns it on.


Fig. 3-3. Chopped mode signals of Q345 and Q355. Type 543A Oscilloscope with Type CA Dual-Trace Plug-in Unit.


Fig. 3-4. Chopped-mode blanking circuit inpuł voltages.


Fig. 3-5. Chopped-mode Q383 voltages. Q383E waveform explained in Fig. 3-6.

The base voltage of Q383 rests at about 0.7 volt when Q374 is off. The emitter of Q383 is at about zero volts (see Fig. 3-5). C387 is at zero volts keeping Q390 at cutoff.


Fig. 3-6. Chopped-mode blanking circuit voltages of Q383 and Q390.

As Q374 saturates, Q383 is cut off and its emitter starts to fall at a rate set by C387 and the current through R387 and R384. As soon as C387 reaches about - 0.7 volt, Q390 conducts and regenerates in blocking oscillator action. The base winding of T390 takes the base of Q390 from ground to about +4 volts (see Fig. 3-6) and sends about 100 mv of signal through D392 to the Type 647. The pulse lasts about $0.08 \mu \mathrm{sec}$.

## Alternate-Mode Operation

When the MODE switch is at ALTER, Q364 is energized and Q345-Q355 emitters are connected to the -15 -volt supply through D348-D358, and R364. The multivibrator emitter impedance is such that a trigger is required before if will switch. The trigger arrives from terminal 17 of P11 and the Type 647. The signal at terminal 17 rests at about +5 volts, and goes rapidly to ground at the end of each sweep (see Fig. 3-7).


Fig. 3-7. Alternate mode. Type 11B2 Time Base free running at $0.2 \mu \mathrm{sec} / \mathrm{cm}$.

The alternate trigger-amplifier base voltage is about - 10.9 volts, (the decoupled -15-volt supply is about - 11.6 volts) and the collector voltage is about - 11.5 volts; Q364 is saturated. The junction of D348-D358 and R364 rests at +1 volt.

The negative trigger arriving at the base of Q364 momentarily turns Q364 off (see Fig. 3-7). The conducting multivibrator transistor turns off and as Q364 turns back on, the stored charge on C348 causes the opposite multivibrator transistor to turn on. Thus, the Time Base negative trigger at the end of successive sweeps switches the display first from Channel 1 to Channel 2 and back.


Fig. 3-8. Alternate mode. Type 11 B2 Time Base free running at $0.2 \mu \mathrm{sec} / \mathrm{cm}$.

The relationship between the Alternate-mode triggers to the bistable multivibrator and the voltages that control the channel diode switches is shown in Fig. 3-8.

## Voltage-Source Transistors

Two voltage-setting emitter followers provide special supply voltages within the Type 10A2. They are: Q483, diagrammed with the Switching Circuit and Output Amplifier schematics, and Q593, diagrammed with the Trigger Amplifier schematic. Each transistor provides two low-current voltage sources for special use. The voltage value is set by two precision resistors in the base lead. Q483 supplies +5.1 and +4.8 volts, and Q593 supplies -3.45 and -4.2 volts.

## SECTION 4

## MAINTENANCE AND CALIBRATION

## Introduction

Maintenance of the Type 10A2 is similar to that of the oscilloscope and is therefore described in the oscilloscope instruction manual.

The Type 10A2 is a stable instrument which will provide many hours of trouble-free operation. However, to insure measurement accuracy, it is suggested that you recalibrate the instrument after each 500 hours of operation, or every six months if used intermittently. It will also be necessary to recalibrate certain sections of the instrument when tubes, transistors, or other components are replaced.

This section of the manual contains a complete recalibration procedure for the Type 10A2. The steps should be performed in the order they appear.

## NOTE

The performance standards described in this section of your manual are provided strictly as guides to calibration of your instrument and should not be construed as advertised performance specifications. However, if your instrument performs within the guide tolerances given in the calibration procedure, it will also perform as listed in Section 1 of this manual.

## Recommended Test Equipment

1. Oscilloscope such as the Tektronix Type 647. This procedure assumes that the oscilloscope has been calibrated independently. If this is not the case, refer to the oscilloscope instruction manual for information about calibrating the Type 10A2 and the oscilloscope as a system.
2. Tektronix 11-Series time-base plug-in unit such as the Type 11B2. This plug-in unit must be calibrated.
3. Plug-in unit extension (optional). Tektronix part number 012-080 ( 30 -inch flexible) or Tektronix part number 013-077 (12-inch rigid).
4. Dc volłmeter.
5. (2 ea) $50 \Omega$ coaxial cables about 20 -inches long and fitted with BNC connectors.
6. Tektronix BNC $50 \Omega$ termination unit. Tektronix part number 011-049.
7. Square-wave generator such as the Tektronix Type 105. Required characteristics: Output frequency of 2.5 kc . Output impedance of $600 \Omega$ or less. Output amplitude of about 100 volts peak-to-peak when unterminated. Risetime of 1 microsecond or less when unterminated.
8. UHF male to BNC female coaxial adapter. UG-273/U.
9. Tektronix BNC $50 \Omega \times 10$ coaxial attenuator: Tektronix part number 010-314.
10. Tektronix BNC 20 pf input time-constant standardizer. Tektronix part number 011-066.
11. Pulse generator such as the Tektronix Type 109. Required characteristics: Risetime no longer than 2 nanoseconds. Amplitude about 50 millivolts across a $50 \Omega$ termination. Repetition rate of at least 275 pulses per second.
12. Charge-line for the pulse generator, Tektronix Type 113 delay cable preferred. Electrical length should be at least 30 nanoseconds.
13. RG-58A/U coaxial cable equipped with GR Type 874 connectors and having an electrical length of 2 nanoseconds (about 1 -foot long) or less. Tektronix part number 017-505. For use with Tektronix Type 113 delay cable.
14. (2 ea.) Tektronix GR Type $874,50 \Omega \times 10$, coaxial attenuator. Tektronix part number 017-044.
15. RG-8A/U coaxial cable equipped with GR Type 874 connectors and having an electrical length of 10 nanoseconds or less.
16. GR Type 874 to $B N C$ jack coaxial adapter: $G R$ part number 874-QBPA.

## PRELIMINARY PROCEDURE

1. Remove the left side cover from the Type 647.
2. Install the Type 10A2 in the left-hand compartment of the Type 647 and an 11-Series plug-in unit such as the Type 11B2 in the right-hand compartment. A plug-in unit extension will be helpful for troubleshooting, but should not be used when making final adjustments.
3. Set the Type 10A2 front-panel controls as follows:

CH 1 and CH 2.

| VAR ATTEN BAL | $180^{\circ}$ from fully clockwise |  |
| :--- | ---: | ---: |
| GAIN | $180^{\circ}$ from fully clockwise |  |
| POSITION | Centered |  |
| PULL TÓ INVERT |  | Pushed in |
| VOLTS/CM | .01 |  |
| VARIABLE |  | Fully counterclockwise |
| AC-DC-GND | GND |  |
| MODE | CH 1 |  |
| TRIGGER | CH 2 ONLY |  |

4. Set the Type 647 INTENSITY control fully counterclockwise. Turn on the instrument power and allow several minutes for warmup.
5. Set the 11 -Series plug-in unit controls for a free-running, non-magnified sweep at about $0.5 \mathrm{msec} / \mathrm{cm}$.
6. Set the Type 647 INTENSITY control to obtain a trace. If no trace is obtained, use the CH 1 INV BAL Ri60 adjustment as a position control to obtain the trace.

## NOTE

Photographs on a foldout page following the schematics in the back of this manual show the location of each calibration adjustment and test point.

## CHECK AND ADJUSTMENT PROCEDURE

## Dc Adjustments

## NOTE

Steps 1 through 10 apply to both Channel 1 and Channel 2. Complete these steps for Channel 1 first, disregarding the information in parenthesis. Then repeat the steps for Channel 2, substituting the information in parenthesis for the Channel 1 information. Both POSITION controls must be set to midrange and their setting must not be changed until instructed in the procedure.

1. ATTEN BAL RANGE Preliminary Adjustment (S/N 100-359 only)
a. Set the dc voltmeter for at least +1.5 volts full scale and connect it to the V133 (V233) cathode bus shown in Fig. 4-1.


Fig. 4-1. Voltmeter connection points.
b. Adjust ATTEN BAL RANGE R122 (R222) for a meter indication of about +1.2 volts.
c. Disconnect the meter.

## 2. INV BAL Preliminary Adjustment

a. Adjust INV BAL R160 (R260) to position the trace to the center of the graticule.

## 3. COM MODE CURRENT Preliminary Adjustment

a. Set the de voltmeter for at least +10 volts full scale and connect it to TP345 (TP355).
b. Set the MODE switch to $\mathrm{CH} 2(\mathrm{CH})$.
c. Adjust COM MODE CURRENT R150 (R250) for a meter indication of +9 volts.
d. Disconnect the meter and set the MODE switch to CH 1 (CH 2).
4. ATTEN BAL RANGE Final Adjustment (S/N 100-359 only)
a. Note the present position of the trace on the graticule.
b. Turn the CH 1 (CH 2) VARIABLE VOLTS/CM control fully clockwise and note the distance the trace has moved from its previous position.
c. Adjust ATTEN BAL RANGE R122 (R222) to position the trace beyond its previous position by one-half the distance noted in step (b). If necessary, adjust INV BAL R160 (R260) to keep the trace within the graticule area.
d. Turn the $\mathrm{CH} 1(\mathrm{CH} 2)$ VARIABLE VOLTS/CM control fully counterclockwise and repeat steps (a) through (c) until no further improvement can be made. Disregard any trace movement which may occur between the clockwise and counterclockwise limits of the VARIABLE VOLTS/CM control.

## 5. BASE CURRENT Preliminary Adjustment

a. If the trace position with the VARIABLE VOLTS/CM control near midrange differs more than 1 mm from that with the control set at either limit, set the control for the greatest deviation and note the deviation distance. Otherwise go on to step 6.
b. Adjust BASE CURRENT R140 (R240) so that the trace is beyond the position obtained with the VARIABLE VOLTS/CM control set to either limit by about four times the deviation noted in step (a). If necessary, adjust INV BAL R160 (R260) to keep the trace within the graticule area.

## 6. INV BAL Second Adjustment

a. Notice the present trace position.
b. Pull out the PULL TO INVERT knob.
c. Adjust INV BAL R160 (R260) to return the trace onehalf the distance to its previous position.
d. Push in the PULL TO INVERT knob.
e. Repeat steps (a) through (d), if necessary, so that the trace positions differ by less than 2 mm with the PULL TO INVERT knob in or out.

## 7. VAR ATTEN BAL Adjustment

a. Adjust the front-panel CH 1 (CH 2) VAR ATTEN BAL control so that the trace position is the same with the VARIABLE VOLTS/CM control set fully clockwise as with it set fully counterclockwise.

## 8. BASE CURRENT Final Adjustment

a. Adjust BASE CURRENT R140 (R240) so that the trace does not move as the VARIABLE VOLTS/CM control is turned throughout its range.

## 9. INV BAL Final Adjustment

a. Adjust INV BAL R160 (R260) so that the trace position is the same within 2 mm with the PUIL TO IN VERT knob either pulled out or pushed in.

## 10. GRID CURRENT ZERO Adjustment

a. Use the $\mathrm{CH} 1(\mathrm{CH} 2) \mathrm{POSITION}$ control to move the trace to the center of the graticule.
b. Adjust GRID CURRENT ZERO R117 (R217) so that the trace position is the same with the $\mathrm{CH} 1(\mathrm{CH}$ 2) AC-DC-GND switch set to DC as with it set to GND.

## 11. Channel 2 Adjustments

a. Set the MODE switch to CH 2 and repeat steps 1 through 10 for Channel 2.

## 12. COM MODE CURRENT and MAIN AMP CURRENT Final Adjustments

a. Connect the dc voltmeter to 'TP453.
b. With the MODE switch set to CH 2 , adjust CH 2 COM MODE CURRENT R250 for a 0 -volt indication on the meter.
c. Set the MODE switch to ADDED.
d. Adjust CH 1 COM MODE CURRENT R150 for a 0 volt indication on the meter.
e. Set the MODE switch to CH 1.
f. Adjust MAIN AMP CURRENT R336 for a 0 -volt indication on the meter.
g. Set the MODE switch to CH 2.
h. Adjust CH 2 COM MODE CURRENT R250 for a 0 volt indication on the meter.
i. Check that the meter indicates $0, \pm 50$ millivolts, with the MODE switch set to CH 1, CH 2, or ADDED. If not, repeat steps (a) through (h).
i. Disconnect the voltmeter.

## 13. MAIN AMP DIFF BAL Adjustment

a. Set the MODE switch to CH 2.
b. Set the CH 2 POSITION control to align the trace with the graticule centerline.
c. Set the MODE switch to ADDED.
d. Set the CH 1 POSITION control to align the trace with the graticule centerline.
e. Set the MODE switch to CH 1.
f. Adjust MAIN AMP DIFF BAL R335 to align the trace with the graticule centerline.
g. Set the MODE switch to CH 2.
h. Set the CH 2 POSITION control to align the trace with the graticule centerline.
i. Check that the trace remains within 1 minor graticule division ( 2 mm ) of the graticule centerline when the MODE switch is set to either CH 1 or ADDED. If not, repeat steps (a) through (i).

## 14. NORM TRIG DC BAL Adjustment

a. Set the Type 647 IKC CALIBRATOR switch to .2 VOLTS.
b. Attach a coaxial cable between the Type 647 CAL OUT and the Type 10A2 CH 1 input connectors.
c. Set the MODE switch to CH 1, the TRIGGER switch to NORM, the CH 1 VOLTS/CM switch to . 1 , the VARIABLE VOLTS/CM controls (both) fully clockwise, the CH 1 AC-DC-GND switch to $A C$, and the $C H 1$ POSITION control to center the free-running squarewave display.
d. Set the 11 -Series plug-in unit controls for internal, dc-coupled automatic triggering with the triggering level control set to zero. A triggered display may or may not be obtained.
e. Adjust NORM TRIG DC BAL R546 to obtain a triggered display. Then refine the adjustment so that R546 is centered in the range where the triggered display is obtained with the IKC CALIBRATOR switch setting reduced to 20 mVOLTS .
f. Disconnect the input signal and restore the freerunning sweeps.

## 15. CH 2 OUT DC LEVEL Adjustment

a. Set both AC-DC-GND switches to GND.
b. Connect a coaxial cable between the CH 2 OUT connector and the CH 1 input connector.
c. Set the CH 1 POSITION control to align the trace with the graticule centerline.
d. Set the CH 1 AC-DC-GND switch to DC.
e. Adjust CH 2 OUT DC LEVEL R530 to align the trace with the graticule centerline.
f. Remove the coaxial cable.

## Gain Adjustments

## 1. GAIN RANGE Adjustment

a. Set the CH 1 and CH 2 VOLTS/CM switches to .01 , VARIABLE controls to CALIB, AC-DC-GND switches to AC, and PULL TO INVERT knobs pushed in. Set the MODE switch to CH 1.
b. Set the Type 647 IKC CALIBRATOR switch to 50 mVOLTS.
c. Connect a coaxial cable between the CAL OUT connector and the CH 1 input. You should obtain two free-running sweeps separated by about 5 cm .
d. Adjust GAIN RANGE RI76 (R276) so that the separation between the traces is exactly 5 cm .
e. Set MODE switch to CH 2 and repeat steps 1 c and 1d for Channel 2.

## Attenuator Checks

## NOTE

The 1-Kc Calibrator in the Type 647 is used to check the division accuracy of the attenuators in the Type 10A2. Both the calibrator voltage accuracy and the attenuator accuracy are rated at $\pm 2 \%$ between $0^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$. Although unlikely, this could permit an error of $\pm 4 \%$ in an attenuator to appear as an acceptable $\pm 2 \%$ error. For example, if the calibrator voltage is $2 \%$ high and the attenuator output is $4 \%$ low, the display amplitude would be only $2 \%$ low. To avoid such errors, it is suggested that you determine the actual output voltages of the calibrator within about $0.1 \%$. The Type 647 calibration procedure describes how to check the calibrator voltage accuracy on a dc basis by using a precision de voltmeter. Record and use the calibration voltage values.

## 1. Fixed Attenuators Check ( CH 2)

a. Set the CH 1 and CH 2 VOLTS/CM switches at .02 .
b. Connect the coaxial cable to the CH 2 input.
c. Check that the correct display amplitude is obtained ( $\pm 2 \%$ ) at each setting of the VOLTS/CM switch (. 02 through 20).

## 2. Variable Attenuator Check (CH 2)

a. With the VOLTS/CM switch set to 20 and the IKC CALIBRATOR switch set to 100 VOLTS (square wave), turn the VARIABLE VOLTS/CM control fully counterclockwise and check that the display amplitude is 2 cm or less.
b. Check that the UNCAL lamp is lit.
c. Reset the VARIABLE control to CALIB and check that the UNCAL lamp is not lit.

## 3. Channel 1 Attenuators

a. Set the MODE switch to CH 1 .
b. Set the $1 K C$ CALIBRATOR switch to .1 VOLTS and move the coaxial cable to the CH 1 input.
c. Repeat steps $1 c$ and 2 for Channel 1.
d. Remove the coaxial cable.

## Attenuator Compensation and Input TimeConstant Adjustments

## NOTE

The numbers on the attenuator cover plates correspond to the VOLTS/CM switch positions. The
solid line leading from a number points to the attenuator compensation capacitor for that switch setting. The dashed line is an extension of the solid line and points to the input time-constant standardization capacitor. The single capacitor associated with the .01 VOLTS/CM switch setting is for input time-constant adjustment since no attenuator is used.

## 1. Attenuator Compensation

a. Set the CH 1 and CH 2 VOLTS/CM switches to .02 and the AC-DC-GND switches to DC.
b. Connect the square-wave generator to the CH 1 input as shown in Fig. 4-2.


Fig. 4-2. Attenuator compensation setup.
c. With a sweep rate of $0.2 \mathrm{msec} / \mathrm{cm}$, obtain a triggered display of $2.5-\mathrm{kc}$ square waves.
d. Set the generator amplitude control for a display amplitude of about 5 cm .
e. Adjust the .02 VOLTS/CM compensation capacitor (solid line on cover plate) to make the top left corner of the display nearly square.
f. Repeat steps (d) and (e) for each position of the VOLTS/CM switch (. 05 through 20).

## NOTE

If a Tektronix Type 105 Square-Wave Generator is used, proper amplitude range will be obtained by first removing the X10 attenuator after making the .05 VOLTS/CM adjustment; then remove the $50 \Omega$ termination after making the 1 VOLTS/CM adjustment.
g. Set the MODE switch to CH 2 and repeat step 1 (above) for Channel 2.
h. Disconnect the square-wave generator.

## 2. Input Time-Constant Standardization

a. Set the Type 647 IKC CALIBRATOR switch to . 1 VOLTS and both Type 10A2 VOLTS/CM switches to .01 .
b. Connect the input time-constant standardizer as shown in Fig. 4-3.


Fig. 4-3. Input time-constant standardization setup.
c. Using a $0.5 \mathrm{msec} / \mathrm{cm}$ sweep rate, obtain a triggered display of the square-wave signal. The display amplitude should be about 5 cm .
d. Adjust the .01 VOLTS/CM input time-constant standardizing capacitor to make the top of the displayed square wave as flat and level as possible. Judge the correctness of the adjustment with the alignment tool removed.
e. Set the VOLTS/CM switch to . 02 .
f. Set the IKC CALIBRATOR switch to .2 VOLTS.
g. Adjust each input time-constant standardizing capacitor for the remaining settings of the VOLTS/CM switch (. 02 through 20). Change the setting of the IKC CALIBRATOR switch as required to provide either a 4- or $5-\mathrm{cm}$ display amplitude at each setting of the VOLTS/CM switch.
h. Set the MODE switch to CH 1 and repeat step 2 (above) for Channel 1.
i. Remove the cable and standardizer.

## High-Frequency Response Adjustments

1. Set the Type 10A2 controls as follows:

CH 1 and CH 2

| VOLTS/CM | .01 |
| :--- | ---: |
| VARIABLE | CALIB |
| POSITION | Midrange |
| AC-DC-GND | DC |
| TRIGGER | NORM |
| MODE | CH 1 |

2. Connect the pulse generator to the Type 10 A 2 CH 1 input as shown in Fig. 4-4.
3. Set the pulse generator controls for positive-going pulses of about $50-\mathrm{mv}$ amplitude.
4. Set the time-base plug-in unit controls for a $20 \mathrm{nsec} / \mathrm{cm}$ sweep rate ( $0.2 \mu \mathrm{sec} / \mathrm{cm}$, 10X magnifier) and internally triggered sweeps with + slope and ac coupling.

## NOTE

It may be necessary to darken the room and set the INTENSITY control more clockwise to view the display. A viewing hood may also be helpful. The display should be a positive pulse of about $5-\mathrm{cm}$ amplitude.
5. Adjust Cl 69 and C 176 ( C 269 and C 276 ) in the CH 1 (CH 2) Input Amplifier for the squarest pulse corner.
6. Adjust $L 465$ for the squarest pulse corner.
7. Set the MODE switch to CH 2 and move the signal connection to the CH 2 input.
8. Repeat step 5 for Channel 2.

## Vertical-System Risetime

1. Use the same setup and display as described under "High-Frequency Response Adjustments."
2. Set the pulse generator so that the displayed pulse amplitude is 5 cm .
3. Set the time-base plug-in unit sweep rate to $10 \mathrm{nsec} / \mathrm{cm}$ ( $0.01 \mu \mathrm{sec} / \mathrm{cm}, 10 \mathrm{X}$ magnifier).
4. Check that the $10 \%$ to $90 \%$ risetime is 7 nsec or less.
5. Check the other channel risetime in the same manner.
6. Disconnect the pulse generator.

## Functional Checks

## 1. Chop Mode

a. Set the time-base plug-in unit controls for a freerunning sweep at $0.5 \mu \mathrm{sec} / \mathrm{cm}$ (non-magnified).
b. Set the Type 10A2 MODE switch to CHOP. With the CH 1 and CH 2 POSITION controls properly adjusted, you should obtain two traces.


Fig. 4-4. High-frequency compensation adjustments setup.

## 2. Chop Blanking

a. Position one trace near the top of the graticule and one near the bottom
b. Set the time-base plug-in unit controls for triggered sweeps. You should obtain what appears to be a square-wave display. However, the rising and falling portions of the display should not be visible except when the intensity of the top and bottom portions is unnecessarily high.

## 3. Alternate Mode

a. Set the time-base plug-in unit controls for free-running sweeps at $20 \mathrm{msec} / \mathrm{cm}$.
b. Set the Type 10A2 MODE switch to ALTER. The traces should now be displayed alternately.

## 4. Channel 2 Output Signal Amplitude

a. Set the CH 1 VOLTS/CM switch to .1, CH 2 VOLTS/ CM switch to .01 , and the MODE switch to CH 1 .
b. Set the Type 647 IKC CALIBRATOR switch to 20 mVOLTS.
c. Connect a coaxial lead between the CAL OUT and the CH 2 input connectors.
d. Connect a coaxial lead between the CH 2 OUT and the CH 1 input connectors.
e. Set the time-base plug-in unit controls for internally triggered sweeps at $0.5 \mathrm{msec} / \mathrm{cm}$. You should obtain a square-wave display between 2 and 3 cm in amplitude.

## SECTION 5

## PARTS LIST AND SCHEMATICS

## PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix Field Office.
Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number including any suffix, instrument type, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix Field Office will contact you concerning any change in part number.

ABBREVIATIONS AND SYMBOLS

| a or amp BHS |  | amperes | mm | millimeter |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {C }}^{\text {BHS }}$ |  | binding head steel | meg or $M$ | megohms or mega ( $10^{6}$ ) |
| cer |  | ceramic | $\mu$ | micro, or $10^{-6}$ |
| cm |  | centimeter | n | nano, or $10^{-9}$ |
| comp |  | composition | $\Omega$ | ohm |
| cps |  | cycles per second | OD | outside diameter |
| crt |  | cathode-ray tube | OHS | oval head steel |
| CSK |  | counter sunk | p | pico, or $10^{-12}$ |
| dia |  | diameter | PHS | pan head steel |
| div |  | division | piv | peak inverse voltage |
| EMC |  | electrolytic, metal cased | plstc | plastic |
| EMT |  | electroyltic, metal tubular | PMC | paper, metal cased |
| ext |  | external | poly | polystyrene |
| f |  | farad | Prec | precision |
| F \& 1 |  | focus and intensity | PT | paper tubular |
| FHS |  | flat head steel | PTM | paper or plastic, tubular, molded |
| Fil HS |  | fillister head steel | RHS | round head steel |
| $g$ or $G$ |  | giga, or $10^{\circ}$ | rms | root mean square |
| Ge |  | germanium | sec | second |
| GMV |  | guaranteed minimum value | Si | silicon |
| h |  | henry | S/N | serial number |
| hex |  | hexagonal | t or T | tera, or $10^{12}$ |
| HHS |  | hex head steel | TD | toroid |
| HSS |  | hex socket steel | THS | truss head steel |
| HV |  | high voltage | tub. | tubular |
| ID |  | inside diameter | $v$ or V | volt |
| incd |  | incandescent | Var | variable |
| int |  | internal | w | watt |
| $k$ or K |  | kilohms or kilo (103) | w/ | with |
| kc |  | kilocycle | w/o | without |
| m |  | milli, or $10^{-3}$ | WW | wire-wound |
| mc |  | megacycle |  |  |
| SPECIAL NOTES AND SYMBOLS |  |  |  |  |
| X000 |  | Part first added at this serial number. |  |  |
|  | 000X | Part removed after this serial number. |  |  |
|  | *000-000 | Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, or reworked or checked components. |  |  |
| Use | 000-000 | Part number indicated is direct replacement. |  |  |
| Internal screwdriver adjustment. |  |  |  |  |
| Front-panel adjustment or connector. |  |  |  |  |





EXPLODED VIEW (Cont'd)



## ELECTRICAL PARTS

Values are fixed unless marked Variable.

| Ckt. No. | Tektronix <br> Part No. | Description <br> Bulbs |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| B119 | $150-030$ | Neon NE 2V |  |
| B144 | $150-027$ | Neon NE 23 |  |
| B219 | $150-030$ | Neon NE 2V |  |
| B244 | $150-027$ | Neon NE 23 |  |

## Capacitors

Tolerance $\pm 20 \%$ unless otherwise indicated.
Tolerance of all electrolytic capacitors as follows (with exceptions):

| $3 V-50 V=-10 \%,+250 \%$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $51 \mathrm{~V}-350 \mathrm{~V}=-10 \%,+100 \%$ |  |  |  |  |  |  |
| $351 \mathrm{~V}-450 \mathrm{~V}=-10 \%,+50 \%$ |  |  |  |  |  |  |
| C101 | *285-634 | . $1 \mu \mathrm{f}$ | MT |  | 600 v |  |
| C102 | 281-558 | 18 pf | Cer |  | 500 v |  |
| C103 | 281-064 | .2-1.5 pf | Tub | Var |  |  |
| Cl04A | Use 281-547 | 2.7 pf | Cer |  | 500 v | 10\% |
| C104B | 281-064 | .2-1.5 pf | Tub | Var |  |  |
| C104C | 281-081 | 1.8-13 pf | Air | Var | 800 v |  |
| C104D | 281-592 | 4.7 pf | Cer |  |  | $\pm .5 \mathrm{pf}$ |
| C105A | 281-572 | 6.8 pf | Cer |  | 500 v | 10\% |
| C105B | 281-027 | .7-3 pf | Tub | Var |  |  |
| C105C | 281-027 | .7-3 pf | Tub | Var |  |  |
| C106A | 281-572 | 6.8 pf | Cer |  | 500 v | 10\% |
| C106B | 281-027 | .7-3 pf | Tub | Var |  |  |
| C106C | 281-027 | .7-3 pf | Tub | Var |  |  |
| C107A | 281-572 | 6.8 pf | Cer |  | 500 v | 10\% |
| C107B | 281-027 | . $7-3 \mathrm{pf}$ | Tub | Var |  |  |
| C107C | 281-027 | .7-3 pf | Tub | Var |  |  |
| C107E | 281.512 | 27 pf | Cer |  | 500 v | 10\% |
| C108A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C108B | 281-027 | .7-3 pf | Tub | Var |  |  |
| C108C | 281-027 | . $7-3 \mathrm{pf}$ | Tub | Var |  |  |
| C108E | 281-519 | 47 pf | Cer |  | 500 v | 10\% |
| C109A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C109B | 281-027 | .7-3 pf | Tub | Var |  |  |
| $\left.\begin{array}{l} \text { C109C } \\ \text { C109E } \end{array}\right\}$ | 281-071 | .2-1.5 pf/100 pf | Mica | Var |  | 10\% |
| C110A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C110B | 281-027 | .7-3 pf | Tub | Var |  |  |
| $\left.\begin{array}{l}\text { Cl10C } \\ \text { Cl10E }\end{array}\right\}$ | 281-069 | .2-i. $5 \mathrm{pf} / 200 \mathrm{pf}$ | Mica | Var |  | 10\% |

Capacitors (Cont'd)
Tektronix

| Ckt. No. | Part No. |  | Descrip |  |  |  | S/N Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C111A | 281-503 | 8 pf |  |  | 500 v | $\pm .5 \mathrm{pf}$ |  |
| C111B | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C111C) <br> Cl11E | 281-072 | .2-1.5 pf/500 pf | Mica | Var |  | 10\% |  |
| C112A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |  |
| C112B | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| $\left.\begin{array}{l}\text { Cl12C } \\ \text { Cl12F }\end{array}\right\}$ | 281-073 |  | Mica | Var |  | 10\% |  |
| Cl12E | 281-073 | .2-1.5 pf/1000 pf | Mica | Var |  | 10\% |  |
| C113A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |  |
| C113B | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| $\left.\begin{array}{l} \mathrm{C} 113 \mathrm{C} \\ \mathrm{C} 113 \mathrm{E} \end{array}\right\}$ | 281-074 | .2-1.5 pf/2000 pf | Mica | Var |  | 10\% |  |
| C118 | 281-614 | . 0068 pf | Cer |  | 500 v |  |  |
| C123 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |  |
| C130 | 285-622 | . $1 \mu \mathrm{f}$ | PTM |  | 100 v |  |  |
| C131 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |  |
| C132 | 281-519 | 47 pf | Cer |  | 500 v | 10\% |  |
| C134 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |  |
| C159 | 281-577 | 14 pf | Cer |  | 500 v | 5\% |  |
| C169 | 281-081 | 1.8-13 pf | Air | Var | 800 v |  |  |
| C176 | 281-081 | 1.8-13 pf | Air | Var | 800 v |  |  |
| C192 | 281-504 | 10 pf | Cer |  | 500 v | 10\% |  |
| C193 | 281-504 | 10 pf | Cer |  | 500 v | 10\% |  |
| C199 | 290-183 | $1 \mu \mathrm{f}$ | EMT |  | 20 v | 10\% |  |
| C201 | *285-634 | . $1 \mu \mathrm{f}$ | MT |  | 600 v |  |  |
| C202 | 281-558 | 18 pf | Cer |  | 500 v |  |  |
| C203 | 281-064 | .2-1.5 pf | Tub | Var |  |  |  |
| C204A | Use 281-547 | 2.7 pf | Cer |  | 500 v | 10\% |  |
| C204B | 281-064 | .2-1.5 pf | Tub | Var |  |  |  |
| C204C | 281-081 | 1.8-13 pf | Air | Var | 800 v |  |  |
| C204D | 281-592 | 4.7 pf | Cer |  |  | $\pm .5 \mathrm{pf}$ |  |
| C205A | 281-572 | 6.8 pf | Cer |  | 500 v | 10\% |  |
| C205B | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C205C | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C206A | 281-572 | 6.8 pf | Cer |  | 500 v | 10\% |  |
| C206B | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C206C | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C207A | 281-572 | 6.8 pf | Cer |  | 500 v | 10\% |  |
| C207B | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C207C | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C207E | 281-512 | 27 pf | Cer |  | 500 v | 10\% |  |
| C208A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |  |
| C208B | 281-027 | . $7-3 \mathrm{pf}$ | Tub | Var |  |  |  |
| C208C | 281-027 | .7-3 pf | Tub | Var |  |  |  |
| C208E | 281-519 | 47 pf | Cer |  | 500 v | 10\% |  |
| C209A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |  |
| C209B | 281-027 | .7-3pf | Tub | Var |  |  |  |

## Capacitors (Cont'd)

Tektronix
Ckt. No. Part No.

| $\left.\begin{array}{l} \mathrm{C} 209 \mathrm{C} \\ \mathrm{C} 209 \mathrm{E} \end{array}\right\}$ | 281-071 | .2-1.5 pf/100 pf | Mica | Var |  | 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C210A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C210B | 281-027 | .7-3 pf | Tub | Var |  |  |
| $\left.\begin{array}{l} \mathrm{C} 210 \mathrm{C} \\ \mathrm{C} 210 \mathrm{E} \end{array}\right\}$ | 281-069 | .2-1.5 pf/200 pf | Mica | Var |  | 10\% |
| C211A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C211B | 281-027 | .7-3 pf | Tub | Var |  |  |
| $\left.\begin{array}{l} \mathrm{C} 211 \mathrm{C} \\ \mathrm{C} 211 \mathrm{E} \end{array}\right\}$ | 281-072 | .2-1.5 pf/500 pf | Mica | Var |  | 10\% |
| C212A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C212B | 281-027 | .7-3 pf | Tub | Var |  |  |
| $\left.\begin{array}{l} \mathrm{C} 212 \mathrm{C} \\ \mathrm{C} 212 \mathrm{E} \end{array}\right\}$ | 281-073 | .2-1.5 pf/1000 pf | Mica | Var |  | 10\% |
| C213A | 281-503 | 8 pf | Cer |  | 500 v | $\pm .5 \mathrm{pf}$ |
| C213B | 281-027 | . $7-3 \mathrm{pf}$ | Tub | Var |  |  |
| $\left.\begin{array}{l} \mathrm{C} 213 \mathrm{C} \\ \mathrm{C} 213 \mathrm{E} \end{array}\right\}$ | 281-074 | .2-1.5 pf/2000 pf | Mica | Var |  | 10\% |
| C218 | 281-614 | . $0068 \mu \mathrm{f}$ | Cer |  | 500 v |  |
| C223 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |
| C230 | 285-622 | . $1 \mu \mathrm{f}$ | PTM |  | 100 v |  |
| C231 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |
| C232 | 281-519 | 47 pf | Cer |  | 500 v | 10\% |
| C234 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C259 | 281-577 | 14 pf | Cer |  | 500 v | 5\% |
| C269 | 281-081 | 1.8-13 pf | Air | Var | 800 v |  |
| C271 | 281-519 | 47 pf | Cer |  | 500 v | 10\% |
| C276 | 281-081 | 1.8-13 pf | Air | Var | 800 v |  |
| C281 | 281-519 | 47 pf | Cer |  | 500 v | 10\% |
| C292 | 281-504 | 10 pf | Cer |  | 500 v | 10\% |
| C293 | 281-504 | 10 pf | Cer |  | 500 v | 10\% |
| C299 | 290-183 | $1 \mu \mathrm{f}$ | EMT |  | 20 v | 10\% |
| C314 | 283-078 | . $001 \mu \mathrm{f}$ | Cer |  | 500 v |  |
| C334 | 283-078 | . $001 \mu \mathrm{f}$ | Cer |  | 500 v |  |
| C343 | 283-084 | $270 \mu \mathrm{f}$ | Cer |  | 1000 v | 5\% |
| C344 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C348 | 283-088 | . $0011 \mu \mathrm{f}$ | Cer |  | 500 v | 5\% |
| C353 | 283-084 | 270 pf | Cer |  | 1000 v | 5\% |
| C354 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C366 | 283-084 | 270 pf | Cer |  | 1000 v | 5\% |
| C367 | 283-095 | 56 pf | Cer |  | 200 v | 10\% |
| C371 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C382 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C387 | 283-084 | 270 pf | Cer |  | 1000 v | 5\% |
| C390 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C452 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C462 | 281-578 | 18 pf | Cer |  | 500 v | 5\% |
| C483 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C497 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C498 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C550 | 281-519 | 47 pf | Cer |  | 500 v | 10\% |
| C560 | 281-519 | 47 pf | Cer |  | 500 v | 10\% |

## Diodes

| Ckt. No. | Tektronix <br> Part No. |  |
| :---: | :---: | :---: |
| D125 | 152-061 | Silicon 6061 |
| D133 | *152-075 | Tek Spec |
| D157 | Use 152-141 | Silicon 1N3605 |
| D192 | *152-075 | Tek Spec |
| D193 | *152-075 | Tek Spec |
| D225 | 152-061 | Silicon 6061 |
| D233 | *152-075 | Tek Spec |
| D257 | Use 152-141 | Silicon 1N3605 |
| D292 | *152-075 | Tek Spec |
| D293 | *152-075 | Tek Spec |
| D302 | 152-065 | Silicon HD5000 |
| D305 | 152-065 | Silicon HD5000 |
| D309 | 152-065 | Silicon HD5000 |
| D312 | 152-065 | Silicon HD5000 |
| D322 | 152-065 | Silicon HD5000 |
| D325 | 152-065 | Silicon HD5000 |
| D329 | 152-065 | Silicon HD5000 |
| D332 | 152-065 | Silicon HD5000 |
| D348 | *152-075 | Tek Spec |
| D358 | *152-075 | Tek Spec |
| D369 | *152-075 | Tek Spec |
| D387 | 152-141 | Silicon 1N3605 |
| D391 | *152-075 | Tek Spec |
| D392 | 152-065 | Silicon HD5000 |

## Inductors

| L343 | $276-507$ | Core, Ferramic Suppressor |
| :--- | ---: | :--- |
| L353 | $276-507$ | Core, Ferramic Suppressor |
| L390 | $108-226$ | $100 \mu \mathrm{~h}$ |
| L392 | ${ }^{1} 108-146$ | $5 \mu \mathrm{~h}$ |
| L434 | ${ }^{*} 108-260$ | $.1 \mu \mathrm{~h}$ |
|  |  |  |
| L444 | $* 108-260$ | $.1 \mu \mathrm{~h}$ |
| L465 | ${ }^{*} 114-160$ | $.11 .12 \mu \mathrm{~h}$ |
| L504 | ${ }^{*} 108-211$ | $.5 \mu \mathrm{~h}$ |
| L514 | ${ }^{*} 108-211$ | $.5 \mu \mathrm{~h}$ |
|  | $* 108-260$ | $.1 \mu \mathrm{~h}$ |
| L554 |  |  |
| L564 | $* 108-112$ | $.3 \mu \mathrm{~h}$ |
| L577 | $* 108-112$ | $.3 \mu \mathrm{~h}$ |
|  | $* 108-220$ | $.15 \mu \mathrm{~h}$ |

## Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

| R102 | $315-470$ | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |
| :---: | :---: | :--- | :--- | :--- |
| R104C | $322-610$ | 500 k | $1 / 4 \mathrm{w}$ | Prec |
| AL4R104E322-0481-0i | $1 / 4 \mathrm{w}$ | Prec |  |  |
| R105C | $323-620$ | 800 k | $1 / 2 \mathrm{w}$ | Prec |
| R105E | $321-618$ | 250 k | $1 / 8 \mathrm{w}$ | Pre: |



Resistors (Cont'd)


| Resistors (Cont'd) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ckt. No. | Tektronix Part No. | Description |  |  | S/N Range |  |  |
| R209E | 321-614 | 10.1 k | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |  |
| R210C | 322-625 | 995 k | $1 / 4 \mathrm{w}$ |  | Prec | 1\% |  |
| R210D | 315-620 | $62 \Omega$ | $1 / 4 \mathrm{w}$ |  |  | 5\% |  |
| R210E | 321-613 | 5.03 k | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |  |
| R211C | 322-628 | 998 k | $1 / 4 \mathrm{w}$ |  | Prec | 1\% |  |
| R211D | 315-220 | $22 \Omega$ | $1 / 4 \mathrm{w}$ |  | 5\% |  |  |
| R211E | 321-222 | 2 k | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |  |
| R212C | 322-629 | 999 k | $1 / 4 \mathrm{w}$ |  | Prec | 1\% |  |
| R212D | 315-331 | $33 \Omega$ | $1 / 4 \mathrm{w}$ |  |  | 5\% |  |
| R212E | 321-193 | 1 k | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |  |
| R213C | 323-481 | 1 meg | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |
| R213D | 315-300 | $30 \Omega$ | $1 / 4 \mathrm{w}$ |  |  | 5\% |  |
| AL4. R213E \& 2 -0.042-01 | 32\% | $500 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |  |
| R214 | 323-481 | 1 meg | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |
| R215 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R216 | 316-104 | 100 k | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R217 | 311-390 | 25 k |  | Var |  | CH 2 GRID CURRENT ZERO |  |
| R218 | 301-105 | 1 meg | $\begin{aligned} & 1 / 2 w \\ & 1 / 4 w \end{aligned}$ |  |  |  |  |
| R219 | 316-100 | $10 \Omega$ |  |  |  | 5\% |  |
| R220 | 311-328 | 1 k |  | Var |  | VAR ATTEN BAL | 100-359 |
|  | 311-387 | 5 k |  | Var |  | VAR ATTEN BAL | 360-up |
| R221 | 321-209 | 1.47 k | $1 / 8 \mathrm{w}$ |  | PrecCH 22 $\frac{1 \%}{}$ ATTEN BAL RANGE $100-359 \mathrm{X}$ |  |  |
| R222 | 311-387 | 5 k |  | Var |  |  |  |  |  |
| R223 | 323-305 | 14.7 k | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |  |
| R225 | 303-153 | 15 k | $1 \text { w }$ |  |  | $5 \%$ |  |
| R229 | 315-153 | 15 k | $1 / 4 w$ |  |  | 5\% |  |
| R230 | 308-077 | 1 k |  |  | WW |  |  |
| R232 | 315-151 | $150 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec | 5\% |  |
| R233 | 322-225 | 2.15 k | $1 / 4 \mathrm{w}$ |  |  | $\begin{aligned} & 1 \% \\ & 5 \% \end{aligned}$ |  |
| R234 | 315-510 | $51 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |  |
| R235 | 321-251 | 4.02 k | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |  |
| R236 | 321-153 | $383 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec | $\operatorname{cin}^{1 \%}$ |  |
| R238 | 311-169 | $100 \Omega$ |  | Var |  | GAIN |  |
| R240 | 311-390 | 25 k |  | Var |  | BASE CURRENT |  |
| R242 |  |  | $\begin{aligned} & 1 / 8 \mathrm{w} \\ & 1 / 4 \mathrm{w} \end{aligned}$ |  | Prec | $\begin{aligned} & 1 \% \\ & 5 \% \end{aligned}$ |  |
| R243 | 315-823 | 82 k |  |  |  |  |  |
| R244 ${ }^{\dagger}$ | $311-385$ | 250 k | $\begin{aligned} & 1 / 2 w \\ & 1 / 4 w \\ & 1 / 8 w \end{aligned}$ | Var | VARIABLE |  |  |
| R248 | 322-215 | 1.69 k |  |  | Prec Prec | ( $1 \%$ |  |
| R249 | 321-117 | $162 \Omega$ |  |  |  |  |  |
| R250 | 311-258 | $100 \Omega$ |  | Var | Prec | CH 2 COM MODE CURRENT |  |
| R251 | 322-097 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  | 1\% |  |
| R254 | 322-161 | $464 \Omega$ |  |  | Prec <br> Prec <br> Prec <br> Prec | 1\% |  |
| R257 | 321-129 | $215 \Omega$ | $\begin{aligned} & 1 / 8 \mathrm{w} \\ & 1 / 4 \mathrm{w} \\ & 1 / 8 \mathrm{w} \end{aligned}$ |  |  | 1\% |  |
| R258 | 322-211 | 1.54 k |  |  |  | 1\% |  |
| R259 | 321-097 | $100 \Omega$ |  |  |  | 1\% |  |
| R260 | 311-390 | 25 k |  | Var |  | CH 2 INV BAL |  |

$\dagger$ Furnished as a unit with SW244.


Resistors (Cont'd)

| Ckt. No. | Tektronix Part No. |  | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R353 | 323-125 | $196 \Omega$ | 1/2w | Prec | 1\% |
| R354 | 321-213 | 1.62 k | 1/8w | Prec | 1\% |
| R355 | 322-181 | $750 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R357 | 321-249 | 3.83 k | 1/8w | Prec | 1\% |
| R364 | 323-153 | $383 \Omega$ | 1/2w | Prec | 1\% |
| R365 | Use 315-153 | 15 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R367 | 315-152 | 1.5 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R369 | 315-682 | 6.8 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R371 | 315-224 | 220 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R373 | 321-289 | 10 k | 1/8 w | Prec | 1\% |
| R374 | 315-332 | 3.3 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R375 | 321-161 | $464 \Omega$ | 1/8w | Prec | 1\% |
| R382 | 315-152 | 1.5 k | $1 / 4 w$ |  | 5\% |
| R384 | 322-221 | 1.96 k | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R387 | 315-330 | $30 \Omega$ | $1 / 4 \mathrm{w}$ |  | 5\% |
| R389 | 321-069 | 51.1 ת | 1/8 W | Prec | 1\% |
| R390 | 315-221 | $220 \Omega$ | $1 / 4 \mathrm{w}$ |  | 5\% |
| R391 | 315-221 | $220 \Omega$ | $1 / 4 \mathrm{w}$ |  | 5\% |
| R392 | 315-222 | 2.2 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R411 | 321-161 | $464 \Omega$ | $1 / 8 \mathrm{w}$ | Prec | 1\% |
| R412 | 321-080 | $66.5 \Omega$ | 1/8w | Prec | 1\% |
| R413 | 321-145 | $316 \Omega$ | 1/8w | Prec | 1\% |
| R415 | 321-157 | $422 \Omega$ | 1/8w | Prec | 1\% |
| R421 | 321-161 | $464 \Omega$ | 1/8w | Prec | 1\% |
| R423 | 321-145 | $316 \Omega$ | 1/8w | Prec | 1\% |
| R425 | $321-157$ | $422 \Omega$ | 1/8w | Prec | 1\% |
| R432 | 322-133 | $237 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R434 | 321-115 | $154 \Omega$ | $1 / 8 \mathrm{w}$ | Prec | 1\% |
| R444 | 321-115 | $154 \Omega$ | 1/8 w | Prec | 1\% |
| R450 | 321-109 | $133 \Omega$ | $1 / 8 \mathrm{w}$ | Prec | 1\% |
| R452 | 322-085 | $75 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R453 | 321-629 | 5.11 k | 1/8w | Prec | 1/2\% |
| R454 | 322-094 | 93.1 ת | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R455 | 321-630 | 6.81 k | 1/8w | Prec | 1/2\% |
| R456 | 322-173 | $619 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R457 | 323-137 | $261 \Omega$ | $1 / 2 \mathrm{w}$ | Prec | 1\% |
| R458 | 323-137 | $261 \Omega$ | 1/2w | Prec | 1\% |
| R459 | 322-043 | $27.4 \Omega$ | 1/4 w | Prec | 1\% |
| R460 | 321-109 | $133 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R462 | 315-242 | 2.4 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R464 | 322-094 | $93.1 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R465 | 321-080 | $66.5 \Omega$ | 1/8 w | Prec | 1\% |
| R466 | 322-173 | $619 \Omega$ | 1/4 w | Prec | 1\% |
| R467 | 323-137 | $261 \Omega$ | $1 / 2 \mathrm{w}$ | Prec | 1\% |
| R468 | $323-137$ | $261 \Omega$ | $1 / 2 \mathrm{w}$ | Prec | 1\% |
| R481 | 322-193 | 1 k | $1 / 4 \mathrm{w}$ | Prec | 1\% |


| Ckt. No. Pa | Tektronix Part No. |  | Description |  |  | S/N Ro |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R482 | 321-173 | $619 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R483 | 301-151 | $150 \Omega$ | $1 / 2 \mathrm{w}$ |  |  |  | 5\% |  |
| R485 | 315-100 | $10 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  | 5\% |  |
| R487 | 315-151 | $150 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  | 5\% |  |
| R494 | *310-606 | $67 \Omega$ | 4 w | Mica |  |  | 1\% |  |
| R496 | *310-606 | $67 \Omega$ | 4 w | Mica |  |  | 1\% |  |
| R497 | 322-073 | $56.2 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R498 | 322-085 | $75 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec |  | 1\% |  |
| Du4 R504523-0125-00 | $32+25$ | $196 \Omega$ | 1/8 w |  | Prec |  | 1\% |  |
| AL4 R51 4323-0125-00 | 325 | $196 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R525 | 321-161 | $464 \Omega$ | 1/8w |  | Prec |  | 1\% |  |
| R526 | 321-058 | $39.2 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R527 | 321-053 | 34.8 ת | $1 / 8 \mathrm{w}$ |  | Pree |  | $1 \%$ |  |
| R529 | 323-170 | $576 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R530 | 311-390 | 25 k |  | Var |  | CH 2 | 2 OUT | DC LEVEL |
| R531 | 315-392 | 3.9 k | $1 / 4 \mathrm{w}$ |  |  |  | 5\% |  |
| R532 | 323-181 | $750 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R533 | 321-103 | $115 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R535 | 321-161 | $464 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R536 | 321-058 | $39.2 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R539 | 323-170 | $576 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R541 | 315-820 | $82 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  | 5\% |  |
| R543 | 315-820 | $82 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  | 5\% |  |
| R545 | 321-289 | 10 k | 1/8 w |  | Prec |  | 1\% |  |
| R546 | 311-390 | 25 k |  | Var |  | NORM | M TRIC | DC BAL |
| R548 | 321-105 | $121 \Omega$ | 1/8 w |  | Prec |  | 1\% |  |
| R550 | 321-065 | $46.4 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R551 | 321-297 | 12.1 k | $1 / \mathrm{s}$ w |  | Prec |  | 1\% |  |
| R554 | 321-127 | $205 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R560 | 321-065 | $46.4 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R561 | 321-297 | 12.1 k | 1/8 w |  | Prec |  |  |  |
| R564 | 321-127 | $205 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| AL4.R574* | 323-181 | T 750 chms | $1 / 2 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R576 | 323-173 | $619 \Omega$ | $1 / 2 w$ |  | Prec |  | 1\% |  |
| R577 | 321-073 | $56.2 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R579 | 321-145 | $316 \Omega$ | 1/8w |  |  |  |  |  |
| R584 | 323-181 | $750 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R586 | 323-173 | $619 \Omega$ | 1/2w |  | Prec |  | 1\% |  |
| R589 | 321-145 | $316 \Omega$ | 1/8w |  | Prec |  | 1\% |  |
| R591 | 321-169 | $562 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R592 | 321-230 | 2.43 k | $1 / 8 \mathrm{w}$ |  | Prec |  | 1\% |  |
| R595 | 315-270 | $27 \Omega$ | 1/4w |  |  |  | 5\% |  |
| R597 | 303-221 | $220 \Omega$ | 1 w |  |  |  | 5\% |  |

## Switches

| Ckt. No. | Tektronix Part No. |  | Description |  |  | S/N Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unwired | Wired |  |  |  |  |
| SW101 | 260-492 |  | Lever |  | AC/DC Ground |  |
| SW110 | 260-522 | *262-566 | Rotary |  | VOLTS/CM |  |
| SW144 $\dagger$ | 311-385 |  |  |  |  |  |
| SW190 | 260-447 |  | Slide |  | PULL TO INVERT |  |
| SW201 | 260-492 |  | Lever |  | AC/DC Ground |  |
| SW210 | 260-522 | *262-566 | Rotary |  | VOLTS/CM |  |
| SW244才t | 311-385 |  |  |  |  |  |
| SW290 | 260-447 |  | Slide |  | PULL TO INVERT |  |
| SW350 | 260-524 |  | Rotary |  | MODE |  |
| SW540 | 260-523 |  | Rotary |  | TRIGGER |  |

## Transformers

| T371 | $* 120-273$ | Toroid, Bifilar 5T-10T |
| :--- | :--- | :--- |
| T390 | $* 120-273$ | Toroid, Bifilar 5T-10T |

## Transistors

| Q123 | *151-103 | Replaceable by 2N2219 |
| :---: | :---: | :---: |
| Q133 | *151-103 | Replaceable by 2N2219 |
| Q154 | *151-109 | Selected from 2N918 |
| Q164 | *151-109 | Selected from 2N918 |
| Q174 | *151-109 | Selected from 2N918 |
| Q184 | *151-109 | Selected from 2N918 |
| Q223 | *151-103 | Replaceable by 2 N 2219 |
| Q233 | *151-103 | Replaceable by 2N2219 |
| Q254 | *151-109 | Selected from 2N918 |
| Q264 | *151-109 | Selected from 2N918 |
| Q274 | *151-109 | Selected from 2N918 |
| Q284 | *151-109 | Selected from 2N918 |
| Q304 | *151-109 | Selected from 2N918 |
| Q314 | *151-109 | Selected from 2N918 |
| Q324 | *151-109 | Selected from 2N918 |
| Q334 | *151-109 | Selected from 2N918 |
| Q345 | *151-103 | Replaceable by 2 N 2219 |
| Q355 | *151-103 | Replaceable by 2N2219 |
| Q364 | Use *151-108 | Replaceable by 2N2501 |
| Q374 | *151-103 | Replaceable by 2 N 2219 |
| Q383 | *151-103 | Replaceable by 2 N 2219 |
| Q390 | *151-108 | Replaceable by 2 N 2501 |
| Q413 | *151-120 | Selected from 2N2475 |
| Q423 | *151-120 | Selected from 2N2475 |
| Q434 | *151-109 | Selected from 2N918 |

$\dagger$ Furnished as a unit with R144.
$\dagger \dagger$ Furnished as a unit with R244.

| Ckt. No. | Tektronix <br> Part No. |  |
| :---: | :---: | :---: |
| Q444 | *151-109 | Select |
| Q454 | *151-120 | Selec |
| Q464 | *151-120 | Selec |
| Q483 | *151-103 | Replo |
| Q504 | *151-120 | Select |
| Q514 | *151-120 | Select |
| Q523 | *151-120 | Select |
| Q533 | *151-120 | Select |
| Q554 | *151-120 | Select |
| Q564 | *151-120 | Select |
| Q574 | *151-120 | Select |
| Q584 | *151-120 | Select |
| Q593 | *151-103 | Repla |
| V133 | *157-080 | 7586 |
| V233 | *157-080 | 7586 |








## PART 3

## TYPE 11B2 TIME BASE

$\qquad$

## TYPE 11B2 MOD 165K TIME BASE

Tektronix, Inc.

## WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

Copyright © 1964 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.



## SECTION 1

## CHARACTERISTICS

## General Information

The Type 11B2 Time Base plug-in unit is part of a wideband oscilloscope system designed for operation and storage under severe environmental conditions. The Type 11B2 operates in the right-hand compartment of a Tektronix Type 647 Oscilloscope. The environmental characteristics of the Type 11B2 and Type 647 are the same and are described in Section 1 of the Type 647 instruction manual.

Special circuits incorporated in the Type 11B2 permit an accurate, continuously variable delay of up to 50 seconds in the presentation of a sweep after the receipt of a triggering impulse. This delayed-sweep feature permits highly magnified displays of a small portion of an undelayed sweep, accurate measurement of signal time-jitter, and precise time measurements, as well as many other uses.

The following characteristics apply only when the Type 11B2 is operated in a calibrated oscilloscope such as the Tektronix Type 647.

NOTE
Range I and Range II, mentioned in various parts of of this section, refer to the ambient air temperaature ranges that apply for a particular characteristic. Range I is from $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; Range II from $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

## HORIZONTAL DEFLECTION

## Sources

Sweep Generator A<br>Sweep Generator B--Delayed, or delayed and triggered External sources

## A Sweep and Delay Generator

24 calibrated steps provide sweep rates from 5 sec to 0.1 $\mu \mathrm{sec} / \mathrm{cm}$. An uncalibrated control provides continuously variable sweep rates between $0.1 \mu \mathrm{sec} / \mathrm{cm}$ and about $12 \mathrm{sec} / \mathrm{cm}$. The sweep magnifier (MAG at X10) extends the fastest calibrated sweep rate to $10 \mathrm{nsec} / \mathrm{cm}$ (nanosecond $=10^{-9}$ second). Panel lamps light when the magnifier is on and when the sweep rates are uncalibrated. When used as a delay generator, Sweep Generator A provides 21 over-lapping, calibrated delay-time ranges from 50 sec to $1 \mu \mathrm{sec}$. The three fastest A sweep ranges are not normally used for delay generation.

## Accuracy

See Table 1-1.

TABLE 1-1

| A TIME/CM and DELAY TIME | Displayed Sweep Rate |  | ' Delay |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Range I | Range II | Range 1 | Range II |
| 5 SEC - . 1 SEC | $\pm 3 \%$ | $\begin{aligned} & +4 \% \\ & -6 \% \end{aligned}$ | $\pm 2.5 \%$ | $\begin{aligned} & +3 \% \\ & -6 \% \end{aligned}$ |
| $50 \mathrm{mSEC}-.1 \mu$ SEC | $\pm 1.5 \%$ | $\pm 2.5 \%$ |  |  |
| $50 \mathrm{mSEC}-1 \mu \mathrm{SEC}$ |  |  | $\pm 1 \%$ | $\pm 2 \%$ |
| Added when MAG is set to $\times 10$ up to 50 nsec/cm | $\pm 1 \%$ | $\pm 1.5 \%$ |  |  |
| Added when MAG is set to $\times 10: 20 \mathrm{nsec} /$ cm and $10 \mathrm{nsec} / \mathrm{cm}$ | $\pm 2 \%$ | $\pm 2.5 \%$ |  |  |

${ }^{1}$ See Section 2, "Non-Triggered Delay Sweep", for additional details.

## B Sweep

24 calibrated steps provide delayed sweep rates from 5 sec to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. An uncalibrated control provides continuously variable sweep rates between $0.1 \mu \mathrm{sec} / \mathrm{cm}$ and about $12 \mathrm{sec} / \mathrm{cm}$. The sweep magnifier (MAG at X10) extends the fastest sweep rate to $10 \mathrm{nsec} / \mathrm{cm}$. Panel lamps light when the magnifier is on and when the sweep rates are uncalibrated.

## Accuracy

See Table 1-2

TABLE 1-2

| B TIME/CM | Displayed Sweep <br> Rate |  |
| :--- | :---: | :---: |
|  | Range 1 | Range II |
| 5 SEC -.1 SEC | $\pm 3 \%$ | $+2 \%$ <br> $-5 \%$ |
| $50 \mathrm{mSEC}-.1 \mu \mathrm{SEC}$ | $\pm 1.5 \%$ | $\pm 2 \%$ |
| Added when MAG switch <br> is set to $\times 10$ up to 50 <br> nsec. | $\pm 1 \%$ | $\pm 1.5 \%$ |
| Added when MAG is set <br> to $\times 10: 20 \mathrm{nsec} / \mathrm{cm}$ and <br> $10 \mathrm{nsec} / \mathrm{cm}$ | $\pm 2 \%$ | $\pm 2.5 \%$ |

## External Horizontal Input (to B TRIG OR EXT INPUT connector)

Sensitivity About 1 volt/cm with MAG switch set to OFF. About 0.1 volt/ cm with MAG switch set to X10. A lamp on the front panel next to the MAG switch lights when the X10 position is used.
${ }^{2}$ Bandwidth $\quad$ Dc to at least 3 mc (-3-db point) with B COUPLING switch set to DC.
About 16 cps to at least $3 \mathrm{mc}(-3-\mathrm{db}$ points) with B COUPLING switch set to AC.

Input R and C About 1 megohm paralleled by about 30 pf .
${ }^{2}$ Referenced to 6 cm , centered deflection, at 50 kc .

## TRIGGERING

## A Sweep

Facilities
SOURCE
Internal, Line, External, and External $\div 10$.
COUPLING Ac, Ac Low-Frequency Reject, and Dc.

## SLOPE

+ or -.
TRIG MODE Free Run, Automatic, Normal, and Single Sweep.
TRIG LEVEL See Table 1-6.
HF STABILITY For jitter reduction at high frequencies. Internal Triggering Sensitivity (with Type 10A2 plug-in unit)

See Table 1-3.
TABLE 1-3

| Frequency | Peak-To-Peak Crt Deflection (Range 1) |  |
| :--- | :---: | :---: |
|  | Typ. | Min. |
| To 50 kc | 1 mm | 2 mm |
| To 50 mc |  | 10 mm |

External Triggering Sensitivity
See Table 1-4.
TABLE 1-4

| Frequency | Peak-To-Peak Voltage (Range 1) |  |
| :--- | :---: | :---: |
|  | Typ. | Min. |
| To 50 kc | 75 mv | 125 mv |
| ${ }^{3}$ To 50 mc | 150 mv | 250 mv |

${ }^{3}$ HF STABILITY control used to minimize jitter above 5 or 10 mc .

## A TRIG IN Connector Input Characteristics

See Table 1-5.

## TABLE 1-5



| SOURCE | COUPLING | $\begin{gathered} C_{p} \\ (p f) \end{gathered}$ | $\mathrm{C}_{5}$ | $\begin{gathered} \mathrm{R}_{\mathrm{p}} \\ (\operatorname{meg} \Omega) \end{gathered}$ | Max Input Voltage (Peak) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EXT | DC | $\approx 25$ | shorted | $\approx 1$ | $\pm 75 \mathrm{v}$ |
|  | AC | $\approx 25$ | $\approx 0.01 \mu \mathrm{f}$ | $\approx 1$ | $\pm 500 \mathrm{v}$ |
|  | AC LF REJ | $\approx 25$ | $\approx 100 \mathrm{pf}$ | $\approx 0.091$ | $\pm 500 \mathrm{v}$ |
| EXT | DC | $\approx 5$ | shorted | $\approx 10.1$ | $\pm 500 \mathrm{v}$ |
|  | AC | $\approx 5$ | $\approx 0.01 \mu \mathrm{f}$ | $\approx 10.1$ | $\pm 500 \mathrm{v}$ |
| 10 | AC LF REJ | $\approx 5$ | $\approx 100 \mathrm{pf}$ | $\approx 9.2$ | $\pm 500 \mathrm{v}$ |

A TRIG LEVEL Control Voltage Range (external triggering) See Table 1-6.

## NOTE

The voltage range of the TRIG LEVEL control indicates the maximum external peak voltage that will permit triggering at any amplitude point on the signal. Signals with greater amplitudes can be used and will provide triggering, but the range of trigger-point selection is still limited to the TRIG LEVEL control voltage range.

TABLE 1-6

| SOURCE | COUPLING | Voltage Range |  |
| :--- | :---: | :---: | :---: |
|  |  | Typ. | Min. |
| EXT | AC DC, or | $\pm 6.5 \mathrm{v}$ | $\pm 5 \mathrm{v}$ |
|  | $A C$ LF REJ |  |  |
| EXT $\div 10$ | $A C$ or DC | $\pm 65 \mathrm{v}$ | $\pm 50 \mathrm{v}$ |
|  | $A C$ LF REJ |  | $\pm 500 \mathrm{v}$ |

## Automatic Triggering

The A sweep triggering characteristics stated previously also apply for automatic triggering except that the triggering signal frequency must be higher than about 20 cps .

## A Single Sweep

Permits only one triggered sweep following each reset pulse. Reset pulse can be supplied internally or externally (see Section 2, "Normal Sweep Operation'). External pulse amplitude must be at least 5 volts peak; risetime must be $10 \mu \mathrm{sec}$ or less.
B Sweep (triggered after delay)
Facilities
SOURCE $\quad$ Internal and External.
COUPLING Ac and Dc.
SLOPE $\quad+$ or.-
TRIG LEVEL $\quad$ See "B TRIG LEVEL Control Voltage
Range".
Triggering Sensitivity
Same as for A Sweep.
B TRIG IN Connector Input $R$ and $C$
See Table 1-7.

TABLE 1-7


| COUPLING | $C_{p}(p f)$ | $C_{s}$ | $R_{p}$ <br> $(M \Omega)$ | Max. Input <br> Voltage (Peak) |
| :---: | :---: | :---: | :---: | :---: |
| DC | $\approx 30$ | shorted | $\approx 1$ | 500 v |
| AC | $\approx 30$ | $\approx 0.01 \mu \mathrm{f}$ | $\approx 1$ | 500 v |

B TRIG LEVEL Control Voltage Range (external triggering)
Typically $\pm 13$ volts, $\pm 10$ volts minimum (see NOTE under "A TRIG LEVEL Control Voltage Range").

## OUTPUT SIGNALS

+ GATE (A and B)

| Output Voltage | About +15.2 volts peak into a high <br> resistance load. |
| :--- | :--- |
| Output Resistance | About 1600 ohms. |
| Output Current | About 9 ma into zero ohms. |

## SWEEP (A and B)

| Output Voltage | About +10 volts peak into a high <br> resistance load. |
| :--- | :--- |
| Output Resistance | About 750 ohms. |
| Output Current | About 13 ma peak into zero ohms. |

## MECHANICAL CHARACTERISTICS

## Construction

Aluminum-alloy chassis with chrome-plated brass side rails.

Front panel is photo-etched, anodized aluminum.

## Dimensions (approx.)

$61 / 4$ inches high.
$41 / 4$ inches high.
$143 / 4$ inches deep (overall).

## Weight

About 6.5 pounds, net.

## Accessories Included

|  | Tektronix <br> Part No. |
| :--- | ---: |
| 1—BSM to BNC coaxial adapter | $103-036$ |
| 2-Instruction Manuals |  |

Part No.
103-036


## SECTION 2

## OPERATING INSTRUCTIONS

## FIRST-TIME OPERATION

The following control and switch settings for the Type 11B2 can be used for a wide range of measurement applications with maximum convenience for the operator. The operating conditions established by these settings also provide a starting point for the operator who is learning to use the instrument.

| HORIZ DISPLAY | A |
| :--- | ---: |
| TRIG MODE | AUTO |
| A COUPLING | AC |
| A SOURCE | INT |
| VARIABLE A (TIME/CM) | CALIB (fully clockwise) |
| MAG | OFF |

The Type 11B2 now provides the time base for a wide range of measurements with vertical deflection signals above about 20 cps . In many cases, only the A TIME/CM switch and A TRIG LEVEL control may require setting for a particular measurement.
The appropriate A TIME/CM switch setting depends on the frequency of the applied signal and the type of measurement. For example, to observe about 2 cycles of the oscilloscope 1-Kc Calibrator signal, set the A TIME/CM switch to .2 mSEC .

In order to obtain a triggered display of the vertical deflection signal with the control settings mentioned, three conditions must be met:

1. The frequency of the vertical deflection signal must be about 20 cps or greater (below 20 cps , TRIG MODE switch must be set to NORM).
2. The vertical deflection amplitude must be at least one-half centimeter.
3. The A TRIG LEVEL control must be properly adjusted.

If the first two conditions are met, a stable display can be obtained with the A TRIG LEVEL control set near zero. When the observed deflection amplitude is a fraction of a centimeter, the range of adjustment is relatively narrow, but broadens with increased vertical deflection.

## CONTROL AND SWITCH FUNCTIONS NOTE

A more complete description of the controls and switches is included at the rear of this section.

## TRIGGER A

TRIG MODE

FREE RUN

Triggering mode. Selects the manner in which each Time Base A sweep will be initiated:

Provides recurrent sweeps; the completion of one sweep causes the next sweep to begin.

SINGLE SWEEP and RESET

LINE

EXT and
EXT $\div 10$

COUPLING
$A C$

AC LF REJ

## DC

SLOPE (+ or -)

TRIG LEVEL

HF STABILITY

Automatic. Permits each sweep to be triggered when the triggering signal repetition rate is about 20 cps or greater. For lower repetition rates or in the absence of a triggering signal, the sweeps are recurrent, as in the FREE RUN position.
Normal. Each sweep will be triggered by the signal from the Trigger Generator.

Often used when displays of nonrepetitive signals are photographed. When the RESET lamp is lit, the time base is ready to produce one triggered sweep. When the one sweep is complete, the RESET lamp will not be lit and the time base will no longer be triggerable. Before the cycle can repeat, the RESET button must be pushed or a reset pulse must be applied to pin F of J101 on the rear of the oscilloscope (pin C is ground).

Selects the source of the triggering signal:
Internal. Obtains the sweep triggering signal from the vertical plug-in unit.

Obtains the sweep triggering signal from a low-voltage winding on the oscilloscope power transformer.

External and external divided-by-ten. Permits external signals applied to the TRIG IN connector to be used for sweep triggering. High amplitude triggering signals can be attenuated by using the EXT $\div 10$ position.

Permits acceptance or rejection of some triggering signal characteristics:

Rejects de and attenuates very lowfrequency ac triggering signals.
Ac low-frequency reject. Rejects dc and ac triggering signals below about 1000 cps.
Accepts ac and dc triggering signals.
Determines whether sweep triggering will occur during the positive-going $(+)$ or negative-going $(-)$ portion of the triggering signal.
Triggering level. Selects the amplitude point on the triggering signal where sweep triggering will occur.
High-frequency stability. Used if necessary with triggering signals above
about $5-10 \mathrm{mc}$ to obtain best display stability. Has no effect at lower triggering signal frequencies.

## tIME BASE A

TIME/CM AND DELAY TIME

VARIABLE A
Provides 24 calibrated display sweep rates and 24 calibrated ranges of time delay for delayed sweep operation. The number bracketed by the two black lines on the clear plastic knob flange is the sweep time per centimeter and the delay time range. To change the sweep rate and delay range, the concentric $A$ flange and B knob must first be interlocked by positioning the dot on the $B$ knob between the two black lines on the flange.
Provides continuously variable uncalibrated sweep rates and delay ranges between about 0.4 and 1.0 times that indicated by the TIME/CM AND DELAY TIME switch. Whenever VARIABLE A is not set to CALIB, the UNCAL lamp will light.

DELAY TIME MULT Delay time multiplier. A continuously variable control that accurately multiplies the delay time indicated by the DELAY TIME switch to a maximum of ten times.

## HORIZONTAL DISPLAY

## HORIZ DISPLAY

B DLY'D BY A B sweep delayed by A sweep (to the left of $A$ on the panel). The oscilloscope horizontal deflection is provided by Time Base B. The beginning of $B$ sweep is delayed from the beginning of $A$ sweep by a time equal to the product of the A DELAY TIME switch and DELAY TIME MULT dial settings.

A INTEN BY B A sweep display intensified by B sweep (to the left of $A$ on the panel). The oscilloscope horizontal deflection is provided by Time Base A. A portion of the display has greater brightness than the remainder. The intensified zone provides a visual check on the relative duration and time-position of the delayed $B$ sweep with respect to A sweep.
A The oscilloscope horizontal deflection is provided by Time Base A. Delayed sweep is inoperative.
A INTEN BY B A sweep display intensified by $B$ and
B DLY'D BY A sweep and $B$ sweep delayed by $A$ sweep. Same as previously described for A INTEN BY B and B DLY'D BY A. Addition of the arrows indicates that the B [DLY'D SWEEP] triggering con-
trols and switches must be used. Instead of B sweep beginning at the end of the selected delay period, Time Base B becomes triggerable. B sweep must be triggered after the delay period, but before the end of A sweep.
EXT INPUT External input. External signals applied to the B TRIG IN OR EXT INPUT connector provide horizontal deflection if the B SOURCE switch is set to EXT. The B COUPLING switch provides either ac or dc signal coupling.
MAG
Magnifier. In the X10 position, the one-centimeter segment at the center of an unmagnified crt display is horizontally expanded to full graticule width. Any other one-centimeter segment of the original unmagnified display may then be observed in magnified form by furning the oscilloscope HORIZ POSITION control. The lamp below the X10 designation on the instrument panel lights whenever the magnifier is on.

## TRIGGER B (DLY'D SWEEP)

## NOTE

For trigger purpose, the SOURCE, COUPLING, and SLOPE switches, and the TRIG LEVEL control operate only when the HORIZ DISPLAY switch is set to either of the delayed sweep positions which have arrows pointing to the trigger B block. The SOURCE and COUPLING switches have additional functions when the HORIZ DISPLAY switch is set to EXT INPUT.

SOURCE

COUPLING Permits acceptance or rejection of some triggering signal or external horizontal deflection signal characteristics:
AC Rejects de and attenuates very lowfrequency signals.
DC Accepts ac and dc signals.
SLOPE ( + or - ) Determines whether B sweep triggering will occur during the positive-going $(+)$ or negative-going ( - ) portion of the triggering signal.

TRIG LEVEL Triggering level. Selects the amplitude point on the triggering signal where $B$ sweep triggering will occur.

## TIME BASE B (DLY'D SWEEP)

TIME/CM

B (variable)

Provides 24 calibrated delayed-sweep rates. To set the delayed-sweep rate without changing delaying (A) sweep, pull outward on the DELAYED SWEEP knob. Turn the knob at least one position clockwise before allowing it to move inward. DELAYED SWEEP can now be changed independently as long as it is not set to the same position as delaying sweep.
Provides continuously variable uncalibrated B sweep rates between about 0.4 and 1.0 times the rate indicated by the TIME/CM switch. Whenever B is not set to CALIB, the UNCAL lamp will light.

## NORMAL SWEEP OPERATION

## General Information

The control and switch settings listed previously under "First-Time Operation" establish the basic conditions necessary for most measurements.
The following paragraphs describe in detail each control and switch used in normal sweep operation.

## Sweep Triggering

In most cases, it is desirable for a repetitive signal to produce a stationary display on the crt so the waveform can be examined in detail. As a necessary condition for this type of display, the start of each sweep must bear a definite fixed-time relationship to the events in the input signal. This can be accomplished by using the displayed signal or another related signal to start (trigger) each single or repetitive sweep.

The following controls provide complete control over the means of triggering the A sweep.

## TRIG MODE

FREE RUN. Free-running operation produces continuously repetitive sweeps, independent of any triggering signal. These sweeps provide a reference frace, as does the AUTO position. This method of operation is useful in applications where a device under test requires a trigger or input signal. The front-panel + GATE A or SWEEP A output signal may be used to operate the device under test. The resulting signals displayed on the crt will then be synchronized with the sweep.

AUTO. Automatic triggering is frequently used for ease of operation and because of the reference trace produced in the absence of a triggering signal. It can be used to observe a large variety of signals with ease, requiring little or no resetting of the triggering controls.

Automatic triggering is useful for obtaining stable displays of signals above about 20 cps . In AUTO, the normal condition is for the time base to free run. If a triggering signal is received, the free-running condition is interrupted,
but this first event in the signal does not trigger a sweep. If the first signal event is followed by a second event within about 80 milliseconds, a triggered sweep is initiated, and if not, the free-running sweep resumes.

Since the dormant period is limited to about 80 milliseconds, signals having frequencies below about 20 cps cannot produce a triggered sweep in the AUTO mode. For such signals, the NORM mode must be used.
NORM. In the NORM or normal mode, the usual condition is for the time base to be dormant. Each sweep is initiated by the triggering signal.
SINGLE SWEEP. Single sweep is often used when photographing nonrepetitive waveforms and in other applications where the vertical input signal continually varies in amplitude, shape, or time interval. A continuous display of such signals would appear as a jumbled mixture of many different waveforms and would yield little or no useful information.

The Type 11B2 permits you to obtain a single sweep presentation and eliminate all subsequent sweeps so information is clearly recorded without confusion resulting from multiple traces.

When the TRIG MODE switch is set to SINGLE SWEEP, time base A becomes inoperative. The time base can be "reset" to the triggerable condition by pressing the RESET button or by applying a fast-rise positive-going pulse of about 5 -volts amplitude to pin F of J 101 on the rear panel of the oscilloscope (pin $C$ is ground). If there is sufficient delay before triggering, the RESET lamp will light to show that time base A is ready to be triggered. When the time base has been triggered and one sweep completed, the time base again becomes inoperative and the lamp will be extinguished.

## SOURCE

INT. It is usually convenient to obtain the sweep triggering signal internally (INT) from the vertical deflection system.
LINE. If the displayed signal frequency is related to the power-line frequency, the line source can be used. This source is particularly useful when the displayed signal will not allow stable internal triggering.

EXT. External triggering is often used when signal tracing in amplifiers, phase-shift networks, and wave-shaping circuits. The signal from a single point in the circuit can be connected to the TRIG IN connector through a signal probe or a cable. With this signal triggering the sweep, it is possible to observe the shaping, amplification, and time relationship of a signal at various points in the circuit without resetting the triggering controls.

EXT $\div$ 10. The only difference between external (EXT) and external divided-by-10 (EXT $\div 10$ ) is that the latter attenuates the external triggering signal. Attenuation of high-amplitude external triggering signals is desirable to broaden the TRIG LEVEL control range. (The division factor is X100 when ac low-frequency reject coupling is used.)

## COUPLING

The trigger A COUPLING switch permits you to accept or reject certain properties of triggering signals. Three means of coupling are provided:
DC. Dc coupling allows the trigger circuits to receive signals of all frequencies and dc levels.

AC. Ac coupling rejects the dc component of triggering signals and attenuates ac signals below about 20 cps .
AC LF REJ. Ac low-frequency reject coupling rejects the dc component of triggering signals and rejects ac signals below about 1000 cps .

In general, ac coupling is used. It will be necessary to dc couple for very low-frequency triggering signals. If line-frequency hum is mixed with the desired high-frequency triggering signal, best results may be obtained using ac low-frequency reject coupling.

Ac low-frequency reject coupling should also be used when triggering internally from multi-trace plug-in units operated in the alternate-trace mode (unless the "trigger from a single channel only" feature of the plug-in is used). For additional information, see the multi-trace vertical plug-in unit instruction manual.

## SLOPE

Sweeps can be triggered during either the rising or falling portion of the triggering signal. When the display consists of several cycles of the input signal, either setting of the SLOPE switch may be used. However, if you wish to display less than one full cycle of the input signal, the SLOPE switch permits you to start the sweep on the desired slope; either rising (+ slope) or falling (- slope).

## TRIG LEVEL

The TRIG LEVEL control determines the instantaneous voltage on the triggering signal at which the sweep is triggered. (This instantaneous voltage can include a dc component if the COUPLING switch is set to DC.) With the SLOPE switch at + , adjustment of the TRIG LEVEL control makes it possible to trigger the sweep consistently at virtually any point on the positive slope of the triggering signal. Likewise, with the SLOPE switch at -, adjustment of the TRIG LEVEL control makes it possible to trigger the sweep consistently at virtually any point on the negative slope of the triggering signal.

## HF STABILITY

The HF STABILITY control is used only when the triggering signal frequency is above 5 or 10 megacycles, and then only if the triggered sweep display tends to jitter horizontally. In such cases the control may be set for minimum jitter. At lower frequencies the setting of the HF STABILITY control is not important.

## Sweep Rates

Time Base A has 24 calibrated sweep rates ranging from 0.1 microsecond per centimeter to 5 seconds per centimeter. Calibrated sweep rates are obtained only when the VARIABLE A control is snapped in the fully clockwise position. The VARIABLE A control and MAG switch, used in conjunction with the TIME/CM switch, permit the sweep rate to be varied continuously between 10 nanoseconds and about 12 seconds per centimeter. (The MAG switch is discussed under "Sweep Magnification".) All sweep rates ob-
tained with the VARIABLE A control in any but the fully clockwise position are uncalibrated. Uncalibrated sweep rates are indicated when the UNCAL lamp is lit. However, this lamp will also light when the B variable control is not set to CALIB.

The sweep-rate value being used appears between the two black lines on the clear plastic flange of the TIME/CM knob. If the DELAYED SWEEP knob is pulled outward, it will disengage from the clear plastic flange. This permits changing the sweep rate of the delayed sweep without a change in the delay time generated by the delaying sweep. Hence, at times you may find that furning the knob will not change the A sweep rate. If this occurs, turn the knob until the indicator dot is between the black lines on the flange. The knob and the flange will then lock together and the A sweep rate can be changed.

## Sweep Magnification

Any signal displayed on the oscilloscope can be expanded horizontally 10 times by setting the MAG switch to $\mathrm{X10}$. This switch has the same effect whether the horizontal deflection is produced by one of the time bases in the Type 11B2 or by an external signal passing through the amplifier in the Type 11B2. The lamp next to the X10 panel marking lights whenever the magnifier is turned to $\mathrm{X10}$.

When internal sweeps are used, the magnifier increases the observed sweep rate by 10 times the TIME/CM switch setting. The true sweep rate is then found by multiplying the setting of the TIME/CM switch by 0.1.

The 1 -centimeter portion at the horizontal center of the graticule of an unmagnified display is expanded and remains centered in the full 10 -centimeter width of the graticule when the magnifier is turned on. Any other 1 -centimeter portion of the original unmagnified display can then be observed in magnified form by using the HORIZ POSITION control to position that portion on the crt.

## NON-TRIGGERED DELAYED SWEEP

## Introduction

The following procedures describe various measurements and other operations that can be performed by using delayed sweep.

First, set the controls and switches as listed in Table 2-1. Then, set the oscilloscope HORIZ POSITION control so the trace begins precisely af the left edge of the graticule. Notice the position of the intensified segment in the trace.

Now set the A DELAY TIME switch to .2 SEC and B TIME/CM switch to 20 mSEC . The intensified segment should be at the same position as with the previous sweep rates.

Connect the SWEEP B output on the Type 11B2 to the vertical plug-in unit input. Notice that the B sweep sawtooth and the intensified segment in the trace start and end at the same time. This display shows that B produces one sweep during each A sweep. The B trigger switches and B TRIG LEVEL control have no effect on the operation.

The A sweep rate is 0.2 second per centimeter and the intensified segment begins 5 centimeters after the beginning of the trace. Hence, the B sweep starts one second after the A sweep ( 0.2 second per centimeter times 5 centimeters).
The number of centimeters between the beginning of the trace and the beginning of the intensified segment is established by the setting of the DELAY TIME MULT dial. Therefore, with any dial setting, the time difference between the beginning of the $A$ and $B$ sweeps is the product of the A DELAY TIME switch and the DELAY TIME MULT dial settings.

## TABLE 2-1

Set the applicable front-panel controls as follows:

## Type 11B2

| A TRIG MODE | AUTO |
| :--- | ---: |
| A SOURCE | INT |
| A COUPLING | AC |
| A SLOPE | + |
| A TRIG LEVEL | 0 |
| A DELAY TIME | 1 mSEC |
| B TIME/CM | .1 mSEC |
| VARIABLE A (and B) | CALIB |
| HORIZ DISPLAY | A INTEN BY B non-triggered |
|  | (to the left of A on the panel) |
| MAG | OFF |
| DELAY TIME MULT | 5.00 |

## Oscilloscope

```
IKC CALIBRATOR
HORIZ POSITION
INTENSITY
```

VOLTS/CM
VARIABLE
AC-DC-GND
MODE
POSITION
TRIGGER
PULL TO INVERT

10 VOLTS
Centered
So both intensity levels in the trace are easily seen

## Vertical Unit

he following procedures describe five common applications of the delayed-sweep feature. The applications include time measurements which are more accurate than those obiained directly from the crt display, and other operations that can only be performed on oscilloscopes having a delayed-sweep feature.

## Demonstration 1

Demonstration 1 describes how to measure the time between two pulses; the first of which triggers Time Base A.

Set the Type 11B2 controls as listed in Table 2-1 except as follows:
A DELAY TIME
. 1 mSEC
B TIME/CM
$1 \mu$ SEC

Apply the oscilloscope 1-Kc Calibrator signal to the vertical input. If necessary, adjust the A TRIG LEVEL control to obtain a stable display. The display should consist of about one cycle of the square-wave signal.

Set the DELAY TIME MULT dial so the falling portion of the square wave is intensified. Set the HORIZ DISPLAY switch to B DLY'D BY A non-triggered (to the left of A on the panel). The display should now be a horizontally expanded version of the signal observed in the intensified segment of the previous display.

Set the DELAY TIME MULT dial so the trace starts at about the $50 \%$ amplitude level of the falling portion of the square wave. Multiply the DELAY TIME MULT dial reading (e.g. 5.03 ) by the A DELAY TIME switch setting. The product is the time duration of the square-wave posi-tive-going half cycle.

Accuracy. Determined by the combination of ALL the following factors:

1. The basic accuracy of time measurements made by using the Time Base A Generator is as stated in Section 1 of this manual. In measurements made directly from the crt, the accuracy figure is the percentage of the total time represented within the 10 -centimeter graticule (percent of full scale). However, when the measurement is made by using the sweep-delay feature, the accuracy is a percentage of the time being measured.
2. The effect of sweep-delay system linearity on measurement accuracy depends on the DELAY TIME MULT dial setting used. Inaccuracy due to non-linearity is generally negligible when dial settings above 2.0 or 2.5 are used. It is usually possible to avoid lower dial settings by setting the DELAY TIME switch for the shortest calibrated interval that will provide adequate delay range.
3. The triggering point can affect measurement accuracy, since the triggering signal does not rise instantaneously. For example, if the first portion of a pulse rise triggers the sweep, most of the pulse risetime will be included in the measurement. This is of little concern in measurements such as Demonstration 1 where the risetime is small in relation to the measured time. As the risetime, in relation to the measured time increases, it becomes more important that the triggering point be known. One way to establish a known triggering point is to set the TRIG LEVEL control at one end of the range in which a stable-triggered $A$ intensified by $B$ display is obtained. Most of the signal risetime will be included in the measurement when:
a. The A trigger SLOPE switch is set to + and TRIG LEVEL control is set to the - end of the triggering range (positive-going signals).
b. The A trigger SLOPE switch is set to - and TRIG LEVEL control is set to the + end of the triggering range (negative-going signals).
4. The A Trigger Generator, Time Base A Generator, and Time Base B Generator circuits typically require a net total of about 30 to 40 nanoseconds to respond to the signal event which triggers $A$. This small inherent delay need not be considered unless it is a significant percentage of the time being measured. When necessary, add the net circuit delay time to the measured time.

The method described in Demonstration 1 will provide a time measurement accuracy within $1.5 \%$ of reading. Accuracy will be greatest when:
a. DELAY TIME MULT dial settings above 2.0 or 2.5 are used.
b. The event triggering $A$ has a fast risetime.
c. DELAY TIME switch settings of $1 \mu \mathrm{sec} / \mathrm{cm}$ or slower are used.

## Demonstration 2

Demonstration 2 describes how to measure the time between two pulses, neither of which triggers $A$.
Set the Type 11B2 controls as listed in Table 2-1 except as follows:

## A DELAY TIME .2 mSEC

Apply the oscilloscope $1-K c$ Calibrator signal to the vertical input. If necessary, adjust the A TRIG LEVEL control to obtain a stable display. The display should consist of about two cycles of the square-wave signal. Set the DELAY TIME MULT dial so the square-wave rise located near the center of the display is intensified.

Set the HORIZ DISPLAY switch to B DLY'D BY A nontriggered (to the left of $A$ on the panel). The display should now be a horizontally expanded version of the intensified segment observed in the previous display.

Set the DELAY TIME MULT dial so the $50 \%$ amplitude level of the square-wave rise intersects the vertical line at the center of the graticule. Note the exact DELAY TIME MULT dial setting (e.g. 5.04). Turn the DELAY TIME MULT dial clockwise until the $50 \%$ amplitude level of the squarewave fall intersects the same vertical graticule line used with the previous dial setting. Again note the exact DELAY TIME MULT dial setting.

Subtract the first dial setting from the second. The product of this difference and the A DELAY TIME switch setting equals the time duration of the square-wave positive. going half cycle (between the $50 \%$ amplitude points). In this case, the time duration should be between 0.494 and 0.506 millisecond.

Accuracy. Determined by the combination of ALL the following factors:

1. The basic accuracy of the A delay time as described in Demonstration 1.
2. The error that the sweep delay system linearity adds to the measurement depends on the numerical difference between the two dial settings used. The error decreases as the numerical difference increases. The time error in this type of measurement is less than $0.15 \%$ of the full-scale delay $( \pm 0.15 \%$ of ten times the A DELAY TIME switch setting). However, this applies only when the DELAY TIME

MULT dial settings are separated by at least one full dial turn.

NOTE
When the separation between dial settings is one full dial turn or less, the desired time measurement can often be made more accurately by direct reading from a magnified crt display. See Demonstration 3.
3. The accuracy of time measurements made according to Demonstration 2 is independent of the inherent circuit delays and of the triggering point (discussed in Demonstration 1), provided the A TRIG LEVEL control setting is the same for each of the two dial readings.

The method described in Demonstration 2 provides time measurement accuracy within $1.5 \%$ of reading. Accuracy will be greatest when:
a. The numerical difference between the two DELAY TIME MULT dial settings is greatest.
b. DELAY TIME switch settings of $1 \mu \mathrm{sec} / \mathrm{cm}$ or slower are used.

## Demonstration 3

Demonstration 3 describes how to accurately magnify any event within a series of events by factors of two to several thousand.

Complex signals often consist of a number of individual events of different amplitudes. Since the trigger circuits of the Type 11B2 are sensitive to signal amplitude, a stable display will normally be obtained only when the sweep is triggered by the event having the greatest amplitude. The B DLY'D BY A non-triggered mode (to the left of $A$ on the HORIZ DISPLAY switch) permits the start of a sweep to be delayed for a selected time after the signal event having the greatest amplitude. Any event within the series of events may then be displayed in magnified form as follows:

Set the Type 11B2 controls as listed in Table 2-1. Apply the oscilloscope 1-Kc Calibrator signal to the vertical input. If necessary, adjust the A TRIG LEVEL control to obtain a stable display. The display should consist of several cycles of the square-wave signal. Set the DELAY TIME MULT dial to intensify one of the positive-going pulses.

Set the HORIZ DISPLAY switch to B DLY'D BY A nontriggered (to the left of $A$ on the panel). The display now contains the same signal information as the intensified trace segment in the previous display, but horizontally expanded (magnified) ten times.
Increase the B sweep rate to 1 microsecond per centimeter. Set the DELAY TIME MULT dial to position a squarewave rise on the crt. The display now provides X 1000 magnification over that previously observed with the HORIZ DISPLAY switch in A INTEN BY B.

Slowly turn the DELAY TIME MULT dial. Note that any portion of the square-wave display can be brought into view in magnified form.

The DELAY TIME MULT dial indication corresponds to the number of centimeters between the beginning of the $A$ INTEN BY B trace and the beginning of the intensified trace segment (e.g. $7.00=7$ centimeters).

The B DLY'D BY A display will probably exhibit some horizontal jitter. The time jitter contributed by the delay system is less than $5 \times 10^{-4}$ times the A DELAY TIME switch setting. Since the sweep rate of the delayed sweep is now 1 microsecond per centimeter, the jitter due to the delay system is less than one-half centimeter.
Accuracy. Depends solely on the displayed B sweep-rate accuracy as listed in Section 1 of this manual.

## Demonstration 4

Ordinarily, the signal to be displayed is also used to trigger the oscilloscope. In some instances, it may be desirable to reverse this situation. The sweep-related output pulses, available at the front panel of the Type 11B2 can be used as the input or triggering signal for external devices. The output signal of the external device will then produce a stable display while the oscilloscope sweep free runs.

Set the Type 11B2 controls as listed in Table 2-1 except as follows:

## A SOURCE EXT <br> DELAY TIME MULT

Connect the Type 11B2 + GATE B output to the vertical input. The display should consist of a positive-going pulse about 1 -centimeter wide. This pulse is available from the Type 11B2 during each A sweep. In a practical application, the pulse would not be applied to the vertical input but to some external device to be tested. The pulse would serve as the trigger pulse or input signal for the external device and the output of the device would be displayed on the oscilloscope. Since the pulse has a known time relationship to each A sweep, the output of the device would provide a stable display on the oscilloscope, as though the oscilloscope were triggered in the normal manner.

## Demonstration 5

The Type 11B2 + GATE B output signal can provide a pulse with a variable up rate and duty factor.
Set the Type 11B2 controls as follows:
HORIZ DISPLAY A INTEN BY B non-triggered (to the left of $A$ on the panel)

```
DELAY TIME MULT
TRIG MODE
About 0.30
```

TRIG MODE FREE RUN
The pulse signal is available at the + GATE B connector. Monitor the signal on another oscilloscope and establish the desired pulse repetition rate by setting the A DELAY TIME switch and VARIABLE A control. Establish the desired duty factor by setting the B TIME/CM switch and variable B control.

The maximum pulse-repetition frequency that can be obtained in this manner is about 130 kc . Maximum duty factor is about 0.9 , decreasing to about 0.15 with faster sweep rates.

## TRIGGERED DELAYED SWEEP

Complex signals often contain a number of individual events of different amplitudes. Since the trigger circuits
in the Type 11B2 are sensitive to signal amplitude, a stable display will normally be obtained only when the sweep is triggered by the event having the greatest amplitude.

The B DLY'D BY A triggered position (to the right of $A$ on the HORIZ DISPLAY switch) provides a means of triggering the sweep by events other than those having the greatest amplitude. The following instructions demonstrate that Time Base B can be triggered by virtually any event within a series of events.

Set the Type 11B2 controls as listed in Table 2-1 except as follows:

| B COUPLING | AC |
| :--- | ---: |
| B SOURCE | INT |
| B SLOPE | + |
| B TRIG LEVEL | 0 |

Connect the oscilloscope CAL OUT signal to the vertical input. If necessary, adjust the A TRIG LEVEL control to obtain a stable square-wave display.
Turn the DELAY TIME MULT dial about 2 turns in either direction. Notice that the brightened segment in the display moves smoothly across the crt.

Set the DELAY TIME MULT dial so the brightened segment begins about the middle of a pulse top. Set the HORIZ DISPLAY switch to $B$ DLY'D BY A non-triggered (to the left of A) and notice that this display also begins in the middle of a pulse top. Now, set the HORIZ DISPLAY switch to A INTEN BY B triggered (to the right of A). Notice that the brightened segment in the display has shifted to the next pulse on the right. (If the brightened segment is not present, or is unstable, readjust the B TRIG LEVEL control.) Turn the DELAY TIME MULT dial several full turns. The brightened segment in the display should jump from one pulse to the next. Set the HORIZ DISPLAY switch to B DLY'D BY A triggered (to the right of A) and notice that the display now begins within the rising portion of the pulse. With the present display, turning the DELAY TIME MULT dial will cause no change in the display, since all of the 1-Kc Calibrator pulses are the same shape. However, if the input signal consists of a repeating series of dissimilar pulses, turning the dial will provide a triggered display of each pulse in the series (provided the B TRIG LEVEL control is set for triggering on the smallest pulse).

The display is produced in the following manner:
Time Base B produces one sweep during each A sweep. $B$ sweep will begin at some time after the start of $A$ sweep. This time is the total of the A DELAY TIME switch setting multiplied by the DELAY TIME MULT dial setting, plus the time between the end of this delay interval and the next event in the signal which can trigger $B$.
$B$ sweep occurs only if $B$ is triggered before $A$ sweep ends. If A sweep ends while B sweep is in progress, B sweep will also terminate. If this occurs, $a \operatorname{B}$ delayed by $A$ display will not be the full width of the graticule.

## EXTERNAL HORIZONTAL DEFLECTION

For special applications, you can produce horizontal deflection with an externally derived signal. This permits you to use the oscilloscope system to plot one function

## Operating Instructions-Type 11B2 Mod 165K

against another (e.g. Lissajous figures). However, the system is not intended for qualitative phase-angle measurements.

To use an external signal for horizontal deflection, connect the signal to the B TRIG IN OR EXT INPUT connector.

Set the HORIZ DISPLAY switch to EXT INPUT and the B SOURCE switch to EXT. The signal can be either ac or dc coupled to the deflection amplifier by setting the B COUPLING switch. The MAG switch can be turned to X10 to increase the horizontal deflection by a factor of 10 .

## SECTION 3

## CIRCUIT DESCRIPTION

## General Information

This portion of the instruction manual presents a detailed discussion of the Type 11B2 circuitry. This discussion refers to various block diagrams inserted in the text and to the schematics in Section 5.

A block diagram of the Type 11B2 is also provided in Section 5. The relationship of the circuits in each block to those in other portions of the system is discussed in the detailed description of that block.

## TRIGGER GENERATOR

For best triggering stability, the time-base generators require trigger pulses that are representative of the triggeringsignal frequency, but with greater wave-shape consistency than the signals generally encountered. The Trigger Generator converts the triggering signal into a pulse having a consistently fast risetime while retaining the characteristic repetition frequency of the triggering signal. The converted pulse is then used to trigger the time-base sweep.

Sections A and B of the Trigger Generator operate similarly for sweep triggering; but section B has an alternative function. The input cathode follower in section B is used as an isolation stage when external horizontal deflection signals are used.

The block diagram, Fig. 3-1, shows the basic elements of the Trigger Generator.

The A triggering signal can be selected from three sources: internal, line, or external. External (EXT) triggering signals are connected to the A TRIG $\mathbb{N}$ connector and highamplitude external signals can be attenuated by setting the A SOURCE switch to EXT $\div 10$. This forms an input divider consisting of R29 and R30A. If the COUPLING switch is set to AC LF REJ, about 100 times attenuation is obtained because R30B parallels R30A.
The line-source signal comes from a divider connected to a low-voltage winding of the oscilloscope power transformer.

The internal-source signal comes from the vertical deflection plug-in unit to the Type 11B2 Internal Trigger Preamp. The Preamp consists of a push-pull driven, single-ended output, paraphase amplifier driving a complementary emitter follower.

The samples of the vertical deflection signal applied to the bases of Q14A and B are of opposite polarity. If, for example, the signal increases the Q14A current, it will decrease the Q14B current. Due to the common-emitter coupling, a current increase through Q14A will compound the current reduction in Q14B. INT TRIG DC LEVEL (R7) is adjusted during calibration so the "no signal" de voltage delivered to the SOURCE switch will be zero volts when the trace is vertically positioned near the center of the graticule.


Fig. 3-1. Trigger generator block diagram.

The amplified triggering signal from the paraphase amplifier is applied to the base of Q23A, and in slightly attenvated form, to the base of Q23B. The combined function of Q23A and Q23B is that of an emitter follower, but this special configuration overcomes a common limitation of conventional emitter followers by providing equally fast response for both positive- and negative-going portions of a signal. The output signal is available to both the $A$ and $B$ SOURCE switches.
in the AC position of the COUPLING switch, C30A and R30A provide a coupling time contant such that dc and very low-frequency ac signals are rejected. In the AC LF REJ position, the coupling time constant is decreased so the ac rejection includes somewhat higher frequencies. This rejection is primarily intended to prevent triggering on the dc-level switching information encountered in alternate-trace operation of vertical plug-in units. The signal from the A COUPLING switch is applied to the grid of cathode follower V33. R30C, D30, and D31 protect V33 from triggering signals with excessive amplitude.

The triggering signal from the cathode follower is applied to the base of Q44A. D33 protects Q44A by limiting negative voltage excursions to about -16 volts.

Q44A and Q44B form a sensitive current switch. If the instantaneous triggering signal voltage at the base of Q44A is more positive than the voltage established at the base of Q44B by the TRIG LEVEL control, Q44A will conduct. Unless the base voltages are very nearly equal, the two transistors cannot conduct at the same time due to the commonemitter coupling. Hence, as the positive-going portion of the triggering signal drives the base of Q44A from negative to positive, with respect to the base of Q44B, the current through R44 switches from Q44B to Q44A.

When the SLOPE switch is set to + , Q44A collector current must pass through D45A. The current then divides with the greatest portion passing through tunnel diode D55. This current puts the tunnel diode in its high state (see Fig. 3-2).

When Q44A is off, the tunnel diode is in its low state. With the SLOPE switch set to -, the Q44B collector current controls the tunnel diode. Hence, with the SLOPE switch set to + , the tunnel diode will switch to its high state when Q44A comes into conduction, and with the SLOPE switch to - the tunnel diode will switch to its high state when Q 44 B comes into conduction.

As is characteristic of a tunnel diode, the transition from the low-voltage state to the high-voltage state occurs very rapidly, no matter how slowly the current increases. Therefore, this switching action of the tunnel diode provides the base of Q54 with a fast-rise, negative-going pulse.

When the tunnel diode suddenly drives the Q54 base negative, Q54 is driven into heavy conduction. While the Q54 steady-state current passes through the high resistance of R53, the very fast-rise base pulse enables Q54 to pass considerable current through C53 and the series combination of C63, Q64, and R61. Due to the short time constants in the Q54 emitter circuit, the Q54 current rapidly decreases to the steady-state level, even though the tunnel diode may remain in the high state. Thus, fast-rise positivegoing pulses are developed simultaneously at the collectors of Q54 and Q64.


Fig. 3-2. Tunnel diode characteristics.

When the triggering signal resets the tunnel diode to its low state, Q54 turns off, but rapidly recovers to the steady-state conduction level. The output pulses produced at reset have no effect on Sweep Generator A.

The operation of section B of the Trigger Generator is similar to section A until the signal reaches the cathode circuit of V73. When the HORIZ DISPLAY switch is set to B DLY'D BY A non-triggered, A INTEN BY B non-triggered, or A, the -15 -volt source at the ends of R75D and R75F, and the cathode potential of V73, back bias D73 and D74. Hence, no signal passes this point. Current is diverted through R75A to maintain the proper current value through V73. When the HORIZ DISPLAY switch is set to EXT INPUT, D73 remains back biased, but D74 conducts and an external horizontal deflection signal will be passed to the Horizontal Preamp. The network consisting of R73, D75, R75E, and R76, offsets a zero-referenced signal to about +7 volts. This is approximately the voltage at the $50 \%$ amplitude point on the $A$ and $B$ sawtooth sweep signals. Thus, if the operator centers the A or B sweep display and then sets the HORIZ DISPLAY switch to EXT INPUT, a display produced by a zero-referenced horizontal deflection signal will also be centered.

With the HORIZ DISPLAY switch set to A INTEN BY B triggered or B DLY'D BY A triggered, D74 is back biased while D73 passes the triggering signal to the base of Q84A.

The remainder of section $B$ is identical to section $A$, with two exceptions. B Sweep Generator has no automatic triggering circuit; thus section B of the Trigger Generator has no automatic trigger pulse output amplifier. Also, the B TRIG LEVEL control is connected differently. When an external triggering signal is used for section B , the B trig-gering-level voltage range is about twice that obtained in section A when the A SOURCE switch is set to EXT.

## SWEEP GENERATOR A

Sweep Generator A produces four simultaneous output signals (see Fig 3-3.)

1. A positive-going sawtooth that is applied to the Delay Pickoff section of Sweep Generator B, and which can be applied to the Horizontal Preamp by proper setting of the HORIZ DISPLAY switch. The positive-going sawtooth is also available for external use at the SWEEP A front-panel connector.
2. A negative-going crt unblanking pulse having the same duration as the sweep sawtooth rise. Coupled to the oscilloscope Crt Circuit when the Type 11B2 HORIZ DISPLAY switch is set to A or A INTEN BY B (triggered and non-triggered).
3. A positive-going pulse (+ GATE A) having the same duration as the sweep sawtooth rise. Coupled to a frontpanel connector for external use.
4. A negative-going multi-trace sync pulse occurring at the end of the sweep sawtooth rise. Coupled to the vertical plug-in unit interconnecting socket. Causes a multi-trace plug-in unit, operating in the alternate mode, to switch channels.

In most applications, each cycle of events is started by a trigger pulse from the Trigger Generator. However, it is also possible to free run Sweep Generator $A_{\text {; }}$ that is, the end of one cycle will cause the next cycle to begin. The desired
operation is selected by setting the TRIG MODE switch. The four operating modes provided by the TRIG MODE switch are described in Section 2 of this manual.

The block diagram, Fig. 3-3, shows the basic elements of Sweep Generator A.

The Sweep-Gating Multi is an electronic switch that drives the Gate Amplifier to turn the Disconnect Diode on and off. When the Disconnect Diode is switched off, the Miller Runup Integrator begins to produce a sawtooth signal. A sample of the sawtooth is fed back to the Gate Enable Multi to reset the Sweep-Gating Multi as the sawtooth reaches a certain amplitude. As the Sweep-Gating Multi resets, the Disconnect Diode is switched on, and the Miller Runup resets to form the retrace or falling portion of the sawtooth. Following a short stabilization period, Sweep Generator $A$ is ready to repeat the sequence.

The TRIG MODE switch provides four ways to switch the Sweep-Gating Multi so that the sweep will begin. In NORM, the multi is switched by a pulse from the Trigger Generator. In SINGLE SWEEP, two pulses are required to start EACH sweep. First, a pulse from the Reset Amplifier \{originating at the RESET pushbutton or from an external device through pin F of J101 on the rear panel of the oscilloscope) resets the Gate-Enable Multi. Then, after reset, the Sweep-Gating Multi can be switched by a pulse from the Trigger Generator. FREE RUN results in recurrent sweeps that are independent of any triggering signal. The retrace portion of one sawtooth switches the multi to begin the next sawtooth.


Fig. 3-3. Sweep Generator A block diagram.

AUTO is a combination of NORM and FREE RUN. If there are no trigger pulses coming from the Trigger Generator, the Auto-Trigger Multi holds the Sweep-Gating Multi in the "free run" condition. When a pulse comes from the Trigger Generator, the Auto-Trigger Multi switches the Sweep-Gating Multi to the "normal" condition, but this first trigger pulse does not start a sweep. If the first trigger pulse is followed by a second within about 80 milliseconds, the Sweep-Gating Multi will switch and a sweep will begin. If trigger pulses continue to arrive every 80 milliseconds or less, the Auto-Trigger Multi will remain in the normal condition and each sweep will be a triggered sweep. Whenever the period between trigger pulses exceeds 80 milliseconds, the Auto-Trigger Multi will revert to the free-run condition until the next trigger pulse arrives.

The following description refers to the Sweep Generator A schematic in the back of this manual. The first portion of the description pertains to operation with the TRIG MODE switch set to NORM.

## Quiescent Conditions

In the quiescent state; that is, when the sweep generator is triggerable but no sweep is being generated, the circuit conditions are as follows:

Q195B is conducting and Q195A is cut off. Q195B establishes current through the parallel arrangement of D125, D118, and D121. Tunnel diode D125 is in the low-voltage state (see Fig. 3-2) so that Q124 is off. With Q124 off, the series combination of R124 and R127 is effectively in parallel with R154. Q154 conducts at a level which forward biases Disconnect Diode D159 and diode D158.

The conduction of Q154 through R127 and R124 produces about +6.5 volts at the Q124 collector. This voltage is divided to about zero volts at the unblanking signal output (see Interconnecting Plug schematic). Q134 conducts heavily, but its collector and the + GATE A connector output are clamped at about -0.6 volt by diode D133. Q134B is cut off and the voltage on the multi-trace sync-pulse bus is about +5 volts.
With Disconnect Diode D159 conducting, the grid of V161 is clamped at about zero volts. D158 clamps the sawtooth output bus at about +2.4 volts to provide a stable, repeatable sawtooth starting voltage. This starting voltage can be set during calibration by adjusting DELAY START (R150). The arm of the control is connected to the equivalent point in Sweep Generator B so both will have the same sawtooth starting voltage and will therefore produce sweeps that start at the same point on the crt. The starting voltage is variable over a small range to permit calibration of the DELAY TIME MULT dial.

V161, Q164, and Q173A form a Miller Runup Integrator. The tube and transistors are clamped at moderate conduction levels by D158 and D159. The Q173B emitter voltage is about +1.8 volts, forward biasing D180 and D181. Q183 conducts heavily and reverse biases D183. Q195B is held on by the divider consisting of R184, R185, R199, R193, and R194 paralleled by D193 and Q183.

With the TRIG MODE switch set to NORM, Q114 has no collector supply and the Auto-Trigger Multi is disabled.

## Cycle of Operation

A sweep-gating trigger pulse will turn on D120 and turn off D121. The Q195B current does not decrease when D121 cuts off, but is transferred instead to tunnel diode D125, rapidly switching it to its high-voltage state (see Fig. 3-2).

When the tunnel diode switches, Q124 furns on. The negafive voltage step at the collector of Q124 provides the oscilloscope crt unblanking signal. Q134A cuts off, forming the rise of the + GATE A connector output signal. Q134B remains cut off.

The negative-going voltage step at the collector of Q124 is applied to the emitter of Q154, turning the transistor off. Thus, Disconnect Diode DI59 is rapidly switched off.

When the Disconnect Diode turns off, the current through timing resistor $R_{t}$ does not cease, but instead begins to charge timing capacitor $C_{\ddagger}$. As the timing capacitor charges, the grid of V161 goes negative. But the inverted and greatly amplified change at the emitter of Q173A is fed back to the timing capacitor and opposes the grid voltage change. (The positive-going change also turns off D158.) This action persists throughout the sawtooth period and limits the total grid voltage change to less than 0.02 volt. Since the voltage drop across the fiming resistor is held nearly constant, the current through the resistor is essentially a fixed value. This fixed current flows into the timing capacitor, producing a linearly increasing voltage (sawtooth) across the capacitor. D159 is a special diode that exhibits very low leakage under reverse-bias conditions. This characteristic prevents the diode from effectively altering the timing resistance value.

The rate of the sawtooth rise is a function of the RC time constant of the timing resistor and capacitor, and of the voltage magnitude at the negative end of the timing resistor. Increasing the voltage across the timing resistor increases the current into the fiming capacitor and therefore increases the sawtooth rate of rise. The voltage across the timing resistor can be varied over about a 9-volt range by adjusting A SWP CAL (R160W) shown on the Timing Switches schematic. R160W is adjusted during calibration to establish the correct absolute rate of sawtooth rise and affects all $A$ sweep rates equaily.
The VARIABLE A front-panel control operates in much the same manner as A SWP CAL, but permits a wider variation in sweep rate. This control permits the operator to obtain uncalibrated sweep rates as much as two and onehalf times slower than the calibrated rates obtained with the control set fully clockwise.

The sawtooth signal at the emitter of Q173A is available to the Horizontal Preamp through the HORIZ DISPLAY switch, and is applied to the Delay Pickoff circuit and the base of Q173B. The rising voltage at the emitter of Q173B supplies the front-panel A SWEEP connector output signal and charges holdoff capacitor $\mathrm{C}_{\mathrm{h} \text { o }}$ through D180 and D181. As the holdoff capacitor charges, the base and emitter of Q183 go more positive. D183 will become forward biased and the positive-going change at the emitter of Q183 will drive the base of Q195B more positive. As the positive-going Q195B base voltage equals and then surpasses the Q195A base voltage, the R195 current switches regeneratively from Q195B to Q195A.

When Q195B turns off, tunnel diode D125 reverts to its low-voltage state. The time duration of the sweep-gating
trigger pulse, which started the cycle of operation, will always be considerably less than the time duration of the sweep. However, once the sweep-gating pulse switches the tunnel diode to its high-voltage state, additional trigger pulses can have no further affect on the operation. The tunnel diode will revert to its low state only when Q195B turns off.

As the tunnel diode reverts to its low state, Q124 turns off. The Q124 collector voltage rises, blanking the oscilloscope crt. Q134A turns on, forming the falling portion of the + GATE A connector output signal and driving Q134B into conduction. C136 quickly discharges and Q134B turns off. Thus, the multi-trace sync pulse is negative-going and has a very short duration.

The positive-going voltage step at the collector of Q124 turns on Q154, forward biasing Disconnect Diode D159. Since the timing capacitor still holds the charge developed during the sweep, D158 remains back-biased. The timing capacitor begins to discharge through D159, Q154, and the series-parallel combination of R154, R124, and R127. D158 will not conduct until the charge is nearly depleted.

The removal of the timing capacitor charge forms the retrace or falling portion of the output sawtooth. As the Q173B emitter voltage falls, D180 becomes back biased. During the sawtooth rise, hold-off capacitor $C_{h}$ o charged through D180, but must now discharge through the high resistance of R180 and RT81. Thus, timing capacitor $C_{+}$will have discharged, restoring the Miller Runup circuit to the quiescent condition before the Q183 base voltage reaches the quiescent level. This time lag can be varied slightly by adjusting the front-panel HF STABILITY control. The need for this variable time lag is discussed in a later paragraph.

As the hold-off capacitor discharges, the Q183 emitter voltage falls. However, this falling voltage does not immediately cause the R195 current to switch to Q195B. The voltage drop across R193 and R194, produced by the conduction of Q195A, is divided by R199, R185, and R184 and holds off Q195B. When the Q183 emitter voltage becomes low enough to forward bias D193, the added current through R193, R199, R185, and R184, pulls down the Q195B base voltage and switches the R195 current to Q195B. The entire sweep generator is then restored to the quiescent condition described previously.

HF STABILITY control (R181) permits the operator to vary slightly the time between the completion of a sweep and the instant when the sweep generator again becomes triggerable. As Q195B furns on after a sawtooth retrace, a very short but sometimes significant amount of time is required for the current through tunnel diode D125 to reach the quiescent level. This recovery time is significant only under the following conditions:

1. When the A sweep rate is faster than about 0.2 microsecond per centimeter.
2. When the triggering frequency is above about 5 megacycles.
3. When the relationship between the sweep rate and triggering frequency is such that the sweep-gating trigger pulse tends to trigger each new sweep while the tunneldiode current is approaching the quiescent level.

A display obtained under these conditions may jitter horizonfally. The operator can minimize and often eliminate
the jitter by resetting the HF STABILITY control. This will either advance or delay the Q195B turn-on time so D125 can stabilize at the quiescent level in an interval between sweep-gating trigger pulses.
FREE RUN Mode. Differs from the NORM mode as follows:
When TRIG MODE is set to FREE RUN, R117 is connected to +15 volts and D118 is reverse biased. The Q195B current that was carried by D118 in NORM operation is now carried by tunnel diode D125. As Q195B furns on following a sawtooth retrace, D125 will switch to its high-voltage state without waiting for a sweep-gating trigger pulse. (Moreover, trigger pulses will have no effect on the overall operation.) Thus, the completion of one sweep causes the next to begin.
AUTO Mode. The basic operation of the Auto-Trigger Multi was described previously in the Sweep Generator A block diagram discussion. The conduction state of the AutoTrigger Multi determines whether diode D118 will be forward biased or reverse biased. When forward biased, Sweep Generator A operates exactly as described for the NORM mode. When D118 is reverse biased, Sweep Generator A operates as described for the FREE RUN mode.

When C102 has received no trigger pulse for more than 80 milliseconds, tunnel diode D105 will be in its high-voltage state (see Fig. 3-2) and Q114 will be turned off. D114 conducts through R116, reverse biasing D118, and Sweep Generator A free runs. The current paths, static current magnitude, and voltages with the circuit in this condition are shown in Fig. 3-4.

The first portion of the following discussion describes the sequence of events caused by a single auto-frigger pulse. The only effect of such a pulse would be an interruption of the free-running A sweeps. The latter portion of the discussion describes how triggered sweeps are produced by triggering signals occurring more often than every 80 milliseconds.

When a current pulse is applied to C102, D102 conducts by diverting current from tunnel diode D105. The tunnel diode rapidly switches to its low-voltage state, driving Q114 into saturation. The Q114 collector drops to about - 14 volts, reverse biasing D114, and D118 turns on. (It is probable that D118 will turn on while a "free-run initiated" A sweep is in progress. If this occurs, Sweep Generator A will complete the sweep and can become triggerable at the end of the usual sweep hold-off period.)

As Q114 goes into saturation, the greater portion of its collector current passes through R114 and begins to discharge C114. The voltage across C114 decreases and D113 begins to conduct, decreasing the current through R112. The R106 current no longer carried by R112 is diverted to tunnel diode D105, switching it to its high-voltage state. (By this time, the auto-trigger pulse current through D102 will have subsided.) Q114 turns off, but Cl14 must re.. charge for the Q114 collector voltage to rise. Hence, D114 remains off and D118 remains on.

As Q114 turns off, C114 begins to charge through R114 and R116 in parallel with R113. When the voltage at the junction of C114 and R114 reaches about -7 volts, D113 turns off and C114 continues to charge through R114 and R116.


Fig. 3-4. Auto Trigger Multi static conditions.

D114 will turn on when the Q114 collector reaches about zero volts. D118 will then turn off and Sweep Generator A is returned to the free-running condition.

As stated previously, the Auto-Trigger Multi probably will turn on diode D118 while a free-run initiated A sweep is in progress. Hence, Sweep Generator A cannot become triggerable until the end of the hold-off period for this sweep. But from then on, every A sweep will be a triggered sweep if the repetition rate of the auto-trigger and sweepgating trigger pulses is greater than about 20 pulses per second.

If an auto-trigger pulse arrives at C 102 after tunnel diode D105 has reset to its high state, but before C114 has completely recharged, D105 will again switch to its low state. Q114 will turn on and discharge the partially recharged C114 as discussed previously. Additional auto-trigger pulses that may arrive while the tunnel diode is in its low state will have no significant effect on the circuit. But pulses that arrive while the tunnel diode is in its high state will switch the diode back to its low state if the D113 current has decreased sufficiently. Thus, auto-trigger pulses with a repetition rate greater than about 20 pulses per second will repeatedly switch the multi, preventing $\mathrm{Cl14}$ from charging enough to turn on D114. With D114 turned off continuously, Sweep Generator A will operate exactly as it does in the NORM mode. The negative-going pulse follow-
ing each positive-going auto-trigger pulse has no effect on the Auto-Trigger Multi except that it discharges Cl 02 through D103.

SINGLE SWEEP Mode. As described previously in the NORM mode discussion, the retrace portion of a sawtooth normally allows discharging hold-off capacitor $\mathrm{C}_{\mathrm{hoo}}$ to pull down the Q183 base to near zero volts. D193 would then conduct and turn on Q195B. However, in the SINGLE SWEEP mode, R182 is connected to +15 volts, forming a divider with R180 and R181. This divider stops the hold-off capacitor discharge at about +4.5 volts. Thus, the Q183 emitter does not drop far enough to cause D193 to conduct, and Q195B does not turn on. D180 becomes reverse biased, but D181 in series with the divider remains on.

Since Q195B does not turn on following a sweep, Sweep Generator A becomes locked in an inoperative state. With Q195A on, Q184 is held off and RESET lamp B186 is not lit, indicating the inoperative state of the generator.

The generator can be reset to the operative state either by pressing the RESET button or by applying a positivegoing pulse to pin F of J101 on the rear panel of the oscilloscope.

In SINGLE SWEEP mode, Q204 is normally off. The RESET button is connected to a divider consisting of RI89A and R189B. When the RESET button is pressed, neon lamp

B200 fires, supplying a fast-rise turn-on pulse to Q204. The negative-going pulse at the collector of Q204 is applied to the base of Q183. (At this time, D181 serves its only purpose; it is reverse biased by the pulse so that the hold-off capacitor will not pass the pulse to ground.) The pulse pulls down the Q183 emitter and turns on D193. Q195B and Q184 turn on and RESET lamp B186 lights to indicate that the generator is ready to be triggered. At the end of one conventionally-triggered sweep, the generator will again become inoperative.

An externally applied reset pulse can turn on Q204. The pulse must have a reasonably fast rise for adequate energy to pass through C204.

## SWEEP GENERATOR B

Sweep Generator B produces the same output signals as Sweep Generator A, except for a multi-trace sync pulse.

The principle difference between Sweep Generators A and B is that Sweep Generator B can produce no more than one sawtooth for each A sawtooth and only while the A sawtooth is in progress. The A sawtooth signal, applied to Sweep Generator B through the Delay Pickoff circuit, controls this operation.

B sweep cannot begin until the A sawtooth has reached an amplitude (which represents a certain amount of time from the beginning of the A sweep) selected by setting the DELAY TIME MULT dial. If non-riggered delayed sweep is used, B sweep will begin at the selected A sawtooth amplitude. But if triggered delayed sweep is used, B sweep will begin AFTER the A sweep sawtooth reaches the se-
lected amplitude when a B sweep-gating trigger pulse is applied. However, if a sweep-gating trigger pulse has not been applied to Sweep Generator B before the end of A sweep, B will not produce a sawtooth. Regardless of whether triggered or non-triggered delayed sweep is used, if B sweep is in progress when A sweep ends, the retrace portion of the A sawtooth will cause Sweep Generator B to reset to the quiescent condition.

The block diagram in Fig. 3-5 shows the basic elements of Sweep Generator B.

The Sweep Generator A sawtooth output is permanently connected to the base of Q214A. When Sweep Generator $A$ is in the quiescent condition, the conditions in Sweep Generator B are as follows:

DELAY TIME MULT can be set so the Q214B base voltage will equal the instantaneous $A$ sawtooth voltage at any point along the sawtooth (except for the sawtooth portion which produces approximately the first 3 millimeters of deflection and the portion which produces deflection beyond 10 centimeters). Hence, Q214A will be off and Q214B will be on.

When Q214A is off, the voltage at its collector and therefore at the base of Q219 will be about +17 volts. Since the emitter of Q219 is clamped at about +15.6 volts, Q219 is off. With Q219 off, Q295A and B have no current source and are also off. When Q295B is off, tunnel diode D225 is in its low-voltage state and cannot be switched to its high-voltage state by a sweep-gating trigger pulse. Thus, the remainder of Sweep Generator B is in a quiescent condition similar to that described previously for Sweep Generator $A$.


Fig. 3-5. Sweep Generator B block diagram.

At the beginning of an A sawtooth, the base of Q214A will be less positive than the base of Q214B. But at a selected point along the sawtooth rise, this situation will reverse and the R215 current will switch from Q214B to Q214A. The voltage at the collector of Q214A and the base of Q219 will drop, turning on Q219. Because of its large emitter resistor, Q219 becomes a stable source of about 6 ma for the transistors connected to its collector.

The Q295B base voltage is less positive than that of Q295A; therefore, Q295B turns on and holds off Q295A by common-emitter coupling. Depending on the setting of the HORIZ DISPLAY switch, one of three things can now happen:

1. If set to $A, R 296 C$ will conduct nearly all of the Q295B collector current. The current change through tunnel diode D225 wil be insignificant and Sweep Generator B will remain inoperative and insenstive to sweep-gating trigger pulses.
2. If set to A INTEN BY B triggered or B DLY'D BY A triggered, tunnel diode D225 will be in its low-voltage state, but conducting enough of the Q295B collector current so a sweep-gating trigger pulse will switch it to its high-voltage state.
3. If set to $A$ INTEN $B Y$ B non-triggered, $B$ DLY'D BY $A$ non-triggered, or EXT INPUT, R296A will carry very little of the Q295B collector current, and tunnel diode D225 will switch to its high state immediately when Q295B turns on.

The remainder of Sweep Generator B is nearly identical to portions of Sweep Generator $A_{i}$ thus, the Sweep Generator A circuit description applies also to Sweep Generator $B$.

The B unblanking signal can be one of two amplitudes depending on the setting of the HORIZ DISPLAY switch (see the Interconnecting Plug schematic). When either B DLY'D BY A position is used, the display brightness will be about the same as obtained using the A position. When either A INTEN BY B position is used, the B unblanking signal will brighten the $A$ trace for the duration of the $B$ sweep.

As the B sawtooth rises, D273 (connected to the emitter of Q273) becomes forward biased and the Q295B base voltage begins to rise. As the $Q 295 B$ base voltage surpasses the Q295A base voltage, the Q219 collector current switches to Q295A. Tunnel diode D225 reverts to its lowvoltage state and Sweep Generator $B$ resets as described for Sweep Generator A. [Sweep Generator B needs no hold-off capacitor since it cannot produce another sweep during the present A sweep.) The coupling between the collector of Q295A and the base of Q295B prevents the sawtooth retrace from turning on Q295B.

During the A sawtooth retrace, the R215 current will switch from Q214A to Q214B. The Q214A collector voltage will rise, turning off Q219. Thus, both sweep generators are returned to their quiescent conditions described previously.

If the A sweep retrace occurs while B sweep is in progress, Q219, rather than the $B$ sawtooth rise, will turn off Q295B. If this occurs, tunnel diode D225 will revert to its low state and the B sweep retrace will begin before the sawtooth has reached its usual amplitude.

## HORIZONTAL PREAMP

The Horizontal Preamp input signal can come from Sweep Generator A, Sweep Generator B, or from an external source, depending on the HORIZ DISPLAY switch setting. The push-pull output of the preamp connects to the input of the oscilloscope horizontal amplifier through pins 8 and 9 of the interconnecting plug. The operator can increase the preamp gain ten times by setting the MAG switch to XlO .

The block diagram in Fig. 3-6 shows the basic subcircuits of the Horizontal Preamp. Q343 provides a signal-voltage offset and a constant source impedance to Q344. Q313 couples the horizontal positioning voltage to Q324 and provides a low source impedance. Q324 and Q344 form a paraphase amplifier.

Refer to the Horizontal Preamp schematic in the back of this manual. This description assumes that the Horizontal Preamp input signal is the Sweep Generator A sawtooth.

The sawtooth swings symmetrically around approximately +7 volts dc. Zener diodes D340 and D341 negatively offset the signal by about 18 volts. Zener diode D343 establishes a fixed voltage across R342 so that D340 and D341 are provided with a stable holding-current. Thus, the signal af the base of Q344 swings symmetrically around approximately -11 volts dc, with peak voltages of about -6 and -16 volts.

The oscilloscope HORIZ POSITION controls provide the means for varying the Q324 base voltage between about -4 and -18 volts; a range which exceeds the peak voltages of the signal at the base of Q344.
Transistors Q344 and Q324 operate as a paraphase amplifier with degenerative emitter coupling. The resistance between the emitters and the -75 -volt supply is quite high. Because of this high resistance, the total current through the two transistors is nearly constant and the input signal only reapportions the current. For example, an increase in current through Q344 would be offset by a nearly equal decrease in current through Q324. MAG REGIS (R339) is set during calibration to balance the output currents when Q344 and Q324 have equal emitter voltages.

The effective resistance between the base of Q344 and the stable voltage at the base of Q324 (via the degenerative emitter circuit) is much lower than the resistance to the -75 -volt supply. Thus, Q344 can be considered as an emitter follower with the base circuit of Q324 acting as the signal ground point. The input signal voltage divides proportionally between the internal emitter resistance of Q344, the degenerative emitter coupling network, and the internal emitter resistance of Q324.

Since the internal emitter resistances of Q344 and Q324 are essentially equal, the two transistors receive baseemitter drive signals of essentially equal magnitude, but opposite phase. The ratio of the degenerative emittercoupling resistance to the internal emitter resistances determines the magnitude of the base-emitter drive signals and therefore determines the magnitude of collector current swing of both Q344 and Q324. The resistance between the emitters is about $2.5 \mathrm{k} \Omega$ when the MAG switch is set to OFF and about $250 \Omega$ when set to X 10 . These resistances are


Fig. 3-6. Horizontal Preamp block diagram.
set during calibration to provide two precise current gainfactors which differ by a factor of ten-to-one.

The collectors of Q344 and Q324 are near ground
potential and connected to the low-impedance input of the oscilloscope horizontal amplifier. Because of this low input impedance, the Horizontal Preamp of the Type 11B2 provides a current output at an essentially fixed voltage.

# MAINTENANCE AND CALIBRATION 

## Introduction

Maintenance of the Type 11B2 is similar to that of the oscilloscope and is therefore described in the oscilloscope instruction manual.

The Type 11B2 is a stable instrument which will provide many hours of trouble-free operation. However, to insure measurement accuracy, it is suggested that you recalibrate the instrument after each 500 hours of operation, or every six months if used intermittently. It will also be necessary to recalibrate certain sections of the instrument when tubes, transistors, or other components are replaced.

This section of the manual contains two procedures: a calibration and verification procedure and an abridged adjustment procedure. In the calibration and verification procedure, the title of each numbered step begins either with "Adjust" or "Check", thereby identifying the step function as calibration or verification. To further identify the calibration steps, an asterisk (*) precedes the step number. The steps are identified in this manner because any or all groups of numbered "Checks" can be skipped without disrupting the continuity of the procedure. However, adjustments must be completed in the order given and none should be skipped. Remember that you can be certain of proper overall operation only when all steps in the procedure have been completed.

The abridged adjustment procedure contains only the information necessary to adjust all seven internal calibration potentiometers without any test equipment. The only items required are an oscilloscope in which to install the Type 11B2, a vertical plug-in unit for the oscilloscope, an adjustment tool, and a 15 -inch coaxial cable fitted with BNC connectors. The oscilloscope crystal-controlled 1-Kc Calibrator provides the required accurate time reference.

Adjustment of the four variable timing capacitors which control the accuracy of the six fastest sweep rates of each sweep generator is not described in this procedure since a timing standard other than the oscilloscope l-Kc Calibrator would be required.

The abridged adjustment procedure, complete with a list of initial control settings and other necessary information is located at the end of this section. Extra copies of the abridged procedure may be obtained from your Tektronix Field Engineer.

## CALIBRATION AND VERIFICATION

## Equipment Required

1. Oscilloscope such as the Tektronix Type 647. This procedure assumes that the oscilloscope has been calibrated in dependently. If this is not the case, refer to the oscilloscope instruction manual for information about calibrating the Type 11B2 and the oscilloscope as a system.
2. Tektronix 10 -Series vertical plug-in unit such as the Type 10A2. This unit need not be calibrated, but must operate in all respects.
3. Constant-amplitude sine-wave generator such as the Tektronix Type 190A or 190B. Required characteristics: (a) output frequencies of $50 \mathrm{kc}, 3 \mathrm{mc}$, and 50 mc , (b) output voltage adjustable from about 0.3 volt to 4.0 volts peak-to-peak when terminated in $50 \Omega$, and (c) provisions for maintaining constant amplitude (manually or automatically) with a change in frequency.
4. Tektronix $50 \Omega$ BNC termination, part no. 011-049.
5. UHF-BNC adapter, for connecting Type 190A or 190B to the BNC termination (UG-255/U).
6. Tektronix P6006 or P6008 Probe.
7. Time-mark generator such as the Tektronix Type 180A. Markers required at 1 and 5 seconds; 100, 10 , and 1 milliseconds; 100, 50, 10, 5 and 1 microseconds; 5, 10, and $50-\mathrm{mc}$ sine wave. All outputs should have a time accuracy of at least $0.01 \%$.
8. Coaxial cables, fittings, and adjustment tools as required.

## Preliminary Instructions

1. Remove the access panel from the right-hand side of the oscilloscope.
2. Set the controls and switches as follows:

## Oscilloscope

INTENSITY
Low brightness
IKC CALIBRATOR
1 VOLTS
Type 11B2

| HORIZ DISPLAY | EXT INPUT |
| :--- | ---: |
| MAG | OFF |
| B COUPLING | AC |
| B SOURCE | INT |
| B SLOPE | + |
| B TRIG LEVEL | 0 |
| A and B TIME/CM | 5 mSEC |
| VARIABLE A | CALIB |
| B (variable) | CALIB |


| TRIG MODE | FREE RUN |
| :--- | ---: |
| A SLOPE | + |
| A COUPLING | DC |
| A SOURCE | INT |
| A TRIG LEVEL | 0 |
| DELAY TIME MULT | 0.30 |

## Vertical Plug-In Unit

NOTE
If a multi-trace plug-in unit is used, use channel 1.

| MODE | CH 1 |
| :--- | ---: |
| VOLTS/CM | .5 |
| VARIABLE | CALIB |
| AC-DC-GND | DC |
| PULL TO INVERT | Pushed in |
| POSITION | Spot centered |
| TRIGGER | NORM |

3. Apply power to the instruments and allow several minutes for warmup before beginning calibration.

NOTE
Photographs on a foldout page following the schematics in the back of this manual show the location of each calibration adjustment control and test point.

## Procedure

## *1. Adjust INT TRIG DC LEVEL (R7)

a. Remove the vertical plug-in unit.
b. Move B COUPLING switch back and forth between AC and DC, and adjust INT TRIG DC LEVEL (R7) so the spot on the crt remains stationary.
c. Reset B COUPLING switch to $A C$ and reinstall the vertical plug-in unit.

## 2. Check A Free-Run Mode

a. Set HORIZ DISPLAY switch to A.
b. With TRIG MODE switch set to FREE RUN, check for a trace on crt.

## 3. Check A Normal Mode

a. Set TRIG MODE switch to NORM, and check for no trace on the the crt.
b. Set:

A SOURCE switch to LINE
A COUPLING switch to AC
c. Connect a $\times 10$ probe between the vertical input and a source of a power-line frequency sine-wave signal (such as pin $30, \approx 6.3$ volts ac, of the horizontal interconnecting plug in the oscilloscope).
d. Check that a triggered display can be obtained by adjusting the A TRIG LEVEL control. Note whether the
display begins within the rising or falling portion of the sine wave.
e. Set A SLOPE switch to - and repeat step (d). The display should begin within the opposite portion of the sine wave (rise or fall) from that noted in step (d).
f. Disconnect the probe.

## 4. Check A Single-Sweep Mode

a. Set:

A TRIG LEVEL control to 0
A SLOPE switch to +
A and B TIME/CM switch to 50 mSEC
TRIG MODE switch to SINGLE SWEEP
b. Set A SOURCE switch to EXT and check that the RESET lamp is not lit and that there is no trace on the crt.
c. Push the RESET button.
d. Check that the RESET Iamp is lit.
e. While watching the crt, set A SOURCE switch to LINE. Sweep Generator A should produce only one sweep on the crt and the RESET lamp should extinguish.
f. Set A SOURCE switch to EXT.
g. Set the oscilloscope 1KC CALIBRATOR to 5 VOLTS.
h. Momentarily connect the calibrator oufput to pin $F$ of J 101 on the rear panel of the oscilloscope.
i. Repeat steps (d) and (e).

## 5. Check A Automatic Mode

a. Set:

A SOURCE switch to EXT
A and B TIME/CM switch to $10 \mu \mathrm{SEC}$
TRIG MODE switch to AUTO
b. Connect the constant-amplitude sine-wave generator to the A TRIG $\mathbb{N}$ connector. Terminate the generator with a Tektronix $50 \Omega$ BNC termination unit (part no. 011-049), using a UHF to BNC adapter (part no. 103-032).
c. Set the generator for a 125 -millivolt peak-to-peak output at 50 kc . When a Tektronix Type 190A or 190B is used, a 125 -millivolt peak-to-peak output across the termination is obtained when the attenuator is set to 0.5 volt and the meter indicates 5 volts on the 10 -volt scale.)
d. Connect a Tektronix P6006 or P6008 Probe between the vertical input and the terminal on the rear of the $A$ TRIG $\mathbb{N}$ connector or the bottom of the 9.1 -megohm resistor on the A SOURCE switch. Connect the probebody ground lead to the Type 11B2 chassis.
e. Set the vertical plug-in VOLTS/CM switch to 01 .
f. Check that a stable sine-wave display can be obtained by setting the A TRIG LEVEL control with the A SLOPE switch set to either + or -.
g. Repeat step (f) with A COUPLING switch set to AC LF REJ and then to $D C$.
h. Change the generator frequency to 50 mc and output amplitude to 250 millivolts peak-to-peak. (With a Tektronix Type 190A or 190B, set the attenuator to 0.5 volt and use a meter indication of 10 volts.)

## NOTE

The input amplitude may be vertified with a sampling oscilloscope system by using a probe such as the Tektronix P6034. This probe should be connected in parallel with the probe used in step (d) and should be left connected through step (i).
i. Set:

A and B TIME/CM switch to . $1 \mu$ SEC
MAG switch to XIO
A COUPLING switch to AC
i. Repeat step (f). It may be necessary to use the HF STABILITY control to obtain a stable display.
k. Disconnect the probe and move the generator connection to the vertical input.
I. Set:

A SOURCE switch to INT
MAG switch to OFF
$A$ and B TIME/CM switch to $20 \mu$ SEC
VOLTS/CM switch (vertical plug-in) to 2
m . Set the generator to 50 kc and reduce the output amplitude for 2 mm of deflection. Check that the A TRIG LEVEL control will stabilize the display.
n. Set:

A and B TIME/CM switch to . $1 \mu$ SEC
MAG switch to X 10
VOLTS/CM switch (vertical plug-in) to .5
o. Set the generator frequency to 50 mc and change the output amplitude as required for 10 mm of deflection. Check that the A TRIG LEVEL control will stabilize the display. (lt may be necessary to use the HF STABILITY control.)
p. Disconnect the generator.
q. Set:

A SOURCE switch to EXT $\div 10$
$A$ and $B$ TIME/CM switch to 1 mSEC
MAG switch to OFF
VOLTS/CM switch (vertical plug-in) to 2
IKC CALIBRATOR switch (oscilloscope) to 5 VOLTS
r. Connect the oscilloscope calibrator output to the A TRIG IN connector and to the vertical input.
s. Check that a stable display can be obtained by setting the A TRIG LEVEL control.
t. Remove the signal connections.

## 6. Check B External Triggering Sensitivity

a. Set:

A SOURCE switch to INT

B SOURCE switch to EXT
A TIME/CM switch to $50 \mu \mathrm{SEC}$
B TIME/CM switch to $10 \mu \mathrm{SEC}$
HORIZ DISPLAY switch to A INTEN BY B
(triggered)
VOLTS/CM switch (vertical plug-in) to .01
b. Connect the sine-wave generator to the B TRIG $\mathbb{N}$ connector, see step 5b.
c. Connect a Tektronix P6006 or P6008 Probe between the vertical input and the solder connection on the rear of the B TRIG IN connector. Connect the probebody ground lead to the Type 11B2 chassis. Do not use a plug-in extension between the Type 11B2 and the oscilloscope.
d. Set the generator for a 50 -kc output at 125 millivolts peak-to-peak as described in step $5 c$.
e. Set A TRIG LEVEL control for a stable display.
f. Check that a stable intensified zone can be obtained near the left end of the display by setting the B TRIG LEVEL control.
g. Set B SLOPE switch to - - and repeat step ( $f$ ).
h. Set:

A TIME/CM switch to $.5 \mu \mathrm{SEC}$
B TIME/CM switch to $.1 \mu \mathrm{SEC}$
MAG switch to X10
i. Change the generator frequency to 50 mc and output amplitude to 250 millivolts peak-to-peak. (With a Type 190A or 190B, set the attenuator to 0.5 volf and use a meter indication of 10 volts.)
i. Set A TRIG LEVEL and HF STABILITY controls as required for a stable display.
k. Set HORIZ DISPLAY switch to B DLY'D BY A (triggered).
I. Check that a stable display can be obtained by setting the B TRIG LEVEL control.
m. Set:

B SLOPE switch to +
B COUPLING switch to DC
n. Repeat step (I).
o. Disconnect the probe.

## 7. Check B Internal Triggering Sensitivity

a. Set:

B SOURCE switch to INT
B COUPLING switch to AC
HORIZ DISPLAY switch to A INTEN BY B (triggered)
MAG switch to OFF
A TIME/CM switch to $50 \mu \mathrm{SEC}$
B TIME/CM switch to $10 \mu \mathrm{SEC}$
VOLTS/CM switch (vertical plug-in) to 1
b. Move the generator connection to the vertical input.
c. Change the genrator frequency to 50 kc and reduce the output amplitude for 2 mm of deflection.
d. Set A TRIG LEVEL control for a stable display.
e. Check that a stable intensified zone can be obtained near the left end of the display by setting the B TRIG LEVEL control.
f. Set:
$A$ and $B$ TIME/CM switch to $1 \mu$ SEC
MAG switch to $\times 10$
VOLTS/CM switch (vertical plug-in) to 2
g. Change the generator frequency to 50 mc and set the output amplitude for 10 mm of vertical deflection.
h. Set A TRIG LEVEL and HF STABILITY controls for a stable display.
i. Set HORIZ DISPLAY switch to B DLY'D BY A (triggered).
i. Check that a stable display can be obtained by setting the B TRIG LEVEL control.
k. Disconnect the input signal.
I. Reset:

MAG switch to OFF
A SLOPE switch to +
8. Adjust DELAY START (R150) and A SWP CAL (R160W)
a. Set:

TRIG MODE switch to AUTO
A COUPLING switch to AC
A TIME/CM switch to 1 mSEC
B TIME/CM switch to $2 \mu \mathrm{SEC}$
DELAY TIME MULT dial to 1.00
HORIZ DISPLAY switch to A INTEN BY B (non-triggered)
VOLTS/CM switch (vertical plug-in) to 2
INTENSITY control for normal brightness
b. Apply 1 -millisecond markers to the vertical input.
c. Set A TRIG LEVEL control for a triggered display.
d. Set INTENSITY control so the small brightened spot near the left end of the trace is easily seen.
e. Adjust DELAY START (R150) so the peak of the 1 st marker (not counting the marker at the left end of the trace) is intensified.
f. Set DELAY TIME MULT dial to 9.00.
g. Adjust A SWP CAL (R160W) so the peak of the 9th marker (not counting the marker at the left end of the trace) is intensified.
h. If necessary, repeat steps (e) and (g) until the effects of adjustment interaction are minimized.
i. Set:

HORIZ DISPLAY switch to B DLY'D BY A (nontriggered)
DELAY TIME MULT dial to 1.00
B TIME/CM switch to $10 \mu$ SEC
j. Adjust DELAY START (R150) so the trace begins near the base of the leading edge of the time marker displayed on the crt.
k. Set DELAY TIME MULT dial to 9.00 .
I. Adjust A SWP CAL (R160W) so the trace begins near the base of the leading edge of the time marker displayed on the crt.
m . Repeat steps (i) through (I) until there is no further improvement.

## 9. Check Delay Linearity

a. Using the same setup as in step 8, turn DELAY TIME MULT dial clockwise to about (2.00) until the marker peak is at the left end of the trace.
b. Check that DELAY TIME MULT dial indicates (2.00), $\pm 0.015$.
c. Repeat steps (a) and (b) for each major digit on the DELAY TIME MULT dial: 3.00 through 8.00 The tolerance at each setting is $\pm 0.015$.

## 10. Check Delay-Time Jitter

a. Sef B TIME/CM switch to $1 \mu$ SEC.
b. With 1-millisecond time markers applied to the vertical input, set DELAY TIME MULT dial near 9.00 to position the rise of a marker near the center of the graticule.
c. Check that the marker jitters horizontally 0.5 centimeter or less.
d. Repeat steps (b) and (c) with DELAY TIME MULT dial set near 1.00 .

## *11. Adjust NORM GAIN (R331)

a. Set HORIZ DISPLAY switch to A.
b. Adjust NORM GAIN (R331) for 1 marker/cm. Refine this adjustment so the 1st and 9th markers are aligned with the 1 st and 9 th major graticule lines. (The marker at the beginning of the trace and the line at the extreme left edge of the graticule are each counted as 0.$)$

## *12. Adjust MAG GAIN (R334)

a. Set MAG switch to X10. Check that the MAG lamp on the front panel of the Type 11B2 is lit.
b. Apply 100 -microsecond markers to the vertical input.
c. If necessary, set A TRIG LEVEL control for a stable display.
d. Adjust MAG GAIN (R334) for 1 marker/cm. Refine this adjustment so markers are exactly aligned with the 1 st and 9 th major graticule lines.
*13. Adjust MAG REGIS (R339)
a. Apply 5-millisecond time markers to the vertical input.
b. With MAG switch to X10, set HORIZ POSITION control so that the peak of the marker nearest the center of the expanded trace is at the exact center of the graticule.
c. Set MAG switch to OFF.
d. Adjust MAG REGIS (R339) so the peak of the center time marker is again posifioned to the exact center of the graticule.
e. If necessary, repeat steps (b) through (d) until there is no further improvement.
f. Reset MAG switch to OFF.
14. Check A Sweep Length: $10.5-11.0 \mathrm{~cm}$
a. Apply 1 -millisecond markers to the vertical input.
b. Set HORIZ POSITION control so the 1st marker is aligned with the 0 graticule line. (This will put 1 centimeter of the trace outside the left edge of the graticule.)
c. Check that the right-hand end of the trace is within the last one-half centimeter of the graticule.

## 15. Check VARIABLE A Range and UNCAL Lamp

a. Apply 10 -millisecond markers to the vertical input.
b. Set HORIZ POSITION control so the 0 marker is aligned with the 0 graticule line.
c. Slowly turn VARIABLE A control counterclockwise. The distance between markers should decrease smoothly. With VARIABLE A control fully counterclockwise, there should be 4 centimeters or less between markers.
d. Check that the UNCAL lamp is lit.
e. Reset VARIABLE A control to CALIB.

## 16. Check A Delay-Time Ranges: $10 \mu$ SEC- 5 SEC

a. Set:

```
A TIME/CM switch to (10 \muSEC)
B TIME/CM switch to (. }5\mu\textrm{SEC}
HORIZ DISPLAY switch to A INTEN BY B
        (non-triggered)
    TRIG MODE switch to NORM
```

b. Apply ( 10 -microsecond) markers to the vertical input.
c. Set A TRIG LEVEL control for a triggered display.
d. Check for (1) marker/cm and that markers can be simultaneously aligned with the 1st and 9th graticule lines. (With a 10 -microsecond/cm sweep rate, the tolerance for exact marker alignment at the 9 th line, when a marker is aligned with the 1 st line, is $\pm 1.2 \mathrm{~mm}$.)
e. Set INTENSITY control so both brightness levels in the display are easily seen.
f. Set DELAY TIME MULT dial so the 1st marker is intensified.
g. Set HORIZ DISPLAY switch to B DLY'D BY A (nontriggered).
h. Set DELAY TIME MULT dial so the trace begins during the marker rise. Record the exact DELAY TIME MULT dial indication.
i. Set DELAY TIME MULT dial near 9.00 so the trace again begins during the marker rise. Record the exact DELAY TIME MULT dial indication.
i. Subtract the first dial indication from the second. The difference should be $8.00( \pm 0.08$ when the A sweep rate is 10 microseconds $/ \mathrm{cm}$ ).
k. Repeat steps (a) through (i) for each A sweep rate listed in Table 4-1.

TABLE 4-1

| Step <br> A |  | Step B | Step D | Step J |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B |  |  |  | DELAY |
| TIME/ | TIME/ | Time | Markers | Tol. | MULT |
| CM | CM | Marker | Per Cm | $(\mathrm{mm})$ | Tol. |
| $10 \mu \mathrm{SEC}$ | $.5 \mu \mathrm{SEC}$ | $10 \mu \mathrm{sec}$ | 1 | $\pm 1.2$ | $\pm 008$ |
| $20 \mu \mathrm{SEC}$ | $.5 \mu \mathrm{SEC}$ | $10 \mu \mathrm{sec}$ | 2 | $\pm 12$ | $\pm 008$ |
| $50 \mu \mathrm{SEC}$ | $2 \mu \mathrm{SEC}$ | $50 \mu \mathrm{sec}$ | 1 | $\pm 1.2$ | $\pm 0.08$ |
| 1 mSEC | $5 \mu \mathrm{SEC}$ | $100 \mu \mathrm{sec}$ | 1 | $\pm 1.2$ | $\pm 008$ |
| 1 mSEC | $50 \mu \mathrm{SEC}$ | 1 msec | 1 | $\pm 12$ | $\pm 008$ |
| 10 mSEC | 5 mSEC | 10 msec | 1 | $\pm 1.2$ | $\pm 0.08$ |
| .1 SEC | 5 mSEC | 100 msec | 1 | $\pm 2.4$ | $\pm 020$ |
| 1 SEC | 50 mSEC | 1 sec | 1 | $\pm 2.4$ | $\pm 020$ |
| 2 SEC | 50 mSEC | 1 sec | 2 | $\pm 24$ | $\pm 0.20$ |
| 5 SEC | 2 SEC | 5 sec | 1 | $\pm 24$ | $\pm 0.20$ |

I. Reset TRIG MODE switch to AUTO.
*17. Adjust A Sweep Rates and Delay Time: $5 \mu$ SEC . $1 \mu$ SEC
a. Set:

A TIME/CM switch to $1 \mu$ SEC
B TIME/CM switch to $.1 \mu \mathrm{SEC}$
HORIZ DISPLAY switch to A INTEN BY B (nontriggered)
b. Apply 1-microsecond markers to the vertical input.
c. Set A TRIG LEVEL control for a triggered display.
d. Adjust Cl 60 C for 1 marker/cm.
e. Check the adjustment of Cl 60 C by using steps 16 e through 16j.
f. If step $16 j$ indicates an error greater than $\pm 0.08$ on the DELAY TIME MULT dial, readjust C160C .
g. Repeat steps 16 f through 16 j until the dial indicates an error less than $\pm 0.08$. Be certain that the requirement of step 17d is retained.
h. Set:

A and B TIME/CM switch to $.5 \mu$ SEC
HORIZ DISPLAY switch to A
i. Horizontally position the marker that is about 2 centimeters from the beginning of the trace to the line that is 1 centimeter from the left edge of the graticule.
i. Adjust Cl 60 A for 1 marker $/ 2 \mathrm{~cm}$. Refine the adjustment so markers can be exactly aligned with the 1 st and 9th graticule lines.
k. Set A and B TIME/CM switch to $.2 \mu \mathrm{SEC}$.
I. Apply 5 -me markers (sine waves) to the vertical input and obtain a triggered display.
m . Check for 1 marker $/ \mathrm{cm}$ and that the 1 st and 9th markers can be simultaneously aligned with the 1st and 9th graticule lines. With this sweep rate, the tolerance for exact marker alignment at the 9th centimeter line, when a marker is aligned with the Ist centimeter line, is $\pm 1.2 \mathrm{~mm}$.
n. Set $A$ and $B$ TIME/CM switch to $.1 \mu S E C$.
o. Apply $10-\mathrm{mc}$ markers (sine waves) to the vertical input and obtain a triggered display.
p. Repeat step (m).
18. Check 10 -Nanosecond $/ \mathrm{Cm}$ Sweep Rate $1.1 \mu \mathrm{sec} / \mathrm{cm}$ with MAG switch to X10)
a. Set MAG switch to $\mathrm{X10}$.
b. Apply 50 -mc markers (sine waves) to the vertical input.
c. Set A TRIG LEVEL and HF STABILITY controls for a stable, triggered display.
d. Check for 1 marker $/ 2 \mathrm{~cm}$ and that markers can be simultaneously aligned with the 1 st and 9 th graticule lines. The tolerance for exact marker alignment at the 9th line, when a marker is aligned with the 1 st line, is $\pm 2.8 \mathrm{~mm}$.

## NOTE

The accuracy of the 10 nanosecond/cm sweep rate depends, to a large degree, on the high-frequency response of the main horizontal amplifier in the oscilloscope.
e. Reset MAG switch to OFF.
*19. Adjust B SWP CAL (R260W)
a. Set:

HORIZ DISPLAY switch to B DLY'D BY A fnontriggered)
A TIME/CM switch to 2 mSEC
B TIME/CM switch to 1 mSEC
DELAY TIME MULT dial to 0.30
b. Apply 1 -millisecond markers to the vertical input.
c. Set A TRIG LEVEL control for a stable display.
d. Set HORIZ POSITION control so the marker nearest the left end of the trace is aligned with the 1st graticule line.
e. Adjust B SWP CAL (R260W) for 1 marker/cm. Refine the adjustment so markers can be simultaneously aligned with the 1st and 9th graticule lines.
20. Check B Sweep Length: 10.2-10.7 Cm
a. Set DELAY TIME MULT dial near 0.50 so the trace begins at a marker peak.
b. With a stable display of 1 -millisecond markers, set HORIZ POSITION control so the lst marker is one and one-half minor divisions to the right of the 0 graticule line.
c. Check that the right-hand end of the trace is within the last one-half centimeter of the graticule.
d. Horizontally center the display.

## 21. Check B (Variable) Control Range and UNCAL Lamp

a. Set B TIME/CM switch to .1 mSEC .
b. With a stable display of 1-millisecond markers, slowly turn B (variable) control counterclockwise. The distance between markers should decrease smoothly. With B (variable) control fully counterclockwise, there should be 4 centimeters or less between markers.
c. Check that the UNCAL lamp is lit.
d. Reset $B$ (variable) control to CALIB.
22. Check B Sweep Rates: $10 \mu$ SEC- 5 SEC
a. set:

VARIABLE A control to midrange
A and B TIME/CM switch to ( $10 \mu \mathrm{SEC}$ )
TRIG MODE switch to NORM
DELAY TIME MULT dial to 0.30
b. Apply ( 10 -microsecond) markers to the vertical input.
c. Set A TRIG LEVEL control for a stable display.
d. Check for (1) marker/cm and that markers can be simultaneously aligned with the 1 st and 9 th graticule lines. (With a 10 microsecond/cm sweep rate, the tolerance for exact marker alignment at the 9th line, when a marker is aligned with the 1 st line, is $\pm 1.2 \mathrm{~mm}$ )
e. Repeat steps (a) through (d) for each B sweep rate listed in Table 4-2.

TABLE 4-2

| Step A | Step B | Step D |  |
| :---: | :---: | :---: | :---: |
| A and B <br> TIME/CM | Time <br> Marker | Markers <br> Per Cm | Tol. <br> $(\mathrm{mm})$ |
| $10 \mu \mathrm{SEC}$ | $10 \mu \mathrm{sec}$ | 1 | $\pm 1.2$ |
| $20 \mu \mathrm{SEC}$ | $10 \mu \mathrm{sec}$ | 2 | $\pm 1.2$ |
| $50 \mu \mathrm{SEC}$ | $50 \mu \mathrm{sec}$ | 1 | $\pm 1.2$ |
| .1 mSEC | $100 \mu \mathrm{sec}$ | 1 | $\pm 1.2$ |
| 1 mSEC | 1 msec | 1 | $\pm 1.2$ |
| 10 mSEC | 10 msec | 1 | $\pm 1.2$ |
| .1 SEC | 100 msec | 1 | $\pm 2.4$ |
| 1 SEC | 1 sec | 1 | $\pm 2.4$ |
| 2 SEC | 1 sec | 2 | $\pm 2.4$ |
| 5 SEC | 5 sec | 1 | $\pm 2.4$ |

f. Reset TRIG MODE switch to AUTO.
*23. Adjust B Sweep Rates: $5 \mu$ SEC- $1 \mu$ SEC
a. Set:

VARIABLE A control to midrange
A and B TIME/CM switch to $1 \mu$ SEC
b. Apply 1 -microsecond markers to the vertical input.
c. Set A TRIG LEVEL control for a stable display.
d. Adjust C 260 C for 1 marker/cm. Refine this adjustment so that markers can be simultaneously aligned with the 1st and 9th graticule lines.
e. Set A and B TIME/CM switch to $.5 \mu \mathrm{SEC}$.
f. Adjust C260A for 1 marker $/ 2 \mathrm{~cm}$. Refine this adjustment so that markers can be simultaneously aligned with the 1st and 9th graticule lines.
24. Check B Sweep Rates: $2 \mu$ SEC and . $1 \mu$ SEC
a. Set $A$ and $B$ TIME/CM switch to $.2 \mu \mathrm{SEC}$.
b. Apply 5 -mc markers (sine waves) to the vertical input.
c. If necessary, set A TRIG LEVEL and HF STABILITY controls for a stable display.
d. Check for 1 marker/cm and that the 1 st and 9th markers can be simultaneously aligned with the 1st and 9th graticule lines. The tolerance for exact marker alignment at the 9th line, when a marker is aligned with the lst line, is $\pm 1.2 \mathrm{~mm}$.
e. Set A and B TIME/CM switch to . $1 \mu$ SEC.
f. Apply 10 -mc markers (sine waves) to the vertical input.
g. Repeat steps (c) and (d).
h. Reset VARIABLE A control to CALIB.
i. Disconnect the input signal.
25. Check External Horizontal Deflection Sensitivity a. Set:
$A$ and $B$ TIME/CM switch to 1 mSEC
INTENSITY control to 0
HORIZ DISPLAY switch to EXT INPUT
B COUPLING switch to DC
B SOURCE switch to EXT
IKC CALIBRATOR switch to 5 VOLTS
b. Connect oscilloscope calibrator output to B TRIG $\mathbb{N}$ OR EXT INPUT connector.
c. Set INTENSITY control to obtain a display. The display should consist of two spots or short horizontal lines.
d. Check that the peak-to-peak horizontal deflection is between 4.5 and 5.5 centimeters.
e. Set IKC CALIBRATOR switch to .5 VOLTS.
f. Horizontally center the display.
g. Set MAG switch to X 10 .
h. Repeat step (d).
i. Disconnect the input signal.
26. Check External Horizontal Frequency Response
a. Set MAG switch to OFF.
b. Connect the constant-amplitude sine-wave generator to B TRIG IN OR EXT INPUT connector. Terminate the generator with a Tektronix $50 \Omega$ termination (part no. 011-049), using a UHF to BNC adapter (part no. 103-032).
c. Set the generator frequency to 50 kc and output amplitude to produce 4 cenfimeters peak-to-peak horizontal deflection.
d. Without changing the output amplifude, increase the generator frequency to 3 mc .
e. Check that the peak-to-peak horizontal deflection is at least 2.8 centimeters.
f. Disconnect the generator.
g. Reset:

HORIZ DISPLAY switch to A
MAG switch to OFF
INTENSITY control for normal trace

## 27. (Optional) Check Alternate-Trace Vertical Operation

a. Set TRIG MODE switch to FREE RUN.
b. Set the vertical plug-in unit (e.g. Type 10A2) switches for alternate-trace operation.
c. Check that the appropriate number of traces are obtained.
28. Check + GATE and SWEEP Connector Output Signals
a. Set:

TRIG MODE switch to FREE RUN
A TIME/CM switch to $.5 \mu \mathrm{SEC}$
B TIME/CM switch to $.2 \mu \mathrm{SEC}$
DELAY TIME MULT dial to 0.30
HORIZ DISPLAY switch to A INTEN BY B (nontriggered)
VOLTS/CM switch (vertical plug-in) to 5
b. If the sensitivity of the vertical plug-in unit is known to be correct, use it to check for the following output voltages. Otherwise, use a separate oscilloscope.

$$
\begin{array}{r}
+ \text { GATE } A \approx 15 \mathrm{v} \\
+ \text { GATE } \mathrm{B} \approx 15 \mathrm{v} \\
\text { SWEEP } A \approx 10 \mathrm{v} \\
\text { SWEEP } B \approx 10 \mathrm{v}
\end{array}
$$

# Abridged Adjustment Procedure 

## Introduction

This procedure contains only the information necessary to adjust the seven internal calibration potentiometers without test equipment. The time-accuracy of these adjustments is derived from the oscilloscope crystal-controlled 1-Kc Calibrator. Adjustment of the four variable timing capacitors which establish the accuracy of the six fastest sweep rates of each sweep generator is not described here because a timing standard other than the 1-Kc Calibrator would be required.

## Preliminary Instructions

1. Remove the access panel from the right-hand side of the oscilloscope.
2. Set the controls and switches as follows:

## Oscilloscope


3. Apply power to the instrument and allow several minutes for warmup.

## Procedure

## 1. Adjust INT TRIG DC LEVEL (R7)

a. Remove the vertical plug-in unit
b. Move B COUPLING switch back and forth between AC and DC, and adjust INT TRIG DC LEVEL (R7) so the spot on the crt remains stationary.
c. Reset B COUPLING switch to $A C$ and reinstall the vertical plug-in unit.
2. Adjust DELAY START (R150) and A SWP CAL (R160W)
a. Set:

HORIZ DISPLAY switch to A INTEN BY B (nontriggered)
INTENSITY control for normal brightness
b. Connect the oscilloscope 1-Kc Calibrator signal to the vertical input.
c. Set A TRIG LEVEL control for a triggered display.
d. Set INTENSITY control so the small brightened spot near the left end of the trace is easily seen.
e. Adjust DELAY START (R150) so the rise of the 1st pulse (not counting the pulse at the extreme left end of the trace) is intensified.
f. Set DELAY TIME MULT dial to 9.00 .
g. Adjust A SWP CAL (RT60W) so the rise of the 9th pulse (not counting the pulse at the extreme left end of the trace) is intensified.
h. If necessary, repeat steps (e) and ( $g$ ) until the effects of adjustment interaction are minimized.
i. Set:

HORIZ DISPLAY switch to B DLY'D BY A (nontriggered)
DELAY TIME MULT dial to 1.00
B TIME/CM switch to $10 \mu$ SEC
i. Adjust DELAY START (R150) so the pulse rise is at the left end of the trace.
k. Set DELAY TIME MULT dial to 9.00 .
l. Adjust A SWP CAL (R160W) so the pulse rise is at the left end of the trace.
m. Repeat steps (i) through (I) until no further improvement can be made.

## 3. Adjust NORM GAIN (R331)

a. Set HORIZ DISPLAY switch to A.
b. Adjust NORM GAIN (R331) for 1 pulse/cm. Refine this adjustment so the rise of the 1 st and 9 th pulses are aligned with the 1 st and 9th graticule lines. (The pulse rise at the beginning of the trace and the line at the extreme left edge of the graticule are each counted as number 0 .)

## 4. Adjust MAG GAIN (R334)

a. Set:
$A$ and $B$ TME/CM switch to 10 mSEC
MAG switch to $\mathrm{X10}$
b. Adjust MAG GAIN (R334) for 1 pulse/cm. Refine this adjustment so pulse rise can be exactly aligned with the 1st and 9th graticule lines.
5. Adjust MAG REGIS (R339)
a. Set $A$ and $B$ TIME/CM switch to .1 mSEC.
b. With MAG switch set to X10, set HORIZ POSITION control so that the pulse fall near the center of the expanded trace is at the exact center of the graticule.
c. Set MAG switch to OFF.
d. Adjust MAG REGIS (R339) so the peak of the 0 pulse is again positioned to the exact center of the graticule.
e. If necessary, repeat steps (b) through (d) until no further improvement can be made.
f. Reset MAG switch to OFF.
6. Adjust B SWP CAL (R260W)
a. Set:

HORIZ DISPLAY switch to B DLY'D BY A (nontriggered)
A TIME/CM switch to 2 mSEC
B TIME/CM switch to 1 mSEC
DELAY TIME MULT dial to 0.30
b. Set HORIZ POSITION control so the pulse rise nearest the left end of the trace is aligned with the lst graticule line.
c. Adjust B SWP CAL (R260W) for 1 pulse/cm. Refine the adjustment so pulse rises can be simultaneously aligned with the 1st and 9th graticule lines.

## SECTION 5

## PARTS LIST and DIAGRAMS

## PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix Field Office.
Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number including any suffix, instrument type, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix Field Office will contact you concerning any change in part number.

ABBREVIATIONS AND SYMBOLS

| a or amp | amperes |
| :--- | :--- |
| BHS | binding head steel |
| C | carbon |
| cer | ceramic |
| cm | centimeter |
| comp | composition |
| cps | cycles per second |
| crt | cathode-ray tube |
| CSK | counter sunk |
| dia | diameter |
| div | division |
| EMC | electrolytic, metal cased |
| EMT | electroyltic, metal tubular |
| ext | external |
| f | farad |
| F \& 1 | focus and intensity |
| FHS | flat head steel |
| Fil HS | fillister head steel |
| g or G | giga, or $10^{9}$ |
| Ge | germanium |
| GMV | guaranteed minimum value |
| h | henry |
| hex | hexagonal |
| HHS | hex head steel |
| HSS | hex socket steel |
| HV | high voltage |
| ID | inside diameter |
| incd | incandescent |
| int | internal |
| k or K | kilohms or kilo $\left(10^{3}\right)$ |
| kc | kilocycle |
| m | milli, or $10^{-3}$ |
| mc | megacycle |


| mm | millimeter <br> meg or $M$ <br> megohms or mega $\left(10^{6}\right)$ |
| :--- | :--- |
| met. | metal |
| $\mu$ | micro, or $10^{-6}$ |
| $n$ | nano, or $10^{-9}$ |
| $\Omega$ | ohm |
| OD | outside diameter |
| OHS | oval head steel |
| p | pico, or $10^{-12}$ |
| PHS | pan head steel |
| piv | peak inverse voltage |
| plstc | plastic |
| PMC | paper, metal cased |
| poly | polystyrene |
| Prec | precision |
| PT | paper tubular |
| PTM | paper or plastic, tubular, molded |
| RHS | round head steel |
| rms | root mean square |
| sec | second |
| Si | silicon |
| S/N | serial number |
| $\dagger$ or T | tera, or $10^{12}$ |
| TD | toroid |
| THS | truss head steel |
| tub. | tubular |
| vor $V$ | volt |
| Var | variable |
| w | watt |
| w/ | with |
| w/o | without |
| WW | wire-wound |

## SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number.
000X Part removed after this serial number.
*000-000 Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, or reworked or checked components.

Use $000-000 \quad$ Part number indicated is direct replacement.
(1) Internal screwdriver adjustment.

Front-panel adjustment or connector.



$\square$




EXPLODED VIEW (Cont'd)





Values are fixed unless marked Variable.

| Ckt. No. | Tektronix <br> Part No. | Description |  |
| :--- | :---: | :---: | :---: |
|  |  |  | Bulbs |

## Capacitors

Tolerance $\pm 20 \%$ unless otherwise indicated.
Tolerance of all electrolytic capacitors as follows (with exceptions):

| $3 V-50 V$ | $=-10 \%,+250 \%$ |
| ---: | :--- |
| $51 V-350 V$ | $=-10 \%,+100 \%$ |
| $351 V-450 V$ | $=-10 \%,+50 \%$ |


| $\mathrm{Cl2}$ | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cl 4 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C15 | 281-516 | 39 pf | Cer | 500 v | 10\% |
| C21 | 281-518 | 47 pf | Cer | 500 v |  |
| C23 | 283-078 | . $001 \mu \mathrm{f}$ | Cer | 500 v |  |
| C25 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C26 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C27 | 281-542 | 18 pf | Cer | 500 v | 10\% |
| C29 | 281-557 | 1.8 pf | Cer | 500 v |  |
| C30A | 283-068 | . $01 \mu \mathrm{f}$ | Cer | 500 v |  |
| C30B | 281-523 | 100 pf | Cer | 350 v |  |
| C30C | 281-525 | 470 pf | Cer | 500 v |  |
| C32 | 283-079 | . $01 \mu \mathrm{f}$ | Cer | 250 v |  |
| C43 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C44C | 283-078 | . $001 \mu \mathrm{f}$ | Cer | 500 v |  |
| C44D | 283-078 | . $001 \mu \mathrm{f}$ | Cer | 500 v |  |
| C46 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C53 | 281-603 | 39 pf | Cer | 500 v | 5\% |
| C54 | 281-525 | 470 pf | Cer | 500 v |  |
| C63 | 281-549 | 68 pf | Cer | 500 v | 10\% |
| C70A | 283-068 | . $01 \mu \mathrm{f}$ | Cer | 500 v |  |
| C70C | 281-525 | 470 pf | Cer | 500 v |  |
| C72 | 283-079 | . $01 \mu \mathrm{f}$ | Cer | 250 v |  |
| C75A | 283-078 | . $001 \mu \mathrm{f}$ | Cer | 500 v |  |
| C76 | 283-079 | . $01 \mu \mathrm{f}$ | Cer | 250 v |  |
| C83 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C84C | 283-078 | . $001 \mu \mathrm{l}$ | Cer | 500 v |  |
| C84D | 283-078 | . $001 \mu \mathrm{f}$ | Cer | 500 v |  |
| C86 | 283-080 | . $022 \mu \mathrm{f}$ | Cer | 25 v |  |
| C93 | 281-603 | 39 pf | Cer | 500 v | 5\% |

tFurnished as a unit with SW201.

Capacitors (Cont'd)


## Capacitors (Cont'd)

|  | Tektronix |
| :--- | :--- |
| Ckt. No. | Part No |

Description
S/N Range

| C227 | 281-542 | 18 pf | Cer |  | 500 v | 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C230 | 281-518 | 47 pf | Cer |  | 500 v |  |
| C232 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C253 | 283-080 | . 022 ¢ f | Cer |  | 25 v |  |
| C256 | 281-523 | 100 pf | Cer |  | 350 v |  |
| C260A | 281-010 | 4.5-25 pf | Cer | Var |  |  |
| C260B | 283-097 | 84 pf | Cer |  | 1000 v | 2\% |
| C260C | 281-010 | 4.5-25 pf | Cer | Var |  |  |
| C260D | 283-097 | 84 pf | Cer |  | 1000 v | 2\% |
| C260F |  | . $001 \mu \mathrm{f}$ |  |  |  |  |
| C260G |  | $.01 \mu \mathrm{f}$ |  |  |  |  |
| C 260 H | *295-082 | $.1 \mu \mathrm{f}$ | Timing Series |  |  |  |
| C260J |  |  |  |  |  |  |
| C260K |  | $10 \mu \mathrm{f}$ |  |  |  |  |
| C260R | 281-525 | 470 pf | Cer |  | 500 v |  |
| C262 | 283.079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |
| C265 | 281-577 | 14 pf | Cer |  | 500 v | 5\% |
| C270 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C271 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C291 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C310 | 283-081 | . $1 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C320 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C340 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C409 | $283-079$ | . $01 \mu \mathrm{f}$ | Cer |  | 250 V |  |
| C410 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C411 | 283-080 | . $022 \mu \mathrm{f}$ | Cer |  | 25 v |  |
| C414 | 283-079 | . $01 \mu \mathrm{f}$ | Cer |  | 250 v |  |

## Diodes

| D30 | $152-045$ | Silicon 6045 <br> D31 |
| :--- | ---: | :--- |
| D33 | $152-045$ | Silicon 6045 |
| D44A | $152-141$ | Silicon 1N3605 |
| D44B | $152-141$ | Silicon 1N3605 |
|  | $152-141$ |  |
| Silicon 1N3605 |  |  |
| D44C |  |  |
| D44D | $152-075$ | Germanium 6075 |
| D45A | $152-075$ | Germanium 6075 |
| D45B | $152-141$ | Silicon 1N3605 |
| D55 | $152-141$ | Silicon 1N3605 |
|  | $152-125$ | Tunnel STD 704 4.7 ma |
|  |  |  |
| D56 | Use | *152-153 |
| D57 | *152-153 | Silicon, Replaceable by 1N4244 |
| D70 | $152-045$ | Silicon, Replaceable by 1N4244 |
| D71 | $152-045$ | Silicon 6045 |
| D73 | $152-141$ | Silicon 6045 |
| D74 | $152-141$ | Silicon 1N3605 |
| Silicon 1N3605 |  |  |

Tektronix
Ckt. No
Part No.
Description

| D75 | $152-139$ | Zener 1N751 5.1 v |
| :--- | ---: | :--- |
| D84A | $152-141$ | Silicon 1N3605 |
| D84B | $152-141$ | Silicon 1N3605 |
| D84C | $152-075$ | Germanium 6075 |
| D84D | $152-075$ | Germanium 6075 |
|  |  |  |
| D85A | $152-141$ | Silicon 1N3605 |
| D85B | $152-141$ | Silicon 1N3605 |
| D95 | $152-125$ | Tunnel STD 704 4.7 ma |
| D96 | Use | *152-153 | Silicon, Replaceable by 1N4244

5-12

Diodes (Cont'd)

|  | Tektronix <br> Part No. |  | Description |
| :--- | ---: | :--- | :--- |
| Ckt. No. |  |  | S/N Range |
| D346 | $152-141$ | Silicon 1N3605 |  |
| D407 | $152-123$ | Zener 1N935A 9.1 v |  |

## Inductors

| L14 | Use 276-507 | Core, Ferramic Suppressor |
| :--- | ---: | :--- |
| L43A | Use 276-507 | Core, Ferramic Suppressor |
| L43B | Use 276-507 | Core, Ferramic Suppressor |
| L45 | $* 108-112$ | $.3 \mu h$ |
| AL4 L46 108-0107-Cl | $*: 58-170$ | $.5 \mu \mathrm{~h}$ |


| L83A | Use 276-507 | Core, Ferramic Suppressor |
| :---: | :---: | :---: |
| L83B | Use 276-507 | Core, Ferramic Suppressor |
| L85 | *108-112 | . $3 \mu \mathrm{~h}$ |
| A-4 L86 108-0,70-0, | *108-170 | . $5 \mu \mathrm{~h}$ |
| 1125 | *108-147 | $2.2 \mu \mathrm{~h}$ |
| L225 | *108-147 | $2.2 \mu \mathrm{~h}$ |
| L320 | Use 276-507 | Core, Ferramic Suppressor |

## Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

| R7 | 311-326 | 10 k |  | Var |  | INT TRIG DC LEVEL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R9 | 316-392 | 3.9 k | $1 / 4 \mathrm{w}$ |  |  |  |
| R10 | 315-101 | $100 \Omega$ | 1/4w |  |  | 5\% |
| R11 | 315-101 | $100 \Omega$ | $1 / 4 w$ |  |  | 5\% |
| R12 | 316-330 | $33 \Omega$ | $1 / 4 w$ |  |  |  |
| R13 | 323-161 | $464 \Omega$ | 1/2w |  | Prec | 1\% |
| R14 | 302-391 | $390 \Omega$ | $1 / 2 w$ |  |  |  |
| R15 | 321-101 | $110 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |
| R16 | 323-191 | $953 \Omega$ | $1 / 2 \mathrm{w}$ |  | Prec | 1\% |
| R17 | 323-191 | $953 \Omega$ | $1 / 2 w$ |  | Prec | 1\% |
| R19 | 316-100 | $10 \Omega$ | 1/4w |  |  |  |
| R20 | 303-153 | 15 k | 1 w |  |  | 5\% |
| R21 | 321-225 | 2.15 k | $1 / 8 \mathrm{w}$ |  | Prec | 1\% |
| R22 | 323-313 | 17.8 k | $1 / 2 w$ |  |  | 1\% |
| R23 | 315-751 | $750 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec | 5\% |
| R24 | 316-472 | 4.7 k | 1/4w |  |  |  |
| R25 | 316-472 | 4.7 k | $1 / 4 \mathrm{w}$ |  |  |  |
| R26 | 316-471 | $470 \Omega$ | $1 / 4$ w |  |  |  |
| R27 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |  |
| R28 | 302-100 | $10 \Omega$ | 1/2w |  |  |  |

Resistors (Cont'd)

†Furnished as a unit with R81.
$\dagger \dagger$ Furnished as a unit with R41.

Resistors (Cont'd)


|  |  | Resistors (Cont'd) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ckt. No. | Tektronix Part No. |  | Descrip |  |  |
| R160F | 323-655 | 750 k | $1 / 2 \mathrm{w}$ |  | Prec |
| R160G | 323-655 | 750 k | $1 / 2 w$ |  | Prec |
| R160H | 323-656 | 1.5 meg | $1 / 2 w$ |  | Prec |
| R160J | 309-440 | 3.74 meg | $1 / 2 w$ |  | Prec |
| R160K | 309-441 | 7.50 meg | $1 / 2 \mathrm{w}$ |  | Prec |
| R160L | 309-442 | 22.6 meg | $1 / 2 \mathrm{w}$ |  | Prec |
| R160R | 316-470 | 47 ת | $1 / 4 w$ |  |  |
| R160T | 316-182 | 1.8 k | $1 / 4 \mathrm{w}$ |  |  |
| 24R160V $\dagger 314-0402-01$ | 37-402 | 20 k |  | Var |  |
| R160W | 311-404 | 1 k |  | Var | WW |
| R160X | 316-184 | 180 k | $1 / 4 \mathrm{w}$ |  |  |
| R160Y | 316-223 | 22 k | $1 / 4 \mathrm{w}$ |  |  |
| R161 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R162 | 316-221 | $220 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R163 | 315-471 | $470 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R164 | 323-315 | 18.7 k | $1 / 2 \mathrm{w}$ |  | Prec |
| R165 | 316-220 | $22 \Omega$ | $1 / 4 w$ |  |  |
| R168 | 304-223 | 22 k | 1 w |  |  |
| R170 | 316-100 | $10 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R171 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R172 | 316-220 | $22 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R173 | 316-220 | $22 \Omega$ | $1 / 4 w$ |  |  |
| R174 | 301-183 | 18 k | $1 / 2 w$ |  |  |
| R176 | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R177 | 316-471 | $470 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R178 | 315-751 | $750 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R179 | 315-333 | 33 k | $1 / 4 \mathrm{w}$ |  |  |
| R180 | 315-124 | 120 k | $1 / 4 \mathrm{w}$ |  |  |
| R181 | 311-117 | 5 k |  | Var |  |
| R182 | 316-153 | 15 k | $1 / 4 \mathrm{w}$ |  |  |
| R183 | 302-393 | 39 k | 1/2w |  |  |
| R184 | 322-357 | 51.1 k | $1 / 4 w$ |  | Prec |
| R185 | 321-225 | 2.15 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R186 | 316-225 | 2.2 meg | $1 / 4 \mathrm{w}$ |  |  |
| R187 | 316-473 | 47 k | $1 / 4 \mathrm{w}$ |  |  |
| R188 | 316-473 | 47 k | $1 / 4 \mathrm{w}$ |  |  |
| R189A | 316-564 | 560 k | $1 / 4 \mathrm{w}$ |  |  |
| R189B | 316-333 | 33 k | $1 / 4 \mathrm{w}$ |  |  |
| R190 | 321-207 | 1.4 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R191 | 321-257 | 4.64 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R193 | 321-171 | $590 \Omega$ | $1 / 8 \mathrm{w}$ |  | Prec |
| R194 | 321-189 | $909 \Omega$ | 1/8 w |  | Prec |
| R195 | 324-305 | 14.7 k | 1 w |  | Prec |
| R196 | 315-113 | 11 k | $1 / 4 w$ |  |  |
| R197 | 316-221 | $220 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |

$\dagger$ Furnished as a unit with SW160V.

Resistors (Cont'd)

Tektronix

| Ckt. No. | Tektronix <br> Part No. |  | Description |  | S/N Range |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R198 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R199 | 321-225 | 2.15 k | $1 / 8 \mathrm{w}$ | Prec | 1\% |
| R200 | 316-104 | 100 k | $1 / 4 \mathrm{w}$ |  |  |
| R201 | 316-473 | 47 k | $1 / 4 \mathrm{w}$ |  |  |
| R202 | 316-472 | 4.7 k | $1 / 4 \mathrm{w}$ |  |  |
| R203 | 316-104 | 100 k | $1 / 4 \mathrm{w}$ |  |  |
| R204 | 316-102 | 1 k | $1 / 4 \mathrm{w}$ |  |  |
| R207 | 316-103 | 10 k | $1 / 4 \mathrm{w}$ |  |  |
| R208 | 316-104 | 100 k | $1 / 4 \mathrm{w}$ |  |  |
| R210 | Use 322-130 | $221 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R211 | 311-386 | 2 k | Var | WW | DELAY TIME MULT 1-10 |
| R212 | 323-639 | 1.1 k | 1/2w | Prec | 1/2\% |
| R213 | 322-124 | $191 \Omega$ | $1 / 4 \mathrm{w}$ | Prec | 1\% |
| R214 | 301-625 | 6.2 meg | $1 / 2 \mathrm{w}$ |  | 5\% |
| R215 | 323-333 | 28.7 k | $1 / 2 \mathrm{w}$ | Prec | 1\% |
| R217 | 316-473 | 47 k | 1/4 w |  |  |
| R218 | 316-102 | 1 k | $1 / 4 w$ |  |  |
| R219 | 323-302 | 13.7 k | $1 / 2 \mathrm{w}$ | Prec | 1\% |
| R220 | 321-258 | 4.75 k | 1/8w | Prec | 1\% |
| R222 | 315-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  | 5\% |
| R223 | 321-243 | 3.32 k | 1/8 w | Prec | 1\% |
| R224 | 301-112 | 1.1 k | 1/2w |  | 5\% |
| R225 | 316-331 | $330 \Omega$ | 1/4 w |  |  |
| R227 | 315-112 | 1.1 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R230 | 321-250 | 3.92 k | 1/8w | Prec | 1\% |
| R231 | 322-341 | 34.8 k | 1/4 w | Prec | 1\% |
| R232 | 316-101 | 100 ת | 1/4 w |  |  |
| R233 | 315-162 | 1.6k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R234 | 323-171 | $590 \Omega$ | $1 / 2 \mathrm{w}$ | Prec | 1\% |
| R235 | 321-173 | $619 \Omega$ | 1/8 w | Prec | 1\% |
| R251 | 315-682 | 6.8 k | 1/4w |  | 5\% |
| R252 | 321-201 | 1.21 k | 1/8w | Prec | 1\% |
| R253 | 321-143 | $301 \Omega$ | 1/8w | Prec | 1\% |
| R254 | 315-392 | 3.9 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R255 | 315-512 | 5.1 k | $1 / 4 \mathrm{w}$ |  | 5\% |
| R256 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R258 | 316-101 | $100 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R259 | 316-220 | $22 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R260A | 323-654 | 75 k | 1/2w | Prec | 1/2\% |
| R260B | 323-654 | 75 k | 1/2w | Prec | 1/2\% |
| R260C | 315-392 | 3.9 k | $1 / 4 w$ |  | 5\% |
| R260D | 323-653 | 221 k | $1 / 2 \mathrm{w}$ | Prec | 1/4\% |
| R260E | 323-657 | 750 k | 1/2w | Prec | . 1 \% |
| R260F | 323-655 | 750 k | 1/2w | Prec | 1/2\% |
| R260G | 323-655 | 750 k | 1/2w | Prec | 1/2\% |


| Ckt. No. $\quad$ TektronixPart No. |  | Resistors (Cont'd) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Description |  |  |  |
| R260H | 323-656 | 1.5 meg | 1/2w |  | Prec |
| R260J | 309-440 | 3.74 meg | $1 / 2 \mathrm{w}$ |  | Prec |
| R260K | 309-441 | 7.50 meg | 1/2w |  | Prec |
| R260L | 309-442 | 22.6 meg | $1 / 2 \mathrm{w}$ |  | Prec |
| R260R | 316-470 | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R260T | 316-182 | 1.8 k | $1 / 4 \mathrm{w}$ |  |  |
| AL4R260V ${ }^{\text {Siin-0402-0 }}$ | 07 | 20 k |  | Var |  |
| R260W | 311-328 | 1 k |  | Var |  |
| R260Y | 316-223 | 22 k | 1/4 w |  |  |
| R261 | $316-470$ | $47 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R262 | 316-221 | $220 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R263 | 315-471 | $470 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R264 | 323-315 | 18.7 k | $1 / 2 w$ |  | Prec |
| R265 | 316-220 | $22 \Omega$ | $1 / 4 w$ |  |  |
| R268 | 305-752 | 7.5 k | 2 w |  |  |
| R270 | 316-101 | $100 \Omega$ | $1 / 4 w$ |  |  |
| R271 | 316-100 | $10 \Omega$ | $1 / 4 w$ |  |  |
| R274 | 315-751 | $750 \Omega$ | $1 / 4 \mathrm{w}$ |  |  |
| R275 | 315-333 | 33 k | $1 / 4 w$ |  |  |
| R290 | 321-207 | 1.4 k | $1 / 8 w$ |  | Prec |
| R291 | 321-257 | 4.64 k | $1 / 8 w$ |  | Prec |
| R293 | 315-123 | 12 k | $1 / 4 \mathrm{w}$ |  |  |
| R294 | 321-261 | 5.11 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R296A | 315-113 | 11 k | $1 / 4 \mathrm{w}$ |  |  |
| R296C | 316-222 | 2.2 k | $1 / 4 w$ |  |  |
| R296E | 321-245 | 3.48 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R297 | 322-349 | 42.2 k | $1 / 4 w$ |  | Prec |
| R298 | 321-257 | 4.64 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R307 | Use $316-333$ | 33 k | $1 / 4 \mathrm{w}$ |  |  |
| R308 | 321-193 | 1 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R310 | 323-321 | 21.5 k | $1 / 2 w$ |  | Prec |
| R311 | 316-183 | 18 k | $1 / 4 \mathrm{w}$ |  |  |
| R313 | 302-223 | 22 k | $1 / 2 \mathrm{w}$ |  |  |
| A. 4 R R 3213 3 6-0 $04-\infty$ | $\text { Use } 316-184$ | 1006 | $1 / 4 \mathrm{w}$ |  |  |
| R323 | 321-291 | 10.5 k | $1 / 8 \mathrm{w}$ |  | Prec |
| R324 | Use 323-324 | 20.5 k |  |  | Prec |
| R330 | 316-104 | 100 k | $1 / 4 w$ |  |  |
| R331 | 311-095 | $500 \Omega$ |  | Var |  |
| R332 | 321-231 | 2.49 k | 1/8 w |  | Prec |
| R333 | 321-097 | $100 \Omega$ | 1/8 w |  | Prec |
| R334 | 311-169 | $100 \Omega$ | $1 / 2 \mathrm{w}$ | Var |  |
| R335 | 322-133 | $237 \Omega$ | $1 / 4 \mathrm{w}$ |  | Prec |
| R337 | 324-289 | 10 k | 1 w |  | Prec |

$\dagger$ Furnished as a unit with SW260V.

Resistors (Cont'd)


Switches
Unwired Wired

| Unwired Wired |  |  |  |
| :---: | :---: | :---: | :---: |
| SW30A 260-564 | Lever | SOURCE |  |
| SW30B 260-519 | Lever | COUPLING |  |
| SW30C 260-472 | Lever | SLOPE |  |
| SW70A Use *050-211 | Lever | SOURCE | 100-45 |
| SW70A 260-640 | Lever | SOURCE | 460-u |
| SW70B 260-472 | Lever | COUPLING |  |
| SW70C 260-472 | Lever | SLOPE |  |
| SW116 260-545 3120+c-20, | Rotary | TRIG MODE |  |
| SWI60A,B 260-543 ${ }^{\text {c }} 2622-567$ | Rotary | TIME/CM |  |
| Aut.SW160V $\dagger$ 3 $311-4402-01$, |  |  |  |
| SW201才 $\dagger$ 260-518 | Push | RESET |  |
| SW260Vitt311-402 |  |  |  |
| $\left.\begin{array}{l}\text { SW300A } \\ \text { SW300B }\end{array}\right\} 260-544 * 262-568$ | Rotary | HORIZ DISPLAY |  |

## Transistors

| Q14A | $* 151-108$ |
| :--- | :--- |
| Q14B | ${ }^{*} 151-108$ |
| Q23A | $* 151-108$ |
| L. $\mathrm{Q} 23 \mathrm{~B}(5)-0133-00$ | $*$ |
| Q43 | $* 151-087$ |

Replaceable by 2 N 2501
Replaceable by 2N2501
Replaceable by 2N2501
Selected from FT1746
Replaceable by 2 N 1131
$\dagger$ Furnished as a unit with R160V.
$\dagger \dagger$ Furnished as a unit with B186.
$\dagger \dagger \dagger$ Furnished as a unit with R260V.

Transistors (Cont'd)

| Ckt. No. | Tektronix <br> Part No. | Description |
| :---: | :---: | :---: |
| Q44A | *151-103 | Replaceable by 2 N 2219 |
| Q44B | *151-103 | Replaceable by 2 N 2219 |
| Q54 | 151-131 | 2N964 |
| Q64 | 151-107 | 2N967 |
| Q83 | *151-087 | Selected from 2N1131 |
| Q84A | *151-103 | Replaceable by 2 N 2219 |
| Q84B | *151-103 | Replaceable by 2 N 2219 |
| Q94 | 151-131 | 2N964 |
| Q114 | *151-103 | Replaceable by 2 N 2219 |
| Q124 | *151-108 | Replaceable by 2 N 2501 |
| Q134A | *151-108 | Replaceable by 2 N 2501 |
| Q134B | *151-108 | Replaceable by 2 N 2501 |
| Q154 | $151-107$ | 2N967 |
| Q164 | *151-127 | Selected from 2N2369 |
| Q173A | *151-108 | Replaceable by 2 N 2501 |
| Q173B | *151-103 | Replaceable by 2 N 2219 |
| Q183 | *151.087 | Selected from 2N1131 |
| Q184 | *151-096 | Selected from 2N1893 |
| Al4 Q195A $151-0133^{-\infty}$ | *151-122 | Selected from FT1746 |
| A24 Q195BSS1-0133-00 | +45 2 | Selected from FT1746 |
| Q204 | *151-103 | Replaceable by 2N2219 |
| Q214 | *151-104 | Replaceable by 2N2913 |
| $\mathrm{F}_{4} \mathrm{QQ219}{ }^{\text {151-0133-00 }}$ | *F | Selected from FT1746 |
| Q224 | *151-108 | Replaceable by 2N2501 |
| Q234 | *151-108 | Replaceable by 2 N 2501 |
| Q254 | 151-107 | 2N967 |
| Q264 | *151-127 | Selected from 2N2369 |
| Q273 | *151-103 | Replaceable by 2N2219 |
| Q295A | *151-087 | Selected from 2N1131 |
| Q295B | *151-087 | Selected from 2N1131 |
| Q313 | *151-103 | Replaceable by 2N2219 |
| Q324 | *151-108 | Replaceable by 2N2501 |
| Q343 | *151-103 | Replaceable by 2N2219 |
| Q344 | *151-108 | Replaceable by 2 N 2501 |
|  |  | Electron Tubes |
| V33 | 154-306 | 7586 |
| V73 | 154-306 | 7586 |
| V161 | 154-306 | 7586 |
| V261 | 154-306 | 7586 |

## P6088 PROBE





SWEEP GENERATOR A




> | REFERENCE DRAWINGS |
| :--- |
| (1) TRIGGER GENERATOR |
| (2) SWEEP GENERATOR A |
| (3) SWEEP GENERATOR B |
| (6) INTERCONNECTING PLUG |




## VOLUME 3D

## SCALE OF SERVICING SPARES

## FOR

# 10S/6625-99-9522040 <br> OSCILLOSCOPE SET, CT536 


#### Abstract

Note:-This Scale of Servicing Spares is based on the most up-to-date information available at the time of printing. Any aspect of the scale thought to be unsatisfactory is to be reported in accordance with A.P.3158, Vol. 2 (2nd Edn.), Leaflet D. 6 (A.L.184), to Ministry of Defence (Air), (ADE. 25 (RAF)), via Command Headquarters.


Col 1 -Section and Reference number.
Col 2 - Nomenclature.
$\operatorname{Col} 3=$ Qty of $f$ per equipment.


Sol 6 - 4 months stilor ac finc to suppot threq equoments.
Note i Quantities scalec in cols d. 5 and $\mathrm{b}^{\circ}$ are maximum station noidings.
Note 2 Items morked with ar asterisk (x) in Col 4 may be deranded on a one-for-one basis by user unita.

Col 7 - 6 months 3re line test equipment repair unit nolding. 1 tems marked with an asterish are to oe demanded on $a$ one-for-one basis (See Note 3).

Col 8 - Items maried affect csilorstion of the ecuipment.
Col 9 - Circult reference, bart number or other reference.
Note 3 where more than one circuit referencs is quoted in col 9 and the calibration symbol ( $\alpha$ ) appears in col $\hat{c}_{\text {, }}$ efrcuit references that affect callbration are under:ined.


| 1 | 2 | 3 | 4 | 5 | 6 | 7 |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28F |  |  |  |  |  |  |  |  |
| 5330-99-942-8451 | WASHER, SEAL, FLAT | 4 |  |  |  |  |  | $\begin{aligned} & \text { PT. No }{ }^{\text {PGS }} \\ & 1186-7 \end{aligned}$ |
| 105L |  |  |  |  |  |  |  |  |
| 5240-00-299-7035 | LAMP, NEON | 2 | 1 | 1 | 1 | 3 |  | PT. No. 150-002700 B144, 244 |
| 6240-00-882-8487 | LAMP, GLOW | 8 | 1 | 2 | 3 | 8 |  | PT. No. 150-0030- <br> 00 B119, 160X, <br> 200, 219, 330, <br> 852, 853, 854 |
| 6240-00-962-0525 | bulb, miniature | 3 | 1 | 2 | 3 | 6 |  | $\begin{aligned} & \text { PT.No. 150-0029- } \\ & 00 \text { B604, 605, } \\ & 606 \end{aligned}$ |
| 110 AC |  |  |  |  |  |  |  |  |
| 5310-99-116-5124 | NUT, LOCKING | 1 | * |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \mathrm{No} \cdot 210-0576- \\ & 00 \end{aligned}$ |
| 5340-99-140-5712 | NUT, CAM, LOCKING | 2 |  |  |  |  |  | $\left\lvert\, \begin{aligned} & \text { PT.No. 214-0408- } \\ & 00 \end{aligned}\right.$ |
| 5340-99-140-6045 | RING RETAINING | 2 |  |  |  |  |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. 354-0219- } \\ & 00 \end{aligned}$ |
| 5307-99-140-7296 | STUD, KNOB PROTECTOR HANDLE | 2 |  |  |  |  |  | PT. No. AS 331 |
| 6625-99-140-7298 | COUPLING, KNOB PROTECTOR | 2 |  |  |  |  |  | PT. No. BS 276 |
| $\underline{110 A D}$ |  |  |  |  |  |  |  |  |
| 6625-00-937-9978 | CONTACT ELECTRTCAL | 1 | * |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No. } 166-0282-~ \\ & 00 \end{aligned}\right.$ |
| 6625-00-980-9301 | HOLDER PROBE | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT.No. 352-0024- } \\ & \hline 0 \end{aligned}$ |
| 5825-99-196-8722 | ADAPTOR | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT.No. 103-0036- } \\ & 00 \end{aligned}$ |
| 110 AE |  |  |  |  |  |  |  |  |
| 6625-00-078-5219 | PROBE TEST | 1 | * |  |  | * |  | ```PT.No. 010-0130- 00``` |
| 6250-00-089-7366 | LAMP HOLDER | 2 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. 352-0067- } \\ & 00 \end{aligned}$ |
| 6625-00-788-6811 | Centre pin | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 214-0325- } \\ & 00 \end{aligned}$ |
| 6525-00-790-2001 | PROBE, ELECTRONIC TEST | 2 |  |  |  |  |  | $\begin{aligned} & \text { PT.No. 010-0129- } \\ & 00 \end{aligned}$ |
| 5930-00-829-3251 | SWITCH, ELECTRICAL | 1 |  |  |  |  |  | $\begin{aligned} & \text { PT.No. 260-0551- } \\ & 00 \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110AK |  |  |  |  |  |  |  |  |
| 5355-00-084-4331 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No . 366-0250- } \\ & 00 \end{aligned}$ |
| 5355-00-422-2330 | KNOB, LEVER SWITCH | 8 | * |  |  | * |  | ```PT.No. 366-0215- 01``` |
| 5355-00-685-5580 | KNOB | 1 |  |  |  |  |  | $\begin{aligned} & \text { PT•No } \\ & 00 \end{aligned}$ |
| 5355-00-833-9259 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0117- } \\ & 00 \end{aligned}$ |
| 5355-00-849-7445 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0142- } \\ & 00 \end{aligned}$ |
| 5355-00-870-1174 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT•No. } 366-0254- \\ & 00 \end{aligned}$ |
| 5355-00-882-1194 | KNOB, TRIGGER | 3 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0225- } \\ & 00 \end{aligned}$ |
| 5355-00-913-5493 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 366-0140- \\ & 00 \end{aligned}$ |
| 5355-00-918-9525 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0194- } \\ & 00 \end{aligned}$ |
| 5355-00-918-9527 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No . 331-0092- } \\ & 00 \end{aligned}$ |
| 5355-00-918-9528 | DIAL | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 331-0096- } \\ & 00 \end{aligned}$ |
| 5355-00-926-5267 | KNOB, VOLTS/CM | 2 | * |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 366-0230- \\ & 00 \end{aligned}$ |
| 5355-00-939-1232 | KNOB, MODE | 6 | * |  |  | * |  | $\begin{aligned} & \text { PT. No } \quad 366-0220- \\ & 00 \end{aligned}$ |
| 5355-00-983-8715 | KNOB, TRIGGER | 2 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0081- } \\ & 00 \end{aligned}$ |
| 5355-99-140-5392 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0222- } \\ & 00 \end{aligned}$ |
| 5355-99-140-5432 | KNOB | 2 | * |  |  | * |  | $\begin{aligned} & \text { PT. No • 366-0232- } \\ & 00 \end{aligned}$ |
| 5355-99-140-5433 | KNOB | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 366-0249- } \\ & 00 \end{aligned}$ |
| 5340-99-140-5434 | HANDLE | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 367-0037- } \\ & 00 \end{aligned}$ |
| 6625-99-140-7297 | HANDLE, KNOB, PROTECTOR | 2 |  |  |  |  |  | PT. No. BS 291 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 AL |  |  |  |  |  |  |  |  |
| 5340-r.0-n 2-0589 | CAP, PROTECTIVE, DUST AND MOISTURE | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 348-0050- \\ & 00 \end{aligned}$ |
| 9325-00-0 -6256 | GROMMET, PLASTICS | 6 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No } ~ 348-0031- \\ & 00 \end{aligned}$ |
| 5355-90-256-7752 | GROMMET | i |  |  |  | * |  | $\begin{aligned} & \text { PT } \cdot \text { No } \cdot 348-0049- \\ & 00 \end{aligned}$ |
| 5325-10-975-4205 | GROMMET | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 348-0005- \\ & 00 \end{aligned}$ |
| 5325-60-2-5-4257 | GROMMET | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 348-0006- } \\ & 00 \end{aligned}$ |
| 5325-00-447-7140 | GROMMET | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 348-0012- } \\ & \text { OO } \end{aligned}$ |
| 5925-00-477-7833 | SHTELD, IMPLOSTON DMC | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 337-0573- } \\ & 00 \end{aligned}$ |
| 5325-00-754-2165 | GROMMET | 22 |  |  |  | * |  | $\begin{aligned} & \text { PT. No • 348-0003- } \\ & 00 \end{aligned}$ |
| 5325-00-813-6936 | GROMMET | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT. No • 348-0002- } \\ & 00 \end{aligned}$ |
| 5523-97-2.22-4561 | SLEEVE, LOCKING | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 166-0285- \\ & 00 \end{aligned}$ |
| 3910-30-856-6458 | SHIELD, CAPACITOR | 4 |  |  |  |  |  | $\begin{aligned} & \text { PT.No. 200-0259 } \\ & 00 \end{aligned}$ |
| 5325-00-800-3933 | GROMMET | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 348-0004- \\ & 00 \end{aligned}$ |
| 5950-0)-9:6-8080 | INDUCTOR | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 276-0532- \\ & \text { OO L487, } 497 \end{aligned}$ |
| 5525-99-i.6-5800 | SHTELD, FOCUS AND TNTENSITY | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 337-0576- \\ & \text { O0 } \end{aligned}$ |
| 5625-00-158-0172 | PROD TEST | 1 | * |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No } \cdot 202-0116- \\ & \text { OO } \end{aligned}$ |
| 5826-00-512-6583 | CLAMP ASSEMBLY | 1 |  |  |  |  |  | $\begin{aligned} & \text { PT. No. 200-0556- } \\ & 00 \end{aligned}$ |
| 5961-99-140-5407 | COVER, TRANSTSTOR | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 200-0500- } \\ & 00 \end{aligned}$ |
| 5310-99-140-5408 | COVER, NUT | 10 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. } 200-0548- \\ & \text { OO } \end{aligned}$ |



| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110AT |  |  |  |  |  |  |  |  |
| 6210-00-103-6337 | Lens light | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 378-0541- } \\ & 00 \end{aligned}$ |
| 5825-00-477-7830 | Filter, polarized light | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT.No. 378-0540- } \\ & 08 \end{aligned}$ |
| 110 B |  |  |  |  |  |  |  |  |
| 5970-00-104-7899 | InSULATOR DISC | 5 |  |  |  | * |  | $\left.\right\|_{00} ^{\mathrm{PT} \cdot \text { No. 214-0317- }}$ |
| 5340-00-792-2001 | SPACER, SlEEVE | 46 |  |  |  | * |  | $\left.\right\|_{00} ^{\text {PT. No. 361-0009- }}$ |
| 5340-00-816-0002 | SPACER, SLEEVE | 52 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 361-0007- } \\ & 00 \end{aligned}$ |
| $\underline{110 C}$ |  |  |  |  |  |  |  |  |
| 5910-00-014-6565 | CAPACITOR, FIXED, PAPER DIELECTRIC $0.0033 \mathrm{uF} \pm 5 \% .100 \mathrm{v}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 285-0627- } \\ & 00 \text { C } 902,924, \\ & 925 \end{aligned}$ |
| 5910-00-050-8329 | CAPACITOR, FIXED, CERAMIC <br> dielectrtc <br> $27 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$ | 2 |  |  |  | * | $\emptyset$ |  |
| 6625-00-056-2474 | DELAY LINE ASSEmbly | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 119-0029-1 \\ & 00 \quad \underline{L 403} \end{aligned}$ |
| 5910-00-436-3907 | CAPACTTOR, FIXED, CERAMIC, DIELECTRIC <br> $68 \mathrm{pF}, \pm 10 \%, 500 \mathrm{~V}$ | 2 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No. } 281-0549- \\ & 00 \quad \text { C63, } 198 \end{aligned}\right.$ |
| 5910-00-879-0123 | $\begin{aligned} & \text { CAPACITOR, FIXED, ELECTROLYTIC } \\ & 50 \mathrm{uF}-10 \%+250 \%, 50 \mathrm{~V} \end{aligned}$ | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \mathrm{PT} \cdot \mathrm{No} \cdot 290-0117- \\ & 00 \quad \mathrm{C} 820 \end{aligned}\right.$ |
| 5950-00-070-7591 | INDUCTOR, RADIO FREQUENCY 600 uH | 1 |  |  |  | * | $\emptyset$ | PT.No. 180-0254$00 \quad$ L394 |
| 5915-00-070-7599 | SUPPRESSOR PARASITIC <br> 0.15 uH | 3 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 108-0220- } \\ & 00 \text { L404, 406, } \\ & 577 \text {, } \end{aligned}$ |
| 5950-00-070-7600 | INDUCTOR, RADIO FREQUENCY 0.07 uH | 1 |  |  |  | * | $\emptyset$ | PT.No. 108-0277$00 \quad \mathrm{L405}$ |
| 5950-00-070-7601 | INDUCTOR, RADIO FREQUENCY | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 108-0295- \\ & 00 \underline{L 865} \end{aligned}$ |
| 5910-00-070-7610 | SHIELD, CAPACITOR | 1 |  |  |  | * |  | $\left.\right\|_{00} ^{\text {PT. No. 200-0255- }}$ |
| 5910-00-071-7356 | $\begin{aligned} & \text { CAPACITOR, FIXED, ELECTROLYTIC } \\ & 17 \mathrm{uF}-10 \%+100 \%, 150 \mathrm{~V} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 290-0198- $00 \quad \mathrm{C} 631,731$ |
| 5910-00-071-7359 | CAPACITOR, FIXED, CERAMIC DIELECTRIC <br> $84 \mathrm{pF} \pm 2 \%, 1000 \mathrm{~V}$ | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 283-0097- } \\ & 00 \\ & \frac{\text { C160B, D }}{260 B, D} \end{aligned}$ |

Page 6

AP 1i7K-0104-3D

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 C |  |  |  |  |  |  |  |  |
| 5910-00-081-6973 | CAPACITOR, FIXED, ELECTROLYTIC $100 \mathrm{uF}-10 \%+250 \%$, 30 V | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 290-0137-10 \\ & 00 \text { C210 } \end{aligned}$ |
| 6625-00-082-7547 | INDUCTOR, CORE | 8 |  |  |  | * |  | $\begin{aligned} & \text { PT. No } \quad 276-0507- \\ & 00 \text { L14, } 43 \mathrm{~A}, 43 \mathrm{~B}, \\ & 83 \mathrm{~A}, 83 \mathrm{~B}, 320,343, \\ & 353 \end{aligned}$ |
| 5950-00-083-5544 | INDUCTOR, RADIO FREQUENCY 0.3 uH | 2 |  |  |  | * | $\emptyset$ | PT.No. 108-027800 LR400, 401 |
| 5950-00-085-0114 | INDUCTOR, RADIO, FREQUENCY 0.3 uH | 1 |  |  |  | * | $\emptyset$ | PT.No. 108-0182$00 \quad$ L414 |
| 5910-00-103-0282 | CAPACITOR, VARIABLE $0.2-1.5 / 200 \mathrm{pF} \pm 10 \%$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 281-0069- } \\ & 00 \mathrm{C1iOC}, 210 \mathrm{C}, \\ & 110 \mathrm{E}, 210 \mathrm{E} \end{aligned}$ |
| 5910-00-103-0284 | CAPACITOR, VARIABLE $0.2-1.5 / 2000 \mathrm{pF} \pm 10 \%$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 281-0074- } \\ & \text { O0 C113C, 213C, } \\ & 113 \mathrm{E}, 213 \mathrm{E} \end{aligned}$ |
| 5910-00-103-9681 | CAPACITOR, VARIABLE $0.2-1.5 / 100 \mathrm{pF} \pm 10 \%$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 281-0071$00 \mathrm{ClO9C}, 209 \mathrm{C}$ 109E, 209E |
| 5910-00-104-7260 | CAPACITOR, VARIABLE $0.2-1.5 / 100 \mathrm{pF} \pm 10 \%$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 281-0073$00 \mathrm{Cl12C}, 212 \mathrm{C}$, $112 \mathrm{E}, 212 \mathrm{E}$ |
| 5910-00-126-1619 | CAPACITOR, VARIABLE $0.2-1.5 / 100 \mathrm{pF} \pm 10 \%$ | 4 |  |  |  | * | $\emptyset$ | PT.No. 281-0010$00 \mathrm{Cl} 60 \mathrm{~A}, 160 \mathrm{C}$, 260 A, 260C |
| 5910-00-226-0475 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $2.7 \mathrm{pF} \pm 0.25 \mathrm{pF}, 500 \mathrm{~V}$ | 2 |  |  |  | * |  | PT.No. 281-0547$00 \mathrm{Cl} 04 \mathrm{~A}, 204 \mathrm{~A}$ |
| 5950-00-241-3672 | $\begin{aligned} & \text { INDUCTOR } \\ & 0.5 \mathrm{uH} \end{aligned}$ | 2 |  |  |  | * |  | PT.NO. 108-0170- <br> 01 L46, 86 |
| 5910-00-436-4220 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $18 \mathrm{pF} \pm 20 \%, 500 \mathrm{~V}$ | 2 |  |  |  | * |  | $\begin{array}{\|l} \text { PT. NO. 281-0558- } \\ \text { OO C102, } 202 \end{array}$ |
| 5910-00-451-3209 | CAPACITOR, FIXED, ELECTROLYTIC $22 \mathrm{uF} \pm 20 \%, 35 \mathrm{~V}$ | 2 |  |  |  | * |  | PT.No. 290-0162$00 \mathrm{C} 661,691$ |
| 5910-00-472-6320 | CAPACITOR, FIXED, CERAMIC DIELECTRIC <br> $6.8 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$ | 6 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 281-0572- } \\ & \text { 00 C105A, 106A, } \\ & 107 \mathrm{~A}, 205 \mathrm{~A}, 206 \mathrm{~A} \\ & 207 \mathrm{~A} \end{aligned}$ |
| 5910-00-472-6321 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $4.7 \mathrm{pF} \pm 0.5 \mathrm{pF}$ | 3 |  |  |  | * |  | PT.No. 281-059200 C104D, 204D, 445 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110C |  |  |  |  |  |  |  |  |
| 5910-00-577-1315 | $\begin{aligned} & \text { CAPACITOR, FIXED, CERAMIC } \\ & \text { DIELECTRIC } \\ & 10 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V} \end{aligned}$ | 5 |  |  |  | * |  | PT. No. 281-0504$00 \mathrm{C} 192,193$, 292, 293, 945 |
| 5910-00-682-3251 | CAPACITOR, FIXED, CERAMIC <br> DIELECTRIC $470 \mathrm{pF} \pm 20 \%, 500 \mathrm{~V}$ | 11 |  |  |  | * |  | $\begin{aligned} & \text { PT } \cdot \mathrm{NO}, 281-0525- \\ & 00 \mathrm{C} 30 \mathrm{C}, 54, \\ & 70 \mathrm{C}, \quad 94,122, \\ & 160 \mathrm{R}, \quad 180 \mathrm{D}, 203, \\ & 222,260 \mathrm{R}, 948 \mathrm{~K} \end{aligned}$ |
| 5910-00-682-3287 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $2.2 \mathrm{pF} \pm 0.5 \mathrm{pF}, 500 \mathrm{~V}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 281-0500- \\ & 00 \quad \text { C878 } \end{aligned}$ |
| 5950-00-683-3203 | INDUCTOR, RADIO FREQUENCY 3. 2 uH | 1 |  |  |  | * | $\emptyset$ | PT. No. 108-0088$00 \quad \mathrm{L407}$ |
| 5910-00-683-3679 | $\begin{aligned} & \text { CAPACITOR, FIXED, CERAMIC } \\ & \text { DIELECTRIC } \\ & 8 \mathrm{pF} \pm 20 \%, 500 \mathrm{~V} \end{aligned}$ | 16 |  |  |  | * |  | $\begin{aligned} & \text { PT. No, 281-0503- } \\ & 00 \text { C108A, } 109 \mathrm{~A}, \\ & 110 \mathrm{~A}, 111 \mathrm{~A}, 112 \mathrm{~A}, \\ & 113 \mathrm{~A}, 208 \mathrm{~A}, 209 \mathrm{~A} \\ & 210 \mathrm{~A}, 211 \mathrm{~A}, 212 \mathrm{~A} \\ & 213 \mathrm{~A}, 404 \mathrm{~A}, \mathrm{~B}, \\ & 406 \mathrm{~A}, \mathrm{~B} \end{aligned}$ |
| 5950-00-686-6829 | INDUCTOR, RADIO FREQUENCY 0.3 uH | 4 |  |  |  | * |  | $\left\lvert\, \begin{array}{ll} \text { PT. No. } & 108-0112- \\ 00 \text { L45, } & L 85,554, \\ 564 \end{array}\right.$ |
| 5910-00-713-2011 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $100 \mathrm{pF} \pm 20 \%, 350 \mathrm{~V}$ | 5 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT . No } \quad 281-0523- \\ & 00 \text { C30B, } \frac{156,}{199,} 256, \frac{948 Z}{256} \end{aligned}$ |
| 5910-00-715-0452 | $\begin{aligned} & \text { CAPACITOR, FIXED, CERAMIC } \\ & \text { DIELECTRIC } \\ & 18 \mathrm{pF}+10 \%, 500 \mathrm{~V} \end{aligned}$ | 3 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No }, \\ & 00 \text { C27, } 127,227-0542- \end{aligned}\right.$ |
| 5910-00-726-8952 | $\begin{aligned} & \text { CAPACITOR, FIXED CERAMIC } \\ & \text { DIELECTRIC } \\ & 0.0068 \mathrm{uF} \pm 20 \%, 500 \mathrm{~V} \end{aligned}$ | 2 |  |  |  | * |  | PT. No. 281-0614$00 \mathrm{C} 118,218$ |
| 5910-00-752-4290 | CAPACITOR, FIXED, ELECTROLYTIC 10 uF - $10 \%+250 \%$, 15 V | 1 |  |  |  | * |  | PT.No. 290-016700 C 180 K |
| 5910-00-754-9826 | CAPACITOR, EIXED, CERAMIC DIELECTRIC $1.8 \mathrm{pF} \pm 20 \%, 500$ | 1 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \mathrm{No} \cdot 281-0557- \\ & 00 \text { C29 } \end{aligned}$ |
| 5910-00-782-7614 | CAPACITOR, FIXED, CERAMIC DIELECTRTC $0.1 \mathrm{uF}+80 \%-20 \%, 25 \mathrm{~V}$ | 15 |  |  |  | * |  | PT.No. 283-008100 C132, 134 232, 234,270,271 310,443,452,469, 694,811,923,936, 937 |
| 5910-00-794-3318 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $39 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$ | 2 |  |  |  | * |  | PT. No. 281-0516$00 \mathrm{C} 15,136$ |
| 5910-00-794-3408 | $\begin{aligned} & \text { CAPACITOR, FIXED, CERAMIC } \\ & \text { DIELECTRIC } \\ & 150 \mathrm{pF}+20 \% .500 \mathrm{~V} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 281-0524$00 \mathrm{C} 202,739$ |



| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{110 \mathrm{C}}$ |  |  |  |  |  |  |  |  |
| 5910-00-879-6813 | CAPACITOR, FIXED, CERAMIC DIELECTRIC <br> $39 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 6 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 281-0603- \\ & 00 \text { C } 53,93,456 \mathrm{~B}, \\ & 464,474,476 \end{aligned}$ |
| 5950-00-882-2752 | INDUCTOR, RADIO FREQUENCY 0.5 uH | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 108-0211- } \\ & 00 \text { L504, } 515 \end{aligned}$ |
| 5910-00-882-7003 | CAPACITOR, FIXED, CFRAMIC DIELFCTRIC <br> $0.001 \mathrm{uF} \pm 20 \%, 3000 \mathrm{~V}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 283-0044- \\ & 00 \text { C833 } \end{aligned}$ |
| 5910-00-889-4824 | CAPACITOR, FIXEN, PAPER DIELECTRIC, <br> $0.1 \mathrm{UF} \pm 20 \%, 600 \mathrm{~V}$ | 1 |  |  |  | * |  | PT.No. 285-0587- $00 \quad 0745$ |
| 5910-00-890-4499 | CAPACITOR, FIXED, MICA DIELECTRIC $200 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$ | 2 |  |  |  | * | $\emptyset$ | PT. No. 283-0557$00 \mathrm{C404C}, 406 \mathrm{C}$ |
| 5910-00-890-5707 | CAPACITOR, FIXED, ELECTROLYTIC $400 \mathrm{uF}-10 \%+100 \%, 250 \mathrm{~V}$ | 2 |  |  |  | * |  | PT. No. 290-016901 C612, 702 |
| 5910-00-900-1102 | CAPACITOR, VARTABLE 9.35 pF | 1 | * |  |  | 1 |  | PT.No. 281-0063$00<104$ |
| 5910-00-900-1104 | CAPACITOR, FIXED, PAPER, DIELFCTRIC $0.01 \mathrm{uF} \pm 5 \%, \quad 100 \mathrm{~V}$ | 4 |  |  |  | * |  | PT.No. 285-059800 C180G,663,744 815 |
| 5910-00-914-4085 | CAPACITOR, FIXET, CERAMIC DIELECTRIC $500 \mathrm{pF} \pm 20 \% 20,000 \mathrm{v}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No }{ }^{283-0096-} \\ & 00 \text { C838 } \end{aligned}$ |
| 5915-00-914-4106 | SUPPRESSOR, PARASITJC 0.1 uH | 5 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 108-0260- \\ & 00 \mathrm{~L} 434,444 \\ & 469,479,527 \end{aligned}$ |
| 5910-00-916-8011 | CAPACITOR, FIXED, CERAMTC DIELECTRIC $68 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 2 |  |  |  | * |  | PT.No. 281-0602- $00 \text { C456E,456F }$ |
| 5910-00-917-0559 | CAPACITOR, FIXED, CERAMIC DIELECTRIC <br> $0.0011 \mathrm{uF} \pm 5 \%, 500 \mathrm{~V}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 283-0088- } \\ & 00 \text { C348 } \end{aligned}$ |
| 5910-00-919-4374 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $270 \mathrm{pF} \pm 5 \%, 1,000 \mathrm{~V}$ | 4 |  |  |  | * |  | PT. No. 283-008400 C343,353,366 387 |
| 5910-00-924-4338 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $0.015 \mathrm{uF} \pm 20 \%, 3,000 \mathrm{v}$ | 7 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 283-0042- \\ & 00 \text { C822, } 827, \\ & 832,844,845,846, \\ & 854 \end{aligned}$ |
| 5910-00-931-7067 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $0.022 \mathrm{uF} \pm 80 \%-20 \%, 25 \mathrm{~V}$ | 26 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 283-0080- } \\ & 00 \text { C12,14,25,26, } \\ & 43,46,83,86,109, \\ & 191,213,253,291, \\ & 320,340,344,354, \\ & 371,382,390,410, \\ & 411,483,497,498, \\ & 896 \end{aligned}$ |

Page 10

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110C |  |  |  |  |  |  |  |  |
| 5910-00-932-9453 | CAPACITOR, VARIABLE $0.2-1.5 \mathrm{pF}-20 \%$ | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT . No. } 281-0064- \\ & 00 \mathrm{C} 103,104 \mathrm{~B}, 203 \\ & 204 \mathrm{~B} \end{aligned}$ |
| 5910-00-937-0660 | ```CAPACITOR, FIXED, ELECTROLYTIC 5uF - 10% + 250%, 25V``` | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 290-0026- } \\ & 00 \text { C } 916,926 \end{aligned}$ |
| 5910-00-938-4696 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $0.001 \mathrm{uF} \pm 20 \%, 500 \mathrm{~V}$ | 14 |  |  |  | * |  | PT. No. 283-0078$00 \mathrm{C} 23,44 \mathrm{C}, 44 \mathrm{D}$, 75A 84C, 84D, 104, 169, 207, 314, $334,660,690,692$, |
| 5910-00-947-9498 | CAPACITOR, FIXED, CERAMIC DIELECTRIC | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 281-0577- \\ & 00 \text { C159, } 165, \\ & 259,265 \end{aligned}$ |
| 5910-00-947-9499 | CAPACITOR, FIXED, CERAMIC <br> DIELECTRIC <br> $18 \mathrm{pF}+5 \%, 500 \mathrm{~V}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. NO. 281-0578- } \\ & 00 \mathrm{C} 462 \end{aligned}$ |
| 5910-00-949-4995 | $\begin{aligned} & \text { CAPACITOR, FIXED, CERAMIC } \\ & \text { DIELECTRIC } \\ & 11 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 281-0576$00 \mathrm{C} 465,475$ |
| 5910-00-950-3924 | $\begin{aligned} & \text { CAPACITOR, VARIABLE } \\ & 0.7-3 \mathrm{pF} \pm 20 \% \end{aligned}$ | 26 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 281-0027- } \\ & 00 \mathrm{Cl} 105 \mathrm{~B}, \mathrm{C}, \\ & 106 \mathrm{~B}, \mathrm{C}, 107 \mathrm{~B}, \mathrm{C}, \\ & 108 \mathrm{~B}, \mathrm{C}, 109 \mathrm{~B}, 110 \mathrm{~B} \\ & 111 \mathrm{~B}, 112 \mathrm{~B}, 113 \mathrm{~B}, \\ & 205 \mathrm{~B}, \mathrm{C}, 206 \mathrm{~B}, \mathrm{C}, \\ & 207 \mathrm{~B}, \mathrm{C}, 208 \mathrm{~B}, \mathrm{C}, \\ & 209 \mathrm{~B}, 210 \mathrm{~B}, 211 \mathrm{~B}, \\ & 212 \mathrm{~B}, 213 \mathrm{~B} \end{aligned}$ |
| 5910-00-951-0668 | CAPACITOR, FIXED, SERAMIC <br> DIELECTRIC <br> $47 \mathrm{pF}+20 \%, 500 \mathrm{~V}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 281-0518- \\ & 00 \text { C21, 130,230 } \end{aligned}$ |
| 5910-00-978-2441 | CAPACITOR, FIXED, CERAMIC $3.3 \mathrm{pF}-0.25 \mathrm{pF}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 281-0534- \\ & 00 \text { C877,C948A } \end{aligned}$ |
| 5910-99-116-5759 | CAPACITOR, VARIABLE $1.2 \mathrm{pF}-3.5 \mathrm{pF} \pm 20 \%$ | 1. |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 281-0076- } \\ & 00 \mathrm{C484}, \end{aligned}$ |
| 5910-99-116-5760 | CAPACITOR, VARIABLE $1.5 \mathrm{pF}-9.1 \mathrm{pF} \pm 20 \%$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 281-0079- } \\ & 00 \mathrm{C} 467 \text {, } \end{aligned}$ |
| 5910-99-116-5761 | CAPACITOR, FIXED, CERAMIC DIELECTRIC $25 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } \\ & \text { OO C466 } \end{aligned}$ |
| 5910-99-116-5762 | CAPACITOR, FIXED, ELECTROLYTIC $170 \mathrm{uF}-10 \%,+100 \%, 250 \mathrm{~V}$ | 1. |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 290-0202- \\ & 00 \mathrm{C742} \end{aligned}$ |
| 5910-99-140-5418 | CAPACITOR, FIXED, FLECTROLYTIC $15 \mathrm{uF}-10 \%+250 \%, 20 \mathrm{~V}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. }{ }^{290-0135-} \\ & 00 \text { C170 } \end{aligned}$ |
| 5910-99-140-5419 | CAPACITOR, FIXED, ELECTROLYTIC $180 \mathrm{uF}-10 \%+250 \%$, 6 V | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 290-0139- } \\ & 00 \text { C153, } \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 C |  |  |  |  |  |  |  |  |
| 5910-99-140-5421 | CAPACITOR, FIXED, ELECTROLYTIC $100 \mathrm{uF}-10 \%+250 \%, 12 \mathrm{~V}$ | 2 |  |  |  | * |  | PT.No. 290-0171$00 \mathrm{C} 609,743$ |
| 5910-99-140-5422 | $\begin{aligned} & \text { CAPACITOR, FIXED, ELECTROLYTIC } \\ & 1 \mathrm{uF} \pm 10 \%, 35 \mathrm{~V} \end{aligned}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 290-0183- } \\ & 00 \text { Cl08J,199,299 } \end{aligned}$ |
| 5910-99-140-5423 | CAPACITOR, FIXED, ELECTROLYTIC $3900 \mathrm{uF}-10 \%+250 \%$, 30 V | 2 |  |  |  | * |  | PT.No. 290-018600 C642,672 |
| 5910-99-140-5424 | CAPACITOR, FIXED, ELECTROLYTIC, $0.1 \mathrm{uF} \pm 10 \%, 35 \mathrm{~V}$ | 1 |  |  |  | * |  | PT. No. 290-0188$00 \mathrm{Cl80H}$ |
| 5910-99-140-5425 | CAPACITOR, FIXED, ELECTROLYTIC $33 \mathrm{uF}-10 \%+250 \%, 35 \mathrm{v}$ | 2 |  |  |  | * |  | PT.No. 290-0189- 00 C114,818 |
| 5950-99-140-5628 | $\begin{aligned} & \text { INDUCTOR } \\ & 100 \mathrm{uH} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 0^{108-0226-}{ }^{102390} \end{aligned}$ |
| 5910-99-140-5720 | CAPACITOR, VARIABLE $0.2-1.5 / 500 \mathrm{pF} \pm 10 \%$ | 2 |  |  |  | * |  |  |
| 5910-99-140-5721 | CAPACITOR, VARTABLE <br> $1.3 \mathrm{pF}-5.4 \mathrm{pF} \pm 20 \%$ | 1 |  |  |  | * |  | PT.No. 281-0077- <br> $00 \mathrm{C378}$, |
| 5910-99-140-5722 | CAPACITOR, VARIABLE $0.2 \mathrm{pF}-1.5 \mathrm{pF} \pm 20 \%$ | 2 |  |  |  | * |  | PT.No. 281-0095- $00 \mathrm{C} 377,397$ |
| 5910-99-140-5727 | CAPACITOR, FIXED, CERAMTC DIELECTRIC $0.01 \mathrm{uF} \pm 20 \%, 250 \mathrm{~V}$ | 16 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 283-0079- \\ & 00 \text { C32, } 72,76, \\ & 123,131,162,171, \\ & 223,231,262,409, \\ & 414,417,483,863, \\ & 870 \end{aligned}$ |
| 5910-99-140-5728 | CAPACITOR, FIXED, CERAMIC DIELECTRIC <br> $56 \mathrm{pF} \pm 10 \%, 200 \mathrm{~V}$ | 1 |  |  |  | * |  | PT.No. 283-0095$00 \quad \mathrm{C} 367$ |
| 5910-99-140-5731 | CAPACITOR, FIXED, PAPER DIELECTRIS $0.01 \mathrm{uF} \pm 20 \%, 200 \mathrm{~V}$ | 2 |  |  |  | * |  | PT.No. 285-0569- $00 \mathrm{C} 622,882$ |
| 5910-99-140-5732 | CAPACITOR, FTXED, PAPER DIELECTRIC $0.1 \mathrm{uF} \pm 20 \%, 100 \mathrm{~V}$ | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 285-0622- \\ & 00 \mathrm{Cl} 30,200,230, \\ & 714,914 \end{aligned}$ |
| 5910-99-140-5733 | CAPACITOR, FIXED, PAPER DIELECTRIC <br> $0.47 \mathrm{uF} \pm 20 \% 100 \mathrm{~V}$ | 2 |  |  |  | * |  | PT.No. 285-062300 C615-821 |
| 5910-99-140-5734 | CAPACITOR, FIXED, PAPER DIELECTRIC $0.0015 \mathrm{uF} \pm 20 \%, 100 \mathrm{~V}$ | 1 |  |  |  | * |  | PT.No. 285-062600 C 903 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 C |  |  |  |  |  |  |  |  |
| 5910-99-140-5735 | CAPACITOR, FTXED, PAPER DIELECTRIC $0.047 \mathrm{uF}+20 \%, 100 \mathrm{~V}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 285-0629-1 \\ & 00 \text { C186 } \end{aligned}$ |
| 5910-99-140-5736 | CAPACITOR, FIXED, PAPER DIELECTRIC $0.033 \mathrm{uF} \pm 20 \%, 600 \mathrm{~V}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 285-0644- } \\ & \text { OO C610, } 701, \\ & 740,741 \end{aligned}$ |
| 5910-99-140-5738 | CAPACITOR SET matched set of 5 capacitors $.001 \mathrm{uF}, 0.01 \mathrm{uF}, 0.1 \mathrm{uF}, 1 \mathrm{uF}, 10 \mathrm{uF}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No } 0^{295-0082-} \frac{\mathrm{C} 160 \mathrm{~F}-\mathrm{K}}{\mathrm{C} 260 \mathrm{~F}-\mathrm{K}} \end{aligned}$ |
| 110CV |  |  |  |  |  |  |  |  |
| 5961-00-018-1179 | TRANS ISTOR | 32 |  |  |  | 5 | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 151-0103- \\ & 00 \text { Q44A, B, 84A, } \\ & B, 114,123,133, \\ & 173 \mathrm{~B}, 204,223,233 \\ & 273,313,343, \\ & 345,355,374, \\ & 383,483,593, \\ & \frac{653}{6}, 659,663,683, \\ & 689,723,733 \\ & 814 A, 804 \end{aligned},$ |
| 5961-00-018-1180 | TRANSISTOR | 6 |  |  |  | 2 | $\emptyset$ | PT. No. 151-013300 Q23B, 195A, B, $219,373,303$ |
| 5961-00-045-4196 | SEMICONDUCTOR, DEVICE, DIODE | 57 |  |  |  | 11 |  | $\begin{aligned} & \text { PT. No. } 152-0141- \\ & 00 \text { n33, 44A, B, } \\ & 45 \mathrm{~A}, \mathrm{~B}, 73 / 4, \\ & 84 \mathrm{~A}, \mathrm{~B}, 85 \mathrm{~A}, \mathrm{~B}, \\ & 104,113 / 4,118, \\ & 133,155,157,158, \\ & 163,180 / 1,183, \\ & 193,200,219,233, \\ & 255,257,258,263, \\ & 273,293,321,344, \\ & 346,347,360,363, \\ & 371,387,669,699, \\ & 739,811,815 / 7, \\ & 873,884,986,891, \\ & 932,933,942 / 3, \\ & 948 \end{aligned}$ |
| 5961-00-051-4719 | DIODE | 8 |  |  |  | 2 |  | PT. No. 152-011300 D642A, B, C, D D672, A, B, C, D |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 CV |  |  |  |  |  |  |  |  |
| 5961-00-051-5975 | TRANS ISTOR | 4 |  |  |  | 2 | $\emptyset$ | PT.No. 151-0126$000644,674,714$ 910, |
| 5961-00-070-7609 | SEMICONDUCTOR DEVICE, DIODE | 2 |  |  |  | 2 |  | PT.No. 152-015100 D214A, B |
| 5961-00-078-0628 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT.No. } \\ & 152-0124-00 \\ & \text { D609, } \end{aligned}$ |
| 5961-00-226-8581 | TRANSISTOR | 2 |  |  |  | 1 |  | $\begin{aligned} & \text { PT. No. 151-0131- } \\ & 00 \text { Q54, } 94 \end{aligned}$ |
| 5960-00-230-5321 | VALVE, ELECTRONIC | 5 |  |  |  | 3 | $\emptyset$ | PT.No. 154-005100 V822, 832, 842, 852,862 |
| 5961-00-710-2771 | SEMICONDUCTOR DEVICE, DIODE | 9 |  |  |  | 4 | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 152-0065- \\ & 00 \text { D302, } 305,309, \\ & \frac{312}{3122}, 322,325,329, \end{aligned}$ |
| 5961-00-713-7393 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 | $\emptyset$ | PT.No. 152-003400 D343, |
| 5951-00-724-2136 | TRANSISTOR | 1 |  |  |  | 1 |  | $\left\lvert\, \begin{aligned} & \text { PT.No. } \\ & 00 \\ & \text { Q637 } \end{aligned}\right.$ |
| 5961-00-724-2138 | TRANSISTOR | 1 |  |  |  | 1 |  | PT.No. 151-014000 Q697 |
| 5960-00-755-0184 | VALVE, ELECTRONIC | 4 |  |  |  | 3 |  | $\begin{aligned} & \text { PT. No. } 154-0306- \\ & 00 \text { V33,73,161, } \\ & 261 \end{aligned}$ |
| 5961-00-759-9393 | TRANSISTOR | 3 |  |  |  | 1 |  | PT.No. 151-0096-00 Q184,623,633 |
| 5961-00-781-6825 | TRANS ISTOR | 15 |  |  |  | 4 |  | $\begin{aligned} & \text { PT. No. 151-0108- } \\ & 00 \text { Q14A, B, 23A, } \\ & 124,134 \mathrm{~A}, \mathrm{~B}, 173 \mathrm{~A}, \\ & 224,234,324,344, \\ & 364,390,883,894 \end{aligned}$ |
| 5961-00-837-9286 | DIODE | 1 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT.No. 152-0135- } \\ & 00 \text { D714 } \end{aligned}$ |
| 5961-00-849-4186 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 | $\emptyset$ | $\left.\right\|_{00} ^{\text {PT. No. } 152-0291-~}$ |
| 5961-00-855-3997 | TRANSISTOR | 2 |  |  |  | 1 |  | $\begin{aligned} & \text { PT.No. 151-0112- } \\ & \text { OO Q667,820 } \end{aligned}$ |
| 5961-00-857-1914 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 | $\emptyset$ | PT. No. 152-006000 D397, |
| 5961-00-865-9229 | SEMICONDUCTOR DEVICE, DIODE | 3 |  |  |  | 2 | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 152-01233 \\ & -00 \text { D } 340,341,407 \end{aligned}$ |

Page 14

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110CV |  |  |  |  |  |  |  |  |
| 5961-00-879-7448 | TRANSISTOR | 14 |  |  |  | 4 |  | $\begin{aligned} & \text { PT. No. } 151-0109- \\ & \text { OO Q154, } 164,174, \\ & 184,254,264,274, \\ & 284,304,314,324, \\ & 334,434,444 \end{aligned}$ |
| 5961-00-900-6703 | TRANSISTOR | 3 |  |  |  | 1 |  | $\begin{aligned} & \text { PT. No. } 151-0107- \\ & 00 \text { Q64, } 154,254 \end{aligned}$ |
| 5961-00-905-6871 | SEMICONDUCTOR DEVICE, DIODE | 9 |  |  |  | 4 |  | $\begin{aligned} & \text { PT. No } 152-0061- \\ & 00 \text { D125, 225, } 395 \text {, } \\ & 396,611,872,874 \text {, } \\ & 944,947 \end{aligned}$ |
| 5961-00-908-7598 | SEMICONDUCTOR DEVICE, DIODE | 14 |  |  |  | 5 | $\emptyset$ | $\begin{aligned} & \text { PT. No, } 152-0075- \\ & 00 \text { D } 44 \mathrm{C}, \mathrm{D}, 84 \mathrm{C}, \\ & \mathrm{D}, 133,192,193 \\ & 233,292,293,348, \\ & \frac{358}{369}, \frac{391}{} \end{aligned}$ |
| 5961-00-914-3329 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT. No . 152-0126- } \\ & 00 \text { D374 } \end{aligned}$ |
| 5960-00-920-7941 | VALVE, ELECTRONTC | 2 |  |  |  | 2 | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 152-0161- \\ & 00 \mathrm{D159}, 259 \end{aligned}$ |
| 5960-00-920-7942 | VALVE, ELECTRONLC | 1 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT. No. 154-0448- } \\ & 00 \text { V859 } \end{aligned}$ |
| 5960-00-920-7996 | VALVE, ELECTRONJC | 2 |  |  |  | 2 |  | $\begin{aligned} & \text { PT. No. 157-0080- } \\ & 00 \text { V133, } 233 \end{aligned}$ |
| 5961-00-923-9763 | SEMICONDUCTOR DEVICE, DIODE | 9 |  |  |  | 4 |  | $\begin{aligned} & \text { PT. No } 152-0066- \\ & 00 \text { D612A, B, C, D, } \\ & 702,737,742,743, \\ & 745 \end{aligned}$ |
| 5961-00-923-9772 | SEMICONDUCTOR DEVICE, DIODE | 5 |  |  |  | 3 |  | $\begin{aligned} & \text { PT. No } .152-0125- \\ & 00 \text { D55,95,105, } \\ & 125,225 \end{aligned}$ |
| 5961-00-923-9773 | SEMICONDUCTOR DEVICE, DIODE | 9 |  |  |  | 4 |  | $\begin{aligned} & \text { PT. No. } 152-0153- \\ & 00 \text { D56,57,96, } \\ & 102,103,120,121, \\ & 220,221 \end{aligned}$ |
| 5961-00-923-9775 | TRANS ISTOR | 10 |  |  |  | 3 | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 151-0127- \\ & 00 \text { Q164, 264, } 423, \\ & 433,444,454,464 \mathrm{~A} \\ & \mathrm{~B}, 474 \mathrm{~A}, \mathrm{~B} \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 CV |  |  |  |  |  |  |  |  |
| 5961-00-923-9776 | TRANSISTOR | 12 |  |  |  | 3 |  | $\begin{aligned} & \text { PT. No. } 151-0120 \\ & 00 \text { Q413,423,454, } \\ & 464,504,514,523, \\ & 533,554,564,574, \\ & 584 \end{aligned}$ |
| 5961-00-923-9777 | SEMICONDUCTOR DEVICE SET (Matched Pair) | 1 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 153-0524- \\ & 00 \mathrm{Q484}, \underline{494} \end{aligned}$ |
| 5961-00-923-9778 | TRANSISTOR | 3 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT.No. 151-0104- } \\ & \text { OO Q214,614, 803 } \end{aligned}$ |
| 5961-00-927-2932 | TRANSISTOR | 5 |  |  |  | 2 | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 151-0124 \text { - } \\ & 00 \text { Q374, } 394, \\ & 873, \underline{874}, \underline{945}, \end{aligned}$ |
| 5961-00-965-6721 | SEMICONDUCTOR DEVICE, DIODE | 4 |  |  |  | 3 |  | $\begin{aligned} & \text { PT.NO. } 152-0045- \\ & 00 \text { D30, } 31,70, \\ & 71 \end{aligned}$ |
| 5961-00-968-0084 | TRANSISTOR | 5 |  |  |  | 2 | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 151-0087- \\ & 00 \mathrm{Q43}, 83,183 \\ & 295 \frac{\mathrm{~A}, \underline{B}}{} \end{aligned}$ |
| 5961-00-989-2434 | SEMICONDUCTOR DEVICE, DIODE | 2 |  |  |  | 2 |  | $\begin{aligned} & \text { PT. No. } 152-0002- \\ & 00 \text { D870,871 } \end{aligned}$ |
| 5961-99-037-4910 | TRANSISTOR CV 7528 Q637 |  |  |  |  |  |  |  |
| 5961-99-116-5752 | TRANSISTOR | 1 |  |  |  | 1 |  | $\begin{aligned} & \text { PT. No. } 151-0125- \\ & 00 \text { Q693 } \end{aligned}$ |
| 5961-99-116-5753 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 |  | $\begin{aligned} & \text { PT.No. } 152-0096- \\ & \text { 00 D636 } \end{aligned}$ |
| 5961-99-116-5754 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 |  | $\begin{aligned} & \text { PT.No. 152-0119- } \\ & \text { 00 D804 } \end{aligned}$ |
| 5961-99-116-5755 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 |  | $\begin{aligned} & \text { PT. No. 152-0133- } \\ & 00 \text { D736 } \end{aligned}$ |
| 5961-99-118-3882 | SEMICONDUCTOR DEVICE, DIODE | 3 |  |  |  | 1 | $\emptyset$ | $\begin{aligned} & \text { PT.NO. 152-0134- } \\ & 00 \text { D716 } \end{aligned}$ |
| 5961-99-140-5647 | TRANSISTOR | 1 |  |  |  | 1 |  | $\begin{aligned} & \text { PT. No. } 151-0209- \\ & 00 \text { Q737 } \end{aligned}$ |
| 5960-99-197-7928 | SEMICONDUCTOR DEVICE, DIODE | 1 |  |  |  | 1 |  | $\begin{aligned} & \text { PT.No. } 152-0290- \\ & 00 \text { D820 } \end{aligned}$ |
| 110F |  |  |  |  |  |  |  |  |
| 5930-00-051-2205 | SWITCH, ROTARY | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 260-0472- \\ & 00 \text { SW3OC,70B,C } \end{aligned}$ |
| 5930-00-833-4653 | SWITCH, LEVER | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 260-0492- \\ & 00 \text { SW101, } 201 \end{aligned}$ |
| 5930-00-833-4654 | SWITCH, ROTARY | 1 |  |  |  | * |  | PT.No. 260-052300 SW540 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 F |  |  |  |  |  |  |  |  |
| 5930-00-833-4655 | SWITCH, ROTARY | 1 |  |  |  | * |  | PT.No. 260-052400 SW350 |
| 5930-00-920-3670 | SWITCH, LEVER | 1 |  |  |  | * |  | PT.No. 260-064000 SW70A |
| 5930-00-937-0872 | SWITCH, SLIDE | 2 |  |  |  | * |  | PT.No. 260-044700 SW190,290 |
| 5930-99-116-5757 | SWITCH, LEVER | 1 |  |  |  | * |  | PT.No. 260-056400 SW 30 A |
| 5930-99-116-5758 | SWITCH. ROTARY | 2 |  |  |  | * |  | PT.No. 262-056600 SW110,210 |
| 5930-99-140-5411 | SWITCH, TOGGLE | 1 |  |  |  | * |  | PT.No. 260-051500 SW601 |
| 5930-99-140-5412 | SWITCH, PUSH | 2 |  |  |  | * |  | PT.No. 260-051600 SW360,458 |
| 5930-99-140-5413 | SWITCH, PUSH | 1 |  |  |  | * |  | PT. No. 260-051800 SW201, B186 |
| 5930-99-140-5414 | SWITCH, LEVER | 1 |  |  |  | * |  | PT.No. 260-0519OO SW30B |
| 5930-99-140-5415 | SWITCH, ROTARY | 1 |  |  |  | * |  | PT.No. 260-054500 SW116 |
| 5930-99-140-5416 | SWITCH, ROTARY | 1 |  |  |  | * |  | PT. No. 262-056902 SW948 |
| 5930-99-140-5717 | SWITCH, ROTARY | 2 |  |  |  | * | $\emptyset$ | PT.No. 262-056700 SW160A, B |
| 5930-99-140-5718 | SWITCH, ROTARY | 1 |  |  |  | * |  | PT. No. 262-056800 SW300A, B |
| 5930-99-140-5800 | SWITCH | 2 |  |  |  | * |  | PT.No. 311-038500 SW144, R144, SW244, R244 |
| 5340-99-140-6110 | ROD, EXTENSION SWITCH | 1 |  |  |  | * |  | $\left.\right\|_{\mathrm{PT} \cdot \mathrm{No} \cdot 384-0293-}$ |
| $\mathrm{110H}$ |  |  |  |  |  |  |  |  |
| 5920-00-082-7561 | FUSE <br> 4 amp | 1 | 1 | 2 | 3 | 6 |  | PT.No. 159-002700 E602 |
| 5935-00-103-1696 | CONNECTOR, RECEPTACLE | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No. 131-0299- } \\ & \mathrm{OO} \end{aligned}\right.$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 H |  |  |  |  |  |  |  |  |
| 5935-00-109-9850 | SOCKET, PLUG-TN-ETECTRICAL | 5 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \mathrm{PT} \cdot \text { No. 136-0101- } \\ & 00 \end{aligned}\right.$ |
| 5961-00-177-6535 | TERMINAL, STUT | 2 |  |  |  | * |  | $\left.\right\|_{0 \mathrm{PT}} ^{\mathrm{PT}} \cdot \mathrm{No} \cdot 136-0235-$ |
| 5940-00-179-2819 | TERMINAL CONNECTOR | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No } \\ & 00 \end{aligned}$ |
| 5999-00-224-4375 | CAP ELECTRTCAL | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 200-0015- } \\ & \text { OO } \end{aligned}$ |
| 5920-00-280-4960 | FUSE <br> 2 amp | 1 | 1 | 2 | 3 | 6 |  | $\begin{aligned} & \text { PT.No. } 159-0021- \\ & \text { O0 F820 } \end{aligned}$ |
| 5340-00-469-6192 | CLIP | 2 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \mathrm{NO} \cdot 344-0098- \\ & 00 \end{aligned}$ |
| 5920-00-538-3494 | FUSE <br> 3 amp | 1 | 1 | 2 | 3 | 6 |  | $\begin{aligned} & \text { PT.No. 159-0005- } \\ & \text { OO F601 } \end{aligned}$ |
| 5935-00-665-6544 | ADAPTOR, CONNE STOR | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT.No. 103-0033- } \\ & 00 \end{aligned}$ |
| 5940-00-686-6057 | TERMINAL POST | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 129-0035- } \\ & 00 \end{aligned}$ |
| 6525-00-788-6815 | TTP, TEST PROD | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 013-0052- } \\ & 00 \end{aligned}$ |
| 5920-00-794-4158 | FUSE HOLDER | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 352-0002- } \\ & 00 \end{aligned}$ |
| 5935-00-832-4946 | PLUG, PROBE | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No . 134-0044- } \\ & 00 \end{aligned}$ |
| 5920-00-836-0763 | $\begin{aligned} & \text { FUSE } \\ & 0.75 \mathrm{amp} \end{aligned}$ | 2 | 1 | 2 | 3 | 8 |  | $\begin{aligned} & \text { PT. NO. } 159-0042- \\ & 00 \text { F703, } 743 \end{aligned}$ |
| 6250-00-871-7347 | HOLDER, GRATICULE LIGHT | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 352-0063- } \\ & 00 \end{aligned}$ |
| 5935-00-892-9180 | PLUG, ELECTRICAL | 1 |  |  |  |  |  | $\begin{aligned} & \text { PT. No. 131-0572- } \\ & 00 \end{aligned}$ |
| 5935-00-900-1236 | CONNECTOR, RECEPTACLE | 5 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \mathrm{No} \cdot 131-0106- \\ & 00 \end{aligned}$ |
| 5935-00-901-9702 | CONNESTOR, PLUG, ELECTRTCAL | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 131-0274- } \\ & 00 \end{aligned}$ |
| 5920-00-933-5439 | $\begin{aligned} & \text { FUSE } \\ & 0.5 \mathrm{amp} \end{aligned}$ | 1 | 1 | 2 | 3 | 6 |  | $\begin{aligned} & \text { PT. No. } 159-0025- \\ & 00 \text { F613 } \end{aligned}$ |
| 5940-00-937-0882 | TERMINAL BOARD | 27 |  |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 124-0145- \\ & 00 \end{aligned}$ |
| 5940-00-937-0883 | TERMJNAL BOARD | 8 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 124-0146- } \\ & 00 \end{aligned}$ |
| 5940-00-937-0884 | TERMINAL STRTP | 6 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 124-0147- } \\ & 00 \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110H |  |  |  |  |  |  |  |  |
| 5940-00-937-0886 | TERMINAL BOARD | 6 |  |  |  | * |  | $\begin{aligned} & \text { PT. No . 124-0148- } \\ & \text { OO } \end{aligned}$ |
| 5961-00-969-9096 | SOCKET | 24 |  |  |  | * |  | $\left.\right\|_{00} ^{\text {PT. No . 136-0095- }}$ |
| 5940-00-983-8310 | CLIP, ELECTRTCAL | 2 | * |  |  | * |  | $\begin{aligned} & \text { PT.No. 344-0046- } \\ & 00 \end{aligned}$ |
| 5935-99-116-5751 | SOCKET, TRANSISTOR | 82 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. 136-0161- } \\ & 00 \end{aligned}$ |
| 5935-99-116-5799 | SOCKET, INDTCATOR LIGHT | 1 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. 136-0160- } \\ & 00 \end{aligned}$ |
| 5940-99-140-5398 | TERMINAL, POST | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No : 129-0066- } \\ & 00 \end{aligned}$ |
| 5935-99-140-5399 | CONNECTOR | 1 |  |  |  | * |  | $\left.\right\|_{00} ^{\text {PT. No. 131-0097- }}$ |
| 5935-99-140-5401 | CONNECTOR, ANODE | 1 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. 131-0301- } \\ & 00 \end{aligned}$ |
| 5935-99-140-5643 | CONNECTOR | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 131-0096- } \\ & 00 \end{aligned}$ |
| 5935-99-140-5644 | SOCKET, TUBE | 3 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No } \cdot 136-0078- \\ & 00 \end{aligned}\right.$ |
| 5935-99-140-5645 | SOCKET | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 136-0117- } \\ & 00 \end{aligned}$ |
| 5935-99-140-5646 | SOCKET, CRYSTAL | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No. 136-0153- } \\ & 00 \end{aligned}\right.$ |
| 5910-99-140-6042 | HOLDER CAPACITOR | 5 |  |  |  | * |  | $\left.\right\|_{00} ^{\text {PT. No. 352-0066- }}$ |
| 5920-99-140-6044 | HOLDER, FUSE, TRIPLE | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT. No. 352-0073- } \\ & 00 \end{aligned}\right.$ |
| $110 \mathrm{HS}$ |  |  |  |  |  |  |  |  |
| 6625-00-771-5495 | LEAD, TEST | 1 | * |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. 175-0263- } \\ & \mathrm{O1} \end{aligned}$ |
| 6625-00-850-2104 | CABILE ASSEMBLY | 1 | * |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \text { No. } 175-0262- \\ & \mathrm{O1} \end{aligned}$ |
| 6625-00-060-9051 | CABLE ASSEMBLY, POWER ELECTRTCAL | 1 |  |  |  |  |  | $\mathrm{P}_{\mathrm{PT} \cdot \text { No. 161-0024- }}^{03}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110HS |  |  |  |  |  |  |  |  |
| 6625-00-916-8025 | CABLE ASSEMBLY | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 012-0076- } \\ & \text { OO } \end{aligned}$ |
| 5995-00-978-8538 | LEAD, ELECTRICAL | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 175-0124- } \\ & 00 \end{aligned}$ |
| 6625-01-016-8693 | LEAD, ELECTRICAL, TEST 12in 1 g | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 175-0125- } \\ & 00 \end{aligned}$ |
| 110K |  |  |  |  |  |  |  |  |
| 5950-00-014-5742 | TRANSFORMER, POWER STEP-UP AND STEP-DOWN | 1 |  |  |  | * |  | PT. No. 120-033900 T601 |
| 5950-00-855-3990 | TRANSFORMER, POWER, STEP-UP | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 120-0332- \\ & 00 \text { T820 } \end{aligned}$ |
| 5950-00-865-0260 | INDUCTOR, AUDIO FREQUENCY |  |  |  |  |  |  | PT. No. 120-027300 T371,390 |
| 110p |  |  |  |  |  |  |  |  |
| 6625-99-116-6377 | FILTER LINE ASSEMBLY | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 050-0503- } \\ & 00 \mathrm{~T} 600, \mathrm{C601}, \\ & \mathrm{C} 602, \mathrm{C} 603 \end{aligned}$ |
| 110Q |  |  |  |  |  |  |  |  |
| 5950-00-850-2114 | COTL, VARTABLE <br> 0.15 uH to 0.25 uH | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. } 114-0153- \\ & 00 \text { L103 } \end{aligned}$ |
| 5950-00-850-2121 | COTL, VARIABLE 0.5 uH to 1.1 uH | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. } 114-0156- \\ & 00 \text { Li04 } \end{aligned}$ |
| $110 \mathrm{~S}$ |  |  |  |  |  |  |  |  |
| 6625-00-798-1508 | TIP, TEST PROD, STRAIGHT | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No } 206-0015- \\ & 00 \end{aligned}$ |
| 6625-00-798-1515 | TIP, TEST PROD | 1 |  |  |  |  |  | $\begin{aligned} & \text { PT. No. 013-0071- } \\ & 00 \end{aligned}$ |
| 6625-00-830-5719 | TIP, TEST PROD | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No • 134-0013- } \\ & 00 \end{aligned}$ |
| 6625-00-964-9327 | TIP, TEST PROD | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No } \cdot 206-0105- \\ & 00 \end{aligned}$ |
| 6625-00-983-6437 | TIP, TEST PROD | 1 | * |  |  | * |  | $\begin{aligned} & \text { PT. No. 206-0060- } \\ & 00 \end{aligned}$ |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-010-5383 | RESISTOR, VARTABLF 500 ohms | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 311-0380- } \\ & 00 \quad \mathrm{R} 731 \end{aligned}$ |
| 5905-00-063-6851 | RESISTOR, FIXEN, WIREWOUND 0.5 ohms $+1 \%, 1 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No }{ }^{308-0087-~} \\ & 00 \text { R649 } \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-070-5852 | RESISTOR, FIXED, COMPOSITION 27 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 302-0273- \\ & 00 \text { R693 } \end{aligned}$ |
| 5905-00-070-5854 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.7 \mathrm{M} \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 302-0275- \\ & 00 \text { R845 } \end{aligned}$ |
| 5905-00-072-8055 | RESISTOR, VARIABLE <br> 5K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 311-0458-1 \\ & 00 \text { R865 } \end{aligned}$ |
| 5905-00-102-2444 | RESISTOR, FIXED, COMPOSITION 47 K ohms $\pm 10 \%, 1 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 304-0473- $00 \quad \text { R702 }$ |
| 5905-00-102-5294 | RESISTOR, FIXED, COMPOSITION 100 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 6 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0101- } \\ & 00 \text { R10,11,122, } \\ & 222,341,351 \end{aligned}$ |
| 5905-00-104-8581 | RESISTOR, FIXED, COMPOSITION 14.7 K ohms $\pm 1 \%$, 1 W | 1 |  |  |  |  |  | $\begin{aligned} & \text { PT. No. } 324-0305- \\ & 00 \quad \text { R195 (11B2) } \end{aligned}$ |
| 5905-00-104-8582 | RESISTOR FIXED, COMPOSITION 19.6 K ohms $\pm 1 \%$, 1 W | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 324-0317- \\ & 00 \text { R360,886 } \end{aligned}$ |
| 5905-00-106-1317 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{M} \text { ohms } \pm 1 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\phi$ | PT.No. 322-048101 R104E, 204E, |
| 5905-00-111-8454 | RESISTOR, VARIABLE lK ohms | 1 |  |  |  | * | $\phi$ | $\begin{aligned} & \text { PT.No. } 311-0404- \\ & 00 \quad \text { R1 } 60 \mathrm{~W} \end{aligned}$ |
| 5905-00-135-3973 | RESISTOR, FIXED, COMPOSITION 220 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 315-0221- } \\ & \text { OO R390,391,425 } \end{aligned}$ |
| 5905-00-171-1997 | RESISTOR, FIXED, COMPOSITION 330 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 302-0331- } \\ & 00 \text { R622 } \end{aligned}$ |
| 5905-00-190-8867 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 5.1 \mathrm{~K} \text { ohms } \pm 5 \%, 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No } \mathbf{N}^{305-0512-} \\ & 00 \quad \text { R } \end{aligned}$ |
| 5905-00-192-3979 | RESISTOR, FIXED, COMPOSITION 33 K ohms $10 \%$, 2 W | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No, 306-0333- } \\ & 00 \quad \mathrm{R} 873 \end{aligned}$ |
| 5905-00-192-3982 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{M} \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 5 |  |  |  | * |  | ```PT.No. 302-0105- 00 R30C,70C, 601,838,854``` |
| 5905-00-192-3987 | RESISTOR, FIXED, COMPOSITION 100 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 301-010400 R397, 856 |
| 5905-00-196-4533 | RESISTOR, FIXED, COMPOSITION Not known | 2 |  |  |  |  |  | $\begin{aligned} & \text { PT. No. } 302-0100- \\ & 00 \text { R837 R946 } \end{aligned}$ |
| 5905-00-247-2661 | ```RESISTOR, FIXED, WIREWOUND 35 ohms }\pm5%,3``` | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 308-0223- \\ & 00 \text { R736 } \end{aligned}$ |
| 5905-00-249-1555 | RESISTOR, FIXED, WIREWOUND 0.3 ohms $\pm 10 \%, 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 308-0244- \\ & 00 \quad \text { R679 } \end{aligned}$ |
| 5905-00-252-1671 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.2 \mathrm{M} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 316-0225- \\ & 00 \text { R186 } \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-279-1749 | RESISTOR, FIXED, COMPOSITION $6.2 \mathrm{M} \text { ohms } \pm 5 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 301-0625- \\ & 00 \quad \text { R214 } \end{aligned}$ |
| 5905-00-299-2019 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 22 \mathrm{~K} \text { ohms } \pm 10 \%, 1 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 304-0223- } \\ & 00 \text { R168,808 } \end{aligned}$ |
| 5905-00-299-2031 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 8.2 \mathrm{~K} \text { ohms } \pm 10 \%, 1 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 304-0822- $00 \quad \text { R343 }$ |
| 3905-00-405-7972 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 909 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 321-0189-1 \\ & 00 \text { R194 } \end{aligned}$ |
| 5905-00-426-7707 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2 \mathrm{k} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 321-022200 R111E, 211E |
| 5905-00-426-7708 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.05 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.NO, 321-0223- } \\ & \text { OO R178, 188, } \\ & 278,288 \end{aligned}$ |
| 5905-00-426-7723 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.37 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 321-022900 Rl12 |
| 5905-00-426-7754 | RESISTOR, FIXED, COMPOSITION $3.32 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-024300 R123, 223 |
| 5905-00-426-7783 | RESISTOR, FIXED, COMPOSITION <br> 3.83 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-024900 R347, 357 |
| 5905-00-426-7791 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 5.11 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 321-026100 R294 |
| 5905-00-434-5053 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1.21 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 3 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 321-0201- } \\ & \text { O0 R252, 318, } \\ & 338 \end{aligned}$ |
| 5905-00-434-5059 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 3 |  |  |  | * |  | PT.No. 321-019300 R112E,212E, 308 |
| 5905-00-434-5068 | RESISTOR, FIXED, COMPOSITION $10 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-028900 R373,545 |
| 5905-00-434-5438 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 10 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 315-010000 R485 |
| 5905-00-434-5439 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{Kohms} \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \mathrm{PT} \cdot \mathrm{No} \cdot 315-0102- \\ & 00 \text { R40 } \end{aligned}$ |
| 5905-00-434-5442 | ```RESISTOR, FIXED, COMPOSITION 10\textrm{K}}\mathrm{ ohms + 5%, 1/4W``` | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0103- } \\ & 00 \text { R195, 197, } \\ & 295,297 \end{aligned}$ |
| 5905-00-436-9382 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.7 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 315-0272- \|00 R926 |
| 5905-00-436-9764 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.4 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 315-024200 R64, 462 |
| 5905-00-436-9789 | ```RESISTOR, FIXED, COMPOSITION 27 ohms }\pm5%,1/4\textrm{W``` | 3 |  |  |  | * |  | PT.No. 315-027000 R314,334,595 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-437-0051 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 4.7 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 3 |  |  |  | * | $\emptyset$ | PT.No. 315-047200 R151,442,452 |
| 5905-00-437-0272 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 51 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0510- } \\ & 00 \text { R134, 199, } \\ & 234,299 \end{aligned}$ |
| 5905-00-437-0833 | ```RESISTOR, FIXED, COMPOSITION 33 ohms }\pm5% 1/4``` | 4 |  |  |  | * |  | PT.No. 315-033100 R112D,212D |
| 5905-00-437-0891 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 47 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * |  | PT.No. 315-0470$00 \mathrm{R102,202,100D}$ 209D |
| 5905-00-437-0896 | ```RESISTOR, FIXED, COMPOSITION 1K ohms }\pm10%,1/4``` | 3 |  |  |  | * |  | PT.No. 316-010200 R204,218,871 |
| 5905-00-437-0908 | RESISTOR, FIXED, COMPOSITION <br> 2.2 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 3 |  |  |  | * |  | PT. No. 316-022200 296C,806,914 |
| 5905-00-437-0913 | ```RESISTOR, FIXED, COMPOSITION 68 ohms }\pm5%,1/4``` | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. NO. } 315-0680- \\ & 00 \quad \text { R456B } \end{aligned}$ |
| 5905-00-437-0917 | RESISTOR, FIXED, COMPOSITION 750 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 4 |  |  |  | * | $\emptyset$ | PT.No. 315-075100 R23, 176,274 407 |
| 5905-00-437-0942 | RESISTOR, FIXED, COMPOSITION <br> 68 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 316-0683- } \\ & 00 \text { R43, } 83,653, \\ & 931,941 \end{aligned}$ |
| 5905-00-437-1780 | RESISTOR, FIXED, COMPOSITION 470 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 3 |  |  |  | * |  | PT.No. 316-047:00 R26, 32, 72, 104, 177, 341 |
| 5905-00-437-1782 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 4.7 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 7 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 316-0472- } \\ & \text { OO R24,25,75A, } \\ & 75 \mathrm{C}, 136,202,916 \end{aligned}$ |
| 5905-00-445-3708 | ```RESISTOR, FIXED, COMPOSITION 18K ohms + 5%, 1/4W``` | 1 |  |  |  | * |  | PT.No. 315-0183 = $00 \mathrm{R} 426$ |
| 5905-00-445-3739 | RESISTOR, FIXED, COMPOSITION <br> 2 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 5 |  |  |  | * |  | PT.No. 315-020200 R54, 94, 392, 882, 924 |
| 5905-00-445-3781 | RESISTOR, FIXED, COMPOSITION $1.1 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-011200 R127, 227 |
| 5905-00-445-3801 | ```RESISTOR, FIXED, COMPOSITION 12 ohms }\pm5%,1/4 ``` | 1 |  |  |  | * |  | PT.No. 315-012000 R286 |
| 5905-00-445-3826 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 12 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0123- } \\ & 00 \text { R123, } 223 \\ & 293 \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-445-3831 | RESISTOR, FIXED, COMPOSITION 1.5 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-0152$00 \mathrm{R} 367,382$ |
| 5905-00-469-2916 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 10 \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 7 |  |  |  | * |  | PT.No. 316-010000 R19, 47, 87, 119,170,219,271 |
| 5905-00-472-6188 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 39 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 302-039300 R183 |
| 5905-00-475-8262 | RESISTOR, FIXED, COMPOSITION 4.75K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 3 |  |  |  | * |  | PT.No. 321-025800 R118,120,220 |
| 5905-00-476-0080 | RESISTOR, VARIABLE 500 ohms | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 311-0095- } \\ & 00 \text { R331, 456D } \end{aligned}$ |
| 5905-00-476-0094 | RESISTOR, VARIABLE <br> $2 \times 200$ ohms | 1 |  |  |  | * | $\emptyset$ | PT.No. 311-0379$00 \quad$ R414A, B |
| 5905-00-476-5759 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{M} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | ** | $\emptyset$ | PT.No. 323-048100 R113C, 114 , 213C,214 |
| 5905-00-476-5763 | RESISTOR, FIXED, COMPOSITION 50 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 323-0636- \\ & 00 \quad \text { R948X } \end{aligned}$ |
| 5905-00-476-5790 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 121 \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-010500 R444, 454 |
| 5905-00-496-9488 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 3.3 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0332- } \\ & \text { OO R82B, 82C, } \\ & 342,352,374 \end{aligned}$ |
| 5905-00-497-0809 | RESISTOR, VARIABLE Not known | 2 |  |  |  | * | $\emptyset$ |  |
| 5905-00-504-4702 | RESISTOR, FIXED, COMPOSITION 82 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-082300 R143, 243 |
| 5905-00-577-9598 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 150 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 6 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 315-0151- } \\ & \text { O0 R132,232 } \\ & 421,466,476,487 \end{aligned}$ |
| 5905-00-577-9666 | RESISTOR, FIXED, COMPOSITION 15 K ohms $+5 \%, 1 / 2 \mathrm{~W}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 315-0153- } \\ & 00 \text { R129,229, } \\ & 365 \end{aligned}$ |
| 5905-00-577-9676 | RESISTOR, FIXED, COMPOSITION <br> 8.2 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 315-0822$00 \mathrm{R} 42 \mathrm{~A}, 456 \mathrm{~F}$ |
| 5905-00-581-6481 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 270 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 302-027400 R365,366 |
| 5905-00-682-4099 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 4.3 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 315-0432100 R812 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-688-3474 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 27 \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 302-0270- } \\ & 00 \text { R745 } \end{aligned}$ |
| 5905-00-724-5713 | RESISTOR, FIXED, COMPOSITION 1.3 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT.NO. } 321-0204- \\ & 00 \text { R317, } 337 \end{aligned}$ |
| 5905-00-725-9141 | RESISTOR, FIXED, WIREWOUND 0.25 ohms $\pm 10 \%$, 1 W | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 308 \text { 0090- } \\ & 00 \text { R949 } \end{aligned}$ |
| 5905-00-726-5340 | RESISTOR, FIXED, COMPOSITION 100 ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 16 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT . No . } 316-0101- \\ & 00 \\ & \frac{156}{261}, \frac{115}{158}, \frac{1132}{198}, \\ & \frac{215}{232}, \\ & \frac{211}{615}, \\ & 870 \end{aligned},$ |
| 5905-00-727-3569 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 3.9 \mathrm{M} \text { ohms } \pm 10 \%, 2 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 306-0395- } \\ & \text { 00 R840, 841, } \\ & 842,843 \text {, } \end{aligned}$ |
| 5905-00-728-3217 | RESISTOR, VARIABLE 2 X l0K ohms $\pm 10 \%$ | 3 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 311-0389- } \\ & 00 \text { Ri96,296,441 } \end{aligned}$ |
| 5905-00-732-4188 | RESISTOR, FIXED, WIRE WOUND 20 K ohms $\pm 5 \%, 10 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 308-0025- } \\ & 00 \quad \text { R947 } \end{aligned}$ |
| 5905-00-754-5750 | RESISTOR, VARIABLE 5K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 311-0011- \\ & 00 \quad \text { R897 } \end{aligned}$ |
| 5905-00-789-5945 | RESISTOR, VARIABLE 2K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0386- } \\ & 00 \text { R211 } \end{aligned}$ |
| 5905-00-794-3697 | RESISTOR, FIXED, COMPOSITION <br> 47 ohms $\pm 10 \% \mathrm{~m}, 1 / 4 \mathrm{~W}$ | 17 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 316-0470- \\ & \text { OO R27,30D,31, } \\ & 46,70 \mathrm{D}, 71,86, \\ & 160 \mathrm{R}, 161,171, \\ & 176,260 \mathrm{R}, 261,876 \\ & 892,893,923 \end{aligned}$ |
| 5905-00-794-3698 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{M} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 316-0105- \\ & 00 \text { R815, } 825 \end{aligned}$ |
| 5905-00-801-0443 | RESISTOR, FIXED, COMPOSITION 120 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 315-0124- } \\ & \text { OO R180 } \end{aligned}$ |
| 5905-00-813-5968 | RESISTOR, VARIABLE 100 ohms | 3 |  |  |  | * |  | PT.No. 311-016900 R138,238,334 |
| 5905-00-816-3350 | RESISTOR, VARIABLE <br> 5 M ohms $\pm 20 \%, 0.2 \mathrm{~W}$ | 1 |  |  |  | $\star$ |  | $\begin{aligned} & \text { PT. No. } 311-0121- \\ & 00 \quad \text { R844 } \end{aligned}$ |
| 5905-00-825-9572 | RESISTOR, VARIABLE 5K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0117- } \\ & \text { 00 R181 } \end{aligned}$ |
| 5905-00-839-4857 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 115 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0391- } \\ & 00 \text { R669 } \end{aligned}$ |



| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-890-9377 | RESISTOR, VARIABLE 10K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0405- } \\ & \text { OO R150 } \end{aligned}$ |
| 5905-00-890-9395 | RESISTOR, VARIABLE 5K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0272- } \\ & \text { OO R41, } 81 \end{aligned}$ |
| 5905-00-893-1240 | RESISTOR, FIXED, COMPOSITION 52.6 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-061600 R107E, 207E |
| 5905-00-893-1242 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 10.1 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 321-0614- } \\ & \text { OO R109E, 209E } \end{aligned}$ |
| 5905-00-893-1243 | RESISTOR, FIXED, COMPOSITION 995 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No } \quad 322-0625- \\ & 00 \text { R110C, } 210 \mathrm{C} \end{aligned}$ |
| 5905-00-893-1286 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 111 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 321-061700 R106E, 206E |
| 5905-00-893-1289 | RESISTOR, FIXED, COMPOSITION 205 ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 321-0127- \\ & \text { OO R554,564 } \end{aligned}$ |
| 5905-00-893-1290 | RESISTOR, FIXED, COMPOSITION 100 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 7 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No . } 321-0097- \\ & 00 \text { R159, } 259,272, \\ & 282,333,465,475 \end{aligned}$ |
| 5905-00-893-1292 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 46.4 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 321-0065- \\ & 00 \text { R550, } 560 \end{aligned}$ |
| 5905-00-900-1112 | RESISTOR, FIXED, COMPOSITION 5.03 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 321-0613- } \\ & \text { OO RilOE, 210E } \end{aligned}$ |
| 5905-00-902-5928 | RESISTOR, FIXED, COMPOSITION 110 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 321-0101- } \\ & 00 \text { R15 } \end{aligned}$ |
| 5905-00-904-4397 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 6.81 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 321-0273- } \\ & \text { O0 R422 } \end{aligned}$ |
| 5905-00-906-6360 | RESISTOR, FIXED, COMPOSITION 100 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 323-0385- } \\ & 00 \underline{\text { R699 }} \end{aligned}$ |
| 5905-00-908-5410 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 302-010200 R615,831 |
| 5905-00-909-1778 | RESISTOR, FIXED, COMPOSITION 750 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 3 |  |  |  | * |  | PT.No . 323-018100 R532,574,584 |
| 5905-00-910-0763 | RESISTOR VARIABLE 100 ohms | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 311-0258- } \\ & 00 \text { R150, } 176,250, \\ & \underline{276} \end{aligned}$ |
| 5905-00-913-7117 | RESISTOR, FIXED, COMPOSITION 12.1 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No • 321-0297- } \\ & 00 \text { R161,261,551, } \\ & 561 \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-00-916-5598 | RESISTOR, FIXED, COMPOSITION 90.9 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT•No . } 322-0093- \\ & 00 \mathrm{R445} \end{aligned}$ |
| 5905-00-916-8019 | RESISTOR, FIXED, WIRE WOUND 1 K ohms $+10 \%$, 3 W | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 308-0077- \\ & 00 \text { R130,230 } \end{aligned}$ |
| 5905-00-917-1870 | RESISTOR, VARIABLE 10K ohms | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 311-0326- \\ & 00 \text { R7, } 377 \end{aligned}$ |
| 5905-00-917-4147 | RESISTOR, FIXED, COMPOSITION 900 K ohms $+1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 323-061100 R106C, 206C |
| 5905-00-917-4148 | RESISTOR, FIXED, COMPOSITION 261 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0137- } \\ & \text { 00 R457, 458, 467, , } \\ & 468 \end{aligned}$ |
| 5905-00-917-4149 | RESISTOR, FIXED, COMPOSITION 221 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. } 323-0418- \\ & 00 \quad \text { R614 } \end{aligned}$ |
| 5905-00-919-3143 | RESISTOR, FIXED, WIRE WOUND 15 K ohms $\pm 5 \%, 8 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 308-0178- } \\ & 00 \text { R374, } 875 \end{aligned}$ |
| 5905-00-928-3233 | RESISTOR, FIXED, COMPOSITION $1.5 \mathrm{M} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 323-0498- } \\ & 00 \text { R800 } \end{aligned}$ |
| 5905-00-932-7016 | RESISTOR, FIXED, COMPOSITION 500 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-061000 R104C, 204C |
| 5905-00-943-9071 | RESISTOR, FIXED, COMPOSITION 120 ohms $+10 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 302-0121- } \\ & 00 \text { R744 } \end{aligned}$ |
| 5905-00-943-9072 | RESISTOR, FIXED, COMPOSITION 33 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 4 |  |  |  | * |  | ```PT.No. 302-0333- 00 R623,633,723, 73``` |
| 5905-00-943-9076 | RESISTOR, FIXED, COMPOSITION 47 ohms $\pm 10 \%$, 1 W | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 304-0470-1 \\ & 00 \text { R636 } \end{aligned}$ |
| 5905-00-974-6076 | RESISTOR, FIXED, COMPOSITION 215 ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 321-0129- } \\ & 00 \text { R157,167, 257, } \\ & 267, \end{aligned}$ |
| 5905-00-983-9317 | RESISTOR, VARIABLE <br> 100 K ohms $+20 \%$, 5 W | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0110- } \\ & \text { OO R863 } \end{aligned}$ |
| 5905-99-116-2646 | RESISTOR, FIXED, COMPOSITION 28.6 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{array}{\|l} \mathrm{PT} \cdot \mathrm{No} \cdot 323-0628- \\ \mathrm{O} \quad \mathrm{R948K} \end{array}$ |
| 5905-99-116-4650 | RESISTOR, FIXED, COMPOSITION 30.1 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 321-0047R404, 406 |
| 5905-99-116-4740 | RESISTOR, FIXED, COMPOSITION 30 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 351-030000 Rl13D, 213D |
| 5905-99-116-4743 | RESISTOR, FIXED, COMPOSITION 4.7 K ohms $+5 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 301-0472- } \\ & \text { OO R458 } \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-116-4744 | RESISTOR, FIXED, COMPOSITION 800 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 323-0620- } \\ & \text { OO R105C, 205C } \end{aligned}$ |
| 5905-99-116-5370 | RESISTOR, FIXED, COMPOSITION 68.1 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0081- } \\ & 00 \text { R174,184, } \\ & 274,284 \end{aligned}$ |
| 5905-99-116-5763 | RESISTOR, FIXED, COMPOSITION 10 ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 301-0100- } \\ & 00 \text { R469, } 483 \end{aligned}$ |
| 5905-99-116-5764 | RESISTOR, FIXED, COMPOSITION 150 ohms $\pm 5 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 301-015100 R483/10A2 |
| 5905-99-116-5765 | RESISTOR, FIXED, COMPOSITION 120 ohms $\pm 5 \%$, 1 W | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. }{ }^{303-0121-} \\ & 00 \text { R448 } \end{aligned}$ |
| 5905-99-116-5766 | RESISTOR, FIXED, COMPOSITION 150 ohms $\pm 10 \%, 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 306-0151- } \\ & 00 \text { R820 } \end{aligned}$ |
| 5905-99-116-5767 | RESISTOR, FIXED, COMPOSITION 1.3 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0132- } \\ & 00 \text { R811 } \end{aligned}$ |
| 5905-99-116-5768 | RESISTOR, FIXED, COMPOSITION 12 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 316-0123- } \\ & 00 \text { R805 } \end{aligned}$ |
| 5905-99-116-5769 | RESISTOR, FIXED, COMPOSITION 3.3 M ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 316-033500 R807 |
| 5905-99-116-5770 | RESISTOR, FIXED, COMPOSITION 133 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 321-0109- } \\ & 00 \text { R450, } 460 \end{aligned}$ |
| 5905-99-116-5771 | RESISTOR, FIXED, COMPOSITION 422 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-015700 R415, 425 |
| 5905-99-116-5772 | RESISTOR, FIXED, COMPOSITION 1.05 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 321-019500 R456E |
| 5905-99-116-5775 | RESISTOR, FIXED, COMPOSITION 5.11 K ohms $\pm 1 / 2 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 321-0629- } \\ & 00 \mathrm{R453} \end{aligned}$ |
| 5905-99-116-5777 | RESISTOR, FIXED, COMPOSITION 619 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-017300 R456,466 |
| 5905-99-116-5778 | RESISTOR, FIXED, COMPOSITION 750 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-018100 R345,355 |
| 5905-99-116-5779 | RESISTOR, FIXED, COMPOSITION 866 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 322-0187- } \\ & 00 \text { R417 } \end{aligned}$ |
| 5905-99-116-5780 | RESISTOR, FIXED, COMPOSITION 1 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 322-0193- } \\ & \text { O0 R481 } \end{aligned}$ |
| 5905-99-116-5781 | RESISTOR, FIXED, COMPOSITION 1.1 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 322-0197- } \\ & 00 \text { R270, } 280 \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-116-5782 | RESISTOR, FIXED, COMPOSITION $1.54 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 4 \mathrm{~W}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 322-0211- } \\ & 00 \text { R158,168,258, } \\ & 268 \end{aligned}$ |
| 5905-99-116-5783 | RESISTOR, FIXED, COMPOSITION $2.37 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 4 \mathrm{~W}$ |  |  |  |  |  | $\emptyset$ | $\begin{aligned} & \text { PT.No. 322-0229- } \\ & 00 \text { R895 } \end{aligned}$ |
| 5905-99-116-5784 | RESISTOR, FIXED, COMPOSITION <br> 999 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-062900 R112C, 212C |
| 5905-99-116-5785 | RESISTOR, FIXED, COMPOSITION <br> 1.4 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0207- } \\ & 00 \text { R482, R492 } \end{aligned}$ |
| 5905-99-116-5786 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1.62 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 323-0213- } \\ & 00 \text { R344,354 } \end{aligned}$ |
| 5905-99-116-5787 | RESISTOR, FIXED, COMPOSITION <br> 3.48 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 323-0245- } \\ & 00 \mathrm{R} 480,490 \end{aligned}$ |
| 5905-99-116-5788 | RESISTOR, FIXED, COMPOSITION <br> 887 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 323-0476- } \\ & 00 \text { R803 } \end{aligned}$ |
| 5905-99-116-5789 | RESISTOR, FIXED, COMPOSITION 600 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0607- } \\ & 00 \text { R447, } 457 \end{aligned}$ |
| 5905-99-116-5790 | RESISTOR, FIXED, COMPOSITION <br> 990 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0614- } \\ & 00 \text { R109C, 209C } \end{aligned}$ |
| 5905-99-116-5791 | RESISTOR, FIXED, COMPOSITION <br> 980 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-0621- <br> 00 R108C, 208C |
| 5905-99-116-5792 | RESISTOR, FIXED, COMPOSITION 21.4 ohms $\pm 1 \%$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 323-0627- \\ & 00 \underline{\text { R948L }} \end{aligned}$ |
| 5905-99-116-5793 | RESISTOR, FIXED, COMPOSITION 43.1 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0629- } \\ & 00 \text { R948J } \end{aligned}$ |
| 5905-99-116-5794 | RESISTOR, FIXED, COMPOSITION <br> 72.4 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0630- } \\ & 00 \text { R948H } \end{aligned}$ |
| 5905-99-116-5795 | RESISTOR, FIXED, COMPOSITION $146.1 \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0631- } \\ & 00 \text { R948G } \end{aligned}$ |
| 5905-99-116-5796 | RESISTOR, FIXED, COMPOSITION 452 ohms $+1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0632- } \\ & 00 \text { R948F } \end{aligned}$ |
| 5905-99-116-5797 | RESISTOR, FIXED, COMPOSITION 1.789 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 323-0634- <br> 00 R948D |
| 5905-99-116-5798 | RESISTOR, FIXED, COMPOSITION <br> 6.667 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0635- } \\ & 00 \text { R948C } \end{aligned}$ |
| 5905-99-116-5813 | RESISTOR, FIXED, COMPOSITION <br> 100 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 322-0097- } \\ & 00 \text { R151, } 251 \end{aligned}$ |



| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-140-5763 | RESISTOR, FIXED, COMPOSITION 33 K ohms $\pm 10 \%$, 1 W | 2 |  |  |  | * |  | PT.No. 304-0333- OO R607,610 |
| 5905-99-140-5766 | RESISTOR, FIXED, COMPOSITION 2 K ohms $+5 \%, 2 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 305-020200 R407 |
| 5905-99-140-5768 | RESISTOR, FIXED, COMPOSITION <br> 6.2 K ohms $\pm 5 \%, 2 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 305-062200 R874 |
| 5905-99-140-5769 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 6.8 \mathrm{~K} \text { ohms } \pm 5 \%, 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 305-068200 R44,84 |
| 5905-99-140-5770 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 7.5 \mathrm{~K} \text { ohms } \pm 5 \%, 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT. No. 305-075200 R268 |
| 5905-99-140-5771 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 9.1 \mathrm{~K} \text { ohms } \pm 5 \%, 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 305-0912- } \\ & 00 \text { R33 } \end{aligned}$ |
| 5905-99-140-5772 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 10 \mathrm{M} \text { ohms } \pm 10 \%, 2 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * |  | PT.No. 306-010600 R826,827,828, 829 |
| 5905-99-140-5773 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 270 \text { ohms } \pm 10 \%, 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 306-0271- $00 \mathrm{R} 663$ |
| 5905-99-140-5774 | RESISTOR, FIXED, COMPOSITION <br> 4.7 ohms $\pm 10 \%$, 1 W | 1 |  |  |  | * |  | PT.No. 307-000900 R613 |
| 5905-99-140-5775 | RESISTOR, FIXED, COMPOSITION <br> 2.7 ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 307-010300 R409,414 |
| 5905-99-140-5778 | RESISTOR, FIXED, WIREWOUND 20 ohms $\pm 5 \%$, 5 W | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT.No. } \\ & 00 \text { R637 } \end{aligned}\right.$ |
| 5905-99-140-5780 | RESISTOR, FIXED, WIREWOUND 5 ohms $\pm 5 \%, 5 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 308-017900 R703 |
| 5905-99-140-5783 | ```RESISTOR, FIXED, WIREWOUND 1.37K ohms }\pm1%,1/2``` | 1 |  |  |  | * | $\emptyset$ | PT.No. 308-0254- $00 \text { R630 }$ |
| 5905-99-140-5784 | RESISTOR, FIXED, WIREWOUND 3.65 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 308-0255- } \\ & 00 \text { R690 } \end{aligned}$ |
| 5905-99-140-5785 | RESISTOR, FIXED, WIREWOUND <br> 5.11 K ohms $+1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 308-025700 R660 |
| 5905-99-140-5786 | RESISTOR, FIXED, WIREWOUND <br> 10.7 K ohms $\pm 1 \%$, 1 W | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 308-0259- } \\ & 00 \mathrm{R632} \end{aligned}$ |
| 5905-99-140-5787 | RESISTOR, FIXED, WIREWOUND 13.3 K ohms $\pm 10 \%$, 1 W | 1 |  |  |  | * |  | PT.No. 308-026000 R732, |
| 5905-99-140-5788 | RESISTOR, FIXED, WIREWOUND 15 K ohms $\pm 1 \%$, 1 W | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 308-0261- } \\ & 00 \text { R692 } \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-140-5789 | RESISTOR, FIXED, WIREWOUND 15.4 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 308-026300 R662 |
| 5905-99-140-5790 | RESISTOR, FIXED, WIREWOUND 21.5 K ohms $\pm 10 \%$, 1 W | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 308-0264- } \\ & 00 \text { R730 } \end{aligned}$ |
| 5905-99-140-5791 | RESISTOR, FIXED, WIREWOUND 20 ohms $+10 \%, 5 \mathrm{~W}$ | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT.No. } \\ & \text { OO R737 } \end{aligned}\right.$ |
| 5905-99-140-5793 | RESISTOR, FIXED, COMPOSITION 3.74 M ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 309-044000 R160J, 260J |
| 5905-99-140-5794 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 7.5 \mathrm{M} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 309-044100 R160K, 260K |
| 5905-99-140-5795 | RESISTOR, FIXED, COMPOSITION 22.6 M ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | PT. No. 309-044200 R160L/260L |
| 5905-99-140-5796 | RESISTOR, FIXED, WIREWOUND $8.8 \mathrm{~K} \text { ohms } \pm 1 \%, 10 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 310-0615- } \\ & \text { O0 R394 } \end{aligned}$ |
| 5905-99-140-5798 | RESISTOR, VARIABLE 1 K | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0328-, } \\ & 00 \text { R260W, 335, } \\ & 336,339 \end{aligned}$ |
| 5905-99-140-5799 | RESISTOR, VARIABLE 50K | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0329- } \\ & 00 \text { R832 } \end{aligned}$ |
| 5905-99-140-5802 | RESISTOR, VARIABLE 25K ohms | 8 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 311-0390- } \\ & 00 \text { R117, } 140, \\ & 160,217,240, \\ & 260,530,546 \end{aligned}$ |
| 5905-99-140-5804 | RESISTOR, VARIABLE 20K ohms | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0408- } \\ & 00 \text { R801 } \end{aligned}$ |
| 5905-99-140-5805 | RESISTOR, VARIABLE 1 K | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 311-0421- } \\ & 00 \text { R631 } \end{aligned}$ |
| 5905-99-140-5813 | RESISTOR, FIXED, COMPOSITION 11 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-011300 R196, 296A |
| 5905-99-140-5819 | RESISTOR, FIXED, COMPOSITION 1.6 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-016200 Rll3, 233 |
| 5905-99-140-5821 | RESISTOR, FIXED, COMPOSITION 22 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-022000 RlllD, 211D |
| 5905-99-140-5824 | RESISTOR, FIXED, COMPOSITION 220 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 315-0224- } \\ & 00 \text { R371 } \end{aligned}$ |
| 5905-99-140-5828 | RESISTOR, FIXED, COMPOSITION 27 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 315-027300 R82A R321 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-140-5829 | RESISTOR, FIXED, COMPOSITION <br> 30 ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 315-033000 R387 |
| 5905-99-140-5831 | RESISTOR, FIXED, COMPOSITION 33 K ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-0333- $00 \text { R179, } 275$ |
| 5905-99-140-5832 | RESISTOR, FIXED, COMPOSITION 3.9 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 5 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 315-0392- } \\ & 00 \text { R154,160C,254 } \\ & 260 \mathrm{C}, 531 \\ & \hline \end{aligned}$ |
| 5905-99-140-5833 | RESISTOR, FIXED, COMPOSITION <br> 39 K ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 315-0393- } \\ & 00 \text { R427 } \end{aligned}$ |
| 5905-99-140-5838 | RESISTOR, FIXED, COMPOSITION <br> 5.1K ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & 234, \quad 299 \\ & \text { PT•No } 315-0512- \\ & 00 \text { R155,255 } \end{aligned}$ |
| 5905-99-140-5840 | RESISTOR, FIXED, COMPOSITION <br> 62 ohms $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-0620- <br> 00 RllOD,210D |
| 5905-99-140-5841 | RESISTOR, FIXED, COMPOSITION 620 ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 315-062100 R80, 139 |
| 5905-99-140-5843 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 6.8 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 315-0682- } \\ & 00 \text { R251, } 369 \end{aligned}$ |
| 5905-99-140-5845 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 75 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 315-0750$00 \mathrm{R} 45,85$ |
| 5905-99-140-5847 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 82 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 315-082000 R541, 543 |
| 5905-99-140-5848 | RESISTOR, FIXED, COMPOSITION 820 ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 315-0821- $00 \mathrm{R} 42 \mathrm{~B}$ |
| 5905-99-140-5853 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 100 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 11 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 316-0104- } \\ & 00 \text { R30B, 75D,F, } \\ & \frac{116,200,203,208, ~}{216}, 321,330,346 \end{aligned}$ |
| 5905-99-140-5854 | RESISTOR, FIXED, COMPOSITION $1.5 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 316-015200 R934, 944 |
| 5905-99-140-5855 | RESISTOR, FIXED, COMPOSITION <br> 15 K ohms $+10 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 316-015300 R182 |
| 5905-99-140-5856 | RESISTOR, FIXED, COMPOSITION <br> 1.8 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 316-018200 R160T, 260T |
| 5905-99-140-5857 | RESISTOR, FIXED, COMPOSITION 18 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 4 |  |  |  | * |  | PT.No. 316-018300 R311, 824 , 902, 903 |
| 5905-99-140-5858 | RESISTOR, FIXED, COMPOSITION $180 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 316-018400 R160X, 674 |
| 5905-99-140-5859 | RESISTOR, FIXED, COMPOSITION <br> 22 ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 5 |  |  |  | * |  | PT.No. 316-022000 R165, 172 173,259,265 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 W |  |  |  |  |  |  |  |  |
| 5905-99-140-5861 | RESISTOR, FIXED, COMPOSITION <br> 22 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 316-022300 R160Y, 260Y |
| 5905-99-140-5862 | RESISTOR, FIXED, COMPOSITION <br> 220 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 316-022400 R644, 716 |
| 5905-99-140-5866 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 330 \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 316-033100 R125, 225 |
| 5905-99-140-5867 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 3.3 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 316-033200 R884, 904 |
| 5905-99-140-5869 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 3.9 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 316-0392- } \\ & 00 \text { R9,117, 935, } \\ & 945 \text {, } \end{aligned}$ |
| 5905-99-140-5872 | RESISTOR, FIXED, COMPOSITION 47 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 5 |  |  |  | * |  | PT.No. 316-047300 R187,188, 201, 217, 850 |
| 5905-99-140-5873 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 560 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 316-056400 R189A |
| 5905-99-140-5874 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 6.8 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT.NO. 316-0682- } \\ & \text { O0 R891 } \end{aligned}\right.$ |
| 5905-99-140-5880 | RESISTOR, FIXED, COMPOSITION <br> 34.8 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 321-0053- \\ & 00 \underline{\text { R527 }} \end{aligned}$ |
| 5905-99-140-5882 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 39.2 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 321-005800 R526, 536 |
| 5905-99-140-5884 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 51.1 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0069- } \\ & 00 \text { R192,193,292, } \\ & 293,389 \end{aligned}$ |
| 5905-99-140-5885 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 56.2 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0073- } \\ & 00 \text { R190,191,290 } \\ & 291,577 \end{aligned}$ |
| 5905-99-140-5887 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 66.5 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0080- } \\ & 00 \text { R169, 269, } \\ & 412,465 \end{aligned}$ |
| 5905-99-140-5891 | RESISTOR, FIXED, COMPOSITION 115 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 3 |  |  |  | * | $\emptyset$ | PT.No. 321-010300 R163,263,533 |
| 5905-99-140-5892 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 121 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 321-010500 R110, 548 |
| 5905-99-140-5895 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 154 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 321-0015- } \\ & 00 \mathrm{R434,444} \\ & \hline \end{aligned}$ |
| 5905-99-140-5896 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 162 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 321-011700 R149,249 |
| 5905-99-140-5897 | RESISTOR, FIXED, COMPOSITION 226 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 321-0131- \\ & 00 \mathrm{R153} \end{aligned}$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-140-5901 | RESISTOR, FIXED, COMPOSITION 301 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 321-0143- } \\ & 00 \text { R253 } \end{aligned}$ |
| 5905-99-140-5902 | RESISTOR, FIXED, COMPOSITION 383 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 321-0153- } \\ & 00 \text { R136,236 } \end{aligned}$ |
| 5905-99-140-5903 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 464 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 5 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 321-0161- } \\ & 00 \text { R375,411,421 } \\ & 525,535 \end{aligned}$ |
| 5905-99-140-5904 | RESISTOR, FIXED, COMPOSITION 562 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 321-0169-1 \\ & 00 \text { R591 } \end{aligned}$ |
| 5905-99-140-5905 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 590 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0171- } \\ & 00 \text { R193 (11B2) } \end{aligned}$ |
| 5905-99-140-5907 | RESISTOR, FIXED, COMPOSITION 619 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 321-0173- } \\ & 00 \text { R135,235,482 } \end{aligned}$ |
| 5905-99-140-5912 | RESISTOR, FIXED, COMPOSITION 1.47 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0209- } \\ & 00 \text { R121, } 221 \end{aligned}$ |
| 5905-99-140-5914 | RESISTOR, FIXED, COMPOSITION <br> 2.15 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 3 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 321-0225- \\ & 00 \text { R21, } 185,199 \end{aligned}$ |
| 5905-99-140-5916 | RESISTOR, FIXED, COMPOSITION <br> 2.43 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0230- } \\ & 00 \text { R592 } \end{aligned}$ |
| 5905-99-140-5917 | RESISTOR, FIXED, COMPOSITION <br> 2.49 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 321-0231- \\ & 00 \text { R332 } \end{aligned}$ |
| 5905-99-140-5918 | RESISTOR, FIXED, COMPOSITION <br> 2.87 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } \\ & 00 \text { R428 } \end{aligned}$ |
| 5905-99-140-5922 | RESISTOR, FIXED, COMPOSITION 3.48 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 321-0245- } \\ & \text { 00 R55, 95,116, } \\ & 296 \mathrm{E} \end{aligned}$ |
| 5905-99-140-5926 | RESISTOR, FIXED, COMPOSITION <br> 4.22 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 321-0253- $00 \mathrm{R} 896$ |
| 5905-99-140-5927 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 4.64 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 5 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No } 321-0257- \\ & 00 \text { R170,180,191, } \\ & 291,298 \end{aligned}$ |
| 5905-99-140-5930 | RESISTOR, FIXED, COMPOSITION 6.49 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-027100 R113,429 |
| 5905-99-140-5932 | RESISTOR, FIXED, COMPOSITION <br> 10.5 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 321-029100 R323, 345 |
| 5905-99-140-5934 | RESISTOR, FIXED, COMPOSITION <br> 14 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{array}{\|l} \text { PT.No. 321-0303- } \\ 00 \text { R1i1 } \end{array}$ |
| 5905-99-140-5935 | RESISTOR, FIXED, COMPOSITION <br> 23.7 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-0335- $00 \text { R142,242 }$ |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 W |  |  |  |  |  |  |  |  |
| 5905-99-140-5936 | RESISTOR, FIXED, COMPOSITION <br> 86.6 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 321-0379- \\ & 00 \text { R885 } \end{aligned}$ |
| 5905-99-140-5937 | RESISTOR, FIXED, COMPOSITION 500 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT•No. 321-0612- } \\ & 00 \text { R113E,213E } \end{aligned}$ |
| 5905-99-140-5942 | RESISTOR, FIXED, COMPOSITION <br> 6.81 K ohms $\pm \frac{1}{2} \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 321-0630--1 \\ & 00 \text { R455 } \end{aligned}$ |
| 5905-99-140-5945 | RESISTOR, FIXED, COMPOSITION <br> 56.2 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 322-0073-1 \\ & 00 \text { R497 } \end{aligned}$ |
| 5905-99-140-5946 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 75 \text { ohms } \pm 1 \%, 1 / 4 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 322-008500 R452,498 |
| 5905-99-140-5947 | RESISTOR, FIXED, COMPOSITION 93.1 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 322-009400 R454, 464 |
| 5905-99-140-5948 | RESISTOR, FIXED, COMPOSITION 191 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{array}{\|l} \text { PT.No. } 322-0124- \\ 00 \\ \text { R213 } \end{array}$ |
| 5905-99-140-5950 | RESISTOR, FIXED, COMPOSITION <br> 221 ohms $+1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 322-013000 R210 |
| 5905-99-140-5951 | RESISTOR, FIXED, COMPOSITION 237 ohms $+1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 322-013300 R335, 432 |
| 5905-99-140-5952 | RESISTOR, FIXED, COMPOSITION <br> 332 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 322-0147- } \\ & 00 \mathrm{R} 634 \end{aligned}$ |
| 5905-99-140-5953 | RESISTOR, FIXED, COMPOSITION 464 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No . 322-0161- } \\ & 00 \text { R154, 164, 254, } \\ & 264 \end{aligned}$ |
| 5905-99-140-5954 | RESISTOR, FIXED, COMPOSITION 1.24 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 322-020200 R165,265 |
| 5905-99-140-5955 | RESISTOR, FIXED, COMPOSITION <br> 1.69 K ohms $+1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-021500 R148,248 |
| 5905-99-140-5956 | RESISTOR, FIXED, COMPOSITION 1.96 K ohms $+1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 322-022100 R384 |
| 5905-99-140-5957 | RESISTOR, FIXED, COMPOSITION 2.15 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-022500 R133, 233 |
| 5905-99-140-5959 | RESISTOR, FIXED, COMPOSITION 34.8 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 322-0341- $00 \text { R131, } 231$ |
| 5905-99-140-5960 | RESISTOR, FIXED, COMPOSITION 42.2 K ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 322-034900 R297 |
| 5905-99-140-5961 | RESISTOR, FIXED, COMPOSITION 51.1 K ohms $+1 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT. No . 322-0357- <br> 00 R184, 340 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-140-5970 | RESISTOR, FIXED, COMPOSITION 196 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 4 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 323-0125- } \\ & 00 \text { R343, 353, 504, } \\ & 514 \end{aligned}$ |
| 5905-99-140-5974 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 383 \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | PT.No. 323-015300 R364, |
| 5905-99-140-5976 | RESISTOR, FIXED, COMPOSITION 464 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 323-0161- \\ & 00 \text { R13 } \end{aligned}$ |
| 5905-99-140-5977 | RESISTOR, FIXED, COMPOSITION <br> 487 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-0163- $00 \mathrm{R} 273,283$ |
| 5905-99-140-5979 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 576 \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. } 323-0170- \\ & 00 \text { R529, } 539 \end{aligned}$ |
| 5905-99-140-5980 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 590 \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 323-017100 R134,234 |
| 5905-99-140-5981 | RESISTOR, FIXED, COMPOSITION 619 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 323-0173- } \\ & \text { OO R576, } 586 \end{aligned}$ |
| 5905-99-140-5982 | RESISTOR, FIXED, COMPOSITION 806 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 323-0184- } \\ & 00 \text { R152 } \end{aligned}$ |
| 5905-99-140-5983 | RESISTOR, FIXED, COMPOSITION <br> 953 ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. } 323-0191- \\ & 00 \text { R16, } 17 \end{aligned}$ |
| 5905-99-140-5985 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 2.87 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 323-023700 R371, 391 |
| 5905-99-140-5986 | RESISTOR, FIXED, COMPOSITION 8.25 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 323-0281- $00 \text { R106, }$ |
| 5905-99-140-5988 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 13.7 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. }{ }^{323-0302-} \\ & 00 \text { R219, } 361 \end{aligned}$ |
| 5905-99-140-5990 | RESISTOR, FIXED, COMPOSITION 17.8 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 323-0313- } \\ & 00 \text { R22 } \end{aligned}$ |
| 5905-99-140-5991 | RESISTOR, FIXED, COMPOSITION <br> 18.7 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 323-031500 R164, 264 |
| 5905-99-140-5992 | RESISTOR, FIXED, COMPOSITION <br> 21.5 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 3 |  |  |  | * |  | PT.No. 323-032100 R53,93,310 |
| 5905-99-140-5993 | RESISTOR, FIXED, COMPOSITION 20.5 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 323-0324- } \\ & 00 \text { R324, } 344 \end{aligned}$ |
| 5905-99-140-5994 | RESISTOR, FIXED, COMPOSITION <br> 28.7 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 323-0333- \\ & 00 \underline{\text { R215 }} \end{aligned}$ |
| 5905-99-140-5995 | RESISTOR, FIXED, COMPOSITION <br> 30.1 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 323-033500 R 878 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 W |  |  |  |  |  |  |  |  |
| 5905-99-140-5996 | RESISTOR, FIXED, COMPOSITION $32.4 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0338- } \\ & \text { 00 R363 } \end{aligned}$ |
| 5905-99-140-5997 | RESISTOR, FIXED, COMPOSITION <br> 40.2 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0347- } \\ & 00 \underline{\text { R362 }} \end{aligned}$ |
| 5905-99-140-5998 | RESISTOR, FIXED, COMPOSITION 45.3 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No. 323-0352- } \\ & 00 \underline{\text { R370 }} \end{aligned}$ |
| 5905-99-140-5999 | RESISTOR, FIXED, COMPOSITION 66.5 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 323-0368- $00 \mathrm{R} 612$ |
| 5905-99-140-6000 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 105 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 323-0387- } \\ & 00 \mathrm{R} 739 \end{aligned}$ |
| 5905-99-140-6002 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1.05 \mathrm{M} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-048300 R932,942 |
| 5905-99-140-6005 | RESISTOR, FIXED, COMPOSITION 950 K ohms $\pm 1 \%, 1 / 2 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 323-061200 R107C 207C |
| 5905-99-140-6021 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1.1 \mathrm{~K} \text { ohms } \pm 1 / 2 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 1 |  |  |  | * |  | $\left\lvert\, \begin{aligned} & \text { PT.No. } \\ & \text { OO R212 } \end{aligned}\right.$ |
| 5905-99-140-6022 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 221 \mathrm{~K} \text { ohms } \pm 1 / 4 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-065300 R160D, 260D |
| 5905-99-140-6023 | RESISTOR, FIXED, COMPOSITION 75 K ohms $\pm 1 / 2 \%, 1 / 2 \mathrm{~W}$ | 4 |  |  |  | * |  | PT.No. 323-065400 R160A, 160B, 260A, 260B |
| 5905-99-140-6024 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 750 \mathrm{~K} \text { ohms } \pm 1 / 2 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 4 |  |  |  | * | $\emptyset$ | PT.No. 323-065500 R160F, $\underline{\text {, }}$, 260F, G, |
| 5905-99-140-6025 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 1.5 \mathrm{M} \text { ohms } \pm 1 / 2 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-065600 R160H, 260H |
| 5905-99-140-6026 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 750 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * | $\emptyset$ | PT.No. 323-065700 R160E, 260E |
| 5905-99-140-6027 | RESISTOR, FIXED, COMPOSITION <br> 8.87 K ohms $\pm 1 \%, 1 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 324-028400 R609 |
| 5905-99-140-6028 | RESISTOR, FIXED, COMPOSITION 10 K ohms $\pm 1 \%, 1 \mathrm{~W}$ | 3 |  |  |  | * | $\emptyset$ | PT.No. 324-028900 R337,338,390 |
| 5905-99-140-6029 | RESISTOR, FIXED, COMPOSITION <br> 11.8 K ohms $\pm 1 \%, 1 \mathrm{~W}$ | 2 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT. No, 324-0296- } \\ & 00 \text { R376, } 396 \end{aligned}$ |
| 5905-99-140-6030 | RESISTOR, FIXED, COMPOSITION 3.32 M ohms $+1 \%$, 1 W | 6 |  |  |  | * | $\emptyset$ | PT.No. 324-053100 R802, $\underline{A}, \underline{B}, \underline{C}, \underline{D}$, E, F - |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110W |  |  |  |  |  |  |  |  |
| 5905-99-140-9200 | RESISTOR, FIXED, COMPOSITION $50 \mathrm{~K} \text { ohms } \pm 1 \%, 1 / 2 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | PT.No. 323-063800 R .948 Y |
| 5905-99-140-9201 | RESISTOR, FIXED, COMPOSITION $50 \text { ohms } \pm 1 \%, 1 / 2 W$ | 1 |  |  |  | * | $\emptyset$ | $\begin{array}{\|l} \text { PT.No. 323-0637- } \\ 00 \mathrm{R} \cdot 948 \mathrm{Z} \end{array}$ |
| 5905-99-140-9202 | RESISTOR, FIXED, COMPOSITION 56 K ohms $\pm 10 \%, 1 / 4 \mathrm{~W}$ | 3 |  |  |  | * |  | PT.No. 316-056300 R810,821,851, |
| 5905-99-140-9579 | RESISTOR, FIXED, COMPOSITION $180 \text { ohms } \pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 315-018100 R421 |
| 5905-99-141-4688 | RESISTOR, FIXED, COMPOSITION <br> 3.65 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 321-0247- } \\ & 00 \text { R342, } \end{aligned}$ |
| 5905-99-141-4700 | RESISTOR, FIXED, COMPOSITION 3.92 K ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 2 |  |  |  | * |  | PT.No. 321-025000 R130-230 |
| 5905-99-141-4713 | RESISTOR, FIXED, COMPOSITION 100 K ohms $+10 \%$, 1 W | 1 |  |  |  | * |  | PT. No . 304-0104OO R742 |
| 5905-99-141-4740 | RESISTOR, FIXED, COMPOSITION 3.01 K ohms $+1 \%, 1 / 8 \mathrm{~W}$ | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. } 321-0239- \\ & 00 \text { R420 } \end{aligned}$ |
| 5905-99-141-4748 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 75 \text { ohms } \pm 1 \%, 1 / 8 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.No. 321-008500 R271, 281 |
| 5905-99-141-4750 | RESISTOR, FIXED, COMPOSITION 1.2 K ohms, $\pm 5 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * |  | PT.No. 315-012200 R138 |
| 5905-99-141-4766 | RESISTOR, FIXED, COMPOSITION 390 ohms $+5 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | PT. No. 315-039100 R423,433 |
| 5905-99-141-6337 | RESISTOR, FIXED, COMPOSITION 10 K ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 5 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 302-0103- } \\ & 00 \text { R642,672 } \\ & 714,833,834 \end{aligned}$ |
| 5905-99-141-6338 | RESISTOR, FIXED, COMPOSITION $22 \mathrm{k} \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W}$ | 3 |  |  |  | * |  | PT. No. 302-022300 R313,664,683 |
| 5905-99-196-7414 | RESISTOR, VARIABLE <br> 25 ohms, 12.5 W | 1 |  |  |  | * |  | $\begin{aligned} & \text { PT.No. 311-0377- } \\ & 00 \text { R604 } \end{aligned}$ |
| 5905-99-196-7432 | RESISTOR, FIXED, COMPOSITION $33 \mathrm{~K} \text { ohms } \pm 10 \%, 1 / 4 \mathrm{~W}$ | 2 |  |  |  | * |  | $\begin{aligned} & \text { PT. No. 316-0333- } \\ & 00 \text { R189B, } 307 \end{aligned}$ |
| 5905-99-196-7587 | RESISTOR, FIXED, COMPOSITION 316 ohms $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 4 |  |  |  | * | $\emptyset$ | $\begin{aligned} & \text { PT.No. 321-0145- } \\ & \text { O0 R413, 423, } \\ & 579,589 \end{aligned}$ |
| 5905-99-462-2806 | RESISTOR, FIXED, COMPOSITION 590 ohms $\pm 1 \%, 1 / 4 \mathrm{~W}$ | 1 |  |  |  | * | $\emptyset$ | $\left\lvert\, \begin{aligned} & \mathrm{PT} \cdot \mathrm{NO}, \quad 322-0171- \\ & \mathrm{OO} 416 \end{aligned}\right.$ |
| 5905-99-581-2786 | $\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION } \\ & 100 \text { ohms } \pm 10 \%, 1 / 2 \mathrm{~W} \end{aligned}$ | 2 |  |  |  | * |  | PT.NO. 302-010100 R852, 855 |



# Instruction Manual 

## P6008 <br> PROBE

## WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

## 



Fig. 1-1. P6008 Probe and accessories.

# SECTION 1 CHARACTERISTICS 

## General Information

The P6008 Probe, shown at left, is a passive probe with 10X attenuation of signals. It is designed for use with Tektronix Type 82 and 86 plug-in units. The probe provides a convenient means for coupling signals to the plugin unit with minimum loading and maximum response.

The probe consists of a probe body assembly, a $31 / 2-\mathrm{ft}$ cable, a compensating box assembly, and a BNC connector. The 9 -megohm resistor in the probe body assembly has adjustable capacitive compensation which may be set to match the plug-in used. The compensating box houses a network which provides optimum transient response.

The probe is factory calibrated for use with plug-in units which have a 1 -megohm input, paralleled by 15 pf . It may be used with units which have up to 20 -pf input capacitance, with a corresponding decrease in frequency response.

## Characteristics (when used with Type 82 or 86 plug-in unit)

Input Impedance
10 megohms paralleled by about 7 pf . Fig. 2-3 shows input impedance vs frequency up to 250 megacycles.
Attenuation
De attenuation is $10 \mathrm{X}, \pm 3 \%$, with plug-in. Probe attenuation is $\pm 2 \%$.

## Voltage Rating

Maximum de or ac peak-to-peak below 20 megacycles: 600 volts. Above 20 megacycles, maximum voltage must be derated according to frequency duty factor. See the curves in Fig. 2-4.
Frequency and Transient Response.
Probe alone has a characteristic risetime of less than 3 nanoseconds, corresponding to a frequency response of dc to 116 megacycles or higher. With a Type 82 or 86 plugin unit and 580-Series Oscilloscope, typical risetime with the GAIN switch set to XI is 5 nanoseconds which corresponds to 70 megacycles; a X10 GAIN risetime is 5.3 nanoseconds which corresponds to 66 megacycles.

Connecting Cable
Cable is $31 / 2-\mathrm{ft}$ long with a special resistive center conductor which provides critical damping of reflections. This allows the probe to present a relatively high impedance without mismatch when viewing signals from low-impedance sources.
Environmental Capability
Probe will operate normally with temperatures to $75^{\circ} \mathrm{C}$.
Plug-In Connector
BNC type; mates with connectors of Type 82 and 86 plug-in units.

## Accessories Supplied with Probe

Tektronix
Qty. Part No.

| 1 | $013-052$ | Bayonet Ground Assembly |
| ---: | :--- | :--- |
| ${ }^{*} 1$ | $214-325$ | Center Pin |
| 1 | $013-071$ | Pincer Tip |
| 1 | $134-013$ | Banana Plug |
| 1 | $175-124$ | $5^{\prime \prime}$ Ground Lead |
| 1 | $175-125$ | $12^{\prime \prime}$ Ground Lead |
| 1 | $175-263$ | $3^{\prime \prime}$ Ground Lead |
| 1 | $206-015$ | BNC Tip |
| 1 | $206-060$ | Spring Tip |
| 1 | $206-105$ | Hook Tip |
| 2 | $344-046$ | Miniature Alligator Clips |
|  |  | (screw-on type to fit the end <br> of ground leads) |
| 1 | $352-024$ | Probe Holder |
| 1 | $070-362$ | Instruction Manual |

## Optional Accessories

| 013-054 | BNC-to-Probe Adapter |
| :--- | :--- |
| $206-061$ | Spring Tip (without shank) |
| $206-054$ | Pinjack Tip (insulated) |
| $206-052$ | Insert Tip |
| $206-045$ | Pinjack Tip |
| $206-034$ | Straight Tip |
| $175-184$ | $18^{\prime \prime}$ Ground Strap |

# SECTION 2 <br> OPERATING <br> INSTRUCTIONS 

## General Information

The P6008 Probe allows you to connect an oscilloscope into a circuit with minimum loading and without impedance matching. Before using the probe, compensate it according to the procedure given in the following paragraphs. Always check compensation when connecting the probe to the plug-in, and recheck it before making critical measurements. Slight variations in input capacitance between different plug-ins of the same type affect compensation. Lack of compensation can cause measurement error since it affects both waveshape and magnitude of the display. The probe is therefore provided with an adjustment to match it to the plug-in used.

## Compensation

To compensate the P6008 Probe, proceed as follows:

1. Set the oscilloscope calibrator for an output of suitable amplifude.
2. Hold the probe body and tip assembly and loosen the locking sleeve several turns (see Fig. 2-1).
3. Touch the probe tip to the oscilloscope calibrator output connector.
4. Set the sweep rate to display several cycles of the calibrator output signal.
5. Hold the base bushing and turn the probe body and tip assembly to obtain an undistorted presentation of the calibrator output signal.
6. Hold the probe body and tip assembly and carefully hand-tighten the locking sleeve.

If the probe changes adjustment while you are tightening the locking sleeve, continue turning the sleeve until it is just tight. Then, as a fine adjustment, hold the probe body and the locking sleeve and turn the base bushing assembly carefully in the direction that will properly compensate the probe.

(b) Waveforms from 1-kc oscilloscope calibrator

Fig. 2-1. Probe compensation.

## Connecting the Probe to the Signal Source

The probe may be connected to the signal source by means of the tips, leads, and connectors supplied. Generally, you should select the tips and leads that are best suited physically. When measuring high-frequency signals, use the shortest ground connection possible. Longer ground leads may result in ringing because of the inductive reactance of the ground lead. Be careful not to short-circuit between wires, connections, etc. in the circuit under test with the probe tip. Always provide some form of ground between the probe and the circuit under test to prevent hum pickup, ringing, and other spurious signals. The $5^{\prime \prime}$ and $12^{\prime \prime}$ ground leads clip to the junction of the probe bushing assembly and the cable assembly.

The 3-inch ground lead is used with the bayonet ground assembly (see Fig. 2-2). To connect the 3 -inch ground lead to the bayonet ground assembly, slip the ground assembly onto the probe body and tip assembly. Unscrew the knurled nut and clip the ground lead to the pin holder at the end of the holder opposite from the knurled nut. Be careful not to drop the pin or the spring.

## Considerations

After compensating the probe, consider the
following before connecting the probe and making measurements:

1. Loading-Fig. 2-3 is a graph of the probe input resistance and reactance versus frequency measured with the probe connected to the plugin and an R-X meter connected to the probe input. $X_{p}$ represents capacitive reactance, and $R_{p}$ represents resistance. The input impedance of the probe may affect the operation of the circuit under test.
2. Frequency Response-The frequency response of the probe, plug-in, and oscilloscope is stared in Section 1. Although the system 3-db point is near 70 megacycles, the probe and oscilloscope are useful at higher frequencies with a corresponding decrease in gain.
3. Voltage Rating-Fig. 2-4 is a graph of the maximum voltage rating at various frequencies with various duty factors. At higher frequencies, the maximum voltage decreases because charging currents in the probe cable, which charge the input capacitance of the plug-in, increase until the cable overheats. When computing duty factor, the maximum "on" time is one second. If "on" time and "off" time are less than one second, then duty factor:

$$
D F=\frac{O N \text { time }}{\text { ON time }+ \text { OFF time }}
$$

(CW signals have a DF of 1)


Fig. 2-2. Connecting 3 -inch ground lead to bayonef ground assembly.



Fig. 2-4. Maximum Applied Voltage At Specific Duty Factors.

## SECTION 3 <br> CIRCUIT DESCRIPTION

The P6008 Probe is a simple voltage divider operating in conjunction with the input impedance of the plug-in unit to provide 10:1 signal division. The divider resistor is mounted in the probe body and tip assembly. A spring contact connects the resistor to the sleeve. Capacitance between the probe tip and the sleeve is varied for frequency compensation by turning the probe body and tip assembly with respect to the base bushing to move it along the base bushing assembly. Resistor location in the probe body and tip assembly is carefully controlled during manufacture; therefore, the resistor should not be replaced in the field.

The $31 / 2-\mathrm{ft}$ cable is critically damped by a resistive center conductor which allows the probe to drive the oscilloscope plug-in input without ringing.

A compensating box at the plug-in connection maintains response at high frequencies. The circuit parameters in the compensating box are adjusied at the factory for correct response with plug-in units that have a 1 -megohm input paralleled by 12 or 15 pf . When interchanging the P6008 Probe with other Type 82 or Type 86 plug-in units no retuning of the components in the compensating box is necessary, other than to ascertain that the probe is still compensated for the input capacitance of the particular plug-in.

Two ferrite cores around the cable at the compensating-box end sense ground currents in the shield braid and magnetically couple them to the center conductor, establishing commonmode signals which will not be seen by the oscilloscope.

# SECTION 4 <br> MAINTENANCE AND CALIBRATION 

## MAINTENANCE

The Type P6008 Probe is designed to withstand normal operation and handling and should give many hours of continuous use without failure. However, if the probe fails or breaks, replacement parts are available. See mechanical and electrical parts lists in Section 5.

## Replacing Cable Assembly

If the coaxial cable between the probe and the compensating box should fail, the cable assembly is available complete with fittings and cable reliefs.

Replace the cable assembly as follows:

1. Remove the Compensating Box Cover by unscrewing the Locking Nut that holds it in place (see Fig. 4-2).
2. Unsolder the bare wire from the center terminal of the Cable Assembly (next to L104).
3. Use thin $7 / 16^{-}$and $9 / 16$-inch end wrenches to remove the Cable Assembly from the Compensating Box.
4. Turn the Locking Sleeve to unlock the Probe Body and Tip Assembly and remove both by unscrewing from the end of the Base Bushing Assembly (see Fig. 4-1).
5. Unscrew the Sleeve from the plastic Inner Base Bushing.
6. Use thin $11 / 32^{-}$and $3 / 8$-inch end wrenches to remove the Base Bushing Assembly from the end of the Cable Assembly.
7. Use a scribe to lift the wire from the thread groove of the Inner Base Bushing and remove the bushing.
8. Unsolder the bare wire from the center terminal of the Cable Assembly.

Install the new Cable Assembly by reversing the above procedure. After assembling the


Locking Sleeve


Fig. 4-1. P6008 Probe Body Assembly.


Fig. 4-2. P6008 Probe Compensating Box Assembly.
probe parts, be sure to compensate the probe for low frequencies as described in Section 2. Then compensate the probe for high frequencies according to the procedure given in this section.

## Replacing Parts In the Compensating Box

To replace parts in the Compensating Box, you need only a pair of long-nose pliers and a soldering iron. Use a heat sink (tip of long-nose pliers) to protect the new components from excessive heat. If replacing a variable inductor, be careful not to strip the plastic threads. If you have a torque wrench, the proper nut pressure is from 2 to 5 inch-pounds.

## Replacing the Probe Body and Tip Assembly (with 9-megohm resistor factory installed)

If the 9-megohm resistor (R100) fails, do not try to replace the resistor. Instead, replace the whole Probe Body and Tip Assembly shown in

Fig. 4-1. Order from your local Tektronix Field Office.

## CALIBRATION

The Compensating Box of the P6008 does not have to be recalibrated if used with other than a Type 82 or 86 plug-in. However it does not give the optimum response with plug-in units of different input capacitance. When used consistently with Type 82 or 86 plug-in units, only an occasional check of the high-frequency compensation is required.

## Equipment Required

1. Type 581 or Type 585 Oscilloscope.
2. Type 82 or 86 plug-in unit.
3. $50-\mathrm{ohm}$ fast-rise square-wave generator, such as the Tektronix Type 109 or Type 110. Risetime must be less than $1 \mathrm{nsec}, 10 \%$ to $90 \%$.
4. 50 -ohm BNC-to-BNC Termination, Tektronix Part No. 011-049.
5. Probe-to-BNC Adapter, Tektronix Part No. 013-054.
6. GR Type 874-to-BNC Jack Adapter (GR Type 874-QBJ), Tektronix Part No. 017-024.
7. $20-\mathrm{nsec} 50$-ohm cable, with GR 874 fitting. Tektronix Part No. 017-504.
8. Special plastic ferrite core alignment tool.

Tektronix Part Nos. $\left\{\begin{array}{l}\text { Tool Tip-003-310. } \\ \text { Handle-003-307. }\end{array}\right.$
9. Small nonconducting screwdriver, such as Jaco No. 125 with $11 / 2$-inch shank, Tektronix Part No. 003-000.

## Preliminary Procedure

Check the transient response of the plug-in and 580-Series Oscilloscope before attempting to calibrate the P6008 Probe. Use the procedures in the instruction manuals for the plug-in and oscilloscope.
Set the plug-in controls as follows:

| AC - DC | DC |
| :--- | ---: |
| VOLTS/CM | .1 |
| VARIABLE VOLTS/CM | CAL. |
| GAIN | Xl |
| * MODE | A ONLY |
| * POLARITY | NORMAL |
| * Type 82 only |  |

Loosen the Locking Nut on the Compensating Box and move the cover back onto the cable. Connect the P6008 Probe to the INPUT (INPUT A on Type 82) connector of the plug-in unit.

## High-Frequency Compensation Procedure (Early models)

Early models of the P6008 require a different calibration procedure from later models. To ascertain which model you have, check for the presence or absence of C103, a 1-pf tubular capacitor mounted between the two coils. Early models do not have this capacitor.

1. Set the oscilloscope sweep rate for $2 \mathrm{msec} /$ cm and the triggering controls for a + internal trigger. Set the amplitude calibrator for a 2 -volt output.
2. Connect the probe tip to the center conductor of the oscilloscope calibrator output con-
nector. Adjust the triggering controls for a stable display.
3. Set $\mathrm{ClO4}$ (see probe schematic and Fig. 4-2) to maximum capacitance. Maximum capacitance of C104 is determined when the display shows a minimum spike, or some roll-off.
4. Adjust the compensating capacitor by turning the Probe Body and Tip Assembly until the square-wave display has a good flat top. Tighten the Locking Sleeve and check the flat top display.
5. Use items 3, 4, 5, 6, and 7 of Equipment Required, and connect the probe to the 50 -ohm fastrise square-wave generator. Use the $20-\mathrm{nsec}$ cable with the generator as the chargeline to obtain a $40-$ nsec pulse.
6. Adjust the oscilloscope sweep rate for 0.05 $\mu \mathrm{sec} / \mathrm{cm}$. Turn up the intensity and focus display. It is possible to raise the intensity past the point of being able to obtain a sharp focus. Proper adjustment of the P6008 Probe is easiest when the display is sharply focused.
7. Adjust R104 (near maximum resistance) for a level display.
8. Adjust L103 for the correct front-corner level.
9. Adjust L104 for proper level about 3 or 4 nsec after the display front corner.
10. Adjust the oscilloscope sweep rate for 0.2 $\mu \mathrm{sec} / \mathrm{cm}$. Both square-wave corners should be at the same level. If not, repeat steps 6, 7 and 8 , and recheck.
11. Set the oscilloscope sweep rate for 0.05 $\mu \mathrm{sec} / \mathrm{cm}$ and magnified 5 X . The risetime ( $10 \%$ to $90 \%$ ) should be 5 nsec or less.
12. Replace the Compensating Box Cover.

## High-Frequency Compensation Procedure (Later models)

1. Set the oscilloscope sweep rate for $2 \mathrm{msec} /$ cm and the triggering controls for + external trigger. Set the amplitude calibrator for a 2 volt output.
2. Connect the probe tip to the center conductor of the oscilloscope calibrator output connector. Adjust the triggering controls for a stable display.
3. Set the $9-35 \mathrm{pf}$ capacitor (C104) in the minimum capacitance position so that the dis-

## Parts List-P6008

PROBE WITH ACCESSORIES


## REPLACEABLE PARTS



\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
REF. \\
NO.
\end{tabular}} \& \multirow[t]{2}{*}{PART NO.} \& \multicolumn{2}{|l|}{SERIAL NO.} \& \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline 0 \\
1 \\
r \\
\hline
\end{array}
\]} \& \multirow[b]{2}{*}{DESCRIPTION} \\
\hline \& \& EFF. \& DISC. \& \& \\
\hline \multirow{31}{*}{\begin{tabular}{l}
See \\
Fig. \\
4-2
\end{tabular}} \& \multirow[t]{31}{*}{114-153 114-156 281-599 281-063 311-249} \& \multirow[t]{31}{*}{} \& \multirow[t]{31}{*}{} \& \multirow[t]{31}{*}{1
1
1
1
1

1

1} \& \multirow[t]{31}{*}{| L103, COIL, . 15-. $25 \mu \mathrm{~h}$, var. |
| :--- |
| L104, COIL, .6-1.1 $\mu \mathrm{h}$, var. |
| C103, CAPACITOR, I pf, cer, $200 \mathrm{v}, \pm .1 \mathrm{pf}$. |
| C104, CAPACITOR, $9-35 \mathrm{pf}$, cer, var. |
| RIO4, RESISTOR, 1 k, var. |} <br>

\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline \& \& \& \& \& <br>
\hline
\end{tabular}




[^0]:    *If desired, any of the following items can be ordered separately through your local Tektronix Field Engineering Office. When ordering, give complete description and part number.

