Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by the Henlow Signals Museum, believed to be out of copyright. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time!

Colin Hinson
In the village of Blunham, Bedfordshire.

Tektronix
 COMMITTED TO EXCELLENCE

W ARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

INSTRUCTIDN MANUAL
\qquad

Copyright © 1976 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and are registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument has a serial number on a panel insert, tag, or stamped on the chassis. The first number or letter designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

B000000	Tektronix, Inc., Beaverton, Oregon, USA
100000	Tektronix Guernsey, Ltd., Channel Islands
200000	Tektronix United Kingdom, Ltd., London
300000	Sony/Tektronix, Japan
700000	Tektronix Holland, NV, Heerenveen,
	The Netherlands

TABLE OF CONTENTS

		Page
	LIST OF ILLUSTRATIONS	ii
	LIST OF TABLES	iii
SECTION 1	SPECIFICATION	
	Introduction	1-1
	Characteristics	1-1
SECTION 2	OPERATING INFORMATION	
	PRELIMINARY INSTRUCTIONS	
	Introduction	2-1
	Safety Information	2-1
	Operating Power Sources	2-1
	Line Voltage and Regulating Range	2-1
	Options	2-2
	CONTROLS AND CONNECTORS	
	General	2-2
	Cathode-Ray Tube (CRT) and Display	2-2
	Vertical Deflection System (Channel 1 \&	2-2
	A and B Triggering	2-5
	A and B Sweep	2-6
	Calibrator and Power	2-7
	Rear Panel	2-8
	OBTAINING BASIC DISPLAYS	
	Introduction	2-8
	Normal Sweep Display	2-8
	Magnified Sweep Display	2-9
	Delayed Sweep Displays	2-9
	Mixed Sweep Display	2-9
	X-Y Display	2-9
SECTION 3	CIRCUIT DESCRIPTION	
	Introduction	3-1
	Digital Logic	3-1
	OUTLINE FOR CIRCUIT DESCRIPTION	3-1
	BLOCK DIAGRAM	3-2
	CHANNEL 1 PREAMP	3-4
	CHANNEL 2 PREAMP	3-6
	VERTICAL CHANNEL SWITCHING	3-7
	VERTICAL OUTPUT AMPLIFIER	3-9
	A TRIGGER GENERATOR	3-10
	B TRIGGER GENERATOR	3-12
	SWEEP AND Z-AXIS LOGIC	3-12
	SWEEP GENERATORS (AND) TIMING AND HORIZONTAL DISPLAY SWITCHING	3-16
	HORIZONTAL AMPLIFIER	3-20
	LOW-VOLTAGE POWER SUPPLY	3-21
	CRT CIRCUIT	3-24
	CALIBRATOR	3-27
	FAN MOTOR CIRCUIT	3-27
SECTION 4	MAINTENANCE	
	Maintenance Section Outline	4-1
	CABINET AND RACK ADAPTER REMOVAL	
	Standard Cabinet Removal	4-2
	Standard Cabinet Installation	4-3
	Rack Adapter Removal	4-3
	Rack Adapter Installation	4-4

Page
LIST OF ILLUSTRATIONSiiiii
Introduction 1-1
1-1PRELIMINARY INSTRUCTIONSIntroduction2-1
Operating Power Sources 2-1
and Regulating Range2-2
General 2-2
Cathode-Ray Tube (CRT) and Display -2
Channel 2) 2-2
A and B Sweep 2-6Rear Panel2-8
Introduction 2-8Magnified Sweep Display2-9
Delayed Sweep Displays
-
X-Y Display -9
CIRCUIT DESCRIPTION
Introdul Log3-1
OUTLINE FOR CIRCUIT DESCRIPTION3-2
CHANNEL 1 PREAMP 3-4VERTICAL CHANNEL SWITCHING3-7
A TRIGGER GENERATOR3-10
B TRIGGER GENERATOR 3-12SWEEP GENERATORS (AND) TIMINGAND HORIZONTAL DISPLAYSWITCHING3-16
位3-21
CRT CIRCUIT
3-27
FAN MOTOR CIRCUIT -27
SECTION 4 MAINTENANCE

TABLE OF CONTENTS (cont)

SECTION 6 CALIBRATION (cont) Page
OUTLINE FOR CALIBRATION PROCEDURE 6-5
PRELIMINARY PROCEDURE FORCALIBRATION
Operating Voltage 6-7
Cabinet Removal 6-7
Power Source 6-7
Warm Up 6-7
Operating Temperature 6-7
Step Titles 6-7
POWER SUPPLY 6-7
DISPLAY AND Z-AXIS 6-8
VERTICAL SYSTEM 6-11
TRIGGER SYSTEM 6-22
HORIZONTAL SYSTEM 6-33DM44 DIGITAL MULTIMETERINSTRUCTIONS6-34GATE OUTPUTS, EXTERNAL Z-AXISAND CALIBRATÓR
6-44
Fig. Page No.

SECTION 7 REPLACEABLE ELECTRICAL PARTS
 SECTION 7 REPLACEABLE ELECTRICAL PARTS

OPTION INFORMATION

SECTION 8 DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

SECTION 9 REPLACEABLE MECHANICAL PARTS AND ILLUSTRATIONS

CHANGE INFORMATION

LIST OF ILLUSTRATIONS

Fig. No.		Page No.
4-5	Locations of circuit boards in the 475A Oscilloscope.	4-23
4-6	Locations of power transformer secondary wires.	4-29
4-7	Slide-out track assemblies.	4-36
4-8	Hardware to mount instrument in the rack.	4-36
4-9	Locating mounting holes for stationary sections.	4-37
4-10	Mounting the stationary section to front rails.	4-37
4-11	Supporting the rear of the stationary sections.	4-38
4-12	Rear support kit.	4-39
4-13	Installing the support block on the instrument.	4-39
4-14	Inserting or removing the instrument with slide-out tracks.	4-40
4-15	Alignment adjustments for correct operation.	4-41
4-16	Alternative method of installing the instrument.	4-41
4-17	Dimensional drawing.	4-42
6-1	Typical display when Z-Axis Compensation is properly adjusted. Circle surrounds compensated portion of waveform.	6-11
6-2	Typical display when checking Trigger Sensitivity.	6-23
6-3	Typical display when checking Trigger Symmetry.	6-24
6-4	Proper connection of current probe to horizontal deflection plate leads for High-Speed Timing calibration.	6-38
6-5	Typical display on test oscilloscope when HighSpeed Timing is properly adjusted (475A set at 2 nanoseconds/division).	6-38

The following illustrations for use with Section 6 are located on adjustment locations pullout pages at the rear of Section 8 Diagrams pullout pages.

LIST OF ILLUSTRATIONS (cont)

ADJUSTMENT LOCATIONS 1:
Locations of Calibration adjustments and test points on A9-Main Interface.

ADJUSTMENT LOCATIONS 2:

Locations of Calibration adjustments on A3-Vertical Preamp and A1, A2-Channel 1,2 Attenuators.

Locations of Calibration adjustments and test points on A5-Vertical Output.

ADJUSTMENT LOCATIONS 3:
Locations of Calibration adjustments on A8-Trigger Generator and Z-Axis Logic.
ADJUSTMENT LOCATIONS 4:
Locations of Calibration adjustments on A7-Timing.

Locations of Calibration adjustments on A9-Main Interface.

The following illustrations are located opposite their associated diagrams in Section 8 Diagrams pullout pages.
8-1 A through F, Channel 1 Component Locations.
8-2 A through F, Channel 2 Component Locations.
8-3 A through D, Channel Switching Component Locations.
8-4 A \& B, Vertical Output Component Locations.
8-5 A through C, 'A' Trigger Generator Component Locations.
8-6 A through C, 'B' Trigger Generator Component Locations.
8-7 A through D, Sweep and Z-Axis Component Locations.
8-8 A through C, Sweep Generators Component Locations.
8-9 A \& B, Timing and Horizontal Switching Component.
8-10 A through C, Horizontal Amplifier Component Locations.
8-11 A through D, Power Supply Component Locations.
8-12 A through D, CRT Circuit Component Locations.
8-13 A through D, Calibrator and Fan Component Locations.

LIST OF TABLES

Table No.	Page No.
1-1	ELECTRICAL
1-2	ENVIRONMENTAL
1-3	PHYSICAL
2-1	Regulating Ranges
3-1	Input/Output Logic for U370
3-2	Horizontal Display Sweep Generator Terminology
4-1	Circuit Number-to-Diagram Locator
4-2	Power Supply Tolerance and Ripple
4-3	Power Supply Resistance Check
4-4	Fuse Rating, Location and Functions
4-5	Calibration Interaction After Repair or Adjustment

Table No.		Page No.
5-1	Test Equipment Required for Performance Check	5-2
5-2	Vertical Deflection Accuracy	5-7
5-3	Differential Delay Time Accuracy	5-17
5-4	Delay Time Settings	5-18
6-1	Test Equipment Required for Calibration	6-2
6-2	Power Supply Accuracy	6-8
6-3	Vertical Deflection Accuracy	6-15
6-4	1 Millisecond Differential Delay Time Accuracy	6-35
6-5	Differential Delay Time Accuracy	6-41
	Delay Time Settings	6-41

Fig. 1-1. 475A Oscilloscope.

SPECIFICATION

Introduction

The 475A Oscilloscope is a 250 megahertz bandwidth portable instrument designed to operate in a wide range of environmental conditions. The lightweight, compact design combines accurate high-frequency measurement capability and ease of transportation.

The dual-channel, DC-to-250 megahertz vertical deflection system provides calibrated deflection factors from 5 millivolts to 10 volts/division. A BW/TRIG VIEW switch permits limiting the bandwidth of the vertical system to reduce interference from high-frequency signals when viewing lower-frequency, low-level signals. The switch also permits displaying of the signal applied to the ' A ' Trigger Generator on the CRT.

The trigger circuits provide stable sweep triggering to beyond the 250 megahertz bandwidth of the vertical deflection system. Separate controls are provided to select the desired mode of triggering for the A and B sweeps. The A sweep can be operated in one of three modes; automatic triggering, normal triggering, or single sweep. A variable trigger holdoff control permits the A
sweep to trigger in a stable manner on aperiodic signals or complex digital words. The horizontal deflection system has calibrated sweep rates from 0.5 second to 0.01 microsecond/division. A X10 magnifier increases each sweep rate by a factor of 10 to provide a maximum sweep rate of one nanosecond per division in the $.01 \mu$ s position. The delayed and mixed sweep features allow the start of B sweep to be delayed a selected amount from the start of A sweep to provide accurate relative-time measurements. Calibrated X-Y measurements can be made with Channel 2 providing the vertical deflection and Channel 1 providing the horizontal deflection (TIME/DIV switch fully counterclockwise and VERT MODE switch to CH 2). Regulated DC power supplies provide stable instrument performance over a wide range of line voltages and frequencies. Maximum power consumption of the instrument is approximately 100 watts.

Characteristics

The following instrument specifications apply over an ambient temperature range of $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ unless otherwise specified. Warmup time for specified accuracies is 20 minutes. The calibration procedure given in Section 6, if performed completely, will ensure the instrument meets the electrical characteristics listed in this section.

TABLE 1-1

ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
VERTICAL DEFLECTION SYSTEM (CH 1 and CH 2)		
Deflection Factor Calibrated Range	5 mV to $10 \mathrm{~V} / \mathrm{DIV}$ in 11 steps; 1-2-5 sequence.	
Cascaded Operation (CH 2 VERT SIGNAL OUT Connected to CH 1)	Deflection Factor to approximately $2.5 \mathrm{mV} /$ div into 50Ω. Bandwidth: DC to $\geqslant 50 \mathrm{MHz}$.	CH 2 VERT SIGNAL OUT into CH 1 input. DC coupled using a $50 \Omega, 42^{\prime \prime}$ RG58A/U cable terminated in 50Ω at CH 1 input.
Uncalibrated (VAR VOLTS/DIV) Range	Provides continuously variable deflection factors between the calibrated steps. Extends maximum uncalibrated deflection factor to at least 25 volts per division in the 10 V/DIV position.	At least 2.5:1.
Low Frequency Linearity		0.1 division or less compression or expansion of 2 division signal at center screen positioned to the upper and lower extremes of the graticule area.
Deflection Factor Accuracy	Within 3\% of indicated deflection.	With GAIN set at $10 \mathrm{mV} / \mathrm{DIV}$.
Bandwidth	DC to 250 MHz or greater.	
Risetime	1.4 ns or less (Calculated) ${ }^{1}$.	
AC Coupled Lower -3 dB Point	10 Hz or less with 1X probe.	1 Hz or less with 10X probe.
Bandwidth with 100 or 20 MHz BW Switch in 20 MHz Position	Approximately 20 MHz .	-3 dB point between 15 MHz and 20 MHz .
Bandwidth with 100 or 20 MHz BW Switch in 100 MHz Position	Approximately 100 MHz .	-3 dB point between 75 MHz and 125 MHz .
Input Resistance and Capacitance	$1 \mathrm{M} \Omega$ within 2% paralleled by approximately 20 pF .	
'Risetime is calculated from the formula:	$\frac{0.35}{\text { BW (in megahertz) }}$	

TABLE 1-1 (cont)
ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
VERTICAL DEFLECTION SYSTEM (cont)		
Step Response Positive-Going Step Aberrations ($0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) At $10 \mathrm{mV} /$ DIV		+4\%, -4\%, 4\% P-P.
Negative-Going Step		Add 3% to positive-going step aberrations.
Added Mode		Add 3% to positive-going step aberrations.
Common-Mode Rejection Ratio (ADD Mode with CH 2 inverted)		20:1 at 1 kHz for common-mode signals of 8 divisions or less.
Trace Shift as VAR is Rotated		Adjusts to 2 divisions or less.
INVERT Trace Shift		Within 1 division from center screen when switching from normal to inverted.
Channel Isolation		At least 100:1 at 50 MHz .
Position Range		At least +12 and -12 divisions from graticule center.
Signal Delay Between CH 1 and CH 2		0.25 ns or less at $5 \mathrm{mV} /$ DIV.
Maximum Input Voltage	DC coupled: 250 V (DC + peak $A C$) or 500 V P-P AC at 1 kHz or less AC coupled: 500 V ($\mathrm{DC}+$ peak AC) or 500 V P-P AC at 1 kHz or less.	
Chopped Mode Repetition Rate	Approximately 1 MHz .	$-20 \%,+30 \%$.

TABLE 1-1 (cont)
ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
TRIGGER SYSTEM		
Sensitivity DC Coupled	0.3 div internal or 50 mV external from DC to 40 MHz , increasing to 2.0 div internal or 250 mV external at 250 MHz .	
AC Coupled	0.3 div internal or 50 mV external from 60 Hz to 40 MHz , increasing to 2.0 div internal or 250 mV external at 250 MHz . Attenuates signals below about 60 Hz .	
HF REJ Coupled	0.5 div internal or 100 mV external from 60 Hz to 50 kHz . Attenuates signals below about 60 Hz and above about 50 kHz .	
LF REJ Coupled	0.5 div internal or 100 mV external from 50 kHz to 40 MHz , increasing to 2.0 div internal or 500 mV external at 250 MHz . Attenuates signals below about 50 kHz .	
Trigger Jitter	0.2 ns or less at 250 MHz at $1 \mathrm{~ns} /$ DIV sweep rate (X10 MAG on).	
External Trigger Input Maximum Input Voltage	$250 \mathrm{~V} D C+$ peak $A C$ or 250 V P-P AC (1 kHz or less).	
Input Resistance and Capacitance	$1 \mathrm{M} \Omega$ within 10%, paralleled by approximately 20 pF .	

TABLE 1-1 (cont)

ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
TRIGGER SYSTEM (cont)		
LEVEL Control Range EXT	At least + and $-2 \mathrm{~V}, 4 \mathrm{~V}$ P-P.	
EXT $\div 10$	At least + and $-20 \mathrm{~V}, 40 \mathrm{~V}$ P-P. Exclude LF REJ coupling mode.	
Trigger View Deflection Factor	Approximately $50 \mathrm{mV} / \mathrm{DIV}$.	$\pm 20 \%$. Exclude LF REJ and HF REJ trigger coupling modes.
Risetime		$\leqslant 4.0$ ns over the 10% to 90% part of the fast-rise portion.
Delay Difference		$\leqslant 2.5 \mathrm{~ns}$ with a 5 division signal having 1 ns or less risetime from a 25Ω source, centered vertically with equal cable length from signal source to vertical channel and external trigger inputs, each terminated in 50Ω.
Centering of Trigger Point		Adjustable to within 1.0 division of center screen.

HORIZONTAL DEFLECTION SYSTEM

Calibrated Sweep Range		
A Sweep or B DLY'D Sweep	0.5 s/DIV to 0.01μ s/DIV in 24 steps; $1-2-5$ sequence. X10 MAG extends max- imum sweep rate to $1 \mathrm{~ns} / \mathrm{DIV}$.	
A Delaying Sweep (or A INTEN)	0.5 s/DIV to $0.05 \mu \mathrm{~s} / \mathrm{DIV}$ in 22 steps; $1-2-5$ sequence.	

TABLE 1-1 (cont)

ELECTRICAL

TABLE 1-1 (cont)
ELECTRICAL

Fig. 1-2. Detailed Delay Time and Differential Time Measurement accuracy.

Delay Pickoff Jitter	Within 0.002\% (less than one part in 50,000) of the maximum available de- lay time when operating the instru- ment on power line frequencies above 52 Hz, decreasing to 0.005\% (less than one part in 20,000) on power line frequencies of 48 to 52 Hz.	
Delay Range	From 0.05 μ s or less to at least 5 seconds after the start of the de- laying (A) sweep.	Maximum available delay time is ten times the setting of the A TIME/DIV switch.

TABLE 1-1 (cont)
ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
X-Y OPERATION		
Sensitivity	Same as vertical deflection system.	Extreme counterclockwise position of TIME/DIV switch. CH 2 OR X-Y button of VERT MODE switch must be pushed
Deflection Accuracy	Same as vertical deflection system.	
Variable Range	Same as vertical deflection system.	
X-Axis Bandwidth	DC to 3 MHz .	
Input Capacitance	Same as vertical deflection system.	
Input Resistance	Same as vertical deflection system.	
Maximum Input Voltage	Same as vertical deflection system.	
Phase Difference Between X and Y Axis Amplifiers		Within 1° from DC to 1 MHz . Within 3° from 1 MHz to 2 MHz .
X Axis Low Frequency Linearity		0.2 div or less compression or expansion of a 2 div signal at center screen, positioned to horizontal extremes of display area.

CALIBRATOR

Output Voltage		Adjusted to within 0.5% at $25^{\circ} \mathrm{C}$, $\pm 5^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$	300 mV within 1.0%.	
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$		300 mV within 1.5%.
Repetition Rate	Approximately 1 kHz.	Within 25%.
Output Resistance		
Output Current $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$	30 mA within 2%.	30 mA within 2.5%
$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$		

Z AXIS INPUT

Sensitivity	5 V P-P signal causes noticeable mod- ulation at normal intensity.	Positive-going signal from ground decreases intensity.
Useable Frequency Range	DC to 50 MHz.	
Maximum Input Voltage		$100 \mathrm{~V}(\mathrm{DC}$ plus peak AC). $100 \mathrm{~V} \mathrm{P-PAC} \mathrm{at} 1 \mathrm{kHz}$ or less.

TABLE 1-1 (cont)
ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
SIGNAL OUTPUTS		
CH 2 VERT SIGNAL OUT	One division of deflection gives ap- proximately 20 mV into $1 \mathrm{M} \Omega$ load.	
Output Voltage	One division of deflection gives ap- proximately 10 mV into 50Ω load.	
Output Resistance	DC to at least 50 MHz into 50Ω.	Approximately 50Ω.
Bandwidth	Approximately 0 V.	
Output DC Level	Approximately 5 V positive-going.	
Output Voltage		Approximately 500Ω.
Output Resistance		

POWER SOURCE

Line Voltage Ranges (AC, RMS)		
115 V		
Low	$110 \mathrm{~V}, \pm 10 \%$.	99 V to 121 V .
Medium	$115 \mathrm{~V}, \pm 10 \%$.	103.5 V to 126.5 V.
High	$120 \mathrm{~V}, \pm 10 \%$.	108 V to 132 V .
230 V		
Low	$220 \mathrm{~V}, \pm 10 \%$.	198 V to 242 V .
Medium	$230 \mathrm{~V}, \pm 10 \%$.	207 V to 253 V .
High	$240 \mathrm{~V}, \pm 10 \%$.	216 V to 264 V .
Line Frequency	48 Hz to 440 Hz .	
Maximum Power Consumption	100 watts at $115 \mathrm{~V}, 60 \mathrm{~Hz}$.	

TABLE 1-1 (cont)
ELECTRICAL

Characteristics	Performance Requirements	Supplemental Information
CATHODE-RAY TUBE		
Horizontal Resolution		At least 15 lines/division
Vertical Resolution		At least 15 lines/division.
Display Area	$8 \times 10 \mathrm{~cm}$.	
Geometry		0.1 division or less of tilt or bowing.
Raster Distortion		0.1 division or less.
Normal Accelerating Potential		Approximately $18,000 \mathrm{~V}$.
Trace Rotation Range		Adequate to align trace with horizontal center line.
Standard Phosphor	P31.	
Optional Phosphor	P11.	

TABLE 1-2
ENVIRONMENTAL

Characteristics	Performance Requirements	Supplemental Information
Temperature		
Operating (AC)	$-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.	
Storage	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.	
Altitude		
Operating	To 15,000 feet. Maximum operating temperature decreased $1^{\circ} \mathrm{C} / 1,000$ feet above 5,000 feet.	
Storage	To 50,000 feet.	
Humidity (Operating and Storage)	5 cycles (120 hours) referenced to MIL-E-16400F.	
Vibration (Operating)	15 minutes along each of three major axes at a total displacement of 0.025 inch P-P (4 g 's at 55 Hz) with frequency varied from 10 Hz to 55 Hz to 10 Hz in one minute sweeps. After sweep vibration in each axis, hold frequency steady at each major resonance for 3 minutes, or if no such resonances are found, hold at 55 Hz for three minutes.	
Shock (Operating and Nonoperating)	30 g 's, $1 / 2$ sine, 11 ms duration, 2 shocks per axis each direction for a total of 12 shocks.	
Transportation	Meets the limits of National Safe Transit Committee test procedure 1A with a 30 -inch drop.	

TABLE 1-3
PHYSICAL

Characteristics	Information
Construction	
Chassis	Aluminum alloy.
Panel	Aluminum alloy with anodized finish.
Cabinet	Blue vinyl-coated aluminum alloy.
Circuit Boards	Glass laminate etched-wiring.
Overall Dimension	
Height	
With Feet and Pouch	7.5 inches (19.1 cm).
Without Pouch	6.2 inches (15.7 cm).
Width	
With Handle	12.9 inches (32.8 cm).
Without Handle	11.5 inches (29.2 cm).
Depth	
Including Panel Cover	18.1 inches (46 cm).
Handle Extended	20.3 inches (51.5 cm).
Weight	
With Panel Cover, Accessories, and Accessory Pouch	25.3 pounds (11.5 kg).
Without Panel Cover, Accessories, and Accessory Pouch.	22.8 pounds (10.3 kg).
Domestic Shipping Weight	32.7 pounds (14.8 kg).
Export Shipping Weight	Approximately 48.0 pounds (21.8 kg).

Standard Accessories

Standard accessories supplied with the 475A are listed in the Mechanical Parts List, in this Service manual. For optional accessories available for use with the 475A, see the Tektronix, Inc., catalog.

OPERATING INFORMATION

PRELIMINARY INSTRUCTIONS

Introduction

This section of the manual is intended to allow the operator to become familiar with the instrument's power requirements, functions of controls and connectors, and how to obtain a few basic displays. For more complete operating information refer to the 475A Operators Instruction Manual.

Safety Information

WARNING

This instrument may be damaged if operated with the Line Voltage Selector Switch or the Regulating Range Selector set for the wrong applied line voltage. Please read the following instructions before operating to be sure that the requirements for instrument power and user safety are met.

Power Cord Conductor Identification

Conductor	Color	Alternate Color
Ungrounded (Line)	Brown	Black
Grounded (Neutral)	Blue	White
Grounding (Earthing)	Green-Yellow	Green-Yellow

This instrument is designed to operate from a singlephase power source with one of the current-carrying conductors (the neutral conductor) at ground (earth) potential. Operation from power sources where both current-carrying conductors are live with respect to ground (such as phase-to-phase on a 3-wire system) is not recommended, since only the line conductor has overcurrent (fuse) protection within the instrument.

This instrument has a 3-wire power cord with a 3terminal polarized plug for connection to the power source and safety-earth. The ground terminal of the plug is directly connected to the instrument frame. For electricshock protection, insert this plug in a mating outlet with a safety-earth contact. If a 3-to-2 wire adapter is used to connect this instrument to a 2 -wire ac power system, be sure to connect the ground lead of the adapter to earth (ground). Failure to complete the ground system may allow the chassis of this instrument to be elevated above ground potential and pose a shock hazard.

Operating Power Sources

This instrument can be operated from either a 115 volt or 230 volt nominal line voltage source, 48 to 440 Hertz. The Line Voltage Selector switch in the instrument converts the instrument from a one nominal operating voltage to the other. The Regulating Range Selector assembly on the instrument rear panel selects 1 of 3 regulating ranges for each nominal line voltage, and also contains the line fuse for overload protection.

Line Voltage and Regulating Range

To select the correct nominal line voltage, regulating range and line fuse, proceed as follows:

1. Disconnect the instrument from the power source.
2. Set the Line Voltage Selector switch (located near the right rear of instrument) to indicate the desired nominal line voltage.
3. Loosen the 2 captive screws that hold the cover on the Regulating Range Selector assembly; then pull on the cover to remove.
4. Check Table 2-1 for the recommended rating of the line fuse to be used with the desired nominal line voltage. Check the fuse in the selector switch cover for the recommended rating or install a fuse with the recommended rating. The instrument Accessory Pouch should contain a spare fuse for each nominal line voltage at any time.

TABLE 2-1
Regulating Ranges

	Regulating Range	
Range Selector Switch Position	$\mathbf{1 1 5}$ Volts Nominal	$\mathbf{2 3 0}$ Volts Nominal
LO (Switch bar in lower holes)	99 to 121 volts	198 to 242 volts
M (Switch bar in middle holes)	103.5 to 126.5 V	207 to 253 V
HI (Switch bar in upper holes)	108 to 132 volts	216 to 264 volts
Fuse Rating	1.5 A 3 AG Fast-blow	0.75 A 3AG Fast-blow

Fig. 2-1. Regulating Range Selector and Line Fuse.
5. Check Table 2-1 for the recommended range position of the Range Selector Switch Bar (see Figure 2-1). Select a range which is centered about the average line voltage to which the instrument is to be connected. The middle position (" $\mathrm{M}^{\prime \prime}$) is a typical setting.
6. If necessary, gently pull out the Range Selector Switch Bar, slide the bar to the desired position and plug it back in.
7. Install the cover on the Regulating Range Selector assembly and gently tighten the 2 captive screws.
8. Connect the instrument to the recommended power source, pull the instrument POWER switch to ON and begin usage of the 475A Oscilloscope.

Options

Options are available to alter oscilloscope performance to meet particular applications. A number in either MOD slot (see instrument rear panel) indicates that the instrument contains an option.

Refer to the Option section in this manual to find any change in operating instructions as a result of the option.

CONTROLS AND CONNECTORS

General

The major controls and connectors for operation of the 475A are located on the front panel of the instrument. A few auxiliary functions are provided on the rear panel. Fig. $2-2$ shows the front and rear panels of the 475A. A brief description of each control and connector is given here. More detailed operating information is given in the 475A Oscilloscope Operators Manual.

Cathode-Ray Tube (CRT) and Display

BEAM FINDER

INTENSITY

FOCUS

SCALE ILLUM

ASTIG

TRACE ROTATION
Screwdriver adjustment to align the trace with the horizontal graticule lines.

Vertical Deflection System (Channel 1 \& Channel 2) POSITION
 Controls the vertical position of the trace. In the $X-Y$ mode of operation, the CH 2 control positions on the Y -axis (vertically) and the CH 1 POSITION control positions on the X -axis (horizontally).

CH 1 OR X

Input connector for Channel 1 deflection signals or X-axis deflection in the $X-Y$ mode of operation.

A. FRONT PANEL

B. REAR PANEL

Fig. 2-2. Front panel and rear panel controls and connectors.

Operating Information-475A Service

CH 2 OR Y
GAIN (5 and 10 mV)

VOLTS/DIV

VAR

UNCAL

Input Coupling
(AC-GND-DC)

Input connector for Channel 2 deflection signals or Y-axis deflection in the $X-Y$ mode of operation.

Screwdriver adjustments to set the gain of the Vertical Preamp.

Selects vertical deflection factor in a 1-2-5 sequence (VAR control must be in the calibrated detent for the indicated deflection factor).

Provides continuously variable uncalibrated deflection factors between the calibrated settings of the VOLTS/DIV switch.

Light indicates that the VAR control is not in the calibrated position.

Selects the method of coupling signal to the input of the Vertical Amplifier.

AC: Signal is capacitively coupled to the Vertical Amplifier. DC component of signal is blocked. Lowfrequency limit (lower -3 dB point) is about 10 Hertz.

GND: Input signal is removed and the input circuit is grounded. Does not ground the input signal.

DC: All components of the input signal are passed to the Vertical Amplifier.

100 OR $20 \mathrm{MHz} \mathrm{BW} /$ TRIG VIEW

Multi-purpose switch that limits vertical bandwidth or displays an external triggering signal. Full bandwidth of 250 MHz is provided in the switch position obtained when the TRIG VIEW is pushed in, then released. The full bandwidth position serves as the reference for the following settings.
$100(\mathrm{MHz})$: When TRIG VIEW button is pulled to the first detent (100 indicated on yellow band of TRIG VIEW knob) the upper bandwidth of the complete Vertical Deflection System is limited to approximately 100 MHz .
$20(\mathrm{MHz})$: When TRIG VIEW button is pulled to the second detent (100 and 20 indicated on yellow band of TRIG VIEW knob) the upper bandwidth of the complete Vertical Deflection System is limited to approximately 20 MHz .

TRIG VIEW: When the TRIG VIEW button is pushed and held, the output of the Vertical Preamplifier is interrupted, and the trigger signal selected by the setting of A TRIGGER SOURCE switch is displayed on the crt.

When the TRIG VIEW button is pushed and held, the crt display available is explained in each of the following settings of the A TRIGGER SOURCE switch.

NOTE

The signals displayed are affected by the coupling characteristics of the A TRIGGER COUPLING switch positions (see A Trigger Coupling information in this section).

The A TRIGGER LEVEL control affects the triggering and the vertical positioning when using a TRIG VIEW display.

NORM: Any signal that is displayed in full bandwidth position is viewed with an increase in signal amplitude.

CH 1: Any signal that is displayed in CH 1 of VERT MODE, in full bandwidth position, is viewed with an increase in signal amplitude.

CH 2: Any signal that is displayed in CH 2 of VERT MODE, in full bandwidth position, is viewed with an increase in signal amplitude.

LINE: The power line signal is displayed at an amplitude approximately equalling full vertical graticule deflection.

EXT: The signal present at the A TRIGGER external input connector will be displayed.

EXT $\div 10$: The signal present at the A TRIGGER external input connector will be displayed, but will be reduced approximately 10 times of that viewed in EXT.

INVERT	Pushbutton switch that inverts the Channel 2 display.
VERT MODE	Selects the vertical mode of operation.

CH1: Displays Channel 1 only.

ALT: Dual-trace display of signals using both channels. Display is switched between channels at the end of each sweep

ADD: Signals applied to the CH 1 OR X and the CH 2 OR Y connectors are algebraically added and the sum is displayed on the crt. The INVERT switch in Channel 2 allows the display to be $\mathrm{CH} 1+\mathrm{CH} 2$ or $\mathrm{CH} 1-\mathrm{CH}$ 2.

CHOP: Dual-trace display of signals on both channels. Display is switched between channels at an approximate repetition rate of 1 megahertz.

CH 2 OR X-Y: Displays Channel 2 only. Must be pushed when operating in $\mathrm{X}-\mathrm{Y}$ mode.

A and B Triggering (both where applicable)

Determines the method used to couple signal to input of trigger circuits.

AC: Rejects DC and attenuates signals below about 60 Hz . Accepts signals above about 60 Hz .

LF REJ: Rejects DC and attenuates signals below about 50 kHz . Accepts signals above about 50 kHz .

HF REJ: Accepts signals between 60 Hz and 50 kHz . Rejects DC and attenuates all signals outside the above range.

DC: Accepts all trigger signals between DC and 200 MHz or greater.

SOURCE
Selects source of trigger signal.

NORM: Internal trigger signal obtained from Vertical Deflection System. Actual source is signal(s) displayed on crt.

CH 1: A sample of the signal connected to the CH 1 OR X input connector is used as a trigger signal.

CH 2: A sample of the signal connected to the CH 2 OR Y input connector is used as a trigger signal.

EXT: Trigger signal obtained from signal connected to the External Trigger Input connector.

TRIG Indicator A light on condition indicates that A Sweep Generator is triggered and will produce a stable display.

A TRIG HOLDOFF Provides control of holdoff time between sweeps to obtain stable displays when triggering in aperiodic signals (such as complex digital words). Variable can increase hold-off time up to at least 9 times the setting of the TIME/DIV swiêch. In the B ENDS A position (fully clockwise), the A Sweep is reset at the end of the B Sweep to provide the fastest possible sweep repetition rate for delayed sweep presentations.

Determines the operating mode for the A Trigger Circuit.

AUTO: With the proper trigger control settings, A Sweep can be initiated by signals that have repetition rates above about 20 Hertz and are within the frequency range selected by the COUPLING switch. In the absence of an adequate trigger signal or when the trigger controls are misadjusted, the sweep free-runs to produce a reference trace. the trigger signal at which the sweep is triggered.

External Trigger Input (not labeled)
External Trigger Input
Input connectors for external trigger signals.

A and B Sweep

DELAY TIME POSITION

Provides variable sweep delay between 0.00 and 10.00 times the delay time indicated by the DELAY TIME switch.

EXT $\div 10$ (A Trigger circuit only): External trigger signal attenuated by a factor of 10 .

STARTS AFTER DELAY (B trigger circuit only): B sweep starts immediately after the delay time selected by the DELAY TIME POSITION dial and the DELAY TIME switch.

LINE (A trigger circuit only): Trigger signal obtained from a sample of the line voltage applied to the instrument.

SLOPE $\quad \begin{aligned} & \text { Selects the slope of the trigger } \\ & \text { signal which starts the sweep. }\end{aligned}$
+: Sweep can be triggered from the positive-going portion of the trigger signal.
-: Sweep can be triggered from the negative-going portion of the trigger signal.

LEVEL
Selects the amplitude point on

NORM: With the proper trigger control settings, A Sweep can be initiated by signals that are within the frequency range selected by the COUPLING switch. In the absence of an adequate trigger signal or when the trigger controls are misadjusted, there is no trace.

SINGL SWP: After a sweep is displayed, further sweeps cannot be presented until the SINGL SWP pushbutton is pressed again. The display is triggered as for NORM operation using the A Triggering controls.

A TRIG MODE

A TIME/DIV switch (clear plastic outer flange) selects the basic delay time to be multiplied by the DELAY TIME POSITION dial setting) for delayed-sweep operation. The B TIME/DIV switch (inner dark knob) selects the sweep rate for A only displays or for the B portion of a delayed sweep display. VAR control must be in the calibrated detent for calibrated sweep rates. Disables sweep for $X-Y$ operation.

Provides continuously variable (uncalibrated) sweep rates between the calibrated settings of the TIME/DIV switch. Varies the A Time Base sweep rate in the nondelayed mode of horizontal operation and the B Time Base sweep rate in the delayed sweep mode. Extends the slowest sweep rate to at least 1.25 seconds/division. Sweep rate is calibrated when the control is rotated fully clockwise to the calibrated detent.

Light that indicates when the VAR TIME/DIV control is out of the calibrated detent and the horizontal sweep rate is uncalibrated.

Light that indicates when the X10 MAG is turned on.

Light that indicates that A Sweep has been prepared to present a single sweep upon receipt of an adequate trigger signal.

Selects the horizontal mode of operation.

> A: Horizontal deflection provided by A TIME/DIV switch.

MIX: The first part of the horizontal sweep is displayed at a rate set by the A TIME/DIV switch and the latter part of the sweep at a rate set by the B TIME/DIV switch. Relative amounts of the display allocated to each of the two rates are determined by the setting of the DELAY TIME POSITION dial.

A INTEN: Displayed sweep rate determined by the A TIME/DIV switch. An intensified portion appears on the display during the B sweep time. This switch position provides a check of the duration and position of the B sweep (delayed sweep) with respect to the delaying sweep (A).

B DLYD: Sweep rate determined by the B TIME/DIV switch with the delay time determined by the setting of the DELAY TIME (A TIME/DIV) switch and the DELAY TIME POSITION dial.

Horizontal POSITION Positions the display horizontally.

Horizontal FINE Provides more precise horizontal position adjustments.

X10 MAG Pushbutton
Increases the displayed sweep rate by a factor of 10 .

Calibrator and Power

CALIBRATOR

POWER

A combination current loop/squarewave voltage output device. Provides a 30 mA squarewave current, 300 mV squarewave voltage signal with a repetition rate of approximately 1 kHz .

Turns instrument power on and off.

Operating Information-475A Service

LOW LINE Indicator

Light that indicates the applied line voltage is below the lower limit of the regulating range selected by the Regulating Range Selector assembly.

Output connector providing a positive-going rectangular pulse coincident with the A sweep time.

Output connector providing a positive-going rectangular pulse coincident with the B sweep time.

CH 2 VERT SIGNAL OUT

EXT Z AXIS Input

Regulating Range Selector

Input connector for intensity modulation of the crt display.

Selects the regulating range of the internal power supplies (low, medium, high; determined by specific line voltage applied to the instrument).

PROBE POWER Connectors that make operating power available for active device probe systems.

[^0]Provide temporary support for the instrument and provide a convenient cord wrap to store power cord when instrument is not in use.

OBTAINING BASIC DISPLAYS

Introduction

The following instructions will allow the operator who is unfamiliar with the operation of the 475A to obtain the basic displays commonly used. Before proceeding with these instructions, preset the instrument controls as follows:

Vertical Controls	
VERT MODE Switch	CH 1
VOLTS/DIV Switches	Proper position determined by amplitude of signal to be applied.
VOLTS/DIV VAR	
Controls	

Normal Sweep Display

1. Pull the POWER switch to on (button out). Allow several minutes for instrument warmup.
2. Connect an external signal to the CH 1 input connector.
3. Advance the INTENSITY control until the display is visible. If the display is not visible with the INTENSITY control at midrange, press the BEAM FINDER pushbutton and adjust the CH 1 VOLTS/DIV switch until the display is reduced in size vertically; then center the compressed display with the vertical and horizontal POSITION controls; release the BEAM FINDER pushbutton. Adjust the FOCUS control for a well-defined display.
4. Set the CH 1 VOLTS/DIV switch and CH 1 POSITION control for a display that remains in the display area vertically.
5. Adjust the A Trigger LEVEL control for a stable display.
6. Set the TIME/DIV switch and the horizontal POSITION control for a display that remains in the display area horizontally.

Magnified Sweep Display

1. Preset the instrument controls and follow steps 1 through 6 for obtaining a Normal Sweep Display.
2. Adjust the horizontal POSITION control to move the area to be magnified to within the center graticule division of the crt. If necessary, change the TIME/DIV switch setting so the complete area to be magnified is within the center division.
3. Set the X10 MAG switch to the on position (button in) and adjust the horizontal POSITION control for precise positioning of the magnified display. Divide the TIME/DIV setting by 10 to determine the magnified sweep rate.

Delayed Sweep Displays

1. Preset the instrument controls and follow steps 1 through 6 for obtaining a Normal Sweep Display.

2. Set the HORIZ DISPLAY switch to A INTEN and the

 B Trigger SOURCE switch to STARTS AFTER DELAY.3. Pull out the B TIME/DIV switch knob and turn clockwise so the intensified zone on the display is the desired length. Adjust the INTENSITY control to achieve the desired display brightness.
4. Adjust the DELAY TIME POSITION dial to position the intensified zone to the portion of the display to be delayed.
5. Set the HORIZ DISPLAY switch to B DLYD. The intensified zone on the display noted in step 3 is now being displayed in the delayed form. The delayed sweep rate is indicated by the line on the B TIME/DIV switch knob.
6. For a delayed sweep display that will exhibit less jitter, set the B Trigger SOURCE switch to the same position as the A Trigger SOURCE switch and adjust the B Trigger LEVEL control for a stable display. If the A Trigger SOURCE switch is in the LINE position, a sample of the line voltage will have to be supplied to the B Trigger circuit externally.

Mixed Sweep Display

1. Preset the instrument controls and follow steps 1 through 6 for obtaining a Normal Sweep Display.
2. Pull out the B TIME/DIV switch knob and turn clockwise to the desired sweep rate. Adjust the INTENSITY control to achieve the desired display brightness.
3. Set the HORIZ DISPLAY switch to MIX. The crt display now contains more than one time factor on the horizontal axis. The first portion of the display is at the A Time Base sweep rate and the latter part is at the B Time Base sweep rate. The start of the B Time Base portion of the display can be changed by adjusting the DELAY TIME POSITION control.

X-Y Display

1. Preset the instrument controls and turn the instrument power on. Allow several minutes for instrument warm-up.
2. Set the TIME/DIV switch to $X-Y$ and the VERT MODE to CH 2. Apply the vertical signal to the CH 2 OR Y input connector and the horizontal signal to the CH 1 ORX input connector. The CH 2 POSITION control will provide vertical positioning and the CH 1 POSITION control will provide horizontal positioning.
3. Advance the INTENSITY control until the display is visible. If the display is not visible with the INTENSITY control at midrange, press the BEAM FINDER pushbutton and adjust the CH 1 and CH 2 VOLTS/DIV switches until the display is reduced in size both vertically and horizontally; then center the compressed display with the POSITION controls; release the BEAM FINDER pushbutton. Adjust the FOCUS control for a well-defined display.

CIRCUIT DESCRIPTION

Introduction

This section of the manual describes the circuitry used in the 475A Oscilloscope. The description begins with a discussion of the instrument, using a basic block diagram. Next, each circuit is described in detail, using detailed block diagrams when appropriate, to show the relationships between the stages in each major circuit.

Digital Logic

Digital logic techniques are used to perform many functions within this instrument. The function and operation of the logic circuits are described using logic symbology and terminology. All logic functions are described using the positive logic convention. Positive logic is a system of notation where the more positive of two levels (HI) is called the true or 1 state; the more negative level (LO) is called the false or 0 state. The HI-LO method of notation is used in this logic description. The specific voltages that constitute a HI or LO state vary between individual devices.

NOTE

The HI-LO logic notation can be conveniently converted to 1-0 notation by disregarding the first letter of each step. Thus:

$$
\begin{aligned}
& H I=1 \\
& L O=0
\end{aligned}
$$

It should be noted that not all of the integrated circuit devices in this instrument are digital logic devices. The function of non-digital devices are described individually, using operating waveforms or other techniques to illustrate their function.

OUTLINE FOR CIRCUIT DESCRIPTION

BLOCK DIAGRAM
General
CHANNEL 1 PREAMP
General
Input Coupling
Input Attenuator
First Cascode Amplifier
Second Cascode Amplifier
Third Cascode Amplifier

Page 3-2

Page 3-4
Page 3-5
Page 3-5
Page 3-5
Page 3-6
Page 3-6

CHANNEL 2 PREAMP
 General
 Page 3-6
 First Cascode Amplifier
 Page 3-7

VERTICAL CHANNEL SWITCHING
General
Page 3-7
Channel Switch IC Page 3-8
Switching Logic Flip-Flops Page 3-8
Two Megahertz Clock
Chop Blanking Amplifier
Page 3-9
Page 3-9
Channel 2 Signal Output Amplifier
Page 3-9
Normal Trigger Pickoff Amplifier
Scale-Factor Switching Circuits
Page 3-9
Page 3-9

VERTICAL OUTPUT AMPLIFIER

General Page 3-9
First IC Amplifier
Page 3-9
Second IC Amplifier
Page 3-10

A TRIGGER GENERATOR
General
Page 3-10
Trigger Source Page 3-11
Trigger Coupling
Page 3-11
Input Source Follower
Paraphase Amplifier
Tunnel Diode Driver
Trigger View Amplifier
Page 3-11
Page 3-11
Page 3-11
Page 3-11

B TRIGGER GENERATOR
General
Page 3-12
Trigger Source

SWEEP AND Z-AXIS LOGIC
General
Sweep Control Integrated Circuit
Main Gate Comparator
Delayed Gate Comparator
A Trigger TD Reset Circuit
Holdoff Start Circuit
Z Axis Logic Multivibrator
Delaying Sweep Latch Circuit
B Trigger TD Reset Circuit
Main Sweep Holdoff Gate and
Delayed Sweep Override Amplifier
A +GATE And B +GATE Amplifiers
LOW LINE Indicator Circuit

Page 3-12
Page 3-13
Page 3-14
Page 3-14
Page 3-14
Page 3-14
Page 3-12

Page 3-14
Page 3-15
Page 3-15
Page 3-15
Page 3-15
Page 3-15

SWEEP GENERATORS

TIMING AND HORIZONTAL DISPLAY SWITCHIN

General
Delaying Sweep Generator
Main Gate Amplifier
Sweep Disconnect Amplifier
Sawtooth Sweep Generator
Sweep Start Amplifier
Output Buffer Amplifier
Delaying Sweep End Difference
Amplifier
Delay Pickoff Comparator
Non-Delaying Sweep Generators
"B" Gate Amplifier
Non-Delaying Sweep Generator
Differences
Mixed Mode Operation
Non-Delaying Sweep End Difference Amplifier
TIME/DIV Functions (Knobs Unlocked)

HORIZONTAL AMPLIFIER
General
Input Paraphase Amplifier
Gain Setting Amplifier
Output Amplifier

LOW-VOLTAGE POWER SUPPLY
General
Power Input
Secondary Circuit
+50 -Volt Supply
+110 -Volt Supply
+15 -Volt Supply
+5 -Volt Supply
-8-Volt Supply
-15-Volt Supply
Page 3-21
Page 3-23
Page 3-23
Page 3-23
Page 3-24
Page 3-24
Page 3-24
Page 3-24
Page 3-24

CRT CIRCUIT

General

High-Voltage Oscillator
High-Voltage Regulator
High-Voltage Rectifiers and Output
Control-Grid DC Restorer
CRT Control Circuits
Z-Axis Amplifier

Page 3-24
Page 3-25
Page 3-25
Page 3-26
Page 3-26
Page 3-26
Page 3-26

Page 3-27
Page 3-27
Page 3-27

FAN MOTOR CIRCUIT
General
CALIBRATOR
General
Multivibrator
Output Amplifier

Page 3-16
Page 3-17
Page 3-17
Page 3-17
Page 3-18
Page 3-18
Page 3-18
Page 3-18
Page 3-18
Page 3-19
Page 3-19
Page 3-19
Page 3-19
Page 3-19
Page 3-20

Page 3-20
Page 3-21
Page 3-21
Page 3-21

BLOCK DIAGRAM

General

The following discussion is provided to aid in understanding the overall concept of the 475A Oscilloscope before the individual circuits are discussed in detail. A basic block diagram of the 475A Oscilloscope is shown in Fig. 3-1. Only the basic interconnections between the individual blocks are shown on this diagram. Each block represents a major circuit within the instrument. The numbered diamond in each block refers to the complete circuit diagram of that major circuit and this diagram can be found in the Diagrams Section of this manual.

A complete block diagram is located in the Diagrams Section of this manual. This block diagram shows the overall relationship between all of the circuits. Complete schematics of each circuit are also given in the Diagrams Section. Refer to these diagrams throughout the following circuit description for electrical values, waveforms and relationships of the front panel controls to the individual stages.

Signals to be displayed on the CRT are applied to the CH 1 OR X or CH 2 OR Y connectors. The input signals are then amplified by the Preamplifier circuits. Each Preamplifier circuit includes separate vertical deflection factor, input coupling, balance, gain, and variable attenuation controls. The Channel 2 Preamplifier circuit also contains an INVERT feature to invert the Channel 2 signal as displayed on the CRT.

The output of each Vertical Preamplifier circuit connects to the Vertical Channel Switching circuit. This circuit selects the channel(s) to be displayed. An output signal from this circuit connects to the Z Axis Amplifier circuit to blank out the switching transients between channels when in the chopped mode of operation. The Vertical Channel Switching circuit also provides the Channel 2 VERT SIG OUT signal (available on the instrument rear panel) as well as the signals used for sweep triggering in the NORM, CH 1, and CH 2 positions of the trigger SOURCE switches and the signal used for X axis deflection in the $X-Y$ mode of horizontal operation.

The output of the Vertical Channel Switching circuit connects to the Vertical Output Amplifier through the Delay Line. The Delay Line provides a fixed amount of signal delay through the vertical deflection system to allow viewing the leading edge of a triggering waveform. The Vertical Output Amplifier circuit provides the final amplification for the signal before it is connected to the vertical deflection plates of the CRT. This circuit includes the BEAM FINDER switch, which limits the vertical and horizontal deflection to within the viewing area, and sets the display brightness to a normal viewing level to aid in locating an off-screen display.

Fig. 3-1. Basic block diagram of the 475A.

Circuit Description-475A Service

The A and B Trigger Generator circuits produce an output pulse that initiates generation of the sawtooth sweep signals produced by the A or B Sweep Generator circuits. The input signal to the Trigger Generator circuits can be individually selected from the Channel 1 signal, Channel 2 signal, the signal(s) displayed on the CRT (NORM), a signal connected to the external trigger input connectors, or a sample of the line voltage applied to the instrument. Each trigger circuit contains separate level, slope, coupling, and source controls.

There are three sweep generator circuits in the 475A. For purposes of explanation, they are called Delaying, Slow Non-Delaying, and Fast Non-Delaying. The Delaying Sweep generates a range of sweep rates from 0.5 second to 0.05 microsecond/division. The Slow NonDelaying Sweep generator provides the 0.5 second through 1 microsecond/division sweep rates and the Fast Non-Delaying Sweep Generator provides the sweep rates of 0.5 through 0.01 microsecond/division.

The Delaying Sweep runs when the instrument is operated in a delayed-sweep mode (MIX, A INTEN or B DLY'D) and is displayed as the A portion of a MIX or A INTEN display. In B DLY'D mode the Delaying Sweep is used to delay the Non-Delaying Sweep, which is displayed on the CRT. The sweep rate for the Delaying-Sweep Generator is selected by the A TIME/DIV switch (skirt knob). One of the Non-Delaying Sweeps (depending on the sweep rate selected) will run and may be displayed in all modes of the HORIZ DISPLAY switch. In the A mode (knobs locked) the Non-Delaying Sweep is displayed as the A Sweep and in the MIX mode, displayed as the B DLY'D Sweep. In the A INTEN mode, the Non-Delaying Sweep is displayed as the intensified portion and in the B DLY'D mode is displayed as the B DLY'D Sweep. The sweep rate for the Non-Delaying Sweep Generator is selected by the B TIME/DIV switch (DLY'D SWEEP knob). It may be helpful to see Table 3-2, found later in this section.

The TRIG MODE switch controls the mode of operation of the sweep generator deriving the A portion of a display. In the AUTO position, the absence of an adequate trigger signal causes the sweep to free run. In the NORM position, a horizontal sweep is presented only when correctly triggered by an adequate trigger signal. Pushing the SINGL SWP pushbutton allows one (and only one) sweep to be presented. The Z Axis Logic circuit produces an unblanking gate signal to unblank the CRT so that the display can be presented. This gate signal is coincident with the sawtooth produced by the sweep generator. The Z Axis Logic Circuit also produces, at the end of each sweep, a gate signal that is supplied to the Vertical Channel Switching circuit. This pulse switches the display between channels at the end of each sweep when the Vertical Deflection System is operating in the ALT mode.

The outputs of the sweep generators are amplified by the Horizontal Amplifier to produce horizontal deflection for the CRT except in the fully counterclockwise (X-Y) position of the TIME/DIV switch. The Horizontal Amplifier contalns a 10X magnifier to increase the sweep rate by a factor of 10 in any A or B TIME/DIV switch position. Other horizontal deflection signals can be connected to the Horizontal Amplifier by using the $X-Y$ mode of operation. When the TIME/DIV switch is set to $X-Y$, the X-axis signal is connected to the Horizontal Amplifier circuit through the Channel 1 Vertical Preamplifier circuit.

The Z Axis Amplifier circuit determines the CRT intensity and blanking. The Z Axis Amplifier circuit sums the current inputs from the INTENSITY control, the Vertical Channel Switching circuit (chopped blanking), the Z Axis Logic circuit (unblanking), and the external Z AXIS INPUT connector. The output level of the Z Axis Amplifier circuit controls the trace intensity through the CRT circuit. The CRT circuit provides the voltages and contains the controls necessary for operation of the cathode-ray tube.

The Power Supply circuit provides the low voltage power necessary for operation of this instrument. This voltage is distributed to all of the circuits in the instrument.

The Calibrator circuit provides a square-wave output with accurate voltage and current amplitudes, which can be used to check the calibration of the instrument and the compensation of probes. The CALIBRATOR current loop provides an accurate current source for calibration of current measuring probe systems.

CHANNEL 1 PREAMP

General

Input signals for vertical deflection on the CRT can be connected to the CH 1 OR X input connector. In the $X-Y$ mode of operation, the input signal connected to the CH 1 OR X connector provides the horizontal (X -axis) deflection (TIME/DIV switch set to X-Y, VERT MODE switch set to CH 2 OR $X-Y$). The Channel 1 Preamp circuit provides control of input coupling, vertical deflection factor, gain, and DC balance. Fig. 3-2 shows a detailed block diagram of the Channel 1 Preamp circuit. A schematic of this circuit is shown on Diagram 1 at the rear of this manual.

Fig. 3-2. Detailed block diagram of the Channel 1 Vertical Preamplifier circuit.

Input Coupling

Signals applied to the input connector can be AC coupled, DC coupled, or internally disconnected from the input to the Vertical Input Amplifier circuit. When Input Coupling switch S20A is set for DC coupling, the input signal is coupled directly to the Input Attenuator stage. When AC coupled, the input signal passes through capacitor C12. This capacitor prevents the DC component of the signal from passing to the amplifier. In the GND position, S20A opens the signal path and connects the input of the amplifier to ground through R24. This provides a ground reference without the need to disconnect the applied signal from the input connector. Resistor R22, connected across the input coupling switch, allows C12 to be pre-charged in the ground position, which prevents generation of large voltage transients at the input to the amplifier and allows the trace to remain on screen when switched to the $A C$ position.

Input Attenuator

The effective overall deflection factor of each channel of the 475A is determined by the appropriate VOLTS/DIV switch setting. The basic deflection factor of the Vertical Deflection System is 10 millivolts/division of CRT deflection. To achieve the deflection factor values indicated on the front panel, precision attenuators are switched into the circuit and, in the 5 mV position, the gain of the Second Cascode Amplifier stage is increased.

For the VOLTS/DIV switch positions above 10 mV , attenuators are switched into the circuit singly or in pairs to help produce the vertical deflection factors indicated. These attenuators are frequency-compensated voltage dividers. In addition to providing constant attenuation at all frequencies within the bandwidth of the instrument, the Input Attenuators are designed to maintain the same input RC characteristics for each setting of the VOLTS/DIV switch. Each attenuator contains an adjustable series capacitor to provide correct attenuation at high frequencies and an adjustable shunt capacitor to provide correct input capacitance.

NOTE

Each attenuator is a hybrid encapsulated plug-in assembly; therefore, replacement of individual components within the attenuator are not possible. Should defects occur, the attenuator must be replaced as a unit.

First Cascode Amplifier

The first amplifier stage in the Channel 1 Preamplifier circuit is hybrid circuit U120. U120 basically consists of an integrated emitter-coupled, push-pull, cascode amplifier and two discrete field-effect transistors (FET) mounted on a ceramic substrate with the thick-film resistors. The stage is a paraphase amplifier and converts the single-ended input signal to push-pull output signals. CR104 and CR107 provide protection for the input to U120 if large negative-going signals or DC levels are applied to the CH 1 OR X input connector.

Circuit Description-475A Service

This input amplifier stage contains the CH 1 VAR VOLTS/DIV control. This control provides continuously variable (uncalibrated) vertical deflection factors between the calibrated positions of the VOLTS/DIV switch. With the VAR control in its calibrated detent (wiper at ground), the output transistors of U120, whose collectors connect to pins 5 and 9, are conducting; the output transistors whose collectors connect to pins 6 and 8 are biased off. Thus, the current available to the following amplifier stage is that flowing from pins 5 and 9.

When the VAR control is rotated out of its calibrated detent, the transistors whose collectors connect to pins 6 and 8 begin to conduct. The current they conduct is robbed from the other output transistors. This causes two things to occur:

1. The current flowing in the collectors of the transistors connected to pins 5 and 9 is less now than when the VAR control was in its calibrated detent.
2. The current available to the following amplifier stage is the algebraic sum of the currents in the collectors tied together (i.e., pins 8 and 9 and pins 5 and 6). Since the two collectors tied together have signals of opposite polarity, the signal available to the following amplifier stage is less than that when the VAR control was in its calibrated detent. The component values selected for the variable function provide a variable attenuation ratio of approximately 2.5 to 1 . The Channel 1 Variable Balance adjustment R110 adjusts for no trace shift in the display when rotating the VAR control. The Channel 1 UNCAL light indicates when the Channel 1 VAR control is out of its calibrated detent. The components connected between pins 2 and 3 of U120 provide high-frequency compensation for the stage.

The gain of $U 140$ is determined by biasing the output transistors connected to pins 6 and 8 to conduct more or less current. As more current is conducted through the transistors connected to pins 6 and 8, that much less is conducted through the transistors connected to pins 5 and 9 . The current conducted by the transistors connected to pins 5 and 9 in the 5 mV position of the VOLTS/DIV switch is approximately 2.5 times the current conducted by the same transistors in all of the other VOLTS/DIV switch positions. This results in increased gain and a DC level shift at the signal output terminals of U140. The VOLTS/DIV switch compensates for a shift in the DC level by shorting out part of the common-mode resistance (R157) when operating with 5 mV sensitivity. Gain Switch Balance adjustment R135 adjusts the DC balance of the stage, so there is no baseline shift in the CRT display when switching between the 5 mV and 10 mV positions of the CH 1 VOLTS/DIV switch. The remainder of the components connected between pins 2 and 3 of U140 provide high-frequency compensation for the stage.

Third Cascode Amplifier

The third amplifier stage in the Channel 1 Preamplifier circuit is a discrete component cascode amplifier made up of Q172, Q178, Q182, Q184, and Q188. Q184 is a relatively constant current source for Q172 and Q182. Q172 and Q182 convert the input voltage signals into current signals which are in turn converted back to voltage signals by Q178 and Q188 respectively. R172 and R182 provide thermal compensation and C172 and C182 AC-couple the signal around R172 and R182 to reduce Miller effect. C175 and R175 are variable high-frequency compensation adjustments while CR170, CR174, and RT170 offset compensation changes associated with variations in ambient temperature. As temperature increases, the value of RT170 decreases. This results in a decrease in voltage across CR170 and CR174. CR170 and CR174 are voltagevariable capacitance semiconductors whose capacitance increases with a decrease in reverse voltage across them. Thus, CR170 and CR174 will provide more peaking at higher temperatures. T178 is a toroid inductor that cancels high-frequency common-mode signals generated by the previous stages. The Channel 1 Vertical Position Centering adjustment centers the range of control of the Channel 1 POSITION control.

CHANNEL 2 PREAMP

General

The Channel 2 Preamp circuit is virtually the same as the Channel 1 Preamp circuit. Only the differences between the two circuits are described here. Portions of this circuit not described in the following description operate in the same manner as for the Channel 1 Preamp circuit. Fig. 3-3 shows a detailed block diagram of the Channel 2 Preamp circuit. A schematic of this circuit is shown on Diagram 2, at the rear of this manual.

Fig. 3-3. Detailed block diagram of the Channel 2 Vertical Preamplifier circuit.

First Cascode Amplifier

Basically, the First Cascode Amplifier stage in Channel 2 operates as described for the First Cascode Amplifier stage in Channel 1. However, the Channel 2 First Cascode Amplifier also contains the INVERT switching function. This allows the Channel 2 signal to be inverted as displayed on the CRT. The INVERT switch, when pushed, changes the biasing on the output transistors of U220 so that the normally inactive transistors are now carrying the signal. Since their outputs are cross-coupled from side to side the output signal is of opposite polarity to that available in the normal (button out) position of the INVERT switch. The Channel 2 Invert Balance adjustment R215 adjusts the DC balance of the stage to eliminate baseline shift in the display when switching from a normal to an inverted display.

VERTICAL CHANNEL SWITCHING

General

The Vertical Channel Switching circuit determines whether the Channel 1 or the Channel 2 Preamp signal or both will be connected to the Vertical Output Amplifier circuit. In the ALT and CHOP modes of operation, both channels are alternately displayed on a shared-time basis. The Vertical Channel Switching circuit also provides several internal trigger signals to the Trigger Generator circuits, the Channel 2 VERT SIGNAL OUT signal to a connector on the rear panel, and the chopped blanking signal to the Z Axis Amplifier. Fig. 3-4 shows a detailed block diagram of the Vertical Channel Switching circuit. A schematic of this circuit is shown on Diagram 3 at the rear of this manual.

Fig. 3-4. Detailed block diagram of the Vertical Channel Switching circuit.

Channel Switch IC

The Channel Switch IC U370 determines which of the Preamp signals will be passed to the Vertical Output Amplifier. The push-pull Preamp signals connect between pins 2 and 3 (Channel 2) and between pins 10 and 11 (Channel 1) of U370. The logic levels connected to pins 1, 12, 13, and 16 determine what signals are presented at output pins 14 and 15. The following logic truth table (Table 3-1) defines the switching function of U370.

TABLE 3-1
1862-85
Input/Output Logic for U370

Pin $\mathbf{1}$	Pin $\mathbf{1 2}$	Pin $\mathbf{1 3}$	Pin $\mathbf{1 6}$	Output Signal Pins 14, 15
1	0	1	0	Channel 2
0	1	0	1	Channel 1
1	1	0	0	Add (Algebraic sum of Channel 1 and 2)

U370 also makes available samples of the Channel 1 signal at pins 8 and 9 and samples of the Channel 2 signal at pins 4 and 5 . The output signals at pins $4,5,8$, and 9 are always present when signals are applied to the channel inputs regardless of the switching logic levels applied to U370. The Channel 1 signal present at pin 9 provides drive to the Horizontal Amplifier in the X-Y mode of horizontal operation. The Channel 1 signal at pin 8 and the Channel 2 signal at pin 4 are used by the Trigger Generator circuits in the appropriate positions of the Trigger SOURCE switches. The Channel 2 signal at pin 5 connects to the Channel 2 Vertical Signal Out Amplifier.

Switching Logic Flip-Flops

U350A and U350B are edge-triggered flip-flops that derive the switching logic for the Channel Switch IC U370. In the CH 1, CH 2, and ADD positions of the VERT MODE switch the output logic from U350A and U350B is determined by the voltage levels applied to the clear (pins 1 and 13) and preset (pins 4 and 10) inputs. In the ALT mode of operation the flip-flops are switched by the alternate-trace sync pulse applied to their clock inputs through Q338 and U330B. In the CHOP mode, the clock pulse generated by U330C and U330D switch the flip-flops at a one-megahertz rate.

Two Megahertz Clock

U330C and U330D form an astable multivibrator having a repetition rate of two megahertz. The rectangular output waveform connects to the Switching Logic Flip-Flops through nand gate U330B. Only in the CHOP position of the VERT MODE switch is a LO level applied to the input of inverter U330A. This puts a logical HI in pin 13 of U330D, which permits the astable multivibrator to free-run. At the same time, Q338 is biased on, which puts a logical HI on pin 5 of U330B. Thus, the signal present at pin 6 of U330B will be the two-megahertz clock signal.

Chop Blanking Amplifier

The Chop Blanking Amplifier Q348 provides an output pulse to the Z Axis Amplifier circuit, which blanks out the transitions between the Channel 1 and Channel 2 traces when operating in the CHOP mode. The inherent propogation delay of inverters U340A, U340B, and U340C are used to provide some signal delay to the chop blanking signal. This allows the blanking signal and the channel switching transient to arrive in the CRT simultaneously.

Channel 2 Signal Output Amplifier

Q420 and Q430 compose the Channel 2 Vertical Signal Output Amplifier. A sample of the Channel 2 signal from pin 5 of Channel Switch IC U370 is amplified and inverted by Q420. CR422 provides thermal compensation for the base-emitter junction of Q420. Common-base amplifier Q430 provides the final amplification and isolates the output from the internal amplifier circuitry. Output impedance of the amplifier is equal to the parallel combination of R431 and R432 (approximately 50 ohms).

Normal Trigger Pickoff Amplifier

The trigger signal for NORM trigger operation is obtained from a sample of the vertical deflection signal that is available from pin 15 of U370. Normal Trigger DC Center Adjustment R425 sets the DC level of the normal trigger output signal so that the sweep is triggered at the 0 level of the displayed signal when the Triggering LEVEL control is set to 0 . Q390 and Q396 are connected as a noninverting feedback amplifier. Gain of the stage is approximately 2.75 .

Scale-Factor Switching Circuits

The vertical deflection factor for each channel is indicated by back-lighting the appropriate figures imprinted on the flange of each VOLTS/DIV knob. For purposes of explanation, only the circuit action of the Channel 1 Scale-Factor Switching circuit is discussed.

With a cable or an X 1 probe connected to the CH 1 OR X input connector, the probe coding ring terminal on the connector is not contacted, and therefore presents an open to the base of Q312. This causes Q312 to be biased off and the X10 display factor bulb to be off. The base level of Q314 is held low by this action, thus Q314 is biased on and conducts current to light the X1 display factor bulb.

When an X10 probe with a scale-factor switching connector is attached to the CH 1 OR X input connector, the probe coding ring terminal on the connector is contacted; the base of Q312 is connected through R311, R310 and an 11,000-ohm resistor (within the probe) to ground. Now, Q312 conducts through X10 display-factor bulb DS312. The positive level at the collector of Q312 turns Q314 off, the X10 display factor bulb is on, and the X1 display factor bulb is off.

VERTICAL OUTPUT AMPLIFIER

General

The Vertical Output Amplifier provides the final amplification for the vertical deflection signal. This circuit includes the BEAM FINDER function. The BEAM FINDER pushbutton, when pressed, limits the vertical and horizontal deflection to within the viewing area and sets the trace intensity to a normal viewing level to aid in locating an offscreen display. A schematic of the Vertical Output Amplifier is shown on Diagram 4 at the rear of this manual.

First IC Amplifier

The first amplifier stage in the Vertical Output Amplifier is integrated circuit U450. U450 is basically an emittercoupled, push-pull, cascode amplifier cell. Biasing is arranged so that there is no phase-inversion through the stage. The signal from the delay line is applied to the amplifier through C441, L441, L442, C445, and L444. These inductances and capacitances are part of the etched runs of the circuit board and provide some highfrequency peaking by forming a T-coil circuit without mutual coupling. Most of the remaining external components connected between pins 2 and 3 of $U 450$ provide high-frequency compensation for the delay line. Connected between pins 2 and 3 of U450, internally, a resistor (approximately 33 ohms) has a large effect on the gain of the stage.

RT452 changes in value with variations in ambient temperature to compensate for temperature-associated changes in amplifier gain. The BEAM FINDER pushbutton, when pressed, removes -8 volts from the top of R459. This reduces the dynamic swing capabilities of the stage to limit the display on the CRT to within the viewing area. The gain of the Vertical Output Amplifier section is adjusted in this stage by adjusting Vertical Output Gain R449.

Circuit Description-475A Service

Second IC Amplifier

The second amplifier stage in the Vertical Output Amplifier is integrated circuit U470. U470 is a multi-stage cascode amplifier cell. The input signal is applied to pins 1 and 5 with the inverted output signal taken from pins 9 and 12. Pins 2 and 4 are emitter connections. Some of the components connected between pins 2 and 4 provide slower time constants to compensate for signal rolloff that occurs in the delay line, while the remaining components compensate for thermal considerations in the stage. The Output Bias adjust (R487) sets the DC levels within the stage to optimize the operating performance of $\cup 470$. The output signal from U470 connects directly to the deflection plates of the CRT.

A TRIGGER GENERATOR

General

The A Trigger Generator circuit produces the trigger pulse used to start the Sweep Generator circuit that provides the A portion of the CRT display. The trigger pulse is derived from the internal trigger signal from the vertical deflection system, an external signal connected to the external trigger input connector, or a sample of the line voltage connected to the instrument. Controls are provided to select trigger level, slope, coupling, and source. Fig. 3-5 shows a detailed block diagram of the A Trigger Generator circuit. A schematic of this circuit is shown on Diagram 5 at the rear of this manual.

Fig. 3-5. Detailed block diagram of the A Trigger Generator circuit.

Trigger Source

Trigger SOURCE switch S505 selects the source of the trigger signal. The sources available to the A Trigger Generator circuit are the signal being displayed (NORM), Channel 1 (CH 1), Channel $2(\mathrm{CH} 2)$, the instrument line voltage (LINE), and external signals (EXT and EXT $\div 10$). Emitter followers Q502, Q504, and Q506 provide isolation between the input to the A Trigger Circuit and the output of the Vertical Channel Switching Circuit.

In the LINE mode of triggering, a sample of the power line frequency is obtained from the secondary of the power transformer T1400 in the Low Voltage Power Supply circuit. The Trigger COUPLING switches should not be in the LF REJ mode when using the instrument line voltage as a trigger signal source.

Trigger Coupling

The Trigger COUPLING switches offer a means of accepting or rejecting certain components of the trigger signal. In the AC, LF REJ, and HF REJ mode of trigger coupling, the DC component of the trigger signal is blocked by coupling capacitors C515 or C516. Frequency components below about 60 Hz are attenuated when using AC or HF REJ coupling and below about 50 kHz when using LF REJ coupling. The higher frequency components of the trigger signal are passed without attenuation. In the HF REJ mode of trigger coupling, the high frequency components of the trigger signal (above about 50 kHz) are attenuated, while the lower frequency components (between about 60 Hz and 50 kHz) are passed without attenuation. The DC mode of trigger coupling passes unattenuated all signals from DC to 250 MHz and above.

Input Source Follower

Transistor Q522 is a FET (field-effect transistor) connected as a source follower. It provides a high input impedance (set primarily by R517) for the trigger signal; it also provides isolation between the Trigger Generator circuit and the trigger signal sources. CR519 provides input protection for Q522 if excessively high amplitude negative-going input signals are present. Q524 is a highimpedance, relatively constant current source for Q522 and provides a measure of temperature compensation for Q522. The output signal from the Source Follower is taken from Emitter Follower Q526.

Paraphase Amplifier

U520 is a paraphase amplifier stage that converts the single-ended input from Emitter Follower Q526 into a dual-ended push-pull output, which is applied to one of the Tunnel Diode Driver stages. Trigger Centering adjustment R534 sets the level at pin 14 of U520 (through emitter follower Q532) so that the display is correctly triggered
when the LEVEL control is centered. The LEVEL control varies the level at pin 14 of U520 to select the point on a trigger signal where triggering occurs.

The slope of the input signal that triggers the Sweep Generator circuit is determined by the setting of the SLOPE switch S530. When the SLOPE switch is set to the + position, the output signal at pin 8 of U520 is inverted with respect to the input signal, and the output signal at pin 9 is in phase with respect to the input signal. When the SLOPE switch is set to the - position, the output signal at pin 8 is in phase with respect to the input signal, and the output signal at pin 9 is inverted with respect to the input signal.

Tunnel Diode Driver

Q552, Q556, Q562 and Q566 are common-emitter amplifier stages that provide the signal currents necessary to switch the triggering tunnel diodes. CR556 and CR566 are ten-milliampere tunnel diodes. Quiescently, CR556 and CR566 are biased into their low voltage states and Q566 cannot provide sufficient current to switch CR566 to its high voltage state. When the input signal increases the current in Q556 slightly above its quiescent state, this current and the current through R555 is sufficient to bias CR556 into its high voltage state. The anode of CR556 steps positive to an approximately +0.5 volt level. Since less current is required to maintain a tunnel diode in its high voltage state than is required to switch it to its high voltage state, approximately 6 mA of current is additionally available to switch CR566 to its high voltage state. Thus, the next time Q566 conducts signal current, CR566 steps to its high voltage state sending a positive pulse to the logic circuit to initiate sweep action. The A Trig Sensitivity adjustment, R565, adjusts the tunnel diode bias to the proper level that will not allow CR566 to be switched to his high voltage state until CR556 has been switched to its high voltage state. At the end of the sweep time and during holdoff, a negative level is applied to the junction of R558 and R566, thereby resetting both CR556 and CR566 to their low voltage states. The reset level remains during holdoff time to ensure that a sweep gating signal is not generated until the sweep circuit has returned to its quiescent state.

Trigger View Amplifier

The Trigger View Amplifier circuit amplifies a sample of the signal present in the A Trigger Generator circuit and passes it on to the Vertical Output Amplifier for display on the CRT when the TRIG VIEW pushbutton is pressed. This provides a method of making a quick and convenient check of the signal being used to trigger the oscilloscope and is intended primarily to be used to check the timing difference between the trigger signal and the vertical deflection signal.

Circuit Description-475A Service

The amplifier consists of two emitter-coupled pushpull amplifier stages. The emitter source voltage for Q662 and Q672 is switched on and off by the TRIG VIEW pushbutton. With the TRIG VIEW bushbutton not pushed, the emitters of Q662 and Q672 are returned to ground through R665. This reverse-biases the base-emitter junctions of the transistors, preventing any loading of the A Trigger Generator circuit. When the TRIG VIEW pushbutton is pushed, the emitters are now returned to +15 volts through R663 and R679. This forward biases Q662 and Q672 to allow signal amplification. Trigger View Centering adjustment R673 adjusts for correct DC balance in the circuit.

Normally, the output of the Vertical Channel Switching circuit is applied to the input of the Delay Line. When the TRIG VIEW pushbutton is pushed, the signal from the Vertical Channel Switching circuit is removed and the output from the Trigger View Amplifier is applied in its place.

B TRIGGER GENERATOR

General

The B Trigger Generator circuit produces the trigger pulse used to start the Sweep Generator circuit that provides the B portion of the CRT display. The B Trigger Generator circuit is virtually the same as the A Trigger Generator circuit and only the differences between the two are discribed here. A schematic of this circuit is shown on Diagram 6 at the rear of this manual.

Trigger Source

The B Trigger Generator circuit has no LINE or EXT $\div 10$ positions on its Trigger SOURCE switch. If the Generator is to be triggered from a line voltage signal or the external trigger signal is to be attenuated, it must be accomplished in some other manner. The B Trigger SOURCE switch does have a STARTS AFTER DELAY position, however, the A Trigger SOURCE switch does not. This position allows the B portion of a display to start immediately after the selected delay time without waiting for a triggering signal.

SWEEP AND Z-AXIS LOGIC

General

The Sweep and Z Axis Logic Circuit derives the logic levels necessary to control the sequence of events associated with sweep generation and CRT unblanking. The $+A$ and $+B$ GATE signals are also generated in this circuit. Positive logic terminologies and symbologies are used in the following explanation of circuit operation. Fig. 3-6 shows a detailed block diagram of the Sweep and ZAxis Logic circuits. A schematic of this circuit is shown on Diagram 7 at the rear of this manual.

Fig. 3-6. Detailed block diagram of the Sweep and Z-Axis Logic circuits.

Sweep Control Integrated Circuit

U600 is the Sweep Control Integrated Circuit. Several functions are performed in this stage, depending on the mode of operation of the instrument sweep generators. The following is a brief explanation of the function associated with each pin of the IC.

Pin 1. This is the positive tunnel diode input. The signal connected here comes from the A Firing TD in the A Trigger Generator circuit. The voltage level switches from 0 to +0.5 volts and is compared with pin 2 internally.

Pin 2. This is the negative tunnel diode input. A fixed DC level established by R602 and R603 provides the reference for comparison with pin 1.

Pin 3. This is the positive tunnel diode output terminal. In the AUTO mode of operation (TRIG MODE set to AUTO) at the end of the holdoff time period, pin 1, pin 16 and pin 19 are LO, and pin 8 is HI . This causes the gate level at pin 3 to step LO to turn Q574 on, which initiates a sweep.

Pin 4. This is the negative tunnel diode output terminal; connected to +5 volts in this application.

Pin 5. Input terminal for a negative 5 volts through VR608 from the -8 -volt supply.

Pin 6. This is the auto RC timing terminal. R609 and C609 determine the amount of time between loss of trigger signal and the generation of an auto gate at pin 3 when TRIG MODE is set to AUTO.

Pin 7. This terminal lights the TRIG light when a triggering gate has occurred, causing pin 1 to go HI .

Pin 8. This is the holdoff timing terminal. The time between the end of an individual sweep and the start of the next sweep is determined by RC components that affect the time constant of voltage of pin 8. The TIME/DIV control selects fixed components in the holdoff timing circuit and the A TRIG HOLDOFF control allows a variable holdoff setting in each position of the TIME/DIV control. When pin 8 goes HI , pin 17 will go LO and allow the trigger tunnel diodes to fire on an incoming signal or generate an auto gate in the Auto mode if pin 6 is HI .

Circuit Description-475A Service

Pin 9. Ground terminal.

Pin 10. This is the holdoff output; connected to ground in this application.

Pin 11. This terminal lights the READY light when operating in the single sweep mode.

Pin 12. This is the single sweep mode terminal. When +5 volts is connected to this terminal, the sweep operates in the single sweep mode; when the terminal is left open or grounded, the sweep operates in the repetitive mode.

Pin 13. Connected to ground in this application.

Pins 14 and 15. Single Sweep reset terminals. Pressing the SINGL SWP pushbutton prepares the single sweep circuitry to respond to the next triggering event. Also, this action causes the READY light to be lit.

Pin 16. This is the holdoff start input terminal. A HI on this pin resets the sweep and starts the holdoff period. This sets pin 17 HI to reset and hold the trigger tunnel diodes LO and allows pin 3 to go HI .

Pin 17. This is the sweep disable output terminal. The gate level at this terminal is HI during holdoff and LO otherwise.

Pin 18. This is the lockout input terminal; +5 volts applied to this terminal disables all sweep action.

Pin 19. This is the auto mode terminal. Grounding this terminal enables auto sweep operation.

Pin 20. Input terminal for the +5 -volt supply.

Main Gate Comparator

Q572 and Q574 form the Main Gate Comparator and are connected as a voltage comparator, where both transistors do not conduct at the same time. The input signal to the stage is the positive-going trigger signal from the A Firing Trigger TD in the A Trigger Generator circuit. The signal at the collector of Q574 is inverted by Q588, is connected to the Z Axis Logic Multivibrator to control CRT blanking, and to Q584 to generate the A + GATE output signal. The signal at the collector of Q572 connects to the base of the Main Gate Amplifier stage (Q902) in the Sweep Generators circuit to initiate sweep generation.

Delayed Gate Comparator

Q802 and Q804 form the Delayed Gate Comparator and are connected as a voltage comparator where both transistors do not conduct at the same time. The input signal to the stage is the positive-going trigger signal from the B Firing Trigger TD in the B Trigger Generator circuit. The signal at the collector of Q804 is inverted by Q826 and is connected to the Z Axis Logic Multivibrator to control CRT blanking and to Q824 to generate the B + GATE output signal. The signal at the collector of Q802 connects to the base of the Delayed Gate Amplifier stage (Q996) in the Sweep Generators circuit to initiate sweep generation.

A Trigger TD Reset Circuit

Transistors Q612 and Q628 are connected as a Schmitt Trigger circuit and form the A Trigger TD Reset Circuit. (A Schmitt Trigger circuit is a bistable pulse generator in which an output pulse of constant amplitude exists only as long as the input voltage exceeds a certain dc value.)

At the start of holdoff, pin 17 of U600 steps HI. This turns on Q612 and turns Q628 off. The collector signal of Q612 connects to the Trigger Tunnel Diodes in the A Trigger Generator circuit and resets them to their LO state. At the end of holdoff pin 17 steps LO, Q612 turns off, and Q628 turns on to allow the tunnel diodes to fire on the next trigger signal.

Holdoff Start Circuit

Q594 and Q596 form the Holdoff Start Circuit. The input signal to the stage is a momentary positive-going end-of-sweep signal from the Sweep Generators circuit or from the Delayed Latch circuit. The positive-going signal turns Q594 on which in turn turns on Q596. The positivegoing signal at the collector of Q596 is connected to pin 16 of U600 to reset the sweep and start the holdoff period. This signal is also used in the Vertical Switching Circuit to switch between channels in the ALT mode of operation.

Z Axis Logic Multivibrator

Q688 and Q698 are basically a Schmitt Trigger circuit and form the Z Axis Logic Multivibrator. Quiescently, with the CRT display blanked, Q688 is on and Q698 is off. The signal to switch states of the multivibrator (and thereby unblank the CRT) can come from the Main Gate Comparator (via Q588 and CR681) or from the Delayed Gate Comparator (via Q826 and C684). The negative going signals turn off Q688 and cause Q698 to turn on. The positive going signals that return the multivibrator to its original state (thereby blanking the CRT display) come from Q588 via CR682 and CR683, or from Q680 via CR680 and CR683. Q680 is used primarily to ensure proper early turn-off of the CRT display at faster sweep rates. In the

MIX or A INTEN positions of the HORIZ DISPLAY switch, some additive unblanking is accomplished to slightly increase the intensity of the B portion of the display. In these positions of the switch, -8 volts is connected to the cathodes of CR693 and CR694 through R692. Now, when the Z-Axis signal from the collector of Q826 steps negative at the beginning of the B portion of the display, CR693 is made to conduct less current, which makes a slight amount of additional unblanking current available to the Z-Axis Amplifier through CR694 and R692.

Delaying Sweep Latch Circuit

Q788, Q794, and Q796 form the Delaying Sweep Latch Circuit. The circuit function is used during the three delayed sweep modes of operation that the instrument is capable of (MIX, A INTEN, and B DLY'D). Q938A, in the Delay Pickoff Comparator of the Delaying Sweep Generator, is the current source for the emitters of Q794 and Q796. Prior to the end of the delay time selected by the A TIME/DIV switch and DELAY TIME POSITION control, Q938A is off, thereby causing both Q794 and Q796 to be off also. The base level of Q794 sits at a more negative level than does the base of Q796 so that when Q938A turns on, at the delay pickoff point, Q794 will turn on and Q796 will remain off. The resultant positive movement at the collector of Q794 is connected to the B Trigger TD Reset Circuit.

The end-of-sweep pulse from the Non-Delaying Sweep Generators connects to the emitter of Q788. When this pulse steps positive at the end of a delayed sweep, Q788 turns off and the current through R788 pulls the base of Q794 positive. This turns off Q794 and causes Q796 to turn on. The circuit remains in this state until the Delaying Sweep Generator ends its sweep and resets the Delay Pickoff Comparator. In the B ENDS A position of the A TRIG HOLDOFF control, +5 volts is connected to R798. This enables the diode gate composed of CR799 and CR592. Now, when the end-of-sweep pulse signals the end of a delayed sweep, the positive movement at the collector of Q796 is connected to the base of Q594 and ends the delayed sweep instead of waiting until the end of the delaying sweep. This mode of operation gives the fastest possible sweep repetition rate when operating in the delayed sweep mode.

B Trigger TD Reset Circuit

Q790 and Q792 are connected as a Schmitt Trigger and form the B Trigger TD Reset Circuit. At all times other than when the Non-Delaying Sweep Generators are running, Q790 is on, which holds the trigger tunnel diodes in the B Trigger Generator circuit in their LO states. At the end of the delay time selected by the A TIME/DIV switch and DELAY TIME POSITION control, the positive movement at the collector of Q794 turns on Q792 and causes Q790 to turn off. The tunnel diodes in the B Trigger Generator are capable of being biased into their HI states. Also, if the B

Triggering SOURCE switch is in the STARTS AFTER DELAY TIME position, the negative movement at the collector of Q792 reverse biases CR811, letting the -8 volt supply pull down on the base of Q804 in the Delayed Gate Comparator. This turns on Q804 and causes Q802 to turn off, which initiates a delayed sweep.

Main Sweep Holdoff Gate and Delayed Sweep Override Amplifier

During the interval of the main gate, Q798 functions as a holdoff gate and is biased off to provide a forward bias on Q1002 (Q1002 is located on diagram 9). This turns on Q1002, discharges the holdoff capacitors and maintains a current path to keep the capacitors discharged.

During the delayed sweep, Q798 functions as an override amplifier. It is possible, with the right combination of control settings, to achieve a delayed sweep presentation where the delayed sweep would normally want to continue running after the end of the delaying sweep. For instance, if the TIME/DIV controls are set only 1 or 2 ranges apart and the DELAY TIME POSITION control is set to a 8.50 setting. Under these conditions the delaying sweep end-of-sweep pulse occurs before the delayed sweep end-of-pulse. The positive movement on the collector of Q588 at the time of the delaying sweep end-of-sweep pulse turns Q798 on. The negative movement on the collector of Q798 pulls down on the collectors of Q794 and Q796, through CR793 and CR792 respectively , which in turn pulls down on the base of Q792. This turns off Q792 and causes Q790 to turn on, which resets the B Trigger Tunnel Diodes to their LO states, thereby terminating the delayed sweep.

A +GATE And B +GATE Amplifiers

Q584 and Q824 are the A +GATE and B +GATE amplifiers respectively. They provide the +GATE output signals available at the instrument rear panel. These output gate signals are positive-going rectangular waveforms, approximately 5 volts in amplitude, coincident with their respective sweep waveforms.

LOW LINE Indicator Circuit

Q1492, Q1498, and their associated circuitry monitor the unregulated voltage in the +50 volt supply and provide a visual indication (via the LOW LINE indicator on the front panel) when the applied line voltage falls below the lower regulating limit selected by the Regulating Range Selector assembly. Q1482 provides operating power to the CRT graticule lights that is adjustable via the SCALE ILLUM control R1480.

Circuit Description-475A Service

SWEEP GENERATORS TIMING AND HORIZONTAL DISPLAY SWITCHING

General

The Sweep Generators provide several sweep display modes, dependent upon the horizontal mode selected by the HORIZ DISPLAY switch. One sweep generator may be employed as a delay circuit for a second sweep generator, permitting a variety of useful display modes. Before the discussion of sweep generation, it is helpful to become familiar with each principle mode of horizontal display and its associated sweep generator, sweep gate and sweep display labeling. See Table 3-2 for a list of sweep generator, sweep gate and sweep display terminology whenever needed throughout the following sweep generators discussion.

The Sweep Generators produce the sawtooth voltages that are amplified by the Horizontal Amplifier to provide horizontal deflection on the CRT. These sawtooth voltages are produced on command (trigger pulses) from the Trigger Generator circuits. The Sweep Generator circuits also produce gate waveforms that are used by the Z Axis Logic circuit to unblank the CRT during sweep time, and by the Sweep Logic circuit to terminate sweep generation. There are three Sweep Generator circuits in the instrument. Operation of all three is very similar; therefore only the operation of the Delaying Sweep Generator and the differences in operation of the three generators is discussed. Fig. 3-7 shows a detailed block diagram of the Sweep Generators. A schematic of the Sweep Generators is shown on Diagram 8 and a schematic of the Timing And Horizontal Display Switching is shown on Diagram 9 at the rear of this manual.

TABLE 3-2
Horizontal Display Sweep Generator Terminology

HORIZ DISPLAY Switch Setting	CRT Display		Gate that Initiates Sweep
	Portion of Sweep Displayed on CRT	Sweep Generator Used for Display	

Fig. 3-7. Detailed block diagram of the Sweep Generator circuits.

Delaying Sweep Generator

Basically the Delaying Sweep Generator is composed of Q904, Q920, Q922, and Q914. This generator runs in the A INTEN, MIX, and B DLY'D positions of the HORIZ DISPLAY switch and generates the A portion of the display. In these modes the sweep rate is selected by the A TIME/DIV switch (skirt knob).

Main Gate Amplifier

Q902 is the Main Gate Amplifier stage. The negativegoing Main Gate waveform from the Sweep Logic circuit is applied to the base of Q902. The amplified and inverted waveform at the collector of Q902 is applied to the Delaying Sweep Generator (through CR903), or to both of the Non-Delaying Sweep Generators (through Q992) in the A sweep mode. This initiates sweep generation.

Sweep Disconnect Amplifier

Q904 is the Sweep Disconnect Amplifier. The biasing on the base of this stage determines whether the Delaying Sweep Generator will run. In the A position of the HORIZ DISPLAY switch, the anode of CR907 is connected to +5 volts through R908 and the HORIZ DISPLAY switch circuit. This biases the base of Q904 far enough positive that the positive-going gates on the emitter cannot turn off Q904. Q904 therefore conducts all of the timing current through R905, R904, and timing resistor R_{t}, charging timing capacitance C_{t}. When the HORIZ DISPLAY switch is in any position other than A, CR907 is reverse-biased, which lets the base of Q904 be biased at a level that will allow the positive-going gates on the emitter of Q904 to interrupt the current flow through Q904. When Q904 turns off, the timing current starts to discharge timing capacitance C_{t}.

Circuit Description-475A Service

Sawtooth Sweep Generator

Q920 and Q922 form a Miller Integrator circuit. When the current through the Sweep Disconnect Amplifier Q904 is interrupted, timing capacitance C_{t} begins to discharge through timing resistor R_{t}. The timing resistor and capacitance are selected by the A TIME/DIV switch to provide the various sweep rates listed on the instrument front panel. The output signal at the collector of Q922 is a negative-going sawtooth voltage waveform.

Sweep Start Amplifier

Just before the sweep starts to run down, the levels at the bases of Q914 are approximately equal. When the sweep starts to run down, the base of Q914B goes negative, which increases the forward bias on CR914B. This in turn decreases the forward bias on CR914A, which very shortly after the start of the sweep, becomes reverse biased to interrupt the current through Q914A. The circuit remains in this condition until after the sweep retrace is complete. When the circuit returns to quiescence, Q914A begins to conduct through R904. This sets the current through Q904 which in turn establishes the DC level starting point for the sweep.

Output Buffer Amplifier

Q940 and Q956 form the Output Buffer Amplifier. Q940 is an emitter follower and Q956 is a common-base amplifier whose emitter is current-driven by the signal. The Output Buffer Amplifier provides the output sawtooth signal current to the Horizontal Amplifier and provides a measure of isolation between the Sawtooth Generator and the Horizontal Amplifier. Intensified Gain adjustment R950 adjusts the gain of the stage to match the output signal amplitude with that of the Non-Delaying Sweep Generators.

The Delaying Sweep Output Buffer Amplifier passes the signal to the Horizontal Amplifier when the HORIZ DISPLAY switch is in the A INTEN position and the TIME/DIV switches are not in the X-Y position. When the TIME/DIV switches are in the $X-Y$ position the anode of CR956 is connected to +5 volts. This sets the base of Q956 at a positive enough level to reverse bias Q956 and prevent passage of the Delaying Sweep signal to the Horizontal Amplifier. With the TIME/DIV switches not in the X-Y position and the HORIZ DISPLAY switch in the A INTEN position, R955 is connected to -8 volts (through Q1099 in the Horizontal Display Switching circuit) and the anode of CR956 is not connected to any voltage. This forward biases CR955 and sets the base of Q956 at a DC level of approximately +4.3 volts. Now Q956 is forward biased and the Delaying Sweep signal is passed to the Horizontal Amplifier.

Delaying Sweep End Difference Amplifier

Q944 and Q946 are connected as a voltage comparator and generate the logic pulses that signal the end of sweep and blank the CRT display at the end of the sweep. Prior to the generation of a sawtooth voltage waveform by the Delaying Sweep Generator, the base of Q944 is at an approximate -1.6 volt level. The base of Q946 is held at about -3 volts by the divider made up of R948 and R949. Therefore, Q946 is reversed biased and not conducting and Q944 is forward biased and is conducting. When the sweep voltage at the emitter of Q940 begins to go in a negative direction, the base of Q944 follows until the base of Q944 goes more negative than the base of Q946. Q944 turns off and Q946 turns on, generating a positive pulse at the collector of Q944 and a negative pulse at the collector of Q946. The positive pulse at the collector of Q944 signals the end of sweep and starts the holdoff period. The negative pulse at the collector of Q946 signals the Z-Axis Logic circuit to blank the CRT and prevent any further display.

Delay Pickoff Comparator

The Delay Pickoff Comparator stage allows selection of the amount of delay from the start of the Delaying Sweep Generator before one of the Non-Delaying Sweep Generators is turned on. The amount of delay available is variable from 0.00 to 10.00 times the setting of the A TIME/DIV switch. The sweep rate of the Delayed (nondelaying) Sweep Generator is determined by the setting of the B TIME/DIV switch.

Q926A and Q926B are connected as a voltage comparator. Q928 is a relatively constant current source for Q926. Q938 is also connected as a voltage comparator circuit and is used to improve the switching capabilities of the stage. The reference voltage for the Delay Pickoff Comparator stage is provided by DELAY TIME POSITION control R930. U930 is an integrated circuit containing two high-gain amplifier cells used in a feedback amplifier configuration. They provide accurate fixed voltages (determined by settings of Delay Start, R938, and Delay Stop, R936) connected to the DELAY TIME POSITION control to allow precise delay pickoff. The instrument is calibrated so that the major dial divisions of the DELAY TIME POSITION control correspond to major divisions of horizontal deflection on the CRT graticule. For example, if the DELAY TIME POSITION control is set to 5.00 , the NonDelaying Sweep Generator is delayed five divisions of the Delaying Sweep time before it can produce a sweep.

Circuit Description-475A Service

The sawtooth voltage waveform from the Delaying Sweep Generator is connected to the gate of Q926B. The quiescent level of the delaying sawtooth biases Q926B on and its drain is negative enough to bias Q938B on. Q926A and Q938A are off and not conducting. As the Delaying Sweep sawtooth voltage goes down, the gate of Q926B also goes down. When it goes more negative than the level at the gate of Q926A (established by the DELAY TIME POSITION control), Q926A conducts and Q926B turns off. This also switches the states of Q938A and B and produces a positive-going rectangular current pulse at the collector of Q938A. This initiates the B sweep when B TRIG SOURCE is set to STARTS AFTER DELAY or enables the B Trigger Tunnel Diodes in all other positions of B TRIG SOURCE switch. When the Delaying Sweep resets, Q926B again conducts and Q926A is turned off. This switches Q938A and B back to their original states.

Non-Delaying Sweep Generators

There are two Non-Delaying Sweep Generators. In any position of the HORIZ DISPLAY switch, one of these generators will be running. They generate the displayed sweep in the A position of the HORIZ DISPLAY switch and the B portion of a display in the remaining positions. The B TIME/DIV switch (DLY'D SWEEP knob) selects the sweep rate for these generators. One generator provides the 0.5 second through 1 microsecond sweep rates, while the other generator provides the 0.5 microsecond through 0.01 microsecond sweep rates.

Either the "Main" Gate or the Delayed Gate can initiate sweep generation by the Non-Delaying Sweep Generators. When the HORIZ DISPLAY switch is in the A position and the TIME/DIV knobs are locked, a positive voltage is applied to the emitter of Q992, through R922 and Q1062. Q992 is forward biased, and the "Main" Gate is passed on to the Non-Delaying Sweep Generators through CR922 and CR971 or CR1001. In all the other positions of the HORIZ DISPLAY switch and when the TIME/DIV knobs are unlocked, a negative voltage is applied to the emitter of Q922 to reverse bias Q992 and prevent the "Main" Gate from reaching the generators. Now, only the "B" Gate can initiate sweep action in the Non-Delaying Sweep Generators.

"B" Gate Amplifier

Q996 is the "B" Gate Amplifier stage. The negativegoing waveform from the Sweep Logic circuit is applied to the base of Q996. The amplified and inverted waveform at the collector of Q996 is applied to the Non-Delaying Sweep Generators through CR996 and CR971 or CR1001 to initiate sweep generation.

Non-Delaying Sweep Generator Differences

Basically the Non-Delaying Sweep Generators operate in the same manner as the Delaying Sweep Generator. The "fast" generator (Q1004, Q1010, Q1014, and Q1018) has only one timing capacitance (the parallel combination of C1008 and C1009). The capacitance is variable to achieve precise timing accuracy. Timing resistors are selected by the B TIME/DIV switch to provide the fastest six sweep speeds listed on the front panel.

Q988 and Q1018 are Sweep Start Amplifiers and establish the DC level starting points for the sweeps. The "slow" generator (Q974, Q980, Q984, Q988, and Q972) has an additional emitter follower (Q972). This emitter follower increases the current-gain of the loop to speed up the retrace time of the generator (determined by the time required to discharge the timing capacitor).

Mixed Mode Operation

Normally, Q1086 is an emitter follower with a fixed dc level at its base established by R1094 and R1095. The fixed level at the emitter of Q1086, in turn, is applied to the bases of Q1018 and Q988 through CR1017 and CR987 respectively. This sets the quiescent current flow through Q988 and Q1018 to establish the dc level starting points for the sweeps as previously explained. However, when the HORIZ DISPLAY switch is in the MIX position, the fixed level at the base of Q1086 is replaced by the sawtooth voltage waveform being generated by the Delaying Sweep Generator. Now, the dc level starting point of the NonDelaying Generator that is running is constantly being changed by the Delaying Sweep sawtooth until the Delaying Sweep runs down to a voltage determined by the setting of the DELAY TIME POSITION control. At this time, one of the disconnect transistors (Q974 in the "slow" Non-Delaying Generator, or Q1004 in the "fast" NonDelaying Generator, depending on the settings of the TIME/DIV controls) is turned off, allowing the appropriate Non-Delaying Generator to begin a ramp waveform determined by the setting of B DLY'D control. The output waveform from the Non-Delaying Sweep Generator that is running will be a composite sawtooth waveform with the first and last parts occurring at a rate determined by the Delaying Sweep Generator (last part blanked out of CRT display) and the middle part occurring at a rate determined by one of the Non-Delaying Sweep Generators.

Non-Delaying Sweep End Difference Amplifier

Q1044 and Q1034 are connected as a voltage comparator, and generate the same sort of logic pulses as the Logic Comparator in the Delaying Sweep Generator circuit. The positive-going pulse at the collector of Q1034 signals the end of the Non-Delaying Sweep, and the negative-going pulse at the collector of Q1044 blanks the display at the end of the Non-Delaying Sweep. However, the logic pulses from this comparator are not always allowed to pass to the Sweep and Z-Axis Logic circuits.

Circuit Description-475A Service

In the A INTEN position of the HORIZ DISPLAY switch +5 volts is connected to the anode of CR1049. This forward biases CR1044, which sets the collector of Q1044 at approximately +0.7 volts. This keeps CR1046 reversed biased and prevents completely blanking the CRT at the end of the Non-Delaying Sweep portion of the display. In the A INTEN, MIX, and B DLY'D positions of the HORIZ DISPLAY switch, -8 volts is connected to the anode of CR1036 through R1090. This turns off the diode gate (CR1034 and CR1037) preventing a Non-Delaying Sweep end-of-sweep pulse output from Q1034 collector which would terminate the Delaying Sweep. This pulse is allowed to reset the Non-Delaying Sweep through Q788. In the A position of the HORIZ DISPLAY switch (knobs locked), a more positive voltage is connected to the anode of CR1036. This enables CR1034 and CR1037, thus allowing the Main Sweep end-of-sweep pulse to pass to the Sweep Logic circuit. The logic levels are generated by the HORIZ DISPLAY switch, Q1062, Q1066 and Q1099.

TIME/DIV Functions (Knobs Unlocked)

Normally, when the HORIZ DISPLAY switch is set to A, the Non-Delaying Sweep Generator is being used to display A Sweep. When the DLY'D SWEEP control (inner
knob of TIME/DIV) is unlocked and set to a faster sweep rate, the Non-Delaying Sweep Generator is then being used to display A Sweep. In this mode, the A TIME/DIV (skirt knob) must be used to control A Sweep rates.

HORIZONTAL AMPLIFIER

General

The Horizontal Amplifier circuit provides the output signals to the CRT horizontal deflection plates. The signal applied to the input of the Horizontal Amplifier is determined by the TIME/DIV switch. The signal can be a sawtooth waveform generated within the instrument, or some external signal applied to the CH 1 OR X input connector ($X-Y$ mode of operation). The Horizontal Amplifier also contains the X10 magnifier, horizontal positioning controls, and some beam finder circuitry. Fig. 3-8 shows a detailed block diagram of the Horizontal Amplifier circuit. A schematic of this circuit is shown on Diagram 10 at the rear of this manual.

Fig. 3-8. Detailed block diagram of the Horizontal Amplifier circuit.

Circuit Description-475A Service

Input Paraphase Amplifier

Q1124 and Q1134 form the Input Paraphase Amplifier. This is an emitter-coupled amplifier stage that converts the single-ended input signal to a push-pull output signal. The X10 Magnifier circuitry is in this stage and consists of a divide-by-ten attenuator R1106-R1107-R1108. When the X10 Magnifier is on, the input signal is applied unattenuated to the Input Paraphase Amplifier. When the X10 Magnifier is off, the input signal is applied to the Input Paraphase Amplifier through the attenuator. X10 MAG indicator DS1110 lights when the X10 Magnifier is being used. CR1121 and CR1122 limit signal amplitudes at the input to the amplifier to prevent amplifier overdrive. Q1140 is a relatively constant current source for Q1124 and Q1134. CR1140 provides temperature compensation for the base-emitter junction of Q1140. Magnifier Registration adjustment R1130 balances quiescent DC current in Q1124 and Q1134 so that a center screen display does not change position when the X10 Magnifier is turned on.

Q1112 and Q1114 together form a temperature compensated current source that is an interruptable path for the horizontal positioning currents. When the TIME/DIV switch is in any position other than $\mathrm{X}-\mathrm{Y}$, the anodes of CR1.103, CR1104, and CR1111 are connected to -8 volts through R1104, which reverse-biases them. In the X-Y position of the TIME/DIV switch, +5 volts is connected directly to the anodes of CR1103, CR1104, and CR1111. This accomplishes three things. First, the emitter-base junction of Q1114 is reverse biased, which prevents the Horizontal POSITION and FINE controls from having any effect on the display. Second, relay K1103 is energized, which connects the X-axis signal from the Channel 1 Preamplifier to the input to the Horizontal Amplifier. Third, +5 volts is connected to the Channel 1 Scale Factor Switching circuit so that both deflection factor indicators are operating. When operating in the X-Y mode, R1102 adjusts for correct X-axis gain and L1103 adjusts to reduce the phase differences between the horizontal (X) and vertical (Y) signal paths.

Gain Setting Amplifier

Q1152 and Q1162 are an emitter-coupled push-pull amplifier stage. The gain of this stage is adjusted to match the CRT sensitivity. When the BEAM FINDER pushbutton is pushed, R1168 is switched into the circuit. This reduces the current through this stage, thereby limiting horizontal deflection to within the limits of the CRT viewing area. Q1152 and Q1162 operate in an overdriven mode. This means at the extremes of signal amplitude, one side will be turned off while the other side is still conducting. This condition generates some common-mode signal differences between Q1152 and Q1162. Q1164 monitors any common-mode signal differences (through R1165 and R1167) and conducts to minimize them.

Output Amplifier

The push-pull signal from the Gain Setting Amplifier is connected to the Output Amplifier. Each half of the Output Amplifier can be considered as a single-ended feedback amplifier, which amplifies the signal at its input to produce a voltage output to drive one of the horizontal deflection plates of the CRT. Both halves of the Output Amplifier are basically the same with only minor differences; therefore, only the upper amplifier (drives the + horizontal deflection plate) and the differences will be explained.

Q1172 and Q1174 are connected in a Darlington configuration. Q1234 is a feedback amplifier in the feedback path for the output amplifier. Q1234 sets DC levels and reduces the impedance of the feedback path. Q1202 and Q1204 form a complementary amplifier that provides the output signal to drive the + deflection plate of the CRT. CR1173 clips excessive signal amplitudes and sets a sweep start voltage level for the positive deflection plate. R1175, C1233, and C1179 are high-frequency compensation adjustments. R1256 centers the output signal swing within the dynamic swing capabilities of the output amplifier.

There are two signal paths through each half of the Output Amplifiers. Slow signal transitions are applied to the CRT through Q1172, Q1174, and Q1204 with feedback via R1233 and R1235. C1235, C1233, and C1178-C1179 compensate the amplifier and provide a fast AC signal path from one side of the amplifier to the other. The lower amplifier (drives the - horizontal deflection plate) is basically the same as the upper except for two things. Q1188 is a relatively constant current source for Q1182 and Q1184. VR1216 shifts the DC level of the signal from the collectors of Q1182 and Q1184 to the emitter level of Q1214.

LOW-VOLTAGE POWER SUPPLY

General

The Low-Voltage Power Supply circuit provides the operating power for this instrument from six regulated power supplies and one unregulated power supply. Electronic regulation is used to provide stable, low-ripple output voltages. Fig. 3-9 shows a detailed block diagram of the Power Supply circuit. A schematic of this circuit is shown on Diagram 11 at the rear of this manual.

Fig. 3-9. Detailed block diagram of the Power Supply circuit.

Circuit Description-475A Service

Power Input

Power is applied to the primary of transformer T1400 through Line Fuse F1401, POWER switch S1401, Thermal Cutout S1402, Line Voltage Selector switch S1403, and the Regulating Range Selector. Line Voltage Selector switch S1403 connects the split primaries of T1400 in parallel for 115 -volt nominal operation, or in series for 230volt nominal operation. Line Fuse F1401 should be changed for each nominal line voltage (current rating of fuse for 230 -volt operation must be 0.75 A fast; for 115 -volt operation current rating of fuse must be 1.5A fast).

Thermal cutout S1402 provides thermal protection for this instrument. If the internal temperature of the instrument exceeds a safe operating level, S1402 opens to interrupt the applied power. When the temperature returns to a safe level, S1402 automatically closes to reapply the power.

The vacant windings between pins 10, 10A, 11, 12, and 12A of T1400 are intended for use with the optional Inverter Circuit Board (Option 7) or for use with a 475A Oscilloscope modification, a Power Supply Board (475A DM44).

Secondary Circuit

The -8 volt, -15 volt, +5 volt, +15 volt, +50 volt, and +110 volt supplies are series-regulated supplies. U1418, U1454A and B, and U1464A and B are high-gain amplifier cells with differential inputs. These amplifiers monitor variations in the output voltages and generate error signals to maintain relatively constant output levels. Each regulated supply contains a current-limiting circuit that provides short circuit protection to prevent instrument damage if a supply is inadvertently shorted to ground. Additionally, unregulated voltages are used from the +15 volt and +50 volt supplies.
$+\mathbf{5 0}$-Volt Supply. The +50 -Volt Power Supply provides the reference voltage for all remaining regulated supplies in the instrument. The following discussion includes the description of the +50 -Volt Series Regulator, +50 -Volt Feedback Amplifier, +50 -Volt Reference, and +50 -Volt Current Limiting stages. Since these stages are closely related in the production of the +50 -volt regulated output voltage, their operation is most easily understood when discussed as a unit.

CR1412 functions as a full-wave, center-tapped, bridge rectifier and provides an unregulated output voltage (approximately +65 volts) for the +50 -Volt Power Supply. This voltage is filtered by C1414 and is connected to the +50 -Volt Series Regulator, Q1426, to provide a sufficient collector supply for stable regulation over a wide range of ac power line voltages. Zener diode VR1416 sets a reference level of about +9 volts at the positive input of Feedback Amplifier U1418. A sample of the output voltage from the +50 -Volt Supply is connected to the negative input of U1418 through divider R1430-R1431-R1432. R1430 in this divider is adjustable to set the output level of the +50 -Volt Supply. The 2 input voltages at Feedback Amplifier U1418 are compared and any error between the 2 inputs is amplified. The amplified error output from U1418 drives Q1424 and Q1426 and controls the output voltage of the power supply.

Regulation occurs as follows: If the output level of this supply decreases (due to an increase in load, for example) the voltage across divider R1430-R1431-R1432 decreases also. This results in a more negative feedback level at pin 2 of U1418 than that established by the reference voltage at pin 3. The difference in voltage levels is amplified and polarity is inverted by U1418. The result is that voltage increases at pin 1 of U1418. This increase in voltage causes a more positive voltage at the base of Q1424. More current is allowed to flow through Q1424 to result in increased conduction of the +50 -volt Series Regulator Q1426. The output voltage increases, thereby achieving regulation of the +50 -volt power supply.

The +50 -volt Current Limiting stage, Q1432, protects the +50 -Volt Series Regulator if excess current is demanded from this supply. Since the load is connected to this supply through R1426, all current must flow through this resistor. When excess current is demanded from the $+50-$ Volt Series Regulator, due to a short circuit or similar malfunction at the output of this supply, the voltage drop across R1426 increases, causing a higher positive voltage at the emitter of Q1426 than the supply output voltage. This increased voltage is coupled through the emitter-tobase junction of Q1426 to voltage divider R1424 and R1425. Under normal conditions, this divider sets the base level of Q1432 for a biased-off condition. However, when the power supply load increases beyond preset limits, or the supply output becomes short circuited, the positive going change across the divider R1424-R1425 causes Q1432 to become biased on. The collector current of Q1432 reduces the voltage at the base of Q1424 to limit the conduction of current through Q1426 and R1426 to a preset value. This mode of operation is called foldback because both the supply voltage and current are reduced during overload. The supply automatically returns to normal operation when the overload is removed.

Circuit Description-475A Service

+110-Volt Supply. CR1412 functions as a full-wave center-tapped rectifier and provides an unregulated output voltage (approximately +136 volts) for the +110 -Volt Power Supply. This voltage is filtered by C1412 and is connected to the +110 -Volt Series Regulator, Q1496, to provide sufficient collector supply for stable regulation over a wide range of ac power line voltages. Transistors Q1490 and Q1494 are connected as a comparator. A sample of the output voltage from the +110 -Volt Supply, through divider R1486, R1487, is connected to the base of Q1490. The base of Q1494 is connected to the +50 -Volt Supply to provide a reference voltage. The error output at the collector of Q1494 reflects the difference, if any, between these 2 inputs. This error output drives Q1496 and controls the output voltage of the power supply.

Regulation occurs as follows: If the output level of this supply decreases (due to an increase in load, for example) the voltage at the base of Q1490 decreases also. This decreased voltage when compared to the reference voltage at the base of Q1494 results in a decreased voltage at the collector of Q1494. A portion of this decreased voltage is connected to the base of Q1496 causing increased conduction. The output voltage increases, thereby achieving regulation of the +110 -volt power supply.

A current limiting stage, Q1497, protects the +110 -Volt Supply if excess current is demanded from this supply. All output current from the +110 -Volt Supply must flow through R1489. Transistor Q1497 senses the voltage drop across R1489. Under normal operating conditions, Q1497 is biased off. However, when excess current is demanded from the +110 -Volt Series Regulator due to a short circuit or similar malfunction at the output of this supply, the voltage drop across R1489 increases until it is sufficient to forward bias Q1497. The collector current of Q1497 pulls the base of Series Regulator Q1496 positive and turns it off. The output current from the supply is then limited by R1488 and the +110 -Volt Supply is thereby protected.
+15-Volt Supply. Basic operation of all stages in the +15 -Volt Supply is the same as for the +50 -Volt Supply. The +15 volt reference for this supply is established by divider R1444-R1445 between +50 volts and ground. Any change in the output level of the supply is compared at Feedback Amplifier U1454A, which produces a signal of inverted polarity at its output (pin 1). This change is coupled to +15 -Volt Series Regulator Q1448 through Q1446 to correct the change in output voltage. Transistor Q1444 provides current limiting (foldback operation) if the supply load increases beyond preset limits or becomes shorted to ground.
+5 -Volt Supply. Basic operation of all stages in the $+5-$ Volt Supply is the same as described in the +50 -Volt Supply and the +15 -Volt Supply. The +5 volt reference for this supply is established by divider R1454-R1455 between +50 volts and ground. Any change in the output level of the supply is compared at Feedback Amplifier U1454B which produces a signal of inverted polarity at its output (pin 7). This change is coupled to +5 -Volt Series Regulator Q1456 to correct the change in the output voltage. Transistor Q1454 provides current limiting (foldback operation) if the supply load increases beyond preset limits or becomes shorted to ground.
-8-Volt Supply. Basic operation of all stages in the -8Volt Supply is the same as described in previous supplies. The reference level for this supply (0 volt) is established by the ground connection through R1463 to pin 2 of Feedback Amplifier U1464A. Feedback voltage to pin 3 of U1464A is provided by divider R1464-R1465 between +50 volts and the -8 -Volt Supply output. The divider ratio of R1464-R1465 is 10:1 so the level at pin 3 is 0 volt when the supply is operating properly. Any change in the output level of the supply is compared at U1464A, which produces a correction signal of the same polarity as its output (pin 1). This change is coupled to the -8 -volt Series Regulator, Q1468, through Q1466 to correct the change in output voltage. Transistor Q1464 provides current limiting (foldback operation) if the supply load increases beyond preset limits or becomes shorted to ground.
-15-Volt Supply. Basic operation of all stages in the -15 -Volt Supply is the same as described in the -8 -Volt Supply. The reference level for this supply (0 volt) is established by the ground connection through R1473 to pin 6 of Feedback Amplifier U1464B. The feedback voltage (0 volt) to pin 5 of U1464B is provided by divider R1474R1475 between +50 volts and the -15 -Volt Supply output. Any change in the output voltage of the supply is compared at U1464B, which produces a correction signal of the same polarity at its output (pin 7). This change is coupled to the base of - 15 -Volt Series Regulator Q1478 to correct the change in output voltage. Transistor Q1474 provides current limiting (foldback operation) if the supply load increases beyond preset limits or becomes shorted to ground.

CRT CIRCUIT

General

The CRT Circuit provides the voltage levels and control circuits necessary for operation of the cathode-ray tube (CRT). Fig. 3-10 shows a detailed block diagram of the CRT Circuit. A schematic of this circuit is shown on Diagram 12 at the rear of this manual.

Fig. 3-10. Detailed block diagram of the CRT circuit.

High-Voltage Oscillator

Q1318 and associated circuitry compose the highvoltage oscillator that produces the drive for high-voltage transformer T1320. When the instrument is turned on, current through Q1316 provides forward bias for Q1318. Q1318 conducts and the collector current increases, which develops a voltage across the collector winding of T1320. This produces a corresponding voltage increase in the feedback winding of T1320, which is connected to the base of Q1318, and Q1318 conducts even harder. Eventually the rate of collector current increase in Q1318 becomes less than that required to maintain the voltage across the collector winding and the output voltage drops. This turns Q1318 off by way of the feedback voltage to the base. The voltage waveform at the collector of Q1318 is a sine wave at the resonant frequency of T1320. Q1318 remains off during the negative half cycle while the field collapses in the primary of T1320. When the field is collapsed sufficiently, the base of Q1318 becomes forward biased into conduction again and the cycle begins anew. The amplitude of sustained oscillation depends upon the average current delivered to the base of Q1318. The frequency of oscillation is approximately 50 kilohertz. Fuse F1318 protects the unregulated +15 -volts supply in the event the High-Voltage Oscillator stage becomes shorted. C1318 and L1318 decouple the +15 -volt supply line and prevent the current changes present in the circuit from affecting the +15 -volt regulated supply.

High-Voltage Regulator

Feedback from the CRT cathode -2450 volt supply is applied to the base of Q1306 through R1303A. Any change in the level at the base of Q1306 produces an error signal at the collector of Q1306, which is amplified by Q1308 and Q1316 and applied to the base of Q1318 through the feedback winding of T1320. Regulation occurs as follows.

If the output voltage at the -2450 volt test point starts to go positive (less negative), this positive-going change is applied to the base of Q1306. Q1306 conducts harder, which in turn causes Q1308 and Q1316 to conduct harder. This results in greater bias current to the base of Q1318 through the feedback winding of T1320. Now, Q1318 is biased closer to its conduction level so that it comes into conduction sooner to produce a larger induced voltage in the secondary winding or T1320. This increased voltage appears as a more negative voltage at the -2450 volt test point to correct the original positive-going change. By sampling the output from the CRT cathode supply in this manner, the total output of the High-Voltage Supply is held relatively constant.

Circuit Description-475A Service

Q1312 and Q1310 compose an overvoltage protection circuit. In the event the regulating action of the circuit should cause the CRT cathode supply to approach approximately -3000 volts, the voltage level at the emitter of Q1316 will be very close to -6 volts. Normally Q1312 and Q1310 are biased off and do not conduct. When the voltage level at the emitter of Q1316 reaches approximately -6 volts, Q1312 is biased into conduction, which in turn biases Q1310 on. Q1310 now starts to reduce the base drive applied to Q1318 and prevents the amplitude of oscillations from increasing. This prevents the CRT cathode supply from going more negative than approximately -3300 volts.

High-Voltage Rectifiers and Output

The high-voltage transformer T1320 has two output windings. One winding provides filament voltage for the cathode-ray tube. The filament voltage can be supplied from the High-Voltage Supply, since the cathode-ray tube has a very low filament current drain. The filament of the cathode-ray tube is elevated to the cathode level to prevent cathode-to-filament arcing. The other winding of T1320 is used to derive both the negative cathode potential and the positive anode accelerating potential.

The positive accelerating potential is supplied by High Voltage Multiplier U1321. Regulated output voltage is approximately $+15,500$ volts. The negative cathode potential is supplied by a voltage doubler circuit, C1320, CR1320 and CR1321. Voltage output is -2450 volts. Variations in supply voltage are monitored by the High-Voltage Regulator circuit to provide a regulated high-voltage output.

Control-Grid DC Restorer

The Control-Grid DC Restorer couples dc and low frequency components of the Z-Axis Amplifier signal to the CRT control grid. This allows the Z-Axis Amplifier to control the CRT beam current (intensity). The potential difference between the Z-Axis Amplifier output and the control grid (about 2450 volts) prohibits direct coupling.

The dc restorer is actually a cathode-referenced bias supply for the CRT control grid. Quiescently, its output voltage is more negative than the CRT cathode by an amount set by the voltage level across VR1374, the setting of Grid Bias adjustment R1375, and the voltage at the output of the Z-Axis Amplifier.

When the secondary-winding output of T1320 swings positive, C1372 charges through C1326, R1326, R1372, CR1379, and R1379 to a voltage level that equals the voltage determined by VR1374 and the setting of Grid Bias adjustment R1375. At this voltage level, (approximately +15 volts) CR1373 turns on, preventing any additional
increase in positive voltage. When the secondary-winding output swings negative, CR1373 turns off, then CR1371 turns on and clamps the less positive voltage swing at C 1372 to the voltage level of the Z-Axis Amplifier. During this less positive voltage swing, C1372 discharges through CR1377 into C1371. Capacitor C1371 holds the voltage constant at the CRT control grid; it also provides a path for the fast rising and falling portions of the Z-Axis Amplifier output to be coupled to the CRT control grid for blanking and unblanking.

CRT Control Circuits

Focus of the CRT display is controlled by FOCUS control R1380. The Focus Tracking control, R1335B, located in a series resistor network with the FOCUS control, is ganged with the INTENSITY control to reduce focus variations when changing the INTENSITY setting. The ASTIG adjustment R1397 which is used in conjunction with the FOCUS control to provide a well-defined display, varies the positive level on the astigmatism grid. Geometry adjustment R1390 varies the positive level on the horizontal deflection plate shields to control the overall geometry of the display.

Two adjustments control the trace alignment by varying the magnetic field around the CRT. Y Align adjustment R1385 controls the current through L1385, which affects the CRT beam after vertical deflection but before horizontal deflection. Therefore, it affects only the vertical (Y) components of the display. TRACE ROTATION adjustment R1386 controls the current through L1386 and affects both vertical and horizontal rotation of the beam.

Z-Axis Amplifier

The Z-Axis Amplifier circuit controls the CRT intensity level from several inputs. The effect of these input signals is to either increase or decrease the trace intensity, or to completely blank portions of the display. The input transistor, Q1338, is a current-driven, low input impedance amplifier. It provides termination for the input signals as well as isolation between the input signals and the following stages. The current signals from the various control sources are connected to the emitter of Q1338 and the algebraic sum of the signals determines the collector conduction level.

Q1344, Q1352, Q1354, Q1358, and Q1362 compose a feedback amplifier stage. R1369 is the feedback resistor and C1352 provides high-frequency compensation. Q1344 is an emitter follower that provides drive to the output complementary amplifier made up of Q1352, Q1354, and Q1358. Q1358 is a device with higher frequency characteristics than Q1354 and is used to improve the overall frequency capabilities of the Z-Axis Amplifier. On the fast positive-going output signal peaks, Q1358 depletes the charge on C1358. Then, on the negative-
going signal peaks, Q1362 is pulsed on to renew the charge on C1358. CR1367 provides protection to the ZAxis Amplifier circuitry in the event of short duration arcing in the CRT High-Voltage Power Supplies.

In the $0.1 \mathrm{~s}, 0.2 \mathrm{~s}, 0.5 \mathrm{~s}$, and $\mathrm{X}-\mathrm{Y}$ positions of the TIME/DIV switch, the anode of CR1337 is connected to ground. This limits how negative the operating level at the emitter of Q1338 can go to reduce the unblanking capabilities of the amplifier, thereby reducing the possibility of inadvertently burning the CRT phosphor. When the BEAM FINDER pushbutton is pressed, -8 volts is connected to the junction of R1342 and R1346. This biases Q1338 off which in turn causes CR1343 to be reverse biased. Now the output of the Z-Axis Amplifier is isolated from all of the circuit's normal signal inputs. The output level of the amplifier is set at a nearly fixed level (approximately +25 volts) determined by the parallel value of R1343 and R1346 divided into the feedback resistance of the amplifier. This sets the sweep intensity to a normal viewing level.

CALIBRATOR

General

The Calibrator circuit produces a square-wave output signal with accurate voltage and current amplitudes. This output is available as a voltage or current at the CALIBRATOR current loop on the instrument front panel. Fig. 3-11 shows a detailed block diagram of the Calibrator circuit. A schematic of this circuit is shown on Diagram 13 at the rear of this manual.

Fig. 3-11. Detailed block diagram of the Calibrator circuit.

Multivibrator

Q1502 and Q1504 along with their associated circuitry compose an astable multivibrator. The basic frequency of the multivibrator is approximately one kilohertz and is essentially determined by the RC combination of C1505, R1502, and R1504. Q1502 and Q1504 alternately conduct, producing a square-wave signal that is taken from the collector of Q1504.

Output Amplifier

The output signal from the Multivibrator overdrives Output Amplifier Q1512 to produce a square wave at the output. When the base of Q1512 goes positive, Q1512 is cut off and the collector level drops down to ground. When the base goes negative, Q1512 biased into saturation and the collector of Q1512 rises positive to about +5 volts. Amplitude adjustment R1515 adjusts the resistance between the collector of Q1512 and ground to determine the amount of current allowed to flow, which in turn determines the voltage developed across R1517.

FAN MOTOR CIRCUIT

General

The fan motor used in the 475A is a brushless DC motor using Hall Effect devices. The fan motor control circuitry varies the rotational speed of the fan as the operating temperature changes.

Two Hall Effect devices inside the motor, and 4 transistors U8061A, B, C, and D (U1690A-D for early SN) compose a sine-wave generator to drive the motor windings. Each of the 4 transistors is controlled by $1 / 2$ of a Hall element to generate $1 / 4$ of the sine-wave cycle.

As the ambient temperature increases, the value of thermistor RT8038 (RT1696 for early SN) decreases. This biases Q8067 (Q1698 for early SN) on harder to conduct more current through the Hall devices and turn the motor winding control transistor on harder. The harder the transistor is conducting, the faster the fan rotates.

Typical fan speed variation with ambient temperature is:
$-15^{\circ} \mathrm{C}$, approx. 800 RPM
$+25^{\circ} \mathrm{C}$, approx. 2000 RPM
$+55^{\circ} \mathrm{C}$, approx. 3100 RPM

MAINTENANCE

This section of the manual contains directions for cabinet removal, preventive maintenance, troubleshooting and corrective maintenance of the 475A.

MAINTENANCE SECTION OUTLINE

Preventive Maintenance

Standard Cabinet Removal	Page 4-2
Standard Cabinet Installation	Page 4-3
Rack Adapter Removal	Page 4-3
Rack Adapter Installation	Page 4-4

Cabinet and Rack Adapter Removal

Introduction	Page 4-4
Cleaning	Page 4-4
Switch Contacts	Page 4-5
General Interior	Page 4-5
Exterior	Page 4-5
CRT Face, Filter and Shields	Page 4-5
Air Filter	Page 4-5
Visual Inspection	Page 4-6
Lubrication	Page 4-6
Semiconductor Checks	Page 4-6
Recalibration	Page 4-6

Troubleshooting

Introduction
Page 4-6

Troubleshooting Aids
Diagrams

Circuit Board Illustrations
Adjustment Locations Illustrations

Resistor Color-Code
Capacitor Color-Code
Diode Color-Code
Semiconductor Lead Configuration

Troubleshooting Equipment
Page 4-7

1. Semiconductor Tester Page 4-10
2. Test Oscilloscope

Page 4-10
Page 4-10
Page 4-10

Page 4-10
Page 4-10
Page 4-10
Page 4-10
Page 4-10
Page 4-10
Page 4-10
Page 4-11
Page 4-11
Page 4-11
Page 4-14

Page 4-14

Page 4-14
Page 4-15
Page 4-16
Page 4-16
Troubleshooting the Horizontal Amplifier
Troubleshooting the Vertical System
Troubleshooting the Z-Axis Circuit

Corrective Maintenance

Introduction
Obtaining Replacement Parts
Standard Parts
Special Parts
Ordering Parts
Soldering Techniques
Small Component Replacement
General
Transistor and I.C. Replacement
Interconnecting Pin Replacement
Ceramic Terminal Strip Replacement
Fuse Replacement
Cam Switch Replacement

Circuit Board Replacement
Vertical Preamp Board Removal
Vert Mode-Gain Switch Board Removal
Trigger Generator And Z-Axis Logic Board Removal

Timing Board Removal
Vertical Output Board Removal
Fan Motor Board Removal
Inverter Board Removal (Option 7 only)
Power Supply Board Removal (475A DM44)

Main Interface Board Removal
Power Transformer Removal

Cathode-ray Tube Removal

Page 4-18
Page 4-18
Page 4-18

Page 4-18
Page 4-19
Page 4-19
Page 4-19
Page 4-19
Page 4-19
Page 4-20
Page 4-20
Page 4-20
Page 4-21
Page 4-21
Page 4-22
Page 4-22
Page 4-22
Page 4-24
Page 4-25

Page 4-25
Page 4-26
Page 4-26
Page 4-26
Page 4-27

Page 2-47
Page 4-28
Page 4-29
Page 4-30

Cathode-ray Tube Installation
Page 4-31
High-Voltage Multiplier Removal
Page 4-31
Delay Line Removal Page 4-32
Recalibration After Repair
Page 4-32
Instrument Repackaging
Page 4-32

CABINET AND RACK ADAPTER REMOVAL

Standard Cabinet Removal

The standard instrument cabinet can be removed in the following manner:

1. Disconnect the instrument power cord from the power source.
2. Install the front-panel cover and set the instrument face on a flat surface.
3. Unwrap the power cord from the instrument feet.
4. Remove the 6 screws indicated in Fig. 4-1 and remove the rear cabinet frame with feet and screws from the instrument as an intact assembly.

Fig. 4-1. Removing the standard cabinet.
5. Lift the cabinet up until it is separated from the instrument and power cord.

WARNING

Dangerous potentials exist at several points throughout this instrument. When the instrument is operated with the cabinent removed, do not touch exposed connections or components. Some transistors may have elevated cases. Disconnect power before cleaning the instrument or replacing parts.

Standard Cabinet Installation

The standard instrument cabinet should be installed in the following manner:

1. Disconnect the instrument power cord from the power source.
2. If the Vertical Output circuit-board cover is not in place, install the cover on the top of main chassis. Where parts were removed or replaced check all sections of the instrument for proper assembly. It may by helpful to use the diagrams in Section 9, Mechanical Parts List, for the locations of parts.
3. 475A DM44-If the DM44 main circuit-board is not in place, install the board on the main chassis.
4. Install the front-panel cover and set the instrument face on a flat surface.
5. Place the cabinet handle against the bottom of the cabinet (bottom of cabinet is nearest the carrying handle pivot points).
6. Pull the power cable through the cabinet and slide the cabinet over the instrument using care to avoid pinching cables or damaging components that protrude from circuit boards.
7. Using both hands, press lightly on the top and bottom sides of the cabinet until the front edge of the cabinet is inserted into the braided gasket groove around the full periphery of the front cabinet frame.
8. Pull the power cord through the rear cabinet frame, align a cutout portion in the frame for proper fit at the regulating-range selector cover and work the frame into place.
9. Set the feet and screws in place and exert a light downward pressure on the rear cabinet frame with 1 hand and arm. Press lightly on the top and bottom sides of cabinet with the other hand, checking that cabinet edge is properly seated in the gasket groove of both front and rear frames. Continue to exert a downward pressure and tighten the 6 screws of the rear frame to a snug fit. Do not over-tighten these screws.

The standard cabinet protects this instrument from dust in the interior and also provides protection to personnel from the operating potentials present. In addition, the cabinet reduces the emi (electromagnetic interference) radiation from the instrument and interference to the display due to other equipment.

The front-panel cover provides a dust-tight seal around the front panel and protects the front panel when storing or transporting the instrument.

Rack Adapter Removal

The Rack Adapter can be removed from the instrument in the following manner:

1. Remove the hardware that fastens the Rack Adapter to the rack and pull the adapter partially out. Disconnect the instrument power cord from the power source and remove any interconnecting cables.

NOTE

If it is desired to tilt the Rack Adapter and instrument, remove a screw from the rear of each slide section mounted to the Rack Adapter. These securing screws are an important part of the mounting and should be installed when tilt operation is not necessary.
2. Remove the Rack Adapter, with instrument, from the rack and set the bottom of the complete assembly on a flat surface.
3. Remove 2 setscrews from the top, front of Rack Adapter chassis, (A 0.125 -inch Allen wrench is required to remove the setscrews.) It may be helpful to use the diagrams in Section 9, Mechanical Parts List for the locations of parts.
4. Remove 10 screws that hold the rear support plate to an angle bracket on one side, to the Rack Adapter chassis on the opposite side, and to the rear of the instrument. Remove the rear support-plate and blue-plastic rear frame.
5. Slide the instrument forward through the adapter cabinet, using both hands (front and rear) to lift and guide the instrument until separated from the Rack Adapter.

WARNING

Dangerous potentials exist at several points throughout this instrument. When the instrument is operated with the Rack Adapter removed, do not touch exposed connections or components. Some transistors may have elevated cases. Disconnect power before cleaning the instrument or replacing parts.

Rack Adapter Installation

The Rack Adapter should be installed in the following manner:

1. Disconnect the instrument power cord from the power source.
2. If the Vertical Output circuit-board cover is not in place, install the cover on the top of the 475A main chassis. Check all sections of the instrument where parts were removed or replaced for proper assembly. It may be helpful to use the diagrams in Section 9, Replaceable Mechanical Parts for the locations of parts.
3. Set the bottom of the Rack Adapter on a flat surface, pull the power cord through the cabinet portion of the Rack Adapter and slide the instrument rearward using both hands (front and rear) to lift and guide the instrument until fully inserted. Use care to avoid pinching cables or damaging components that protrude from circuit boards.
4. Check that the front edge of the cabinet portion of the Rack Adapter is inserted into the braided gasket groove around the full periphery of the instrument frontframe. Pull the power cord through the blue-plastic rear frame, align a cutout portion in the plastic frame for proper fit at the regulating-range selector cover, and work the frame into place.
5. Apply the rear support bracket to the rear of the Rack Adapter. Install, without tightening, 6 screws that secure the rear support bracket through the blue-plastic frame to the rear of the instrument and 4 screws that secure the rear support bracket to an angle bracket and to the Rack Adapter chassis.
6. Check that all parts of the complete assembly are properly seated, then tighten to a snug fit the screws at the rear of the instrument and the screws at the adapter chassis. Do not overtighten these screws.
7. Install 2 setscrews at the top-front of the Rack Adapter chassis. (A 0.125 -inch Allen wrench is requred to install the setscrews.)
8. Mount the Rack Adapter slide sections to the rack slide assemblies, connect the power cord, connect any interconnecting cables, push the Rack Adapter into final operating position, and install the adapter-to-rack hardware.

The Rack Adapter cabinet (Part No. 016-0556-00) for the 475A provides the proper electrical environment for the instrument, reduces dust collection, reduces handling damage to a minimum, and provides a means for mounting the instrument solidly to a surface such as a rack or console.

PREVENTIVE MAINTENANCE

Introduction

Preventive maintenance consists primarily of cleaning and visual inspection. When performed on a regular basis, preventive maintenace can prevent instrument breakdown and improves the reliability of this instrument. The severity of the environment to which the 475A is subjected will determine the frequency of maintenance. A convenient time to perform preventive maintenance is just prior to recalibration of the instrument.

Cleaning

The cabinet provides protection against dust in the interior of the instrument. Operation without the cabinet in place necessitates more frequent cleaning. The front cover provides a measure of dust protection for the front panel and the crt face. The front-panel cover should be installed when storing or transporting the instrument.

The volts/division attenuators use a plastic material (polyphenylene oxide) that is easily damaged by the use of carbon-based solvents. Avoid the use of chemical cleaning agents which might damage the plastics used in this instrument. Do not use chemicals that contain acetone, benzene, toluene, xylene, petroleum ether, white kerosene, carbon tetrachloride, methylene chloride, trichloroethane, trichlorotrifluoroethane (freon 113,-tf,-ta,-tmc) and trichlorethylene. Recommended cleaning agents for general interior cleaning, except switch contacts, are isopropyl alcohol, kelite (1 part kelite, 20 parts water), and a solution of 1% mild detergent and 99% water. (Read the information under Cleaning, Switch Contacts, before attempting to clean in the area of the volts/division attenuators). As a second choice, in the absence of these cleaners, it is safe to use ethyl alcohol (fotocol, ethanol) and methyl alcohol (methanol).

Most spray circuit-coolants contain freon 12 as a propellant. Because many freons adversely affect switch contacts, check the contents and brand name before using a spray coolant. Use the following brand names for an acceptable coolant in areas other than the volts/division attenuators: Arctic Freeze, Quik-Freeze. and Can-O-Gas. Do not use Zero Mist brand of circuit coolant. The recommended circuit coolants for the volts/division attenuators are dry ice $\left(\mathrm{CO}_{2}\right)$ or isopropyl alcohol.

Switch Contacts. Most of the switching in the 475A is accomplished with circuit-board mounted, cam-actuated contacts. Care must be exercised to preserve the highfrequency characteristics of these switches. Seldom is switch cleaning necessary, but if it is required, observe the following precautions.

For cleaning the switch contacts, isopropyl alcohol is the recommended solvent to use. Apply the isopropyl alcohol with a camel-hair brush. Do not use cotton swabs as they tend to snag on contacts, possibly causing damage, and leave strands of cotton, causing intermittant electrical contact.

General Interior. Dust in the interior of the instrument should be removed occasionally due to its electrical conductivity under high-humidity conditions. Accumulations of dirt should be removed as often as operating conditions require because dirt can cause overheating and component breakdown. Dirt on components acts as an insulating blanket and prevents efficient heat dissipation. It also provides an electrical conduction path that can result in instrument failure. The best way to clean the interior is to blow off the accumulated dust with dry, low-pressure air (approximately $9 \mathrm{lb} / \mathrm{in}^{2}$). Remove any dirt that remains with a soft brush or a cloth damped with a mild detergent and water solution. A cotton-tipped applicator is useful for cleaning in narrow spaces or for cleaning ceramic terminal strips and circuit boards.

Exterior. Loose dust accumulated on the outside of the 475A can be removed with a soft cloth or small paint brush. The paint brush is particularly useful for dislodging dirt on and around the front-panel controls. Dirt that remains can be removed with a soft cloth dampened in a mild detergent and water solution. Abrasive cleaners should not be used.

CRT Face, Filter and Shields. Clean the individual blue or clear plastic implosion shields and the crt face with a soft, lint-free cloth dampened with denatured alcohol (ethyl alcohol) or a mild detergent and water solution. Install only one implosion shield between the bezel and crt face. The optional crt mesh filter can be cleaned in the following manner:

1. Hold the filter in a vertical position and brush lightly with a soft watercolor brush to remove light coatings of dust and lint.
2. Greasy residues or dried-on dirt can be removed with a solution of warm water and a neutral pH liquid detergent. Use the brush to lightly scrub the filter.
3. Rinse the filter thoroughly in clean water and allow to air dry.
4. If any lint or dirt remains, use clean low-pressure air (approximately $9 \mathrm{lb} / \mathrm{in}^{2}$) to remove. Do not use tweezers or other hard cleaning tools on the filter as the special finish may be damaged.
5. When not in use, store the mesh filter in a lint-free, dust proof container such as a plastic bag.

Air Filter. The air filter should be visually checked every few weeks and cleaned or replaced if dirty. More frequent inspections are required under severe operating conditions. The following procedure is suggested for cleaning the filter. If the filter is to be replaced, order new air filters from your local Tektronix Field Office or representative; order by Tektronix Part No. 378-0044-01.

1. Remove the filter by pulling it out of the retaining frame on the rear panel. Be careful not to drop any of the accumulated dirt into the instrument.
2. Flush the loose dirt from the filter with a stream of hot water.
3. Place the filter in a solution of mild detergent and hot water and let it soak for several minutes.
4. Squeeze the filter to wash out any dirt which remains.
5. Rinse the filter in clear water and allow it to dry.
6. Coat the dry filter with an air-filter adhesive (available from air conditioner suppliers, or order Tektronix Part No. 006-0580-00).
7. Let the adhesive dry thoroughly.
8. Install the filter in the retaining frame.

Maintenance-475A Service

Visual Inspection

The instrument should be inspected occasionally for such defects as broken connections, broken or damaged ceramic strips, improperly seated semiconductors, damaged or improperly installed circuit boards, and heatdamaged parts.

The corrective procedure for most visible defects is obvious; however, particular care must be taken if heatdamaged components are found. Overheating usually indicates other trouble in the instrument; therefore, it is important that the cause of overheating be corrected to prevent recurrence of the damage.

Lubrication

The fan motor and most of the potentiometers used in the 475A are permanently sealed and generally do not require periodic lubrication. The switches used in the 475A, both cam- and lever-type, are installed with proper lubrication applied where necessary and will only rarely require any additional lubrication. It is recommended that a regular periodic lubrication program not be performed on any of the components used in the 475A.

Semiconductor Checks

Periodic checks of the transistors and other semiconductors in the 475A are not recommended. The best check of semiconductor performance is actual operation in the instrument.

Recalibration

To ensure accurate measurements, check the calibration of this instrument after each 1000 hours of operation or every six months if used infrequently. In addition, replacement of component may necessitate recalibration of the affected circuits. The calibration procedure can also be helpful in localizing certain troubles in the instrument. In some cases, minor troubles may be revealed and/or corrected by recalibration. Complete calibration instructions are given in the Calibration section.

TROUBLESHOOTING

Introduction

The following information is provided to facilitate troubleshooting of the 475A. Information contained in other sections of this manual should be used along with the following information to aid in locating the defective component. An understanding of the circuit operation is helpful in locating troubles, particularly where integrated circuits are used. See the Circuit Description section for this information.

Troubleshooting Aids

Diagrams. Complete circuit diagrams are given on foldout pages in the Diagram section. The component number and electrical value of each component in this instrument are shown on the diagrams (see first page of the Diagrams section for definition of the reference designators and symbols used to identify components in this instrument). Each main circuit is assigned a series of component numbers. Table 4-1 lists the main circuits in the 475A and the series of component numbers assigned to each. Important voltages and waveforms are also shown on the diagrams. The portions of the circuit mounted on circuit boards are enclosed with blue lines.

Circuit Board Illustrations. To aid in locating circuit boards in the instrument, a circuit board location illustration is placed on the back of the pullout page preceding the circuit diagram. An illustration of the circuit board, with circuit components of the following circuit diagram identified, is also included on this page. Each circuit board illustration is arranged to facilitate rapid physical location of components listed on the schematic diagrams.

Adjustment Locations Illustrations. To aid in locating test points and adjustable components, the Adjustment Locations pullout pages (normally used with the calibration procedure) permit very rapid location of test points and adjustments because only these components are identified. The Adjustment Location illustrations will be found following the Calibration Procedure (Section 6 of this manual).

Resistor Color-Code. In addition to the brown composition resistors, some metal-film resistors and some wire-wound resistors are used in the 475A. The resistance values of wire-wound resistors are usually printed on the body of the component. The resistance values of composition resistors and metal-film resistors are color-coded on the components with EIA color-code (some metal-film resistors may have the value printed on the body). The color-code is read starting with the stripe nearest the end of the resistor. Composition resistors have four stripes, which consist of two significant figures, a multiplier, and a tolerance value (see Fig. 4-2). Metal-film resistors have five stripes consisting of three significant figures, a multiplier, and a tolerance value.

Capacitor Color-Code. The capacitance values of common disc capacitors and small electrolytics are marked on the side of the component body. The white ceramic and epoxy-coated tantalum capacitors used in the 475A are color-coded, using a modified EIA code (see Fig. 4-2).

TABLE 4-1
Circuit Number-to-Diagram Locator

Circuit Number Series	Name of Circuit	
$10-49$	CH 1 ATTENUATORS	
$100-199$	CH 1 VERTICAL PREAMP	Diagram
Number		

Diode Color-Code. The cathode end of each glassencased diode is indicated by a stripe, a series of stripes, or a dot. For most silicon or germanium diodes with a series of stripes, the color-code identifies the three significant digits of the Tektronix Part Number using the resistor color-code system (e.g., a diode color-coded pink - or - blue -, brown - gray - green indicates Tektronix Part No. 152-0185-00). The cathode and anode ends of metal-encased diodes can be identified by the diode symbol marked on the body.

Semiconductor Lead Configuration. Fig. 4-3 shows the lead configuration for the semiconductors used in this instrument, as viewed from the bottom of the semiconductors.

Troubleshooting Equipment

The following equipment is useful for troubleshooting in the 475A.

COLOR CODE

(1) (2) and(3)-1ST, 2ND, AND 3RD SIGNIFICANT FIGS.
(in) - multiplier $(\uparrow$ - tolerance;
(C) - temperature coefficient.

COLOR	SIGNIFICANT FIGURES	RESISTORS		CAPACITORS			$\begin{aligned} & \text { DIPPED } \\ & \text { TANTALUM } \\ & \text { VOLTAGE } \\ & \text { RATING } \end{aligned}$
		MULTIPLIER (OHMS)	TOLERANCE	$\underset{(\mathrm{pF})}{\text { MULTIPLIER }}$	TOLERANCE		
					OVER 10pF	UNDER 10pF	
BLACK	0	1	---	1	$\pm 20 \%$	$\pm 2 \mathrm{pF}$	4VDC
BROWN	1	10	$\pm 1 \%$	10	$\pm 1 \%$	$\pm 0.1 \mathrm{pF}$	6VDC
RED	2	10^{2} or 100	$\pm 2 \%$	10^{2} or 100	$\pm 2 \%$	---	10VDC
ORANGE	3	10^{3} or 1 K	$\pm 3 \%$	10^{3} or 1000	$\pm 3 \%$	---	15VDC
YELLOW	4	10^{4} or 10 K	$\pm 4 \%$	10^{4} or 10,000	$\begin{gathered} +100 \% \\ -0 \% \\ \hline \end{gathered}$	---	20VDC
GREEN	5	10^{5} or 100 K.	$\pm 1 / 2 \%$	$\begin{gathered} 10^{5} \mathrm{or} \\ 100,000 \end{gathered}$	$\pm 5 \%$	$\pm 0.5 \mathrm{p} F$	25 VDC
BLUE	6	10^{6} or 1 M	$\pm 1 / 4 \%$	$\begin{aligned} & 10^{6} \text { or } \\ & 1,000,000 \end{aligned}$	---	---	35 VDC
VIOLET	7	---	$\pm 1 / 10 \%$	$\begin{gathered} 107 \text { or } \\ 10,000,000 \end{gathered}$	---	---	50VDC
GRAY	8	---	---	10^{-2} or 0.01	$\begin{aligned} & \hline+80 \% \\ & -20 \% \end{aligned}$	$\pm 0.25 \mathrm{pF}$	---
WHITE	9	---	----	10^{-1} or 0.1	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	3 VDC
GOLD	---	10^{-1} or 0.1	$\pm 5 \%$	---	---	---	---
SILVER	---	10^{-2} or 0.01	$\pm 10 \%$	---	---	---	----
NONE	---	---	$\pm 20 \%$	---	$\pm 10 \%$	$\pm 1 \mathrm{pF}$	---

Fig. 4-2. Color codes for resistors and capacitors.

L_SIGNAL DIODE
\qquad

METAL CASE
TRANSISTOR

TUNNEL DIODE
LEAD CONFIGURATIONS AND CASE STYLES ARE TYPICAL, BUT MAY VARY DUE TO VENDOR CHANGES OR INSTRUMENT MODIFICATIONS.

PLASTIC CASE \qquad
\qquad PLASTIC CASE

INTEGRATED CIRCUITS

Fig. 4-3. Lead configurations of semiconductors used in this instrument.

Maintenance-475A Service

1. Semiconductor Tester

Description: Dynamic - type tester. Must be capable of measuring reverse breakdown voltages of at least 400 volts.

Purpose: To test the semiconductors used in this instrument.

Recommended type: Tektronix 576 Curve Tracer or Tektronix 577 (D1 or D2) Curve Tracer with 177 Test Fixture.

2. Test Oscilloscope

Description: Frequency response, dc to 75 megahertż or greater; deflection factor, 1 millivolt to 5 volts/division; Input impedance, 1 megohm, 20 picofarads; sweep rate, 0.5 second/division to 50 nanoseconds/division. A 10X, $10-m e g o h m$ voltage probe should be used to reduce circuit loading for waveform measurements. A 1X, 1megohm voltage probe should be used for power supply ripple checks.

Purpose: To check operating waveforms in this instrument.

Recommended type: Tektronix 7603 Oscilloscope with 7A13 Amplifier and 7B50 Time-Base units. Use a P6053 10X probe and a P6011 1X probe.

3. Multimeter

Description: Non-loading Digital Multimeter. Voltmeter, 10 megohm input impedance and 0 to 150 volts range; dc voltage accuracy, within 0.15%; display, 4-1/2 digits. Ohmmeter, 0 to 20 megohms.

Purpose: To check voltages and for general troubleshooting in this instrument.

Recommended type: Tektronix DM 501 Digital Multimeter (requires a TM 500-series power module).

4. Variable Autotransformer

Description: Output variable from 0 to 140 volts, 1.2 amperes minimum rating. Must have 3-wire power cord, plug, and receptacle.

Purpose: To vary the input line voltage when troubleshooting in the power supply.

Recommended type: General Radio W8MT3VM or W10MT3W Metered Variac Autotransformer.

Troubleshooting Techniques

This troubleshooting procedure is arranged in an order which checks the simple trouble possibilities before proceeding with extensive troubleshooting. The first few checks ensure proper connection, operation and calibration. If the trouble is not located by these checks, the remaining steps aid in locating the defective component. When the defective component is located, it should be replaced following the replacement procedure given under Corrective Maintenance.

1. Check Control Settings. Incorrect control settings can indicate a trouble that does not exist. If there is any question about the correct function or operation of any control, see the Operating Instructions section of this manual.
2. Check Associated Equipment. Before proceeding with troubleshooting of the 475A, check that the equipment used with this instrument is operating correctly. Check that the signal is properly connected and that the interconnecting cables are not defective. Also, check the power source.
3. Check Instrument Calibration. Check the calibration of this instrument, or the affected circuit if the trouble exists in only one circuit. The apparent trouble may only be a result of misadjustment and may be corrected by calibration. Complete calibration instructions are given in the Calibration section of this manual.
4. Visual Check. Visually check the portion of the instrument in which the trouble is located. Many troubles can be located by visual indications such as unsoldered connections, broken wires, damaged circuit boards, damaged components, etc.
5. Isolate Trouble to a Circuit. To isolate trouble to a particular circuit, note the trouble symptom. The symptom often identifies the circuit in which the trouble is located. When trouble symptoms appear in more than one circuit, check affected circuits by taking voltage and waveform readings. Typical voltages and waveforms are given on the schematics in the Diagrams section.
6. Circuit Troubleshooting Sequence. If the instrument is found to have inoperative functions in more than one area of the main oscilloscope circuits, repair the circuits in the order specified in the following list:
a. L.V. POWER SUPPLY (Check $+50 \mathrm{~V},+110 \mathrm{~V}$, $+15 \mathrm{~V},+5 \mathrm{~V},-15 \mathrm{~V}$ and -8 V supplies.)
b. HIGH VOLTAGE (Check oscillator and regulator, over-voltage protection circuit and secondary load.)
c. A SWEEP (Set TRIG MODE to AUTO; repair until sweep is repetitive.)
d. HORIZONTAL AMPLIFIER (Turn horizontal POSITION; repair until each deflection plate output has proper voltage swing.)
e. VERTICAL OUTPUT AMPLIFIER (Turn vertical POSITION; repair until each deflection plate output has proper voltage swing.)
f. Z AXIS (set TRIG MODE to SINGL SWP; repair until spot display is controlled by INTENSITY.)
g. All remaining inoperative functions.

The preceding recommended troubleshooting sequence is intended to be a quick approach to circuit troubleshooting. See Special Troubleshooting Information listing in this section for detailed troubleshooting instructions.

Fig. 4-4 provides a guide in locating a defective circuit. This chart may not include checks for all possible defects; use steps 7 through 9 in such cases. Start from the top of the chart and perform the given checks on the left side of the page until a step is found which does not produce the indicated results. Further checks and/or the circuit in which the trouble is probably located are listed to the right of this step.

After the defective circuit has been located, it may be helpful to read the applicable part of the Circuit Description section and Special Troubleshooting Information part of this section to aid in locating defective components. After doing this, see steps 7 through 9 for additional information.
7. Check Circuit Board Interconnections. After the trouble has been isolated to a particular circuit, check for loose or broken connections at circuit-board interconnecting pins, plugs and end-lead connectors.
8. Check Voltages and Waveforms. Often the defective component can be located by checking for the correct voltage or waveform in the circuit. Typical voltages and waveforms are given on the diagrams.
note
Voltages and waveforms given on the diagrams are not absolute and may vary slightly between instruments. To obtain operating conditions similar to those used to take these readings, see the voltage and waveforms page with each schematic diagram. On this page, note the recommended test equipment, front-panel control settings, voltage and waveform conditions, and test equipment cable connection instructions. Voltages and waveforms given on the schematics should be checked against each instrument while it is operating properly. Deviations should be noted on the schematics for later reference.
9. Check Individual Components. The following procedures describe methods of checking individual components. Components which are soldered in place should be checked after disconnecting one end from the circuit. This isolates the measurement from the effects of surrounding circuitry.

a. SEMICONDUCTORS.

WARNING

Power switch must be turned off before removing or replacing components.

A good check of transistor operation is actual in-circuit performance underoperating conditions and most transistors in the 475A can be checked this way. A transistor can be most effectively checked by substituting a new component for it (or one which has been checked previously). However, be sure that circuit conditions are not such that a replacement transistor might also be damaged. If substitute transistors are not available, use a dynamic tester. Static-type testers are not recommended, since they do not check operation under simulated operating conditions.

[^1]

Maintenance-475A Service

If values less than these are obtained, either the device is short-circuited or no current is flowing in the circuit. If values are in excess of the base-emitter values given, the junction is back-biased or the device is defective. Values in excess of those given for emitter-collector could indicate either a non-saturated device operating normally, or a defective (open-circuited) transistor. If the device is conducting, voltage will be developed across resistances in series with it; if it is open, no voltage will be developed across resistances in series with it unless current is being supplied by a parallel path.

When troubleshooting field-effect transistors, the voltage across its elements can be checked in the same manner as transistors. However, it should be remembered that usual operation has the gate-to-source junction reverse biased, or 0 biased, as is used in many circuits in the 475A.

IC's (integrated circuits) can be checked with a voltmeter, test oscilloscope, or by direct substitution. A good understanding of circuit operation is essential to troubleshooting circuits using IC's. Use care when checking voltages and waveforms around the IC's so that adjacent leads are not shorted together. A convenient means of clipping a test probe to the 14 - and 16 -pin IC's is with an IC test clip. This device also doubles as an extraction tool. The lead configuration for the semiconductors used in this instrument are shown on Fig. 4-3.
b. DIODES. A diode can be checked for an open or shorted condition by measuring the resistance between terminals after disconnecting one end from the circuit. With an ohmmeter set to the $R \times 1 \mathrm{k}$ scale, the resistance should be very high in one direction and very low when the leads are reversed.

Do not measure tunnel diodes with an ohmmeter; use a dynamic tester (such as a Tektronix Type 576 Transistor-Curve Tracer).

Voltmeter checks on diodes can be performed in much the same manner as on transistor emitter-to-base junctions. Silicon diodes should have 0.6 to 0.8 volts across the junction when conducting. Higher readings indicate that they are either back biased or defective, depending on polarity.
c. RESISTORS. Check the resistors with an ohmmeter after disconnecting one end from the circuit. Check the Electrical Parts List for the tolerance of the resistors used in this instrument. Resistors normally do not need to be replaced unless the measured value varies widely from the specified value.
d. INDUCTORS. Check for open inductors by checking continuity with an ohmmeter. (It may be helpful to disconnect one end of the inductor when checking continuity.) Shorted or partially shorted inductors can also be found by checking the waveform response when high-frequency signals are passed through the circuit. Partial shorting often reduces high-frequency response (increases roll-off).
e. CAPACITORS. A leaky or shorted capacitor can be detected by checking resistance with an ohmmeter, on the highest scale, after disconnecting one end from the circuit. Do not exceed the voltage rating of the capacitor (some ohmmeters use 30 volts as source voltage). The resistance reading should be high after initial charge of the capacitor. An open capacitor can also be detected with a capacitance meter or by checking whether the capacitor passes ac signals.
f. ATTENUATORS. The thick film attenuators are best checked by substitution. If only one channel of the 475A is not operating properly, and there is reason to believe an attenuator is defective, replace the suspected attenuator with the same attenuator from the other channel and check instrument operation. If proper operation results, order a new attenuator. (See Component Replacement for replacement instructions.)
10. Repair and Readjust the Circuit. If any defective parts are located, follow the replacement procedures given in this section. Be sure to check the performance of any circuit that has been repaired or that has had any electrical components replaced. Recalibration of the affected circuit may be necessary.

Special Troubleshooting Information

General. The following information provides a procedure for troubleshooting some of the more complex circuits in the 475A. A thorough understanding of the circuit operation is essential before troubleshooting in these areas. Read the applicable portions of the Circuit Description in Section 3 before proceeding. This troubleshooting procedure refers to the diagrams, operating voltages, and waveforms given in Section 8. Specifications for the equipment necessary to troubleshoot in these procedures are given earlier in this section under Troubleshooting Equipment.

Troubleshooting the L.V. Power Supplies. Incorrect operation of all circuits often indicates trouble in the power supply. Check first for correct voltage of the individual supplies. A defective component elsewhere in the instrument can appear as a power-supply trouble and may also affect the operation of other circuits. Table 4-2 lists the tolerances of the power supplies in this instrument. Check or repair the power supplies in the sequence specified in Table 4-2. These voltages are measured between the power-supply test points and ground. If a power-supply voltage is within the listed tolerance, the supply can be assumed to be working correctly. If outside the tolerance, the +50 -volt supply may be misadjusted or other supplies may by operating incorrectly. Use the procedure given in the Calibration section to adjust the +50 -volt supply if adjustment is necessary. Use Adjustment Locations 1 pullout page in the Calibration section to locate power-supply test points.

TABLE 4-2
Power Supply Tolerance and Ripple

Power Supply	Tolerance	Typical Ripple (peak-to-peak)
+50 V	$0.5 \%(250 \mathrm{mV})$	2 mV
+110 V	$3 \%(3.3 \mathrm{~V})$	1 V
+15 V	$1.5 \%(225 \mathrm{mV})$	2 mV
+5 V	$1.5 \%(75 \mathrm{mV})$	2 mV
-15 V	$1.5 \%(225 \mathrm{mV})$	2 mV
-8 V	$1.5 \%(120 \mathrm{mV})$	2 mV

Connect the 475A to a variable autotransformer. Then, check each power supply for correct ripple with a test oscilloscope, while varying the autotransformer throughout the regulating range of this instrument (see rear panel regulating range selector cover for regulating range). Table $4-2$ lists the typical ripple of the power supplies in this instrument. Measure the ripple between the power supply test points and ground.

A malfunction in the power supply can be caused by one or more supplies being shorted to ground. Check the resistance of the individual supplies to ground against the typical resistances listed in Table 4-3. Be sure the instrument is not connected to a power source when making these measurements to prevent error in resistance readings and to prevent possible meter damage.

TABLE 4-3
Power Supply Resistance Check ${ }^{1}$

Supply	Ohmmeter Scale ${ }^{2}$	Typical Resistance To Ground ${ }^{3}$	
		+ Lead At Supply	- Lead At Supply
+110 V	20 K	$11 \mathrm{k} \Omega$	$9.3 \mathrm{k} \Omega$
$+50 \mathrm{~V}$	20 K	$2.7 \mathrm{k} \Omega$	$2.7 \mathrm{k} \Omega$
+15 V	2 K	63Ω	63Ω
+5V	2 K	46Ω	46Ω
-15 V	$\begin{array}{r} 2 \mathrm{~K} \\ 20 \mathrm{~K} \end{array}$	480Ω	$10 \mathrm{k} \Omega$
-8V	2 K	32Ω	32Ω
UNREG	20 K	$14 \mathrm{k} \Omega$	-----
$+50 \mathrm{~V}$	2 K	------	500Ω
+105/	20 K	$12 \mathrm{k} \Omega$	-----
160 V	2 K	-----	$1 \mathrm{k} \Omega$

If any of the supplies are shorted to ground, repair them until normal resistance readings are obtained. Connect the instrument to the correct power source and check the supplies for proper voltages listed in Table 4-2. If two or more of the individual supplies have incorrect voltages, repair them in the order listed in Table 4-2.

The +50 volt supply is the reference for all other supplies and must be repaired first. The +15 volt supply and the +5 volt supply should be working properly before repair on the -8 volt supply or the -15 volt supply is attempted.

When repairing a power supply in the 475A the following information may be helpful. The +50 -volt supply is used as an example to identify component functions.

1. Check for proper voltage and ripple from the diode bridge rectifier (CR1412 in the +50 -volt supply; check at collector of the series regulator for any supply).

[^2]2. Check that the current-limiting transistor is off (Q1432 in the +50 volt supply) by measuring base-toemitter voltage. If the supply is current limiting, remove the power from circuit boards, individually, until the supply voltage returns to normal and the circuit board drawing excess power is identified. To remove power to circuit boards, disconnect plugs, or desolder and lift one end of decoupling networks, or move circuit boards enough to clear interconnecting pins.
3. Measure the reference voltage at the supply operational amplifier and check for proper voltage (pin 3 of U 1418 of +50 volt supply; negative input of the operational amplifier of any supply).

Troubleshooting the High-Voltage Circuit. There are 3 major areas of concern when troubleshooting this circuitry; the high-voltage oscillator and regulator, the overvoltage protection circuit, and the secondary load including the crt and the high-voltage multiplier. By disconnecting the appropriate circuit, the high voltage should come up. It may be helpful to use the following information, in sequence, to troubleshoot an inoperative high-voltage circuit.

1. Check the collector of Q1316 for approximately -0.7 volts to approximately +1.6 volts.
2. Check the positive end of C1318 for approximately +21 volts.
3. Check the collector of Q1318 for approximately +21 volts.
4. Disconnect and lift one end of CR1329.
5. Disconnect the crt base socket to eliminate crt loading.

6. Check or replace C1316.

7. If the oscillator still does not come up, the highvoltage multiplier could be defective. Remove the Vertical Preamp board to expose the multiplier and disconnect the center tap of the high-voltage transformer from the multiplier tie point.

Troubleshooting the Sweep Circuits. The sweep circuits should be repaired in the following order:

```
A (Sweep)
A INTEN (Intensified Sweep)
B DLY'D (Sweep)
MIX (Sweep)
```


A Sweep and Logic

1. Remove all external signals to the instrument, set TIME/DIV to 1 ms (lock knobs), set HORIZ DISPLAY to A and set TRIG MODE to AUTO.
2. Remove Q572 from its socket. This will cause only the Slow Non-Delaying Sweep Generator (A Sweep), which normally should be in operation, to stay at a low voltage level. Check the collector of Q984 for approximately +0.3 volt. Check the collector of Q1014 for approximately +16.4 volts. Check the collector of Q922 for approximately +14.6 volts.

Set TIME/DIV to 0.5μ s or faster. This should cause the Slow-Non-Delaying Sweep Generator to run up and the Fast Non-Delaying Sweep Generator to run down. Check the collector of Q984 for approximately +16.4 volts and check the collector of Q1014 for approximately +0.3 volt.

At this point, the A Sweep holdoff should be in a reset condition. Check TP588 for approximately -4 volts. Check the emitter of Q644 for approximately 0 volt.

When Q572 was removed from its socket, pin 16 of U600 went positive, which is the equivalent of a holdoff start pulse. Check pin 16 of U600 for approximately +2.5 volts. Check pin 17 of U600 for approximately +1.7 volts. Check TP572 for approximately 0 volt. Check pin 3 of U600 for approximately +0.2 volt.
3. Install Q572 and remove Q574 from its socket. This will cause only the Fast Non-Delaying Sweep Generator, which normally should be in operation, to stay at a start (high) voltage level. Check the collector of Q1014 for approximately +14 volts. Set TIME/DIV to 1 ms . Check the collector of Q984 for approximately +14 volts.

At this point the A Sweep holdoff should be at a high level. Check TP588 for approximately +2 volts. Check the emitter of Q644 for approximately +4.3 volts.

Maintenance-475A Service

Now, pin 3 of U600 should have a low auto gate voltage. Check TP572 for approximately 0 volt. Check pin 16 of U600 for approximately 0 volt. Check pin 17 of U600 for approximately -0.7 volt. Check pin 6 of U600 for approximately +4.8 volts. Check pin 3 of U600 for approximately -0.2 volt. Install Q574 and check the collector of Q984 for a repetitive sweep waveform

A INTEN Sweep and Logic

Remove all external signals to the instrument, set TIME/DIV to 1 ms (lock knobs), set HORIZ DISPLAY to A INTEN and set TRIG MODE to AUTO.

1. Remove $Q 572$ from its socket. This will cause the A Intensified Sweep Generator (A Sweep), which normally should be in operation, to stay at a low voltage level. Check the collector of Q922 for approximately +0.3 volt. Check the collector of Q1014 for approximately +16.4 volts. Check the collector of Q984 for approximately +14 volts.

The A Sweep holdoff should now be in a reset condition. Check TP588 for approximately -4 volts. Check the emitter of Q644 for approximately 0 volt.

When Q572 was removed from its socket, pin 16 of U600 went positive, which is the equivalent of a holdoff start pulse. Check pin 16 of U600 for approximately +2.5 volts. Check pin 17 of U600 for approximately +1.7 volts. Check TP572 for approximately 0 volt. Check pin 3 of U600 for approximately +0.2 volt.
2. Install Q572 and remove Q574 from its socket. This will cause only the A Intensified Sweep Generator, (which normally should be in operation) to stay at a start (high) voltage level. Check the collector of Q922 for approximately +13.9 volts.

At this point, the A Sweep holdoff should be at a high voltage level. Check TP588 for approximately +2 volts. Check the emitter of Q644 for approximately +4.3 volts.

Pin 3 of U600 should now have a low auto gate voltage. Check TP572 for approximately 0 voit. Check pin 16 of U600 for approximately 0 volt. Check pin 17 of U600 for approximately -0.7 volt. Check pin 6 of U600 for approximately +4.8 volts. Check pin 3 of U600 for approximately 0.2 volt. Install Q574 and check the collector of Q922 for a repetitive sweep waveform.

B DLY'D Sweep and Logic

The A Sweep and A INTEN sweep should be working properly before starting this procedure. Remove all external signals to the instrument, set TIME/DIV to 1 ms (lock knobs), set HORIZ DISPLAY to B DLY'D and set TRIG MODE to AUTO.

1. Remove Q574 from its socket. Check the collector of Q922 for approximately +14.5 volts. Check the base of Q792 for approximately -5 volts. Check the collector of Q792 for approximately +1.2 volts. Check TP802 for approximately 0 volt. Check TP826 for approximately -1.8 volts. Check TP996 for approximately -3.7 volts. Check the collector of Q984 for approximately +14 volts.
2. Install Q574 and remove Q572. Check the collector of Q922 for approximately +0.2 volt. Check the base of Q792 for approximately -2 volts. Check the collector of Q792 for approximately -0.7 volt. Check TP802 for approximately 0 volt. Check TP826 for approximately -3.8 volts. Check TP996 for approximately -1.7 volts. Check the collector of Q984 for approximately 0.2 volt. Install Q572 and check the collector of Q984 for a repetitive sweep waveform.

MIX Sweep and Logic

The A Sweep, A INTEN Sweep and B DLY'D Sweep should be working properly before starting this procedure. Remove all external signals to the instrument, set A TIME/DIV to 1 ms , unlock knobs and set B TIME/DIV to 0.1 ms , set HORIZ DISPLAY to MIX, set TRIG MODE to AUTO and set B TRIGGER SOURCE to STARTS AFTER DELAY.

Compare the waveform obtained at pin 10 of J5 against the waveform at the collector of Q922 and check for similarity. Check TP996 for a delayed gate, with an amplitude of approximately -1.7 volts, that occurs during the run down ramp on the collector of Q922. The time position of the delayed gate can be controlled with DELAY TIME POSITION. Check the collector of Q984 for a fast ramp waveform that occurs during a slow ramp waveform. The fast ramp waveform runs down at a rate set by the B TIME/DIV control and is positioned in time by the DELAY TIME POSITION control.

Maintenance-475A Service

Troubleshooting the Horizontal Amplifier. The Horizontal Amplifier contains push-pull circuitry that can be checked in the following manner:

Set TIME/DIV to 1 ms (lock knobs) and set TRIG MODE to SINGL SWP. Remove Q1114, Q956 and Q1026 from their sockets. Connect a voltmeter between the base of Q1152 and the base of Q1162; adjust R1130 for 0 volt. Check the voltages in the amplifier against the voltages listed on the Horizontal Amplifier schematic diagram. Check the voltage at the bases of Q1124 and Q1134 for balance and apply this balance check procedure to each stage, proceeding toward the amplifier output.

Install Q1114, Q956 and Q1026 in their sockets and check for a repetitive sweep.

Troubleshooting the Vertical System. The instrument front panel TRIG VIEW control provides a quick way to find trouble in this circuitry. Press the TRIG VIEW pushbutton and adjust A TRIGGER LEVEL control to bring the trace to the crt viewing area. If unable to obtain a trace, look for a problem in the Vertical Output Amplfier. If a trace can be obtained, look for a problem in the Channel 1 or Channel 2 Preamplifier or the Vertical Channel Switching circuitry.

When troubleshooting the vertical deflection system, the best procedure is to start from the input and work to the output of the problem-circuit area (determined by previous checks using TRIG VIEW pushbutton).

Preamplifier Troubleshooting

The following procedure can be used for Channel 1 or Channel 2 Preamplifier. Channel 1 is described as an example to identify circuit functions.

Remove any external signal from the instrument input. Check the input of U120 (pin 13) for 0 volt. Connect a voltmeter between pins 5 and 9 of U120 and adjust CH 1 VAR BAL (R110) for 0 volt. Measure from pin 5 or 9 of U120 to ground and check for the recommended voltage listed on the appropriate Vertical Preamp schematic diagram.

Connect the voltmeter between pins 5 and 9 of U140 and adjust CH 1 VOLTS/DIV BAL (R135) for 0 volt. Measure from pin 5 or 9 of U140 to ground and check for the recommended voltage on the diagram. Check the collectors of Q172 and Q182 for voltages listed on the diagram.

Connect the voltmeter between the collectors of Q178 and Q188 and adjust the vertical POSITION control for 0 volt. Measure from the collector of Q178 or Q188 to ground and check for voltages listed on the diagram.

Vertical Channel Switch Troubleshooting
The collector voltages of Q178 and Q188 must by balanced as detailed in the preceding steps before starting this procedure.

Set VERT MODE to CH 1 and check the dc voltages in the channel switching circuitry for the voltages listed on the Vertical Channel Switching schematic diagram. Do not check waveforms until dc operation is normal.

Vertical Output Amplifier Troubleshooting

Disconnect the delay line connection on the Vertical Preamp board. This requires the use of a soldering iron (a 40 to 60 Watt iron works best) to unsolder the delay line ground connection.

Check for the recommended voltages listed on the Vertical Output Amplifier diagram.

Troubleshooting the Z-Axis Circuit (CRT Circuit). Set TIME/DIV to 1 ms (lock knobs) and set TRIG MODE to SINGL SWP. Disconnect and lift one end of CR1343. Check the voltage at TP1364 for approximately +6 volts. Press the BEAM FINDER pushbutton and check the voltage at TP1364 for approximately +25 volts. If these voltages cannot be obtained, check the voltage across VR1362 for approximately +6.2 volts. Remove Q1362 from its socket and check the voltage at the base of Q1352 for approximately +1.3 volts. Check the base of Q1344 for approximately +0.6 volt.

If the above-mentioned voltages can be obtained, disconnect and lift one end of CR1341. Check the voltage swing at the collector of Q1338 for approximately +7.8 volts to -1.3 volts while turning INTENSITY control from full counterclockwise to full clockwise. If these voltages cannot be obtained, check the voltage at the base of Q1338 for -1.75 volts. Remove Q1332 from its socket. Disconnect J1333 and J1334 (coaxial-type end-lead connectors) from their sockets. Repeat the voltage swing check at the collector of Q1338 as performed previously.

Connect J1333, J1334, CR1343 and CR1341 to the circuit board. Install Q1362 and Q1332 in their sockets.

CORRECTIVE MAINTENANCE

Introduction

Corrective maintenance consists of component replacement and instrument repair. Special techniques required to replace components in this instrument are given here.

Obtaining Replacement Parts

Standard Parts. All electrical and mechanical parts replacements for the 475A can be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components can be obtained locally in less time than is required to order them from Tektronix, Inc. Before purchasing or ordering replacement parts, check the parts list for value, tolerance, rating and description.

NOTE

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade instrument performance.

Special Parts. In addition to the standard electronic components, some special components are used in the 475A. These components are manufactured or selected by Tektronix, Inc. to meet specific performance requirements, or are manufactured for Tektronix, Inc. in accordance with our specifications. Most of the mechanical parts used in this instrument have been manufactured by Tektronix, Inc. Order all special parts directly from your local Tektronix Field Office or representative.

Ordering Parts. When ordering replacement parts from Tektronix, Inc., it is imperative that all of the following information be included in the order to ensure receiving the proper parts.

1. Instrument type (include modification or option numbers).
2. Instrument serial number.
3. A description of the part (if electrical, include the circuit number).
4. Tektronix Part number.

Soldering Techniques

WARNING

Always disconnect the instrument from the power
source before attempting to solder in the instrument.

Ordinary 60/40 solder and a 15- to 40-watt pencil-type soldering iron can be used to accomplish the majority of the soldering to be done in the 475A. If a higher wattagerating soldering iron is used on the etched circuit boards, excessive heat can cause the etched circuit wiring to separate from the board base material.

The Vertical Preamplifier Attenuator circuit boards are made of material easily damaged by excessive heat. When soldering to these boards, do not use a soldering iron with a rating of more than approximately 15 watts. Avoid prolonged applications of heat to circuit-board connections. Use only isoproplyl alcohol when cleaning this circuit board.

The following technique should be used to replace a component on a circuit board. Most components can be replaced without removing the boards from the instrument.

1. Grip the component lead with long-nose pliers. Touch the soldering iron to the lead at the solder connection. Do not lay the iron directly on the board, as it may damage the board.
2. When the solder begins to melt, pull the lead out gently. If unable to pull the lead without using force, try removing the other end of component as it may remove easier.

note

The reason that some component leads seem troublesome to remove is due to a bend placed on each lead during machine insertion of the component in the circuit-board manufacturing process. The purpose of the bent leads is to hold the component in place during a flow-soldering, manufacturing process that solders all components at once.

If a component lead is extremely difficult to remove, it may be helpful to straighten the leads on the back side of the board with a small screwdriver or pliers while heating the soldered connection.

Desolder the component from the circuit board using heat on the component lead so that the solder will stay behind on the board. If it is desired to remove solder from a circuit board hole for easier installation of a new component, a vacuum-type desoldering tool or a solderremoving wick should be used for this purpose.

Maintenance-475A Service

3. Bend the leads of the new component to fit the holes in the board. If the component is replaced while the board is mounted in the instrument, cut the leads so they will just protrude through the board. Insert the leads into the holes in the board so the component is firmly seated against the board (or as positioned originally). If it does not seat properly, heat the solder and gently press the component into place.
4. Touch the iron to the connection and apply a small amount of solder to make a firm solder joint. To protect heat-sensitive components, hold the lead between the component body and the solder joint with a pair of longnose pliers or other heat sink.
5. Clip the excess lead that protrudes through the board (if not clipped in step 3).
6. Clean the area around the solder connection with a flux-remover solvent. Be careful not to remove information printed on the board.

When soldering to the ceramic strips in the instrument a slightly larger soldering iron can be used. It is recommended that a solder containing about 3% silver be used when soldering to these strips to avoid destroying the bond to the ceramic material. This bond can be broken by repeated use of ordinary tin-lead solder or by the application of too much heat; however, occasional use of ordinary solder will not break the bond if excessive heat is not applied.

Observe the following precautions when soldering to a ceramic terminal strip:

1. Use a hot iron for a short time. Apply only enough heat to make the solder flow freely.
2. Maintain a clean, properly tinned tip.
3. Avoid putting pressure on the ceramic terminal strip.
4. Do not attempt to fill the terminal-strip notch with solder; use only enough solder to cover the wires adequately.
5. Clean the flux from the terminal strip with a fluxremover solvent.

If it becomes necessary to solder in the general area of any of the high-frequency contacts in the instrument, clean the contacts immediately upon completion of the soldering. Refer to Cleaning-Switch Contacts under PREVENTIVE MAINTENANCE for recommended cleaners and procedures.

Small Component Replacement

WARNING

Always disconnect the instrument from the power
source before attempting to replace components.

General. The exploded-view drawings associated with the Mechanical Parts List (located at rear of manual) may be helpful in the removal or disassembly of individual components or sub-assemblies.

Transistor and IC Replacement. Transistors and IC's (integrated circuits) should not be replaced unless they are actually defective. If removed from their sockets during routine maintenance return them to their original sockets. Unnecessary replacement or switching of semiconductor devices may affect the calibration of the instrument. When a transistor is replaced, check the operation of the part of the instrument that may be affected.

Any replacement component should be of the original type or a direct replacement. Bend the leads to fit the socket and cut the leads to the same length as on the component being replaced. See Fig. 4-3 for lead configurations and basing used in this instrument.

If a replacement transistor is made by a different manufacturer than the original, check the manufacturer's basing diagram for correct basing. All transistor sockets in this instrument are wired for the standard basing as used for metal-cased transistors.

The chassis-mounted power supply transistors and their mounting bolts are insulated from the chassis. In addition, silicone grease is used to increase heat transfer capabilities. Install the insulators and replace the silicone grease when replacing these transistors. The grease should be applied to both sides of the mica insulators, and should be applied to the bottom side of the transistor where it comes in contact with the insulator.

WARNING

Handle silicone grease with care. Avoid getting silicone grease in the eyes. Wash hands thoroughly atter use.

NOTE

After replacing a power transistor, check that the collector is not shorted to ground before applying power.

WARNING

Voltages are present on the exterior surface of the chassis-mounted power supply transistors if the power is applied to the instrument and the POWER switch is on. Also, voltages may be present several minutes after the instrument is turned off.

Interconnecting Pin Replacement. Two methods of interconnection are used in this instrument to connect the circuit boards with other boards and components. When the interconnection is made with a coaxial cable, a special end-lead connector plugs into a socket on the board. Other interconnections are made with a pin soldered onto the board. Two types of mating connections are used for these interconnecting pins. If the mating connector is on the end of a lead, an end-lead pin connector is used which mates with the interconnecting pin. The following information provides the replacement procedure for the various types of interconnecting methods.

a. COAXIAL-TYPE END-LEAD CONNECTORS.

Replacement of the coaxial-type end-lead connectors requires special tools and techniques; only experienced maintenance personnel should attempt replacement of these connectors. It is recommended that the cable or wiring harness be replaced as a unit. For cable or wiring harness part numbers, see the Mechanical Parts List. An alternative solution is to refer the replacement of the defective connector to your local Tektronix Field Office or representative.
b. CIRCUIT-BOARD PINS.

note

A circuit-board pin replacement kit including necessary tools, instructions, and replacement pins is available from Tektronix, Inc. Order Tektronix Part No. 040-0542-00.

To replace a pin which is mounted on a circuit board, first disconnect any pin connectors. Then, unsolder the damaged pin and pull it out of the circuit board with a pair of pliers. Be careful not to damage the wiring on the board with too much heat. Remove the ferrule from the new interconnecting pin and press the new pin into the hole in the circuit board. Position the pin in the same manner as the old pin. Then solder the pin on both sides of the circuit board. If the old pin was bent at an angle to mate with a connector, bend the new pin to match the assoicated pins.

c. CIRCUIT-BOARD PIN SOCKETS.

The pin sockets on the circuit boards are soldered to the rear of the board. To replace one of these sockets, first unsolder the pin (use a vacuum-type desoldering tool or a solder-removing wick to remove excess solder). Then straighten the tabs on the socket and remove it from the hole in the board. Place the new socket in the circuit board hole and press the tabs down against the board. Solder the tabs of the socket to the circuit board; be careful not to get solder into the socket.

NOTE

The spring tension of the pin sockets ensures a good connection between the circuit board and the pin. This spring tension can be destroyed by using the pin sockets as a connecting point for spring-loaded probe tips, alligator clips, etc.

e. END-LEAD PIN CONNECTORS.

The pin connectors used to connect the wires to the interconnecting pins are clamped to the ends of the associated leads. To replace damaged end-lead pin connectors, remove the old pin connector from the end of the lead and clamp the replacement connector to the lead.

Some of the pin connectors are grouped together and mounted in a plastic holder; the overall result is that these connectors are removed and installed as a multi-pin connector. To provide correct orientation of this multi-pin connector when it is replaced, an arrow is stamped on the circuit board and a matching arrow is molded into the plastic housing of the multi-pin connector. Be sure these arrows are aligned as the multi-pin connector is replaced. If the individual end-lead pin connectors are removed from the plastic holder, note the color of the individual wires for replacement.

Ceramic Terminal Strip Replacement. Replacement strips (including studs) and spacers are supplied under separate part numbers. However, the old spacers may be re-used if they are not damaged. The applicable Tektronix Part Numbers for the ceramic strips and spacers used in this instrument are given in the Mechanical Parts List.

To replace a ceramic terminal strip, use the following procedure.

REMOVAL:

1. Unsolder all components and connections on the strip. To aid in replacing the strip, it may be advisable to mark each lead or draw a sketch to show location of the components and connections.
2. Pry or pull the damaged strip from the chassis.

Maintenance-475A Service

3. If the spacers come out with the strip, remove them from the stud pins for use on the new strip (spacers should be replaced if they are damaged).

REPLACEMENT:

1. Place the spacers in the chassis holes.
2. Carefully press the studs of the strip into the spacers until they are completely seated. If necessary, use a soft mallet and tap very lightly, directly over the stud, to seat the strip completely.
3. If the stud extends through the spacers, cut off the excess.
4. Replace all components and connections. Observe the soldering precautions given under Soldering Techniques in this section.

Fuse Replacement. Table 4-4 gives the rating, location, and functions of the fuses used in this instrument.

TABLE 4-4
Fuse Rating, Location and Functions

Circuit Number	Rating	Location	Function
F1401	1.5 A Fast	Rear Panel	115-volt line
F1401	0.75 A Fast	Rear Panel	230-volt line
F1318	1.5 A Fast	Rear of Main Interface Board	High Voltage
F1601	15 A Fast	Front of Inverter Chassis	Inverter Input (Option 7 Only)

Cam Switch Replacement. A complete cam switch is actually a cam switch assembly. Each assembly consists of a delrin-material cam that is rotated by a front-panel knob and a set of contacts (mounted on an adjacent circuit board) that are actuated by the lobes on the cam.

Repair of cam-type switches should be undertaken only by experienced maintenance personnel. Switch alignment and spring tension of the contacts must be carefully maintained for proper operation of the switch. For this reason, it is recommended that the switch assembly be replaced as a unit. For assistance in maintenance of cam-type switches, contact your local Tektronix Field Office or representative.

If a cam switch must be removed from a circuit board the circuit board containing the cam switch must be removed from the instrument. See the circuit-board replacement part of this section for circuit board removal instructions.

Disconnect the flexible coupling between cam switch and variable controls. Remove two connecting screws from each support block that holds the cam to the circuit board. Carefully lift the cam assembly from the circuit board and perform an inspection, cleaning or replacement as intended.

Reassemble the cam-switch assembly by reversing the previous process. Give careful attention to alignment and spacing of support blocks as the cam is mated to its circuit board. Do not bend circuit boards at any time in reassembly and use a very low torque to tighten the mounting screws (two fingers on the screwdriver is enough torque).

Circuit Board Replacement

Occasionally it may be necessary to gain access to the reverse side of a circuit board or to remove one circuit board to gain access to another. The following procedures outline the necessary steps to facilitate instrument disassembly. Most of the connections to the circuit boards in the instrument are made with pin connectors. However, some connections are soldered to the board. Observe the soldering precautions given under Soldering Techniques given in this section.

WARNING

Always disconnect the instrument from the power source before attempting to remove circuit boards.

To aid in identifying and locating circuit boards in the instrument, see Fig. 4-5 for the locations of circuit boards. In the following circuit-board replacement procedure, determine the circuit board to be removed or replaced, find the name of the board listed within this procedure, and follow the removal or installation instructions. To aid in identifying small components described in this procedure, use the diagrams in Section 9, Mechanical Parts List, in this manual.

Fig. 4-5. Locations of circuit boards in the 475A Oscilloscope.

Vertical Preamp Board Removal. Remove the board as follows:

1. 475 A DM 44 only-Disconnect five multi-conductor ribbon-cables and one single conductor from the DM55 Main circuit board. Remove the screws from the rear of the Main circuit board chassis and separate the board and chassis assembly from the instrument chassis.
2. Remove both vertical POSITION control shafts. This requires a 0.050 -inch Allen wrench to loosen the front setscrew in each coupling.
3. Remove the TRIG VIEW, 100 OR 20 MHz BW control shaft. Loosen the coupling setscrew with a 0.050 -inch Allen wrench.
4. Remove the INVERT control extension shaft. Insert a scribe or small screwdriver between the end of the white plastic switch-shaft and the inside end of the black plastic extension-shaft and pry gently.
5. Disconnect eight coaxial cables from the front and back sides of the board and confirm color coding of each cable with its jack number in the following list. Record any exceptions to this procedure for reference when reassembling.
a. Cable to J 380 is white with black and brown stripes.
b. Cable to J385 is white with black and red stripes.
c. Cable to J 399 is white with a yellow stripe.
d. Cable to $J 430$ is white with a violet stripe.
e. Cable to J 405 is white with a blue stripe.
f. Cable to J 410 is white with a green stripe.
g. Cable to J400 (back of board) is white with a brown stripe.
h. Cable to J349 (bottom, back of board, rear of INVERT switch) is white with a red stripe.
6. Disconnect the delay-line connection on the Vertical Preamp board. This requires the use of a soldering iron (a 40 to 60 -Watt iron works best) to unsolder the delay-line ground connection.
7. Unsolder the capacitor lead at the Vertical Preamp board (bottom, back of board, between the rear of the INVERT switch and J349) using a 15 -Watt soldering iron.
8. At the Vertical Preamp board unsolder one end of a wire braid that connects between the bottom of the Vertical Preamp and the Main Interface board under the high-voltage shield.
9. Disconnect three ribbon-cables from the Vertical Mode-Gain Switch board and confirm the number of wires in each cable with its plug number in the following list. Note locations of cables to facilitate correct reinstallation.
a. Disconnect a six-wire cable from P329.
b. Disconnect a seven-wire cable from P160.
c. Disconnect a ten-wire cable from P260.
10. At a feed-through terminal near U120 and U220, unsolder two 30 -ohm resistors that connect each attenuator to the Vertical Preamp board. Loosen attenuator screws for clearance if necessary.
11. Remove the Vertical Preamp board mountinghardware at eight locations described in the following list. A small Phillips screwdriver is required.
a. Remove the screw, cabinet-ground spring, and hexagonal post at center of the board.
b. Remove two screws that mount the board to two long posts on the main chassis near top and bottom center of the Vertical Preamp board.
c. Remove three screws that mount the board to the rear preamp bracket (at left edge of board).
d. Remove two screws at the right edge of the board (one screw mounts each attenuator chassis to the board).
12. Remove the Vertical Preamp circuit-board, using care to prevent damage to any of the components as the board is removed.

To install the Vertical Preamp circuit-board, reverse the removal procedure.

Vertical Mode-Gain Switch Board Removal. The Vertical Mode-Gain Switch board and the Channel 1 and Channel 2 attenuators are removed as a unit.

1. Remove the Vertical Preamp circuit-board as outlined previously.
2. Remove the two UNCAL light lenses (VAR VOLTS/DIV UNCAL). Pry them away from front panel with a fingernail and pull them straight out.
3. Remove the VAR and VOLTS/DIV knobs. Set these knobs fully clockwise and loosen their setscrews. This requires a $1 / 16$-inch Allen wrench.
4. Remove the AC-GND-DC switch knobs by pulling the knobs away from the switch, using a tight finger-grip.
5. Remove both attenuator shields, using a small Phillips screwdriver (each is held with five screws and washers).
6. Disconnect four ribbon-cables from the Vertical Mode-Gain Switch board and confirm the number of wires in each cable with its plug number in the following list. Note the locations of cables to facilitate correct reinstallation.
a. Disconnect a five-wire cable from the Main Interface board at P300.
b. Disconnect a one-wire cable from the Main Interface board at P128.
c. Disconnect two three-wire cables from the VOLTS/DIV sensitivity indicator-lights at P310 and P320.
7. Unsolder the braid connecting the CH 2 attenuator to the Main Interface, at the Main Interface board.
8. Remove the four nuts that secure the attenuators to the front casting and remove the two screws that mount the board to two posts on the main chassis.
9. Remove the Vertical Mode-Gain Switch circuitboard and attenuator assembly from the instrument, using care to prevent damage to any of the components as the board is removed.

To install the Vertical Mode-Gain Switch circuit-board and attenuator assembly, reverse the removal procedure. To align the VERT MODE switch pushbuttons, hold the assembly in place with a slight forward pressure and use a small tool to reach through the front panel to align the buttons. Do not tighten the circuit-board securing screws until the securing nuts at the front of the attenuator chassis are tight and the circuit board is aligned properly.

Trigger Generator and Z-Axis Logic Board Removal. Remove the board as follows:

1. 475A DM44 only-Disconnect five multi-conductor ribbon-cables and one single conductor from the DM44 Main circuit board. Remove two screws from the rear of the main circuit-board chassis and separate the board chassis from the instrument chassis.
2. Remove the LOW LINE, READY, and TRIG light lenses. Pry them away from the front panel with a fingernail and pull them straight out.
3. Remove the POWER extension shaft from the power-switch plastic actuator. Use a small flat-blade screwdriver to pry apart the coupling of the shaft and actuator, using caution to prevent damage to the coupling.
4. Disconnect four ribbon-cables from the board as directed in the following list.
a. Disconnect a four-wire cable near Q752 at the top of the board (cable from B TRIGGER LEVEL control).
b. Disconnect a four-wire cable near J706, located two inches below the cable previously removed (cable from A TRIGGER LEVEL control).
c. Disconnect one-wire cable near the left end of J3 at the bottom of the board.
d. Disconnect a five-wire cable from P644 at the bottom, back of the board (cable from A TRIG HOLDOFF control).
5. Disconnect eight coaxial cables from the front and back sides of the board and confirm color coding of each cable with its jack number in the following list. Record any exceptions to this procedure for reference when reassembling.
a. Cable to $J 704$ is white with a blue stripe.
b. Cable to $J 702$ is white with a green stripe.

Maintenance-475A Service

c. Cable to J 706 is white with a yellow stripe.
d. Cable to J664 is white with black and brown stripes.
e. Cable to J674 is white with black and red stripes.
f. Cable to J694 is white with black and orange stripes.
g. Cable to J824 is white with an orange stripe.
h. Cable to J584 is white with a red stripe.
6. Unsolder the 33 -ohm resistors from the external trigger input connectors.
7. Remove the POWER switch mounting-bracket from the board. A $3 / 16$-inch nut driver will be required to remove a mounting nut.
8. Remove five board-mounting screws (two each at left and right edges, and one screw at the top center of the board).
9. Remove the Trigger Generator and Z-Axis Logic circuit-board from the instrument.

To install the Trigger Generator and Z-Axis Logic board, reverse the removal procedure.

1. Remove the Trigger Generator and Z-Axis Logic circuit-board as outlined previously.
2. Remove the X10 MAG and UNCAL light lenses. Pry them away from the front panel with a fingernail and pull them straight out.
3. Remove the VAR and TIME/DIV knobs. Set these knobs fully clockwise and loosen their setscrews. A 1/16inch Allen wrench is required.
4. Remove the hexagonal post and the board mounting-screws.
5. Remove the Timing circuit-board from the instrument. Use caution to prevent damage to the connecting pins on bottom of the board.

To install the Timing circuit-board, reverse the removal procedure.

Vertical Output Board Removal. Remove the board as follows:

1. Remove the Vertical Output circuit-board shield (if installed).
2. Disconnect the three-wire cable from the top-front of the Vertical Output board.
3. Disconnect two wires from the board at the crt neck pins.
4. Unsolder the delay-line ground terminal at the delay-line connection with the board (a 40 to 60-Watt soldering iron works best). Disconnect and dress the delay line away from the board.
5. Unsolder the flexible grounding braid from the case of integrated circuit U470 using a 40 to $60-$ Watt soldering iron.
6. Remove the integrated-circuit mounting-nut from the main chassis. A 1/4-inch open-end wrench may be necessary to remove the nut.
7. Remove the two circuit-board screws along the top edge of the board and remove the Vertical Output circuitboard.

To install the Vertical Output circuit-board, reverse the removal procedure.

Fan Motor Board Removal. Remove the board as follows:

1. Remove the Vertical Preamp circuit-board as outlined previously.
2. Disconnect a two-wire ribbon-cable at the Fan Motor board.
3. Loosen the setscrew in the fan impeller coupling with a 0.050 -inch Allen wrench.
4. Remove two thread-forming screws nearest the Fan Motor circuit-board, that hold the fan motor mount to the main chassis.
5. Remove the fan motor and Fan Motor circuit-board as a unit.

To install the Fan Motor circuit-board, reverse the removal procedure.

Inverter Board Removal (Option 7 only). Remove the board as follows:

1. Remove the Vertical Output circuit-board shield (if installed).
2. Unsolder five wires from the power-transformer terminals and confirm each wire color with its location in the following list.
a. Wire to terminal 10 is white with a brown stripe.
b. Wire to terminal 10 A is white with a red stripe.
c. Wire to terminal 11 is white with a gray stripe.
d. Wire to terminal 12A is white with an orange stripe.
e. Wi e to terminal 12 is white with a yellow stripe.
3. Remove two screws from the inverter chassis (one screw at the front and one at the rear of the inverter chassis, near the top of the instrument main chassis). Remove one remaining screw from the main chassis to the inverter chassis, accessible through the space along the bottom of the power transformer. A long Phillips screwdriver is necessary to remove all three screws.
4. Remove the Inverter chassis from the instrument, using care to prevent damage to interconnecting wires that pass through the hole in the main chassis.
5. Remove the screws holding the Inverter circuitboard to the Inverter chassis.

To install the Inverter circuit-board, reverse the removal procedure.

Power Supply Board Removal (475A DM44 only). Remove the board as follows:

1. Remove the Vertical Output circuit-board shield (if installed).
2. Disconnect one ribbon-cable from the rear of the 475A DM44 Main circuit-board and guide the plug through a slotted opening in the main circuit-board chassis.
3. Unsolder five-wires from the power transformer and confirm each wire color with its location in the following list.
a. Wire to terminal 10 is white with a brown stripe.
b. Wire to terminal 10A is white with a red stripe.
c. Wire to terminal 11 is white with an orange stripe.
d. Wire to terminal 12 A is white with a yellow stripe.
e. Wire to terminal 12 is white with a green stripe.
4. Remove two screws from the Power Supply board chassis (one screw each at the front and rear of the Power Supply board chassis near the top of the 475A main chassis). Remove one remaining screw from the main chassis to the power supply chassis (accessible through the space along the bottom of power transformer). A long Phillips screwdriver is necessary to remove all three screws.
5. Remove the power supply chassis from the instrument, using care to prevent damage to interconnecting wires that pass through the hole in the main chassis.
6. Remove a piece of tape from the insulation-wrap to gain access to the board components.
7. Remove the two screws holding the Power Supply circuit-board to the power supply chassis.
8. Remove three Keps nuts and a plastic bar that hold a transistor and two integrated circuits to the power supply chassis.
9. Unsolder two ribbon-cables, noting the color codes and wire positions. If board replacement is intended, connect the wires to the new board.

To install the Power Supply circuit-board, reverse the removal procedure.

Maintenance-475A Service

Main Interface Board Removal. If repair is necessary on the reverse side of the Main Interface circuit-board, it may be possible to gain access to that area by removal of one or two circuit boards as outlined previously. Consider this first or proceed with the Main Interface board removal procedure.

If the Main Interface board becomes defective, it is recommended that your local Tektronix Field Office or representative be contacted to arrange instrument repair at a Tektronix Service Center.

The Main Interface circuit-board can be removed as follows:

1. Remove the Vertical Preamp circuit-board as outlined previously.
2. Remove the Trigger Generator and Z-Axis Logic board as outlined previously.
3. Remove the high-voltage shield and remove the Vertical Output circuit-board shield (if installed).
4. Remove the BEAM FINDER and X10 MAG pushbutton extension-shafts. Insert a scribe or small screwdriver between the end of the white plastic switch-shaft and the inside end of the black plastic extension-shaft and pry gently.
5. Remove the INTENSITY, FOCUS, SCALE ILLUM, ASTIG and TRACE ROTATION control extension-shafts. Loosen the front setscrew in each coupling with a 0.050inch Allen wrench.
6. Disconnnect twelve ribbon or wire cableconnectors from the Main Interface circuit-board and confirm the number and color of wires for each plug and its location in the following list.
a. Disconnect one-wire from pin E at the top-left of the board.
b. Disconnect a two-wire cable from pins B and C at the top-left of the board.
c. Disconnect a two-wire cable near the rear of the INTENSITY control (cable from the y-axis alignment coil).
d. Disconnect a two-wire cable near Q1482 (cable from the graticule lamps).
e. Disconnect a four-wire cable at the right-center of the board (cable from POSITION and FINE controls).
f. Disconnect a four-wire cable at the rear of the A TRIG HOLDOFF control (cable from the DELAY TIME POSITION control).
g. Disconnect a two-wire cable from the CALIBRATOR current loop.
h. Disconnect four, two-wire cables near F1318 at the bottom-left of the board. The cable wires to +15 are red with a brown stripe. The cable wires to -15 are violet with a brown stripe. Cable wires to the pins nearest the fuse (GND) are black. Cable wires to the remaining pins are red with a black stripe.
7. Disconnect two coaxial-cables from the left-center of the board. The cable to J 1302 is white with a gray stripe and the cable to J 1334 is white with black and orange stripes.
8. Disconnect the horizontal deflection plate leads at the crt. This requires a pair of long-nose pliers or tweezers for best removal or reinstallation.
9. Disconnect a three-wire cable from the Vertical Output board.
10. Disconnect a two-wire cable from the Fan Motor board.
11. Unsolder a 10 -ohm, $1 / 2$ watt resistor from the center-tap terminal of the ceramic thick-film resistor mounted near the Vertical Output circuit-board.
12. Unsolder ten wires from the Main Interface circuitboard and confirm each wire color with its location in the following list (all wires from crt socket).
a. Wire to pad 5 is white with a green stripe.
b. Wire to pad 10 is white with black and brown stripes.
c. Wire to pad 7 is white with a violet stripe.
d. Wire to pad 8 is white with a gray stripe.
e. Wire to the one-notch ceramic-strip is white with a yellow stripe.
f. Wire to the -2450 test point is solid red.
g. Wire to the right-hand notch on the three-notch ceramic-strip is white with an orange stripe.
h. Wire to pad 14 (lowest of a pair of wires between the large high-voltage capacitors) is white with brown and yellow stripes.
i. Wire to pad 1 (upper pad between the large highvoltage capacitors) is white with a brown stripe.
j. Wire to second notch on the five-notch ceramic-strip (notch containing junction of a 0.01 microfarad capacitor, a 10-megohm resistor, and a diode) is white with brown and red stripes.
13. Remove the three power transistor mountingscrews from Q1468, Q1426, and Q1448 on the rear subpanel bracket.
14. Remove the mounting screw from transistor Q1456 near the lower-rear corner of the board.
15. Remove the mounting screw from transistor Q1482 near the top-right corner of the board.
16. Remove the four hexagonal posts that mount the high-voltage shield. Use a $3 / 16$-inch nut driver.
17. Remove seven Main Interface board mountingscrews.
18. Disconnect the crt anode-lead plug from the highvoltage multiplier jack. Ground this lead to the instrument main-chassis to remove any stored charge. Pry the multiplier jack from its mounting clip with a medium-size screwdriver.
19. Separate the Main Interface circuit-board from the instrument chassis, using care to prevent damage to components and wiring. Carefully thread the interconnecting cables through the board and chassis, as necessary, to avoid strain on any cable. Let the board pivot on the power-transformer leads still connected to the board.

Perform repairs on the reverse side of the Main Interface board, if repair is intended. To reinstall the board, reverse the removal procedure. If intentions are to replace the Main Interface circuit-board, continue with this procedure.
20. Unsolder the power-transformer wires from the Main Interface board and confirm each wire color with its location in Fig. 4-6. Record any exceptions to this procedure to facilitate reassembly.

Fig. 4-6. Locations of power transformer secondary wires.
21. Remove the Main Interface circuit-board, using care to prevent strain on any of the wires.
22. Remove the solder from the holes in the circuitboard wire-terminal pads, where wires were removed in this procedure, to facilitate installation.

To install the Main Interface circuit-board, reverse the removal procedure.

Power Transformer Removal

If the Power Transformer becomes defective, it is recommended that your local Tektronix Field Office or representative be contacted to arrange instrument repair at a Tektronix Service Center. If the Power Transformer is to be replaced, be sure to replace only with a direct replacement Tektronix transformer.

Maintenance-475A Service

The Power Transformer can be removed as follows:

1. Remove the Trigger Generator and Z-Axis Logic circuit-board as outlined previously.
2. Remove the regulating-range selector cover and the blue rear-panel of the instrument.
3. Option 4 only-Remove the power line input filter (emi filter).
4. Remove the transformer leads from the regulatingrange selector body. It will be necessary to use a special pin removing tool available from Tektronix (Part Number $003-0707-00$). It is only necessary to use this tool to remove the transformer leads from the regulating-range selector body. The leads may be installed by simply pushing them into place. Record the color and location of each wire to facilitate correct reassembly.
5. Option 7 only-Unsolder five wires from the transformer terminals and confirm each wire color with its location in the following list.
a. Wire to terminal 10 is white with a brown stripe.
b. Wire to terminal 10 A is white with a red stripe.
c. Wire to terminal 11 is white with a gray stripe.
d. Wire to terminal 12 A is white with an orange stripe.
e. Wire to terminal 12 is white with a yellow stripe.
6. 475A DM44 only-Unsolder five wires from the transformer terminals and confirm each wire color with its location in the following list.
a. Wire to terminal 10 is white with a brown stripe.
b. Wire to terminal 10 A is white with a red stripe.
c. Wire to terminal 11 is white with an orange stripe.
d. Wire to terminal 12 A is white with a yellow stripe.
e. Wire to terminal 12 is white with a green stripe.
7. Remove two screws and Keps nuts that hold the transformer bracket to the rear of the main chassis. Remove two Keps nuts that hold the transformer bracket to the main chassis and the transformer electrical shield. A $5 / 16$-inch, nut-driver wrench is helpful for easiest removal of these nuts.
8. Unsolder the wires from the thermal cutout on the transformer bracket and note the wire colors.
9. Unsolder the transformer wires from the Main Interface board as directed in the Main Interface board removal procedure, part 20.
10. Remove the transformer from the instrument.
11. Remove the solder from the holes in the circuitboard wire-terminal pads, where wires were removed in this procedure, to facilitate installation.

To install a new Power Transformer, reverse this removal procedure.

Cathode-ray Tube Removal

WARNING

Use care when handling a crt. Protective clothing and safety glasses should be worn. Avoid striking it on any object which might cause it to crack or implode. When storing a crt, place it in a protective carton or set it face down on a smooth surface in a protected location with a soft mat under the faceplate to protect it from scratches.

1. 475A DM44 only-Disconnect three ribbon-cables from the DM44 main circuit-board. Remove two screws from the rear of the main circuit-board chassis and separate the board and chassis assembly from the instrument chassis.
2. Remove the Vertical Output circuit-board shield (if installed).
3. Remove two flat-head screws from the blue-plastic cover at the rear of the instrument. Carefully position the blue-plastic cover to allow access to the screws holding the crt rear cover, then remove the crt rear cover.
4. Disconnect the crt anode plug from the high-voltage jack and touch the lead to the chassis to remove any stored charge.

Maintenance-475A Service

5. Disconnect the crt base socket from the rear of the crt.
6. Disconnect the four vertical deflection plate leads from the Vertical Output board at the crt neck pins.
7. Disconnect the two horizontal deflection plate leads from the Main Interface board at the crt neck pins (accessible through an opening at center of the Main Interface board).
8. Remove the crt bezel and implosion shield.
9. Hold one hand on the crt base and slowly push the crt forward, guiding the crt face with the other hand. Guide the anode plug through the crt shield opening while slowly pulling the crt out of the instrument. The plastic cornerpads may fall loose when the crt is removed; save them for reinstallation. Set the crt on a soft material to prevent scratching.

Cathode-ray Tube Installation

1. Position the crt rear-support (plastic centering bracket) inside the crt shield approximately 1-1/2-inches from the rear of the shield.
2. Check that the plastic corner-pads are in place and seated at the front corners of the crt opening.
3. Insert the crt into the shield. Guide the crt anode lead through the hole in the shield.
4. Slowly push the crt the rest of the way into the crt shield. If the crt does not go in all the way, pull it part way out and find the reason for binding. It may be necessary to reposition the rear-support bracket or a plastic corner-pad for best installation.
5. Clean the crt faceplate, implosion shield and bezel as directed under Cleaning-Exterior information at the beginning of this section and install the parts. Lightly tighten the four bezel screws (approximately 5-inch pounds).
6. Connect the crt base socket, install the crt rear cover with two round-head screws and install the blue-plastic cover on the rear of the instrument with two flat-head screws.
7. Connect the crt anode lead and carefully connect the deflection plate leads. After each lead is connected, lightly pull on the lead to be sure that it will remain in place.
8. 475A DM44 only-Install the DM44 main circuitboard chassis on the 475A chassis. Install two screws at the rear of the main circuit-board chassis and connect three ribbon-cables to the board.
9. If the crt was replaced, part of the 475A calibration will need to be checked or adjusted. See Table 4-5 under Recalibration After Repair (later in this section) for a listing of calibration checks and adjustments that need to be checked after crt replacement.

High-Voltage Multiplier Removal

1. Remove the Vertical Preamp circuit-board as outlined previously.
2. Remove the cathode-ray tube as outlined previously.
3. Remove the high-voltage shield from the Main Interface circuit-board and remove one screw near the INTENSITY potentiometer.
4. Remove four hexagonal posts, used to mount the high-voltage shield, from the Main Interface board with a 3/16-inch nut-driver.
5. Remove the two nylon nuts from the Main Interface board near C1328.
6. Remove three screws holding the multiplier shield to the main chassis and remove the shield.
7. Unsolder the black wire from the Multiplier at the Main Interface board.
8. Unsolder one wire from a post on the High-Voltage Multiplier.
9. Unsolder the flexible grounding-braid from the case of integrated circuit U470 (on the Vertical Output board). using a 40 to 60 -Watt soldering iron.
10. Remove one screw that holds the crt neck shield to the black-plastic rear bracket.

Maintenance-475A Service

11. Hold the crt base socket away from the neck shield and slide the shield to the rear of the instrument about 2 inches.
12. Pry the Multiplier jack from its mounting clip on the main chassis.
13. Remove the High-Voltage Multiplier. If necessary, carefully pry the Main Interface board away for easier removal and guide the Multiplier jack through the main chassis.
14. To install the High-Voltage Multiplier, reverse the removal procedure. Use the Cathode-ray Tube Installation procedure for installing the crt.

Delay Line Removal

1. Remove the cathode-ray tube as outlined previously.
2. Disconnect a two-wire cable near the rear of the INTENSITY control (cable from y-axis alignment coil).
3. Remove a screw connecting a solder lug and heavy braid from the Vertical Output board at the crt neck shield.
4. Remove one screw that holds the crt neck shield to the black-plastic rear bracket.
5. Hold the crt base socket away from the neck shield and remove the crt neck shield through the main chassis rear opening, using care to guide the y-axis coil cable through the board and chassis holes.
6. Remove the Keps nut and delay-line bracket holding the Delay Line to the main chassis.
7. Disconnect the Delay Line ends at the Vertical Preamp and Vertical Output boards. This may require the use of a soldering iron (a 40 to 60-Watt iron works best).
8. Remove the Delay Line, using care to guide the delay Line ends through the main chassis holes without causing sharp bends in the line.

To install the Delay Line, reverse the removal procedure. Use the Cathode-ray Tube Installation procedure for installing the crt.

Recalibration After Repair

After any electrical component has been replaced, the calibration of that particular circuit should be checked, as well as the calibration of other closely related circuits. Table 4-5 lists the adjustments that may interact with a repair in a particular circuit. The table is also useful as a list of calibration adjustments that should be checked if an adjustment is made when performing the Calibration procedure. Perform a calibration check of each interaction, using the appropriate step in the Calibration procedure found in Section 6 of this manual.

Instrument Repackaging

If the Tektronix instrument is to be shipped to a Tektronix Service Center for service or repair, attach a tag showing: owner (with address) and the name of an individual at your firm that can be contacted. Include complete instrument serial number and a description of the service required.

Save and re-use the package in which your instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

Surround the instrument with polyethylene sheeting to protect the finish of the instrument. Obtain a carton of corrugated cardboard of the correct carton strength and having inside dimensions of no less than six inches more than the instrument dimensions. Cushion the instrument by tightly packing three inches of dunnage or urethane foam between carton and instrument, on all sides. Seal carton with shipping tape or industrial stapler.

The carton test strength for your instrument is 275 pounds.

CALIBRATION INTERACTION AFTER REPAIR OR ADJUSTMENT

													$\begin{aligned} & \frac{2}{4} \\ & \frac{1}{0} \\ & 5 \\ & \frac{2}{2} \\ & 5 \\ & 0 \\ & \frac{1}{4} \\ & \frac{0}{5} \\ & \stackrel{y}{w} \\ & \stackrel{1}{3} \end{aligned}$	$\begin{aligned} & \frac{Z}{d} \\ & 0 \\ & N \\ & T \\ & U \\ & \stackrel{r}{u} \\ & 0 \\ & \frac{T}{U} \end{aligned}$											$\begin{gathered} z \\ \vdots \\ \vdots \\ \times \end{gathered}$	
LOW VOLTAGE POWER SUPPLY																										
HIGH VOLTAGE POWER SUPPLY																										
Z-AXIS AMPLIFIER CIRCUIT																										
TRACE ROTATION																										
CRT Y-AXIS ALIGN																										
GEOMETRY																										
VERTICAL PREAMP CIRCUIT																										
VERTICAL OUTPUT AMPLIFIER CIRCUIT																										
VERTICAL CHANNEL SWITCHING CIRCUIT																										
VERTICAL OUTPUT BIAS																										
VERTICAL SHIELD VOLTAGE																										
DELAY-LINE DC CENTER																										
CH 1 OR CH 2 VAR VOLTS/DIV BALANCE																										
CH 1 OR CH 2 VOLTS/DIV BALANCE																										
VERTICAL OUTPUT GAIN																										
CH 1 OR CH 2 GAIN																										
VERTICAL TRANSIENT RESPONSE																										
TRIGGER GENERATOR CIRCUIT																										
A OR B TRIGGER SENS, SYMM AND CTRG																										
A TRIGGER DC CENTERING																										
HORIZONTAL AMPLIFIER CIRCUIT																										
HORIZONTAL GAIN																										
SWEEP GENERATORS CIRCUIT																										
SWEEP AND Z-AXIS LOGIC CIRCUIT																										
A TIMING																										
\times GAIN																										
$X-Y$ PHASE DIFFERENCE																										
CRT CHANGE																										

RACKMOUNTING

introduction

The TEKTRONIX R475A Oscilloscope is designed to mount in a 19 -inch rack. When mounted in accordance with the following mounting procedure, the instrument will meet all electrical and environmental characteristics given in Section 1.

Clearance Requirements

Figure $4-17$ is a dimensional drawing showing the assembled Rack Adapter and instrument. At least 7 inches of vertical space is required to mount the instrument (with attached Adapter) into an equipment rack. Minimum width of the opening between the left and the right front rails in the rack must be $175 / 8$ inches. Total depth of the rack must be at least 18 inches. These clearances will allow sufficient space for air circulation and for accommodation of the power cord and mounting hardware.

Slide-Out Tracks

The slide-out tracks provided with the R475A permit it to be extended out of the rack for maintenance or calibration without removing the instrument from the rack. In the fully extended position, the R475A can be tilted up so the bottom of the instrument can be reached for maintenance or calibration. To operate the R475A in the extended position, be sure the power cord and any interconnecting cables are long enough for this purpose.

WARNING

During rackmount installation, interchanging the left and right slide-out track assemblies defeats the extension stop (safety latch) feature of the tracks. Equipment could, when extended, come out of the slides and fall from the rack, possibly causing personal injury and equipment damage.
When mounting the supplied slide-out tracks, inspect both assemblies to find the LH (left hand) and RH (right hand) designations to determine correct placement. Install the LH assembly to your left side as you face the front of the rack and install the RH assembly to your right side. Refer to the rackmounting instructions in this manual for complete information.

The slide-out tracks consist of two assemblies-one for the left side of the instrument and one for the right side. Fig. 4-7 shows the complete slide-out track assemblies. The stationary section of each assembly attaches to the front and rear rails of the rack, and the chassis section is attached to the instrument. The intermediate section slides between the stationary and chassis sections and allows the R475A to be extended out of the rack. When the
instrument is shipped, the stationary and immediate sections of the tracks are packaged as matched sets and should not be separated. To identify the left or right assembly, note the position of the automatic latch (see Fig. 4-7). When mounted in the rack, the automatic latch should be at the top of both assemblies. The chassis sections are installed on the instrument at the factory.

The hardware needed to mount the slide-out tracks is shown in Fig. 4-8. Since the hardware supplied is intended to make the tracks compatible with a variety of cabinet racks and installation methods, not all of it will be needed for this installation. Use only the hardware that is required for the mounting method used.

Mounting Procedure

The following mounting procedure uses the rear support kit (see Fig. 4-12 and Fig. 4-13) to meet the environmental characteristics of the instrument (shock and vibration). Two alternative mounting methods are described at the end of this procedure. However, when mounted according to these alternative methods, the instrument may not meet the given environmental characteristics for shock and vibration.

The mounting flanges of the stationary sections may be mounted in front of or behind the front rails of the rack depending on the type of rack. If the front rails of the rack are tapped for 10-32 screws, the mounting flanges are placed in front of the rails. If the front rails of the rack are not tapped for 10-32 screws, the mounting flanges are placed behind the front rail and a bar nut is used. Fig. 4-11 shows these methods of mounting the stationary sections.

The rear of the stationary sections must be firmly supported to provide a shock-mounted installation. This rear support must be located 17.471 inches, ± 0.031 inch, from the outside surface of the front rail when the mounting flange is mounted outside of the rail, or 17.531 inches, ± 0.031 inch, from the rear surface of the front rail when the mounting flange is mounted behind the front rail. If the cabinet rack does not have a strong supporting member located the correct distance from the front rail, an additional support must be added. The instrument will not meet the environmental specifications unless firmly supported at this point. Fig. 4-11 illustrates a typical rear installation using the rear support kit and gives the necessary dimensions.

Use the following procedure to install the R475A in a rack:

1. Select the proper front-rail mounting holes for the stationary section using the measurements shown in Fig. 4-11.

2a. If the mounting flanges of the stationary sections are to be mounted in front of the front rails (rails tapped for 10-32 screws), mount each stationary section as shown in Fig. 4-10A.

2 b . If the mounting flanges of the stationary sections are to be mounted behind the front rails (rails not tapped for 10-32 screws), mount each stationary section as shown in Fig. 4-10B.
3. Attach an angle bracket to both rear rails of the rack through the spacer block, stationary section and into the rear rail of the rack. Note that the holes in the spacer block are not centered. Be sure to mount the block with the narrow edge toward the front of the rack; otherwise, the instrument may not slide all the way into the rack. Do not tighten the mounting screws. Fig. 4-12 shows the parts in the rear support kit and the order in which they are assembled.
4. Assemble the support pin to the angle bracket in the order shown in Fig. 4-12. Leave the spacer (washer) off, but install the neoprene washer.
5. Install a support block on each side of the instrument as shown in Fig. 4-13.
6. Refer to Fig. 4-14 to insert the instrument in the rack. Do not connect the power cord or install the securing screws until all adjustments have been made.
7. With the instruments pushed all the way into the rack, adjust the angle brackets so the neoprene washers on the support pins are seated firmly against the rear of the instrument and the support pins are correctly positioned in the support block on the rear of the instrument. Tighten all screws.
8. Pull the instrument partially out of the rack.
9. Remove the neoprene washers from the support pins and place the spacers on the pins. Replace the neoprene washers.
10. Position the instrument so the pivot screws (widest part of the instrument) are approximately even with the front rails.
11. Adjust the alignment of the stationary sections according to the procedure outlined in Fig. 4-15. (If the rear alignment is changed, recheck the rear support pins for correct alignment.)
12. After the tracks operate smoothly, connect the power cord to the power source.
13. Push the instrument all the way into the rack and secure it to the rack with the securing screws and washers as shown in Fig. 4-14.

NOTE

The securing screws are an important part of the shock-mounted installation. If the front rails are not tapped for the 10-32 securing screws, other means must be provided for securing the instrument to the rack.

Alternative Rear Mounting Methods

Abstract

Although the following methods provide satisfactory mounting under normal conditions, they do not provide solid support at the rear of the instrument. If the instrument is subjected to severe shock or vibration when mounted using the following methods, it may be damaged.

An alternative method of supporting the rear of the instrument is shown in Fig. 4-16. The rear support brackets supplied with the instrument allow it to be mounted in a rack which has a spacing between the front and rear rails of 11 to 24 inches. Fig. 4-16A illustrates the mounting method if the rear rails are tapped for 10-32 screws, and Fig. 4-16B illustrates the mounting method if the rear rails are not tapped for 10-32 screws. The rear support kit is not used for this installation.

If the rack does not have a rear rail, or if the distance between the front and rear rails is too large, the instrument may be mounted without the use of the slide-out tracks. Fasten the instrument to the front rails of the rack with the securing screws and washers. This mounting method should be used only if the instrument will not be subjected to shock or vibration and if it is installed in a stationary location.

Removing or Installing the Instrument

After initial installation and adjustment of the slide-out tracks, the R475A can be removed or installed by following the instructions given in Fig. 4-14. No further adjustments are required under normal conditions.

Slide-Out Track Lubrication

The slide-out tracks normally require no lubrication. The special finish on the sliding surfaces provides permanent lubrication. However, if the tracks do not slide smoothly even after proper adjustment, a thin coating of paraffin rubbed onto the sliding surfaces may improve operation.

Fig. 4-7. Slide-out track assemblies.

Fig. 4-8. Hardware needed to mount the instrument in the cabinet rack.

Fig. 4-9. Locating the mounting holes for the left stationary section. Same dimensions apply to right stationary section.

Fig. 4-10. Methods of mounting the stationary section to the front rails.

Fig. 4-11. Supporting the rear of the stationary sections: (A) Dimensions necessary; (B) Completed installation.

Fig. 4-12. Rear Support kit.

Fig. 4-13. Installing the support block on the instrument.

TO INSERT THE R475A:

1. Pull the intermediate section (A) of each slide-out track out to its fully extended position.
2. Insert the chassis section (B) (on instrument) into the intermediate sections.
3. Press both stop latches (C) and push the instrument into the rack until the latches snap into the stop latch holes (D).

4. Connect the power cord to the power source.
5. Again press the stop latches (D) and push the instrument all the way into the rack.
6. To secure the R475A to the rack, insert the 4 securing screws (E), with finishing washers and teflon washers, through the slots in the instrument front panel and screw them into the front rails of the rack.

TO REMOVE THE R475A:

1. Remove the securing screws and washers (E).
2. Pull the instrument outward until the stop latches snap into the stop latch holes.
3. Disconnect the power cord.
4. Press both stop latches (D) and pull the instrument out of the rack.

Fig. 4-14. Procedure for inserting or removing the instrument after the slide-out tracks have been installed.

TO ADJUST ALIGNMENT:

1: Position the instrument with the pivot screws approximately even with the front rails.
2. Loosen the mounting screws at the front of both stationary sections (left side shown).
3. Allow the tracks to seek their normal positions with the instrument centered in the rack.
4. Tighten the mounting screws.
5. Push the instrument all the way into the rack. If tracks do not slide smoothly, check for correct spacing between the rear supports.
6. Check the vertical positioning of the R475A front panel with respect to adjacent instruments or panels. If not correct, reposition as necessary.

Fig. 4-15. Alignment adjustments for correct operation.

Fig. 4-16. Alternative method of installing the instrument using rear support brackets.

Fig. 4-17. Dimensional Drawing.

TOP VIEW

SIDE VIEW

FRONT VIEW

REAR VIEW

Fig. 4-17. Dimensional Drawing (cont).

PERFORMANCE CHECK

IMPORTANT—PLEASE READ BEFORE USING THIS PROCEDURE

Introduction

The following procedure is intended to be used for incoming inspection to determine the acceptability of newly purchased or recently recalibrated instruments. This procedure does not check every facet of the instrument's calibration; rather it is concerned primarily with those portions of the instrument that are essential to measurement accuracy and correct operation. Removing the instrument cabinet is not necessary to perform this procedure. All checks are made from the front panel. This procedure is also useful as an aid in troubleshooting and preventive maintenance.

Using This Procedure

Outline. To aid in locating a step in the Performance Check, an outline is given preceding the Performance Check procedure.

Partial Procedures. A partial check of performance is often desirable after replacing components or to verify performance of a portion of the instrument betwen major recalibrations. To check only part of the instrument, set the controls as given under the nearest preceding Control Settings and use the Equipment Required list preceding the desired portion of the procedure.

TEST EQUIPMENT REQUIRED

General

The following test equipment and accessories, or its equivalent, is required for a complete performance check of the 475A. Specifications given for the test equipment are the minimum necessary for accurate calibration. Therefore, some of the specifications listed here may differ from the actual performance capabilities of the test equipment. All test equipment is assumed to be correctly
calibrated and operating within the listed specifications. Detailed operating instructions for the test equipment are not given in this procedure. Refer to the instruction manual for the test equipment if more information is needed. Minimum test equipment specifications must include the use of any special required accessories (such as the precision output cable included with the SG 503).

Special Calibration Fixtures

Special Tektronix calibration fixtures are used only where they facilitate checking instrument performance. These special calibration fixtures are available from Tektronix, Inc. Order by part number through your local Tektronix Field Office or representative.

Performance Check Equipment Alternatives

All of the listed test equipment is required to completely check this instrument. However, complete checking may not always be necessary or desirable. The user may be satisfied with checking only selected characteristics, thereby reducing the amount of test equipment actually required.

The equipment listed in the Performance Check Procedure is based on the first item of equipment given as an example of applicable equipment. When other equipment is substituted, control settings or equipment setups may need to be altered to meet the requirements of the substitute equipment. If the exact item of test equipment given as an example in the Test Equipment list is not available, first check the Specifications column carefully to see if any other equipment is available which might suffice. Then check the Usage column to see what this item is used for. If used for a check or adjustment that is of little or no importance to your measurement requirements, the item and corresponding step(s) can be deleted.

TABLE 5-1
Test Equipment Required For Performance Check

Description	Minimum Specifications	Usage	Examples
1. Amplitude Calibrator	Amplitude accuracy, within 0.25%; signal amplitude, 2 millivolts to 20 volts; output signal, 1 kilohertz square wave.	Vertical checks. Trigger view gain check; External Z-Axis check.	a. Tektronix PG 506 Calibration Generator. ${ }^{1}$ b. Tektronix 067-0502-01 calibration fixture.
2. Sine-Wave Generator	Frequency, 350 kilohertz to above 250 megahertz; output amplitude, variable from 15 millivolts to 4 volts peak-topeak; output impedance, 50 ohms; reference frequency, 50 to 350 kilohertz; amplitude accuracy, constant within 3% of reference frequency as output frequency changes.	Vertical centering, bandwidth and isolation checks; Trigger checks; X bandwidth check.	a. Tektronix SG 503 Leveled Sine-Wave Generator.' (Use for all frequencies.) b. Tektronix Type 191 Constant-Amplitude Signal Generator. (Use at frequencies of 100 megahertz and below). AND Wavetek Model 1001A (use only for checking 250 megahertz bandwidth and triggering).
3. Time-Mark Generator	Marker outputs, 2 nanoseconds to 0.5 second; marker accuracy, within 0.1%; trigger output, 1 millisecond to 0.1 microsecond, time coincident with markers.	Horizontal timing checks.	a. Tektronix TG 501 TimeMark Generator. ${ }^{1}$ b. Tektronix 2901 TimeMark Generator.
4. Low-Frequency Generator	Frequency, 10 Hertz to 50 kilohertz; output amplitude, variable from 10 millivolts to 4 volts peak-to-peak.	Low-frequency trigger checks.	a. Tektronix SG 502 Oscillator. ${ }^{1}$ b. General Radio 1310 B Oscillator with a binding post to BNC adapter.
5. Cable (2 required)	Impedance, 50 ohms; length, 42 inches; connectors, BNC.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 012-0057-01.
6. Cable (2 required)	Impedance, 50 ohms; length 18 inches; connectors, BNC.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 012-0076-00.
7. 50 -Ohm Signal Pickoff	Frequency response, 50 kilohertz to 875 megahertz; impedance, 50 ohms for signal input, signal output and trigger output.	Trigger checks.	a. Tektronix CT-3 Signal Pickoff. Part Number 017-0061-00.
8. Adapter	Connectors, BNC Female to BNC Female.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 103-0028-00.

'Requires a TM 500-Series Power Module.

TABLE 5-1 (cont)

Description	Minimum Specifications	Usage	Examples
9. Adapter	Connectors, GR874 to BNC Female.	Trigger checks.	a. Tektronix Part Number 017-0063-00.
10. Adapter	Connectors, GR874 to BNC Male.	Used in Trigger System procedure for signal interconnection.	a. Tektronix Part Number 017-0064-00.
11. Elbow Adapter	Connectors, BNC Male to BNC Female.	Used in Trigger System procedure for signal interconnection.	a. Tektronix Part Number 103-0031-00.
12. T-Connector	Connectors, BNC	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 103-0030-00.
13. $10 \times$ Attenuator	Ratio, 10X; impedance, 50 ohms; connectors, BNC	Vertical bandwidth check. Trigger checks.	a. Tektronix Part Number 011-0059-02
14. $5 \times$ Attenuator	Ratio, 5X; impedance, 50 ohms; connectors, BNC	Trigger checks.	a. Tektronix Part Number 011-0060-02
15. Termination (2 required)	Impedance, 50 ohms; connectors, BNC.	Used throughout procedure for proper signal termination.	a. Tektronix Part Number 011-0049-01.
16. 10X Probe	Scale-factor switching; connector, BNC.	Scale factor check. Calibrator check.	a. Tektronix P6075 Probe (supplied with 475A oscilloscope). b. Tektronix P6065 Probe.
17. 500 MHz Filter	Impedance, 50 ohms; frequency, adjustable; connectors, BNC.	Used for High-Speed Timing checks.	a. Tektronix 500 MHz Filter calibration fixture. Part Number 067-0684-00.
18. Screwdriver	Length, three-inch shaft; bit size, $3 / 32$ inch.	Used to adjust TRACE ROTATION, ASTIG, GAIN.	a. Xcelite R-3323.

OUTLINE FOR PERFORMANCE CHECK

DISPLAY AND VERTICAL SYSTEM CHECK

1. Check Display Controls

Page 5-5
2. Check Vertical Input Functions 5-6
3. Check CH 1 and CH 2 Gain 5-6
4. Check CH 2 and CH 1 VAR VOLTS/DIV Range
5. Check ADD Mode Operation

Page 5-7
6. Check ALT Mode Operation

5-7
7. Check CHOP Mode Operation5-8
8. Check Vertical Amplifier Bandwidth $5-8$
9. Check Bandwidth Limit Operation
10. Check Cascaded Bandwidth
Performance Check-475A Service
TRIGGER SYSTEM CHECK
11. Check A Low-Frequency Triggering
12. Check B Low-Frequency Triggering
13. Check B 40 Megahertz Triggering
14. Check A 40 Megahertz Triggering
15. Check A 250 Megahertz Triggering
16. Check B 250 Megahertz Triggering
17. Check TRIG MODE NORM Operation
18. Check TRIG MODE SINGL SWP Operation
19. Check TRIG VIEW Operation 5-14 14
DM44 DIGITAL MULTIMETER INSTRUCTIONS 5-15
HORIZONTAL SYSTEM CHECK
20. Check VAR TIME/DIV RANGE 5-15
21. Check Sweep Length and Horizontal POSITION Range 5-16
22. Check A Timing Accuracy 5-16

Page 5-95-115-125-125-135-13
23. Check A INTEN Timing Accuracy

Page 5-16
GATE OUTPUTS, EXTERNAL Z-AXIS AND CALIBRATOR CHECKS
31. Check A and $B+G A T E$ Outputs 5-19
32. Check CH 2 VERT SIGNAL OUT 5-20
33. Check EXT Z-Axis Operation 5-20
34. Check CALIBRATOR Operation 5-20

PRELIMINARY PROCEDURE FOR PERFORMANCE CHECK

Operating Voltage

Before applying power to the instrument, check that the line voltage selector and the regulating range selector are in the correct positions for the line voltage the instrument will be operated on.

Power Source

Connect the 475A to a power source that meets the voltage and frequency requirements of this instrument.

Warm Up

Turn on the 475A and allow at least 20 minutes before starting the Performance Check procedure.

Operating Temperature

The performance of this instrument can be checked at an ambient temperature within $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ unless stated otherwise in the procedure. This instrument should be checked at an ambient temperature of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ for best overall accuracy.

DISPLAY AND VERTICAL SYSTEM CHECK

Equipment Required	6. 10X BNC Attenuator
1. Amplitude Calibrator	7. 50 -Ohm BNC Termination (2 required)
2. Sine-Wave Generator	8. BNC Female-to-BNC Female Adapter
3. 42-inch 50-Ohm BNC Cable (2 required)	9. BNC T-Connector
4. 18-inch 50-Ohm BNC Cable (2 required)	10. Screwdriver

Control Settings

POWER	ON
	Display
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical (CH 1 and CH 2)

POSITION	Midrange
VOLTS/DIV	10 mV
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 or 20 MHz BW	20

Trigger (A and B)
COUPLING
LEVEL
SLOPE
A TRIGGER SOURCE
B TRIGGER SOURCE
TRIG MODE
A TRIGGER HOLDOFF

AC
0
Midrange
Midrange
Midrange

Midrange
mV
alibrated detent

Off (button out)

20
$+$
NORM
STARTS AFTER DELAY
AUTO
NORM

Sweep

A TIME/DIV	1 ms
B TIME/DIV	1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME POSITION	Fully counterclockwise
HORIZ DISPLAY	A
X1O MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

k. CHECK-For control of graticule illumination from minimum to maximum settings.
I. Set the amplitude calibrator for a 50 millivolt output and connect to CH 1 input through a 42-inch 50 -ohm BNC cable.
m. Set A TRIGGER LEVEL for a stable display.
n. CHECK-For well-defined focusing on front corners of the displayed waveform.
o. ADJUST-FOCUS control and ASTIG (front panel screwdriver adjustment) together for the best-defined front corners on the displayed waveform.
p. Turn INTENSITY fully counterclockwise and press BEAM FINDER pushbutton.
q. CHECK-For a compressed waveform of normal intensity, within graticule area.
r. Release BEAM FINDER pushbutton and return INTENSITY to a normal setting.

2. Check Vertical Input Functions

a. Position the bottom of CH 1 display to the center horizontal graticule line.
b. Set CH 1 AC-GND-DC switch to GND.
c. CHECK-For no vertical deflection and that trace is at center horizontal graticule line.
d. Set $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to AC .
e. CHECK-That display is centered in graticule area.
f. Move test signal cable to CH 2 input and set VERT MODE to CH 2.
g. Position the bottom of CH 2 display to the center horizontal graticule line.
h. Set CH 2 AC-GND-DC switch to GND.
i. CHECK—For no vertical deflection and that trace is at center horizontal graticule line.
j. Set $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to AC .
k. CHECK-That display is centered in graticule area.
I. Disconnect all test equipment.
m. CHECK-That the light under 10 mV of CH 2 VOLTS/DIV knob is on.
n. Connect a 10X probe with a scale-factor switching connector to CH 2 input.

NOTE

Use a probe listed in test equipment required, Table 5-1, under 10X Probe examples.
o. CHECK-That the light under 10 mV is extinguished and the light under .1 V comes on.
p. Set VERT MODE to CH 1.
q. CHECK-That the light under 10 mV of CH 1 VOLTS/DIV knob is on.
r. Move the 10 X probe to CH 1 input.
s. CHECK-That the light under 10 mV is extinguished and the light under .1 V comes on.
t. Remove the 10X probe.

3. Check CH 1 and CH 2 GAIN

a. Set the amplitude calibrator for a 50 millivolt output and connect to CH 1 input through a 42-inch 50 -ohm BNC cable.
b. Set CH 1 and CH 2 AC-GND-DC switches to DC.
c. CHECK-The display for 5 divisions of amplitude.
d. ADJUST-CH 1 GAIN, 10 mV adjustment, through the upper 10 mV access hole at left side of cabinet for 5 divisions of amplitude.
e. CHECK—All settings of CH 1 VOLTS/DIV for accuracy, within 3\%, using the settings listed in Table 5-2.

TABLE 5-2
Vertical Deflection Accuracy

VOLTS/DIV Switch Setting	Amplitude Calibrator Output	Vertical Deflection in Divisions	Maximum Error for 3\% Accuracy
5 mV	20 millivolts	4	Previously set

f. Set VERT MODE to CH 2 , set amplitude calibrator for a 50 millivolt output and move signal cable to CH 2 input.
g. CHECK—The display for 5 divisions of amplitude.
h. ADJUST-CH 2 GAIN, 10 mV adjustment, through the lower 10 mV access hole at left side of cabinet for 5 divisions of amplitude.
i. CHECK-All settings of CH 2 VOLTS/DIV for accuracy, within 3\%, using the settings listed in Table 5-2.

4. CHECK CH 2 and CH 1 VAR VOLTS/DIV Range

a. Set the amplitude calibrator to 50 millivolts and set CH 1 and CH 2 VOLTS/DIV to 10 mV .
b. Turn CH 2 VAR VOLTS/DIV fully counterclockwise.
c. CHECK-That the CH 2 UNCAL light turns on when the CH 2 VAR VOLTS/DIV control is out of calibrated detent.
d. CHECK-That display amplitude reduces to 2 divisions or less.
e. Return CH 2 VAR VOLTS/DIV to calibrated detent.
f. Set VERT MODE to CH 1 and move signal cable to CH 1 input.
g. Turn CH 1 VAR VOLTS/DIV fully counterclockwise.
h. CHECK - That the CH 1 UNCAL light turns on when the CH 1 VAR VOLTS/DIV control is out of calibrated detent.
i. CHECK-That display amplitude reduces to 2 divisions or less.
j. Return CH 1 VAR VOLTS/DIV to calibrated detent.

5. Check ADD Mode Operation

a. Set VERT MODE to ADD and set CH 1 and CH 2 VOLTS/DIV to 10 mV .
b. Remove the test signal cable from CH 1 input. Connect to the cable: a BNC female-to-BNC female adapter, a BNC T-connector, two 18-inch 50 -ohm BNC cables and connect the cables to CH 1 and CH 2 inputs.
c. Set the amplitude calibrator for a 20 millivolt output and center the display on graticule using equal settings of CH 1 and CH 2 POSITION controls.
d. CHECK-For a display of 4 divisions, within 3% (0.12 division).
e. Press INVERT pushbutton.
f. CHECK-That display amplitude reduces to approximately 0.
g. Return INVERT pushbutton to normal (button out).
h. Disconnect all test equipment.

6. Check ALT Mode Operation

a. Set VERT MODE to ALT, set 100 OR 20 MHz BW control to full bandwidth position and set A TRIGGER LEVEL fully clockwise.

Performance Check-475A Service

b. Position the 2 traces approximately 4 divisions apart.
c. CHECK-That the traces alternate at all settings of TIME/DIV except X-Y.

7. Check CHOP Mode Operation

a. Set VERT MODE to CHOP, set TIME/DIV to $1 \mu \mathrm{~s}$, set CH 1 and CH 2 AC-GND-DC switches to GND and adjust A TRIGGER LEVEL for a stable display.
b. CHECK-For complete blanking of switching transients between chopped segments.
c. CHECK-That the duration of 1 cycle is approximately 1 division.

8. Check Vertical Amplifier Bandwidth

a. Set VERT MODE to CH 1 , set TIME/DIV to 0.5 ms and set CH 1 and $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switches to DC.

NOTE

See test equipment required. Table 5-1, for selection of sine-wave generator with a 250 megahertz output.
b. Connect the sine-wave generator output cable to a 10X BNC attenuator, to a 50 -ohm termination, to CH 1 input.
c. Set the sine-wave generator for a 6 division display of reference frequency. (It may be necessary to insert more attenuation to reduce display amplitude.)

NOTE

If generator has no reference frequency setting, set for 5 megahertz.
d. Without changing the generator output amplitude, increase the output frequency until the display is reduced to 4.2 divisions.
e. CHECK-For a generator frequency reading of 250 megahertz or more.
f. Set VERT MODE to CH 2 and move test signal setup to CH 2 input.
g. CHECK-Repeat the bandwidth check procedure, parts c, d and e.

9. Check Bandwidth Limit Operation

a. Set 100 OR 20 MHz BW control to 100 .

NOTE
It may be necessary to change sine-wave generators. See test equipment required, Table 5-1 for selection of generator with an output of 100 megahertz and below.
b. Set the sine-wave generator for a 6 division display of reference frequency.
c. Without changing the generator output amplitude, increase the output frequency until the display is reduced to 4.2 divisions.
d. CHECK-For a generator reading of approximately 100 megahertz.
e. Set 100 OR 20 MHz BW control to 20 .
f. Set the sine-wave generator for a 6 division display of reference frequency.
g. Without changing the generator output amplitude, increase the output frequency until the display is reduced to 4.2 divisions.
h. CHECK-For a generator reading of approximately 20 megahertz.
i. Return 100 OR 20 MHz BW control to full bandwidth.

10. Check Cascaded Bandwidth

a. Set VERT MODE to CH 1.
b. Connect CH 2 VERT SIGNAL OUT (output connector on rear panel) through a 42-inch 50 -ohm BNC cable, to a 50 -ohm termination and connect to CH 1 input.
c. Set the sine-wave generator for a 6 division display of reference frequency.
d. Without changing the generator output amplitude, increase the output frequency until the display is reduced to 4.2 divisions.
e. CHECK—For a reading of 50 megahertz or more.
f. Disconnect all test equipment.

TRIGGER SYSTEM CHECK

Equipment Required	8. GR-To-BNC Male Adapter
1. Sine-Wave Generator	9. BNC Female-To-BNC Female Adapter
2. Low-Frequency Generator	10. BNC Elbow
3. Amplitude Calibrator	11. BNC T-Connector
4. 50-Ohm Signal Pickoff	12. $10 \times$ BNC Attenuator
5. 42-Inch 50-Ohm BNC Cable	13. $5 \times$ BNC Attenuator
6. 18-Inch 50-Ohm BNC Cable (2 required)	14. 50 -Ohm BNC Termination (2 required)
7. GR-To-BNC Female Adapter	

Control Settings		Sweep	
POWER	ON	A TIME/DIV	$\mathbf{5 0} \mu \mathbf{~ s ~ (n e w ~ s e t t i n g) ~}$
		B TIME/DIV	50μ s (new setting)
	Display	VAR TIME/DIV	Calibrated detent
		DELAY TIME POSITION	Fully counterclockwise
INTENSITY	Midrange	HORIZ DISPLAY	A
FOCUS	Midrange	X10 MAG	Off (button out)
SCALE ILLUM	Midrange	POSITION (Horiz)	Midrange
		FINE	Midrange

Vertical (CH 1 and CH 2)

POSITION	Midrange
VOLTS/DIV	5 mV
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 OR 20 MHz BW	Full bandwidth (push in,
	then release)

Trigger (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	NORM
B TRIGGER SOURCE	NORM (new setting)
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

11. Check A Low-Frequency Triggering

a. Connect the low-frequency generator output to a 42 -inch 50 -ohm BNC cable, to a BNC female-to-BNC female adapter, to a BNC T-connector, to two 18-inch 50ohm BNC cables, to CH 1 input and A TRIGGER external input.
b. Set the low-frequency generator for a 5 division, 50 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .
c. CHECK-That a stable triggered display can be obtained in AC, LF REJ, HF REJ and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
d. Set CH 1 VOLTS/DIV to 5 mV .
e. Set the lơw-frequency generator for a 3 division, 50 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .

Performance Check-475A Service

f. CHECK-That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
g. Set the low-frequency generator for a 2 division, 50 kilohertz display, then set A TRIGGER SOURCE to EXT (100 millivolts at external input).
h. CHECK—Repeat part c.
i. Set CH 1 VOLTS/DIV to 0.1 V and set A TRIGGER SOURCE to EXT $\div 10$.
j. Set the low-frequency generator for a 5 division, 50 kilohertz display (500 millivolts at inputs), then set CH 1 VOLTS/DIV to 0.5 V .
k. CHECK-Repeat part f.
I. Set $\mathrm{CH} 1 \mathrm{VOLTS} /$ DIV to 10 mV and set A TRIGGER SOURCE to EXT.
m . Set the low-frequency generator for a 5 division, 50 kilohertz display (50 millivolts at external input), then set CH 1 VOLTS/DIV to 50 mV .
n. CHECK—Repeat part f.
o. Set A TRIGGER SOURCE to NORM, set CH 1 VOLTS/DIV to 5 mV , set TIME/DIV to 10 ms and set 100 OR 20 MHz BW control to 20 .
p. Set the low-frequency generator for a 5 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
q. CHECK-That a stable triggered display can be obtained in DC, HF REJ and AC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
r. Set A TRIGGER COUPLING to LF REJ.
s. CHECK-That a stable triggered display cannot be obtained with adjustment of A TRIGGER LEVEL.
t. Set CH 1 VOLTS/DIV to 5 mV and set A TRIGGER COUPLING to AC.
u. Set the low-frequency generator for a 3 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
v. CHECK-That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
w. Set the low-frequency generator for a 2 division, 60 Hertz display, then set A TRIGGER SOURCE to EXT (100 millivolts at external input).
x. CHECK—Repeat part q.
y. Set A TRIGGER COUPLING to LF REJ.
z. CHECK—Repeat part s.
aa. Set A TRIGGER COUPLING to AC.
ab. Set the low-frequency generator for a 1 division, 60 Hertz display (50 millivolts at external input).
ac. CHECK-That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
ad. Disconnect all test equipment.

NOTE

Use a sine-wave generator with an output of 100 megahertz and below for the following parts.
ae. Connect the sine-wave generator output cable to a BNC female-to-BNC female adapter, to a BNC Tconnector, to two 18 -inch 50 -ohm BNC cables. Connect an 18 -inch cable through a 50 -ohm termination to CH 1 input and connect the other 18 -inch cable through a $50-$ ohm termination to A TRIGGER external input.

$$
\text { af. Set TIME/DIV to } 0.5 \mu \mathrm{~s} \text {. }
$$

ag. Set the sine-wave generator for a 2 division, 3 megahertz display (100 millivolts at external input).
ah. Set A TRIGGER COUPLING to HF REJ.
ai. CHECK-That a stable triggered display cannot be obtained with adjustment of A TRIGGER LEVEL.
aj. Set CH 1 VOLTS/DIV to 5 mV , set TIME/DIV to $2 \mu \mathrm{~s}$ and set A TRIGGER SOURCE to NORM.
ak. Set the sine-wave generator for a 5 division, 1 megahertz display, then set CH1 VOLTS/DIV to 50 mV .
al. CHECK—Repeat part ai.
am. Return A TRIGGER COUPLING to AC.
an. Disconnect all test equipment.

12. Check B Low-Frequency Triggering

a. Set TIME/DIV to $50 \mu \mathrm{~s}$, set CH 1 VOLTS/DIV to 5 mV and set HORIZ DISPLAY to B DLY'D. (B DLY'D sweep will not appear when not triggered).
b. Connect the low-frequency generator output to a 42-inch 50 -ohm BNC cable, to a BNC female-to-BNC female adapter, to a BNC T-connector, to two 18-inch 50ohm BNC cables, to CH 1 input and B TRIGGER external input.
c. Set the low-frequency generator for 50 kilohertz, then set the generator for a 5 division display and set CH 1 VOLTS/DIV to 50 mV .
d. CHECK-That a stable triggered display can be obtained in AC, LF REJ, HF REJ and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
e. Set CH 1 VOLTS/DIV to 5 mV .
f. Set the low-frequency generator for a 3 division, 50 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .
g. CHECK-That a stable triggered display can be obtained in $A C$ and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
h. Set the low-frequency generator for a 2 division, 50 kilohertz display, then set B TRIGGER SOURCE to EXT (100 millivolts at external input).
i. CHECK—Repeat part d of this step.
j. Set CH 1 VOLTS/DIV to 10 mV .
k. Set the low-frequency generator for a 5 division, 50 kilohertz display (50 millivolts at external input), then set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 50 mV .
I. CHECK—Repeat part g.
m. Set B TRIGGER SOURCE to NORM, set CH 1 VOLTS/DIV to 5 mV and set TIME/DIV to 10 ms .
n. Set the low-frequency generator for a 5 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
o. CHECK-That a stable triggered display can be obtained in HF REJ, DC and AC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
p. Set B TRIGGER COUPLING to LF REJ.
q. CHECK - That a stable triggered display cannot be obtained with adjustment of B TRIGGER LEVEL.
r. Set CH 1 VOLTS/DIV to 5 mV and set B TRIGGER COUPLING to AC.
s. Set the low-frequency generator for a 3 division, 60 hertz display, then set CH 1 VOLTS/DIV to 50 mV .
t. CHECK - That a stable triggered display can be obtained in $A C$ and $D C$ positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
u. Set the low-frequency generator for a 2 division, 60 hertz display, then set B TRIGGER SOURCE to EXT (100 millivolts at external input).
v. CHECK—Repeat part o.
w. Set B TRIGGER COUPLING to LF REJ.
x. CHECK—Repeat part q.
y. Set B TRIGGER COUPLING to AC.

Performance Check-475A Service

z. Set the low-frequency generator for a 1 division, 60 Hertz display (50 millivolts at external input). (It may be necessary to maintain triggering as amplitude is reduced.)
aa. CHECK - That a stable triggered display can be obtained in $A C$ and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
ab. Disconnect all test equipment.

NOTE

Use a sine-wave generator with an output of 100 megahertz and below for the following parts.
ac. Connect the sine-wave generator output cable to a BNC female-to-BNC female adapter, to a BNC Tconnector, to two 18 -inch 50 -ohm BNC cables. Connect an 18 -inch cable through a 50 -ohm termination to CH 1 input and connect the other 18 -inch cable through a 50 ohm termination to B TRIGGER external input.
ad. Set TIME/DIV to 0.5μ s and set B TRIGGER SOURCE to STARTS AFTER DELAY.
ae. Set the sine-wave generator for a 2 division, 3 megahertz display (100 millivolts at external input).
af. Set B TRIGGER COUPLING to HF REJ and set B TRIGGER SOURCE to EXT.
ag. CHECK-That a stable triggered display cannot be obtained with adjustment of B TRIGGER LEVEL.
ah. Set CH 1 VOLTS/DIV to 5 mV , set TIME/DIV to $2 \mu \mathrm{~s}$ and set B TRIGGER SOURCE to STARTS AFTER DELAY.
ai. Set the sine-wave generator for a 5 division, 1 megahertz display, then set CH 1 VOLTS/DIV to 50 mV , and set B TRIGGER SOURCE to NORM.
aj. CHECK—Repeat part ag.
ak. Set B TRIGGER COUPLING to $A C$ and set B TRIGGER SOURCE to STARTS AFTER DELAY.

13. Check B $\mathbf{4 0}$ Megahertz Triggering

a. Set TIME/DIV to 0.05μ s and set 100 OR 20 MHz BW to full bandwidth (push in, then release).
b. Set the sine-wave generator for a 1 division, 40 megahertz display, then set B TRIGGER SOURCE to EXT (50 millivolts at external input).
c. CHECK-That a stable triggered display can be obtained in $A C$ and $D C$ positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
d. Set B TRIGGER SOURCE to NORM, set CH 1 VOLTS/DIV to 5 mV , set CH 2 VOLTS/DIV to 50 mV and move signal cable setup from B TRIGGER external input to CH 2 input.
e. Set the sine-wave generator for a 3 division, 40 megahertz display, set CH 1 VOLTS/DIV to 50 mV , retrigger if necessary, then set the display to graticule center with CH 1 POSITION.
f. Set VERT MODE to CH 2 and move the display to graticule center with CH 2 POSITION. (Retrigger if necessary.)

g. Return VERT MODE to CH 1.

h. CHECK-That a stable triggered display can be obtained in $A C$ and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
i. Return B TRIGGER COUPLING to AC.
j. CHECK-That a stable triggered display can be obtained in NORM, CH 1 and CH 2 positions of B TRIGGER SOURCE with adjustment of B TRIGGER LEVEL.
k. Return B TRIGGER SOURCE to NORM.

14. Check A 40 Megahertz Triggering

a. Set HORIZ DISPLAY to A and check that A TRIGGER SOURCE is in NORM and A TRIGGER COUPLING is in AC.
b. CHECK-That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.

[^3]d. CHECK-That a stable triggered display can be obtained in CH 1 and CH 2 positions of A TRIGGER SOURCE with adjustment of A TRIGGER LEVEL.
e. Return A TRIGGER SOURCE to NORM and move test signal cable from CH 2 input to A TRIGGER external input.
f. Set the sine-wave generator for a 1 division, 40 megahertz display, then set A TRIGGER SOURCE to EXT.
g. CHECK - That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
h. Return A TRIGGER SOURCE to NORM and A TRIGGER COUPLING to AC.
i. Disconnect all test equipment.

15. Check A 250 Megahertz Triggering

Abstract

NOTE It may be necessary to change to a sine-wave generator with a 250 megahertz output.

Trigger jitter is measured horizontal trace excursion minus normal horizontal trace width observed at low frequency.

a. Connect the sine-wave generator output cable through a GR-to-BNC female adapter to the through signal input of the 50 -ohm signal pickoff. Connect the through signal output of the signal pickoff to a GR-to-BNC male adapter, to a. $10 \times \mathrm{BNC}$ attenuator, to a 50 -ohm BNC termination, to a BNC elbow, to A TRIGGER external input.
b. Connect the 10% signal output of the signal pickoff to an 18 -inch 50 -ohm BNC cable, to a 50 -ohm termination, to CH 1 input.
c. Set the sine-wave generator for a 2.0 division, 250 megahertz display.
d. Set TIME/DIV to 0.01μ s and press X10 MAG to on.
e. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in AC, LF REJ and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
f. Set TIME/DIV to 0.1 ms and set A TRIGGER SOURCE to EXT.
g. Set the sine-wave generator for a 5 division display of reference frequency (250 millivolts at external input), then set to 250 megahertz.

NOTE

If generator has no reference frequency setting, set for 5 megahertz.
h. Set TIME/DIV to $0.01 \mu \mathrm{~s}$.
i. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
j. Replace the 10X BNC attenuator in test signal setup with a $5 \times$ BNC attenuator (500 millivolts at external input) and set A TRIGGER COUPLING to LF REJ.
k. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A TRIGGER LEVEL.

16. Check B $\mathbf{2 5 0}$ Megahertz Triggering

a. Move test signal setup from A TRIGGER external input to B TRIGGER external input.
b. Set A TRIGGER SOURCE to NORM, set A TRIGGER COUPLING to AC, set HORIZ DISPLAY to B DLY'D, set B TRIGGER SOURCE to EXT and set B TRIGGER COUPLING to LF REJ.
c. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A and B TRIGGER LEVEL controls.
d. Replace the $5 \times$ BNC attenuator with a $10 \times \mathrm{BNC}$ attenuator (250 millivolts at external input).
e. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in AC and DC positions of B TRIGGER COUPLING with adjustment of A and B TRIGGER LEVEL controls.

Performance Check-475A Service

f. Set B TRIGGER SOURCE to STARTS AFTER DELAY and set TIME/DIV to $1 \mu \mathrm{~s}$.
g. Set the sine-wave generator for a 2.0 division, 250 megahertz display.
h. Set B TRIGGER SOURCE to NORM and set TIME/DIV to $0.01 \mu \mathrm{~s}$.
i. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in AC, LF REJ, and DC positions of B TRIGGER COUPLING with adjustment of A and B TRIGGER LEVEL controls.
j. Disconnect all test equipment.

17. Check TRIG MODE NORM Operation

a. Set HORIZ DISPLAY to A, set TIME/DIV to 1 ms , set X10 MAG to off (button out), set INTENSITY, if necessary, for a convenient trace intensity and set B TRIGGER COUPLING to AC.
b. Set the amplitude calibrator for a 50 millivolt output and connect to CH 1 input through a 42 -inch 50 -ohm BNC cable.
c. Set A TRIGGER LEVEL for a stable triggered display.
d. Set TRIG MODE to NORM.
e. CHECK—For a stable triggered display.
f. Remove the test signal from CH 1 input.
18. Check TRIG MODE SINGL SWP Operation
a. Return the test signal cable to CH 1 input.
b. Press and release SINGL SWP pushbutton.
c. Remove the test signal cable from CH 1 input.
d. Press and release SINGL SWP pushbutton.
e. CHECK-That READY light turns on.
f. Return the test signal cable to CH 1 input.
g. CHECK-That READY light is extinguished.
h. Press and release SINGL SWP pushbutton.
i. CHECK—For a single-sweep display (1 sweep only).
j. Set TRIG MODE to AUTO.

19. Check TRIG VIEW Operation

a. Move signal cable from CH 1 input to A TRIGGER external input and set A TRIGGER SOURCE to EXT.
b. Set the amplitude calibrator for a 200 millivolt output.
c. Press TRIG VIEW and hold it in.
d. Position the waveform for a maximum amplitude display with A TRIGGER LEVEL control.
e. CHECK—For approximately 4 divisions of display.
f. Release TRIG VIEW.
g. Disconnect all test equipment.

```
NOTE
```

FOR OSCILLOSCOPES WITH DIGITAL MULTIMETERS ATtACHED, REFER TO THE DIGITAL MULTIMETER MANUAL AT THIS POINT. CONTINUE WITH 475A DM44 HORIZONTAL SYSTEM PERFORMANCE CHECK, THEN RETURN TO GATE OUTPUTS, EXTERNAL Z-AXIS AND CALIBRATOR CHECKS SECTION IN THIS PERFORMANCE CHECK PROCEDURE.

FOR OSCILLOSCOPES WITHOUT DIGITAL MULTIMETERS, CONTINUE WITH HORIZONTAL SYSTEM CHECK.

HORIZONTAL SYSTEM CHECK

Equipment Required	4. 500 MHz Filter
1. Time-Mark Generator	5. 42 -inch 50 -Ohm BNC Cable (2 required)
2. Sine-Wave Generator	6. 50 -Ohm BNC Termination (2 required)
3. Amplitude Calibrator	7. $10 \times$ Probe (see Table $5-1,10 \times$ Probe examples)

Control Settings		Sweep	
POWER	ON	A TIME/DIV	1 ms
		B TIME/DIV	1 ms
	Display	VAR TIME/DIV	Calibrated detent
		DELAY TIME POSITION	Fully counterclockwise
INTENSITY	Midrange	HORIZ DISPLAY	A
FOCUS	Midrange	X10 MAG	Off (button out)
SCALE ILLUM	Midrange	POSITION (Horiz)	Midrange
		FINE	Midrange

Vertical (CH 1 and CH 2)

POSITION	Midrange
VOLTS/DIV	$\mathbf{0 . 5}$ V (new setting)
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 OR 20 MHz BW	Full bandwidth (push in,
	then release)

20. Check VAR TIME/DIV Range

a. Set the time-mark generator for 5 millisecond time marks and connect through a 42 -inch 50 -ohm BNC cable, to a 50 -ohm BNC termination, to CH 1 input.
b. Set A TRIGGER LEVEL for a stable triggered display, then set VAR TIME/DIV fully counterclockwise.

Trigger (A and \mathbf{B})

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	NORM (new setting)
B TRIGGER SOURCE	STARTS AFTER DELAY (new setting)
	AUTO
TRIG MODE	NORM

c. CHECK-That VAR TIME/DIV UNCAL light is illuminated.
d. CHECK—For at least 6 time marks between first and last graticule lines.
e. Return VAR TIME/DIV control to calibrated detent.

Performance Check-475A Service

21. Check Sweep Length and Horizontal POSITION Range

a. Set time-mark generator for 1 millisecond time marks.
b. CHECK-Sweep length for approximately 10.1 divisions.
c. Turn POSITION and FINE (Horiz) controls fully clockwise. (Also check that each control will position the trace.)
d. CHECK-That the start of sweep is to the right of graticule center.
e. Turn POSITION and FINE (Horiz) controls fully counterclockwise.
f. CHECK-That the end of sweep is to the left of graticule center.
g. Recenter POSITION and FINE (Horiz) controls.

22. Check A Timing Accuracy

a. Set TIME/DIV to $0.01 \mu \mathrm{~s}$, set the time-mark generator for 10 nanosecond time marks, set TRIG MODE to NORM, and set A TRIGGER LEVEL for a stable triggered display.

NOTE

Unless otherwise stated, set POSITION and FINE (Horiz) controls so first time mark will coincide with first graticule line and check that a time mark will coincide with last vertical graticule line.
b. CHECK-TIME/DIV settings from $0.01 \mu \mathrm{~s}$ to $5 \mathrm{~ms} /$ division for accuracy, at first and 11th graticule lines, within 1%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

NOTE

Turn INTENSITY full on, note the start of sweep and exclude the first 25 nanoseconds from start of sweep when checking 0.01 and $0.02 \mu \mathrm{~s} /$ division. Set time-mark generator, as necessary, to provide 1 or more time marks/division as each TIME/DIV setting is selected, throughout the horizontal check procedure.
c. CHECK-TIME/DIV settings from 10 ms to $0.5 \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

23. Check A INTEN Timing Accuracy

a. Set HORIZ DISPLAY to A INTEN, set TIME/DIV to 0.05μ s and set time-mark generator for 50 nanosecond time marks (DELAY TIME POSITION should be fully counterclockwise).
b. CHECK-TIME/DIV settings from $0.05 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines. within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

24. Check A INTEN Magnified Timing Accuracy

a. Set TIME/DIV to $0.05 \mu \mathrm{~s}$, set time-mark generator for 5 nanosecond time marks and press X10 MAG to on.
b. CHECK-TIME/DIV settings from $0.05 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} / \mathrm{division}$ for accuracy, at first and 11th graticule lines, within 3%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (see following note).

NOTE

Turn INTENSITY fully on, note the start of sweep and exclude the first 25 nanoseconds from start of sweep or first 2 major unblanked divisions at normal intensity (whichever is greater) and all beyond the 100th division.

25. Check A Magnified Timing Accuracy

a. Set TIME/DIV to $0.01 \mu \mathrm{~s}$, set A TRIGGER SOURCE to EXT and set A TRIGGER COUPLING to LF REJ.
b. Set the time-mark generator for 2 nanosecond time marks and connect trigger output through a 42-inch 50ohm BNC cable, to a 50 -ohm BNC termination, to A TRIGGER external input (if a 2901 time-mark generator is used, set trigger selector for 0.1 microsecond triggers).

Insert a 500 megahertz filter between the 50 -ohm BNC termination and CH 1 input. Adjust the filter for minimum unwanted modulation from the time mark generator, as necessary, whenever 2 or 5 nanosecond time marks are used in this step.
c. Set CH 1 VOLTS/DIV to maintain a convenient display amplitude and set A TRIGGER LEVEL for a stable display. (It may be necessary to adjust A TRIGGER HOLDOFF for best triggered display through this step).
d. CHECK-TIME/DIV settings from 0.01 to $0.05 \mu \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
e. CHECK-That accuracy is within 5\% (0.1 division) over any 2 division interval at all TIME/DIV settings (see following note).

NOTE

If waveform has modulation, check 2 division accuracy between adjacent time marks of equal amplitude.

Turn INTENSITY full on, note the start of sweep and exclude the first 25 nanoseconds from start of sweep or first 2 major unblanked divisions at normal intensity (whichever is greater) and all beyond the 100th division.
f. Remove the trigger cable setup from A TRIGGER external input, set A TRIGGER SOURCE to NORM and set A TRIGGER COUPLING to AC. Remove the 500 megahertz filter.
g. Set TIME/DIV to $0.1 \mu \mathrm{~s}$, set time-mark generator for 10 nanosecond time marks and set CH 1 VOLTS/DIV to maintain a convenient display amplitude.
h. CHECK-TIME/DIV settings from $0.1 \mu \mathrm{~s}$ to $5 \mathrm{~ms} /$ division for accuracy, at first and 11th graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$, within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

26. Check Differential Delay Time Accuracy

a. Set HORIZ DISPLAY to B DLY'D and set TIME/DIV to $0.05 \mu \mathrm{~s}$. Pull and unlock DLY'D SWP knob, set to $0.01 \mu \mathrm{~s}$ and set X10 MAG to off.
b. Set time-mark generator for 50 nanosecond time marks.
c. Turn DELAY TIME POSITION to set time mark nearest 1.000 on dial to coincide with graticule center and note reading.
d. Turn DELAY TIME POSITION to set time mark nearest 2.000 on dial to coincide with graticule center and note reading.
e. CHECK-For a difference in readings of 1.000, within 0.010 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.020 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
f. Turn DELAY TIME POSITION to set every adjacent time-mark to coincide with graticule center and note reading.
g. CHECK-Each reading between any 2 adjacent time-marks for 1.000 , within 0.010 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.020 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Also, check the difference between any time marks separated by more than 1 major dial division not to exceed maximum error as listed in Table 5-3.

TABLE 5-3
Differential Delay Time Accuracy

Difference in Major Dial Divisions	Maximum Error $+\mathbf{1 5}^{\circ} \mathbf{C}$ to $+\mathbf{3 5}^{\circ} \mathbf{C}$	Maximum Error $-\mathbf{1 5}^{\circ} \mathbf{C}$ to $+\mathbf{5 5}^{\circ} \mathbf{C}$
1.000	± 0.010	± 0.020
2.000	± 0.019	± 0.029
3.000	± 0.027	± 0.042
4.000	± 0.033	± 0.053
5.000	± 0.039	± 0.064
6.000	± 0.043	± 0.073
7.000	± 0.047	± 0.082
8.000	± 0.049	± 0.089
9.000	± 0.050	± 0.095

h. CHECK—Display time accuracy as directed in part g , at all settings listed in Table 5-4 not to exceed maximum error listed in Table 5-3.

TABLE 5-4
Delay Time Settings

DELAY TIME POSITION Exclusions	A TIME/DIV Switch Setting	B TIME/DIV Switch Setting	${ }^{1}$ Time-Mark Generator Setting
Exclude dial	$0.05 \mu \mathrm{~s}$	$0.01 \mu \mathrm{~s}$	50 nanosecond
settings of	$0.1 \mu \mathrm{~s}$	$0.01 \mu \mathrm{~s}$	0.1 microsecond
0.000 through	$0.2 \mu \mathrm{~s}$	$0.02 \mu \mathrm{~s}$	0.2 microsecond
1.000	$0.5 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	0.5 microsecond
Exclude dial settings of 0.000 through 0.050	$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	1 microsecond
	$2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	2 microsecond
	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	5 microsecond
	$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	10 microsecond
	$20 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	20 microsecond
	$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	50 microsecond
	0.1 ms	$10 \mu \mathrm{~s}$	0.1 millisecond
	0.2 ms	$20 \mu \mathrm{~s}$	0.2 millisecond
	0.5 ms	$50 \mu \mathrm{~s}$	0.5 millisecond
	1 ms	0.1 ms	1 millisecond
	2 ms	0.2 ms	2 millisecond
	5 ms	0.5 ms	5 millisecond
	10 ms	1 ms	10 millisecond
	20 ms	2 ms	20 millisecond
	50 ms	5 ms	50 millisecond
	0.1 s	10 ms	0.1 second
	0.2 s	20 ms	0.2 second
	0.5 s	50 ms	0.5 second

${ }^{1}$ If the time-mark generator being used does not have a 1-2-5 sequence, set for 1 or more time marks/division on DELAY TIME POSITION dial.

27. Check Delay Time Jitter

a. Set DLY'D SWP to $0.2 \mu \mathrm{~s}$, set A TIME/DIV to 1 ms and set time-mark generator for 1 millisecond time marks.
b. Set DELAY TIME POSITION to 1.000 on dial and position nearest time-mark to graticule center.
c. CHECK-That jitter on the leading edge of the time mark does not exceed 1 division (60 Hertz line) or 2.5 division (50 Hertz line).
d. Set DELAY TIME POSITION to view each time-mark from 2.000 to 9.000 on dial and check delay time jitter for limits stated in part c.

28. Check MIX (Mixed Sweep) Timing Accuracy

a. Set DLY'D SWP to $0.02 \mu \mathrm{~s}$, A TIME/DIV to $0.05 \mu \mathrm{~s}$, HORIZ DISPLAY to MIX and DELAY TIME POSITION fully clockwise.
b. Set time-mark generator for 50 nanosecond timemarks.
c. CHECK-A TIME/DIV settings from 0.02μ s to $0.5 \mathrm{~s} /$ division for accuracy at 2 nd and 10th graticule lines (8 division timing), within 3%. Exclude the first 0.5 division from start of sweep when checking A sweep. Set DLY'D SWP at least 1 sweep setting faster than A sweep setting on all ranges. Set time-mark generator to maintain appropriate time marks.
d. Set DELAY TIME POSITION fully counterclockwise, DLY'D SWP to $0.05 \mu \mathrm{~s}$, A TIME/DIV to $0.1 \mu \mathrm{~s}$ and set time-mark generator for 50 nanosecond time marks.
e. CHECK-DLY'D SWP settings from 0.05μ s to $0.5 \mathrm{~s} /$ division for accuracy at 2 nd and 10th graticule lines (8 division timing), within 3%. Exclude the first 0.2 division or 0.1 microsecond (whichever is greater) after the transition of A to B. Set DLY'D SWP at least 1 sweep setting faster than A sweep setting on all ranges. Set time-mark generator to maintain appropriate time marks.
f. Disconnect all test equipment.

29. Check X Gain

a. Set TRIG MODE to AUTO, set DLY'D SWP to lock knobs, set TIME/DIV to $X-Y$, set VERT MODE to CH 2 and set $X(C H 1)$ VOLTS/DIV to 10 mV .
b. Set amplitude calibrator to 50 millivolts and connect to $X(C H 1)$ input through a 42 -inch 50 -ohm BNC cable.
c. Set $X(\mathrm{CH} 1)$ and $Y(\mathrm{CH} 2)$ POSITION controls to set the 2-dot display at graticule center.

30. Check X Bandwidth

NOTE
See test equipment required, Table 5-1, for selection of sine-wave generator with an output of 100 megahertz and below.
a. Connect the sine-wave generator output cable to a 50 -ohm termination, to X input.
b. Set the sine-wave generator for a 4 division horizontal display of reference frequency.
c. Increase the frequency of the sine-wave generator until the display is reduced to 2.8 divisions.
d. CHECK-The sine-wave generator for a reading of 3 megahertz or higher.
e. Disconnect all test equipment.

GATE OUTPUTS, EXTERNALZ-AXIS AND CALIBRATOR CHECKS

Equipment Required

1. Amplitude Calibrator
2. 42-Inch 50 -ohm BNC Cable (2 required)
3. $50-$ Ohm BNC Termination
4. 10X Probe (see Table 5-1, 10X Probe examples)

Control Settings

POWER

Display

INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Trigger (A and B)

COUPLING	AC Fully clockwise (new setting)
SLOPE	+
A TRIGGER SOURCE	NORM
B TRIGGER SOURCE	STARTS AFTER DELAY
TRIG MODE	AUTO
A TRIG HOLDOFF	NORM

Sweep
A TIME/DIV
B TIME/DIV
VAR TIME/DIV
DELAY TIME POSITION
HORIZ DISPLAY
X1O MAG
POSITION (Horiz)
FINE
$10 \mu \mathrm{~s}$ (new setting)
$10 \mu \mathrm{~s}$ (new setting)
Calibrated detent Fully counterclockwise
A INTEN (new setting)
Off (button out)
Midrange
Midrange

Performance Check-475A Service

31. Check \mathbf{A} and $\mathbf{B}+$ GATE Outputs

a. Connect $A+G A T E$ (output connector on rear panel) to CH 1 input through a 42 -inch 50 -ohm BNC cable.
b. CHECK-The display for a positive pulse amplitude of approximately 5 volts (it may be necessary to increase INTENSITY to view leading edge of positive pulse).
c. Move cable from A +GATE to B +GATE (output connectors on rear panel).
d. CHECK—Repeat part b.
e. Disconnect the cable between B +GATE and CH 1 connectors.

32. Check CH 2 VERT SIGNAL OUT

a. Set HORIZ DISPLAY to A, set TIME/DIV to 0.5 ms , set CH 1 VOLTS/DIV to 0.1 V and set CH 2 VOLTS/DIV to 5 mV .
b. Set VERT MODE to CHOP, set CH 1 and CH 2 POSITION controls for 2 traces superimposed on center horizontal graticule line, then set VERT MODE to CH 1.
c. Connect CH 2 VERT SIGNAL OUT (output connector on rear panel) to CH 1 input through a 42-inch 50 -ohm BNC cable.
d. Set amplitude calibrator for a 20 millivolt output and connect to CH 2 input through a 42 -inch 50 -ohm BNC cable.
e. Set A TRIGGER LEVEL for a stable triggered display.
f. CHECK - The square-wave display for approximately 1 division of amplitude with the bottom of waveform near center horizontal graticule line.
g. Set CH 1 VOLTS/DIV to 50 mV and insert a 50 -ohm termination between CH 1 input and the connected BNC cable.
h. CHECK-Repeat part f.
i. Disconnect all test equipment.

33. Check EXT Z-AXIS Operation

a. Set amplitude calibrator for a 5 volt output and connect to EXT Z-AXIS (input connector on rear panel) through a 42 -inch 50 -ohm BNC cable.
b. CHECK-For noticeable modulation at normal intensity. Adjust VAR TIME/DIV, if necessary to observe modulation, then return to calibrated detent.
c. Disconnect all test equipment.

34. Check CALIBRATOR Operation

a. Set CH 1 VOLTS/DIV to 10 mV and set TIME/DIV to 1 ms .
b. Connect a 10X probe with a scale-factor switching connector between CH 1 input and CALIBRATOR current loop.

NOTE

Use a probe listed in test equipment required, Table 5-1, under 10x Probe examples.
c. CHECK-The square-wave display for 3 divisions of amplitude and for approximately 1 cycle/division.
d. Disconnect all test equipment.

This completes the performance check procedure for the 475A. If the instrument has met all performance requirements given in this procedure, it is currently calibrated and within specifications.

CALIBRATION

IMPORTANT-PLEASE READ BEFORE USING THIS PROCEDURE

Introduction

The following procedure returns the 475A to correct calibration. All limits and tolerances given in this procedure are calibration guides and should not be interpreted as instrument specifications except as specified in the performance requirements portion of the Specifications section in this Service manual.

Calibration Interval

To ensure instrument accuracy, check the calibration of the 475A every 1000 hours of operation, or every 6 months if used infrequently. Before complete calibration, thoroughly clean and inspect this instrument as outlined in the Maintenance section of this manual.

Tektronix Field Service

Tektronix, Inc. provides complete instrument repair and recalibration at local Field Service Centers and at the Factory Service Center. Contact your local Tektronix Field Office or representative for further information.

Using This Procedure

Outline. To aid in locating a step in the Calibration procedure, an outline is given preceding the Calibration procedure

[^4]Partial Procedures. A partial check or adjustment is often desirable after replacing components or to touch up the adjustment of a portion of the instrument between major recalibrations. To check or adjust only part of the instrument, set the controls as given under the nearest preceding Control Settings and use the Equipment Required list preceding the desired portion of the procedure. To prevent unnecessary recalibration of other parts of the instrument, readjust only if the tolerance given in the CHECK - part of the step is not met. If readjustment is necessary, also check any steps listed in the INTERACTION - part of the step.

TEST EQUIPMENT REQUIRED

General

The following test equipment and accessories, or its equivalent, is required for complete calibration of the 475A. Specifications given for the test equipment are the minimum necessary for accurate calibration. Therefore, some of the specifications listed here may differ from the actual performance capabilities of the test equipment. All test equipment is assumed to be correctly calibrated and operating within the listed specifications. Detailed operating instructions for the test equipment are not given in this procedure. Refer to the instruction manual for the test equipment if more information is needed. Minimum test equipment specifications must include the use of any special required accessories (such as the precision output cable included with the SG 503).

Special Calibration Fixtures

Special Tektronix calibration fixtures are used only where they facilitate instrument calibration. These special calibration fixtures are available from Tektronix, Inc. Order by part number through your local Tektronix Field Office or representative.

Calibration Equipment Alternatives

All of the listed test equipment is required to completely check and calibrate this instrument. However, complete checking or calibration may not always be necessary or desirable. The user may be satisfied with checking only selected characteristics, thereby reducing the amount of test equipment actually required.

Calibration-475A Service

The equipment listed in the Calibration procedure is based on the first item of equipment given as an example of applicable equipment. When other equipment is substituted, control settings or calibration setup may need to be altered to meet the requirements of the substitute equipment. If the exact item of test equipment given as an
example in the Test Equipment list is not availble, first check the Specifications column carefully to see if any other equipment is available which might suffice. Then check the Usage column to see what this item is used for. If used for a check or adjustment that is of little or no importance to your measurement requirements, the item and corresponding step(s) can be deleted.

TABLE 6-1
Test Equipment Required For Calibration

Description	Minimum Specifications	Usage	Examples
1. Variable Auto-transformer.	Capable of supplying 1.2 amperes over a range of 103.5 to 126.5 volts.	Low-voltage power supply checks.	a. General Radio W8MT3VM Variac Autotransformer.
2. Digital Voltmeter	Range, 0 to 150 volts; dc voltage accuracy, within 0.15%; display, $41 / 2$ digits.	Low-voltage power supply checks and adjustments; CRT grid bias check; Vertical and horizontal centering adjustments; Calibrator output voltage adjustment.	a. Tektronix DM 501 Digital Multimeter. ${ }^{1}$ b. Any digital voltmeter that meets minimum specifications.
3. DC Voltmeter	Range, 0 to 2500 volts; calibrated to 1% accuracy at 2450 volts.	High-voltage power supply check.	a. Triplett Model 630-NA. b. Simpson Model 262.
4. Test Oscilloscope system with 10X probes.	Bandwidth, DC to 100 megahertz; minimum deflection factor, $5 \mathrm{mV} /$ division; accuracy, within 3%; dual trace.	CRT Z-Axis compensation; Vertical 2 mV gain adjustment; A Trigger Hold-off check; High-speed timing adjustment; A and B + Gate output signals check.	a. Tektronix 465 Oscilloscope with 2 10X probes (included). b. Tektronix 475A Oscilloscop with 2 10X probes (included).
5. Amplitude Calibrator	Amplitude accuracy, within 0.25%; signal amplitude, 2 millivolts to 20 volts; output signal, 1 kilohertz square wave.	Vertical checks and adjustments; Trigger View gain check; X gain adjustment; External Z-Axis check.	a. Tektronix PG 506 Calibration Generator. ${ }^{1}$ b. Tektronix 067-0502-01 calibration fixture.
6. Sine-Wave Generator	Frequency, 350 kilohertz to above 250 megahertz; output amplitude, variable from 15 millivolts to 4 volts peak-to-peak; output impedance, 50 ohms; reference frequency, 50 to 350 kilohertz; amplitude accuracy, constant within 3\% of reference frequency as output frequency changes.	Vertical centering, bandwidth and isolation checks; Trigger checks and adjustments; X bandwidth check.	a. Tektronix SG 503 Leveled Sine-Wave Generator. ${ }^{1}$ (use for all frequencies.) b. Tektronix Type 191 Constant-Amplitude Signal Generator. (use at frequencies of 100 megahertz and below). AND Wavetek Model 1001A (use only for checking 200 megahertz bandwidth and triggering.)

${ }^{1}$ Requires a TM 500-Series Power Module.

TABLE 6-1 (cont)

Description	Minimum Specifications	Usage	Examples
7. Time-Mark Generator	Marker outputs, 2 nanoseconds to 0.5 second; marker accuracy, within 0.1%; trigger output, 1 millisecond to 0.1 microsecond, time coincident with markers.	CRT Y-Axis and geometry adjustments; Auto trigger check; Horizontal timing checks and adjustments.	a. Tektronix TG 501 TimeMark Generator. ${ }^{1}$ b. Tektronix 2901 TimeMark Generator.
8. Low-Frequency Generator	Frequency, 10 Hertz to 50 kilohertz; output amplitude, variable from 10 millivolts to 4 volts peak-topeak.	Low-Frequency trigger checks.	a. Tektronix SG 502 Oscillator. ${ }^{1}$ b. General Radio 1310B Oscillator with a binding post to BNC adapter.
9. Square-Wave Generator	Repetition rate, 1 kHz to 100 kHz ; risetime, 1 nanosecond or less from fastrise output; output amplitude at least 60 volt pulse supplying at least 11 milliamperes from highamplitude output; aberrations, within 2% from fast-rise output.	Vertical Systems compensation adjustments.	a. Tektronix PG 506^{1}. b. Tektronix Type 106 Square-Wave Generator.
10. Tunnel Diode Pulser	Output amplitude, approximately 200 millivolts into 50 ohms; risetime, approximately 100 picoseconds into 50 ohms; aberrations less than 1% into 50 ohms.	Driven by PG 506 or Type 106 for Vertical transient response checks and adjustments; Trigger View risetime and delay checks.	a. Tektronix Tunnel Diode Pulser calibration fixture. Part Number 067-0681-01.
11. $50-$ Ohm Signal Pickoff	Frequency response, 50 kilohertz to 875 megahertz; impedance, 50 ohms for signal input, signal output and trigger output.	Trigger checks and adjustments.	a. Tektronix CT-3 Signal Pickoff. Part Number 017-0061-00.
12. Current Probe	Sensitivity, 1 milliampere/ millivolt; bandwidth, 8.5 kilohertz to 100 megahertz.	Used for major recalibration of Horizontal High-Speed Timing.	a. Tektronix P6022 AC Current Probe with Passive Termination.
13. Cable (2 required)	Impedance, 50 ohms; length, 42 inches; connectors, BNC.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 012-0057-01.
14. Cable (2 required)	Impedance, 50 ohms; length 18 inches; connectors, BNC.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 012-0076-00.
15. Adapter	Connectors, GR874 to BNC Female.	Vertical compensation adjustments. Trigger adjustments.	a. Tektronix Part Number 017-0063-00.

[^5]TABLE 6-1 (cont)

Description	Minimum Specifications	Usage	Examples
16. Adapter	Connectors, GR874 to BNC Male.	Used in Trigger adjustment procedure for signal intercon nection.	a. Tektronix Part Number 017-0064-00.
17. Adapter	Connectors, BNC Female to BNC Female.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 103-0028-00.
18. Elbow Adapter	Connectors, BNC Male to BNC Female.	Used in Trigger system procedure for signal interconnection.	a. Tektronix Part Number 103-0031-00.
19. T-Connector	Connectors, BNC.	Used throughout procedure for signal interconnection.	a. Tektronix Part Number 103-0030-00.
20. 10X Attenuator	Ratio, 10X; impedance, 50 ohms; connectors, BNC.	Vertical System compensation adjustments. Vertical bandwidth check. Trigger adjustments.	a. Tektronix Part Number 011-0059-02.
21. $5 \times$ Attenuator	Ratio, 5X; impedance, 50 ohms; connectors, BNC.	Vertical System compensation adjustments. Trigger adjustments.	a. Tektronix Part Number 011-0060-02.
22. $2 \times$ Attenuator	Ratio, 2X; impedance, 50 ohms; connectors, BNC.	Vertical System compensation adjustments.	a. Tektronix Part Number 011-0069-02.
23. Termination (2 required)	Impedance, 50 ohms; connectors, BNC.	Used throughout procedure for proper signal termination.	a. Tektronix Part Number 011-0049-01.
24. 500 MHz Filter	Impedance, 50 ohms; frequency, adjustable; connectors, BNC.	Used for High-Speed Timing checks and adjustments.	a. Tektronix 500 MHz Filter calibration fixture. Part Number 067-0684-00.
25. Screwdriver	Length, three-inch shaft; bit size $3 / 32$ inch.	Used throughout procedure to adjust variable resistors.	a. Xcelite R-3323.
26. Low-Capacitance Screwdriver	Length; approximately 4 inches; bit size $3 / 32$ inch.	Used throughout procedure to adjust all variable capacitors.	a. J.F.D. Electronics Adjustment Tool Number 5284.
27. Adapter	Connectors, BNC male to miniature probe tip.	Used for Vertical System compensation adjustments.	a. Tektronix Part Number 013-0084-01.

OUTLINE FOR CALIBRATION PROCEDURE

POWER SUPPLY	Page 6-7
1. Adjust Power Supply DC Levels	Page 6-8
2. Check High Voltage Power Supply	Page 6-8
DISPLAY AND Z-AXIS	Page 6-8
3. Adjust CRT Grid Bias	Page 6-9
4. Check Display Controls	Page 6-9
5. Adjust CRT Y-Axis Alignment	Page 6-10
6. Adjust Geometry	Page 6-10
7. Adjust Z-Axis Compensation	Page 6-10
VERTICAL SYSTEM	Page 6-11
8. Adjust Vertical Output Bias	Page 6-12
9. Adjust Vertical Shield Voltage	Page 6-12
10. Adjust Delay-Line DC Center	Page 6-12
11. Adjust CH 1 VAR VOLTS/DIV Balance	Page 6-12
12. Adjust CH 1 VOLTS/DIV Balance	Page 6-13
13. Adjust CH 2 VAR VOLTS/DIV Balance	Page 6-13
14. Adjust CH 2 VOLTS/DIV Balance	Page 6-13
15. Adjust CH 2 INVERT Balance	Page 6-13
16. Adjust CH 2 POSITION Centering	Page 6-13
17. Adjust CH 1 POSITION Centering	Page 6-14
18. Check CH 1 and $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$	
Functions	Page 6-14
19. Check Scale-Factor Indicator Lights	Page 6-14
20. Adjust CH 1 Gain and Vertical Output	
Gain	Page 6-14
21. Adjust CH 2 Gain	Page 6-16
22. Check CH 1 and CH 2 VAR VOLTS/DIV	
Range	Page 6-16

23. Check ADD MODE Operation	Page 6-16
24. Check Compression and Expansion	Page 6-16
25. Check Cascaded Gain	Page 6-17
26. Check ALT Mode Operation	Page 6-17
27. Check CHOP Mode Operation	Page 6-17
28. Adjust High-Frequency Compensation	Page 6-17
29. Adjust CH 1 VOLTS/DIV Compensa-	Page 6-18
tion	
30. Adjust CH 2 VOLTS/DIV Compensa-	Page 6-19
tion	Page 6-20
31. Adjust Vertical Transient Response	Page 6-21
32. Check Vertical Amplifier Bandwidth	Page 6-21
33. Check Bandwidth Limit Operation	Page 6-22
34. Check Cascaded Bandwidth	Page 6-22

TRIGGER SYSTEM

Page 6-22 and Centering

Page 6-23
37. Adjust B Trigger Sensitivity, Symmetry and Centering

Page 6-24
38. Adjust A Trigger DC Centering

Page 6-25
39. Check B Trigger DC Centering

Page 6-26
40. Check B Internal 40 Megahertz Triggering

Page 6-26
41. Check A Internal 40 Megahertz Triggering

Page 6-26
42. Check A Internal 250 Megahertz Triggering

Page 6-26
43. Check B Internal 250 Megahertz Triggering
44. Check B External 40 Megahertz Triggering

Page 6-27

Calibration-475A Service

45. Check A External 40 Megahertz Triggering	Page 6-27
46. Check A External 250 Megahertz Triggering	Page 6-28
47. Check B External 250 Megahertz Triggering	Page 6-28
48. Check B LF REJ, HF REJ and LowFrequency Triggering	Page 6-28
49. Check A LF REJ, HF REJ and LowFrequency Triggering	Page 6-29
50. Adjust Trigger View Centering	Page 6-31
51. Check TRIG VIEW Deflection Factor	Page 6-31
52. Check TRIG VIEW Risetime	Page 6-31
53. Check TRIG VIEW Delay Difference	Page 6-31
54. Check LINE Triggering	Page 6-32
55. Check A TRIGGER LEVEL Control External Range	Page 6-32
56. Check B TRIGGER LEVEL Control External Range	Page 6-32
57. Check SINGL SWP Triggering	Page 6-32
58. Check TRIG MODE NORM Triggering	Page 6-32
59. Check TRIG MODE AUTO Triggering	Page 6-33
HORIZONTAL SYSTEM	Page 6-33
DM44 DIGITAL MULTIMETER	
INSTRUCTIONS	Page 6-34
60. Adjust Horizontal Gain	Page 6-34
61. Adjust Intensified Gain	Page 6-34
62. Adjust Delay Start and Delay Stop	Page 6-34
63. Check 1 Millisecond Differential Delay Time Accuracy	Page 6-35
64. Adjust Magnified Registration	Page 6-35
65. Check VAR TIME/DIV Range	Page 6-35

66. Check Sweep Length and Horizontal POSITION Range

Page 6-35
67. Adjust 10 Microsecond Timing Page 6-36
68. Adjust 0.1 Microsecond Timing Page 6-36
69. Adjust Horizontal Output Centering

Page 6-37
70. Adjust High-Speed Timing (Visual Method)

Page 6-37
71. Adjust High-Speed Timing (Current Probe Method)

Page 6-38
72. Check A Timing Accuracy Page 6-40
73. Check A INTEN Timing Accuracy

Page 6-40
74. Check A INTEN Magnified Timing Accuracy

Page 6-40
75. Check A Magnified Timing Accuracy

Page 6-40
76. Check Differential Delay Time Accuracy

Page 6-40
77. Check Delay Time Jitter
78. Check MIX (Mixed Sweep) Timing Accuracy
79. Adjust X Gain
80. Adjust $X-Y$ Phase Difference

Page 6-42
81. Check X Bandwidth
82. Check B ENDS A Operation
83. Check A TRIG HOLDOFF Operation

Page 6-43

GATE OUTPUTS, EXTERNAL Z-AXIS AND CALIBRATOR

Page 6-44
84. Check A and $B+G A T E$ Outputs

Page 6-44
85. Check EXT Z-AXIS Operation

Page 6-44
86. Adjust CALIBRATOR Output

Amplitude
Page 6-44
87. Check CALIBRATOR Frequency

PRELIMINARY PROCEDURE FOR CALIBRATION

Operating Voltage

Before applying power to the instrument, check that the line voltage selector and the regulating range selector are in the correct positions for the line voltage the instrument will be operated on.

Cabinet Removal

Remove the cabinet from the instrument as outlined in the Maintenance section of this manual. Also, remove the vertical output circuit board cover from the top of main chassis. This will allow access to vertical output adjustments.

WARNING

Power should not be applied to the instrument when cleaning or replacing parts. When the instrument is operated with the cabinet removed, do not touch exposed connections or components. High voltage exists at several points and transistors may have elevated cases throughout the instrument.

Power Source

Connect the 475A through the autotransformer to a power source that meets the voltage and frequency requirements of this instrument.

Warm Up

Turn on the 475A, set the autotransformer output voltage to the center of the voltage range selected by the line voltage selector and allow at least 20 minutes warm up before starting the calibration procedure.

Operating Temperature

This instrument should be calibrated at an ambient temperature of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ for best overall accuracy. This instrument can be calibrated within environmental limits listed in the Specifications section of this manual to approximate the expected environmental usage.

Step Titles

Each procedure step is preceded by a number and each procedure part is set in alphabetical order. Steps containing adjustments and checks are titled (Adjust) steps; steps containing only checks are titled (Check) steps. Where possible, the performance requirement is checked before an adjustment is made. If a check meets its requirements, it is not necessary to make the related adjustment.

POWER SUPPLY

Equipment Required

1. Variable Autotransformer
2. Digital Voltmeter
3. DC Voltmeter
4. Screwdriver

Before you begin, see ADJUSTMENTLOCATIONS 1 in the pullout pages.

Control Settings			Vertical (CH 1 and CH 2)
POWER	ON	POSITION	Midrange
		VOLTS/DIV	10 mV
	Display	VAR VOLTS/DIV	Calibrated detent
	Midrange	AC-GND-DC	DC
INTENSITY	Midrange	INVERT	Off (button out)
FOCUS	Midrange	VERT MODE	CH 1
SCALE ILLUM		100 OR 20 MHzBW	20

Trigger (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	NORM
B TRIGGER SOURCE	STARTS AFTER DELAY
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Abstract

NOTE It +50 volt supply is within specified tolerance, proceed with part c. If +50 volt adjustment is to be made, the accuracy of all circuits will be affected. The entire calibration procedure should be performed to verify instrument performance.

b. ADJUST -+50 volt supply. R1430, for +50 volts within 50 millivolts. See ADJUSTMENT LOCATIONS 1.
c. Decrease line voltage with the variable autotransformer until the LOW LINE indicator light starts to blink.
d. CHECK—The variable autotransformer ac voltmeter for approximately 104 volts ac or less.
e. Return the variable autotransformer to 115 volts ac.

2. Check High Voltage Power Supply

a. Set the POWER switch to off.
b. Connect the dc voltmeter positive lead to ground and connect negative leads to TP2450. See ADJUSTMENT LOCATIONS 1.
c. Set the POWER switch to ON.
d. CHECK—For a reading of -2450 volts within 49 volts.
e. Set the POWER switch to off and disconnect the dc voltmeter. Return the POWER switch to ON.

DISPLAY AND Z AXIS

Equipment Required

1. Digital Voltmeter
2. Amplitude Calibrator
3. Time-Mark Generator
4. Test Oscilloscope With 10X Probe
5. 42-Inch $50-$ Ohm BNC Cable
6. $50-\mathrm{Ohm}$ BNC Termination
7. Screwdriver
8. Low-Capacitance Screwdriver

Control Settings

POWER ON

Display

INTENSITY	Fully counterclockwise (new setting)
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical (CH 1 and CH 2)

POSITION	Midrange
VOLTS/DIV	10 mV
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 OR 20 MHz BW	20

Trigger (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	NORM
B TRIGGER SOURCE	STARTS AFTER DELAY
TRIG MODE	SINGL SWP (new setting)
A TRIGGER HOLDOFF	NORM

Sweep

A TIME/DIV	1 ms
B TIME/DIV	1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME POSITION	Fully counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

3. Adjust CRT Grid Bias

a. Connect the digital voltmeter between TP1364 and ground. See ADJUSTMENT LOCATIONS 1.
b. Set INTENSITY control for a reading of +15 volts.
c. CHECK - The display for a well-defined spot of low intensity near left vertical graticule line. Adjust FOCUS and POSITION (Horiz) if necessary.
d. ADJUST-CRT Grid Bias, R1375, for the dimmest, visible spot. See ADJUSTMENT LOCATIONS 1.
e. Turn CH 1 POSITION, FOCUS and INTENSITY controls fully clockwise.
f. CHECK-For a reading of +20 volts to +30 volts.
g. Press BEAM FINDER pushbutton.
h. CHECK-For a reading of approximately +25 volts.
i. Release BEAM FINDER pushbutton and disconnect all test equipment.
j. Set INTENSITY, FOCUS and CH 1 POSITION controls to midrange. Set TRIG MODE to AUTO.
k. Adjust FOCUS and INTENSITY controls for a welldefined trace of normal intensity.

4. Check Display Controls

a. Turn the INTENSITY control from fully counterclockwise to fully clockwise and return to normal intensity.
b. CHECK—For trace intensity to increase smoothly from minimum to maximum intensity.
c. Turn the FOCUS control through its range and return to focused trace.
d. CHECK-For trace defocus at each extreme position of the FOCUS control.
e. Turn ASTIG control (front panel screwdriver adjustment) through its range.
f. CHECK - For control of trace focus.
g. Set the amplitude calibrator for a 20 millivolt output and connect to CH 1 through a 42 -inch 50 -ohm BNC cable.
h. Adjust A TRIGGER LEVEL for a stable display.
i. ADJUST-FOCUS and ASTIG controls for welldefined front corners on the displayed waveform.
j. Turn INTENSITY control fully counterclockwise and press BEAM FINDER pushbutton.
k. CHECK-For a compressed waveform of normal intensity.
I. Release BEAM FINDER pushbutton, return INTENSITY to a normal setting and disconnect all test equipment.
m. Turn the SCALE ILLUM control through its range.
n. CHECK-For a smooth increase in illumination.
o. Position the trace to the center horizontal graticule line.
p. CHECK - That the trace is aligned with the center horizontal graticule line.
q. ADJUST-TRACE ROTATION (front panel screwdriver adjustment) to align the trace with the center horizontal graticule line.

5. Adjust CRT Y-Axis Alignment

a. Connect 1 millisecond time marks from the timemark generator through a 42-inch 50 -ohm BNC cable and a 50 -ohm termination to the CH 1 input.
b. Set CH 1 VOLTS/DIV to 50 mV . Position the display baseline below crt viewing area.
c. Adjust A TRIGGER LEVEL, FOCUS and INTENSITY controls for a well-defined, stable display.
d. Adjust the TIME/DIV and VAR TIME/DIV controls for exactly 1 time mark/division with coincidence of time marks on each major vertical graticule line.
e. CHECK-For no more than 0.1 division of tilt when comparing the center time mark to the center vertical graticule line.
f. ADJUST -Y-Axis Alignment, R1385, to align the center time mark with the center vertical graticule line. See ADJUSTMENT LOCATIONS 1.
g. INTERACTION-Between Y-Axis Alignment and TRACE ROTATION adjustment. Repeat both adjustments for best display.

6. Adjust Geometry

a. CHECK-The display for no more than 0.1 division of vertical bowing of the time marks at left and right edges of the graticule.
b. ADJUST-Geometry, R1390, for minimum bowing of the time marks at left and right edges of the graticule. See ADJUSTMENT LOCATIONS 1.
c. INTERACTION-Between Geometry adjustment and Y-Axis Alignment. Repeat both adjustments for best display.
d. Remove the time-mark signal cable and 50 -ohm termination from CH 1 input. Return VAR TIME/DIV to calibrated detent.
e. CHECK-For no more than 0.1 division of trace curvature when trace is positioned to the top and bottom graticule lines.

7. Adjust Z-Axis Compensation

NOTE

Any reference to 475A through the calibration procedure refers to the instrument under calibration.
a. Connect a 10X probe from the test oscilloscope to the 475A Z-Axis fast-rise test point, TP1366. See ADJUSTMENT LOCATIONS 1.
b. Connect a 42 -inch 50 -ohm BNC cable from the test oscilloscope external trigger input to the 475A A +GATE output connector (on rear panel) and set the 475A TIME/DIV to $0.05 \mu \mathrm{~s}$.
c. Set test oscilloscope: time/division to 0.2 microsecond, volts/division to 0.2 , trigger source to external and adjust trigger level to view the positive step of the Z-Axis waveform.
d. Adjust 475A INTENSITY for a positive step amplitude of 1 volt (5 divisions) on test oscilloscope display. See Figure 6-1.
e. CHECK-For a flat-top waveform in the first 20 nanoseconds from front corner. See Figure 6-1.
f. ADJUST-Z-Axis Compensation, C1352, using a low-capacitance screwdriver, for the best flat-top waveform in the first 20 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 1.
g. Disconnect all test equipment.

Fig. 6-1. Typical display when Z-Axis Compensation is properly adjusted. Circle surrounds compensated portion of waveform.

VERTICAL SYSTEM

Equipment Required

1. Sine-Wave Generator
2. Digital Voltmeter
3. Amplitude Calibrator
4. Square-Wave Generator
5. Test Oscilloscope With 10X Probes
6. Tunnel-Diode Pulser Calibration Fixture
7. GR-To-BNC Female Adapter
8. BNC Female-To-BNC Female Adapter
9. BNC T-Connector
10. 42-Inch 50-Ohm BNC Cable (2 required)
11. 18-Inch $50-$ Ohm BNC Cable (2 required)
12. 10X BNC Attenuator
13. 5 X BNC Attenuator
14. $50-$ Ohm BNC Termination (2 required)
15. Screwdriver
16. Low-Capacitance Screwdriver
17. BNC Male-to-Probe tip adapter

Before you begin, see
ADJUSTMENT LOCATIONS 182 in the pullout pages.

Control Settings			Vertical (CH 1 and CH 2)
POWER	ON	POSITION	Midrange
		VOLTS/DIV	$\mathbf{1 0 m V}$ (new setting)
	Display	VAR VOLTS/DIV	Calibrated detent
	Midrange	AC-GND-DC	DC
INTENSITY	Midrange	INVERT	Off (button out)
FOCUS	Midrange	VERT MODE	CH1
SCALE ILLUM	100 OR 20 MHz BW	20	

Trigger (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	NORM
B TRIGGER SOURCE	STARTS AFTER DELAY
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep

A TIME/DIV	$\mathbf{1} \mathbf{m s}$ (new setting)
B TIME/DIV	$\mathbf{1} \mathbf{m s}$ (new setting)
VAR TIME/DIV	Calibrated detent
DELAY TIME POSITION	Fully counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

8. Adjust Vertical Output Bias

a. Set the amplitude calibrator for a 20 millivolt output and connect to CH 1 input through a 42 -inch 50 -ohm BNC cable.
b. ADJUST-Vertical Output Bias, R488, for maximum amplitude of the display. See ADJUSTMENT LOCATIONS 2-B.
c. Disconnect all test equipment.

9. Adjust Vertical Shield Voltage

a. Measure the voltage on each vertical deflection plate with the digital voltmeter. (Take readings at the terminals of the ceramic thick-film resistor mounted near the Vertical Output circuit board.) See ADJUSTMENT LOCATIONS 2-B.
b. While measuring voltage level at the resistor terminals (approximately +34 volts), check the display for a trace and note the voltage on each deflection plate.

NOTE

If trace disappears during voltage measurement, the vertical output circuitry is oscillating with the measuring equipment. To stop the oscillation, connect a small 1,000-ohm resistor between the positive lead of the digital voltmeter and the point being measured.
c. Adjust CH 1 POSITION control for equal voltage on both vertical deflection plates and note the final reading.
d. Remove the 1,000 -ohm resistor if used, and connect the digital voltmeter positive lead to TP1395. See ADJUSTMENT LOCATIONS 1.
e. CHECK-For a reading within 0.5 volts of final reading noted in part c .
f. ADJUST-Vertical Shield Volts, R1395, for a reading equal to the final reading noted in part c. See ADJUSTMENT LOCATIONS 1.

NOTE

The preceding procedure is intended to initially set the vertical shield voltage. If the best crt focus is required, readjust Vertical Shield Volts, R1395, FOCUS and ASTIG together for best overall focus.
g. Disconnect all test equipment.

10. Adjust Delay-Line DC Center

a. Connect the digital voltmeter across the delay-line end pins on the vertical preamp circuit board. See ADJUSTMENT LOCATIONS 2-A.
b. Adjust the CH 1 POSITION control for a reading of 0 volts.
c. Connect the digital voltmeter between chassis ground and one of the delay-line end pins.
d. CHECK-For a reading of 0 volts.
e. ADJUST-Delay-Line DC Centering, R385, for a reading of 0 volts. See ADJUSTMENT LOCATIONS 2-A.
f. Disconnect all test equipment.

11. Adjust CH 1 VAR VOLTS/DIV Balance

a. Set CH 1 POSITION for a trace on the center horizontal graticule line.
b. CHECK—That the CH 1 UNCAL light turns on when the CH 1 VAR VOLTS/DIV control is out of calibrated detent.
c. CHECK - The display for 2 divisions or less of trace shift when turning the CH 1 VAR VOLTS/DIV control through its range.
d. ADJUST-CH 1 Variable Balance, R110, for minimum shift when turning the CH 1 VAR VOLTS/DIV control through its range. See ADJUSTMENT LOCATIONS 2-A.
e. Return CH 1 VAR VOLTS/DIV control to calibrated detent.

12. Adjust CH 1 VOLTS/DIV Balance

a. CHECK - The display for 0.5 division or less of trace shift when switching CH 1 VOLTS/DIV from 10 mV to 5 mV .
b. ADJUST-CH 1 VOLTS/DIV Balance, R135, for minimum trace shift when switching CH 1 VOLTS/DIV from 10 mV to 5 mV . See ADJUSTMENT LOCATIONS 2-A.

13. Adjust CH 2 VAR VOLTS/DIV Balance

a. Set VERT MODE to CH 2 , set CH 2 VOLTS/DIV to 10 mV and adjust CH 2 POSITION for a trace on the center horizontal graticule line.
b. CHECK - That the CH 2 UNCAL light turns on when the CH 2 VAR VOLTS/DIV control is out of calibrated detent.
c. CHECK-The display for 2 divisions or less of trace shift when turning the CH 2 VAR VOLTS/DIV control through its range.
d. ADJUST-CH 2 Variable Balance, R210, for minimum trace shift when turning the CH 2 VAR VOLTS/DIV control through its range. See ADJUSTMENT LOCATIONS 2-A.
e. Return the CH 2 VAR VOLTS/DIV control to calibrated detent.

14. Adjust CH 2 VOLTS/DIV Balance

a. CHECK - The display for 0.5 division or less of trace shift when switching CH 2 VOLTS/DIV from 10 mV to 5 mV .
b. ADJUST-CH 2 VOLTS/DIV Balance, R235, for minimum trace shift when switching CH 2 VOLTS/DIV from 10 mV to 5 mV . See ADJUSTMENT LOCATIONS 2-A.

15. Adjust CH 2 INVERT Balance

a. Set CH 2 VOLTS/DIV to 10 mV and adjust CH 2 POSITION for a trace on the center horizontal graticule line.
b. CHECK-The display for 1 division or less of trace shift when INVERT pushbutton is pressed from normal to inverted.
c. ADJUST-Invert Balance, R215, for minimum trace shift when INVERT pushbutton is pressed from normal to inverted. See ADJUSTMENT LOCATIONS 2-A.
d. Return INVERT pushbutton to normal (button out).

16. Adjust CH 2 POSITION Centering

a. Set CH 2 VOLTS/DIV to 20 mV and set AC-GND-DC switch to AC.

NOTE

See test equipment required, Table 6-1, for selection of sine-wave generator with an output of 100 megahertz and below.
b. Connect the sine-wave generator output cable through a 50 -ohm termination to CH 2 input.
c. Set the sine-wave generator for a 6 division, 350kilohertz display, then set CH 2 VOLTS/DIV to 5 mV .
d. CHECK-That top of display can be positioned at least to the center horizontal graticule line and that bottom of display can be positioned at least to the center horizontal graticule line.
e. ADJUST-CH 2 Position Centering, R276, so the top and bottom of display can be positioned through the center horizontal graticule line an equal amount. See ADJUSTMENT LOCATIONS 2-A.

Calibration-475A Service

17. Adjust CH 1 Position Centering

a. Set VERT MODE to CH 1 , set CH 1 VOLTS/DIV to 20 mV and $\mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to AC
b. Move test signal cable to CH 1 input.
c. Set the sine-wave generator for a 6 division display, then set CH 1 VOLTS/DIV to 10 mV .
d. CHECK - That top of display can be positioned at least to the center horizontal graticule line and that bottom of display can be positioned at least to the center horizontal graticule line.
e. ADJUST-CH 1 Position Centering, R176, so the top and bottom of display can be positioned through the center horizontal graticule line an equal amount. See ADJUSTMENT LOCATIONS 2-A.
f. Disconnect all test equipment.

18. Check CH 1 and CH 2 AC-GND-DC Functions

a. Set CH 1 and $\mathrm{CH} 2 \mathrm{AC}-G N D-D C$ switches to $D C$, set amplitude calibrator for a 20 millivolt output and connect to CH 1 input through a 42 -inch 50 -ohm BNC cable.
b. Position the bottom of CH 1 display to the center horizontal graticule line.
c. Set $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to GND.
d. CHECK-For no vertical deflection and that trace is at center horizontal graticule line.
e. Set CH 1 AC-GND-DC switch to AC.
f. CHECK-That display is centered in graticule area.
g. Move test signal cable to CH 2 input and set VERT MODE to CH 2.
h. Position the bottom of CH 2 display to the center horizontal graticule line.
i. Set $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to GND.
j. CHECK-For no vertical deflection and that trace is at center horizontal graticule line.
k. Set CH 2 AC-GND-DC switch to AC.
I. CHECK-That display is centered in graticule area.
m. Disconnect all test equipment.

19. Check Scale-Factor Indicator Lights

a. CHECK—That the light under 10 mV of CH 2 VOLTS/DIV knob is on.
b. Connect a 10X probe with a scale-factor switching connector to CH 2 input.

NOTE

Use a probe listed in test equipment required, Table 6-1, under test oscilloscope examples.
c. CHECK-That the light under 10 mV is extinguished and the light under .1 V comes on.
d. Set VERT MODE to CH 1.
e. CHECK-That the light under 10 mV of CH 1 VOLTS/DIV knob is on.
f. Move the 10X probe to CH 1 input.
g. CHECK-That the light under 10 mV is extinguished and the light under. 1 V comes on.
h. Remove the 10 X probe .

20. Adjust CH 1 Gain and Vertical Output Gain

a. Set VERT MODE to CH 1, set CH 1 VOLTS/DIV to 5 mV and set CH 1 AC-GND-DC switch to DC.

[^6]c. Set the test oscilloscope: time/div to 1 millisecond, both volts/div to 5 millivolts, vertical mode to add, Channel 2 to invert and trigger source to normal.
d. Connect both 10X probes from the test oscilloscope to the delay-line end pins on the Vertical Preamp circuit board. See ADJUSTMENT LOCATIONS 2-A.
e. ADJUST-CH 15 mV Gain, R195, for 200 millivolts peak-to-peak (4 divisions of display) on the test oscilloscope. See ADJUSTMENT LOCATIONS 2-A.
f. Disconnect the 10X probes from delay line.
g. ADJUST-Vertical Output Gain, R449, for exactly 4 divisions of amplitude. See ADJUSTMENT LOCATIONS 2-B.
h. Set CH 1 VOLTS/DIV to 10 mV and set the amplitude calibrator for a 50 millivolt output.
i. ADJUST-CH 110 mV Gain, R165, for exactly 5 divisions of amplitude. See ADJUSTMENT LOCATIONS 2-A.
j. CHECK-All settings of CH 1 VOLTS/DIV for accuracy, within 3%, using the settings listed in Table 6-3.

TABLE 6-3
Vertical Deflection Accuracy

VOLTS/DIV Switch Setting	Amplitude Calibrator Output	Vertical Deflection in Divisions	Maximum Error for $\mathbf{3 \% \text { Accuracy }}$
5 mV	20 millivolts	4	Previously set
10 mV	50 millivolts	5	Previously set
20 mV	0.1 volts	5	$\pm 0.15 \mathrm{div}$
50 mV	0.2 volts	4	$\pm 0.12 \mathrm{div}$
0.1 V	0.5 volts	5	$\pm 0.15 \mathrm{div}$
0.2 V	1 volts	5	$\pm 0.15 \mathrm{div}$
0.5 V	2 volts	4	$\pm 0.12 \mathrm{div}$
1 V	5 volts	5	$\pm 0.15 \mathrm{div}$
2 V	10 volts	5	$\pm 0.15 \mathrm{div}$
5 V	20 volts	50.12 div	
10 V	50 volts	5	$\pm 0.15 \mathrm{div}$

21. Adjust CH 2 Gain

a. Set VERT MODE to CH 2, set CH 2 VOLTS/DIV to 5 mV and set $\mathrm{CH} 2 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC.
b. Set the amplitude calibrator for a 20 millivolt output and move signal cable to CH 2 input.
c. ADJUST-CH 2, 5 mV Gain, R295, for exactly 4 divisions of amplitude. See ADJUSTMENT LOCATIONS 2-A.
d. Set CH 2 VOLTS/DIV to 10 mV and set the amplitude calibrator for a 50 millivolt output.
e. ADJUST-CH 2, 10 mV Gain, R265, for exactly 5 divisions of amplitude. See ADJUSTMENT LOCATIONS 2-A.
f. Press CH 2 INVERT pushbutton to invert CH 2 display.
g. CHECK—That inverted gain is equal to normal gain within 1\% (0.04 division).
h. Return CH 2 INVERT pushbutton to normal (button
out).
i. CHECK—All settings of CH 2 VOLTS/DIV for accuracy within 3% using the settings listed in Table 6-3.

22. Check CH 1 and CH 2 VAR VOLTS/DIV Range

a. Set the amplitude calibrator to 50 millivolts and set CH 1 and CH 2 VOLTS/DIV to 10 mV .
b. Turn CH 2 VAR VOLTS/DIV fully counterclockwise.
c. CHECK-That display reduces to less than 2 divisions of amplitude.
d. Return CH 2 VAR VOLTS/DIV to calibrated detent.
e. Set VERT MODE to CH 1 and move signal cable to CH 1 input.
f. Turn CH 1 VAR VOLTS/DIV fully counterclockwise.
g. CHECK-That display reduces to less than 2 divisions of amplitude.
h. Return CH 1 VAR VOLTS/DIV to calibrated detent.

23. Check ADD Mode Operation

a. Set VERT MODE to ADD and set CH 1 and CH 2 VOLTS/DIV to 10 mV .
b. Remove the test signal cable from CH 1 input. Connect to the cable; a BNC female-to-BNC female adapter, a BNC T-connector, two 18 -inch 50 -ohm BNC cables, then the CH 1 and CH 2 inputs.
c. Set the amplitude calibrator for a 20 millivolt output and center display on graticule using equal settings of CH 1 and CH 2 POSITION controls.
d. CHECK—For a display of 4 divisions within 3\% (0.12 division).
e. Remove the test signal cables.

24. Check Compression and Expansion

a. Set VERT MODE to CH 1.
b. Connect 20 millivolts of output from amplitude calibrator to CH 1 input through a 42 -inch 50 -ohm BNC cable and note exact amplitude of the display at graticule center.
c. Position top of display to the top graticule line.
d. CHECK-The display for 0.1 division or less of compression or expansion.
e. Position bottom of display to the bottom graticule line.
f. CHECK-The display for 0.1 division or less of compression or expansion.
g. Move the test signal cable to CH 2 input, set VERT MODE to CH 2 and note exact amplitude of the 2 division display at graticule center.
h. Position top of display to the top graticule line.
i. CHECK-The display for 0.1 division or less of compression or expansion.
j. Position bottom of display to the bottom graticule line.
k. CHECK-The display for 0.1 division or less of compression or expansion.

25. Check Cascaded Gain

a. Set VERT MODE to CH 1 and set CH 1 and CH 2 VOLTS/DIV to 5 mV .
b. Set the amplitude calibrator for an output of 10 millivolts into CH 2 input.
c. Connect a 42 -inch 50 -ohm BNC cable from CH 2 VERT SIGNAL OUT (on rear panel), through a $50-\mathrm{ohm}$ termination to CH 1 input.
d. CHECK-For a display of 4 divisions within 1 division.
e. Disconnect all test equipment.

26. Check ALT Mode Operation

a. Set VERT MODE to ALT, set 100 OR 20 MHz BW control to full bandwidth position and set A TRIGGER LEVEL fully clockwise.
b. Position the 2 traces approximately 4 divisions apart.
c. CHECK-That the sweeps alternate at all settings of TIME/DIV except X-Y.

27. Check CHOP Mode Operation

a. Set VERT MODE to CHOP, set TIME/DIV to $1 \mu \mathrm{~s}$, set CH 1 and $\mathrm{CH} 2 \mathrm{AC}-G N D-D C$ switches to GND and adjust A TRIGGER LEVEL for a stable display.
b. CHECK-For complete blanking of switching transients between chopped segments.
c. CHECK-That the duration of one cycle is approximately 1 division.

28. Adjust High-Frequency Compensation

a. Set CH 1 and CH 2 VOLTS/DIV to 10 mV , set VERT MODE to CH 1, set TIME/DIV to 20μ s and set CH 1 and $\mathrm{CH} 2 \mathrm{AC}-G N D-D C$ switches to DC.
b. Connect the square-wave generator fast-rise + output through a GR-to-BNC female adapter, to a 42-inch 50 -ohm BNC cable, to a 10X BNC attenuator, to a 50 -ohm termination, to CH 1 input.
c. Set the square-wave generator for a 5 division, 10 kilohertz display.
d. CHECK-The display for a flat-top waveform within $+4 \%,-4 \%$, or a total of 4% aberrations.
e. ADJUST-R109 for the best flat-top waveform in the first 20 microseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
f. ADJUST-R494B for the best flat-top waveform in the first 15 microseconds (approximately) from front corner. See ADJUSTMENT LOCATIONS 2-B.

NOTE

R494B is a factory optional component and may not appear in your instrument.
g. Set TIME/DIV to $10 \mu \mathrm{~s}$.
h. ADJUST-R139 for a flat-top waveform in the first 5 microseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
i. Set TIME/DIV to $5 \mu \mathrm{~s}$.
j. ADJUST-R475 for a flat-top waveform in the first 2 microseconds from front corner. See ADJUSTMENT LOCATIONS 2-B.
k. Set the square-wave generator repetition rate to 100 kilohertz.
I. Set TIME/DIV to $0.5 \mu \mathrm{~s}$.

Calibration-475A Service

m. CHECK-The display for a flat-top waveform within $+4 \%,-4 \%$, or a total of 4% aberrations.
n. ADJUST-C471, for a flat-top waveform in the first 200 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-B.
o. Set TIME/DIV to $0.1 \mu \mathrm{~s}$.
p. ADJUST-C477 for a flat-top waveform in the first 50 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-B.
q. Set VERT MODE to CH 2 , set TIME/DIV to $20 \mu \mathrm{~s}$, and move test signal from CH 1 input to CH 2 input.
r. Adjust the square-wave generator for a 5 division, 10 kilohertz display.
s. CHECK-The display for a flat-top waveform within $+4 \%,-4 \%$, or a total of 4% aberrations.
t. ADJUST-R209 for the best flat-top waveform in the first 20 microseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
u. Set TIME/DIV to $10 \mu \mathrm{~s}$.
v. ADJUST-R239 for a flat-top waveform in the first 5 microseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
w. Set TIME/DIV to $5 \mu \mathrm{~s}$.
x. ADJUST-R475 for the best flat-top waveform in both CH 1 and CH 2 in the first 2 microseconds from front corner. See ADJUSTMENT LOCATIONS 2-B.
y. Set the square-wave generator repetition rate to 100 kilohertz.
2. Set TIME/DIV to $0.5 \mu \mathrm{~s}$.
aa. CHECK-The display for a flat-top waveform within $+4 \%,-4 \%$, or a total of 4% aberrations.
ab. ADJUST-C471 for the best flat-top waveform in both CH 1 and CH 2 in the first 200 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-B.
ac. Set TIME/DIV to $0.1 \mu \mathrm{~s}$.
ad. ADJUST-C477 for the best flat-top waveform in both CH 1 and CH 2 in the first 50 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-B.
ae. Repeat parts u through ad if necessary for the best flat-top waveform in both CH 1 and CH 2.
af. Disconnect all test equipment.

29. Check/Adjust CH 1 VOLTS/DIV Compensation

NOTE

C10, in the CH 1 Preamp, is set at the factory to give C50, in the CH 2 Preamp, enough range to match CH 2 input capacitance with CH 1 input capacitance. Unless there is a circuit malfunction, C10 should not need readjustment. When adjusting C10, C50 or other adjustments in this section, if the low-capacity screwdriver contains a metal bit, the metal may affect the adjustment. Check adjustment after the screwdriver is removed, and re-adjust as necessary.
a. Set: VOLTS/DIV (both)

VERT MODE
A TIME/DIV
100 OR 20 MHz (PULL)

10 mV (see note)
CH 1
.2 ms (see note)
20 MHz (shows yellow)

NOTE

In Steps 29 and 30 all VOLTS/DIV settings assume the use of a 10X probe with Scale-Factor switching (preferably the probe supplied as a standard accessory with the oscilloscope you are calibrating). If it is necessary to use a 10X probe without ScaleFactor switching, set the VOLTSIDIV knob to indicate one tenth of the setting listed (10 mV instead of .1 V etc). When adjusting compensation, one adjustment will affect the waveform front corner, and another will affect the flat top. Ignore the front corner when making the flat top adjustment and vice-versa. The A TIME/DIV should be set to 1 ms for the flat top, and to. 2 ms for front corner checks and adjustments.
b. Connect a 10X probe to the CH 1 input (note that the VOLTS/DIV Scale-Factor switching will now indicate .1 V).
c. Connect the square-wave generator high-amplitude output to a $2 \mathrm{X}, 5 \mathrm{X}$, or 10 X BNC attenuator (depending on generator amplitude), to a 50Ω termination, to a BNC-toprobe tip adapter, to the tip of the 10X probe.
d. Adjust the square-wave generator for a 5 division, 1 kilohertz display and add or remove attenuators and termination as needed to maintain a 5 division display throughout Steps 29 and 30.
e. Adjust the probe compensation adjustment for the best flat-top waveform. Do not re-adjust probe compensation throughout the remainder of Steps 29 and 30.
f. Set VOLTS/DIV to 50 mV .
g. CHECK - The display for a flat-top waveform within 2%.
h. Set VOLTS/DIV to 2 V .
i. CHECK-Compensation for all VOLTS/DIV settings listed in the VOLTS/DIV COMPENSATION table for display overshoot, roll-off, and flat-top within 2% (5 div $\pm 0.1 \mathrm{div}$). If all settings are within 2%, skip part j, otherwise perform part j .
j. ADJUST—any adjustment pair (see Table) as necessary so compensation for all settings is within 2%.

VOLTS/DIV COMPENSATION

	Adjust	
vOLTS/DIV Setting (10X Scale-Factor)	(T/Div 1 ms) Flat	(T/Div .2 ms) Corner
.2 V	C37	C36
.5 V	C35	C34
1 V	C33	C32
2 V	Check	Check
5 V	Check	Check
10 V	C31	C30

NOTE
If the oscilloscope is to be used primarily with a 50 ohm signal source, more accurate reproduction of the waveform front corner may be achieved by calibrating with a 50 ohm system. To accomplish this, substitute a properly terminated 50 ohm cable for the 10X probe while making the corner adjustments listed in VOLTSIDIV COMPENSATION table.

30. Adjust CH 2 VOLTS/DIV Compensation

a. Set: VERT MODE
CH 2
b. Transfer the 10 X probe from the CH 1 input to the CH 2 input.
c. Adjust the square-wave generator for a 5 division, 1 kilohertz display and add or remove attenuators and termination as needed to maintain a 5 division display throughout the remainder of this step.
d. CHECK-The display for a flat-top waveform within 2%.
e. ADJUST-C50 in the CH 2 preamp for the best flattop waveform using a low-capacitance screwdriver.
f. Repeat Step 29 parts f through j for CH 2.
g. Disconnect test setup.

31. Adjust Vertical Transient Response

a. Set CH 1 and CH 2 VOLTS/DIV to 10 mV , set VERT MODE to CH 1 and TIME/DIV to 0.01μ s and set 100 OR 20 MHz BW control to full bandwidth position.
b. Connect a 100 kilohertz signal from the squarewave generator high amplitude output through a GR-toBNC female adapter and a 42-inch 50-ohm BNC cable to the input of the tunnel diode pulser calibration fixture. Connect the output of the tunnel diode pulser through a 5 X BNC attenuator and a 50 -ohm termination to the CH 1 input.
c. Increase the square-wave generator amplitude and adjust the pulser triggered level until the display suddenly increases to about 4.6 divisions of amplitude; do not overdrive. Use the resultant positive-step amplitude to check or adjust vertical response. Keep VAR VOLTS/DIV in calibrated detent.
d. CHECK-The display for flat-top and aberrations within $+4 \%,-4 \%$, or a total of 4% in the first 10 nanoseconds from front corner.
e. ADJUST-R450, C450, R470, C470, R175, C175, R112, C112, R466, C466, R133 and C133 for a flat-top waveform and aberrations within 4%, in the first 20 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2. Use the low capacitance screwdriver to adjust variable capacitors.

NOTE

The following part f, is intended as a guide to return a greatly misadjusted vertical to proper calibration.
f. CALIBRATION AID-Set R450 for minimum resistance (fully counterclockwise). Adjust C450 for minimum aberrations with a fast leading edge. Set R470 near maximum resistance (near clockwise stop). Adjust C470 for the best flat-top display, 5 to 10 nanoseconds from front corner. Set R175 near maximum resistance (near clockwise stop). Adjust C175 for the best flat-top display 10 to 20 nanoseconds from front corner. Set R112 near minimum resistance (near counterclockwise stop). Adjust C112 for uniform aberrations. Adjust R466, C466, R133 and C133 for best aberrations and flat-top display. Adjust C450 for a fast leading edge and best response.
g. INTERACTION-All transient response adjustments interact in this step. Repeat the adjustment procedure in part e, as necessary to obtain optimum response.
h. Set CH 1 VOLTS/DIV to 50 mV and remove the 5 X attenuator from the test signal setup. Note the slope, if slope exists, in the first 2 nanoseconds from the front corner.
i. ADJUST-C104 for the same slope between the 10 mV and 50 mV positions of the CH 1 VOLTS/DIV in the first 2 nanoseconds from the front corner. See ADJUSTMENT LOCATIONS 2-A.
j. Set CH 1 VOLTS to 10 mV and replace the 5 X attenuator in the test-signal setup.
k. ADJUST-C175 for a flat-top waveform in the first 2 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
I. Set VERT MODE to CH 2 and move test signal setup to CH 2 input.
m. CHECK-The display for flat-top and aberrations within $+4 \%,-4 \%$, or a total of 4% in the first 10 nanoseconds from front corner.
n. ADJUST-R275, C275, R212, C212, R233 and C233 for a flat-top waveform and aberrations within 4%, in the first 20 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
o. CALIBRATION AID-Set R275 near maximum resistance (near clockwise stop). Adjust C275 for the best flat-top display, 10 to 20 nanoseconds from front corner. Set R212 near minimum resistance (near counterclockwise stop). Adjust C 212 for uniform aberrations. Adjust R233 and C233 for the best aberrations and flat-top display.
p. INTERACTION-All transient response adjustments interact in this step. Repeat part n, as necessary, to obtain optimum response.
q. CALIBRATION AID-It may be necessary to readjust R450, C450, R470, C470, R466 and C466 for a flat-top display and aberrations within 4% in both CH 1 and CH 2. Readjust as necessary, using part f calibration aid.
r. Set CH 2 VOLTS/DIV to 50 mV and remove the 5 X attenuator in the test-signal setup. Note the slope, if slope exists, in the first 2 nanoseconds from the front corner.
s. ADJUST-C204 for the same slope between 10 mV and 50 mV positions of CH 2 VOLTS/DIV in the first 2 nanoseconds from the front corner. See ADJUSTMENT LOCATIONS 2-A.
t. Set CH 2 VOLTS/DIV to 10 mV and replace the 5 X attenuator in the test-signal setup.
u. ADJUST-C275 for a flat-top waveform in the first 2 nanoseconds from front corner. See ADJUSTMENT LOCATIONS 2-A.
v. Disconnect all test equipment.

32. Check Vertical Amplifier Bandwidth

a. Set CH 1 and CH 2 VOLTS/DIV to 10 mV , set VERT MODE to CH 1 and TIME/DIV to 0.5 ms .

NOTE

See test equipment required, Table 6-1, for selection of sine-wave generator with a 250 megahertz output.
b. Connect the sine-wave generator output cable to a 5 X BNC attenuator, to a 50 ohm termination, to CH 1 input.
c. Set the sine-wave generator for a 6 division display of reference frequency.

NOTE

If generator has no reference frequency setting, set for 5 megahertz. If generator being used is other than the generators listed in Test Equipment required, Table 6-1, more attenuation may be needed to reduce amplitude.
d. Increase frequency until the display is reduced to 4.2 divisions.
e. CHECK—For a reading of 250 megahertz or more.
f. Set VERT MODE to CH 2 and move test signal setup from CH 1 input to CH 2 input.
g. Repeat the bandwidth check procedure, parts c, d and e.

33. Check Bandwidth Limit Operation

a. Set 100 OR 20 MHz BW control to 100 .

NOTE

It may be necessary to change sine-wave generators. See Table 6-1 for selection of generator with an output of 100 megahertz and below.
b. Set the sine-wave generator for a 6 division display of reference frequency.
c. Increase frequency until the display is reduced to 4.2 divisions.
d. CHECK-For a reading of approximately 100 megahertz.
e. Set 100 OR 20 MHz BW control to 20 .
f. Set the sine-wave generator for a 6 division display of reference frequency.
g. Increase frequency until the display is reduced to 4.2 divisions.
h. CHECK-For a reading of approximately 20 megahertz.
i. Return 100 OR 20 MHz BW control to full bandwidth.

34. Check Cascaded Bandwidth

a. Set VERT MODE to CH 1.
b. Connect CH 2 VERT SIGNAL OUT (output connector on rear panel) through a 42 -inch $50-\mathrm{ohm}$ BNC cable, to a 50 -ohm termination and connect to CH 1 input.
c. Set the sine-wave generator for a 6 division display of reference frequency.
d. Increase frequency until the display is reduced to 4.2 divisions.
e. CHECK-For a reading of 50 megahertz or more.
f. Disconnect cable and termination from CH 2 VERT SIGNAL OUT and CH 1 input. Remove 5X attenuator from test signal setup.

35. Check Vertical Channel Isolation

a. Set CH 2 VOLTS/DIV to 0.2 V and $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-$ DC switch to GND.
b. Set the sine-wave generator for a 4 division, 50 megahertz display.
c. Set CH 1 and CH 2 VOLTS/DIV to 20 mV and set VERT MODE to CH 1.
d. CHECK-The display amplitude for 0.4 division or less.
e. Set $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC , set CH 2 AC -GND-DC switch to GND and set VERT MODE to CH 2.
f. Move test signal setup from CH 2 input to CH 1 input.
g. CHECK-The display amplitude for 0.4 division or less.
h. Disconnect all test equipment.

TRIGGER SYSTEM

Equipment Required

1. Sine-Wave Generator
2. Low-Frequency Generator
3. Amplitude Calibrator
4. Square-Wave Generator
5. Time-Mark Generator
6. Tunnel-Diode Pulser Calibration Fixture
7. $50-\mathrm{Ohm}$ Signal Pickoff
8. 42-Inch $50-\mathrm{Ohm}$ BNC Cable
9. 18 -Inch $50-\mathrm{Ohm}$ BNC Cable (2 required)
10. GR-To-BNC Female Adapter
11. GR-To-BNC Male Adapter
12. BNC Female-To-BNC Female Adapter.
13. BNC Elbow
14. BNC T-Connector
15. 10X BNC Attenuator
16. 5 X BNC Attenuator
17. $50-\mathrm{Ohm}$ BNC Termination (2 required)
18. Screwdriver
in the pullout pages.

Control Settings

POWER ON

Display

INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical (CH 1 and CH 2)

POSITION
VOLTS/DIV
VAR VOLTS/DIV
AC-GND-DC
INVERT
VERT MODE
100 OR 20 MHz BW

Midrange
10 mV (new setting)
Calibrated detent
DC (new setting)
Off (button out)
CH 1 (new setting)
Full bandwidth (push in, then release)

Trigger (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	EXT (new setting)
B TRIGGER SOURCE	STARTS AFTER DELAY
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep

A TIME/DIV	$\mathbf{2 \mu s}$ (new setting)
B TIME/DIV	$\mathbf{2 \mu s}$ (new setting)
VAR TIME/DIV	Calibrated detent
DELAY TIME POSITION	Fully counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

36. Adjust A Trigger Sensitivity, Symmetry and Centering

NOTE

See test equipment required, Table 6-1, for selection of sine-wave generator with an output of 100 megahertz and below.
a. Connect the sine-wave generator output cable through a GR-to-BNC female adapter to the through signal input of the 50 -ohm signal pickoff. Connect the through signal output of the signal pickoff to a GR-to-BNC male adapter, to a $10 \times$ BNC attenuator, to a 50 -ohm BNC termination, to a BNC elbow, to A TRIGGER external input.
b. Connect the 10% signal output of the signal pickoff to an 18 -inch 50 -ohm BNC cable, to a 50 -ohm termination, to CH 1 input.
c. Set the sine-wave generator for a 3.5 division, 350 kilohertz display. (35 millivolts at external input).
d. Set CH 1 VOLTS/DIV to 20 mV and position the display start to graticule center with POSITION (Horiz).
e. Turn A TRIGGER LEVEL slowly counterclockwise through the range of stable triggering and note maximum amplitude of positive slope before the first peak of displayed waveform. See Figure 6-2.
f. CHECK - The triggered display for an amplitude of 0 to 0.2 division of positive slope before the first peak of displayed waveform when turning A TRIGGER LEVEL slowly counterclockwise through the range of stable triggering. See Figure 6-2.

NOTE

The preceding check is for calibration purposes only, if unable to obtain a proper display (as described in part f), check trigger operation as directed in performance check section to determine if trigger sensitivity needs adjustment.

Fig. 6-2. Typical display when checking Trigger Sensitivity.
g. ADJUST-A Trigger Sensitivity, R565, for a maximum amplitude of 0.2 division of positive slope before the first peak of displayed waveform when turning A TRIGGER LEVEL slowly counterclockwise through the range of stable triggering. See ADJUSTMENT LOCATIONS 3.

NOTE

After adjustment of R565, set TRIG MODE to NORM, A TRIGGER SOURCE to NORM, VERT MODE to CH 2 , and $\mathrm{CH} 2 \mathrm{VOLTS} / \mathrm{DIV}$ to 10 mV . Rotate A TRIGGER LEVEL throughout its range and check for no visible trace. If there is a trace at any LEVEL setting, slightly readjust R565 until the trace just disappears. (If R565 required readjustment, complete the Trigger System Calibration Steps through Step 59 then perform Steps 11 through 19 of the Performance Check and if any of the Trigger System Performance Check Requirements are not met, repeat Calibration Step 36 and readjust as necessary to ensure that the instrument meets all A TRIGGER Performance Requirements.)

Set TRIG MODE to AUTO, A TRIGGER SOURCE to EXT, and VERT MODE to CH 1, then proceed to Step 36, part h.
h. Set CH 1 VOLTS/DIV to 50 mV .
i. Set the sine-wave generator for a 4 division, 350 kilohertz display (200 millivolts at external input) and center the display on center horizontal graticule line.
j. Set A TRIGGER SLOPE to - and set A TRIGGER LEVEL for a triggered display.

NOTE

The following parts k, I and m require that a short circuit be placed between the 2 terminals at the rear of A TRIGGER SLOPE/LEVEL control. (A short circuit allows viewing of + and - slope without disturbing A TRIGGER LEVEL. Any convenient way of shorting the terminals may be used; screwdriver tip, alligator clip, etc).
k. Note where the display starts on first negative slope, short together the rear terminals of A TRIGGER SLOPE/LEVEL control and note where the display starts on first positive slope.
I. CHECK-For a 0.5 division of over.ap to 2 divisions of space between the start of negative slope and the start of positive slope. See Figure 6-3.
m. ADJUST-A Trigger Symmetry, R547, for 0.7 division of space between the start of negative slope and the start of positive slope. (Apply and remove the short circuit between the terminals several times while making adjustment.) See ADJUSTMENT LOCATIONS 3.
n. Set CH 1 VOLTS/DIV to 0.5 V , set A TRIGGER SLOPE to + , set A TRIGGER SOURCE to NORM and set A TRIGGER LEVEL for a stable triggered display.
o. CHECK-TRIG light for an on indication.
p. CHECK - That A TRIGGER LEVEL knob index is approximately aligned with 0 on front panel.

NOTE

If A TRIGGER LEVEL knob index is aligned with 0 , preceed with part s.
q. Set A TRIGGER LEVEL knob index to 0 .
r. ADJUST-A Trigger Centering, R534, for a stable triggered display. See ADJUSTMENT LOCATIONS 3.
s. INTERACTION-Between A Trigger Sensitivity, A Trigger Symmetry and A Trigger Centering adjustments. Repeat the adjustments as necessary.

37. Aajust B Trigger Sensitivity, Symmetry and Centering

a. Disconnect the test signal setup from A TRIGGER external input and connect to B TRIGGER external input.
b. Set CH 1 VOLTS/DIV to 10 mV , set B TRIGGER SOURCE to EXT and set HORIZ DISPLAY to B DLY'D.
c. Set the sine-wave generator for a 3.5 division, 350 kilohertz display (35 millivolts at external input), then set CH 1 VOLTS/DIV to 20 mV .
d. Turn B TRIGGER LEVEL slowly counterclockwise through the range of stable triggering and note maximum amplitude of positive slope before the first peak of displayed waveform. See Figure 6-2.
e. CHECK-The triggered display for a full length sweep and for an amplitude of 0 to 0.2 division of positive slope before the first peak of displayed waveform when turning B TRIGGER LEVEL slowly counterclockwise through the range of stable triggering. See Figure 6-2.

Fig. 6-3. Typical display when checking Trigger Symmetry.

NOTE

The preceding check is for calibration purposes only. If unable to obtain a proper display (as described in part e), check trigger operation as directed in performance check section to determine if trigger sensitivity needs adjustment.
f. ADJUST-B Trigger Sensitivity, R785, for a maximum amplitude of 0.2 division of positive slope before the first peak of displayed waveform and for a full length sweep, when turning B TRIGGER LEVEL slowly counterclockwise through the range of stable triggering. See ADJUSTMENT LOCATIONS 3.

NOTE.

After adjustment of R785, set TRIG MODE to NORM, B TRIGGER SOURCE to NORM, VERT MODE to CH 2 , and $\mathrm{CH} 2 \mathrm{VOLTS} / \mathrm{DIV}$ to 10 mV . Rotate B TRIGGER LEVEL throughout its range and check for no visible trace. If there is a trace at any LEVEL setting, slightly readjust R785 until the trace just disappears. (If R785 required readjustment, complete the Trigger System Calibration Steps through Step 59 then perform Steps 11 through 19 of the Performance Check and if any of the Trigger System Performance Requirements are not met, repeat Calibration Step 37 and readjust as necessary to ensure that the instrument meets all B TRIGGER Performance Requirements.)
Set TRIG MODE to AUTO, B TRIGGER SOURCE to EXT, and VERT MODE to CH 1; then proceed to Step 37, part g.
g. Set CH 1 VOLTS/DIV to 50 mV .
h. Set the sine-wave generator for a 4 division, 350 kilohertz display (200 millivolts at external input) and center the display on center horizontal graticule line.
i. Set B TRIGGER SLOPE to - and set B TRIGGER LEVEL for a triggered display.

NOTE

The following parts j, k and I require that a short circuit be placed between the 2 terminals at the rear of B TRIGGER SLOPE/LEVEL control. (A short circuit allows viewing of + and - slope without disturbing B TRIGGER LEVEL. Any convenient way of shorting the terminals may be used; screwdriver tip, alligator clip, etc.).
j. Note where the display starts on first negative slope, short together the rear terminals of B TRIGGER SLOPE/LEVEL control and note where the display starts on first positive slope.
k. CHECK-For 0.5 division of overlap to 2 divisions of space between the start of negative slope and the start of positive slope. See Figure 6-3.
I. ADJUST-B Trigger Symmetry, R767, for 0.7 division of space between the start of negative slope and the start of positive slope. (Apply and remove the short circuit between the terminals several times while making adjustment.) See ADJUSTMENT LOCATIONS 3.
m. Set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 0.5 V , set B TRIGGER SLOPE to + , set B TRIGGER SOURCE to NORM and set B TRIGGER LEVEL for a stable triggered display.
n. CHECK-That B TRIGGER LEVEL knob index is approximately aligned with 0 on front panel.

NOTE
If B TRIGGER LEVEL knob index is aligned with 0 , proceed with part q.
o. Set B TRIGGER LEVEL knob index to 0 .
p. ADJUST-B Trigger Centering, R745, for a stable triggered display. See ADJUSTMENT LOCATIONS 3.
q. INTERACTION-Between B Trigger Sensitivity, B Trigger Symmetry and B Trigger Centering adjustments. Repeat the adjustments as necessary.

38. Adjust A Trigger DC Centering

a. Set HORIZ DISPLAY to A, set A TRIGGER SOURCE to NORM, set A TRIGGER COUPLING to DC and set A TRIGGER LEVEL to 0 .
b. Set CH 1 POSITION to obtain a stable triggered display.
c. CHECK-That entire display is within the graticule area.
d. Set the display to graticule center with CH 1 POSITION.
e. ADJUST-Normal Trigger DC Centering, R425, for a stable triggered display. See ADJUSTMENT LOCATIONS 2-A.
f. Set A TRIGGER SOURCE to CH 1 .
g. Set CH 1 POSITION to obtain a stable triggered display.
h. CHECK—That entire display is within the graticule area.
i. Set the display to graticule center with CH 1 POSITION.

Calibration-475A Service

j. ADJUST-Channel 1 DC Trigger Centering, R403, for a stable triggered display. See ADJUSTMENT LOCATIONS 2-A.
k. Set VERT MODE to CH 2, set A TRIGGER SOURCE to CH 2 , set CH 2 VOLTS/DIV to 0.5 V and move test signal setup from CH 1 input to CH 2 input.
I. Set CH 2 POSITION to obtain a stable triggered display.
m. CHECK-That display is within the graticule area.

39. Check B Trigger DC Centering

a. Set HORIZ DISPLAY to B DLY'D, set B TRIGGER SOURCE to NORM, set B TRIGGER COUPLING to DC and set B TRIGGER LEVEL to 0 .
b. Set CH 2 POSITION to obtain a stable triggered display.
c. CHECK-That entire display is within the graticule area.
d. Set B TRIGGER SOURCE to CH 2.
e. Set CH 2 POSITION to obtain a stable triggered display.
f. CHECK-That entire display is within the graticule area.
g. Set VERT MODE to CH 1, set B TRIGGER SOURCE to CH 1 and move test signal setup from CH 2 input to CH 1 input.
h. Set CH 1 POSITION to obtain a stable triggered display.
i. CHECK - That entire display is within the graticule area.

40. Check B Internal 40 Megahertz Triggering

a. Set TIME/DIV to $0.05 \mu \mathrm{~s}$, set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 5 mV , set A and B TRIGGER SOURCE to NORM and set A and B TRIGGER COUPLING to AC.
b. Move test signal setup from B TRIGGER external input to CH 2 input.
c. Set the sine-wave generator for a 3 division, 40 megahertz display.
d. Set CH 1 and CH 2 VOLTS/DIV to 50 mV and move the display to graticule center with CH 1 POSITION.
e. Set VERT MODE to CH 2 and move the display to graticule center with CH 2 POSITION.
f. Return VERT MODE to CH 1.
g. CHECK-That a stable triggered display can be obtained in $A C$ and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.

h. Return B TRIGGER COUPLING to AC.

i. CHECK-That a stable triggered display can be obtained in NORM, CH 1 and CH 2 positions of B TRIGGER SOURCE with adjustment of B TRIGGER LEVEL.
j. Return B TRIGGER SOURCE to NORM.

41. Check A Internal 40 Megahertz Triggering

a. Set HORIZ DISPLAY to A, set A TRIGGER SOURCE to NORM and set A TRIGGER COUPLING to AC.
b. CHECK-That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
c. Return A TRIGGER COUPLING to AC.
d. CHECK-That a stable triggered display can be obtained in NORM, CH 1. and CH 2 positions of A TRIGGER SOURCE with adjustment of A TRIGGER LEVEL.
e. Return A TRIGGER SOURCE to NORM.

42. Check A Internal 250 Megahertz Triggering

a. Set the sine-wave generator for a 2.0 division, 250 megahertz display.

Abstract

NOTE It may be necessary to change to a sine-wave generator with a 250 megahertz output.

Trigger jitter is measured horizontal trace excursion minus normal horizontal trace width observed at low frequency.

b. Set TIME/DIV to 0.01μ s and press X10 MAG to on.
c. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in AC, LF REJ and DC positions of A TRIGGER COUPLING with adjustments of A TRIGGER LEVEL.
d. Return A TRIGGER COUPLING to $A C$ and set A TRIGGER SOURCE to CH 1.
e. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A TRIGGER LEVEL.
f. Set VERT MODE to $C H 2$ and set sine-wave generator for a 2.0 division, 250 megahertz display.
g. Set A TRIGGER SOURCE to CH 2 .
h. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A TRIGGER LEVEL.
i. Return A TRIGGER SOURCE to NORM.

43. Check B Internal 250 Megahertz Triggering

a. Set HORIZ DISPLAY to B DLY'D.
b. CHECK - That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in AC, LF REJ, and DC positions of B TRIGGER COUPLING with adjustment of A and B TRIGGER LEVEL controls.
c. Return B TRIGGER COUPLING to $A C$ and set B TRIGGER SOURCE to CH 2.
d. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A and B TRIGGER LEVEL controls.
e. Set VERT MODE to CH 1 and set B TRIGGER SOURCE to CH 1.
f. Set the sine-wave generator for a 2.0 division, 250 megahertz display.
g. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A and B TRIGGER LEVEL controls.

44. Check B External 40 Megahertz Triggering

NOTE

It may be necessary to change to a sine-wave generator with an output of 100 megahertz and below.
a. Move test signal setup from CH 2 to B TRIGGER external input.
b. Set TIME/DIV to $0.05 \mu \mathrm{~s}$, set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 10 mV and return X10 MAG to off (button out).
c. Set the sine-wave generator for a 5 division, 40 megahertz display. (50 millivolts at external input).
d. Set CH 1 VOLTS/DIV to 50 mV and set B TRIGGER SOURCE to EXT.
e. CHECK-That a stable triggered display can be obtained in $A C$ and $D C$ positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.

45. Check A External 40 Megahertz Triggering

a. Move test signal setup from B TRIGGER external input to A TRIGGER external input.
b. Set HORIZ DISPLAY to A and set A TRIGGER SOURCE to EXT.
c. CHECK - That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.

46. Check A External 250 Megahertz Triggering

NOTE

It may be necessary to change to a sine-wave generator with a 250 megahertz output.
a. Set the sine-wave generator for a 5 division display of reference frequency (250 millivolts at external input), then set to 250 megahertz.

NOTE

If generator has no reference frequency setting, set for 5 megahertz.
b. Set TIME/DIV to 0.01μ s and press X10 MAG to on.
c. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in $A C$ and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
d. Replace the X10 BNC attenuator with a 5 X BNC attenuator (500 millivolts at external input) and set A TRIGGER COUPLING to LF REJ.
e. CHECK - That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A TRIGGER LEVEL.

47. Check B External 250 Megahertz Triggering

a. Replace the $5 \times$ BNC attenuator with a $10 \times$ BNC attenuator and move test signal setup from A TRIGGER external input to B TRIGGER external input (250 millivolts at external input).
b. Set A TRIGGER SOURCE to NORM, set A TRIGGER COUPLING to AC and set HORIZ DISPLAY to B DLY'D.
c. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained in $A C$ and DC positions of B TRIGGER COUPLING with adjustment of A and B TRIGGER LEVEL controls.
d. Replace the $10 \times$ BNC attenuator with a 5 X BNC attenuator (500 millivolts at external input) and set B TRIGGER COUPLING to LF REJ.
e. CHECK-That a stable triggered display, with no more than 0.2 division of jitter, can be obtained with adjustment of A and B TRIGGER LEVEL controls.
f. Disconnect all test equipment.

48. Check B LF REJ, HF REJ and Low-Frequency Triggering

a. Return X10 MAG to off (button out), set B TRIGGER SOURCE to NORM, set TIME/DIV to 50μ s and set CH 1 VOLTS/DIV to 5 mV .
b. Connect the low-frequency generator output to a 42 -inch 50 -ohm BNC cable, to a BNC female-to-BNC female adapter, to a BNC T-connector, to two 18-inch 50ohm BNC cables, to CH 1 input and B TRIGGER external input.
c. Set the low-frequency generator for a 5 division, 50 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .
d. CHECK-That a stable triggered display can be obtained in LF REJ, HF REJ, DC and AC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
e. Set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 5 mV .
f. Set the low-frequency generator for a 3 division, 50 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .
g. CHECK - That a stable triggered display can be obtained in AC and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
h. Set the low-frequency generator for a 2 division, 50 kilohertz display, then set B TRIGGER SOURCE to EXT (100 millivolts at external input).
i. CHECK—Repeat part d of this step.
j. Set CH 1 VOLTS/DIV to 10 mV .
k. Set the low-frequency generator for a 5 division, 50 kilohertz display (50 millivolts at external input), then set CH 1 VOLTS/DIV to 50 mV .
I. CHECK—Repeat part g.
m. Set B TRIGGER SOURCE to NORM, set CH 1 VOLTS/DIV to 5 mV , set TIME/DIV to 20 ms and set 100 OR 20 MHz BW control to 20 .
n . Set the low-frequency generator for a 5 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
o. CHECK-That a stable triggered display can be obtained in HF REJ, DC and AC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
p. Set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 5 mV .
q. Set the low-frequency generator for a 3 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
r. CHECK-That a stable triggered display can be obtained in AC and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.
s. Set B TRIGGER COUPLING to LF REJ.
t. CHECK-That a stable triggered display cannot be obtained with adjustment of B TRIGGER LEVEL.
u. Set the low-frequency generator for a 2 division, 60 Hertz display, then set B TRIGGER SOURCE to EXT (100 millivolts at external input).
v. CHECK—Repeat part o.
w. Set the low-frequency generator for a 1 division, 60 Hertz display (50 millivolts at external input).
x. CHECK-That a stable triggered display can be obtained in AC and DC positions of B TRIGGER COUPLING with adjustment of B TRIGGER LEVEL.

y. Set B TRIGGER COUPLING to LF REJ.

z. CHECK—Repeat part t .
aa. Disconnect all test equipment.

NOTE

Use a sine-wave generator with an output of 100 megahertz and below for the following parts.
ab. Connect the sine-wave generator output cable to a BNC female-to-BNC female adapter, to a BNC Tconnector, to two 18 -inch 50 -ohm BNC cables. Connect an 18 -inch cable through a 50 -ohm termination to CH 1 input and connect the other 18 -inch cable through a 50 ohm termination to B TRIGGER external input.
ac. Set TIME/DIV to $0.5 \mu \mathrm{~s}$.
ad. Set the sine-wave generator for a 2 division, 3 megahertz display (100 millivolts at external input).
ae. Set B TRIGGER COUPLING to HF REJ.
af. CHECK-That a stable triggered display cannot be obtained with adjustment of B TRIGGER LEVEL.
ag. Set CH 1 VOLTS/DIV to 5 mV , set TIME/DIV to $2 \mu \mathrm{~s}$ and set B TRIGGER SOURCE to NORM.
ah. Set the sine-wave generator for a 5 division, 1 megahertz display, then set CH 1 VOLTS/DIV to 50 mV .
ai. CHECK—Repeat part af.
aj. Disconnect all test equipment.

49. Check A LF REJ, HF REJ and Low-Frequency Triggering

a. Set HORIZ DISPLAY to A, set TIME/DIV to 50μ s and set CH 1 to 5 mV .
b. Connect the low-frequency generator output to a 42 -inch 50 -ohm BNC cable, to a BNC female-to-BNC female adapter, to a BNC T-connector, to two 18-inch 50ohm BNC cables, to CH 1 input and A TRIGGER external input.
c. Set the low-frequency generator for a 5 division, 50 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .
d. CHECK-That a stable triggered display can be obtained in LF REJ, HF REJ, DC and AC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
e. Set CH 1 VOLTS/DIV to 5 mV .

Calibration-475A Service

f. Set the low-frequency generator for a 3 division, 50 kilohertz display, then set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 50 mV .
g. CHECK-That a stable triggered display can be obtained in $A C$ and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
h. Set the low-frequency generator for a 2 division, 50 kilohertz display, then set A TRIGGER SOURCE to EXT (100 millivolts at external input).
i. CHECK—Repeat part d.
j. Set $\mathrm{CH} 1 \mathrm{VOLTS} /$ DIV to 0.1 V and set A TRIGGER SOURCE to EXT $\div 10$.
k. Set the low-frequency generator for a 5 division, 50 kilohertz display (500 millivolts at external input), then set CH 1 VOLTS/DIV to 0.5 V .
I. CHECK—Repeat part g.
m. Set $\mathrm{CH} 1 \mathrm{VOLTS} /$ DIV to 10 mV and set A TRIGGER SOURCE to EXT.
n. Set the low-frequency generator for a 5 division, 50 kilohertz display (50 millivolts at external input), then set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 50 mV .
o. CHECK—Repeat part g.
p. Set A TRIGGER SOURCE to NORM, set CH 1 VOLTS/DIV to 5 mV and set TIME/DIV to 20 ms .
q. Set the low-frequency generator for a 5 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
r. CHECK-That a stable triggered display can be obtained in HF REJ, DC and AC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.

s. Set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 5 mV .

t. Set the low-frequency generator for a 3 division, 60 Hertz display, then set CH 1 VOLTS/DIV to 50 mV .
u. CHECK - That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
v. Set A TRIGGER COUPLING to LF REJ.
w. CHECK - That a stable triggered display cannot be obtained with adjustment of A TRIGGER LEVEL.
x. Set the low-frequency generator for a 2 division, 60 Hertz display, then set A TRIGGER SOURCE to EXT (100 millivolts at external input).
y. CHECK—Repeat part r.
z. Set the low-frequency generator for a 1 division, 60 Hertz display (50 millivolts at external input).
aa. CHECK-That a stable triggered display can be obtained in AC and DC positions of A TRIGGER COUPLING with adjustment of A TRIGGER LEVEL.
ab. Set A TRIGGER COUPLING to LF REJ.
ac. CHECK-Repeat part w.
ad. Disconnect all test equipment.

NOTE

Use a sine-wave generator with an output of 100 megahertz and below for the following.
ae. Connect the sine-wave generator output cable to a BNC female-to-BNC female adapter, to a BNC Tconnector, to two 18 -inch 50 -ohm BNC cables. Connect an 18 -inch cable through a 50 -ohm termination to CH 1 input and connect the other 18 -inch cable through a $50-$ ohm termination to A TRIGGER external input.

af. Set TIME/DIV to $0.5 \mu \mathrm{~s}$.

ag. Set the sine-wave generator for a 2 division, 3 megahertz display (100 millivolts at external input).
ah. Set A TRIGGER COUPLING to HF REJ.
ai. CHECK-That a stable triggered display cannot be obtained with adjustment of A TRIGGER LEVEL.
aj. Set CH 1 VOLTS/DIV to 5 mV , set TIME/DIV to $2 \mu \mathrm{~s}$ and set A TRIGGER SOURCE to NORM.
ak. Set the sine-wave generator for a 5 division, 1 megahertz display, then set CH 1 VOLTS/DIV to 50 mV .
al. CHECK—Repeat part ai.

50. Adjust TRIGGER VIEW Centering

a. Set A TRIGGER COUPLING to $A C$ and set A TRIGGER SOURCE to EXT.
b. Set the sine-wave generator for a 1 division, 1 megahertz display (50 millivolts at external input) and adjust A TRIGGER LEVEL for a stable triggered display.
c. Press TRIG VIEW and hold it in.
d. CHECK-That display center is within 1 division of the center horizontal graticule line.
e. ADJUST-Trigger View Centering, R673, to center the display on the center horizontal graticule line. See ADJUSTMENT LOCATIONS 3.
f. Release TRIG VIEW.
g. Disconnect all test equipment.

51. Check TRIG VIEW Deflection Factor

a. Set TIME/DIV to 1 ms .
b. Set the amplitude calibrator for a 200 millivolt output and connect to A TRIGGER external input through a 42 -inch 50 -ohm BNC cable.
c. Press TRIG VIEW and hold it in.
d. Position the display to graticule center with A TRIGGER LEVEL.
e. CHECK-For approximately 4 divisions of display.
f. Release TRIG VIEW.
g. Disconnect all test equipment.

52. Check TRIG VIEW Risetime

a. Set TIME/DIV to $5 \mu \mathrm{~s}$.
b. Connect a 100 kilohertz signal from the squarewave generator high amplitude output through a GR-toBNC female adapter and a 42-inch 50 -ohm BNC cable to the input of the tunnel diode pulser calibration fixture. Connect the output of the tunnel diode pulser through a 50 -ohm termination to A TRIGGER external input.
c. Press TRIG VIEW and hold it in.
d. Adjust A TRIGGER LEVEL to set the display to graticule center.
e. Increase the square-wave generator amplitude and adjust the pulser triggered level until the display suddenly increases to about 5 divisions of amplitude.
f. Set TIME/DIV to $0.01 \mu \mathrm{~s}$, set X10 MAG to on and set leading edge of waveform to graticule center.
g. CHECK-The display between the 10% and 90% points on the leading edge of waveform for 4 horizontal divisions or less (4 nanoseconds or less, risetime).
h. Release TRIG VIEW.

53. Check TRIG VIEW Delay Difference

a. Remove the test signal setup from A TRIGGER external input and disconnect the 50 -ohm termination from the pulser. Connect the output of the tunnel diode pulser to a BNC female-to-BNC female adapter, to a BNC T-connector, to two 18-inch BNC cables, Connect a cable through a 50 -ohm termination to CH 1 input and connect other cable through a 50 -ohm termination to A TRIGGER external input.
b. Set TIME/DIV to $0.05 \mu \mathrm{~s}$, set X10 MAG to off and set CH 1 VOLTS/DIV to 20 mV .
c. Adjust the pulser triggered level until the display suddenly increases.

Calibration-475A Service

d. Press and hold TRIG VIEW, and adjust A TRIGGER LEVEL to set the center of overall display amplitude to graticule center and note amplitude of the display.
e. Release TRIG VIEW, set CH 1 VAR VOLTS/DIV for same amplitude noted in part d and set the center of overall display amplitude to graticule center with CH 1 POSITION
f. Set TIME/DIV to $0.01 \mu \mathrm{~s}$, set X10 MAG to on and set leading edge of waveform to graticule center with POSITION (Horiz).
g. Press TRIG VIEW and note difference in horizontal position from graticule center.
h. CHECK—For 2.5 divisions or less (2.5 nanoseconds or less of difference).
i. Release TRIG VIEW.
j. Disconnect all test equipment.

54. Check LINE Triggering

a. Set CH 1 VAR VOLTS/DIV to calibrated detent, set X10 MAG to off, set A TRIGGER SOURCE to LINE and set TIME/DIV to 5 ms .
b. Press and hold TRIG VIEW.
c. CHECK-For a triggered display starting on the slope selected by A TRIGGER SLOPE.
d. Release TRIG VIEW.

55. Check A TRIGGER LEVEL Control External Range

a. Set TIME/DIV to 1 ms , set $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 1 V and set A TRIGGER SOURCE to EXT.
b. Connect the low-frequency generator output to a 42 -inch 50 -ohm BNC cable, to a BNC female-to-BNC female adapter, to a BNC T-connector, to two 18-inch 50ohm BNC cables, to CH 1 input and A TRIGGER external input.
c. Set the low-frequency generator for a 4 division, 1 kilohertz display.
d. CHECK-That display is triggered through midrange and not triggered at both stops of A TRIGGER LEVEL in + and - positions of A TRIGGER SLOPE.

56. Check B TRIGGER LEVEL Control External Range

a. Set HORIZ DISPLAY to B DLY'D, set B TRIGGER SOURCE to EXT and set A TRIGGER SOURCE to NORM.
b. Move test signal cable from A TRIGGER external input to B TRIGGER external input.
c. CHECK-That display is triggered through midrange and not triggered at both stops of B TRIGGER LEVEL in + and - positions of B TRIGGER SLOPE.

57. Check SINGL SWP Triggering

a. Set HORIZ DISPLAY to A and set CH 1 VOLTS/DIV to 5 mV .
b. Set the low-frequency generator for a 5 division, 1 kilohertz display, then set CH 1 VOLTS/DIV to 50 mV .
c. Set A TRIGGER LEVEL for stable triggering with display start at top of first positive peak.
d. Set CH 1 AC-GND-DC switch to GND and momentarily press SINGL SWP pushbutton of TRIG MODE.
e. CHECK-That READY light turns on.
f. Set CH 1 AC-GND-DC switch to DC.
g. CHECK-For a display of 1 sweep and that READY light is extinguished.

58. Check TRIG MODE NORM Triggering

a. Set TRIG MODE to NORM and set A TRIGGER LEVEL for a stable triggered display.
b. Set CH1 AC-GND-DC switch to GND.
c. CHECK-For no visible trace.
d. Disconnect all test equipment.

59. Check TRIG MODE AUTO Triggering

a. Set TRIG MODE to AUTO, set TIME/DIV to 10 ms , $\mathrm{CH} 1 \mathrm{VOLTS} / \mathrm{DIV}$ to 0.5 V and set $\mathrm{CH} 1 \mathrm{AC}-G N D-D C$ switch to DC.
b. Set the time-mark generator for 10 millisecond time marks and connect through a 42-inch 50-ohm BNC cable, to a 50 -ohm BNC termination, to CH 1 input.
c. CHECK-That a stable triggered display can be obtained with adjustment of A TRIGGER LEVEL.
d. Set TIME/DIV to 0.1 s and set the time-mark generator for 0.1 second time marks.
e. CHECK-That a stable triggered display cannot be obtained with adjustment of A TRIGGER LEVEL.

HORIZONTAL SYSTEM

Equipment Required	8. 18-Inch 50-Ohm BNC Cable (2 required)
1. Time-Mark Generator	9. 50 -Ohm BNC Termination (2 required)
2. Sine-Wave Generator	10. BNC Female-To-BNC Female Adapter
3. Digital Voltmeter	11. BNC T-Connector
4. Amplitude Calibrator	12. 500 MHz Filter
5. Test Oscilloscope	13. Screwdriver
6. Current Probe	14. Low-Capacitance Screwdriver (use for all variable capacitance adjustments)
7. 42-Inch 50-Ohm BNC Cable (2 required)	

Before you begin, see ADJUSTMENTLOCATIONS 4 in the pullout pages.

Control Settings		Trigger (A and B)	
POWER	ON	COUPLING	$A C$ (new setting)
		LEVEL	0
		SLOPE	+
	Display	A TRIGGER SOURCE	NORM
INTENSITY	Midrange	B TRIGGER SOURCE	STARTS AFTER DELAY
FOCUS	Midrange	TRIG MODE	(new setting)
SCALE ILLUM	Midrange	A TRIGGER HOLDOFF	NORM
Vertical (CH 1 and CH 2)		Sweep	
POSITION	Midrange	A TIME/DIV	1 ms (new setting)
VOLTS/DIV	0.5 V	B TIME/DIV	(1 ms new setting)
VAR VOLTS/DIV	Calibrated detent	VAR TIME/DIV	Calibrated detent
AC-GND-DC	DC	DELAY TIME POSITION	Fully counterclockwise
INVERT	Off (button out)	HORIZ DISPLAY	A
VERT MODE	CH 1	X10 MAG	Off (button out)
100 OR 20 MHz BW	Full bandwidth (push in,	POSITION (Horiz)	Midrange
	then release)	FINE	Midrange

DM44 DIGITAL MULTIMETERS.
 FOR OSCILLOSCOPES WITH DIGITAL MULTIMETERS ATTACHED, REFER TO THE DIGITAL MULTIMETER MANUAL AT THIS POINT. CONTINUE WITH THE 475A DM44 HORIZONTAL SYSTEM CALIBRATION PROCEDURE, THEN RETURN TO GATE OUTPUTS, EXTERNAL Z-AXIS AND CALIBRATOR SECTION IN THIS CALIBRATION PROCEDURE.

FOR OSCILLOSCOPES WITHOUT DIGITAL MULTIMETERS, CONTINUE WITH HORIZONTAL SYSTEM CALIBRATION.

60. Adjust Horizontal Gain

a. Set the time-mark generator for 1 millisecond time marks and connect through a 42 -inch 50 -ohm BNC cable and 50 -ohm BNC termination to CH 1 input.
b. Set A TRIGGER LEVEL for a stable triggered display.

NOTE

Unless otherwise stated, set POSITION and FINE (Horiz) controls so first time mark will coincide with first vertical graticule line and check that a time mark will coincide with last vertical graticule line.
c. CHECK-That first and 11th time marks coincide with graticule lines, within 1%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
d. ADJUST-Horizontal Gain, R1155, for 1 timemark/division. See ADJUSTMENT LOCATIONS 4-B.

note

Effective range of R1155 is determined by the selected value of R1154. The value of R1154 may be altered to obtain necessary range for R1155.
e. Press X10 MAG pushbutton and set time-mark generator for 0.1 millisecond time marks.
f. CHECK—That X10 MAG light is illuminated.
g. CHECK-That first and 11th time marks coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
h. Set X10 MAG pushbutton to off and set the timemark generator for 1 millisecond time marks.

61. Adjust Intensified Gain

a. Set HORIZ DISPLAY to A INTEN.
b. CHECK-That first and 11th time marks coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
c. ADJUST-Intensified Gain, R950, for 1 timemark/division. See ADJUSTMENT LOCATIONS 4-B.

62. Adjust Delay Start and Delay Stop

a. Pull and unlock DLY'D SWP knob (B TIME/DIV) and set to $10 \mu \mathrm{~s}$. Set HORIZ DISPLAY to B DLY'D and set DELAY TIME POSITION to 1.000 on dial.
b. CHECK-That the start of displayed time mark is near beginning of sweep.
c. ADJUST-Delay Start, R938, so that the start of displayed time mark starts at beginning of sweep. See ADJUSTMENT LOCATIONS 4-B.
d. Turn DELAY TIME POSITION to set the start of displayed time mark to coincide with graticule center and note reading on dial.
e. Turn DELAY TIME POSITION to set time mark nearest 9.000 on dial to coincide with graticule center and note reading.
f. CHECK-For a difference in readings, noted in parts d and e , of 8.000 , within 0.049 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.089 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

NOTE

If the difference in readings in part f was within specifications, proceed with part i.
g. Add the dial reading noted in part d, to 8.000 and set DELAY TIME POSITION dial to indicate the sum.
h. ADJUST-Delay Stop, R936, to set the start of displayed time mark to coincide with graticule center. See ADJUSTMENT LOCATIONS 4-B.
i. INTERACTION-Between Delay Start and Delay Stop adjustments. Repeat parts a through h as necessary.

63. Check 1 Millisecond Differential Delay Time Accuracy

a. Turn DELAY TIME POSITION to set time mark nearest 1.000 on dial to graticule center and note reading.
b. Turn DELAY TIME POSITION to set time mark nearest 2.000 on dial to graticule center and note reading.
c. CHECK-For a difference in readings of 1.000, within 0.010 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.020 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
d. Turn DELAY TIME POSITION to set every adjacent time mark to graticule center and note reading.
e. CHECK-Each reading between any 2 adjacent time marks for 1.000 , within 0.010 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.020 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Also, check the difference between any time marks separated by more than 1 major dial division for maximum error as listed in Table 6-4.

TABLE 6-4
1 Millisecond Differential Delay Time Accuracy

Difference in Major Dial Divisions	$\begin{gathered} \text { Maximum Error } \\ +15^{\circ} \mathrm{C} \\ \text { to }+35^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Maximum Error } \\ -15^{\circ} \mathrm{C} \\ \text { to }+55^{\circ} \mathrm{C} \end{gathered}$
1.000	± 0.010	± 0.020
2.000	± 0.019	± 0.029
3.000	± 0.027	± 0.042
4.000	± 0.033	± 0.053
5.000	± 0.039	± 0.064
6.000	± 0.043	± 0.073
7.000	± 0.047	± 0.082
8.000	± 0.049	± 0.089
9.000	± 0.050	± 0.095

64. Adjust Magnified Registration

a. Set DLY'D SWP to 1 ms (lock knobs) and set HORIZ DISPLAY to A.
b. Set the time-mark generator for 5 millisecond time marks.
c. Press X10 MAG pushbutton, set the center time mark of the display to graticule center with POSITION (Horiz), then set X10 MAG pushbutton to off.
d. CHECK-That center time mark is within 0.5 division of graticule center.
e. ADJUST-Magnified Registration, R1130, to set center mark to graticule center. See ADJUSTMENT LOCATIONS 4-B.
f. Repeat parts cthrough e, as necessary, for minimum shift when switching from magnified to unmagnified.

65. Check VAR TIME/DIV Range

a. Set VAR TIME/DIV fully counterclockwise.
b. CHECK-That TIME/DIV UNCAL light is illuminated.
c. CHECK-For at least 6 time marks in 10 divisions.
d. Return VAR TIME/DIV control to calibrated detent.

66. Check Sweep Length and Horizontal POSITION Range

a. Set time-mark generator for 1 millisecond time marks.
b. CHECK-Sweep length for at least 10.1 divisions.
c. Turn POSITION and FINE (Horiz) controls fully clockwise. (Also check that each control will position the trace).
d. CHECK-That the start of sweep is to the right of graticule center.
e. Turn POSITION and FINE (Horiz) controls fully counterclockwise.
f. CHECK-That the end of sweep is to the left of graticule center.

Calibration-475A Service

g. Recenter POSITION and FINE (Horiz) controls.

67. Adjust 10 Microsecond Timing

a. Set TIME/DIV to $10 \mu \mathrm{~s}$, set time-mark generator for 10 microsecond time marks and align the first time mark with first graticule line using POSITION and FINE (Horiz) controls.
b. CHECK-That the first and 11th time marks coincide with graticule lines, within 1%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
c. ADJUST-C1064 for 1 time-mark/division. See ADJUSTMENT LOCATIONS 4-A.
d. Set HORIZ DISPLAY to B DLY'D, pull and unlock DLY'D SWP knob and set to $0.2 \mu \mathrm{~s}$.
e. Turn DELAY TIME POSITION to set time mark nearest 1.000 on dial to coincide with graticule center and note reading.
f. Turn DELAY TIME POSITION to set time mark nearest 9.000 on dial to coincide with graticule center and note reading.
g. CHECK-For a difference in readings, noted in parts e and f, of 8.000 , within 0.049 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.089 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

NOTE

If the difference in readings in part g was within specifications, proceed with step 68. Otherwise proceed with part h.
h. Add the dial reading noted in part e, to 8.000 and set DELAY TIME POSITION to indicate the sum.
i. ADJUST-C1023 to set the start of displayed time mark to coincide with graticule center. See ADJUSTMENT LOCATIONS 4-A.
j. INTERACTION-Between setting of DELAY TIME POSITION at 1.000 and adjustment of C1023. Repeat parts e through i as necessary to obtain a difference in readings of 8.000 , within limits specified in part g.

68. Adjust 0.1 Microsecond Timing

a. Set HORIZ DISPLAY to A, set DLY'D SWP to $10 \mu \mathrm{~s}$ (lock knobs) and set TIME/DIV to $0.1 \mu \mathrm{~s}$.
b. Set time-mark generator for 0.1 microsecond time marks.
c. CHECK-That first and 11th time marks coincide with graticule lines, within 1%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
d. ADJUST-C1009 for 1 time mark/division. See ADJUSTMENT LOCATIONS 4-B.
e. Set HORIZ DISPLAY to B DLY'D, pull and unlock DLY'D SWP knob and set to $0.01 \mu \mathrm{~s}$.
f. Turn DELAY TIME POSITION to set time mark nearest 1.000 on dial to coincide with graticule center and note reading.
g. Turn DELAY TIME POSITION to set time mark nearest 9.000 on dial to coincide with graticule center and note reading.
h. CHECK-For a difference in readings of 8.000 , within 0.049 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.089 from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

NOTE

If the difference in readings in part h was within specifications, proceed with step 69. Otherwise proceed with part i.
i. Add the dial reading noted in part f, to 8.000 and set DELAY TIME POSITION to indicate the sum.
j. ADJUST-C1025 to set the start of display time mark to coincide with graticule center. See ADJUSTMENT LOCATIONS 4-A.
k. INTERACTION-Between setting of DELAY TIME POSITION at 1.000 and adjustment of C1025. Repeat parts f through j as necessary to obtain a difference in readings of 8.000 , within limits specified in part h.

69. Adjust Horizontal Output Centering

a. Set HORIZ DISPLAY to A, set DLY'D SWP to $0.1 \mu \mathrm{~s}$ (lock knobs), set TIME/DIV to $X-Y$, set VERT MODE to CH 2 and set $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to GND.
b. Set the dot display to graticule center with $\mathrm{X}(\mathrm{CH} 1)$ and $Y(C H 2$ 2) POSITION controls.
c. Connect the digital voltmeter (set to read at least 50 volts) negative lead to GND test point on main interface circuit board and compare readings between the collectors (transistor cases) of Q1204 and Q1214. See ADJUSTMENT LOCATIONS 4-B.
d. Set POSITION (HORIZ) for equal readings between the transistor collectors of Q1204 and Q1214 and note the final reading.
e. CHECK-For a reading of approximately +50 volts.
f. ADJUST-Horizontal DC Centering R1256, for a reading of +50 volts. See ADJUSTMENT LOCATIONS 4B.
g. Disconnect the digital voltmeter.

NOTE

The preceding procedure is intended to initially set the Horizontal Output Centering. It may be helpful to readjust Horizontal DC Centering, R1256, later in this procedure if step 71 must be performed.

70. Adjust High-Speed Timing (Visual Method)

NOTE

This step is intended to check high-speed timing and, if necessary, perform minor recalibration. If timing cannot be adjusted to within specified accuracy, major recalibration will be performed in step 71.
a. Set TIME/DIV to $0.05 \mu \mathrm{~s}$, set VERT/MODE to CH 1 , press X10 MAG to on, set A TRIGGER SOURCE to EXT and set A TRIGGER COUPLING to LF REJ.
b. Set the time-mark generator for 5 nanosecond time marks and connect trigger output through a 42-inch 50ohm BNC cable to a $50-0 \mathrm{hm}$ BNC termination, to A TRIGGER external input. (If a 2901 time-mark generator is used, set trigger selector for 0.1 microsecond triggers).

Insert a 500 megahertz filter between the 50 -ohm BNC termination and CH 1 input. Adjust the filter for minimum unwanted modulation from the time-mark generator, as necessary, through the high-speed timing procedure.
c. Set CH 1 VOLTS/DIV to maintain a convenient display amplitude in this step. Set A TRIGGER LEVEL for a stable triggered display through the high-speed timing procedure.
d. CHECK - That first and 11th time marks coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
e. CHECK-That accuracy is within 5\% (0.1 division) over any 2 division interval. (See following note).

NOTE

(1) If waveform has modulation, check 2 division accuracy between adjacent time marks of equal amplitude.
(2) Turn INTENSITY full on and position the spot at start of the sweep to graticule area with POSITION (Horiz).

Exclude the first 25 nanoseconds from start of sweep or first 2 major unblanked divisions at normal intensity (whichever is greater) and all beyond the 100th division.
f. ADJUST-C1253 and C1233, in equal amounts, for 1 cycle/division. See ADJUSTMENT LOCATIONS 4-B.
g. Set TIME/DIV to $0.02 \mu \mathrm{~s}$ and set time-mark generator for 2 nanosecond time-marks.

NOTE

It may be necessary to adjust A TRIGGER HOLDOFF for best triggered display through this step.
h. CHECK-That first and 11th time marks coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
i. CHECK-That accuracy is within 5% (0.1 division) over any 2 division interval.

Calibration-475A Service

j. ADJUST-C1179 for 1 cycle/division. See ADJUSTMENT LOCATIONS 4-B.
k. INTERACTION-Between 0.05 and 0.02 microsecond magnified timing. Set TIME/DIV to $0.05 \mu \mathrm{~s}$, set time-mark generator for 5 nanosecond time marks and repeat parts d through i as necessary for best timing accuracy.
I. Set TIME/DIV to $0.01 \mu \mathrm{~s}$.
m. CHECK-That first and 6 th cycles coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
n. CHECK-That accuracy is within 5\% (0.1 division) over any 2 division interval.
o. ADJUST-1 Nanosecond Timing, R1075, for 1 cycle/2 divisions. See ADJUSTMENT LOCATIONS 4-A.

NOTE

If timing cannot be adjusted to within specified accuracy, proceed with step 71. If timing is within specified accuracy, proceed with step 72.

71. Adjust High-Speed Timing (Current Probe Method)

NOTE

This step is intended only for major recalibration of high-speed timing. Any reference to 475A through the calibration procedure refers to the instrument under calibration.
a. Set TIME/DIV to $0.02 \mu \mathrm{~s}$, center the display on graticule with POSITION (Horiz) and press X10 MAG to on.
b. Set time-mark generator for 2 nanosecond time marks and set CH 1 VOLTS/DIV to maintain a convenient display amplitude through this step.
c. Connect the current probe with passive termination to channel 1 of test oscilloscope. Set passive termination to $1 \mathrm{~mA} / \mathrm{mV}$.
d. Connect the probe head around the crossed horizontal deflection plate leads. See ADJUSTMENT LOCATIONS 4-B. See Figure 6-4 for proper probe connection.

Fig. 6-4. Proper connection of current probe to horizontal deflection plate leads for High-Speed Timing calibration.
e. Set the test oscilloscope: vertical mode to channel 1, time/division to 0.2 microseconds, X10 magnifier to on and channel 1 volts/division to 20 millviolts. Position current pulse at beginning of sweep to graticule center.
f. CHECK-Test oscilloscope display for a symmetrical, flat-top current waveform similar to that in Figure 6-5.

Fig. 6-5. Typical display on test oscilloscope when High-Speed Timing is properly adjusted. (475 set at 2 nanoseconds/division).
g. ADJUST- C1253, C1233, C1179, R1185 and R1175 for a symmetrical, flat-top current waveform. See ADJUSTMENT LOCATIONS 4-B.
h. CALIBRATION AID-Preset C1253 and C1233 for approximately $1 / 4$ of maximum capacitance, preset C 1179 near maximum capacitance (near clockwise stop) and preset R1185 near maximum resistance (near clockwise stop).

Adjust R1175 for a flat top and fast leading edge on current waveform at 475A TIME/DIV settings of $0.02 \mu \mathrm{~s}$ and $0.01 \mu \mathrm{~s}$. Adjust R1185 for best overall flat top on current waveform at 475A TIME/DIV setting of $0.02 \mu \mathrm{~s}$. C1253 and C1233 may be adjusted individually for a symmetrical current waveform with a fast trailing edge.

NOTE

It may be helpful to readjust Horizontal DC Centering, R1256, for best symmetrical current waveform. See ADJUSTMENT LOCATIONS 4-B.
i. INTERACTION-Between all adjustments in this step. Repeat the adjustment procedure in part g, as necessary, to obtain the best symmetrical, flat-top current waveform.
j. Set 475A TIME/DIV to 0.05μ s and set time-mark generator for 5 nanosecond time marks.
k. CHECK-That first and 11th cycles coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
I. CHECK-That accuracy is within 5\% (0.1 division) over any 2 division interval. (See following note.

NOTE

(1) If waveform has amplitude modulation, check 2 division accuracy between adjacent time marks of equal amplitude.
(2) Turn INTENSITY full on and position the spot at start of the sweep to graticule area with POSITION (Horiz).

Exclude the first 25 nanoseconds from start of sweep or first 2 major unblanked divisions at normal intensity (whichever is greater) and all beyond the 100th division.
m. ADJUST-C1253 and C1233, in equal amounts, for 1 cycle/division. See ADJUSTMENT LOCATIONS 4-B.
n. Set TIME/DIV to $0.02 \mu \mathrm{~s}$ and set time-mark generator for 2 nanosecond time marks.

note

In the following parts, it may be necessary to adjust R1185 and R1175 to maintain a symmetrical, flat-top current waveform.
o. CHECK—That first and 11th cycles coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
p. CHECK-That accuracy is within 5% (0.1 division) over any 2 division interval.
q. ADJUST-C1179 for 1 cycle/division. See $A D-$ JUSTMENT LOCATIONS 4-B.
r. INTERACTION-Between 0.05 and 0.02 microsecond magnified timing. Repeat parts j through p, as necessary for best timing accuracy.
s. Set TIME/DIV to $0.01 \mu \mathrm{~s}$.
t. CHECK-That first and 6 th cycles coincide with graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
u. CHECK-That accuracy is within 5\% (0.1 division) over any 2 division interval.
v. ADJUST-1 Nanosecond Timing, R1075, for 1 cycle/2 divisions. See ADJUSTMENT LOCATIONS 4-A.
w. Disconnect the current probe without disturbing the deflection plate leads.
x. INTERACTION-Between timing with current probe connected and timing without current probe. Repeat parts j through u for best timing accuracy. (Disregard note between n and o).
y. Set X10 MAG to off, TIME/DIV to $0.1 \mu \mathrm{~s}$, set CH 1 AC-GND-DC switch to DC and set time-mark generator for 0.1 microsecond time marks.
z. CHECK-That first and 11th time marks coincide with graticule lines, within 1%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
aa. ADJUST-C1009 for 1 time mark/division. See ADJUSTMENT LOCATIONS 4-B.
ab. INTERACTION-Between adjustment of C1009 and high-speed timing. If adjustment was made in part aa, press X10 MAG to on and repeat parts j through v for best timing accuracy.
ac. Remove the trigger cable setup from A TRIGGER external input, set A TRIGGER SOURCE to NORM and set A TRIGGER COUPLING to AC.

72. Check A Timing Accuracy

a. Set $\mathrm{CH} 1 \mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC , set CH 1 VOLTS/DIV to 0.5 V and set TRIG MODE to NORM.
b. CHECK-TIME/DIV settings from $0.01 \mu \mathrm{~s}$ to $5 \mathrm{~ms} /$ division for accuracy, at first and 11th graticule lines, within 1%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Set time-mark generator to maintain appropriate time marks through this step. Exclude the first 25 nanoseconds from start of sweep when checking 0.01 and $0.02 \mu \mathrm{~s} /$ division.
c. CHECK-TIME/DIV settings from 10 ms to $0.5 \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

73. Check A INTEN Timing Accuracy

a. Set HORIZ DISPLAY to A INTEN and set DELAY TIME POSITION fully counterclockwise.
b. CHECK-TIME/DIV settings from $0.05 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 3%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Set time-mark generator to maintain appropriate time marks.

74. Check A INTEN Magnified Timing Accuracy

a. Press X10 MAG to on.
b. CHECK-TIME/DIV settings from $0.05 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines, within 3%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Set time-mark generator to maintain appropriate time marks. See NOTE following step 71, part I.

75. Check A Magnified Timing Accuracy

a. Set HORIZ DISPLAY to A.
b. CHECK-TIME/DIV settings from $0.01 \mu \mathrm{~s}$ to $5 \mathrm{~ms} /$ division for accuracy, at first and 11 th graticule lines, within 2%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Set time-mark generator to maintain appropriate time marks through this step. See NOTE following step 71, part I.
c. CHECK-TIME/DIV settings from 10 ms to $0.5 \mathrm{~s} /$ division for accuracy, at first and 11th graticule lines, within 3%, from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$; within 4%, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
d. CHECK—That accuracy is within 5\% (0.1 division) over any 2 division interval at all TIME/DIV settings.

76. Check Differential Delay Time Accuracy

a. Set HORIZ DISPLAY to B DLY'D and set TIME/DIV to $0.05 \mu \mathrm{~s}$. Pull and unlock DLY'D SWP knob, set to $0.01 \mu \mathrm{~s}$ and set X10 MAG to off.
b. Set time-mark generator for 50 nanosecond time marks.
c. Turn DELAY TIME POSITION to set time mark nearest 1.000 on dial to coincide with graticule center and note reading.
d. Turn DELAY TIME POSITION to set time mark nearest 2.000 on dial to coincide with graticule center and note reading.
e. CHECK-For a difference in readings of 1.000 , within 0.010 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.020 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
f. Turn DELAY TIME POSITION to set every adjacent time mark to coincide with graticule center and note reading.
g. CHECK-Each reading between any 2 adjacent time marks for 1.000 , within 0.010 , from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; within 0.020 , from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Also, check the difference between any time marks separated by more than 1 major dial division for maximum error as listed in Table 6-5.

TABLE 6-5
Differential Delay Time Accuracy

Difference in Major Dial Divisions	Maximum Error $+\mathbf{1 5}^{\circ} \mathbf{C}$ to $\mathbf{+ 3 5 ^ { \circ }} \mathbf{C}$	Maximum Error $-\mathbf{1 5}^{\circ} \mathbf{C}$ to $+\mathbf{5 5}{ }^{\mathbf{}} \mathbf{C}$
1.000	± 0.010	± 0.020
2.000	± 0.019	± 0.029
3.000	± 0.027	± 0.042
4.000	± 0.033	± 0.053
5.000	± 0.039	± 0.064
6.000	± 0.043	± 0.073
7.000	± 0.047	± 0.082
8.000	± 0.049	± 0.089
9.000	± 0.050	± 0.095

h. CHECK-Differential delay time accuracy as directed in part g , at all settings listed in Table 6-6 not to exceed maximum error listed in Table 6-5.

TABLE 6-6
Delay Time Settings

DELAY TIME POSITION Exclusions	A TIME/DIV Switch Setting	B TIME/DIV Switch Setting	${ }^{1}$ Time-Mark Generator Setting
Exclude dial settings of 0.000 through 1.000	$0.05 \mu \mathrm{~s}$	$0.01 \mu \mathrm{~s}$	50 nanosecond
	$0.1 \mu \mathrm{~s}$	$0.01 \mu \mathrm{~s}$	0.1 microsecond
	$0.2 \mu \mathrm{~s}$	$0.02 \mu \mathrm{~s}$	0.2 microsecond
	$0.5 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	0.5 microsecond
Exclude dial settings of 0.000 through 0.050	$1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	1 microsecond
	$2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	2 microsecond
	$5 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	5 microsecond
	$10 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	10 microsecond
	$20 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	20 microsecond
	$50 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	50 microsecond
	0.1 ms	$10 \mu \mathrm{~s}$	0.1 millisecond
	0.2 ms	$20 \mu \mathrm{~s}$	0.2 millisecond
	0.5 ms	$50 \mu \mathrm{~s}$	0.5 millisecond
	1 ms	0.1 ms	1 millisecond
	2 ms	0.2 ms	2 millisecond
	5 ms	0.5 ms	5 millisecond
	10 ms	1 ms	10 millisecond
	20 ms	2 ms	20 millisecond
	50 ms	5 ms	50 millisecond
	0.1 s	10 ms	0.1 second
	0.2 s	20 ms	0.2 second
	0.5 s	50 ms	0.5 second

${ }^{1}$ If the time-mark generator being used does not have a 1-2-5 sequence, set for 1 or more time marks per division on DELAY TIME POSITION dial.

Calibration-475A Service

77. Check Delay Time Jitter

a. Set DLY'D SWP to $0.2 \mu \mathrm{~s}$, set A TIME/DIV to 1 ms and set time-mark generator for 1 millisecond time marks.
b. Set DELAY TIME POSITION to 1.000 on dial and position nearest time mark to graticule center.
c. CHECK-That jitter on the leading edge of the time mark does not exceed 1 division (60 Hertz line) or 2.5 division (50 Hertz line).
d. Set DELAY TIME POSITION to view each time mark from 2.000 to 9.000 on dial and check delay time jitter for limits stated in part c .

78. Check MIX (Mixed Sweep) Timing Accuracy

a. Set DLY'D SWP to $0.02 \mu \mathrm{~s}$, A TIME/DIV to $0.05 \mu \mathrm{~s}$, HORIZ DISPLAY to MIX and DELAY TIME POSITION fully clockwise.
b. Set time-mark generator for 50 nanosecond time marks.
c. CHECK-A TIME/DIV settings from $0.02 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} /$ division for accuracy at 2 nd and 10th graticule lines, (8 division timing), within 3%. Exclude the first 0.5 division from start of sweep when checking A sweep. Set DLY'D SWP at least 1 sweep setting faster than A sweep setting on all ranges. Set time-mark generator to maintain appropriate time marks.
d. Set DELAY TIME POSITION fully counterclockwise, DLY'D SWP to $0.05 \mu \mathrm{~s}$, A TIME/DIV to $0.1 \mu \mathrm{~s}$ and set time-mark generator for 50 nanosecond time marks.
e. CHECK-DLY'D SWP settings from 0.05μ s to $0.5 \mathrm{~s} /$ division for accuracy at 2 nd and 10th graticule lines, (8 division timing), within 3%. Exclude the first 0.2 division or 0.1 microsecond (whichever is greater) after the transition of A to B. Set DLY'D SWP at least 1 sweep setting faster than A sweep setting on all ranges. Set time-mark generator to maintain appropriate time marks.

79. Adjust X Gain

a. Set TRIG MODE to AUTO, set DLY'D SWP to lock knobs and set TIME/DIV to X-Y. Set VERT MODE to CH 2 , set $X(\mathrm{CH}$ 1) VOLTS/DIV to 5 mV , and set $X(\mathrm{CH} 1) \mathrm{AC}$ -GND-DC switch to DC.
b. Set amplitude calibrator to 20 millivolts and connect to $X(C H 1)$ input through a 42 -inch 50 -ohm BNC cable.
c. Set X and Y POSITION controls to set the 2-dot display at graticule center.
d. CHECK-The deflection between the 2 displayed dots for 4 divisions within 3%.
e. ADJUST-X Gain, R1102, for 4 divisions of deflection between the 2 displayed dots. See ADJUSTMENT LOCATIONS 4-B.
f. Adjust X VAR VOLTS/DIV and X POSITION for exactly 2 divisions between the displayed dots at graticule center.
g. Position right dot of display to extreme right graticule line.
h. CHECK-The display for 0.2 division or less of compression or expansion.
i. Position left dot of display to extreme left graticule line.
j. CHECK-The display for 0.2 divisions or less of compression or expansion.
k. Disconnect all test equipment.

80. Adjust X-Y Phase Difference

a. Return X VAR VOLTS/DIV to calibrated detent and set $X A C-G N D-D C$ switch to GND.
b. Set Y VOLTS/DIV to 5 mV .
f. Disconnect all test equipment.

NOTE

See test equipment required, Table 6-1, for selection of sine-wave generator with an output of 100 megahertz and below.
c. Connect the sine-wave generator output cable to a BNC female-to-BNC female adapter, to a BNC Tconnector, to two 18 -inch 50 -ohm BNC cables. Connect the 18 -inch cables through 50 -ohm terminations to X and Y inputs.
d. Set the sine-wave generator for an 8 division display of reference frequency, then set X AC-GND-DC switch to DC.
e. Center the lissajous display on graticule with X and Y POSITION controls.
f. CHECK-For 0.14 division or less of opening at center of the lissajous display. (Measure horizontally).
g. ADJUST-L1103 for minimum opening of the lissajous display. See ADJUSTMENT LOCATIONS 4-B.
h. Increase the frequency of the sine-wave generator to 2 megahertz.
i. CHECK-For 0.42 division or less of opening at center of the lissajous display. (Measure horizontally).
j. Disconnect all test equipment.

81. Check X Bandwidth

a. Connect the sine-wave generator output cable to a 50 -ohm termination, to X input.
b. Set the sine-wave generator for a 4 division horizontal display of reference frequency.
c. Increase the frequency of the sine-wave generator until the display is reduced to 2.8 divisions.
d. CHECK-The sine-wave generator for a reading of 3 megahertz or higher.
e. Disconnect all test equipment.

82. Check B ENDS A Operation

a. Set TIME/DIV to 1 ms , pull and unlock DLY'D SWP knob and set to 0.1 ms , set VERT MODE to CH 1, set HORIZ DISPLAY to A INTEN and set A TRIG HOLDOFF to B ends A detent.
b. Increase INTENSITY until A sweep is visible.
c. Turn DELAY TIME POSITION through its range.
d. CHECK-That A sweep ends after the intensified portion at all settings of DELAY TIME POSITION dial.

83. Check A TRIG HOLDOFF Operation

a. Set HORIZ DISPLAY to A, set A TRIG HOLDOFF to NORM and set DLY'D SWP (B TIME/DIV) to 1 ms (lock knobs).
b. Connect A GATE (output connector on raar panel) to channel 1 of test oscilloscope through a 42-inch 50 -ohm BNC cable.
c. Set test oscilloscope: time/division to 1 millisecond, X10 magnifier to off, channel 1 volts/division to 2 volts and trigger slope to negative.
d. Adjust A TRIG HOLDOFF for maximum time of negative pulse on test oscilloscope display. (Avoid setting near B ENDS A detent where negative portion decreases).
e. CHECK—That maximum holdoff time is 9 or more times the TIME/DIV setting on the 475A.
f. CHECK—475A TIME/DIV settings from $0.01 \mu \mathrm{~s}$ to 0.5 s for maximum holdoff time of 9 or more times the TIME/DIV setting on the 475A.

GATE OUTPUTS, EXTERNAL Z AXIS AND CALIBRATOR

Equipment Required	3. Amplitude Calibrator
1. Test Oscilloscope With $10 X$ Probe	4. 42 -Inch 50 -ohm BNC Cable
2. Digital Voltmeter	

Before you begin, see

ADJUSTMENT LOCATIONS 4

in the pullout pages.

Control Settings

POWER ON

Display

INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical (CH 1 and CH 2)

POSITION
VOLTS/DIV
VAR VOLTS/DIV
AC-GND-DC
INVERT
VERT MODE
100 OR 20 MHz BW

Midrange
5 mV
Calibrated detent
DC
Off (button out)
CH 1
20 (new setting)

Trigger (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
A TRIGGER SOURCE	NORM
B TRIGGER SOURCE	STARTS AFTER DEL_AY
TRIG MODE	AUTO
A TRIG HOLDOFF	NORM (new setting)

Sweep

A TIME/DIV	0.2 ms (new setting)
B TIME/DIV	0.2 ms (new setting)
VAR TIME/DIV	Calibrated detent
DELAY TIME POSITION	Fully counterclockwise
	(new setting)
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

84. Check A and B + GATE Outputs

a. Connect A + GATE (output connector on rear panel) to channel 1 of test oscilloscope through a 42-inch 50-ohm BNC cable.
b. Set test oscilloscope: time/div to 1 millisecond, channel 1 for 2 volts/division and trigger slope to positive.
c. CHECK-Test oscilloscope display for a positive pulse amplitude of approximately 5 volts.
d. Set HORIZ DISPLAY to A INTEN and move cable from $A+G A T E$ connector to $B+G A T E$ connector.
e. CHECK—Repeat part c.
f. Disconnect all test equipment.

85. Check EXT Z-Axis Operation

a. Set HORIZ DISPLAY to A and set TIME/DIV to 1 ms .
b. Set amplitude calibrator for a 5 volt output and connect to EXT Z-AXIS (input connector on rear panel) through a 50 -ohm BNC cable.
c. CHECK-For noticeable modulation at normal intensity. Adjust VAR TIME/DIV, if necessary, to observe modulation, then return to calibrated detent.
d. Disconnect all test equipment.

86. Adjust CALIBRATOR Output Amplitude

a. Connect the digital voltmeter between the CALIBRATOR current loop and ground test point. See ADJUSTMENT LOCATIONS 4-B.

[^7]c. CHECK-For a reading of 0.3 volts, within 3 millivolts, from $0 \%^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$; within 4.5 millivolts, from $-15^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
d. ADJUST-Calibrator Amplitude, R1515, for a reading of 0.3 volt. See ADJUSTMENT LOCATIONS 4-B.
e. Remove the short circuit between calibrator test points and disconnect all test equipment.

87. Check CALIBRATOR Frequency

a. Set CH 1 VOLTS/DIV to 10 mV and set TIME/DIV to 1 ms .
b. Connect a 10X probe from CALIBRATOR current loop to CH 1 input.
c. CHECK—For approximately 1 cycle/division.

This completes the calibration procedure for the 475A. Disconnect all test equipment, replace the vertical output circuit board cover and replace the cabinet. See Cabinet Installation instructions in the Maintenance Section of this manual for important installation information.

REPLACEABLE
 ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000
Part first added at this serial number
00X Part removed after this serial number

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

ABBREVIATIONS

ACTR	ACTUATOR	PLSTC	PLASTIC
ASSY	ASSEMBLY	QTZ	QUARTZ
CAP	CAPACITOR	RECP	RECEPTACLE
CER	CERAMIC	RES	RESISTOR
CKT	CIRCUIT	RF	RADIO FREQUENCY
COMP	COMPOSITION	SEL	SELECTED
CONN	CONNECTOR	SEMICOND	SEMICONDUCTOR
ELCTLT	ELECTROLYTIC	SENS	SENSITIVE
ELEC	ELECTRICAL	VAR	VARIABLE
INCAND	INCANDESCENT	WW	WIREWOUND
LED	LIGHT EMITTING DIODE	XFMR	TRANSFORMER
NONWIR	NON WIREWOUND	XTAL	CRYSTAL

Mfr. Code	Manufacturer	Address	City, State, Zip
S3109	C/O PANEL COMPONENTS CORP.	P.O. BOX 6626	SANTA ROSA, CA 95406
0000A	LEMO USA	2015 SECOND ST.	BERKELEY, CA 94710
00853	SANGAMO Electric co., S. CAROLINA DIV.	P 0 box 128	PICKENS, SC 29671
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01295	TEXAS INSTRUMENTS, INC., SEMICONDUCTOR GROUP	P O BOX 5012, 13500 N CENTRAL EXPRESSWAY	DALLAS, TX 75222
01963	CHERRY ELECTRICAL PRODUCTS CORPORATION	3600 SUNSET AVENUE	WAUKEGAN, IL 60085
02111	SPECTROL ELECTRONICS CORPORATION	17070 EAST GALE AVENUE	CITY OF INDUSTRY, CA 91745
02114	FERROXCUBE CORPORATION	PO BOX 359, MARION ROAD	SAUGERTIES, NY 12477
02735	RCA CORPORATION, SOLID STATE DIVISION	ROUTE 202	SOMERVILLE, NY 08876
03508	general electric company, semi-conductor PRODUCTS DEPARTMENT	ELECTRONICS PARK	SYRACUSE, NY 13201
04222	avx ceramics, division of avx corp.	P O BOX 867, 19TH AVE. SOUTH	MYRTLE BEACH, SC 29577
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENLX, AZ 85036
05828	general instrument corp electronic SYSTEMS DIV.	600 W JOHN ST.	HICKSVILLE LI, NY 11802
07263	FAIRCHILD SEMICONDUCTOR, A DIV. OF		
	FAIRCHILD CAMERA AND INSTRUMENT CORP.	464 ELLIS STREET	MOUNTAIN VIEW, CA 94042
08806	general electric co., miniature LAMP PRODUCTS DEPARTMENT	NELA PARK	CLEVELAND, OH 44112
09353	C AND K COMPONENTS, INC.	103 MORSE STREET	WATERTOWN, MA 02172
12697	Clarostat mfg. Co., inc.	LOWER WASHINGTON Street	DOVER, NH 03820
12954	SIEMENS CORPORATION, COMPONENTS GROUP	8700 E THOMAS RD, P O BOX 1390	SCOTTSDALE, AZ 85252
13511	AMPHENOL CARDRE DIV., Bunker ramo corp.		LOS GAtos, CA 95030
14099	SEMTECH CORP.	652 MITCHELL RD.	NEWBURY PARK, CA 91320
14433	ITT SEMICONDUCTORS	3301 ELECTRONICS WAY P O BOX 3049	WEST PALM BEACH, FL 33402
14552	MICRO SEMICONDUCTOR CORP.	2830 E FAIRVIEW ST.	SANTA ANA, CA 92704
15238	ITT SEMICONDUCTORS, A DIVISION OF INTER NATIONAL TELEPHONE AND TELEGRAPH CORP.	P.O. BOX 168, 500 BROADWAY	LAWRENCE, MA 01841
15454	rodan industries, inc.	2905 BLUE STAR ST.	ANAHEIM, CA 92806
16428	BELDEN CORP.	P. O. BOX 1331	RICHMOND, IN 47374
17856	SILICONIX, INC.	2201 LAURELWOOD DRIVE	SANTA CLARA, CA 95054
18324	SIGNETICS CORP.	811 E. ARQUES	SUNNYVALE, CA 94086
24546	CORNING GLASS WORKS, ELECTRONIC COMPONENTS DIVISION	550 HIGH STREET	BRADFORD, PA 16701
24931	SPECIALITY CONNECTOR CO., inc.	2620 ENDRESS PLACE	GREENWOOD, IN 46142
25088	SIEMENS CORP.	186 WOOD AVE. S	ISELIN, NJ 08830
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	SANTA CLARA, CA 95051
32997	BOURNS, INC., TRIMPOT PRODUCTS DIV.	1200 COLUMBIA AVE.	RIVERSIDE, CA 92507
33096	COLORADO CRYSTAL CORPORATION	2303 W 8TH Street	LOVELAND, CO 80537
50157	MIDWEST COMPONENTS INC.	$\begin{aligned} & \text { P. O. BOX } 787 \\ & \text { 1981 PORT CITY BLVD. } \end{aligned}$	MUSKEGON, MI 49443
50434	HEWLETT-PACKARD COMPANY	640 Page mill road	PALO ALTO, CA 94304
51642	CENTRE ENGINEERING INC.	2820 e COLLEGE AVENUE	State college, pa 16801
52306	high voltage devices, inc.	7485 avenue 304	VISALIA, CA 93277
52769	SPRAGUE GOODMAN ELEC., INC.	134 FULTON AVENUE	garden City park, NY 11040
53944	Elt inc., glow lite division	B0X 698	PaUlS Valley, OK 73075
56289	SpRague electric co.	87 MARSHALL ST.	NORTH ADAMS, MA 01247
59660	TUSONIX INC.	2155 N FORBES BLVD	TUCSON, AZ 85705
71400	BUSSMAN MFG., DIVISION OF MCGRAWEDISON CO.	2536 W. UNIVERSITY ST.	ST. LOUIS, MO 63107
71590	CENTRALAB ELECTRONICS, DIV. OF		
	GLOBE-UNION, INC.	P 0 box 858	FORT DODGE, IA 50501
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W .12 TH ST.	ERIE, PA 16512
73138	BECKMAN INSTRUMENTS, INC., HELIPOT DIV.	2500 HARBOR BLVD.	FULLERTON, CA 92634
74276	SIGNALITE DIV., GENERAL INSTRUMENT CORP.	1933 HECK AVE.	NEPTUNE, NJ 07753
74970	JOHNSON, E. F., CO.	299 10Th ave. S. W.	WASECA, MN 56093
75042	TRW ELECTRONIC COMPONENTS, IRC FIXED RESISTORS, PHILADELPHIA DIVISION	401 N. BROAD ST.	PHiladelphia, Pa 19108
76493	bell industries, inc., MILLER, J. W., DIV.	19070 REYES AVE., P O BOX 5825	COMPTON, CA 90224
78488	Stackpole carbon co.		St. MARYS, PA 15857
80009	TEKTRONIX, inc.	P O BOX 500	BEAVERTON, OR 97077
80126	pacific electricord co.	747 W. REDONDO BEACH, P O BOX 10	GARDENA, CA 90247
82389	SWITCHCRAFT, INC.	5555 N. ELSTON AVE.	CHICAGO, IL 60630

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip
90201	MALLORY CAPACITOR CO., DIV. OF	3029 E. WASHINGTON STREET	
	P. R. MALLORY AND CO., INC.	P. O. BOX 372	INDIANAPOLIS, IN 46206
91418	RADIO MATERIALS COMPANY, DIV. OF P.R.		
	MALLORY AND COMPANY, INC.	4242 W BRYN MAWR	CHICAGO, IL 60646
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601
92966	SYLVANIA MINIATURE LIGHTING PRODUCTS,		
	INC., SUB OF GTE SYLVANIA, LIGHT. PROD.	526 ELM STREET	KEARNY, NJ 07032
93410	ESSEX INTERNATIONAL, INC., CONTROLS DIV.		
	LEXINGTON PLANT	P. O. BOX 1007	MANSFIELD, OH 44903
95348	GORDOS CORPORATION	250 GLENWOOD AVENUE	BLOOMFIELD, NJ 07003

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
A1	670-3120-01			CKT BOARD ASSY:ATTENUATOR	80009	670-3120-01
A2	670-3120-01			CKT BOARD ASSY:ATTENUATOR	80009	670-3120-01
A3	670-2240-03			CKT BOARD ASSY:VERTICAL PREAMP (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2240-03
A3	670-2240-04			CKT BOARD ASSY:VERTICAL PREAMP (OPTION 7 ONLY)	80009	670-2240-04
A4	670-2243-01			CKT BOARD ASSY:GAIN SWITCH	80009	670-2243-01
A5	670-2242-02	B010100	B012999	CKT BOARD ASSY:VERTICAL OUTPUT	80009	670-2242-02
A5	670-2242-04	B013000	B019489	CKT BOARD ASSY:VERTICAL OUTPUT	80009	670-2242-04
A5	670-2242-06	B019490		CKT BOARD ASSY:VERTICAL OUTPUT	80009	670-2242-06
A6	670-2245-00	B010100	B016199	CKT BOARD ASSY:FAN MOTOR	80009	670-2245-00
A6	670-6002-01	B016200		CKT BOARD ASSY:FAN MOTOR	80009	670-6002-01
A7	670-3468-01	B010100	B011629	CKT BOARD ASSY:TIMING	80009	670-3468-01
A7	670-3468-02	B011630		(SEE DM MANUAL FOR ALTERNATE VERSION) CKT BOARD ASSY:TIMING (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-3468-02
A8	670-2241-02	B010100	B010399	CKT BOARD ASSY:TRIGGER GEN \& Z AXIS LOGIC (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-224.1-02
A8	670-2241-03	B010400		CKT BOARD ASSY:TRIGGER GEN \& Z AXIS LOGIC (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2241-03
A9	670-2239-04	B010100	B012999	CKT BOARD ASSY:INTERFACE (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2239-04
A9	670-2239-08	B013000	B014658	CKT BOARD ASSY:INTERFACE (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2239-08
A9	670-2239-10	B014659	B020119	CKT BOARD ASSY:INTERFACE (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2239-10
A9	670-2239-12	B020120	B020838	CKT BOARD ASSY:MAIN (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2239-12
A9	670-2239-21	B020839		CKT BOARD ASSY:MAIN (SEE DM MANUAL FOR ALTERNATE VERSION)	80009	670-2239-21
A10	670-2279-00			CKT BOARD ASSY:CRT SCALE ILLUMINATION	80009	670-2279-00
B1690	147-0035-00	B010100	B016199X	MOTOR, DC: BRUSHLESS, 10-15VDC , 145MA	25088	1AD3001-0A
B8045	147-0035-00	XB016200		MOTOR, DC: BRUSHLESS , 10-15VDC, 145MA	25088	1AD3001-0A
C10	281-0064-00			CAP.,VAR,PLSTC:0.25-1.5PF,600V	74970	273-0001-101
C11	283-0000-00			CAP.,FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C12	285-0816-01			CAP. , FXD, PLSTC : $0.019 \mathrm{UF}, 10 \%, 600 \mathrm{~V}$	80009	285-0816-01
C13	283-0000-00			CAP., FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
$\left.\begin{array}{l} C 30(2) \\ C 31 \end{array}\right\}$	307-1014-01			ATTENUATOR, FXD : 100X	80009	307-1014-01
C32(2)	307-1013-01			ATTENUATOR,FXD: 10X	80009	307-1013-01
C33						
$\left.\begin{array}{l} C 34(2) \\ C 35 \end{array}\right\}$	307-1012-00			ATTENUATOR, FXD : 5X	80009	307-1012-00
$\left.\begin{array}{l} \text { C36(2) } \\ \text { C37 } \end{array}\right\}$	307-1010-01			ATTENUATOR, FXD: 2X	80009	307-1010-01
C41	283-0156-00			'CAP., FXD, CER DI : $1000 \mathrm{PF},+100-0 \%, 200 \mathrm{~V}$	72982	8111 A 208 Z U0102Z
C50	281-0064-00			CAP., VAR, PLSTC:0.25-1.5PF,600V	74970	273-0001-101
C 51	283-0000-00			CAP., FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C52	285-0816-01			CAP., FXD, PLSTC $: 0.019 \mathrm{UF}, 10 \%, 600 \mathrm{~V}$	80009	285-0816-01
C53	283-0000-00			CAP.,FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C61	283-0156-00			CAP., FXD, CER DI: $1000 \mathrm{PF},+100-0 \%, 200 \mathrm{~V}$	72982	8111A208Z5U0102Z
C104	281-0064-00			CAP.,VAR,PLSTC:0.25-1.5PF,600V	74970	273-0001-101
Cl05	283-0080-00			CAP., FXD, CER DI 0.022 UF , +80-20\%, 25V	91418	MX223Z2504R0
C107	283-0111-00			CAP.,FXD, CER DI:0.1UF, 20\%,50V	72982	8121-N088Z5U104M
C109	283-0191-00			CAP.,FXD, CER DI $0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8121 N075Z5U0223M
Cl12	281-0122-00			CAP., VAR, CER DI: $2.5-9 \mathrm{PF}, 100 \mathrm{~V}$	59660	518-000A2.5-9

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
C113	283-0156-00		CAP.,FXD, CER DI: $1000 \mathrm{PF},+100-0 \%, 200 \mathrm{~V}$	72982	8111A208Z5U0102Z
C119	283-0191-00		CAP.,FXD, CER DI: $0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8121N075Z5U0223M
C123	283-0080-00		CAP.,FXD, CER DI: $0.022 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX22322504R0
C127	283-0080-00		CAP.,FXD, CER DI: $0.022 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX223Z2504R0
C133	281-0123-00		CAP.,VAR, CER DI:5-25PF,100V	59660	518-000A5-25
Cl36	283-0213-00		CAP.,FXD, CER DI: $300 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	72982	$8121 \mathrm{~N} 130 \mathrm{COG0301J}$
C137	283-0178-00		CAP., FXD, CER DI: $0.1 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	72982	8131N145651 104Z
C138	283-0177-00		CAP.,FXD, CER DI: $1 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	56289	273C5
C139	283-0238-00		CAP.,FXD, CER DI:0.01UF, $10 \%, 50 \mathrm{~V}$	72982	8121N075X7R0103K
C142			(PART OF CIRCUIT BOARD)		
C144	290-0534-00		CAP., FXD, ELCTLT: 1UF, 20\%, 35V	56289	196D105X0035HA1
C147	-----------		(PART OF CIRCUIT BOARD)		
C151	------ -----		(PART OF CIRCUIT BOARD)		
C152	----- -----		(PART OF CIRCUIT BOARD)		
C157	290-0534-00		CAP.,FXD, ELCTLT: 1UF, 20\%, 35V	56289	196D105X0035HA1
C158	283-0156-00		CAP.,FXD, CER DI: $1000 \mathrm{PF},+100-0 \%, 200 \mathrm{~V}$	72982	8111A208Z5U0102Z
C172	283-0103-00		CAP.,FXD, CER DI: 180PF,5\%,500V	59660	831-518-Z5D0181J
C175	281-0123-00		CAP.,VAR, CER DI:5-25PF, 100V	59660	518-000A5-25
C182	283-0103-00		CAP.,FXD, CER DI: $180 \mathrm{PF}, 5 \%, 500 \mathrm{~V}$	59660	831-518-Z5D0181J
C204	281-0064-00		CAP., VAR, PLSTC: $0.25-1.5 \mathrm{PF}, 600 \mathrm{~V}$	74970	273-0001-101
C205	283-0080-00		CAP., FXD, CER DI: $0.022 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX223Z2504R0
C207	283-0111-00		CAP.,FXD, CER DI:0.1UF, 20\%,50V	72982	8121-N088Z5U104M
C209	283-0191-00		CAP.,FXD, CER DI:0.022UF,20\%, 50V	72982	8121N075Z5U0223M
C212	281-0122-00		CAP.,VAR, CER DI: $2.5-9 \mathrm{PF}, 100 \mathrm{~V}$	59660	518-000A2.5-9
C213	283-0156-00		CAP.,FXD, CER DI: $1000 \mathrm{PF},+100-0 \%, 200 \mathrm{~V}$	72982	8111A208Z5U0102Z
C219	283-0191-00		CAP.,FXD, CER DI: $0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8121N075Z5U0223M
C223	283-0080-00		CAP., FXD, CER DI $0.022 \mathrm{UF},+80-20 \%$, 25V	91418	MX22322504R0
C227	283-0080-00		CAP., FXD, CER DI: $0.022 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX22322504R0
C233	281-0123-00		CAP.,VAR, CER DI: 5-25PF,100V	59660	518-000A5-25
C236	283-0213-00		CAP.,FXD, CER DI: $300 \mathrm{PF}, 5 \%, 100 \mathrm{~V}$	72982	8121N130C0G0301J
C 237	283-0178-00		CAP.,FXD, CER DI: 0.1 l	72982	8131N145651 104Z
C238	283-0177-00		CAP.,FXD, CER DI: $1 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	56289	273C5
C239	283-0238-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 50 \mathrm{~V}$	72982	8121N075X7R0103K
C242	----------		(PART OF CIRCUIT BOARD)		
C244	290-0534-00		CAP., FXD, ELCTLT: 1UF, 20\%, 35V	56289	196D105X0035HAl
C247	----- -----		(PART OF CIRCUIT BOARD)		
C251	--- ---		(PART OF CIRCUIT BOARD)		
C252	-----		(PART OF CIRCUIT BOARD)		
C257	290-0534-00		CAP.,FXD, ELCTLT: 1UF, 20\%, 35V	56289	196D105X0035HAl
C258	283-0156-00		CAP., FXD, CER DI: $1000 \mathrm{PF},+100-0 \%, 200 \mathrm{~V}$	72982	8111A208Z5U0102Z
C272	283-0103-00		CAP.,FXD, CER DI: 180PF,5\%,500V	59660	831-518-Z5D0181J
C275	281-0123-00		CAP.,VAR, CER DI: 5-25PF, 100V	59660	518-000A5-25
C282	283-0103-00		CAP.,FXD, CER DI: $180 \mathrm{PF}, 5 \%, 500 \mathrm{~V}$	59660	831-518-Z5D0181J
C291	290-0525-00		CAP., FXD, ELCTLT: $4.7 \mathrm{TF}, 20 \%$, 50V	56289	196D475X0050KAl
C292	290-0523-00		CAP., FXD, ELCTLT : $2.2 \mathrm{UF}, 20 \%$, 20V	56289	196D225X0020HAl
C297	290-0523-00		CAP.,FXD, ELCTLT: $2.2 \mathrm{LUF}, 20 \%, 20 \mathrm{~V}$	56289	196D225X0020HA1
C310	283-0000-00		CAP.,FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C320	283-0000-00		CAP.,FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C329	283-0024-00		CAP., FXD, CER DI : $0.1 \mathrm{UF},+80-20 \%, 50 \mathrm{~V}$	72982	8121N083Z5U0104Z
C335	283-0677-00		CAP.,FXD,MICA D: 82PF, $1 \%, 500 \mathrm{~V}$	00853	D155E820F0
C336	283-0677-00		CAP.,FXD,MICA D: 82PF, $1 \%, 500 \mathrm{~V}$	00853	D155E820F0
C338	281-0504-00		$\begin{aligned} & \text { CAP., FXD, CER DI: } 10 \mathrm{PF},+/-1 \mathrm{PF}, 500 \mathrm{~V} \\ & \text { (OPTION } 7 \text { ONLY) } \end{aligned}$	59660	301-055C0G0100F
C343	281-0549-00		CAP.,FXD, CER DI: 68PF, $10 \%, 500 \mathrm{~V}$	59660	301-000U2J0680K
C346	281-0543-00		CAP., FXD, CER DI: $270 \mathrm{PF}, 10 \%$, 500V	72982	301055X5P271K
C377	281-0564-00		CAP.,FXD, CER DI: $24 \mathrm{PF}, 5 \%, 500 \mathrm{~V}$	59660	301-000C0G0240J
C378	283-0640-00		CAP.,FXD,MICA D: 160PF, $1 \%, 100 \mathrm{~V}$	00853	D151E161F0

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
C393	281-0659-00		CAP.,FXD, CER DI:4.3PF, +/-0.25PF, 500V	59660	301-000с0Н0439C
C394	281-0547-00		CAP., FXD, CER DI:2.7PF, 10%, 500 V	04222	7001-1321
C396	290-0534-00		CAP., FXD, ELC'TLT: 1UF, 20%, 35v	56289	196D105X0035HA1
C398	281-0628-00		CAP., FXD, CER DI: $15 \mathrm{PF}, 5 \%$, 500 V	59660	301-000C0G0150J
C399	281-0508-00		CAP.,FXD, CER DI:12PF, +/-0.6PF,500V	59660	301-000C0G0120J
C403	290-0534-00		CAP., FXD, ELCTLT: 1UF, 20%, 35v	56289	196D105X0035HA1
C420	281-0547-00		CAP., FXD, CER DI:2.7PF, 10%, 500 V	04222	7001-1321
C430	290-0534-00		CAP., FXD, ELCTLT: 1 UF, 20%, 35v	56289	196D105X0035HA1
C436	283-0080-00		CAP., FXD, CER DI: $0.022 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX223Z2504R0
C437	283-0080-00		CAP.,FXD, CER DI: $0.022 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX223Z2504R0
C438	290-0534-00		CAP., FXD, ELCTLT: 1 UF , 20%,35V	56289	196D105X0035HAI
C439	290-0534-00		CAP.,FXD,ELCTLT:1UF, 20%, 35v	56289	196D105X0035HAl
C441	----------		(SELECTED AND ADDED If NECESSARY)		
C445	----------		(SElected and added if necessary)		
C450	281-0122-00		CAP., VAR, CER DI: $2.5-9 \mathrm{PF}, 100 \mathrm{~V}$	59660	518-000A2.5-9
C454	283-0058-00		CAP., FXD, CER DI: $0.027 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	72982	8131N147X7R0273K
C455	283-0180-00		CAP.,FXD, CER DI:5600PF, 20%, 200V	72982	$8121 \mathrm{~N} 204 \mathrm{E} \mathrm{562M}$
C460	283-0111-00		CAP.,FXD, CER DI:0.1UF, 20%,50V	72982	8121-N08825U104M
C466	281-0122-00		CAP., VAR, CER DI: $2.5-9 \mathrm{PF}, 100 \mathrm{~V}$	59660	518-000A2.5-9
C470	281-0122-00		CAP., VAR, CER DI: $2.5-9 \mathrm{PF}, 100 \mathrm{~V}$	59660	518-000A2.5-9
C471	281-0097-00		CAP.,VAR, CER DI:9-35PF, 200V	72982	538-006-D9-35
C472	281-0613-00		CAP.,FXD, CER DI:10PF,+/-1PF,200V	59660	374001C0G100F
C475	283-0116-00		CAP.,FXD, CER DI:820PF, $5 \%, 500 \mathrm{~V}$	72982	801-547B821J
C476	283-0139-00		CAP.,FXD, CER DI:150PF, 20%,50V	51642	W100-050-X5F151M
C477	281-0123-00		CAP., VAR, CER DI: $5-25 \mathrm{PF}, 100 \mathrm{~V}$	59660	518-000A5-25
C485	283-0111-00		CAP.,FXD, CER DI:0.1UF, 20%, 50 V	72982	8121-N08825U104M
C486	281-0523-00		CAP.,FXD, CER DI:100PF,+/-20PF,500V	72982	301-000u2m0101m
C491	283-0067-00		CAP.,FXD, CER DI: $0.001 \mathrm{UF}, 10 \%$, 200V	59660	835-515-Z5D0102K
C494A	283-0198-00		CAP.,FXD, CER DI:0.22UF, 20%, 50 V	72982	8121N08325U0224M
C494B	283-0341-00		CAP.,FXD, CER DI: $0.047 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$ (SELECTED AND ADDED IF NECESSARY)	72982	8121N153X7R0473K
C498	283-0111-00		CAP.,FXD, CER DI:0.1UF, 20%,50V	72982	8121-N088Z5U104M
C499	283-0111-00		CAP., FXD, CER DI:0.1UF, 20%, 50 V	72982	8121-N088Z5U104M
C500	281-0511-00		CAP., FXD, CER DI: $22 \mathrm{PF},+/-2.2 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000COG0220K
C504	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10 V	90201	TDC475M010EL
C506	283-0081-00		CAP., FXD, CER DI:0.1UF, +80-20\%, 25 V	91418	MX104Z2504R0
C507	281-0546-00		CAP.,FXD, CER DI:330PF, 10%,500V	04222	7001-1380
C508	283-0081-00		CAP., FXD, CER DI: $0.1 \mathrm{UF},+80-20 \%, 25 \mathrm{~V}$	91418	MX104Z2504R0
C509	281-0511-00		CAP. , FXD , CER DI: $22 \mathrm{PF},+/-2.2 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000C0G0220K
C510	281-0505-00		CAP., FXD , CER DI: $12 \mathrm{PF},+/-1.2 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-012C0G0120K
C511	281-0662-00		CAP., FXD, CER DI:10PF, +/-0.5PF,500V	59660	301-000Н3м0100d
C513			(Short adjustable wire)		
C515	281-0605-00		CAP.,FXD, CER DI: $200 \mathrm{PF}, 10 \%$,500V	04222	7001-1375
C516	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C519	290-0524-00		CAP.,FXD, ELCTLT: $4.7 \mathrm{FF}, 20 \%$, 10 V	90201	TDC475M010EL
C520	281-0511-00		CAP., FXD, CER DI: $22 \mathrm{PF},+/-2.2 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000C0G0220K
C521	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{FF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C524	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C525	283-0003-00		CAP., FXD, CER DI:0.01UF, $+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C526	281-0601-00		CAP., FXD, CER DI: $7.5 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000С0Н0759D
C543	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{FF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C546	283-0003-00		CAP., FXD, CER DI:0.01UF, +80-20\%,150V	91418	SP103Z151-4R9
C554	281-0508-00		CAP., FXD, CER DI: $12 \mathrm{PF},+/-0.6 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000COG0120J
C555	290-0524-00		CAP., FXD, ELCTLT: $4.7 \mathrm{UF}, 20 \%$, 10 V	90201	TDC475M010EL
C556	281-0523-00		CAP., FXD, CER DI: $100 \mathrm{PF},+/-20 \mathrm{PF}, 500 \mathrm{~V}$	72982	301-000u2m0101m
C557	283-0003-00		CAP., FXD , CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C562	283-0003-00		CAP., FXD , CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
C565	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20\% , 10V	90201	TDC475M010EL
C570	290-0525-00		CAP., FXD, ELCTLT:4.7UF, 20%, 50 V	56289	196D475X0050KA1
C571	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10 V	90201	TDC475M010EL
C583	281-0523-00		CAP., FXD, CER DI: $100 \mathrm{PF},+/-20 \mathrm{PF}, 500 \mathrm{~V}$	72982	301-000U2M0101M
C584	281-0617-00		CAP., FXD, CER DI:15PF, 10%, 200V	59660	374-018-C0G0150K
C593	281-0524-00		CAP., FXD, CER DI:150PF, +/-30PF, 500V	04222	7001-1381
C596	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C599	281-0519-00		CAP., FXD, CER DI: $47 \mathrm{PF},+/-4.7 \mathrm{PF}, 500 \mathrm{~V}$	59660	308-000C0G0470K
C600	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C605	----- -----		(SEE DM MANUAL)		
C606	290-0526-00		CAP., FXD, ELCTLT: $6.8 \mathrm{UF}, 20 \%$,6V	90201	TDC685M00NLE
C607	290-0524-00		CAP., FXD, ELCTLT: $4.7 \mathrm{~F}, 20 \%$, 10 V	90201	TDC475M010EL
C608	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C609	290-0534-00		CAP., FXD, ELCTLT: $1 \mathrm{UF}, 20 \%$,35V	56289	196D105X0035HA1
C610	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C611	281-0592-00		CAP.,FXD, CER DI:4.7PF, +/-0.5PF,500V	59660	301-000-C0H0479D
C622	290-0524-00		CAP., FXD, ELCTLT: $4.7 \mathrm{UF}, 20 \%$, 10V	90201	TDC475M010EL
C627	283-0000-00		CAP.,FXD, CER DI:0.001UF,+100-0\%,500V	59660	831-519-Z5U-102P
C644	283-0003-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C647	281-0523-00		CAP., FXD, CER DI: $100 \mathrm{PF},+/-20 \mathrm{PF}, 500 \mathrm{~V}$	72982	301-000U2M0101M
C668	283-0003-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C669	SELECTED				
C670	283-0000-00		CAP., FXD, CER DI:0.001UF,+100-0\%,500V	59660	831-519-Z5U-102P
C673	281-0632-00		CAP.,FXD, CER DI:35PF, $1 \%, 500 \mathrm{~V}$	59660	308-000C0G0350F
C675	283-0003-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C679	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C683	281-0629-00		CAP., FXD , CER DI: $33 \mathrm{PF}, 5 \%, 600 \mathrm{~V}$	04222	7027-C0G-330J
C684	281-0519-00		CAP.,FXD, CER DI:47PF, +/-4.7PF,500V	59660	308-000C0G0470K
C693	281-0528-00		CAP.,FXD, CER DI:82PF,+/-8.2PF,500V	59660	301-000U2M0820K
C695	281-0503-00		CAP.,FXD, CER DI:8PF,+/-0.5PF,500V	59660	301-000С0Н0809D
C698	290-0523-00		CAP., FXD, ELCTLT: $2.2 \mathrm{UF}, 20 \%$, 20V	56289	196D225x0020HA1
C711	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C712	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20\%, 10V	90201	TDC475M010EL
C713	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C714	283-0003-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C715	283-0003-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C717	281-0511-00		CAP., FXD, CER DI: $22 \mathrm{PF},+/-2.2 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000COG0220K
C718	281-0511-00		CAP., FXD, CER DI: $22 \mathrm{PF},+/-2.2 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000COG0220K
C719	281-0511-00		CAP., FXD, CER DI:22PF, +/-2.2PF,500V	59660	301-000C0G0220K
C721	281-0505-00		CAP., FXD, CER DI:12PF, +/-1.2PF,500V	59660	301-012C0G0120K
C722	281-0662-00		CAP., FXD, CER DI: $10 \mathrm{PF},+/-0.5 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000н3м0100D
C729	283-0003-00		CAP.,FXD, CER DI:0.01UF, $+80-20 \%$, 150V	91418	SP103Z151-4R9
C735	281-0605-00		CAP., FXD, CER DI: $200 \mathrm{PF}, 10 \%$, 500 V	04222	7001-1375
C736	283-0003-00		CAP., FXD, CER DI:0.01UF, +80-20\%, 150V	91418	SP1032151-4R9
C739	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20\%, 10V	90201	TDC475M010EL
C741	283-0003-00		CAP., FXD , CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C744	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C745	283-0003-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C746	281-0601-00		CAP., FXD , CER DI:7.5PF,500V	59660	301-000СОН0759D
C752	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10V	90201	TDC475M010EL
C763	283-0003-00		CAP., FXD, CER DI: 0.01 UF , +80-20\%, 150V	91418	SP1032151-4R9
C764	290-0524-00		CAP., FXD, ELCTLT:4.7UF, 20%, 10 V	90201	TDC475M010EL
C766	283-0003-00		CAP., FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C771	283-0003-00		CAP., FXD , CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP1032151-4R9
C774	281-0508-00		CAP., FXD, CER DI: $12 \mathrm{PF},+/-0.6 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000C0G0120J
C775	290-0524-00			90201	TDC475M010EL
C776	281-0523-00		CAP., FXD, CER DI: $100 \mathrm{PF},+/-20 \mathrm{PF}, 500 \mathrm{~V}$	72982	301-000U2M0101M

Ckt No.	Tektronix Part No	Serial/Model No.		Name \& Description	Mfr Code	Mfr Part Number
C1091	290-0523-00			CAP., FXD, ELCTLT: $2.2 \mathrm{UF}, 20 \%$, 20V	56289	196D225X0020HAl
C1093	290-0523-00			CAP., FXD, ELCTLT: $2.2 \mathrm{UF}, 20 \%$, 20V	56289	196D225X0020HA1
C1103	283-0670-00			CAP., FXD, MICA D: $375 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D155F3750F0
C1107	281-0547-00			CAP., FXD, CER DI: $2.7 \mathrm{PF}, 10 \%$, 500 V	04222	7001-1321
				(SELECTED AND AdDED IF NECESSARY)		
C1114	283-0010-00			CAP.,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%$, 50 V	56289	273C20
C1124	283-0116-00			CAP., FXD, CER DI: $820 \mathrm{PF}, 5 \%$, 500 V	72982	801-5478821J
C1134	283-0116-00			CAP., FXD, CER DI: $820 \mathrm{PF}, 5 \%, 500 \mathrm{~V}$	72982	801-547B821J
C1140	283-0010-00			CAP.,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%, 50 \mathrm{~V}$	56289	273C20
C1142	283-0111-00			CAP., FXD, CER DI:0.1UF, 20%, 50 V	72982	8121-N088Z5U104M
C1152	283-0003-00			CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C1162	283-0003-00			CAP.,FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	91418	SP103Z151-4R9
C1178	283-0644-00			CAP., FXD, MICA D: 150PF, 1%, 500V	00853	D155F151F0
C1179	281-0118-00			CAP.,VAR,MICA D: $8-90 \mathrm{PF}, 175 \mathrm{~V}$	52769	GSM231
C1187	283-0010-00			CAP.,FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%$, 50 V	56289	273C20
C1201	283-0005-00			CAP.,FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 250 \mathrm{~V}$	72982	8131N300Z5U0103P
C1205	283-0005-00			CAP.,FXD, CER DI:0.01UF,+100-0\%,250V	72982	8131N300Z5U0103P
C1211	283-0005-00			CAP.,FXD, CER DI:0.01UF, $+100-0 \%, 250 \mathrm{~V}$	72982	8131N30025U0103P
C1212	283-0005-00			CAP.,FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 250 \mathrm{~V}$	72982	8131N30025U0103P
C1216	283-0010-00			CAP., FXD, CER DI: $0.05 \mathrm{UF},+100-20 \%$, 50 V	56289	273C20
C1231	283-0638-00			CAP., FXD, MICA D: $130 \mathrm{PF}, 1 \%, 100 \mathrm{~V}$	00853	D151F131F0
C1233	281-0153-00			CAP., VAR, AIR DI:1.7-10PF, 250V	74970	187-0106-005
C1235	----- -----			(PART OF CIRCUIT BOARD)		
C1251	283-0638-00			CAP., FXD, MICA D: $130 \mathrm{PF}, 1 \%, 100 \mathrm{~V}$	00853	D151F131F0
C1253	281-0153-00			CAP., VAR,AIR DI: $1.7-10 \mathrm{PF}, 250 \mathrm{~V}$	74970	187-0106-005
C1255				(PART OF CIRCUIT BOARD)		
C1261	290-0536-00			CAP., FXD, ELCTLT: 10 UF, 20%, 25V	90201	TDC106M025FL
C1263	290-0536-00			CAP., FXD, ELCTLT: 10 UF , 20%,25V	90201	TDC106M025FL
C1265	290-0536-00			CAP., FXD, ELCTLT: $100 \mathrm{~F}, 20 \%$,25V	90201	TDC106M025FL
C1267	283-0092-00			CAP.,FXD, CER DI: $0.03 \mathrm{UF},+80-20 \%, 200 \mathrm{~V}$	72982	845-534E303z
C1302	290-0534-00			CAP., FXD, ELCTLT: 1UF, 20%, 35V	56289	196D105x0035HAl
C1304	290-0573-00			CAP., FXD, ELCTLT: 2.7 7UF, 20%,50V	56289	196D275x0050JA1
C1305	290-0572-00			CAP., FXD , ELCTLT: $0.10 \mathrm{~F}, 20 \%$,50V	56289	196D104x0050HAl
C1316	290-0534-00			CAP., FXD, ELCTLT: 1UF, 20%, 35V	56289	196D105X0035HA1
C1317	290-0536-00			CAP., FXD, ELCTLT: 10 UF , 20\%, 25V	90201	TDC106M025FL
C1318	290-0312-00			CAP., FXD, ELCTLT: $47 \mathrm{UF}, 10 \%$, 35 V	56289	150D476X9035S2
C1320	283-0011-00			CAP., FXD, CER DI: 0.01 UF , 2000V	72982	3902BW41125U103Z
C1322	283-0071-00	B010100	B016519	CAP., FXD, CER DI: $0.0068 \mathrm{UF},+80-30 \%, 5000 \mathrm{~V}$	59660	3905SF602Y5S682Z
C1322	285-0509-01	B016520		CAP., FXD, PPR DI:0.0068UF,20\%,5000V	56289	430 P 507
C1323	283-0071-00	B010100	B016519	CAP., FXD, CER DI : $0.0068 \mathrm{UF},+80-30 \%, 5000 \mathrm{~V}$	59660	3905SF602Y5S682Z
C1323	285-0509-01	в016520		CAP., FXD, PPR DI:0.0068UF, 20%, 5000 V	56289	430 P 507
C1326	281-0519-00			CAP., FXD, CER DI:47PF, +/-4.7PF,500V	59660	308-000C0G0470K
C1328	283-0071-00	B010100	B016519	CAP.,FXD, CER DI: $0.0068 \mathrm{UF}, \mathbf{+ 8 0 - 3 0 \% , 5 0 0 0 V}$	59660	3905SF602Y5S682Z
C1328	285-0509-01	в016520		CAP., FXD, PPR DI:0.0068UF, 20%, 5000 V	56289	430P507
Cl329	283-0002-00			CAP., FXD, CER DI: $0.01 \mathrm{UF},+80-20 \%, 500 \mathrm{~V}$	91418	SM10325014R9
Cl330	290-0524-00			CAP.,FXD, ELCTLT: $4.7 \mathrm{~T}, \mathrm{20} \mathrm{\%}$, 10V	90201	TDC475M010EL
C1335	283-0078-00			CAP.,FXD, CER DI: $0.001 \mathrm{UF}, 20 \%$,500V	56289	20C114A8
Cl336	283-0078-00			CAP., FXD, CER DI:0.001UF,20\%,500V	56289	20C114A8
C1346	283-0002-00			CAP., FXD , CER DI: $0.01 \mathrm{UF},+80-20 \%, 500 \mathrm{~V}$	91418	SM10325014R9
C1348	283-0005-00			CAP., FXD , CER DI: $0.01 \mathrm{UF},+100-0 \%, 250 \mathrm{~V}$	72982	8131N300Z5U0103p
C1352	281-0064-00			CAP.,VAR, PLSTC:0.25-1.5PF, 600V	74970	273-0001-101
C1354	283-0005-00			CAP., FXD, CER DI:0.01UF, $+100-0 \%, 250 \mathrm{~V}$	72982	8131N300Z500103P
C1358	283-0057-00			CAP., FXD, CER DI: $0.1 \mathrm{UF},+80-20 \%, 200 \mathrm{~V}$	56289	2C20z5U104z200B
C1363	283-0057-00			CAP., FXD, CER DI: $0.1 \mathrm{UF},+80-20 \%, 200 \mathrm{~V}$	56289	2C20Z5U104z200B
C1366	281-0627-00			CAP., FXD, CER DI:1PF,+/-0.25PF,500V	04222	7001-1340
C1371	285-1040-00			CAP.,FXD, PLSTC: $0.0012 \mathrm{UF}, 10 \%, 4000 \mathrm{~V}$	56289	430 P 522

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
CR368	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR369	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR422	152-0141-02		SEMICOND DEVICE: SILICON, 30V,150MA	01295	1N4152R
CR480	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR519	152-0246-00		SEMICOND DEVICE:SW,SI,40V,200MA	03508	DE140
CR556	152-0140-01		SEMICOND DEVICE:TUNNEL, 8PF,10MA (SELECTED, ALTERNATE P/N 152-0386-00)	03508	SMTD995
CR566	152-0140-01		SEMICOND DEVICE:TUNNEL,8PF,10MA (SELECTED, ALTERNATE P/N 152-0386-00)	03508	SMTD995
CR582	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR584	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR592	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR601	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	$1 N 4152 \mathrm{R}$
CR604	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
CR605	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR647	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR680	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR681	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR682	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR683	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR685	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR689	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR693	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR694	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR699	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
CR701	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR703	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR705	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR739	152-0246-00		SEMICOND DEVICE:SW,SI, 40V, 200MA	03508	DE140
CR776	152-0140-01		SEMICOND DEVICE:TUNNEL, 8PF,10MA (SELECTED, ALTERNATE P/N 152-0586-00)	03508	SMTD995
CR786	152-0140-01		SEMICOND DEVICE:TUNNEL,8PF,10MA (SELECTED, ALTERNATE P/N 152-0586-00)	03508	SMTD995
CR787	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR788	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR792	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1 N 4152 R
CR793	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR794	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR795	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR796	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR797	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR799	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR801	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR802	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
CR806	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
CR811	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
CR812	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR814	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR822	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR824	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR903	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
CR907	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
CR910	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR914	152-0501-00		SEMICOND DEVICE:SILICON, $70 \mathrm{~V}, 200 \mathrm{MA}$	04713	SSD2405
CR922	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR923 CR926	$152-0141-02$ $152-0322-00$		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$ SEMICOND DEVICE:SILICON, $15 \mathrm{~V}, \mathrm{HOT}$ CARRIER	01295 50434	$\begin{aligned} & 1 N 4152 R \\ & 5082-2672 \end{aligned}$

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
CR927	152-0322-00		SEMICOND DEVICE:SILICON, 15 V , HOT CARRIER	50434	5082-2672
CR940	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR943	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR944	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR945	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR952	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR954	152-0141-02	хB010150	SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR955	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR956	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR971	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR976	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR985	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR987	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
CR988	152-0141-02		SEMICOND DEVICE:SILICON,30v,150MA	01295	1N4152R
CR996	152-0141-02	-	SEMICOND DEVICE:SILICON, 30v,150MA	01295	1N4152R
CR1001	152-0141-02		SEMICOND DEVICE:SILICON, 30v,150MA	01295	1N4152R
CR1006	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR1015	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR1017	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1018	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1023	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1026	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1028	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1029	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1034	152-0141-02		SEMICOND, DEVICE:SILICON, 30v,150MA	01295	1N4152R
CR1036	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1037	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1044	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1046	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{v}, 150 \mathrm{MA}$	01295	1N4152R
CR1049	152-0141-02		SEMICOND DEVICE:SILICON, 30v,150MA	01295	1N4152R
CR1052	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1054	152-0061-00		SEMICOND DEVICE:SILICON, $175 \mathrm{~V}, 100 \mathrm{MA}$	07263	FDH2161
CR1056	152-0061-00		SEMICOND DEVICE:SILICON, $175 \mathrm{~V}, 100 \mathrm{MA}$	07263	FDH2161
CR1058	152-0061-00		SEMICOND DEVICE:SILICON,175v,100MA	07263	FDH2161
CR1060	152-0061-00		SEMICOND DEVICE:SILICON,175v,100MA	07263	FDH2161
CR1061	152-0141-02		SEMICOND DEVICE:SILICON,30v,150MA	01295	1N4152R
CR1062	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1102	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	$1 \mathrm{~N}_{4} 152 \mathrm{R}$
CR1103	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR1104	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
CR1111	152-0141-02		SEMICOND DEVICE:SILICON,30v,150MA	01295	1 N 4152 R
CR1121	152-0322-00		SEMICOND DEVICE:SILICON, 15 v , HOT CARRIER	50434	5082-2672
CR1122	152-0322-00		SEMICOND DEVICE:SILICON, 15 V , HOT CARRIER	50434	5082-2672
CR1 140	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
CR1164	$152-0141-02$		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1 N 4152 R
CR1173	152-0322-00		SEMICOND DEVICE:SILICON, 15 v , HOT CARRIER	50434	5082-2672
CR1183	152-0322-00		SEMICOND DEVICE:SILICON,15v, HOT CARRIER	50434	5082-2672
CR1237	152-0141-02		SEMICOND DEVICE:SILICON,30v,150MA	01295	1 N 4152 R
CR1304	152-0333-00		SEMICOND DEVICE:SILICON,55v,200MA	07263	FDH-6012
CR1310	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1 N 4152 R
CR1312	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
CR1314	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 $\mathrm{N}_{4} 152 \mathrm{R}$
CR1316	152-0333-00		SEMICOND DEVICE:SILICON,55v,200MA	07263	FDH-6012
CR1317	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1 N 4152 R
CR1320	152-0429-00		SEMICOND DEVICE:SILICON, 5000V,10MA	14099	SA3282
CR1321	152-0429-00		SEMICOND DEVICE:SILICON, $5000 \mathrm{~V}, 10 \mathrm{MA}$	14099	SA3282
CR1329	152-0107-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 400 \mathrm{MA}$	01295	G727

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
CR1331	152-0153-00	B010100	B020119	SEMICOND DEVICE:SILICON, 15V,50MA	07263	FD7003
CR1331	152-0141-02	B020120		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1337	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1341	152-0153-00	B010100	B020119	SEMICOND DEVICE:SILICON,15V,50MA	07263	FD7003
CR1341	152-0322-00	B020120		SEMICOND DEVICE:SILICON,15V,HOT CARRIER	50434	5082-2672
CR1342	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1343	152-0153-00	B010100	B020119	SEMICOND DEVICE:SILICON, $15 \mathrm{~V}, 50 \mathrm{MA}$	07263	FD7003
CR1343	152-0141-02	B020120		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1344	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1345	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1346	152-0141-02	XB013000		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1352	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1353	152-0061-00			SEMICOND DEVICE:SILICON, 175V,100MA	07263	FDH2161
CR1354	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1358	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1360	152-0107-00			SEMICOND DEVICE:SILICON, 400V,400MA	01295	G727
CR1366	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1367	152-0061-00			SEMICOND DEVICE:SILICON, 175V,100MA	07263	FDH2161
CR1368	152-0061-00			SEMICOND DEVICE:SILICON, 175V,100MA	07263	FDH2161
CR1371	152-0061-00			SEMICOND DEVICE:SILICON,175V,100MA	07263	FDH2161
CR1373	152-0061-00			SEMICOND DEVICE:SILICON,175V,100MA	07263	FDH2161
CR1377	152-0242-00			SEMICOND DEVICE:SILICON, 225V,200MA	07263	FDH5004
CR1379	152-0242-00			SEMICOND DEVICE:SILICON, 225V, 200MA	07263	FDH5004
CRI412	152-0488-00			SEMICOND DEVICE:SILICON, 200V,1500MA	04713	SDA317
CR1415	152-0107-00			SEMICOND DEVICE:SILICON, 400V,400MA	01295	G727
CR1421	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1422	152-0061-00			SEMICOND DEVICE:SILICON,175V,100MA	07263	FDH2161
CR1424	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1426	152-0066-00			SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
CR1428	152-0066-00			SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
CR1432	152-0141-02			SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
CR1442	152-0556-00			SEMICOND DEVICE:BRIDGE, 50V, 2.5 A	05828	KBL005-8
CR1448	152-0066-00			SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
CR1452	152-0488-00			SEMICOND DEVICE:SILICON, 200V, 1500MA	04713	SDA317
CR1456	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1458	152-0066-00			SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
CR1462	152-0462-00			SEMICOND DEVICE:RECT, SI, 200V, 2.5A	04713	SDA10228
CR1466	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1468	152-0066-00			SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
CR1472	152-0488-00			SEMICOND DEVICE:SILICON, 200V,1500MA	04713	SDA317
CR1478	152-0066-00			SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
CR1489	152-0107-00			SEMICOND DEVICE:SILICON,400V,400MA	01295	G727
CR1502	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1512	152-0141-02			SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1691	152-0141-02	B010100	B016199X	SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1692	152-0141-02	B010100	B016199X	SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1694	152-0141-02	B010100	B016199X	SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
CR1696	152-0141-02	B010100	B016199X	SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR1699	152-0141-02	B010100	B016199X	SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR8042	152-0141-02	XB016200		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR8044	152-0141-02	XB016200		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR8046	152-0141-02	XB016200		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR8048	152-0141-02	XB016200		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
CR8066	152-0141-02	XB016200		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
DL380	119-0388-00			DELAY LINE, ELEC: $78 \mathrm{NS}, 100$ OHM	80009	119-0388-00
DS128	150-0035-00			LAMP , GLOW: 90V, 0.3MA	53944	A1B-3

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
DS228	150-0035-00			LAMP, GLOW: 90V, 0.3MA	53944	A1B-3
DS312	150-0130-00			LAMP, INCAND: $5 \mathrm{~V}, 60 \mathrm{MA}$	92966	34254-TINNED
DS314	150-0130-00			LAMP, INCAND: $5 \mathrm{~V}, 60 \mathrm{MA}$	92966	34254-TINNED
DS322	150-0130-00			LAMP, INCAND:5V,60MA	92966	34254-TINNED
DS324	150-0130-00			LAMP, INCAND: $5 \mathrm{~V}, 60 \mathrm{MA}$	92966	34254-TINNED
DS608	150-0130-00			LAMP, INCAND:5V,60MA	92966	34254-TINNED
DS610	150-0130-00			LAMP, INCAND:5V,60MA	92966	34254-TINNED
DS1091	150-0035-00			LAMP, GLOW: $90 \mathrm{~V}, 0.3 \mathrm{MA}$	53944	AlB-3
DS1110	150-0035-00			LAMP, GLOW: 90V,0.3MA	53944	AlB-3
DS1382	150-0002-00			LAMP,GLOW:0.5 MA 60/125v	74276	NE-2T(T2)
DS1383	150-0002-00			LAMP,GLOW:0.5 MA 60/125V	74276	$\mathrm{NE}-2 \mathrm{~T}$ (T 2)
DS1482	150-0129-00			LAMP, INCAND : $6.3 \mathrm{~V}, 200 \mathrm{MA}$	08806	21120
DS1483	150-0129-00			LAMP, INCAND: $6.3 \mathrm{~V}, 200 \mathrm{MA}$	08806	2112D
DS1492	150-0130-00			LAMP, INCAND: 5V, 60 MA	92966	34254-TINNED
F1318	159-0016-00			FUSE, CARTRIDGE: $3 \mathrm{AG}, 1.5 \mathrm{~A}, 250 \mathrm{~V}, \mathrm{FAST}$-BLOW	71400	AGC $11 / 2$
F1401	159-0016-00			FUSE, CARTRIDGE: 3AG, $1.5 \mathrm{~A}, 250 \mathrm{~V}$, FAST-BLOW (FOR USE AT 115 V OPERATION)	71400	AGC 1 1/2
F1401	159-0042-00			FUSE, CARTRIDGE: 3AG, $0.75 \mathrm{~A}, 250 \mathrm{~V}$, FAST-BLOW (FOR USE AT 230V OPERATION)	71400	AGC $3 / 4$
F1401	159-0016-00	B010100	B022404	FUSE, CARTRIDGE : 3AG, 1.5A, 250V, FAST-BLOW	71400	AGC $11 / 2$
F1401	159-0042-00	B022405		FUSE, CARTRIDGE: 3AG, $0.75 \mathrm{~A}, 250 \mathrm{~V}$, FAST-BLOW (OPT A $1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4$)	71400	AGC 3/4
F1402	159-0172-00	хв022405		FUSE, CARTRIDGE:TYPE $\mathrm{C}, 13$ AMP (OPT A2 ONLY)	33096	PB1267
J10	131-0679-02			CONNECTOR,RCPT, : BNC, MALE, 3 CONTACT	24931	28JR270-1
J50	131-0679-02			CONNECTOR,RCPT,: BNC, MALE, 3 CONTACT	24931	28JR270-1
J349	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J380	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J385	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J399	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J400	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J405	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J410	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J430	131-1003-00			CONN,RCPT,ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J435	131-0955-00			CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J510	131-0955-00			CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J584	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J589	131-0955-00			CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J664	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J674	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J694	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J702	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J704	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J706	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J720	131-0955-00			CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J824	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J829	131-0955-00			CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J1101	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J1302	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J1330	131-0955-00			CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
$J 1333$	131-1003-00			CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
$J 1334$	131-1003-00			CONN,RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
J1478	131-0771-00			CONN,RCPT,ELEC: 4 CONT, QUICK DISCONNECT	0000A	RAO-304 W/O NUT
J1479	131-0771-00			CONN,RCPT,ELEC:4 CONT,QUICK DISCONNECT	0000A	RAO-304 W/O NUT
K1103	148-0076-00			RELAY,REED: 1 FORM A, 5V, $0.25 \mathrm{~A}, 100 \mathrm{~V}$	95348	F81-1447

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
L141	------ -----		(PART OF CIRUIT BOARD)		
L142	-----------		(PART OF CIRUIT BOARD)		
L147	----------		(Part of ciruit board)		
L148	----------		(PART OF CIRUIT BOARD)		
L151	-----------		(\#26 WIRE ACTING AS Inductance)		
L152	----------		(\#26 WIRE ACTING AS Inductance)		
L170	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L171	276-0528-00		SHIELDING BEAD, 0 . 1 UH	02114	56-0590-65С/3в
L172	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L174	276-0528-00		SHIELDING BEAD,:0.1UH	02114	56-0590-65C/3B
L178	276-0543-00		SHLD BEAD, ELEK:FERRITE (SELECTED)	80009	276-0543-00
L180	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L182	276-0507-00		SHIELDING BEAD, :FERRITE	78488	57-3443
L188	276-0543-00		SHLD BEAD, ELEK:FERRITE (SElected)	80009	276-0543-00
L241	----- -----		(PART OF CIRUIT board)		
L242	----------		(PART OF CIRUIT BOARD)		
L247	----------		(PART OF CIRUIT BOARD)		
L248	----------		(PART OF CIRUIT BOARD)		
L251	----------		(\#26 WIRE ACTING AS INDUCTANCE)		
L252	----- -----		(非26 WIRE ACTING AS INDUCTANCE)		
L270	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L271	276-0528-00		SHIELDING BEAD, 0 . 1 UH	02114	56-0590-65C/3B
L272	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L274	276-0528-00		SHIELDING BEAD,:0.1UH	02114	56-0590-65C/3B
L278	276-0543-00		SHLD BEAD, ELEK:FERRITE (SELECTED)	80009	276-0543-00
L280	108-0440-00		COIL, RF:8UH,TOROIDAL INDUCTOR	80009	108-0440-00
L282	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L288	276-0543-00		SHLD BEAD, ELEK:FERRITE (SELECTED)	80009	276-0543-00
L291	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L292	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L297	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L375	108-0182-00		COIL, RF:0.3UH	80009	108-0182-00
L376	108-0182-00		COIL, RF:0.3UH	80009	108-0182-00
L435	276-0588-00		CORE, EM:TOROID,FERRITE	78488	57-3114
L439	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L441	----- -----		(PART OF CIRUIT BOARD)		
L442	----- -----		(PART OF CIRUIT BOARD)		
L444	----- -----		(PART OF CIRUIT BOARD)		
L445	----------		(PART OF CIRUIT BOARD)		
L480	276-0528-00	B010100 B012999X	Shielding bead,:0.1UH (REPLACED WITH R480)	02114	56-0590-65C/3B
L498	108-0440-00		COIL, RF: $8 \mathrm{UH}, \mathrm{TOROIDAL}$ INDUCTOR	80009	108-0440-00
L499	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L506	276-0507-00		SHIELDING BEAD,:FERRITE (SELECTED AND ADDED IF NECESSARY)	78488	57-3443
L546	108-0433-00		COIL, RF:0.09UH	80009	108-0433-00
L551	108-0433-00		COIL, RF:0.09UH	80009	108-0433-00
L572	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L574	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L588	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L600	120-0402-00		XFMR, TOROID:3 TURNS SINGLE	80009	120-0402-00
L669	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
			(SELECTED AND AdDED if necessary)		
L716	276-0507-00		SHIELDING BEAD,:FERRITE (SELECTED AND ADDED IF NECESSARY)	78488	57-3443

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
L746	276-0507-00		Shielding bead, :FERRITE	78488	57-3443
			(SELECTED AND ADDED IF NECESSARY)		
1771	108-0433-00		COIL, RF:0.09UH	80009	108-0433-00
L772	276-0528-00		SHIELDING BEAD,:0.1UH	02114	56-0590-65C/3B
L781	108-0433-00		COIL, RF: 0.09 UH	80009	108-0433-00
L782	276-0528-00		SHIELDING BEAD,:0.1UH	02114	56-0590-65C/3B
L802	276-0507-00		SHIELDING BEAD, :FERRITE	78488	57-3443
L804	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L826	276-0507-00		SHIELDING BEAD, :FERRITE	78488	57-3443
L901	276-0507-00	XB020839	SHIELDING BEAD,:FERRITE	78488	57-3443
L917	108-0750-00		COIL, RF:9.3UH	80009	108-0750-00
L922	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L982	276-0543-00	XB010150	SHLD BEAD, ELEK:FERRITE	80009	276-0543-00
L984	276-0507-00		SHIELDING BEAD, :FERRITE	78488	57-3443
L1018	120-0407-00		XFMR, TOROID: 5 TURNS SINGLE	80009	120-0407-00
L1091	276-0507-00		SHIELDING BEAD, :FERRITE	78488	57-3443
L1093	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L1102	108-0538-00		COIL, RF: 2.7 UH	76493	JWMM\# ${ }^{\text {P7059 }}$
L1103	114-0278-00		COIL, RF:4.6-16.7UH, CORE 276-0568-00	80009	114-0278-00
L1231	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
L1232	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
	-------		(SElected and added if necessary)		
L1251	276-0507-00		SHIELDING BEAD, :FERRITE	78488	57-3443
L1252	276-0507-00		SHIELDING BEAD,:FERRITE	78488	57-3443
	---------		(SELECTED and added if necessary)		
L1261	108-0245-00		COIL, RF:3.9UH	76493	B6310-1
L1263	108-0245-00		COIL, RF:3.9UH	76493	B6310-1
L1265	108-0245-00		COIL, RF: 3.9 UH	76493	B6310-1
L1318	108-0422-00		COIL, RF:FIXED, 82UH	80009	108-0422-00
L1330	108-0440-00		COIL, RF:8UH, TOROIDAL INDUCTOR	80009	108-0440-00
L1385	108-0714-00		COIL, TUBE DEFLE:Y AXIS ALIGNMENT	80009	108-0714-00
L1386	108-0713-00		COIL, TUBE DEFLE:TRACE ROTATION		$108-0713-00$
L1387	108-0245-00		COIL, RF:3.9UH	76493	B6310-1
L1388	108-0245-00		COIL, RF: 3.9 UH	76493	B6310-1
L1394	276-0541-00		SHIELDING BEAD,	80009	276-0541-00
L1511	108-0245-00		COIL, RF:3.9UH	76493	B6310-1
L1516	108-0262-00	XB023830	COIL, RF:FIXED, 510NH	80009	108-0262-00
L1517	108-0262-00	XB023830	COIL, RF:FIXED, 510NH	80009	108-0262-00
LR377	108-0760-00		COIL, RF:FIXED, 56NH	80009	108-0760-00
LR378	108-0760-00		COIL,RF:FIXED,56NH	80009	108-0760-00
LR467	108-0328-00		COIL, RF: 0.3 UH	80009	108-0328-00
LR496	108-0685-00		COIL, RF: 80 NH	80009	108-0685-00
LR497	108-0685-00		COIL, RF: 80 NH	80009	108-0685-00
LR1335	108-0537-00		COIL, RF: 200UH	80009	108-0537-00
LR1336	108-0537-00		COIL, RF:200UH	80009	108-0537-00
Q172	151-0271-00		TRANSISTOR:SILICON, PNP	04713	SPS8236
Q178	151-0434-00		TRANSISTOR:SILICON, PNP	04713	SS7144

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
Q182	151-0271-00			TRANSISTOR:SILICON, PNP	04713	SPS8236
Q184	151-0188-00			TRANSISTOR: SILICON, PNP	04713	SPS6868K
Q188	151-0434-00			TRANSISTOR:SILICON, PNP	04713	SS7144
Q272	151-0271-00			TRANSISTOR:SILICON, PNP	04713	SPS8236
Q278	151-0434-00			TRANSISTOR:SILICON, PNP	04713	SS7144
Q282	151-0271-00			TRANSISTOR:SILICON, PNP	04713	SPS8236
Q284	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q288	151-0434-00			TRANSISTOR:SILICON, PNP	04713	SS7144
Q312	151-0435-00			TRANSISTOR:SILICON, PNP	04713	SPS8335
Q314	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q322	151-0435-00			TRANSISTOR:SILICON, PNP	04713	SPS8335
Q324	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q338	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q348	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q390	151-0441-00			TRANSISTOR:SILICON,NPN	04713	SRF501
Q396	151-0271-00			TRANSISTOR:SILICON, PNP	04713	SPS8236
Q420	151-0223-00	B010100	B014658	TRANSISTOR:SILICON,NPN	04713	SPS8026
Q420	151-0190-00	B014659		TRANSISTOR:SILICON,NPN	07263	S032677
Q430	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q444	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q502	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q504	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q506	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q522	151-1042-00			SEMICOND DVC SE:MATCHED PAIR FET	01295	SKA5390
Q524						
Q526	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS246
Q532	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q552	151-0434-00			TRANSISTOR:SILICON, PNP	04713	SS7144
Q556	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS246
Q562	151-0434-00			TRANSISTOR: SILICON, PNP	04713	SS7144
Q566	151-0221-00	.		TRANSISTOR:SILICON, PNP	04713	SPS 246
Q572	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q574	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q584	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q588	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q594	151-0190-00			TRANSISTOR:SILICON, NPN	07263	S032677
Q596	151-0188-00			TRANSISTOR: SILICON, PNP	04713	SPS6868K
Q612	151-0223-00	B010100	B014658	TRANSISTOR:SILICON,NPN	04713	SPS8026
Q612	151-0190-00	B014659		TRANSISTOR:SILICON,NPN	07263	S032677
Q628	151-0223-00	B010100	B014658	TRANSISTOR:SILICON, NPN	04713	SPS8026
Q628	151-0190-00	B014659		TRANSISTOR:SILICON,NPN	07263	S032677
Q644	151-0350-00			TRANSISTOR: SILICON, PNP	04713	SPS6700
Q662	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS 246
Q664	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q672	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS246
Q674	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q680	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q688	151-0367-00			TRANSISTOR:SILICON,NPN, SEL FROM 3571TP	01295	SKA6516
Q698	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571 TP	01295	SKA6516
Q712	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q714	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q716	151-0367-00			TRANSISTOR:SILICON, NPN, SEL FROM 3571TP	01295	SKA6516
$\left.\begin{array}{l} \text { Q742 } \\ \text { Q744 } \end{array}\right\}$	151-1042-00			SEMICOND DVC SE:MATCHED PAIR FET	01295	SKA5390
Q746	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS 246
Q752	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q772	151-0434-00			TRANSISTOR:SILICON, PNP	04713	SS7144

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
Q776	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS 246
Q782	151-0434-00			TRANSISTOR:SILICON, PNP	04713	SS7144
Q786	151-0221-00			TRANSISTOR:SILICON, PNP	04713	SPS246
Q788	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q790	151-0223-00	B010100	B014658	TRANSISTOR:SILICON, NPN	04713	SPS8026
Q790	151-0190-00	B014659		TRANSISTOR:SILICON, NPN	07263	S032677
Q792	151-0223-00	B010100	B014658	TRANSISTOR:SILICON,NPN	04713	SPS8026
Q792	151-0190-00	B014659		TRANSISTOR:SILICON,NPN	07263	S032677
Q794	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q796	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q798	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q802	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q804	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q824	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q826	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q902	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q904	151-0190-01			TRANSISTOR: SILICON, NPN	80009	151-0190-01
Q914	151-0261-00			TRANSISTOR:SILICON, PNP, DUAL	04713	SD441
Q920	151-1025-00			TRANSISTOR:SILICON, JFE, N-CHANNEL	01295	SFB8129
Q922	151-0127-00			TRANSISTOR: SILICON, NPN	07263	S006075
Q926A, B	151-1036-00			TRANSISTOR:SILICON, JFE, N-CHANNEL, DUAL	17856	DN1665
Q928	151-0190-00			TRANSISTOR:SILICON, NPN	07263	S032677
Q938	151-0261-00			TRANSISTOR:SILICON, PNP, DUAL	04713	SD441
Q940	151-0223-00			TRANSISTOR:SILICON,NPN	04713	SPS8026
Q944	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q946	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q956	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q972	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q974	151-0190-00			TRANSISTOR:SILICON, NPN	07263	S032677
Q980	151-1025-00			TRANSISTOR:SILICON, JFE, N-CHANNEL	01295	SFB8129
Q984	151-0127-00			TRANSISTOR:SILICON,NPN	07263	S006075
Q988	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q992	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q996	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q1002	151-0347-00			TRANSISTOR:SILICON,NPN	56289	2N5551
Q1004	151-0367-00			TRANSISTOR:SILICON, NPN, SEL FROM 3571 TP	01295	SKA6516
Q1008	151-0347-00			TRANSISTOR:SILICON, NPN	56289	2N5551
Q1010	151-1025-00			TRANSISTOR: SILICON, JFE, N - CHANNEL	01295	SFB8129
Q1014	151-0127-00			TRANSISTOR:SILICON, NPN	07263	S006075
Q1018	151-0188-00			TRANSISTOR: SILICON, PNP	04713	SPS6868K
Q1022	151-0223-00			TRANSISTOR: SILICON, NPN	04713	SPS8026
Q1026	151-0188-00			TRANSISTOR: SILICON, PNP	04713	SPS6868K
Q1034	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q1044	151-0190-00			TRANSISTOR: SILICON, NPN	07263	S032677
Q1052	151-0350-00			TRANSISTOR:SILICON, PNP	04713	SPS6700
Q1054	151-0350-00			TRANSISTOR:SILICON, PNP	04713	SPS6700
Q1056	151-0350-00			TRANSISTOR:SILICON, PNP	04713	SPS6700
Q1058	151-0350-00			TRANSISTOR: SILICON, PNP	04713	SPS6700
Q1062	151-0188-00			TRANSISTOR: SILICON, PNP	04713	SPS6868K
Q1066	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q1086	151-0190-00			TRANSISTOR:SILICON, NPN	07263	S032677
Q1099	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q1112	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1114	151-0127-00			TRANSISTOR: SILICON,NPN	07263	S006075
Q1124	151-0212-00			TRANSISTOR: SILICON,NPN	04713	SRF 518
Q1134	151-0212-00			TRANSISTOR:SILICON, NPN	04713	SRF 518
Q1140	151-0223-00	B010100	B014658	TRANSISTOR:SILICON,NPN	04713	SPS8026

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
Q1140	151-0192-00	B014659		TRANSISTOR:SILICON,NPN, SEL FROM MPS6521	04713	SPS8801
Q1152	151-0325-00	B010100	B015902	TRANSISTOR:SILICON, PNP,SEL FROM 2 N4258	80009	151-0325-00
Q1152	151-0220-00	B015903		TRANSISTOR:SILICON, PNP	07263	S036228
Q1162	151-0325-00	B010100	B015902	TRANSISTOR:SILICON, PNP, SEL FROM 2 N4258	80009	151-0325-00
Q1162	151-0220-00	B015903		TRANSISTOR:SILICON, PNP	07263	S036228
Q1164	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q1172	151-0325-00	B010100	B015902	TRANSISTOR:SILICON,PNP,SEL FROM 2N4258	80009	151-0325-00
Q1172	151-0220-00	B015903		TRANSISTOR:SILICON, PNP	07263	S036228
Q1174	151-0325-00	B010100	B015902	TRANSISTOR:SILICON, PNP, SEL FROM 2 N4258	80009	151-0325-00
Q1174	151-0220-00	B015903		TRANSISTOR:SILICON, PNP	07263	S036228
Q1182	151-0367-00			TRANSISTOR:SILICON,NPN, SEL FROM 3571 TP	01295	SKA6516
Q1184	151-0127-00			TRANSISTOR:SILICON, NPN	07263	S006075
Q1188	151-0302-00			TRANSISTOR:SILICON, NPN	07263	S038487
Q1202	151-0270-00			TRANS ISTOR: SILICON, PNP	04713	OBD
Q1204	151-0124-00			TRANSISTOR:SILICON, NPN, SEL FROM 2N3501	04713	SM8138
Q1212	151-0270-00			TRANSISTOR:SILICON, PNP	04713	OBD
Q1214	151-0124-00			TRANSISTOR:SILICON,NPN,SEL FROM 2N3501	04713	SM8138
Q1234	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q1254	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q1306	151-0126-00			TRANSISTOR:SILICON,NPN	04713	ST1046
Q1308	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q1310	151-0190-00			TRANSISTOR:SILICON,NPN	07263	S032677
Q1312	151-0188-00			TRANSISTOR: SILICON, PNP	04713	SPS6868K
Q1316	151-0136-00			TRANS ISTOR: SILICON, NPN	02735	35495
Q1318	151-0140-00			TRANSISTOR: SILICON,NPN	02735	36568
Q1332	151-0199-00			TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q1338	151-0367-00			TRANSISTOR:SILICON,NPN,SEL FROM 3571TP	01295	SKA6516
Q1344	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q1352	151-0407-00			TRANSISTOR: SILICON,NPN	04713	SS2456
Q1354	151-0406-00			TRANSISTOR:SILICON, PNP	04713	OBD
Q1358	151-0199-00	B010100	B012999	TRANSISTOR:SILICON, PNP	04713	SPS6866K
Q1358	151-0220-00	B013000		TRANSISTOR:SILICON, PNP	07263	S036228
Q1362	151-0188-00			TRANSISTOR:SILICON, PNP	04713	SPS6868K
Q1424	151-0347-00			TRANSISTOR:SILICON,NPN	56289	2N5551
Q1426	151-0349-00			TRANSISTOR:SILICON,NPN, SEL FROM MJE2801	04713	SJE924
Q1432	151-0347-00			TRANSISTOR:SILICON,NPN	56289	2N5551
Q1444	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1446	151-0302-00			TRANSISTOR:SILICON, NPN	07263	S038487
Q1448	151-0349-00			TRANSISTOR:SILICON,NPN, SEL FROM MJE 2801	04713	SJE924
Q1454	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1456	151-0390-00			TRANSISTOR: SILICON,NPN	04713	SPS3414
Q1464	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1466	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1468	151-0349-00			TRANSISTOR:SILICON,NPN,SEL FROM MJE2801	04713	SJE 924
Q1474	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1478	151-0260-02			TRANSISTOR:SILICON,NPN	04713	ST1149
Q1482	151-0390-00			TRANSISTOR:SILICON,NPN	04713	SPS3414
Q1490	151-0190-00			TRANSISTOR: SILICON,NPN	07263	S032677
Q1492	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1494	151-0347-00			TRANSISTOR:SILICON,NPN	56289	2N5551
Q1496	151-0280-00			TRANSISTOR:SILICON, PNP	04713	SS8065
Q1497	151-0301-00			TRANSISTOR:SILICON, PNP	27014	2N2907A
Q1498	151-0302-00			TRANSISTOR:SILICON,NPN	07263	S038487
Q1502	151-0342-00			TRANSISTOR: SILICON, PNP	07263	S035928
Q1504	151-0342-00			TRANSISTOR:SILICON, PNP	07263	S035928
Q1512	151-0164-00			TRANSISTOR: SILICON, PNP	01295	SKB3334
Q1698	151-0301-00	B010100	B016199X	TRANSISTOR: SILICON, PNP	27014	2N2907A

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
Q8067	151-0301-00	XB016200		TRANSISTOR:SILICON, PNP	27014	2N2907A
R10	315-0430-00			RES.,FXD, CMPSN: 43 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4305
R13	315-0101-00			RES., FXD, CMPSN: 100 OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R22 (2)	315-0105-00			RES.,FXD, CMPSN: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R24 (2)	315-0510-00			RES.,FXD, CMPSN:51 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5105
R31 (2)		B010100	B010715	(SELECTED)		
R31 (2)	317-0100-00	B010716		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE,SELECTED)	01121	BB1005
R32 (2)	317-0082-00			RES., FXD,CMPSN:8.2 OHM,5\%,0.125W (NOMINAL VALUE,SELECTED)	01121	BB82G5
R33 (2)	315-0360-00			RES.,FXD, CMPSN:36 OHM, 5\%,0.25W	01121	CB3605
R34 (2)	317-0300-00			RES., FXD, CMPSN: 30 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	BB3005
R35 (2)	317-0390-00	B010100	B010715	RES.,FXD, CMPSN: 39 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE,SELECTED)	01121	BB3905
R35 (2)	317-0330-00	B010716		RES., FXD, CMPSN: 33 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	BB3305
R36(2)	317-0330-00	B010100	B010715	RES., FXD, CMPSN: 33 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE,SELECTED)	01121	BB3305
R36(2)	317-0300-00	B010716		RES., FXD, CMPSN: 30 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	BB3005
R37 (2)	-			(SELECTED)		
R39 (2)	321-0481-00			RES.,FXD,FILM: 1 M OHM, $1 \%, 0.125 \mathrm{~W}$	24546	NA4D1004F
R41	317-0474-00			RES.,FXD, CMPSN:470K OHM,5\%,0.125W	01121	BB4745
R42	315-0510-00	B010100	B010715	RES.,FXD, CMPSN: 51 OHM, $5 \%, 0.25 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	CB5105
R42	315-0560-00	B010716		RES.,FXD,CMPSN:56 ОHM,5\%,0.25W (NOMINAL VALUE, SELECTED)	01121	CB5605
R50	315-0430-00			RES., FXD, CMPSN:43 OHM, 5\%, 0.25 W	01121	CB4305
R53	315-0101-00			RES., FXD, CMPSN: 100 OHM, 5\%, 0.25 W	01121	CB1015
R61	317-0474-00			RES.,FXD, CMPSN:470K OHM,5\%,0.125W	01121	BB4745
R62	315-0510-00	B010100	B010715	RES., FXD, CMPSN: 51 OHM, $5 \%, 0.25 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	CB5105
R62	315-0560-00	B010716		RES.,FXD,CMPSN:56 ОHM,5\%,0.25W (NOMINAL VALUE, SELECTED)	01121	CB5605
R103	317-0120-00			RES., FXD, CMPSN: 12 OHM, $5 \%, 0.125 \mathrm{~W}$ (ADDED IF NECESSARY)	01121	BB1205
R104	317-0391-00			RES., FXD, CMPSN: 390 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB3915
R105	315-0470-00			RES.,FXD,CMPSN:47 OHM, 5\%,0.25W	01121	CB4705
R107	317-0101-00			RES., FXD, CMPSN: 100 OHM, 5\%,0.125W	01121	BB1015
R108	317-0101-00			RES., FXD, CMPSN: 100 OHM,5\%,0.125W	01121	BB1015
R109	311-1268-00			RES.,VAR, NONWIR: 10 K OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-103
R110	311-1228-00			RES.,VAR, NONWIR: 10 K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-T04-103
R111	315-0103-00			RES., FXD, CMPSN: 10K OHM,5\%,0.25W	01121	CB1035
R112	311-1259-00			RES., VAR, NONWIR: 100 OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-101
R113	317-0681-00			RES.,FXD, CMPSN: 680 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB6815
R114	315-0151-00			RES.,FXD, CMPSN: 150 OHM,5\%,0.25W	01121	CB1515
R119	315-0300-00			RES.,FXD, CMPSN: 30 OHM, 5\%, 0.25W	01121	CB3005
R120	315-0154-00			RES.,FXD, CMPSN:150K OHM, 5\%,0.25W	01121	CB1545
R122	321-0239-00			RES., FXD,FILM: 3.01 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30100F
R123	315-0101-00			RES.,FXD, CMPSN: 100 OHM,5\%,0.25W	01121	CB1015
R124	321-0307-00			RES.,FXD,FILM: 15.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15401F
R125	315-0222-00			RES.,FXD,CMPSN:2.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2225
R126	321-0277-00			RES.,FXD,FILM:7.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G75000F
R127	315-0101-00			RES.,FXD, CMPSN: 100 OHM,5\%,0.25W	01121	CB1015
R128	311-1403-00			RES., VAR, NONWIR:5K OHM, 20\%,0.50W (FURNISHED AS A UNIT WITH S128)	01121	18M651

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
R129	315-0105-00			RES., FXD, CMPSN:1M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R130	321-0133-00			RES.,FXD, FILM: 237 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G237R0F
R131	321-0133-00			RES.,FXD,FILM:237 OHM, 1\%,0.125W	91637	MFF1816G237R0F
R132	317-0101-00			RES.,FXD, CMPSN: 100 OHM, 5\%,0.125W	01121	BB1015
R133	311-1259-00			RES.,VAR, NONWIR: 100 О $\mathrm{HM}, 10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-101
R134	317-0101-00			RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1015
R135	311-1222-00			RES.,VAR, NONWIR: 100 OHM, 20\%,0.50W	32997	3386F-T04-101
R136	317-0101-00			RES.,FXD,CMPSN: 100 OHM,5\%,0.125W	01121	BB1015
R137	317-0242-00			RES.,FXD, CMPSN: 2.4 K OHM $, 5 \%, 0.125 \mathrm{~W}$	01121	BB2425
R138	317-0202-00			RES.,FXD, CMPSN: 2 K OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2025
R139	311-0635-00			RES.,VAR,NONWIR:1K OHM, $10 \%, 0.50 \mathrm{~W}$	73138	82-32-1
R141	317-0120-00	B010100	B010467	RES., FXD,CMPSN: 12 OHM,5\%,0.125W (NOMINAL VALUE, SELECTED)	01121	BB1205
R141	317-0082-00	B010460		RES.,FXD,CMPSN:8.2 OHM,5\%,0.125W (NOMINAL VALUE, SELECTED)	01121	BB82G5
R142	321-0072-00			RES., FXD, FILM:54.9 ОHM, 1\%, 0.125 W	91637	MFF1816G54R90F
R143	321-0072-00			(NOMINAL VALUE, SELECTED) RES., FXD, FILM:54.9 ОНM, 1\%,0.125W (NOMINAL VALUE, SELECTED)	91637	MFF1816G54R90F
R144	317-0120-00	B010100	B010467	RES., FXD, CMPSN: 12 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	BB1205
R144	317-0082-00	B010468		RES., FXD, CMPSN: 8.2 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	BB82G5
R145	315-0620-00			RES., FXD, CMPSN:62 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6205
R151	321-0076-00			RES., FXD, FILM: 60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R152	321-0076-00			RES.,FXD, FILM: 60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R153	317-0220-00			RES., FXD, CMPSN: 22 OHM , 5\%,0.125W	01121	BB2205
				(NOMINAL VALUE, SELECTED)		
R154	321-0076-00			RES. ,FXD,FILM: 60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R155	321-0076-00			RES., FXD, FILM:60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R156	321-0081-00			RES.,FXD,FILM:68.1 ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G68R10F
R157	321-0018-00			RES., FXD, FILM: 15 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15R00F
R158	317-0220-00			RES., FXD, CMPSN: 22 OHM, $5 \%, 0.125 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	BB2205
R161	315-0511-00			RES. , FXD, CMPSN: 510 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5115
R162	321-0172-00			RES.,FXD, FILM: 604 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G604R0F
R163	321-0201-00			RES., FXD, FILM:1.21K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12100F
R164	321-0179-00			RES., FXD, FILM: 715 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G715R0F
R165	311-1225-00			RES.,VAR, NONWIR: 1 K OHM, 20\%,0.50W	32997	3386F-T04-102
R168	315-0222-00			RES.,FXD, CMPSN: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2225
R170	315-0122-00	3010100	B010467	RES.,FXD, CMPSN: 1.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
R170	315-0112-00	B010468		RES., FXD,CMPSN:1.1K OHM,5\%,0.25W (Nominal Value, selected)	01121	CB1125
R172	315-0331-00			RES., FXD,CMPSN: 330 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C33315
R173	321-0053-00			RES., FXD, FILM: 34.8 ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G34R80F
R174	315-0154-00			RES.,FXD, CMPSN: 150 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1545
R175	311-1260-00			RES., VAR, NONWIR:250 OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-251
R176	311-1226-00			RES.,VAR, NONWIR:2.5K OHM, 20\%,0.50W	32997	3386F-T04-252
R177	317-0100-00			RES., FXD, CMPSN: 10 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1005
R178	315-0391-00			RES. , FXD, CMPSN: 390 OHM, 5\%,0.25W	01121	CB3915
R179	321-0164-00			RES., FXD, FILM: 499 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G499R0F
R180	315-0122-00	B010100	B010467	RES.,FXD, CMPSN:1.2K ОHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
R180	315-0112-00	B010468		RES., FXD, CMPSN: 1.1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	CB1125
R181	315-0101-00			RES., FXD, CMPSN: 100 OHM, 5\%,0.25W	01121	CB1015
R182	315-0331-00			RES., FXD,CMPSN: 330 OHM, 5\%,0.25W	01121	CB3315
R183	321-0053-00			RES., FXD,FILM:34.8 О ${ }^{\text {OHM, }} 1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G34R80F

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R184	321-0051-00		RES., FXD, FILM: 33.2 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G33R20F
R185	311-1397-00		RES.,VAR,NONWIR:2 X 5 K OHM, $20 \%, 0.25 \mathrm{~W}$	01121	73W1G040L502M
R186	321-0127-00		RES., FXD, FILM:205 OHM, 1\%,0.125W	91637	MFF1816G205R0F
R187	321-0231-00		RES.,FXD,FILM:2.49K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G24900F
R188	315-0391-00		RES., FXD, CMPSN: 390 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3915
R189	321-0164-00		RES., FXD, FILM:499 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G499R0F
R193	321-0078-00		RES., FXD, FILM:63.4 ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R194	321-0078-00		RES.,FXD,FILM: 63.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R195	311-1225-00		RES., VAR,NONWIR: 1 K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-T04-102
R196	315-0182-00		RES.,FXD, CMPSN:1.8K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R198	315-0182-00		RES., FXD, CMPSN: 1.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R203	317-0120-00		RES., FXD, CMPSN: 12 OHM,5\%,0.125W	01121	BB1205
R204	317-0391-00		RES.,FXD, CMPSN: 390 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB3915
R205	315-0470-00		RES., FXD, CMPSN: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R207	317-0101-00		RES.,FXD,CMPSN: 100 ОНM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1015
R208	317-0101-00		RES., FXD,CMPSN: 100 OHM,5\%,0.125W (ADDED IF NECESSARY)	01121	BB1015
R209	311-1268-00		RES.,VAR,NONWIR:10K OHM, 10%,0.50W	32997	3329P-L58-103
R210	311-1228-00		RES., VAR,NONWIR:10K OHM, 20\%,0.50W	32997	3386F-T04-103
R211	315-0103-00		RES.,FXD,CMPSN:10K OHM,5\%,0.25W	01121	CB1035
R212	311-1259-00		RES., ,VAR, NONWIR: 100 OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-101
R213	317-0681-00		RES., FXD, CMPSN: 680 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB6815
R214	315-0151-00		RES., FXD, CMPSN: 150 OHM, 5\%,0.25W	01121	CB1515
R215	311-1268-00		RES., VAR,NONWIR: 10 K OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-103
R216	315-0103-00		RES.,FXD, CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R217	321-0277-00		RES.,FXD,FILM:7.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFE1816G75000F
R218	321-0277-00		RES.,FXD,FILM:7.5K OHM, 1\%,0.125W	91637	MFF1816G75000F
R219	315-0300-00		RES., FXD, CMPSN: 30 OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB3005
R220	315-0154-00		RES.,FXD,CMPSN:150K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1545
R221	321-0307-00		RES., FXD, FILM: 15.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15401F
R222	321-0253-00		RES., FXD,FILM:4.22K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G42200F
R223	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R224	321-0307-00		RES., FXD, FTLM: 15.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15401F
R225	315-0222-00		RES.,FXD, CMPSN:2.2K OHM, 5\%,0.25W	01121	CB2225
R226	321-0253-00		RES., FXD, FILM:4.22K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G42200F
R227	315-0101-00		RES., FXD, CMPSN: 100 OHM, 5\%,0.25W	01121	CB1015
R228	311-1403-00		RES.,VAR,NONWIR:5K OHM,20\%,0.50W (FURNISHED AS A UNIT WITH S228)	01121	18M651
R229	315-0105-00		RES., FXD, CMPSN: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R230	321-0133-00		RES., FXD, FILM: 237 OHM, 1\%,0.125W	91637	MFF1816G237R0F
R231	321-0133-00		RES. , FXD, FILM: 237 OHM, 1\%,0.125W	91637	MFF1816G237R0F
R232	317-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1015
R233	311-1259-00		RES., VAR,NONWIR: 100 OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-101
R234	317-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1015
R235	311-1222-00		RES., VAR, NONWIR: 100 OHM, 20\%,0.50W	32997	3386F-T04-101
R236	317-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1015
R237	317-0242-00		RES., FXD, CMPSN: 2.4 K OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2425
R238	317-0202-00		RES.,FXD,CMPSN: 2 K OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2025
R239	311-0635-00		RES.,VAR, NONWIR: 1 K OHM, 10%,0.50W	73138	82-32-1
R241	317-0120-00		RES., FXD, CMPSN: 12 OHM, $5 \%, 0.125 \mathrm{~W}$ (nominal value, selected)	01121	BB1205
R242	321-0072-00		RES., FXD, FILM: 54.9 О $\mathrm{HM}, 1 \%, 0.125 \mathrm{~W}$ (nominal value, selected)	91637	MFF1816G54R90F
R243	321-0072-00		RES., FXD, FILM:54.9 OHM,1\%,0.125W (nominal value, selected)	91637	MFF1816G54R90F
R244	317-0120-00		RES., FXD, CMPSN: 12 OHM, 5%, 0.125 W	01121	BB1205

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
R245	315-0620-00			RES.,FXD,CMPSN:62 OHM, 5\%,0.25W	01121	CB6205
R251	321-0076-00			RES.,FXD,FILM: 60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R252	321-0076-00			RES.,FXD,FILM:60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R253	3117-0220-00			RES.,FXD, CMPSN: 22 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2205
				(NOMINAL VALUE, SELECTED)		
R254	321-0076-00			RES.,FXD,FILM:60.4 OHM, 1\%, 0.125 W	91637	MFF1816G60R40F
R255	321-0076-00			RES.,FXD,FILM: 60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R256	321-0081-00			RES.,FXD,FILM:68.1 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G68R10F
R257	321-0018-00			RES.,FXD,FILM:15 OHM, 1\%,0.125W	91637	MFFl816G15R00F
R258	31.7-0220-00			RES.,FXD, CMPSN: 22 OHM, 5\%, 0.125W	01121	BB2205
				(NOMINAL VALUE, SELECTED)		
R261	315-0511-00			RES.,FXD, CMPSN:510 OHM, 5\%, 0.25W	01121	CB5115
R262	321-0172-00			RES.,FXD,FILM:604 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G604R0F
R263	321-0201-00			RES.,FXD,FILM: 1.21 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12100F
R264	321-0179-00			RES.,FXD,FILM:715 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G715R0F
R265	311-1225-00			RES.,VAR,NONWIR:1K OHM, 20\%,0.50W	32997	3386F-T04-102
R268	315-0222-00			RES.,FXD, CMPSN:2.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2225
R270	31.5-0122-00	B010100	B010467	RES.,FXD, CMPSN:1.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
R270	31.5-0112-00	B010468		RES.,FXD, CMPSN: 1.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1125
				(NOMINAL VALUE, SELECTED)		
R272	31.5-0331-00			RES.,FXD, CMPSN:330 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3315
R273	321-0053-00			RES.,FXD, FILM:34.8 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G34R80F
R274	31.5-0154-00			RES.,FXD, CMPSN: 150 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1545
R275	31.1-1260-00			RES.,VAR, NONWIR:250 OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-251
R276	311-1226-00			RES.,VAR, NONWIR:2.5K OHM, 20\%,0.50W	32997	3386F-T04-252
R277	317-0100-00			RES.,FXD, CMPSN: 10 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1005
R278	31.5-0391-00			RES.,FXD, CMPSN: 390 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3915
R279	321-0164-00			RES.,FXD,FILM:499 OHM, 1\%,0.125W	91637	MFF1816G499R0F
R280	315-0122-00	B010100	B010467	RES.,FXD, CMPSN:1.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
R280	31.5-0112-00	B010468		RES.,FXD, CMPSN: 1.1 K OHM, $5 \%, 0.25 \mathrm{~W}$ (NOMINAL VALUE, SELECTED)	01121	CB1125
R281	31.5-0101-00			RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R282	315-0331-00			RES.,FXD, CMPSN: 330 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3315
R283	321-0053-00			RES., FXD, FILM: 34.8 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G34R80F
R284	321-0051-00			RES.,FXD, FILM:33.2 OHM, 1\%,0.125W	91637	MFF1816G33R20F
R285	311-1397-00			RES., VAR, NONWIR:2 X 5K OHM, 20\%,0.25W	01121	73W1G040L502M
R286	321-0127-00			RES.,FXD,FILM:205 OHM, 1\%,0.125W	91637	MFF1816G205R0F
R287	321-0231-00			RES.,FXD,FILM:2.49K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G24900F
R288	31.5-0391-00			RES.,FXD, CMPSN:390 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3915
R289	321-0164-00			RES.,FXD,FILM:499 OHM, 1\%,0.125W	91637	MFF1816G499R0F
R291	307-0106-00			RES.,FXD, CMPSN:4.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB47G5
R292	307-0106-00			RES.,FXD, CMPSN:4.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB47G5
R293	321-0078-00			RES.,FXD,FILM: 63.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R294	321-0078-00			RES.,FXD,FILM: 63.4 OHM, 1\%,0.125W	91637	MFF1816G63R40F
R295	31.1-1225-00			RES.,VAR, NONWIR:1K OHM, 20\%,0.50W	32997	3386F-T04-102
R296	31.5-0182-00			RES.,FXD, CMPSN:1.8K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R297	307-0106-00			RES.,FXD, CMPSN:4.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB47G5
R298	3115-0182-00			RES.,FXD, CMPSN: 1.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R301	321-0164-00			RES.,FXD,FILM:499 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G499R0F
R302	321-0131-00			RES.,FXD, FILM:226 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G226R0F
R304	3115-0102-00			RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R306	3115-0121-00			RES.,FXD, CMPSN: 120 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1215
R310	3115-0101-00			RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R311	315-0152-00			RES.,FXD, CMPSN:1.5K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R312	31.5-0120-00			RES., FXD, CMPSN: 12 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1205
R313	31.5-0222-00			RES., FXD, CMPSN: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2225
R314	31.5-0822-00			RES.,FXD, CMPSN:8.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8225

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R315	315-0473-00		RES.,FXD,CMPSN:47K OHM,5\%,0.25W	01121	CB4735
R320	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R321	315-0152-00		RES., FXD, CMPSN: 1.5 K OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R322	315-0120-00		RES., FXD, CMPSN: 12 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1205
R323	315-0222-00		RES.,FXD, CMPSN:2.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2225
R324	315-0822-00		RES.,FXD,CMPSN:8.2K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8225
R325	315-0473-00		RES.,FXD,CMPSN:47K OHM,5\%,0.25W	01121	CB4735
R331	315-0102-00		RES.,FXD, CMPSN: 1 K О $\mathrm{OH}, 5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R332	315-0123-00		RES.,FXD,CMPSN:12K ОHM,5\%,0.25W	01121	CB1235
R333	315-0182-00		RES.,FXD, CMPSN:1.8K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R335	315-0123-00		RES.,FXD,CMPSN:12K OHM,5\%,0.25W	01121	CB1235
R336	315-0182-00		RES.,FXD,CMPSN:1.8K OHM,5\%,0.25W	01121	CB1825
R338	315-0203-00		RES., FXD, CMPSN:20K OHM, 5\%,0.25W	01121	CB2035
R339	315-0222-00		RES.,FXD,CMPSN:2.2K OHM,5\%,0.25W	01121	CB2225
R341	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R342	315-0132-00		RES.,FXD,CMPSN:1.3K ОHM,5\%,0.25W	01121	CB1325
R343	315-0511-00		RES.,FXD, CMPSN:510 0HM,5\%,0.25W	01121	CB5115
R346	315-0102-00		RES.,FXD,CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R347	315-0102-00		RES.,FXD,CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R348	315-0331-00		RES., FXD, CMPSN: 330 OHM, 5\%,0.25W	01121	CB3315
R351	315-0202-00		RES.,FXD, CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
R353	321-0152-00		RES.,FXD, FILM: 374 OHM, 1\%,0.125W	91637	MFF1816G374R0F
R354	321-0114-00		RES.,FXD, FILM: 150 OHM, 1\%,0.125W	91637	MFF1816G150R0F
R355	321-0174-00		RES.,FXD, FILM:634 OHM, 1\%,0.125W	91637	MFF1816G634R0F
R356	321-0114-00		RES.,FXD,FILM:150 OHM, 1\%,0.125W	91637	MFF1816G150R0F
R357	321-0174-00		RES.,FXD,FILM:634 OHM, 1\%,0.125W	91637	MFF1816G634R0F
R358	321-0152-00		RES.,FXD,FILM:374 OHM, 1\%,0.125W	91637	MFF1816G374R0F
R359	315-0202-00		RES., FXD, CMPSN:2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
R361	315-0202-00		RES.,FXD,CMPSN:2K OHM,5\%,0.25W	01121	CB2025
R363	321-0152-00		RES.,FXD,FILM:374 ОHM, 1\%,0.125W	91637	MFF1816G374R0F
R364	321-0114-00		RES.,FXD,FILM: 150 OHM, 1\%,0.125W	91637	MFF1816G150R0F
R365	321-0174-00		RES.,FXD,FILM: 634 OHM, 1\%,0.125W	91637	MFF1816G634R0F
R366	321-0114-00		RES.,FXD, FILM: 150 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G150R0F
R367	321-0174-00		RES.,FXD,FILM:634 OHM, 1\%,0.125W	91637	MFF1816G634R0F
R368	321-0152-00		RES.,FXD,FILM: 374 OHM, 1\%,0.125W	91637	MFF1816G374R0F
R369	315-0202-00		RES.,FXD,CMPSN:2K OHM,5\%,0.25W	01121	CB2025
R370	---------		(SEE DM44 MANUAL)		
R371	315-0470-00		RES., FXD, CMPSN: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R372	315-0470-00		RES.,FXD, CMPSN: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R373	315-0470-00		RES.,FXD,CMPSN:47 OHM,5\%,0.25W	01121	CB4705
R374	315-0470-00		RES.,FXD,CMPSN: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R380	321-0078-00		RES.,FXD,FILM:63.4 OHM, 1\%,0.125W	91637	MFF1816G63R40F
R381	321-0078-00		RES.,FXD,FILM: 63.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R382	323-0130-00		RES.,FXD,FILM:221 OHM, 1\%,0.50W	91637	MFF1226G221R0F
R383	323-0130-00		RES.,FXD,FILM:221 ОНM, $1 \%, 0.50 \mathrm{~W}$	91637	MFF1226G221R0F
R384	322-0107-00		RES.,FXD, FILM: 127 OHM, $1 \%, 0.25 \mathrm{~W}$	75042	CEBT0-1270F
R385	311-1221-00		RES.,VAR, NONWIR: 50 OHM , 20\%,0.50W	32997	3386F-T04-500
R388	315-0270-00		RES.,FXD,CMPSN:27 OHM, 5\%,0.25W	01121	CB2705
R391A	321-0163-00		RES.,FXD, FILM: 487 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G487R0F
R391b	315-0182-00		RES.,FXD,CMPSN:1.8K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R392	321-0122-00		RES.,FXD,FILM: 182 OHM, 1\%,0.125W	91637	MFF1816G182R0F
R393	315-0271-00		RES., FXD,CMPSN: 270 OHM, 5\%,0.25W	01121	CB2715
R394	321-0146-00		RES., FXD, FILM: 324 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G324R0F
R395	322-0156-00		RES.,FXD,FILM:412 OHM, 1\%,0.25W	75042	CEBT0-4120F
R396	307-0106-00		RES., FXD, CMPSN:4.7 OHM, 5\%,0.25W	01121	CB47G5
R397	315-0471-00		RES., FXD, CMPSN:470 ОHM, 5\%,0.25W	01121	CB4715
R398	317-0430-00		RES.,FXD,CMPSN:43 OHM,5\%,0.125W	01121	BB4305

Ckt No.	Tektronix Part No.	Serial/Model No.		Name \& Description	Mfr Code	Mfr Part Number
		Eff	Dscont			
R399	315-0330-00			RES.,FXD,CMPSN:33 OHM,5\%,0.25W	01121	CB3305
R401	321-0132-00			RES.,FXD,FILM: 232 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G232R0F
R402	321-0078-00			RES.,FXD, FILM: 63.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R403	311-1221-00			RES.,VAR, NONWIR:50 OHM, 20\%,0.50W	32997	3386F-T04-500
R404	321-0132-00			RES.,FXD,FILM:232 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G232R0F
R405	321-0078-00			RES.,FXD,FILM: 63.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R411	321-0132-00			RES.,FXD, FILM: 232 OHM, 1\%,0.125W	91637	MFF1816G232R0F
R412	321-0078-00			RES.,FXD,FILM:63.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G63R40F
R414	321-0132-00			RES.,FXD,FILM:232 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G232R0F
R415	321-0078-00			RES., FXD, FILM:63.4 OHM, 1\%,0.125W	91637	MFF1816G63R40F
R419	321-0068-00			RES.,FXD,FILM:49.9 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49R90F
R420	315-0200-00			RES.,FXD, CMPSN: 20 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2005
R421	321-0151-00			RES.,FXD,FILM: 365 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G365R0F
R422	321-0210-00			RES.,FXD,FILM:1.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15000F
R423	321-0076-00			RES.,FXD,FILM:60.4 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60R40F
R425	311-1227-00			RES.,VAR,NONWIR:5K OHM, 20\%,0.50W	32997	3386F-T04-502
R426	322-0161-00			RES.,FXD,FILM: 464 OHM, $1 \%, 0.25 \mathrm{~W}$	75042	CEBT0-4640F
R427	315-0271-00			RES., FXD, CMPSN: 270 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2715
R430	315-0471-00			RES.,FXD, CMPSN: 470 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4715
R431	321-0071-00			RES., FXD, FILM:53.6 OHM, 1\%,0.125W	91637	MFF1816G53R60F
R432	321-0184-00			RES.,FXD,FILM:806 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G806R0F
R436	315-0100-00			RES.,FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R437	315-0100-00			RES., FXD, CMPSN:10 OHM, 5\%,0.25W	01121	CB1005
R438	307-0106-00			RES.,FXD, CMPSN:4.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB47G5
R441	321-0068-00			RES., FXD, FILM:49.9 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49R90F
R443	317-0510-00			RES.,FXD, CMPSN:51 OHM,5\%,0.125W	01121	BB5105
R445	321-0068-00			RES.,FXD,FILM:49.9 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49R90F
R446	317-0510-00			RES.,FXD, CMPSN: 51 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB5105
R447	321-0201-00	B010100	B019489	RES.,FXD,FILM:1.21K OHM,1\%,0.125W	91637	MFF1816G12100F
R447	321-0184-00	B019490		RES.,FXD,FILM:806 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G806R0F
R448	321-0135-00	B010100	B019489	RES.,FXD,FILM:249 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G249R0F
R448	321-0143-00	B019490		RES.,FXD,FILM:301 OHM, 1\%,0.125W	91637	MFF1816G301R0F
R449	311-1238-00			RES.,VAR,NONWIR:5K OHM, $10 \%, 0.50 \mathrm{~W}$	73138	72-27-0
R450	311-1260-00			RES.,VAR, NONWIR: 250 OHM, 10\%,0.50W	32997	3329P-L58-251
R451	317-0750-00			RES.,FXD, CMPSN: 75 OHM,5\%,0.125W	01121	BB7505
R452	317-0200-00			RES., FXD, CMPSN: 20 OHM, 5\%,0.125W	01121	BB2005
R453	317-0200-00			RES.,FXD, CMPSN: 20 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2005
R454	317-0681-00			RES., FXD, CMPSN: 680 OHM , 5\%, 0.125 W	01121	BB6815
R455	317-0102-00			RES.,FXD,CMPSN: 1 K OHM,5\%,0.125W	01121	BB1025
R456	315-0220-00			RES., FXD, CMPSN: 22 OHM, 5\%,0.25W	01121	CB2205
R457	321-0163-00			RES.,FXD,FILM:487 OHM, 1\%,0.125W	91637	MFF1816G487R0F
R458	321-0163-00			RES.,FXD,FILM: 487 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G487R0F
R459	315-0102-00			RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R460	315-0270-00			RES.,FXD,CMPSN: 27 OHM,5\%,0.25W	01121	CB2705
R461	321-0198-00			RES.,FXD,FILM: 1.13 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816Gl1300F
R462	323-0147-00			RES.,FXD,FILM:332 OHM, 1\%,0.50W	75042	CECT0-3320F
R463	315-0561-00			RES.,FXD, CMPSN: 560 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5615
R464	323-0147-00			RES.,FXD,FILM:332 OHM, $1 \%, 0.50 \mathrm{~W}$	75042	CECTO-3320F
R465	315-0561-00			RES.,FXD,CMPSN: 560 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5615
R466	311-1278-00			RES., VAR, NONWIR: 250 OHM, $10 \%, 0.5 \mathrm{~W}$	32997	3329W-L58-251
R467	317-0240-00			RES.,FXD, CMPSN: 24 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2405
R468	321-0061-00			RES.,FXD, FILM:42.2 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G42R20F
R469	321-0061-00			RES.,FXD, FILM: 42.2 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G42R20F
R470	311-1279-00			RES.,VAR, NONWIR: 500 OHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329W-L58-501
R471	315-0102-00			RES.,FXD,CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R472	315-0200-00			RES.,FXD, CMPSN:20 OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB2005
R473	315-0200-00			RES.,FXD, CMPSN: 20 OHM, 5\%, 0.25 W	01121	CB2005

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R474	317-0240-00		RES., FXD, CMPSN:24 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB2405
R475	311-1245-00		RES., VAR,NONWIR: 10 K OHM, 10%,0.50W	73138	72-28-0
R476	317-0182-00		RES., FXD, CMPSN: 1.8 K OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1825
R477	315-0821-00		RES.,FXD,CMPSN:820 ОНM,5\%,0.25W	01121	CB8215
R478	321-0164-00		RES.,FXD,FILM:499 ОНM, 1\%,0.125W	91637	MFF1816G499R0F
R479	321-0164-00		RES., FXD, FILM:499. OHM, 1\%, 0.125 W	91637	MFF1816G499R0F
R480	315-0510-00	XB013000	RES., FXD,CMPSN:51 OHM, 5\%,0.25W	01121	CB5 105
R481	321-0039-00		RES.,FXD,FILM:24.9 ОНM, 1\%,0.125W	91637	MFF1816G24R90F
R482	321-0039-00		RES.,FXD,FILM:24.9 OHM, 1\%,0.125W	91637	MFF1816G24R90F
R483	322-0157-00		RES., FXD, FILM: 422 OHM, $1 \%, 0.25 \mathrm{~W}$	75042	CEBT0-4220F
R484	322-0157-00		RES., FXD, FILM: 422 OHM, $1 \%, 0.25 \mathrm{~W}$	75042	CEBT0-4220F
R485	315-0560-00		RES., FXD, CMPSN:56 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5605
R486	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R487	315-0301-00		RES. , FXD, CMPSN: 300 OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB3015
R488	311-1236-00		RES., VAR, NONWIR: 250 OHM, $10 \%, 0.50 \mathrm{~W}$	73138	72-22-0
R489	315-0911-00		RES., FXD, CMPSN:910 ОHM,5\%,0.25W	01121	CB9115
R490	315-0103-00		RES.,FXD,CMPSN:10K OHM,5\%,0.25W	01121	CB1035
R491	301-0100-00		RES., FXD, CMPSN: 10 ОНM, $5 \%, 0.50 \mathrm{~W}$	01121	EB1005
R492	323-0134-00		RES., FXD, FILM: 243 О ${ }^{\text {OHM, }, 1 \%, 0.50 \mathrm{~W}}$	91637	MFF1226G243R0F
R493	323-0134-00		RES., FXD, FILM: 243 OHM, 1\%,0.50W	91637	MFF1226G243R0F
R494A	317-0621-00		RES.,FXD,CMPSN: 620 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB6215
R494B	311-0633-00		RES., VAR, NONWIR:5K OHM, $10 \%, 0.50 \mathrm{~W}$ (ADDED IF NECESSARY)	73138	82-30-1
R495	323-0134-00		RES., FXD, FILM: 243 OHM, 1\%,0.50W	91637	MFF1226G243R0F
R496	323-0134-00		RES., FXD, FILM: 243 OHM, 1%, 0.50 W	91637	MFF1226G243R0F
R497	307-0292-00		RES., FXD, FILM:182.5 OHM	80009	307-0292-00
R498	307-0106-00		RES., FXD, CMPSN:4.7 OHM $5 \%, 0.25 \mathrm{~W}$	01121	CB4765
R499	307-0106-00		RES., FXD, CMPSN:4.7 OHM, 5\%,0.25W	01121	CB47G5
R500	315-0560-00		RES., FXD, CMPSN: 56 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5605
R501	315-0221-00		RES., FXD, CMPSN: 220 OHM,5\%,0.25W	01121	CB2215
R502	315-0152-00		RES.,FXD,CMPSN:1.5K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R503	315-0221-00		RES., FXD, CMPSN: 220 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2215
R504	315-0152-00		RES., FXD, CMPSN: 1.5 K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R505	315-0470-00		RES., FXD, CMPSN: 47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R506	315-0152-00		RES., FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R507	315-0103-00		RES.,FXD, CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R508	315-0274-00		RES.,FXD, CMPSN: 270 K О ${ }^{\text {OHM }}$, $5 \%, 0.25 \mathrm{~W}$	01121	CB2745
R509	315-0560-00		RES., FXD, CMPSN: 56 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5605
R510	315-0330-00		RES., FXD, CMPSN: 33 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3305
R511	315-0824-00		RES., FXD, CMPSN: 820 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8245
R512	315-0514-00		RES.,FXD, CMPSN:510K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5145
R513	315-0475-00		RES.,FXD, CMPSN:4.7M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4755
R514	315-0184-00		RES.,FXD, CMPSN: 180 K OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB1845
R515	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
R516	315-0563-00		RES., FXD, CMPSN: 56 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5635
R517	315-0105-00		RES., FXD, CMPSN: 1 M OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R518	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R519	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R520	315-0560-00		RES., FXD, CMPSN: 56 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5605
R521	315-0101-00		RES., FXD, CMPSN: 100 OHM, 5\%,0.25W	01121	CB1015
R522	315-0150-00		RES., FXD, CMPSN: 15 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1505
R523	315-0150-00		RES., FXD, CMPSN: 15 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1505
R524	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R525	315-0821-00		RES., FXD, CMPSN: 820 OHM,5\%,0.25W	01121	CB8215
R526	315-0220-00		RES., FXD, CMPSN: 22 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2205
R527	322-0178-00		RES.,FXD,FILM: 698 OHM, $1 \%, 0.25 \mathrm{~W}$	75042	CEBT0-6980F
R528	315-0220-00		RES.,FXD,CMPSN: 22 OHM,5\%,0.25W	01121	CB2205

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R596	307-0106-00		RES., FXD,CMPSN:4.7 OHM,5\%,0.25W	01121	CB4765
R597	315-0221-00		RES., FXD, CMPSN: 220 OHM,5\%,0.25W	01121	CB2215
R598	315-0221-00		RES., FXD, CMPSN:220 0HM,5\%,0.25W	01121	CB2215
R599	321-0318-00		RES., FXD, FILM: 20 K OHM, 1%, 0.125 W	91637	MFF1816G20001F
R600	307-0106-00		RES., FXD, CMPSN:4.7 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB47G5
R601	315-0472-00		RES.,FXD,CMPSN:4.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
R602	315-0472-00		RES.,FXD, CMPSN:4.7K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
R603	315-0241-00		RES.,FXD,CMPSN:240 ОНM,5\%,0.25W	01121	CB2415
R604	315-0393-00		RES.,FXD,CMPSN:39K OHM,5\%,0.25W	01121	CB3935
R605			(SEE DM44 MANUAL)		
R607	315-0101-00		RES.,FXD,CMPSN:100 0HM,5\%,0.25W	01121	CB1015
R608	315-0100-00		RES.,FXD,CMPSN: 10 OHM,5\%,0.25W	01121	CB1005
R609	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
R610	315-0100-00		RES.,FXD, CMPSN:10 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R611	321-0174-00		RES.,FXD,FILM:634 OHM, 1\%,0.125W	91637	MFF1816G634R0F
R612	321-0190-00		RES.,FXD, FILM:931 OHM, 1\%,0.125W	91637	MFF1816G931R0F
R613	315-0101-00		RES.,FXD,CMPSN:100 OHM,5\%,0.25W	01121	CB1015
R622	307-0103-00		RES., FXD, CMPSN:2.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB27G5
R626	315-0201-00		RES.,FXD, CMPSN:200 OHM,5\%,0.25W	01121	CB2015
R627	315-0101-00		RES.,FXD, CMPSN:100 OHM,5\%,0.25W	01121	CB1015
R628	321-0184-00		RES.,FXD,FILM:806 OHM, 1\%,0.125W	91637	MFF1816G806R0F
R629	321-0205-00		RES.,FXD,FILM:1.33K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G13300F
R641	321-0222-00		RES.,FXD,FILM:2K OHM, 1\%,0.125W	91637	MFF1816G20000F
R642	321-0275-00		RES.,FXD,FILM:7.15K OHM, 1\%,0.125W	91637	MFF1816G71500F
R644	311-1401-00		RES.,VAR,NONWIR: 100 K OHM, $20 \%, 0.50 \mathrm{~W}$	01121	15M503
			(FURNISHED AS A UNIT WITH S644)		
R647	315-0473-00		RES.,FXD,CMPSN:47K OHM,5\%,0.25W	01121	CB4735
R661	315-0430-00		RES., FXD, CMPSN:43 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4305
R662	315-0150-00		RES.,FXD, CMPSN: 15 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1505
R663	322-0207-00		RES.,FXD,FILM:1.4K OHM, $1 \%, 0.25 \mathrm{~W}$	75042	CEBT0-1401F
R664	315-0510-00		RES.,FXD,CMPSN:51 ОHM,5\%,0.25W	01121	CB5105
R665	315-0103-00		RES.,FXD,CMPSN:10K OHM,5\%,0.25W	01121	CB1035
R666	315-0102-00		RES.,FXD,CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R667	315-0510-00		RES.,FXD,CMPSN:51 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5105
R668	321-0178-00		RES.,FXD,FILM:698 OHM, 1\%,0.125W	91637	MFF1816G698R0F
R669	315-0160-00		RES.,FXD,CMPSN: 16 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1605
R670	315-0470-00		RES.,FXD, CMPSN:47 ОНM, 5\%,0.25W	01121	CB4705
R671	315-0430-00		RES.,FXD, CMPSN:43 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4305
R672	315-0150-00		RES.,FXD,CMPSN: 15 OHM,5\%,0.25W	01121	CB1505
R673	311-1223-00		RES.,VAR, NONWIR:TRMR, 250 OHM,0.5W	02111	63M251T602
R674	315-0510-00		RES.,FXD,CMPSN:51 OHM,5\%,0.25W	01121	CB5105
R675	321-0155-00		RES.,FXD,FILM:402 OHM, 1\%,0.125W	91637	MFF1816G402R0F
R676	315-0102-00		RES.,FXD,CMPSN:1K OHM,5\%,0.25W	01121	CB1025
R677	315-0510-00		RES.,FXD,CMPSN:51 OHM,5\%,0.25W	01121	CB5105
R678	321-0178-00		RES.,FXD,FILM:698 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G698R0F
R679	315-0220-00		RES.,FXD, CMPSN: 22 OHM,5\%,0.25W	01121	CB2205
R680	321-0225-00		RES., FXD,FILM:2.15K OHM, 1\%,0.125W	91637	MFF1816G21500F
R681	321-0209-00		RES.,FXD,FILM:1.47K OHM, 1\%,0.125W	91637	MFF1816G14700F
R682	315-0102-00		RES.,FXD,CMPSN:1K OHM,5\%,0.25W	01121	CB1025
R683	315-0202-00		RES.,FXD,CMPSN:2K OHM,5\%,0.25W	01121	CB2025
R684	321-0248-00		RES., FXD, FILM:3.74K OHM, 1\%,0.125W	91637	MFF1816G37400F
R685	321-0248-00		RES., FXD, FILM:3.74K OHM, 1\%,0.125W	91637	MFF1816G37400F
R686	321-0210-00		RES.,FXD,FILM:1.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15000F
R687	321-0209-00		RES.,FXD, FILM:1.47K OHM, 1\%,0.125W	91637	MFF1816G14700F
R688	321-0141-00		RES.,FXD,FILM:287 0HM, 1\%,0.125W	91637	MFF1816G287R0F
R689	315-0432-00		RES.,FXD,CMPSN:4.3K OHM,5\%,0.25W	01121	CB4325
R692	315-0472-00		RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W	01121	CB4725

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R693	315-0471-00		RES.,FXD, CMPSN:470 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4715
R694	315-0470-00		RES.,FXD, CMPSN:47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R695	321-0204-00		RES.,FXD,FILM:1.3K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G13000F
R696	321-0222-00		RES.,FXD,FILM: 2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
R697	321-0178-00		RES.,FXD,FILM: 698 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G698R0F
R698	315-0100-00		RES.,FXD, CMPSN: 10 OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R699	315-0472-00		RES.,FXD, CMPSN:4.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
R701	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R702	315-0162-00		RES.,FXD, CMPSN:1.6K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1625
R703	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R704	315-0162-00		RES.,FXD,CMPSN:1.6K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1625
R705	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R706	315-0162-00		RES.,FXD, CMPSN: 1.6 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1625
R711	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R712	315-0221-00		RES.,FXD, CMPSN: 220 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2215
R713	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R714	315-0221-00		RES.,FXD, CMPSN: 220 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2215
R715	315-0151-00		RES.,FXD, CMPSN: 150 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1515
R716	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R717	315-0620-00		RES.,FXD, CMPSN: 62 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6205
R718	315-0620-00		RES.,FXD,CMPSN: 62 OHM,5\%,0.25W	01121	CB6205
R719	315-0620-00		RES.,FXD, CMPSN: 62 OHM,5\%,0.25W	01121	CB6205
R721	315-0330-00		RES.,FXD, CMPSN: 33 OHM,5\%,0.25W	01121	CB3305
R722	315-0684-00		RES.,FXD, CMPSN:680K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB6845
R723	315-0474-00		RES.,FXD, CMPSN:470K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4745
R729	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R731	315-0332-00		RES.,FXD, CMPSN:3.3K OHM,5\%,0.25W	01121	CB3325
R735	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
R736	315-0563-00		RES.,FXD, CMPSN:56K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5635
R737	315-0105-00		RES., FXD, CMPSN: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R738	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R739	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R741	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R742	315-0150-00		RES., FXD, CMPSN: 15 OHM, 5\%,0.25W	01121	CB1505
R743	315-0150-00		RES.,FXD, CMPSN: 15 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1505
R744	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R745	315-0821-00		RES., FXD, CMPSN: 820 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8215
R746	315-0220-00		RES.,FXD,CMPSN: 22 OHM, 5\%,0.25W	01121	CB2205
R747	322-0178-00		RES.,FXD,FILM: 698 OHM, 1\%,0.25W	75042	CEBT0-6980F
R748	315-0220-00		RES.,FXD, CMPSN: 22 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2205
R750	311-1192-00		RES., VAR, NONWIR: 10K OHM, $20 \%, 1 \mathrm{~W}, \mathrm{~W} / \mathrm{SW}$ (FURNISHED AS A UNIT WITH S750)	71590	BA-232-001
R752	315-0122-00		RES.,FXD, CMPSN: 1.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
R753	315-0821-00		RES., FXD, CMPSN: 820 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8215
R754	311-1230-00		RES.,VAR,NONWIR:20K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-T04-203
R755	315-0302-00		RES.,FXD, CMPSN: 3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3025
R756	315-0131-00		RES.,FXD, CMPSN: 130 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1315
R758	315-0152-00		RES.,FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
R759	321-0259-00		RES.,FXD,FILM:4.87K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G48700F
R761	315-0682-00		RES., FXD, CMPSN: 6.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6825
R762	315-0392-00		RES.,FXD, CMPSN:3.9K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3925
R763	315-0221-00		RES.,FXD, CMPSN: 220 OHM,5\%,0.25W	01121	CB2215
R764	315-0302-00		RES.,FXD, CMPSN: 3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3025
R765	315-0242-00		RES.,FXD, CMPSN: 2.4 K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB2425
R766	315-0470-00		RES., FXD, CMPSN: 47 OHM , 5\%, 0.25 W	01121	CB4705
R767	311-1230-00		RES.,VAR, NONWIR:20K OHM, 20\%,0.50W	32997	3386F-T04-203
R769	321-0279-00		RES.,FXD,FILM:7.87K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G78700F

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R771	321-0082-00		RES., FXD, FILM: 69.8 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G69R80F
R772	322-0283-00		RES.,FXD,FILM:8.66K ОНM, $1 \%, 0.25 \mathrm{~W}$	91637	MFF1421G86600F
R773	321-0082-00		RES., FXD, FILM: 69.8 ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G69R80F
R774	321-0059-00		RES., FXD, FILM: 40.2 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G40R20F
R775	321-0185-00		RES., FXD, FILM: 825 OHM, 1\%,0.125W	91637	MFF1816G825R0F
R776	321-0047-00		RES.,FXD,FILM:30.1 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30R10F
R777	321-0224-00		RES., FXD, FILM:2.1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G21000F
R778	321-0044-00		RES., FXD, FILM: 28 OHM, 1\%,0.125W	91637	MFF1816G28R00F
R781	321-0082-00		RES., FXD, FILM: 69.8 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G69R80F
R782	322-0283-00		RES.,FXD,FILM:8.66K OHM, $1 \%, 0.25 \mathrm{~W}$	91637	MFF1421G86600F
R783	321-0082-00		RES., FXD,FILM:69.8 ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G69R80F
R784	315-0242-00		RES., FXD, CMPSN:2.4K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB2425
R785	311-1228-00		RES., VAR,NONWIR:10K OHM, 20%,0.50W	32997	3386F-T04-103
R786	321-0044-00		RES.,FXD,FILM: 28 OHM, 1\%,0.125W	91637	MFF1816G28R00F
R787	321-0224-00		RES.,FXD,FILM:2.1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G21000F
R788	315-0472-00		RES.,FXD,CMPSN:4.7K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
R789	315-0221-00		RES., FXD, CMPSN:220 OHM, 5\%,0.25W	01121	CB2215
R792	315-0220-00		RES.,FXD,CMPSN:22 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2205
R793	321-0289-00		RES.,FXD,FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
R794	321-0260-00		RES., FXD,FILM:4.99K ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49900F
R795	321-0225-00		RES., FXD,FILM:2.15K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G21500F
R796	321-0227-00		RES., FXD,FILM:2.26K ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G22600F
R797	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R798	321-0249-00		RES.,FXD,FILM:3.83K ОНМ, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G38300F
R799	315-0102-00		RES.,FXD, CMPSN:1K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R801	315-0332-00		RES., FXD, CMPSN:3.3K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R802	315-0221-00		RES., FXD, CMPSN: 220 OHM, 5\%,0.25W	01121	CB2215
R803	307-0103-00		RES., FXD, CMPSN:2.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB27G5
R804	321-0166-00		RES.,FXD,FILM: 523 OHM, 1\%,0.125W	91637	MFF1816G523R0F
R805	321-0193-00		RES.,FXD,FILM:1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R806	315-0681-00		RES., FXD, CMPSN: 680 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6815
R807	321-0254-00		RES., FXD, FILM:4.32K ОНМ, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G43200F
R808	321-0250-00		RES.,FXD,FILM:3.92K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF 1816G39200F
R809	315-0101-00		RES., FXD, CMPSN: 100 OHM, 5\%,0.25W	01121	CB1015
R810	315-0201-00		RES., FXD, CMPSN: 200 OHM, 5\%,0.25W	01121	CB2015
R811	315-0202-00		RES.,FXD,CMPSN:2K OHM,5\%,0.25W	01121	CB2025
R812	315-0332-00		RES., FXD, CMPSN: 3.3 K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R813	315-0151-00		RES., FXD, CMPSN: 150 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1515
R814	315-0102-00		RES.,FXD, CMPSN:1K OHM,5\%,0.25W	01121	CB1025
R815	321-0232-00		RES.,FXD,FILM:2.55K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G25500F
R816	321-0155-00		RES.,FXD,FILM:402 ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G402R0F
R817	315-0221-00		RES., FXD, CMPSN: 220 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2215
R818	321-0187-00		RES., FXD,FILM: 866 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G866R0F
R819	315-0100-00		RES.,FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R821	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R822	315-0471-00		RES., FXD,CMPSN:470 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4715
R823	315-0331-00		RES., FXD,CMPSN: 330 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3315
R824	315-0220-00		RES.,FXD,CMPSN: 22 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2205
R825	307-0106-00		RES., FXD, CMPSN:4.7 ОHM, 5%, 0.25 W	01121	CB47G5
R826	307-0106-00		RES., FXD, CMPSN:4.7 ОНM, 5%, 0.25 W	01121	CB47G5
R900	321-0225-00		RES., FXD,FILM:2.15K ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G21500F
R901	315-0220-00	XB020839	RES.,FXD, CMPSN: 22 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2205
R902	321-0155-00		RES., FXD,FILM:402 ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G402R0F
R903	315-0221-00		RES.,FXD, CMPSN:220 OHM, 5\%,0.25W	01121	CB2215
R904	321-0168-00		RES., FXD, FILM: 549 OHM, 1%, 0.125 W	91637	MFF1816G549R0F
R 905	307-0106-00		RES., FXD, CMPSN:4.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4765
R906	321-0268-00		RES.,FXD,FILM:6.04K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60400F

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R907	321-0289-00		RES.,FXD, FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
R908	321-0294-00		RES.,FXD,FILM:11.3K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11301F
R910	321-0220-00		RES.,FXD,FILM: 1.91 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G19100F
R911	321-0314-00		RES.,FXD,FILM: 18.2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G18201F
R912	321-0261-00		RES.,FXD,FILM:5.11K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G51100F
R913	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R916	308-0539-00		RES., FXD, WW: 2.25 K OHM, $0.5 \%, 3 \mathrm{~W}$	91637	RS2BK22500D
R917	315-0471-00		RES.,FXD, CMPSN:470 OHM, 5\%,0.25W	01121	CB4715
R918	315-0220-00		RES.,FXD, CMPSN: 22 OHM, 5\%,0.25W	01121	CB2205
R921	315-0182-00		RES.,FXD, CMPSN:1.8K OHM,5\%,0.25W	01121	CB1825
R922	315-0471-00		RES.,FXD,CMPSN:470 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4715
R923	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R924	301-0682-00		RES.,FXD, CMPSN: 6.8 K OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB6825
R925	321-0218-00		RES.,FXD,FILM:1.82K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G18200F
R926	321-0193-00		RES.,FXD,FILM: 1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R927	321-0238-00		RES.,FXD,FILM:2.94K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G29400F
R928	321-0193-00		RES.,FXD,FILM:1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R929	315-0123-00		RES.,FXD, CMPSN: 12K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1235
R930	311-1458-00		RES.,VAR,WW:50K OHM,5\%	73138	7266-322-0
	----------		(SEE DM MANUAL FOR ALTERNATE VERSION)		
R930	311-1709-00		RES., VAR, WW: PNL, 20K OHM, 2W	32997	3541S-1-203
R931	315-0392-00		RES.,FXD, CMPSN:3.9K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3925
R932	315-0102-00		RES.,FXD, CMPSN:1K OHM, 5\%,0.25W	01121	CB1025
R933	321-0338-00		RES.,FXD,FILM: 32.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G32401F
R934	321-0193-00		RES.,FXD,FILM:1K ОНM, 1\%,0.125W	91637	MFF1816G10000F
R935	321-0274-00		RES.,FXD,FILM: 6.98K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G69800F
R936	311-1226-00		RES.,VAR,NONWIR:2.5K OHM, 20\%,0.50W	32997	3386F-T04-252
R937	321-0196-00		RES.,FXD,FILM:1.07K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10700F
R938	311-1225-00		RES., VAR, NONWIR: 1 K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-T04-102
R939	321-0258-00		RES.,FXD,FILM:4.75K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G47500F
R940	315-0153-00		RES.,FXD, CMPSN: 15 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
R941	321-0193-00		RES.,FXD,FILM:1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R942	321-0145-00		RES.,FXD,FILM:316 OHM, 1\%,0.125W	91637	MFF1816G316R0F
R943	321-0152-00		RES.,FXD, FILM:374 OHM, 1\%,0.125W	91637	MFF1816G374R0F
R944	321-0231-00		RES.,FXD,FILM: 2.49 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G24900F
R946	321-0216-00		RES.,FXD,FILM: 1.74 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G17400F
R947	315-0220-00		RES., FXD, CMPSN: 22 OHM, 5\%, 0.25W	01121	CB2205
R948	321-0239-00		RES.,FXD,FILM:3.01K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30100F
R949	321-0260-00		RES.,FXD,FILM:4.99K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49900F
R950	311-1222-00		RES.,VAR, NONWIR : 100 OHM, 20\%,0.50W	32997	3386F-T04-101
R951	321-0183-00		RES.,FXD,FILM:787 OHM, 1\%,0.125W	91637	MFF1816G787R0F
R952	321-0198-00		RES.,FXD,FILM:1.13K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11300F
R955	315-0272-00		RES.,FXD, CMPSN:2.7K OHM, 5\%,0.25W	01121	CB2725
R956	315-0103-00		RES.,FXD, CMPSN:10K OHM , 5\%,0.25W	01121	CB1035
R961	315-0100-00		RES., FXD, CMPSN: 10 OHM, 5\%, 0.25 W	01121	CB1005
R963	315-0100-00		RES., FXD, CMPSN: 10 OHM , 5\%, 0.25 W	01121	CB1005
R965	315-0100-00		RES., FXD, CMPSN:10 OHM, 5\%, 0.25 W	01121	CB1005
R967	307-0106-00		RES.,FXD, CMPSN:4.7 OHM , 5\%,0.25W	01121	CB47G5
R969	307-0106-00		RES., FXD, CMPSN:4.7 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB47G5
R971	315-0472-00		RES.,FXD, CMPSN:4.7K OHM, 5\%,0.25W	01121	CB4725
R972	321-0287-00		RES.,FXD,FILM:9.53K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G95300F
R973	321-0155-00		RES.,FXD,FILM:402 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G402R0F
R974	321-0268-00		RES.,FXD,FILM:6.04K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60400F
R975	321-0354-00		RES.,FXD,FILM:47.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G47501F
R976	315-0562-00		RES., FXD, CMPSN:5.6K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5625
R981	315-0182-00		RES.,FXD, CMPSN:1.8K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R982	315-0101-00		RES.,FXD,CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R985	301-0622-00		RES.,FXD, CMPSN: 6.2 K OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB6225
R986	315-0103-00		RES.,FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R987	315-0332-00		RES., FXD, CMPSN:3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R988	315-0680-00		RES., FXD, CMPSN: 68 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6805
R994	321-0225-00		RES.,FXD,FILM:2.15K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G21500F
R995	321-0155-00		RES.,FXD,FILM:402 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G402R0F
R996	315-0221-00		RES.,FXD,CMPSN:220 OHM,5\%,0.25W	01121	CB2215
R1001	315-0392-00		RES.,FXD,CMPSN:3.9K OHM,5\%,0.25W	01121	CB3925
R1002	315-0332-00		RES.,FXD, CMPSN:3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R1004	321-0268-00		RES.,FXD,FILM: 6.04 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60400F
R1005	321-0354-00		RES.,FXD,FILM:47.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G47501F
R1006	321-0287-00		RES.,FXD,FILM:9.53K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G95300F
R1007	315-0220-00		RES.,FXD, CMPSN: 22 OHM, 5\%,0.25W	01121	CB2205
R1010	321-0414-00		RES.,FXD,FILM:200K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20002F
R1011	315-0182-00		RES.,FXD, CMPSN:1.8K OHM, 5\%,0.25W	01121	CB1825
R1012	SELECTED		(ADDED IF NECESSARY)		
R1015	301-0682-00		RES., FXD, CMPSN:6.8K OHM,5\%,0.50W	01121	EB6825
R1016	315-0103-00		RES.,FXD, CMPSN: 10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R1017	315-0332-00		RES.,FXD, CMPSN:3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R1018	315-0330-00		RES., FXD, CMPSN: 33 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3305
R1022	315-0153-00		RES.,FXD,CMPSN:15K OHM,5\%,0.25W	01121	CB1535
R1023	321-0185-00		RES.,FXD,FILM:825 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G825R0F
R1024	321-0197-00		RES.,FXD,FILM:1.1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11000F
R1028	315-0103-00		RES.,FXD, CMPSN: 10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R1029	315-0272-00		RES., FXD, CMPSN:2.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2725
R1031	321-0193-00		RES.,FXD,FILM:1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R1032	321-0145-00		RES.,FXD,FILM:316 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G316R0F
R1033	321-0149-00		RES.,FXD,FILM:348 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G348R0F
R1036	321-0222-00		RES.,FXD,FILM: 2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
R1042	321-0208-00		RES.,FXD,FILM: 1.43 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G14300F
R1045	315-0220-00		RES., FXD, CMPSN: 22 OHM, 5\%, 0.25W	01121	CB2205
R1046	321-0239-00		RES.,FXD,FILM:3.01K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30100F
R1047	321-0260-00		RES.,FXD,FILM:4.99K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49900F
R1049	315-0102-00		RES.,FXD,CMPSN:1K OHM,5\%,0.25W	01121	CB1025
R1050	315-0220-00		RES.,FXD, CMPSN: 22 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2205
R1051	315-0101-00		RES.,FXD, CMPSN: 100 OHM,5\%,0.25W	01121	CB1015
R1052	315-0563-00		RES.,FXD,CMPSN:56K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5635
R1053	315-0432-00		RES.,FXD, CMPSN:4.3K OHM,5\%,0.25W	01121	CB4325
R1056	321-0352-00		RES.,FXD,FILM:45.3K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G45301F
R1057	315-0204-00		RES.,FXD, CMPSN:200K OHM,5\%,0.25W	01121	CB2045
R1058	315-0105-00		RES.,FXD, CMPSN:1M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R1059	315-0103-00		RES.,FXD, CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R1060	315-0561-00		RES., FXD, CMPSN: 560 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5615
R1061	315-0102-00		RES.,FXD,CMPSN:1K OHM, 5\%,0.25W	01121	CB1025
R1062	315-0472-00		RES., FXD, CMPSN:4.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
R1064	315-0472-00		RES.,FXD, CMPSN:4.7K OHM,5\%,0.25W	01121	CB4725
R1066	315-0432-00		RES.,FXD, CMPSN:4.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4325
R1067	315-0133-00		RES.,FXD,CMPSN: 13 K OHM,5\%,0.25W	01121	CB1335
R1070	311-1702-00		RES.,VAR,NONWIR:20K OHM, 20\%,1W (FURNISHED AS A UNIT WITH S1070A, B)	01121	13M214
R1071	321-0472-04		RES.,FXD,FILM:806K OHM, 0.1\%,0.125W	91637	HFF188D80602B
R1072	321-0481-04		RES.,FXD,FILM:1M OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	HFF1816D10003B
R1073	321-0976-04		RES.,FXD,FILM:602 OHM, 0.1\%,0.125W	91637	HFF188D60202B
R1074	321-0431-04		RES.,FXD, FILM: 301 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D30102B
R1075	311-1246-00		RES.,VAR,NONWIR:50K OHM, $10 \%, 0.50 \mathrm{~W}$	02111	63X-503-T602
R1076	321-0973-04		RES.,FXD,FILM: 60.2 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D60201B
R1077	321-0977-04		RES.,FXD,FILM:120.4K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D12042B

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R1078	321-0973-04		RES.,FXD,FILM: 60.2 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D60201B
R1079	321-0973-04		RES.,FXD,FILM: 60.2 K OHM,0.1\%,0.125W	91637	MFF1816D60201B
R1081	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R1082	321-0973-04		RES.,FXD, FILM: 60.2 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D60201B
R1083	321-0472-04		RES.,FXD,FILM:806K OHM,0.1\%,0.125W	91637	HFF188D80602B
R1084	321-0481-04		RES.,FXD,FILM: 1 M (OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	HFF1816D10003B
R1085	321-0976-04		RES., FXD,FILM: 602 OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	HFF188D60202B
R1086	321-0431-04		RES.,FXD,FILM: 301 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D30102B
R1087	321-0975-04		RES.,FXD, FILM: 180.6 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D18062B
R1088	321-0973-04		RES.,FXD,FILM: 60.2 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D60201B
R1089	321-0973-04		RES.,FXD,FILM: 60.2 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D60201B
R1090	315-0472-00		RES.,FXD, CMPSN:4.7K OHM,5\%,0.25W	01121	CB4725
R1091	315-0105-00		RES., FXD, CMPSN: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R1092	315-0154-00		RES.,FXD, CMPSN:150K OHM,5\%,0.25W	01121	CB1545
R1093	315-0101-00		RES.,FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R1094	321-0164-00		RES.,FXD,FILM:499 OHM, 1\%,0.125W	91637	MFF1816G499R0F
R1095	321-0274-00		RES.,FXD,FILM:6.98K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G69800F
R1096	315-0220-00		RES.,FXD,CMPSN: 22 OHM, 5\%,0.25W	01121	CB2205
R1098	315-0511-00		RES., FXD , CMPSN: 510 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5115
R1099	315-0242-00		RES.,FXD,CMPSN:2.4K OHM,5\%,0.25W	01121	CB2425
R1101	321-0068-00		RES.,FXD,FILM:49.9 OHM, 1\%,0.125W	91637	MFF1816G49R90F
R1102	311-1223-00		RES., VAR, NONWIR:TRMR, 250 OHM, 0.5 W	02111	63M251T602
R1103	315-0272-00		RES.,FXD, CMPSN:2.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2725
R1104	315-0103-00		RES.,FXD, CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R1105	315-0510-00		RES.,FXD, CMPSN: 51 OHM, 5\%, 0.25W	01121	CB5105
R1106	321-0118-04		RES.,FXD,FILM: 165 OHM,0.1\%,0.125W	91637	MFF1816D165R0B
R1107	321-0738-04		RES.,FXD,FILM:1.485K OHM,0.1\%,0.125W	91637	MFF1816D14850B
R1108	321-0118-04		RES.,FXD,FILM: 165 OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816D165R0B
R1109	315-0154-00		RES.,FXD, CMPSN:150K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1545
R1110	315-0105-00		RES., FXD, CMPSN: 1 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
R1111	315-0201-00		RES., FXD, CMPSN: 200 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2015
R1112A	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R1112B	321-0212-00		RES.,FXD, FILM: 1.58 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15800F
R1113A	315-0100-00		RES., FXD, CMPSN: 10 OHM, 5\%, 0.25W	01121	CB1005
R1113B	321-0300-00		RES.,FXD,FILM:13K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G13001F
R1114	321-0126-00		RES.,FXD,FILM: 200 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G200R0F
R1116	315-0182-00		RES.,FXD, CMPSN:1.8K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R1117	315-0303-00		RES., FXD, CMPSN:30K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB3035
R1118	315-0151-00		RES.,FXD, CMPSN: 150 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1515
R1119A, B	311-1411-00		RES.,VAR, NONWIR: 1 K OHM X 10 K OHM, $20 \%, 0.50 \mathrm{~W}$	01121	10M924
R1120	315-0433-00		RES., FXD, CMPSN: 43 K OHM, $5 \%, 0.25 \mathrm{~W}$ (ADDED IF NECESSARY)	01121	CB4335
R1124	315-0361-00		RES., FXD, CMPSN: 360 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3615
R1125	321-0134-00		RES.,FXD,FILM: 243 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G243R0F
R1126	321-0108-00		RES.,FXD,FILM:130 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G130R0F
R1128	321-0045-00		RES.,FXD, FILM: 28.7 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G28R70F
R1130	311-1230-00		RES.,VAR,NONWIR:20K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-T04-203
R1131	315-0273-00		RES.,FXD, CMPSN: 27 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2735
R1132	315-0151-00		RES., FXD, CMPSN: 150 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1515
R1133	321-0193-07	B010100 B011629	RES., FXD,FILM:1K OHM, $0.1 \%, 0.125 \mathrm{~W}$ (SEE DM MANUAL FOR ALTERNATE VERSION)	91637	MFF1816C10000B
R1133	321-0928-07	B011630	RES., FXD,FILM: 250 OHM, $0.1 \%, 0.125 \mathrm{~W}$ (SEE DM MANUAL FOR ALTERNATE VERSION)	91637	MFF1816C250R0B
R1134	315-0431-00		RES.,FXD, CMPSN:430 OHM, 5\%,0.25W	01121	CB4315
R1135	321-0134-00		RES.,FXD,FILM: 243 OHM, 1\%,0.125W	91637	MFF1816G243R0F
R1136	321-0222-07	B010100 B011629	RES.,FXD,FILM:2K OHM, $0.1 \%, 0.125 \mathrm{~W}$ (SEE DM MNAUAL FOR ALTERNATE VERSION)	91637	MFF1816C20000B

Ckt No.	Tektronix Part No.	Serial/Model No.		Name \& Description	Mfr Code	Mfr Part Number
		Eff	Dscont			
R1136	321-0612-07	B011630		RES.,FXD,FILM: 500 OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816C500R0B
R1137	321-0193-07			(SEE DM MANUAL FOR ALTERNATE VERSION) RES. FXD, FILM: 1 K OHM, $0.1 \%, 0.125 \mathrm{~W}$		
R1137	321-0193-07		B011629	RES., FXD, FILM: 1 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816C10000B
R1137	321-0928-07	B011630		RES.,FXD,FILM: 250 OHM, $0.1 \%, 0.125 \mathrm{~W}$ (SEE DM MANUAL FOR ALTERNATE VERSION)	91637	MFF1816C250ROB
R1138	321-0045-00			RES.,FXD,FILM:28.7 OHM, 1\%,0.125W	91637	MFF1816G28R70F
R1140	321-0097-00			RES., FXD, FILM:100 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G100R0F
R1141	321-0193-00	B010100	B014658	RES.,FXD,FILM:1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R1141	321-0201-00	B014659		RES., FXD,FILM:1.21K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12100F
R1142	321-0164-00			RES.,FXD, FILM:499 OHM, 1\%,0.125W	91637	MFF1816G499R0F
R1152	315-0121-00			RES., FXD, CMPSN: 120 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1215
R1153	321-0147-00			RES. , FXD, FILM:332 OHM, 1\%,0.125W	91637	MFF1816G332R0F
R1154	321-0106-00			RES.,FXD,FILM:124 OHM, 1\%,0.125W	91637	MFF1816G124R0F
R1155	311-1258-00			RES.,VAR,NONWIR:50 ОHM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-500
R1156	321-0159-00			RES.,FXD,FILM:442 ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G442R0F
R1159	321-0159-00			RES.,FXD,FILM:442 OHM, 1\%,0.125W	91637	MFF1816G442R0F
R1162	315-0121-00			RES., FXD, CMPSN: 120 OHM, 5\%,0.25W	01121	CB1215
R1163	321-0147-00			RES.,FXD, FILM:332 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G332R0F
R1164	315-0223-00			RES.,FXD,CMPSN:22K ОHM,5\%,0.25W	01121	CB2235
R1165	321-0193-00			RES.,FXD,FILM:1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R1166	315-0513-00			RES.,FXD,CMPSN:51K OHM,5\%,0.25W	01121	CB5135
R1167	321-0193-00			RES.,FXD,FILM:1K OHM, 1\%,0.125W	91637	MFF1816G10000F
R1168	315-0102-00			RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1169	315-0161-00			RES.,FXD, CMPSN: 160 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1615
R1172	321-0157-00			RES., FXD, FILM:422 ОНM, 1\%,0.125W	91637	MFF1816G422R0F
R1173	321-0157-00			RES.,FXD,FILM:422 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G422R0F
R1174	315-0751-00			RES.,FXD, CMPSN:750 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB7515
R1175	311-1258-00			RES.,VAR, NONWIR:50 OHM, 10\%,0.50W	32997	3329P-L58-500
R1182	321-0145-00			RES.,FXD, FILM:316 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G316R0F
R1183	321-0131-00			RES.,FXD,FILM:226 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G226R0F
R1184	315-0751-00			RES.,FXD, CMPSN: 750 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB7515
R1185	311-1258-00			RES.,VAR, NONWIR:50 ОНM, $10 \%, 0.50 \mathrm{~W}$	32997	3329P-L58-500
R1186	321-0182-00			RES.,FXD,FILM: 768 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G768R0F
R1187	321-0162-00			RES., FXD, FILM: 475 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G475R0F
R1188	321-0114-00			RES.,FXD,FILM: 150 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G150R0F
R1189	315-0102-00			RES.,FXD, CMPSN:1K OHM,5\%,0.25W	01121	CB1025
R1201	315-0102-00			RES.,FXD,CMPSN:1K OHM,5\%,0.25W	01121	CB1025
R1202	321-0218-00			RES.,FXD,FILM:1.82K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G18200F
R1203	321-0234-00			RES., FXD, FILM:2.67K OHM, 1\%,0.125W	91637	MFF1816G26700F
R1204	321-0213-00			RES., FXD, FILM:1.62K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G16200F
R1209	321-0121-00			RES., FXD, FILM: 178 OHM, 1\%,0.125W	91637	MFF1816G178R0F
R1211	315-0102-00			RES.,FXD,CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1212	321-0218-00			RES., FXD, FILM: 1.82 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G18200F
R1216	321-0153-00			RES., FXD, FILM: 383 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G383R0F
R1232	317-0621-00			RES.,FXD, CMPSN:620 ОНM, $5 \%, 0.125 \mathrm{~W}$	01121	BB6215
R1233	321-0260-00			RES., FXD, FILM:4.99K OHM, 1\%,0.125W	91637	MFF1816G49900F
R1234	315-0100-00			RES.,FXD,CMPSN: 10 OHM,5\%,0.25W	01121	CB1005
R1235	321-0385-00			RES.,FXD,FILM:100K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10002F
R1237	321-0193-00			RES.,FXD,FILM: 1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
R1239	321-0365-00			RES., FXD, FILM:61.9K OHM, 1\%,0.125W	91637	MFF1816G61901F
R1252	317-0621-00			RES.,FXD, CMPSN: 620 OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB6215
R1253	321-0260-00			RES.,FXD,FILM:4.99K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49900F
R1254	315-0100-00			RES.,FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R1255	321-0385-00			RES.,FXD,FILM:100K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10002F
R1256	311-1230-00			RES.,VAR,NONWIR:20K OHM, 20\%,0.50W	32997	3386F-T04-203
R1257	321-0385-00			RES.,FXD,FILM:100K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10002F

Ckt No.	Tektronix Part No.	Serial/Model No.		Name \& Description	Mfr Code	Mfr Part Number
		Eff	Dscont			
R1258	321-0202-00			RES., FXD, FILM: 1.24 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12400F
R1259	321-0287-00			RES.,FXD,FILM:9.53K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G95300F
R1267	315-0101-00			RES., FXD, CMPSN: 100 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R1268	315-0473-00			RES., FXD, CMPSN:47K OHM,5\%,0.25W	01121	CB4735
R1302	315-0203-00			RES., FXD, CMPSN:20K OHM,5\%,0.25W	01121	CB2035
R1303A						
R1303B $\}$						
$\begin{aligned} & \text { R1303C } \\ & \text { R1303D } \end{aligned}$	307-0290-03			RES.,FXD,FILM:500K OHM	80009	307-0290-03
R1304	31.5-0244-00			RES.,FXD,CMPSN:240K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2445
RY305	315-0822-00			RES.,FXD, CMPSN:8.2K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8225
R1306	315-0123-00			RES., FXD, CMPSN: 12 K OHM,5\%,0.25W	01121	CB1235
R1307	31.5-0683-00			RES., FXD, CMPSN:68K OHM,5\%,0.25W	01121	CB6835
R1308	31.5-0102-00			RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1310	31.5-0392-00			RES.,FXD, CMPSN:3.9K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3925
R1312	31.5-0242-00			RES.,FXD, CMPSN:2.4K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2425
R1313	321-0327-00			RES.,FXD,FILM:24.9K ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G24901F
R1314	31.5-0103-00			RES., FXD, CMPSN: 10 K OHM,5\%,0.25W	01121	CB1035
R1315	31.5-0473-00			RES., FXD, CMPSN:47K онM,5\%,0.25W	01121	CB4735
R1316	315-0472-00			RES., FXD, CMPSN: 4.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
R1317	321-0329-00			RES.,FXD,FILM:26.1K ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G26101F
R1322	31.5-0103-00			RES., FXD,CMPSN:10K ОНM,5\%,0.25W	01121	CB1035
R1326	31.5-0394-00			RES.,FXD,CMPSN:390K ОНМ, $5 \%, 0.25 \mathrm{~W}$	01121	CB3945
R1328	321-0157-00			RES., FXD, FILM:422 ОHM, 1\%,0.125W	91637	MFF1816G422R0F
R1329	31.5-0106-00			RES., FXD, CMPSN: 10 M OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB1065
R1330	31.5-0182-00			RES.,FXD, CMPSN:1.8K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
R1331	301-0153-00			RES., FXD, CMPSN: 15 K О $\mathrm{HM}, 5 \%, 0.50 \mathrm{~W}$	01121	Eb1535
R1333	315-0221-00			RES., FXD, CMPSN: 220 OHM,5\%,0.25W	01121	CB2215
R1335A, B	311-1533-00			RES.,VAR, NONWIR:5K ОHM X 2.5M ОHM, 10%	32997	81C2D-E20-BA0002
R1336	321-0206-00			RES.,FXD,FILM:1.37K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G13700F
R1337	321-0206-00			RES.,FXD,FILM: 1.37 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G13700F
R1339	321-0174-00			RES.,FXD,FILM: 634 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G634R0F
R1340	321-0120-00			RES.,FXD, FILM:174 ОHM, 1\%,0.125W	91637	MFF1816G174R0F
R1341	322-0197-00			RES.,FXD,FILM:1.1K OHM, $1 \%, 0.25 \mathrm{~W}$	91637	MFF1421G11000F
R1342	3115-0331-00			RES., FXD, CMPSN:330 ОHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3315
R1343	321-0322-00			RES.,FXD,FILM:22.1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G22101F
R1344	315-0102-00			RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1345	315-0201-00			RES.,FXD,CMPSN:200 OHM,5\%,0.25W	01121	CB2015
R1346	315-0682-00			RES.,FXD, CMPSN:6.8K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6825
R1352	315-0911-00	B010100	B015902X	RES.,FXD,CMPSN:910 OHM,5\%,0.25W	01121	CB9115
R1354	301-0752-00			RES.,FXD,CMPSN:7.5K ОНM, $5 \%, 0.50 \mathrm{~W}$	01121	EB7525
R1355	302-0273-00			RES.,FXD, CMPSN:27K OHM, 10\%,0.50W	01121	EB2731
R1356	301-0752-00			RES.,FXD, CMPSN:7.5K OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB7525
R1358	315-0241-00			RES.,FXD,CMPSN:240 OHM,5\%,0.25W	01121	CB2415
R1362	315-0332-00			RES.,FXD, CMPSN:3.3K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R1363	315-0332-00			RES.,FXD, CMPSN:3.3K ОHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
R1364	315-0470-00			RES., FXD, CMPSN:47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R1368	315-0271-00			RES., FXD,CMPSN: 270 OHM, 5\%,0.25W	01121	CB2715
R1369	323-0307-00			RES.,FXD,FILM: 15.4 K OHM, $1 \%, 0.50 \mathrm{~W}$	75042	CECT0-1542F
R1371	315-0102-00			RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1372	315-0102-00			RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1373	315-0102-00			RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1375	311-1231-00			RES., VAR,NONWIR: 25 K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-T04-253
R1376	315-0103-00			RES., FXD, CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
R1378	315-0226-00			RES.,FXD, CMPSN: 22 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2265
R1379	315-0103-00			RES.,FXD,CMPSN:10K OHM,5\%,0.25W	01121	CB1035
R1380	311-0075-00			RES., VAR,NONWIR:5M ОHM, 20\%	12697	381-CM16993

Ckt No.	Tektronix Part No.	Serial/Model No.	Name \& Description	Mfr Code	Mfr Part Number
R1384	302-0121-00		RES., FXD, CMPSN: 120 ОНM, $10 \%, 0.50 \mathrm{~W}$	01121	EB1211
R1385	311-1227-00		RES.,VAR,NONWIR:5K OHM, 20\%,0.50W	32997	3386F-T04-502
R1386	311-1373-00		RES.,VAR,NONWIR:5K OHM, 20\%,1W	01121	73U4G040L502M
R1390	311-1235-00		RES.,VAR,NONWIR:100K OHM, 20\%,0.50W	32997	3386F-T04-104
R1391	315-0470-00		RES., FXD, CMPSN: 47 О $\mathrm{OMM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R1393	321-0231-00		RES.,FXD,FILM:2.49K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G24900F
R1394	321-0248-00		RES.,FXD, FILM:3.74K ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G37400F
R1395	311-1226-00		RES., VAR, NONWIR:2.5K OHM, 20\%,0.50W	32997	3386F-T04-252
R1396	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
R1397	311-1372-00		RES., VAR,NONWIR:100K OHM,20\%,1W	01121	73M1G040L104M
R1398	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
R1399	315-0470-00		RES., FXD,CMPSN:47 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4705
R1416	323-0265-00		RES., FXD, FILM:5.62K ОНM, $1 \%, 0.50 \mathrm{~W}$	75042	CECTO-5621F
R1417	321-0282-00		RES.,FXD,FILM:8.45K ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G84500F
R1418	315-0181-00		RES.,FXD, CMPSN: 180 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1815
R1422	315-0682-00		RES., FXD, CMPSN: 6.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6825
R1423	303-0822-00		RES.,FXD,CMPSN:8.2K ОНM, 5%,1W	01121	GB8225
R1424	315-0122-00		RES.,FXD,CMPSN:1.2K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
R1425	315-0563-00		RES.,FXD,CMPSN:56K ОHM,5\%,0.25W	01121	CB5635
R1426	307-0052-00		RES.,FXD,CMPSN: 3 OHM, $5 \%, 0.50 \mathrm{~W}$	01121	Eb30G5
R1430	311-1226-00		RES.,VAR, NONWIR:2.5K OHM, 20\%,0.50W	32997	3386F-T04-252
R1431	321-0351-00		RES.,FXD,FILM:44.2K ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G44201F
R1432	321-0284-00		RES.,FXD,FILM: 8.87 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G88700F
R1444	321-0761-03		RES.,FXD,FILM:35K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D35001C
R1445	321-0684-00		RES.,FXD,FILM: 15 K OHM, $0.5 \%, 0.125 \mathrm{~W}$	91637	MFF1816D15001D
R1446	315-0471-00		RES., FXD, CMPSN:470 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4715
R1447	315-0622-00		RES.,FXD, CMPSN: 6.2 K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6225
R1448	308-0245-00		RES., FXD,WW:0.6 ОHM, 5%, 2 W	91637	CW2B30 0.60HM 5\%
R1454	321-0775-03		RES.,FXD,FILM:45K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D45001C
R1455	321-0816-03		RES.,FXD,FILM:5K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D50000C
R1456	315-0331-00		RES.,FXD,CMPSN:330 ОHM,5\%,0.25W	01121	CB3315
R1457	315-0302-00		RES., FXD, CMPSN: 3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3025
R1458	308-0245-00		RES., FXD, WW:0.6 ОНM, 5%, 2 W	91637	CW2B30 0.60HM 5\%
R1463	321-0273-00		RES.,FXD,FILM:6.81K ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G68100F
R1464	321-0756-03		RES.,FXD,FILM:50K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D50001C
R1465	321-0962-03		RES.,FXD,FILM:8K ОНM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D80000C
R1466	315-0561-00		RES., FXD, CMPSN: 560 OHM, 5\%,0.25W	01121	CB5615
R1467	315-0432-00		RES., FXD, CMPSN:4.3K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4325
R1468	308-0245-00		RES., FXD, WW:0.6 OHM, $5 \%, 2 \mathrm{~W}$	91637	CW2B30 0.60HM 5\%
R1473	321-0287-00		RES.,FXD,FILM:9.53K ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G95300F
R1474	321-0756-03		RES.,FXD,FILM:50K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D50001C
R1475	321-0684-00		RES.,FXD,FILM:15K OHM, $0.5 \%, 0.125 \mathrm{~W}$	91637	MFF1816D15001D
R1476	315-0331-00		RES.,FXD, CMPSN: 330 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3315
R1477	315-0472-00		RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W	01121	CB4725
R1478	307-0052-00		RES., FXD, CMPSN: 3 ОHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB30G5
R1480	311-1373-00		RES.,VAR,NONWIR:5K ОНM, 20\%,1W	01121	73U4G040L502M
R1481	315-0302-00		RES.,FXD, CMPSN:3K OHM,5\%,0.25W	01121	CB3025
R1483	315-0472-00		RES.,FXD,CMPSN:4.7K OHM,5\%,0.25W	01121	CB4725
R1484	315-0203-00		RES.,FXD,CMPSN:20K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2035
R1485	315-0273-00		RES.,FXD, CMPSN: 27 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2735
R1486	321-0364-00		RES., FXD, FILM: 60.4 K О $\mathrm{HM}, 1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G60401F
R1487	321-0356-00		RES., FXD, FILM:49.9K OHM, 1%,0.125W	91637	MFF1816G49901F
R1488	308-0127-00		RES., FXD, WW: 2.5 K OHM, 5%, 5 W	91637	CW5-25000J
R1489	315-0180-00		RES.,FXD, CMPSN: 18 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1805
R1493	315-0104-00		RES.,FXD,CMPSN: 100 K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
R1494	315-0104-00		RES.,FXD,CMPSN: 100 K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
R1495	315-0221-00		RES., FXD, CMPSN:220 OHM, 5\%,0.25W	01121	CB2215

Ckt No.	Tektronix Part No.	Serial/Mod Eff	No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
R1496	321-0357-00			RES.,FXD,FILM:51.1K ОHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G51101F
R1497	321-0280-00			RES.,FXD,FILM:8.06K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G80500F
R1498	315-0153-00			RES., FXD,CMPSN:15K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
R1499	315-0102-00			RES.,FXD,CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1501	315-0912-00			RES.,FXD, CMPSN:9.1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB9125
R1502	315-0433-00			RES., FXD, CMPSN:43K OHM,5\%,0.25W	01121	CB4335
R1503	315-0822-00			RES.,FXD, CMPSN: 8.2 K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8225
R1504	315-0473-00			RES., FXD, CMPSN:47K OHM,5\%,0.25W	01121	CB4735
R1506	315-0512-00			RES.,FXD, CMPSN:5.1K ОНМ, $5 \%, 0.25 \mathrm{~W}$	01121	CB5125
R1515	311-1221-00			RES.,VAR,NONWIR:50 ОHM, 20\%,0.50W	32997	3386F-T04-500
R1516	321-0107-00			RES., FXD, FILM: 127 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G127R0F
R1517	321-0001-00			RES., FXD, FILM: 10 OHM, $1 \%, 0.125 \mathrm{~W}$	75042	CEAT0-10R00F
R1691	303-0150-00	B010100	B016199X	RES., FXD, CMPSN: 15 OHM, 5%, 1W	01121	GB1505
R1692	321-0062-00	B010100	B016199X	.RES.,FXD,FILM:43.2 ОНM, $1 \%, 0.125 \mathrm{~W}$	91637	CMF55-116G43R20F
R1693	323-0140-00	B010100	B016199X	RES., FXD, FILM: 280 OHM, $1 \%, 0.50 \mathrm{~W}$	75042	CECT0-2800F
R1694	323-0140-00	B010100	B016199X	RES., FXD,FILM:280 ОHM, 1\%,0.50W	75042	CECT0-2800F
R1695	321-0228-00	B010100	B016199X	RES.,FXD,FILM:2.32K OHM, 1\%,0.125W	91637	MFF1816G23200F
R1697	321-0201-00	B010100	B016199X	RES.,FXD,FILM:1.21K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12100F
R1698	315-0363-00	B010100	B016199X	RES.,FXD,CMPSN:36K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3635
R8033	321-0228-00	xB016200		RES.,FXD,FILM:2.32K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G23200F
R8035	321-0201-00	xB016200		RES.,FXD,FILM:1.21K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12100F
R8036	315-0363-00	XB016200		RES.,FXD,CMPSN:36K OHM,5\%,0.25W	01121	CB3635
R8054	323-0140-00	XB016200		RES., FXD, FILM: 280 OHM, $1 \%, 0.50 \mathrm{~W}$	75042	CECT0-2800F
R8056	323-0140-00	XB016200		RES., FXD, FILM: 280 OHM $, 1 \%, 0.50 \mathrm{~W}$	75042	СЕСТ0-2800F
R8058	303-0150-00	xB016200		RES., FXD,CMPSN: 15 ОНM,5\%,1W	01121	GB1505
R8065	321-0062-00	XB016200		RES., FXD, FILM:43.2 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	CMF55-116G43R20F
RT170	307-0181-00			RES., THERMAL: 100 K OHM, $10 \%, 4 \mathrm{MW} / \mathrm{DEG}$ C	15454	1DE104-K-220EC
RT270	307-0181-00			RES., THERMAL: $100 \mathrm{~K} 0 \mathrm{OM}, 10 \%, 4 \mathrm{MW} / \mathrm{DEG}$ C	15454	1DE104-K-220EC
RT452	307-0125-00			RES.,THERMAL:500 OHM, 10\%,25 DEG C	50157	2D1595
RT559	307-0124-00			RES., THERMAL:5K OHM, 10\%	50157	1D1618
RT759	307-0124-00			RES.,THERMAL:5K OHM, 10\%	50157	1D1618
RT1103	307-0125-00			RES., THERMAL: 500 OHM, 10\%, 25 DEG C	50157	2D1595
RT1696	307-0124-00	B010100	B016199x	RES.,THERMAL:5K OHM, 10%	50157	1 D1618
RT8038	307-0124-00	xB016200		RES.,THERMAL:5K OHM, 10\%	50157	1 D1618
S20A(2)	105-0282-01			ACTUATOR, CAM SW:DC, GND, AC	80009	105-0282-01
S20B(2)	105-0343-01			ACTUATOR, CAM SW:ATTEN	80009	105-0343-01
S128				(FURNISHED AS A UNIT WITH RI28)		
S225	260-1208-00			SWITCH, PUSH: DPDT, 28VDC, PUSH-PUSH	80009	260-1208-00
S228				(FURNISHED AS A UNIT WITH R228)		
S300	260-1424-00			SWITCH, PUSH: 5 STA, INTERLOCK, NON-SHORT	80009	260-1424-00
S375A	263-1019-00			SW Cam actr as:VOlts/div	80009	263-1019-00
S375B, C	105-0421-00			ACTUATOR, SWITCH:MOMENTARY	80009	105-0421-00
S450A, B	260-1310-01			SWITCH, PUSH:4PDT MOMENTARY, NON-SHORTING	80009	260-1310-01
S505	105-0400-00			ACTUATOR, SWITCH: A SOURCE	80009	105-0400-00
S508	105-0399-00			ACTUATOR, SWITCH: COUPLING	80009	105-0399-00
S530	----- -----			(FURNISHED AS A UNIT WITH R530)		
S600	260-1422-00			SWITCH, PUSH: 3 STA, INTERLOCK	80009	260-1422-00
S644	----------			(FURNISHED AS A UNIT WITH R644)		
S705	105-0401-00			ACTUATOR,SWITCH: B SOURCE	80009	105-0401-00
S708	105-0399-00			ACTUATOR, SWITCH: COUPLING	80009	105-0399-00
S750	----- -----			(FURNISHED AS A UNIT WITH R750)		
S1050	263-1091-00	B010100	B012224	SW CAM ACTR AS:TIME/CM	80009	263-1091-00
S1050	263-1091-01	B012225		SW CAM ACTR AS:TIME/CM	80009	263-1091-01
S1070A, B				(FURNISHED AS A UNIT WITH R1070)		
S1090	260-1423-00			SWITCH, PUSH:4 STA, INTERLOCK, NON-SHORT	80009	260-1423-00
S1099	260-1309-00			SWITCH, SENS: SPDT, 5A, 250AC	01963	E63-10H

Ckt No．	Tektronix Part No．	Serial／Mod Eff	No． Dscont	Name \＆Description	Mfr Code	Mfr Part Number
Sll10A，B	260－1209－00			SWITCH，PUSH：4PDT，1A，25VDC	80009	260－1209－00
S1401	260－0834－00			SWITCH，TOGGLE：DPDT，5A，125VAC，0．25－40 THD	09353	U21－SHZQE
S1402	260－0638－00	B010100	B023829	SW，THERMOSTATIC： $10 \mathrm{~A}, 240 \mathrm{~V}$, OPEN 75 DEG C	93410	430－364
S1402	260－0724－00	B023830		SWITCH，THRMSTC：NC，OPEN 83．3，CL 66．7，10V	93410	430－367
S1403	260－1300－01			SWITCH，SLIDE：DPDT，3A，125V	82389	46206LFE
T178	120－0469－00			XFMR，TOROID： 3 TURNS BIFILAR	80009	120－0469－00
T278	120－0469－00			XFMR，TOROID： 3 TURNS BIFILAR	80009	120－0469－00
T1320	120－0815－01			XFMR，PWR，SDN\＆SU：HV（MOLDED）	80009	120－0815－01
T1400	120－0799－01			XFMR，PWR，STPDN：LV	80009	120－0799－01
U120	155－0085－01			MICROCIRCUIT，LI：HYB，DUAL FET INPUT／AMPL，SEL	80009	155－0085－01
U140	155－0078－03	B010100	B013449	MICROCIRCUIT，LI：ML，VERTICAL AMPL，SEL	80009	155－0078－03
U140	155－0078－10	B013450		MICROCIRCUIT，LI：ML，VERTICAL AMPLIFIER	80009	155－0078－10
U220	155－0085－01			MICROCIRCUIT，LI：HYB，DUAL FET INPUT／AMPL，SEL	80009	155－0085－01
U240	155－0078－03	B010100	B013459	MICROCIRCUIT，LI：ML，VERTICAL AMPL，SEL	80009	155－0078－03
U240	155－0078－10	B013450		MICROCIRCUIT，LI：ML，VERTICAL AMPLIFIER	80009	155－0078－10
U330	156－0030－00			MICROCIRCUIT，DI：QUAD 2－INPUT NAND GATE	01295	SN7400（N OR J）
U340	156－0030－00			MICROCIRCUIT，DI：QUAD 2－INPUT NAND GATE	01295	SN7400（N OR J）
U350	156－0041－00			MICROCIRCUIT，DI：DUAL D－TYPE FLIP－FLOP	27014	DM7474N
U370	155－0091－00			MICROCIRCUIT，LI：ML，CHANNEL SWITCH	80009	155－0091－00
U450	155－0078－03	B010100	B013449	MICROCIRCUIT，LI：ML，VERTICAL AMPL，SEL	80009	155－0078－03
U450	155－0078－10	B013450		MICROCIRCUIT，LI：ML，VERTICAL AMPLIFIER	80009	155－0078－10
U470	155－0168－00			MICROCIRCUIT，LI：OUTPUT AMPLIFIER，TESTED	80009	155－0168－00
U520	155－0032－01			MICROCIRCUIT，LI：MONOLITHIC，INPUT PRE－AMPL	80009	155－0032－01
U600	155－0049－01	B010100	B010299	MICROCIRCUIT，DI：MONOLITHIC，SWEEP CONTROL	80009	155－0049－01
U600	155－0049－02	B010300		MICROCIRCUIT，DI：SWEEP CONTROL，W／LOCKOUT	80009	155－0049－02
U720	155－0032－01			MICROCIRCUIT，LI：MONOLITHIC，INPUT PRE－AMPL	80009	155－0032－01
U930	156－0158－00			MICROCIRCUIT，LI：DUAL OPERATIONAL AMPLIFIER	18324	MC1458N
U1321	152－0552－00			SEMICOND DEVICE：V MULTR， 5 KV IN， 15 KV OUT	52306	CMX 315
U1418	156－0158－00			MICROCIRCUIT，LI：DUAL OPERATIONAL AMPLIFIER	18324	MC1458N
U1454	156－0158－00			MICROCIRCUIT，LI：DUAL OPERATIONAL AMPLIFIER	18324	MC1458N
U1464	156－0158－00			MICROCIRCUIT，LI：DUAL OPERATIONAL AMPLIFIER	18324	MC1458N
U1690	156－0281－00	B010100	B016199X	MICROCIRCUIT，LI：4 TRANSISTOR ARRAY	02735	CA3725
U8061	156－0281－00	XB016200		MICROCIRCUIT，LI： 4 TRANSISTOR ARRAY	02735	CA3725
V1380	154－0677－10			ELECTRON TUBE：CRT	80009	154－0677－10
VR144	152－0166－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 6.2 \mathrm{~V}, 5 \%$	04713	SZ11738
VR161	152－0166－00			SEMICOND DEVICE：ZENER，0．4W，6．2V，5\％	04713	SZ11738
VR244	152－0166－00			SEMICOND DEVICE：ZENER，0．4W，6．2V，5\％	04713	SZ11738
VR261	152－0166－00			SEMICOND DEVICE：ZENER，0．4W，6．2V，5\％	04713	SZ11738
VR290	152－0166－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 6.2 \mathrm{~V}, 5 \%$	04713	SZ11738
VR396	152－0166－00			SEMICOND DEVICE：ZENER，0．4W，6．2V，5\％	04713	SZ11738
VR462	152－0195－00			SEMICOND DEVICE：ZENER，0．4W，5．1V，5\％	04713	SZ11755
VR464	152－0195－00			SEMICOND DEVICE：ZENER，0．4W，5．1V，5\％	04713	SZ11755
VR465	152－0149－00			SEMICOND DEVICE：ZENER，0．4W，10V，5\％	04713	SZG35009K3
VR467	152－0278－00			SEMICOND DEVICE：ZENER，0．4W， $3 \mathrm{~V}, 5 \%$	04713	SZG35009K20
VR482	152－0195－00			SEMICOND DEVICE：ZENER，0．4W，5．1V，5\％	04713	SZ11755
VR570	152－0217－00			SEMICOND DEVICE：ZENER，0．4W， $8.2 \mathrm{~V}, 5 \%$	04713	SZG20
VR608	152－0278－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 3 \mathrm{~V}, 5 \%$	04713	SZG35009K20
VR796	152－0226－00			SEMICOND DEVICE：ZENER，0．4W，5．1V，5\％	14552	TD3810980
VR798	152－0278－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 3 \mathrm{~V}, 5 \%$	04713	SZG35009K20
VR930	152－0265－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 24 \mathrm{~V}, 5 \%$	04713	SZG35009K8
VR938	152－0304－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 20 \mathrm{~V}, 5 \%$	15238	Z5411
VR956	152－0278－00			SEMICOND DEVICE：ZENER，0．4W，3v，5\％	04713	SZG35009K20
VR 1026	152－0278－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 3 \mathrm{~V}, 5 \%$	04713	SZG35009K20
VR1124	152－0175－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 5.6 \mathrm{~V}, 5 \%$	04713	SZG35008
VR1134	152－0166－00			SEMICOND DEVICE：ZENER，0．4W，6．2V，5\％	04713	SZ11738
VR1216	152－0055－00			SEMICOND DEVICE：ZENER， $0.4 \mathrm{~W}, 11 \mathrm{~V}, 5 \%$	04713	SZG35009K1
VR 1267	152－0166－00			SEMICOND DEVICE：ZENER，0．4W，6．2V，5\％	04713	SZ11738

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
VR1329	152-0289-00		SEMICOND DEVICE:ZENER,0.4W,180V,5\%	04713	SZ12484KRL
VR1362	152-0166-00		SEMICOND DEVICE:ZENER,0.4W,6.2V,5\%	04713	S211738
VR1374	152-0357-00		SEMICOND DEVICE:ZENER,0.4W,82v,5\%	04713	SZ12461KRL
VR1416	152-0411-00		SEMICOND DEVICE:ZENER,0.25w,9v,5\%	04713	SZ12483KRL
VR1418	152-0022-00		SEMICOND DEVICE:ZENER, 1w, 25v,5\%	04713	SZ12815
VR1422	152-0283-00		SEMICOND DEVICE:ZENER, $0.4 \mathrm{~W}, 43 \mathrm{~V}, 5 \%$	12954	DZ750903B1N976B
VR1423	152-0304-00		SEMICOND DEVICE:ZENER, $0.4 \mathrm{~W}, 20 \mathrm{~V}, 5 \%$	15238	Z5411
VR1480	152-0127-00		SEMICOND DEVICE:ZENER,0.4W,7.5v,5\%	04713	SZG35009K2

OPTION INFORMATION

Your instrument may be equipped with one or more options. This section describes those options, or directs the reader to where the option is documented.

		Pages	
Option 4	EMI Environmental:	Described in this section.	2
Option 7^{1}	EXT DC Operation:	Described in this section.	12
Option 78	P11 Phosphor:	Described in this section.	1

[^8]
OPTION 4

This section describes the features of Option 4 as it pertains to the 475A Oscilloscope. This circuitry modifies the instrument to meet conducted and radiated interference requirements over the frequency range of 150 kHz to 25 MHz (conducted) and 150 kHz to 1 GHz (radiated).

The following additions and changes were made to the standard circuitry to meet the specification requirements:

EMI filter (FL1401) added in series with the input power cord.

Cathode ray tube mesh filter installed to minimize crt faceplate radiation.

Four signal-output bnc connectors on the rear plenum chamber changed to a type that improves shielding of the connected signal leads.

Capacitors added across the transformer secondary windings.

Fig. Option 4-1. 475A Option 4 primary winding with power-line filter.

OPTION 4

REPLACEABLE ELECTRICAL PARTS

Ckt No.	Tektronix	Serial/Model No.		Name \& Description	Mfr Code	Mfr Part Number
	Part No.	Eff	Dscont			
C1403	283-0000-00			CAP., FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C1404	283-0068-00			CAP., FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1405	283-0068-00			CAP., FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1406	283-0068-00			CAP., FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1407	283-0068-00			CAP., FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1408	283-0068-00			CAP., FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
FL1401	119-0376-01			Filter, RAD int: $2 \mathrm{X} 3 \mathrm{~A}, 250 \mathrm{~V}, 400 \mathrm{~Hz}$	80009	119-0376-01
J430	131-1315-00	B010100	B015866	CONN, RCPT, ELEC: BNC, FEMALE	80009	131-1315-00
J430	131-1315-01	B015867		CONN, RCPT, ELEC: BNC, FEMALE	24931	28JR 306-1
J584	131-1315-00	B010100	B015866	CONN, RCPT, ELEC: BNC, FEMALE	80009	131-1315-00
J584	131-1315-01	B015867		CONN, RCPT, ELEC: BNC, FEMALE	24931	28JR 306-1
J829	131-1315-00	B010100	B015866	CONN, RCPT, ELEC: BNC, FEMALE	80009	131-1315-00
J829	131-1315-01	B015867		CONN, RCPT, ELEC: BNC, FEMALE	24931	28JR 306-1
J1330	131-1315-00	B010100	B015866	CONN, RCPT, ELEC: BNC, FEMALE	80009	131-1315-00
J1330	131-1315-01	B015867		CONN, RCPT, ELEC: BNC, FEMALE	24931	28JR 306-1

REPLACEABLE MECHANICAL PARTS

Fig. \&

OPTION 7

Option 7 is a dc to ac inverter that permits Tektronix Oscilloscopes to operate on 12 or 24 V dc with no performance deterioration. Circuitry is provided to protect against damage due to connection of 24 V when in the 12 V mode of operation.

The 24 -volt external input permits use with conventional dc power (marine and aircraft).

Option 7 is an integral part of the oscilloscope. The modified oscilloscope has a three-position voltage input selection slide switch (visible through the right-hand side panel) at the rear of the line voltage selector switch. A dc input connector is located below the fan cover on the rear panel.

SPECIFICATIONS

AC Requirements

No increase in ac requirements over those of oscilloscopes not having Option 7.

DC Requirements

11.5 to 14 volts or 22 to 28 volts. 11.5 -volt operation excludes graticule light operation and Option 5. Operating range may be extended to 15 volts or 30 volts with a series dropping resistor. Maximum elevation for + or - power lead is 60 V with respect to oscilloscope chassis ground.

Temperature

The same operating and non-operating range as the oscilloscope without Option 7.

SAFETY CONSIDERATIONS

Option 7 becomes a part of the modified instrument. The safety considerations for the unmodified instrument apply.

FUNCTION OF CONTROLS AND CONNECTORS

Mode Switch ${ }^{1}$

AC Applies ac power to the oscilloscope power switch.

Be sure that the 1106 Line Selector switch is set to the correct line voltage for proper battery charging.

DC 12 Permits 12 V operation of the instrument from an external 12 V source.

DC 24 Permits 24 V operation of the instrument from either an external 24 V power source or from the 1106 Power Supply, which may be mechanically attached to the oscilloscope.

Dc Input Connector

Option 7 mode switch and dc input connector are located on the modified oscilloscope.

OPERATION AND INSPECTION

Set the oscilloscope and Option 7 for the power source available as listed.

TABLE 1

Power Source	Oscilloscope Line Selector	Option 7 Mode Switch
115 V AC	115	AC
230 VAC	230	AC
12 V DC		12
24 VDC		24
1106^{1}		24

Turn the oscilloscope on. Check that the oscilloscope operates properly on any of the listed power sources that may be available.

Connect the oscilloscope frame to a ground (earth) reference before using.

CIRCUIT DESCRIPTION

Option 7 is a dc to ac inverter. It operates on 12 or 24 V dc. The circuit description is for 24 V operation unless noted otherwise. Refer to the schematic diagrams (Figs. Option 7-2 and 7-3) throughout the detailed circuit description.

The operating frequency of the inverter is approximately 400 Hz .

Options-475A Service

Simplified Block Diagram

See Fig. Option 7-1. The dc source is applied to the turn-off level circuit, the start circuit and the primary of T1400. If the dc source is above the level set by Turn-Off Level Adjustment R1613, the turn-off circuit does not operate.

The start circuit provides a large current surge through T1631 secondary to the bases of Q1652, Q1662, Q1654 and Q1664. This starts the inverter.

The turn-off circuit is activated in two ways. In 24 V operation, Q1622 is turned on by the source voltage dropping below 22 V . In 12 V mode of operation, Q1626 is turned on by the accidental application of 24 V dc.

Turn-Off Level Circuit

For the following description, refer to Fig. Option 7-2.

The voltage reference for the base of Q1606 is set by R1604, VR1604 and VR1605 for about 9.1 V . This establishes the junction of R1607 and the emitters of Q1606 and Q1608 at about 9.7 V. C1605 helps to hold the 9.1 V level, preventing inverter transients from activating the turn-off circuit and prevents Q1608 from turning on when the inverter is started. This allows the power source time to recover after providing the initial-start surge.

Source voltages higher than 22 V dc cause increased current through R1607, Q1606 and R1609. Q1608 is kept cut off by the increased voltage across R1609 and the resulting change across dividerR1611-R1613-R1614. This permits no current through R1617. Since R1617 furnishes bias to Q1622, the transistor is cut off. This permits the collector of Q1622 and the rest of the turn-off circuit to rise to a voltage determined by the inverter circuit and the dc source voltage. The collector of Q1622 may be about 24 V (with respect to minus dc) with a 12 V dc source and about 36 V with a 24 V dc source.

If the dc source voltage drops to less than 22 V , the current through divider R1609, R1611, R1613 and R1614 is decreased. Q1608 conducts, taking current from Q1606, and causing less drop across R1609. This makes Q1608 conduct more and Q1606 is cut off. Current flow through R1617 turns Q1622 on. Q1622 saturates, dropping its collector voltage to about 0.2 V . R1618 limits the maximum base current of Q1622.

During 12 V dc operation, there is no current flow through VR1604 and VR1605, since their series rating, about 18 volts, exceeds the applied voltage. The base current of Q1606, through R1605, turns Q1606 on enough to take all the current through.R1607, which causes Q1608 to be cut off.

Fig. Option 7-1. Option 7 simplified block diagram.

Turn-Off Circuit

Q1622 is off under normal operating conditions until the dc source drops below 22 V and causes Q1622 to conduct. Q1622 does not conduct during 12 V dc operation, since the turn-off level circuit is disabled, CR1625, CR1626, CR1627, and CR1628 form a bridge rectifier. The inverter waveform is rectified to provide operating power for the turn-off circuit. C1626 filters the inverter spikes to keep them from firing Q1626 (scr). R1623 prevents C1626 from charging to the peak-to-peak inverter spikes.

Q1622 saturates when it is turned on. C1622 provides the high current path for feedback current via CR1625 or CR1626. Once the inverter is shut down, R1622 establishes a path to discharge C1622. *

If 24 V dc is accidentally applied when the mode switch is in the 12 V position, tranformer T1400 attempts to produce two times the correct feedback. This is sufficient to cause VR1622 to conduct. VR1622 provides the firing current for the scr, Q1626. Scr Q1626 fires and shorts out the bridge rectifier and the primary of T1631, stopping the inverter. R1625 prevents Q1626 from being fired by inverter noise. R1624 and C1626 provide holding current for Q1626, keeping it conducting until the surge current created by the over-voltage conditions have terminated. CR1624 permits rapid charging of C1626.

Start Circuit

When S1601 is closed, the external dc source is applied to C1614, VR1641, and R1645. The initial surge is coupled to Q1642 through C1614, VR1639, and R1641. Transistor Q1642 saturates until C1614 charges through R1639 to the value determined by VR1639 and the base-emitter junction of Q1642 (about 5.7 volts), then Q1642 is cut off. R1641 limits the base current in Q1642. Zender diode VR1639, once C1614 is charged, makes Q1642 insensitive to input variations. R1642 limits Q1642 collector current. Q1644, R1645, and VR1641 provide a constant current during the time Q1642 is saturated, regardless of the dc source voltage. CR1643 is reverse biased by this starting current. The starting current is applied to the inverter transistors through T1631.

Inverter Circuit

The starting surge is applied to the bases of Q1652, Q1662, Q1654, and Q1664 trough T1631, R1652, R1662, R1654, and R1664. Since the transistors do not have identical parameters, one pair will conduct before the other, and start the inverter. Operating base current is provided through CR1643.

R1626, R1631, and T1631 primary and secendary are the main frequency-determining components for the inverter. Four base resistors, R1652, R1662, R1654, and

Fig. Option 7-2. 475A Option 7 A11 DC Inverter.

Options-475A Service

R1664, distribute the drive evenly between the four transistors, C1652, C1662, C1654 and C1664 degenerate the high frequency response and reduce transients.

Feedback to maintain inverter operation is provided from T1400 primary to T1631 primary through R1626, R1631, R1633, CR1632 and CR1634. Resistors R1626 and R1631 provide frequency stability and current limiting. R1633, CR1632, and CR1634 compensate for differences in transistors and components. CR1632 and CR1634 conduct during different inverter half-cycles and permit R1633 to balance the drive to T1400.

C1681, C1682, C1683, C1684, C1685 and C1686 are added to the secondary of T1400 with Option 7 to provide optimum reduction of transients during inverter operation.

DC Input

External power is applied through P1601. CR1601 is normally reverse biased. If the wrong polarity external power is applied, CR1601 becomes forward biased and blows fuse F1601. Low-pass network T1601, C1601, C1603, and C1609 is a filter to reduce transients to the dc source.

Start-Stop Switch

S1601, Section A in the off (stop) position discharges the capacitors in the turn-off and start circuits. This ensures the correct time constants when S1601 is changed to the on (start) position. In the start position, the dc input is applied to the inverter circutiry by S1601, Section A. At the same time $S 1601$, section B is closed, completing the feedback loop for the inverter transistors, S1601, section B stops the inverter in the off position by opening the feedback loop between T1400 and T1631.

Power-Mode Switch (S1665)

See Fig. Option 7-3. Sections A and F connect filter C1671 and R1671 to T1400 during 12 or 24 V operation to reduce converter transients. Sections C and D select either transformer terminals 10 A and 12 A or 10 and 12 , to provide the same secondary output when operating on 12 or 24 V . Sections B and E connect transformer terminals 10 and 12 to $S 1665, C$ and D, and to the inverter feedback circuit during both 12 and 24 V operation.

Fig. Option 7-3. 475A Option 7 primary winding.

Fig. Option 7-4. Partial 475A Sweep Generators diagram 8, showing modification with Option 7.

MAINTENANCE

Obtaining Replacement Parts

STANDARD PARTS. All electrical and mechanical part replacements for Option 7 can be obtained through your local Tektronix Field Office or representative. However, many of the standard electronic components can be obtained locally in less time than is required to order them from Tektronix, Inc. Before purchasing or ordering replacement parts, check the parts list for value, tolerance, rating and description.

SPECIAL PARTS. In addition to the standard electronic components, some special components are used in Option 7. These components are manufactured or selected by Tektronix, Inc., to meet specific performance requirements, or are manufactured for Tektronix, Inc., in accordance with our specifications. Most of the mechanical parts used in this instrument have been manufactured by Tektronix, Inc. Order all special parts directly from your local Tektronix Field Office or representative.

ORDER\|NG PARTS. When ordering replacement parts from Tektronix, Inc., include the following information:

1. Instrument type.
2. Instrument serial number.
3. A description of the part (if electrical, include the circuit number).
4. Tektronix part number.

Circuit Board Chassis Removal

The circuit board is mounted on a small chassis located between the power transformer and the crt shield. To remove the chassis, remove three screws. Two threadforming screws are located at the top of the chassis. One screw is at the bottom of the chassis and is removed from the right-hand side by going just below the power transformer.

CALIBRATION

Option 7 may be calibrated without removing it from the oscilloscope.

The reference letters (A), (B), etc., refer to points indicated on the schematic and circuit board illustrations.

Equipment Required

DC VOLTMETER. 22 V to 28 V .

TEST OSCILLSOCOPE. Used to verify the inverter balance adjustment. If the instrument under test and Option 7 are operational and the power source has a negative ground, they may be used as the test oscilloscope for this check.

DC POWER SOURCE. Voltage from 22 V to 28 V and from 11.5 V to 14 V . A source voltage of less than 22 volts will turn off Option 7 when it is operating in the 24 V mode. Starting current in 24 V mode is approximately 4 to 10 A . The dc source must be capable of handling this surge without dropping to 22 V or less. The 12 V starting surge is approximately 15 A .

NOTE

Option 7 is calibrated at the factory using a power supply (having the specifications listed first under the equipment required list). This permits the most accurate setting of the turn-off volts and inverter balance adjustments. Because this type of power supply may not be available, several alternate possibilities are given. The alternate power supplies have drawbacks, including voltage stability vs. time with high discharge rates, see Fig. Option 7-5.

1. Variable power supply with the aformentioned capabilities.
2. Variable power supply with an adequate current rating, in series with items 4 or 5 .

Options-475A Service

3. 1106 Power Supply battery pack. ${ }^{2}$
4. Two 12-volt wet-cell storage batteries, in series, tapped at 20,22 , or $24 \mathrm{~V} .{ }^{3}$
5. 18 to 23 Ni Cd cells, 4.0 amp hr (D cells) or greater, furnishing 20 to 28 V . ${ }^{3}$

Fig. Option 7-5. Typical battery pack discharge curves.

This procedure is for an external dc source with the negative lead at ground potential (negative ground system).

Operating Range

a. Connect the dc source to the oscilloscope equipped with Option 7. Operate the oscilloscope in the 24 V mode. Connect the voltmeter between fuse, F1601 (B) and the common negative return (A). Vary the dc source from 28 V to 22 V .

CHECK-Oscilloscope should operate over the voltage range.
${ }^{2}$ To set the turn-off level, the battery is charged above the cut-off point (22 V). An oscilloscope is connected and the battery allowed to discharge while its voltage is being monitored. As it reaches 22 V the turn-off point is set to cut off Option 7 . The turnoff point on Option 7 approximately coincides with the meter zero on the 1106.
${ }^{3}$ This does not permit accurate adjustment of the turn-off level. Ni Cd batteries can be used, following the technique used for item 3.
b. Change the dc source to 12 V . Operate the oscilloscope in the 12 V mode. Vary the dc source from 14 V to 11.5 V .

CHECK—Oscilloscope should operate over the voltage range.

Inverter Balance

NOTE

If the major oscilloscope use is with a 12-volt source, do this step while operating the oscilloscope and dc source on 12 volts.

Operate the oscilloscope in the 24 V mode. Set the dc source to 24 V . Connect the test oscilloscope between $C 1601$ (C) and the common negative return (A).

CHECK—Signal should be flat. See Fig. Option 7-6.

ADJUST-Inverter Balance (R1633) for the flattest signal.

Fig. Option 7-6. Inverter Balance.

NOTE
There is a slow drift (about a second) after the inverter balance adjustment has been moved. This is due to transistor characteristics and will require a slight Inverter Balance readjustment.

A very close approximation of the preceding method can be obtained by setting the inverter balance control for the minimum sound coming from the inverter.

Turn-Off Level

Set the dc source for 21.8 V .

ADJUST-Turn-Off Level (R1613) slowly until Option 7 turns off.

Fig. Option 7-7. A11 circuit board layout with test voltages.

Fig. Option 7-8. Typical idealized waveforms.

$\begin{aligned} & \text { CKT } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { LOC } \end{aligned}$	$\begin{aligned} & \text { CKT } \\ & \text { NO } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { LOC } \end{aligned}$	$\begin{aligned} & \text { CKT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { LOC } \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \text { CKT } \\ & \text { NO } \\ & \hline \end{aligned}$	GRID LOC
C1601	4B	CR1628	1B	R1605	2 D	R1640	3 C
C1603	2D	CR1632	2A	R1607	1C	R1641	3D
C1605	2C	CR1634	2A	R1609	3 C	R1642	3D
C1609	1B	CR1643	3D	R1611	3C	R1645	3C
C1614	2C			R1613	3A	R1652	4B
C1622	2 C	01606	2C	R1614	3A	R1654	4B
C1626	1C	01608	2C	R 1617	2C	R1662	4C
C1652	4A	01622	2C	R1618	2C	R1664	4C
C1654	4B	01626	1D	R1622	2C	T1601	2A
C1662	4C	01642	2D	R1623	1C	T1631	3B
C1664	4 C	01644	3C	R1624	2 C		
		01652	5A	R1625	1D	VR1604	2D
CR1601	3B	01654	5B	R1626	2B	VR1605	2D
CR1624	2B	01662	5C	R1627*	1B	VR1622	1C
CR1625	2C	01664	5D	R1631	2B	VR1639	3D
CR1626	2C			R1633	3A	VR1641	3 C
CR1627	1B	R1604	1C	R1639	3 C		

*See Parts List for serial number ranges.

Fig. Option 7-9. All circuit board layout with component locator grid.

OPTION 7

REPLACEABLE ELECTRICAL PARTS

ADDITIONAL PARTS ADDED TO THE STANDARD 475A

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
C1601	290-0667-00		CAP.,FXD, ELCTLT : 330UF, + $75-10 \%$, 50 V	56289	500D158
C1671	283-0032-00		CAP., FXD, CER DI:470PF,5\%,500V	72982	0831085Z5E00471J
C1672	283-0263-00		CAP.,FXD, CER DI: $0.0022 \mathrm{UF}, 20 \%, 3000 \mathrm{~V}$	56289	33C319
	-----------		(MOUNTED ON 475A REAR PANEL)		
Cl674	283-0263-00		CAP.,FXD, CER DI: $0.0022 \mathrm{UF}, 20 \%, 3000 \mathrm{~V}$	56289	33C319
			(MOUNTED ON 475A REAR PANEL)		
C1681	283-0068-00		CAP., FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1682	283-0000-00		CAP., FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	59660	831-519-Z5U-102P
C1683	283-0068-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1684	283-0068-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1685	283-0068-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19C241
C1686	283-0068-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	56289	19 C 241
F1601	159-0038-00		FUSE, CARTRIDGE: 3AG, 15A, 32V, FAST-BLOW	71400	AGC 15
P1601	131-1333-00		CONNECTOR, RCPT, : POWER	80009	131-1333-00
Q1652	151-0436-00		TRANSISTOR:SILICON, NPN	80009	151-0436-00
Q1654	151-0436-00		TRANSISTOR:SILICON, NPN	80009	151-0436-00
Q1662	151-0436-00		TRANSISTOR: SILICON,NPN	80009	151-0436-00
Q1664	151-0436-00		TRANSISTOR: SILICON, NPN	80009	151-0436-00
R1671	308-0349-00		RES., FXD, WW: 3.6K OHM, 1\%, 3W	91637	RS2B-B36000F
Sl601A, B	260-0834-00		SWITCH, TOGGLE: DPDT, 5A, 125VAC, 0.25-40 THD	09353	U21-SHZQE
S1665	105-0479-00		ACTUATOR, SWITCH: SLIDE, INVERTER	80009	105-0479-00
S1665A	260-0760-00		SWITCH, SENS : $10 \mathrm{~A}, 250 \mathrm{~V}$, SPDT, SNAP ACTION	01963	E62-10A
S1665B	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
S1665C	260-0760-00		SWITCH, SENS : 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
S1665D	260-0760-00		SWITCH, SENS : $10 \mathrm{~A}, 250 \mathrm{~V}$, SPDT, SNAP ACTION	01963	E62-10A
Sl665E	260-0760-00		SWITCH, SENS : 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
S1665F	260-0760-00		SWITCH, SENS : 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A

Ckt No.	Tektronix Part No	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mifr Part Number
A3	670-2240-04		CKT board assy:VErtical preamp	80009	670-2240-04
A11	670-2744-01		CKT BOARD ASSY: INVERTER	80009	670-2744-01
C338	$\begin{gathered} \text { 281-0504-00 } \\ \hline \end{gathered}$		CAP., FXD, CER DI: 10PF,+/-1PF,500V (SEe diagram 3, C338 is added from base to COLLECTOR OF Q338)	59660	301-055C0G0100F
C1026	$\begin{gathered} \text { 290-0524-00 } \\ \hline-\ldots \end{gathered}$		CAP., FXD, ELCTLT:4.7UF, 20\%, 10V (SEE PARTIAL SChematic in this section or gray tint on diagram 8)	90201	TDC475M010EL
C1603	283-0178-00		CAP.,FXD, CER DI: 0.1 l , $+80-20 \%, 100 \mathrm{~V}$	72982	8131N145651 1042
C1605	290-0531-00		CAP., FXD, ELCTLT: $100 \mathrm{UF}, 20 \%, 10 \mathrm{~V}$	90201	TDC107M010WLC
C1609	283-0178-00		CAP.,FXD, CER DI: $0.1 \mathrm{UF},+80-20 \%, 100 \mathrm{~V}$	72982	8131N145651 1042
C1614	290-0573-00		CAP., FXD, ELCTLT: 2.7 UF, 20%, 50 V	56289	196D275X0050JA1
C1622	290-0533-00		CAP., FXD, ELCTLT: 330UF, 20\%, , 6V	90201	TDC337M006WLD
C1626	290-0528-00		CAP., FXD, ELCTLT: $15 \mathrm{SF}, 20 \%$, 50 V	90201	TDC156M050WLC
C1652	283-0110-00		CAP.,FXD, CER DI: $0.005 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	56289	19C242B
C1654	283-0110-00		CAP.,FXD, CER DI:0.005UF, +80-20\%,150V	56289	19C242B
C1662	283-0110-00		CAP.,FXD, CER DI:0.005UF,+80-20\%,150V	56289	19C242B
C1664	283-0110-00		CAP., FXD, CER DI: $0.005 \mathrm{UF},+80-20 \%, 150 \mathrm{~V}$	56289	19C242B
CR1601	152-0198-00		SEMICOND DEVICE:SILICON, 200V, 3A	03508	1N5624
CR1624	152-0333-00		SEMICOND DEVICE:SILICON, 55v, 200MA	07263	FDH-6012
CR1625	152-0107-00		SEMICOND DEVICE:SILICON,400V,400MA	01295	G727
CR1626	152-0107-00		SEMICOND DEVICE:SILICON,400V,400MA	01295	G727
CR1627	152-0107-00		SEMICOND DEVICE:SILICON,400V,400MA	01295	G727
CR1628	152-0107-00		SEMICOND DEVICE:SILICON, 400v,400MA	01295	G727
CR1632	152-0333-00		SEMICOND DEVICE:SILICON, 55V,200MA	07263	FDH-6012
CR1634	152-0333-00		SEMICOND DEVICE:SILICON, 55v, 200MA	07263	FDH-6012
CR1643	152-0198-00		SEMICOND DEVICE:SILICON, 200V,3A	03508	1N5624
L1026	108-0245-00		COIL, RF: 3.9UH (SEe partial schematic in this sect or diag 8)	76493	B6310-1
Q1606	151-0301-00		TRANSISTOR:SILICON, PNP	27014	2N2907A
Q1608	151-0301-00		TRANSISTOR:SILICON, PNP	27014	2N2907A
Q1622	151-0302-00		TRANSISTOR:SILICON, NPN	07263	S038487
Q1626	151-0506-00		SCR:SILICON	03508	C106B2X283
Q1642	151-0302-00		TRANSISTOR:SILICON,NPN	07263	S038487
Q1644	151-0335-00		TRANSISTOR:SILICON, PNP	04713	SJE917
R1604	315-0202-00		RES.,FXD, CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
R1605	315-0752-00		RES., FXD, CMPSN:7.5K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB7525
R1607	315-0272-00		RES., FXD, CMPSN:2.7K ОHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2725
R1609	315-0511-00		RES., FXD, CMPSN:510 ОHM,5\%,0.25W	01121	CB5115
R1611	315-0511-00		RES., FXD, CMPSN: 510 OHM, 5\%,0.25W	01121	CB5115
R1613	311-1248-00		RES., VAR, NONWIR: $500 \mathrm{OHM}, 10 \%, 0.50 \mathrm{~W}$	73138	72-23-0
R1614	315-0202-00		RES., FXD, CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
R1617	315-0102-00		RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1618	315-0101-00		RES., FXD, CMPSN: 100 OHM,5\%,0.25W	01121	CB1015
R1622	315-0102-00		RES.,FXD, CMPSN: 1 K оНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1623	316-0103-00		RES.,FXD, CMPSN:10K OHM, $10 \%, 0.25 \mathrm{~W}$	01121	CB1031
R1624	315-0302-00		RES., FXD, CMPSN: 3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3025
R1625	316-0101-00		RES., FXD, CMPSN: 100 OHM, $10 \%, 0.25 \mathrm{~W}$	01121	CB1011
R1626.	308-0450-00		RES., FXD, WW: 70 О $\mathrm{HM}, 1 \%$, 3 W	91637	RS2B-B70R00F
R1627	315-0271-00	XB010445	RES., FXD, CMPSN: 270 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2715
R1631	308-0450-00		RES., FXD, WW: 70 OHM, 1\%, 3W	91637	RS2B-B70R00F
R1633	311-1501-00		RES., VAR, NONWIR: 20 OHM, 10\%, 0.50W	73138	72-37-0
R1639	315-0153-00		RES.,FXD, CMPSN: 15 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
R1640	315-0102-00		RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
R1641	315-0153-00		RES.,FXD, CMPSN:15K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
R1642	315-0473-00		RES.,FXD, CMPSN:47K OHM, 5\%,0.25W	01121	CB4705
R1645	307-0113-00		RES.,FXD,CMPSN:5.1 OHM,5\%,0.25W	01121	CB51G5

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
R1652	308-0459-00		RES., FXD, WW: 1.1 OHM, 5\%, 3W	91637	CW2B-1R100J
R1654	308-0459-00		RES., FXD, WW: 1.1 OHM, 5%, 3W	91637	CW2B-1R100J
R1662	308-0459-00		RES.,FXD, WW: 1.1 OHM, 5%, 3W	91637	CW2B-1R100J
R1664	308-0459-00		RES., FXD, WW: 1.1 OHM, 5\%, 3W	91637	CW2B-1R100J
T1601	120-0637-00		XFMR, TOROID: 5 TURNS BIFILAR	80009	120-0637-00
T1631	120-0852-00		XFMR, TOROID: 2 WINDINGS	80009	120-0852-00
VR1604	152-0306-00		SEMICOND DEVICE:ZENER,0.4W, $9.1 \mathrm{~V}, 5 \%$	15238	Z5409
VR1605	152-0306-00		SEMICOND DEVICE:ZENER,0.4W, $9.1 \mathrm{~V}, 5 \%$	15238	Z5409
VR1622	152-0241-00		SEMICOND DEVICE:ZENER,0.4W,33V,5\%	80009	152-0241-00
VR1639	152-0279-00		SEMICOND DEVICE:ZENER,0.4W,5.1V,5\%	04713	SZG35010RL
VR1641	152-0279-00		SEMICOND DEVICE:ZENER,0.4W,5.1V,5\%	04713	SZG35010RL

Fig. \&

REPLACEABLE MECHANICAL PARTS

ACCESSORIES

161-0094-00
1 CABLE ASSY, PWR, 3 WIRE, 36 INCHES LONG
16428 KH7667

OPTION 7 EXPLODED

Fig. Option 7-10

OPTION 78

This option adds a Type P11 phosphor CRT to the instrument.

Parts List Changes

DELETE:

V1380 154-0677-10 CRT, P31 Phosphor

ADD:

V1380 154-0677-14 CRT, P11 Phosphor

If this option is being added to an instrument which is already equipped with a different phosphor, or if the cathode-ray tube requires replacement, use the following procedure
1). Follow the crt removal and installation procedure in the maintenance section of this manual.
2). After completing crt installation, check Table 4-5 (Recalibration After Repair) for calibration adjustments which may require re-adjustment.

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors $=$	Values one or greater are in picofarads (pF).
	Values less than one are in microfarads $(\mu \mathrm{F})$.
Resistors $=$	Ohms (Ω).

Symbols used on the diagrams are based on USA Standard Y32.2-1967.
Logic symbology is based on MIL-STD-806B in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

A	Assembly, separable or repairable (circuit board, etc.)	H	Heat dissipating device (heat sink, heat radiator, etc.)	$\begin{aligned} & R T \\ & S \end{aligned}$	Thermistor Switch
AT	Attenuator, fixed or variable	HR	Heater	T	Transformer
B	Motor	HY	Hybrid circuit	TC	Thermocouple
BT	Battery	J	Connector, stationary portion	TP	Test point
C	Capacitor, fixed or variable	K	Relay	U	Assembly, inseparable or non-repairable
CB	Circuit breaker	L	Inductor, fixed or variable		(integrated circuit, etc.)
CR	Diode, signal or rectifier	LR	Inductor/resistor combination	V	Electron tube
DL	Delay line	M	Meter	$V R$	Voltage regulator (zener diode, etc.)
DS	Indicating device (lamp)	\mathbf{P}	Connector, movable portion	Y	Crystal
E	Spark Gap	O	Transistor or silicon-controlled	Z	Phase shifter
F	Fuse		rectifier		
FL	Filter	R	Resistor, fixed or variable		

The following special symbols are used on the diagrams:

VERTICAL AMPLIFIER <2 874

(A) Partial A3-Vertical Preamp board

-Located on hach CR103 CR104
 CR103 CR104 CR107

(c) Board Locations.

$\xrightarrow{\text { mont }}$

475A Service

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} /$ Div Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe com- patible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2) POSITION VOLTS/DIV

VAR VOLTS/DIV AC-GND-DC INVERT VERT MODE 100 or 20 MHz BW

Trigger Controls (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls
TIME/DIV

VAR TIME/DIV Calibrated detent
DELAY TIME
POSITION Full counterclockwise
HORIZ DISPLAY A
X10 MAG Off (button out)
POSITION (Horiz) Midrange
FINE
0.1 ms

Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50 -ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbois on each waveform.

Tolerance of voltages and waveforms shown are 20\%.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe compatible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance $10 \mathrm{M} \Omega$ Range 0 to 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange
Vertical Controls (CH 1 and CH 2)	
POSITION	Center trace on graticule
VOLTS/DIV	5 mV for dc voltages
	100 mV for waveforms
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 or 20 MHz BW	Full bandwidth (Push in,
	then release)

Trigger Controls (A and B)	
COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls	
TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbois on each waveform.

Tolerance of voltages and waveforms shown are 20%.

475A Service

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor $\quad 1 \mathrm{mV}$ to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $\quad 1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe com- patible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2$)$	
POSITION	Center trace on graticule
VOLTS/DIV	5 mV for dc voltages
	100 mV for waveforms
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 or 20 MHz BW	Full bandwidth (Push in,
	then release)

Trigger Controls (A and B)	
COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls	
TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A + GATE (rear panel) through a 42-inch 50 -ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 V , set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20%.

Located on back of board.
R481 R494A
$\begin{array}{ll}\text { R482 } & \text { R490 } \\ \text { R472 } & \text { R473 }\end{array}$
(A) A5-Vertical Output board.
*See Parts List for
serial number ranges
**Part of etched circuit board

(B) Board Location

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS		RECOMMENDED TYPE
Test oscilloscope	Frequency response Deflection factor Input impedance Sweep rate	DC to 75 MHz 1 mV to $5 \mathrm{~V} /$ Div $1 \mathrm{M} \Omega 20 \mathrm{pF}$ 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuatio patible with vertical a oscilloscope.	ion probe commplifier of test	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance Range	$M \Omega$ o 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls	
INTENSITY	
FOCUS	Midrange
SCALE ILLUM	Midrange
Vertical Controls (CH 1 and CH 2 2)	
POSITION	Center trace on graticule
VOLTS/DIV	5 mV for dc voltages
	100 mV for waveforms
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 or 20 MHz BW	Full bandwidth (Push in,
	then release)

Trigger Controls (A and B)	
COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls
TIME/DIV
VAR TIME/DIV
DELAY TIME
POSITION
HORIZ DISPLAY
X10 MAG
POSITION (Horiz) FINE

0.1 ms

Calibrated detent

Full counterclockwise A
Off (button out)
Midrange
Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbois on each waveform.

Tolerance of voltages and waveforms shown are 20%.

Note: In some instruments VR570 incorrectly m
circuit board.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe compatible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance $10 \mathrm{M} \Omega$ Range 0 to 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls

INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2)
POSITION VOLTS/DIV

VAR VOLTS/DIV
AC-GND-DC
INVERT
VERT MODE
100 or 20 MHz BW

Trigger Controls (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls	
TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 V , set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20%.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} /$ Div Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe compatible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance $10 \mathrm{M} \Omega$ Range 0 to 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2)

VAR VOLTS/DIV AC-GND-DC INVERT VERT MODE 100 or 20 MHz BW

Center trace on graticule 5 mV for dc voltages 100 mV for waveforms Calibrated detent DC
Off (button out)
CH 1
Full bandwidth (Push in, then release)

Trigger Controls (A and B) COUPLING AC LEVEL 0 SLOPE + SOURCE NORM TRIG MODE AUTO A TRIGGER HOLDOFF NORM

Sweep Controls	
TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A + GATE (rear panel) through a 42-inch 50 -ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 V , set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20\%.

vOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor $\quad 1 \mathrm{mV}$ to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate $\quad 50 \mathrm{~ns}$	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10 X attenuation probe com- patible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2) POSITION VOLTS/DIV

VAR VOLTS/DIV
AC-GND-DC
INVERT
VERT MODE 100 or 20 MHz BW

Trigger Controls (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+

SOURCE TRIG MODE

DC
Off (button out)
CH 1 then release)

AC
$+$
NORM

Center trace on graticule 5 mV for dc voltages 100 mV for waveforms
Calibrated detent

Full bandwidth (Push in,

AUTO (for waveforms) SINGL SWP (for dc voltages. READY light off).
A TRIGGER HOLDOFF NORM

Sweep Controls

TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 VDC, set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20\%.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor $\quad 1 \mathrm{mV}$ to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $\quad 1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe com- patible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange
Vertical Controls (CH 1 and CH 2)	
POSITION	Center trace on graticule
VOLTS/DIV	5 mV for dc voltages 100 mV for waveforms
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 or 20 MHz BW	Full bandwidth (Push in, then release)
Trigger Controls (A and B)	
COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO (for waveforms) SINGL SWP (for dc voltages. READY light off).
A TRIGGER HOLDOFF	NORM

Sweep Controls

TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent

DELAY TIME
POSITION
HORIZ DISPLAY A
X10 MAG Off (button out)
POSITION (Horiz) Midrange
FINE
0.1 ms

Calibrated detent

Full counterclockwise
A

Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscillosocpe trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 VDC, set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20%.

(A) A7-Timing board.

Fig. 8.9 A \& B, Timing and Horizontal Switching Component Locations.

(B) Board Location.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe compatible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance $10 \mathrm{M} \Omega$ Range 0 to 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2)

POSITION
VOLTS/DIV

VAR VOLTS/DIV
AC-GND-DC
INVERT
VERT MODE
100 or 20 MHz BW

Center trace on graticule
5 mV for dc voltages 100 mV for waveforms
Calibrated detent
DC
Off (button out)
CH 1
Full bandwidth (Push in, then release)

Sweep Controls
TIME/DIV
VAR TIME/DIV
DELAY TIME
POSITION Full counterclockwise
HORIZ DISPLAY
X 10 MAG
POSITION (Horiz)
FINE
0.1 ms

Calibrated detent A

Off (button out)
Midrange
Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 V DC, set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20%.

475A Service

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} /$ Div Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenuation probe compatible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance $10 \mathrm{M} \Omega$ Range 0 to 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange

Vertical Controls (CH 1 and CH 2)	
POSITION	Center t
VOLTS/DIV	5 mV for
	100 mV
VAR VOLTS/DIV	Calibrat
AC-GND-DC	DC
INVERT	Off (but
VERT MODE	CH 1
100 or 20 MHz BW	Full band
	then rel
Trigger Controls (A and B)	
COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls	
TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 V , set the test oscillocope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.
, Tolerance of voltages and waveforms shown are 20%.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS		RECOMMENDED TYPE
Test oscilloscope	Frequency response Deflection factor Input impedance Sweep rate	DC to 75 MHz 1 mV to $5 \mathrm{~V} /$ Div $1 \mathrm{M} \Omega 20 \mathrm{pF}$ 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10X attenua patible with vertical a oscilloscope.	ion probe commplifier of test	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance Range	$\mathrm{M} \Omega$ o 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings

Display Controls INTENSITY
FOCUS
SCALE ILLUM
Midrange

Vertical Controls (CH 1 and CH 2) POSITION VOLTS/DIV

VAR VOLTS/DIV
AC-GND-DC
INVERT
VERT MODE
100 or 20 MHz BW

Center trace on graticule 5 mV for dc voltages 100 mV for waveforms Calibrated detent DC Off (button out) CH 1 Full bandwidth (Push in, then release)

Trigger Controls (A and B)

COUPLING	AC
LEVEL	0
SLOPE	+
SOURCE	NORM
TRIG MODE	AUTO
A TRIGGER HOLDOFF	NORM

Sweep Controls

TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X1O MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50 -ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbois on each waveform.

Tolerance of voltages and waveforms shown are 20%.

VOLTAGES AND WAVEFORMS

The voltages and waveforms shown on this diagram were obtained by using the recommended test equipment and test set-ups listed below.

RECOMMENDED TEST EQUIPMENT

ITEM	SPECIFICATIONS	RECOMMENDED TYPE
Test oscilloscope	Frequency response DC to 75 MHz Deflection factor 1 mV to $5 \mathrm{~V} / \mathrm{Div}$ Input impedance $1 \mathrm{M} \Omega 20 \mathrm{pF}$ Sweep rate 50 ns	Tektronix 7603 equipped with 7A13 Amplifier and 7B50 Time-base units, or equivalent.
Probe	Fast-rise 10 X attenuation probe compatible with vertical amplifier of test oscilloscope.	Tektronix P6053B, or equivalent.
Voltmeter (Non-loading Digital Multimeter)	Input Impedance $10 \mathrm{M} \Omega$ Range 0 to 500 V	Tektronix DM 501 Digital Multimeter or equivalent.

475A Control Settings	
Display Controls	
INTENSITY	Midrange
FOCUS	Midrange
SCALE ILLUM	Midrange
Vertical Controls (CH 1 and CH 2)	
POSITION	Center trace on graticule
VOLTS/DIV	5 mV for dc voltages
	100 mV for waveforms
VAR VOLTS/DIV	Calibrated detent
AC-GND-DC	DC
INVERT	Off (button out)
VERT MODE	CH 1
100 or $20 ~ M H z ~ B W ~$	Full bandwidth (Push in,
	then release)

Trigger Controls (A and B)
COUPLING AC
LEVEL 0
SLOPE ! SOURCE NORM TRIG MODE AUTO A TRIGGER HOLDOFF NORM

Sweep Controls	
TIME/DIV	0.1 ms
VAR TIME/DIV	Calibrated detent
DELAY TIME	
POSITION	Full counterclockwise
HORIZ DISPLAY	A
X10 MAG	Off (button out)
POSITION (Horiz)	Midrange
FINE	Midrange

Voltage Measurements

Voltage measurements are taken with no signal applied and the trace positioned to the center horizontal graticule line. The voltmeter common is connected to chassis ground.

Waveform Conditions

Apply the 475A calibrator signal to CH 1 input through a P6075 10X probe (supplied with 475A). Connect 475A A +GATE (rear panel) through a 42-inch 50-ohm BNC cable to test oscilloscope external trigger input. Set test oscilloscope trigger source to external and set vertical input for ac coupling. For waveforms which have the horizontal centerline labeled 0 V , set the test oscilloscope vertical input for dc coupling.

Set test oscilloscope VOLTS/DIV and TIME/DIV controls as indicated on readout symbols on each waveform.

Tolerance of voltages and waveforms shown are 20\%.

A. Locations of Calibration adjustments on A8-Trigger Generator and 2-Axis Logic

B. Locations of Calibration adjustments on A9-Main Interface.

A. Locations of Calibration adjustments on A7-Timing.

C. Board Locations

REPLACEABLE MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
00X Part removed after this serial number

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

12345
Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component

- - - *- -

Detail Part of Assembly and/or Component
Attaching parts for Detail Part

$$
\ldots{ }^{*}-.
$$

Parts of Detail Part
Attaching parts for Parts of Detail Part

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol -- * -- - indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

ABBREVIATIONS

"	1 NCH	ELCTRN	ELECTRON	IN	INCH	SE	SINGLE END
\#	NUMBER SIZE	ELEC	ELECTRICAL	INCAND	INCANDESCENT	SECT	SECTION
ACTR	ACTUATOR	ELCTLT	ELECTROLYTIC	INSUL	INSULATOR	SEMICOND	SEMICONDUCTOR
ADPTR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLD	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLDR	LAMPHOLDER	SHLDR	SHOULDERED
AL	ALUMINUM	EQPT	EQUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBLY	FIL	FILLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF-LOCKING
ATTEN	ATTENUATOR	FLEX	FLEXIBLE	NIP	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLAT HEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
BD	BOARD	FLTR	FILTER	OBD	ORDER BY DESCRIPTION	SQ	SQUARE
BRKT	BRACKET	FR	FRAME or FRONT	OD	OUTSIDE DIAMETER	SST	STAINLESS STEEL
BRS	BRASS	FSTNR	FASTENER	OVH	OVAL HEAD	STL	STEEL
BRZ	BRONZE	FT	FOOT	PH BRZ	PHOSPHOR BRONZE	SW	SWITCH
BSHG	BUSHING	FXD	FIXED	PL	PLAIN or PLATE	T	TUBE
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOR	HDL	HANDLE	PN	PART NUMBER	THD	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HD	HEXAGONAL HEAD	PWR	POWER	TNSN	TENSION
CKT	CIRCUIT	HEX SOC	HEXAGONAL SOCKET	RCPT	RECEPTACLE	TPG	TAPPING
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION	RGD	RIGID	V	VOLTAGE
COV	COVER	HV	HIGH VOLTAGE	RLF	RELIEF	VAR	VARIABLE
CPLG	COUPLING	IC	INTEGRATED CIRCUIT	RTNR	RETAINER	W/	WITH
CRT	CATHODE RAY TUBE	ID	INSIDE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHER
DEG	DEGREE	IDENT	IDENTIFICATION	SCOPE	OSCILLOSCOPE	XFMR	TRANSFORMER
DWR	DRAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

S3109
000BK
000CY
000EX
0000A
00779
01963
04811
05006
05129
05820
06540
06666
07700
08261
08530
09353
12014
12327
12360
13103
13511
16428
22526
22670
23050
24011
24931
27143
28520
28817
42838
51316
55210
56878
63743
70278
70485
71159

71279
71400
71590
71785
73743
73803
74445
75497
75915
77250
78189
79136
79807
80009

FELLER ASA ADOLF AG.,
C/O PANEL COMPONENTS CORP.
STAUFFER SUPPLY
NORTHWEST FASTENER SALES, INC. O'HARA METAL PRODUCT COMPANY LEMO USA
AMP, INC.
CHERRY ELECTRICAL PRODUCTS CORPORATION
PRECISION COIL SPRING COMPANY
TWENTIETH CENTURY PLASTICS, INC.
KILO ENGINEERING COMPANY
WAKEFIELD ENGINEERING, INC.
AMATOM ELECTRONIC HARDWARE, DIV. OF MITE CORP.
GENERAL DEVICES CO., INC.
TECHNICAL WIRE AND PRODUCTS, INC.
SPECTRA-STRIP CORP.
RELIANCE MICA CORP.
C AND K COMPONENTS, INC.
CHICAGO RIVET AND MACHINE $C O$. FREEWAY CORPORATION ALBANY PRODUCTS CO., DIV. OF PNEUMO DYNAMICS CORPORATION
THERMALLOY COMPANY, INC.
AMPHENOL CARDRE DIV., BUNKER RAMO CORP. BELDEN CORP.
BERG ELECTRONICS, INC.
G.M. NAMEPLATE, INC.

PRODUCT COMPONENTS CORP
ELECTRONIZED CHEMICALS CORPORATION
SPECIALITY CONNECTOR CO., INC.
ATLAS SPRING AND MFG. CO.
HEYMAN MFG. CO.
CAL-METEX CORP., SUBSIDIARY OF METEX CORP.
NATIONAL RIVET AND MFG. CO.
ANGELUS WASHER AND STAMPING CO.
GETTIG ENG. AND MFG. COMPANY STANDARD PRESSED STEEL COMPANY
WARD LEONARD ELECTRIC CO., INC. ALLIED STEEL AND CONVEYORS, DIV. OF SPARTON CORP.
ATLANTIC INDIA RUBBER WORKS, INC.
BRISTOL SOCKET SCREW, DIV. OF AMERICAN CHAIN AND CABLE CO., INC. CAMBRIDGE THERMIONIC CORP.
BUSSMAN MFG., DIVISION OF MCGRAWEDISON CO.
CENTRALAB ELECTRONICS, DIV. OF GLOBE-UNION, INC.
TRW, CINCH CONNECTORS FISCHER SPECIAL MFG. CO. TEXAS INSTRUMENTS, INC., METALLURGICAL MATERIALS DIV. HOLO-KROME CO. LAMSON AND SESSIONS CO. LITTELFUSE, INC. PHEOLL MANUFACTURING CO., DIVISION OF ALLIED PRODUCTS CORP. ILLINOIS TOOL WORKS, INC. SHAKEPROOF DIVISION WALDES, KOHINOOR, INC. WROUGHT WASHER MFG. CO. TEKTRONIX, INC.

355 TESCONI CIRCLE
105 SE TAYLOR
7923 SW CIRRUS DRIVE
542 BRANNAN STREET
P. O. BOX 6626

P O BOX 3608
3600 SUNSET AVENUE
P O BOX 5450, 10107 ROSE ST.
415 E WASHINGTON BLVD.
2015 D
AUDUBON ROAD
446 BIAKE ST.
525 S. WEBSTER AVE.
129 DERMODY ST.
7100 LAMPSON AVE.
342-39TH ST.
103 MORSE STREET
950 S. 25 TH AVENUE
9301 ALLEN DRIVE

145 WOODWARD AVENUE
2021 W VALLEY VIEW LANE
P O BOX 34829
P. O. BOX 1331

YOUK EXPRESSWAY
2040 15TH AVENUE WEST
30 LORRAINE AVE.
S BEDFORD STREET
2620 ENDRESS PLACE
1805 N. SPAULDING AVE.
147 N. MICHIGAN AVE.
509 HINDRY AVE.
1-21 EAST JEFFERSON ST.
1411 ESPERANZA ST.
PO BOX 85, OFF ROUTE 45
BENSON EAST
31 SOUTH ST.
17333 HEALY
571 W. POLK ST.
P O BOX 2244, 40 BRISTOL ST. 445 CONCORD AVE.

2536 W. UNIVERSITY ST.
P O BOX 858
1501 MORSE AVENUE
446 MORGAN ST.
34 FOREST STREET
31 BROOK ST. WEST
5000 TIEDEMAN ROAD
800 E. NORTHWEST HWY
5700 W. ROOSEVELT RD.
ST. CHARLES ROAD
47-16 AUSTEL PLACE
2100 S. O BAY ST.
P O BOX 500

SANTA ROSA, CA 95401
PORTLAND, OR 97214
BEAVERTON, OR 97005
SAN FRANCISCO, CA 94107
SANTA ROSA, CA 95406
HARRISBURG, PA 17105
WAUKEGAN, IL 60085
EL MONTE, CA 91734
LOS ANGELES, CA 90015
LA VERNE, CA 91750
WAKEFIELD, MA 01880
NEW HAVEN, CT 06515
INDIANAPOLIS, IN 46219
CRANFORD, NJ 07016
GARDEN GROVE, CA 92642
BROOKLYN, NY 11232
WATERTOWN, MA 02172
BELLWOOD, IL 60104
CLEVELAND, OH 44125
SOUTH NORWALK, CT 06586
DALLAS, TX 75234
LOS GATOS, CA 95030
RICHMOND, IN 47374
NEW CUMBERLAND, PA 17070
SEATTLE, WA 98119
MT VERNON, NY 10553
BURLINGTON, MA 01803
GREENWOOD, IN 46142
CHICAGO, IL 60647
KENILWORTH, NJ 07033
INGLEWOOD, CA 90301
WAUPUN, WI 53963
LOS ANGELES, CA 90023
SPRING MILLS, PA 16875
JENKINTOWN, PA 19046
MOUNT VERNON, NY 10550
DETROIT, MI 48212
CHICAGO, IL 60607
WATERBURY, CT 06720
CAMBRIDGE, MA 02138
ST. LOUIS, MO 63107
FORT DODGE, IA 50501
ELK GROVE VILLAGE, IL 60007
CINCINNATI, OH 45206
ATTLEBORO, MA 02703
HARTFORD, CT 06110
CLEVELAND, OH 44144
DES PLAINES, IL 60016
CHICAGO, IL 60650
ELGIN, IL 60120
LONG ISLAND CITY, NY 11101
MILWAUKEE, WI 53207
BEAVERTON, OR 97077

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip
80033	PRESTOLE EVERLOCK, INC.	P. O. BOX 278,1345 MIAMI ST.	TOLEDO, OH 43605
80126	PACIFIC ELECTRICORD CO.	747 W. REDONDO BEACH, P O BOX 10	GARDENA, CA 90247
83294	ARROW FASTENER CO., INC.	271 MAYHILL ST.	SADDLE BROOK, NJ 07662
83385	CENTRAL SCREW CO.	2530 CRESCENT DR.	BROADVIEW, IL 60153
84256	AVIBANK MFG., INC.	210 S VICTORY BLVD, PO BOX 391	BURBANK, CA 91503
86445	PENN FIBRE AND SPECIALTY CO., INC.	2032 E. WESTMORELAND ST.	PHILADELPHIA, PA 19134
86928	SEASTROM MFG. COMPANY, INC.	701 SONORA AVENUE	GLENDALE, CA 91201
87308	N. L. INDUSTRIES, INC., SOUTHERN SCREW DIV.	P. O. BOX 1360	STATESVILLE, NC 28677
89663	REESE, J. RAMSEY, INC.	71 MURRAY STREET	NEW YORK, NY 10007
91260	CONNOR SPRING AND MFG. CO.	1729 JUNCTION AVE.	SAN JOSE, CA 95112
93410	ESSEX INTERNATIONAL, INC., CONTROLS DIV. LEXINGTON PLANT	P. O. BOX 1007	MANSFIELD, OH 44903
93907	TEXTRON INC. CAMCAR DIV	600 18TH AVE	ROCKFORD, IL 61101
97464	INDUSTRIAL RETAINING RING CO.	57 CORDIER ST.	IRVINGTON, NJ 07111
98278	MALCO A MICRODOT COMPANY, INC. CONNECTOR AND CABLE DIVISION	220 PASADENA AVE.	SOUTH PASADENA, CA 91030

Fig. \&

Fig. \&

Index	Tektronix	Serial/Model No.				
No.	Part No.	Eff	Dscont	Qty	12345	Name \& Description

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
1-82	---------		1	TRANSISTOR:CHAS MTG(SEE Q1318 REPL) (ATTACHING PARTS)		
-83	211-0012-00		2	SCREW, MACHINE:4-40 X 0.375 , PNH STL CD PL	83385	OBD
-84	210-0205-00		1	Terminal, LUG: SE \#8	86928	5442-7
-85	358-0214-00		2	INSULATOR, BSHG:0.25 DIA X 0.188 INCH L	24011	OBD
-86	214-1610-00		1	HEAT SINK, ELEC:TRANSISTOR	80009	214-1610-00
-87	407-1153-00		1	BRACKET, XSTR:ALUMINUM (attaching parts)	80009	407-1153-00
-88	210-0586-00		2	NUT, PL, ASSEM WA:4-40 x 0.25, STL CD PL	83385	OBD
-89	348-0339-00		4	FOOT, CABINET:W/CORD WRAP (ATtaching parts)	80009	348-0339-00
-90	212-0020-00		4	SCREW, MACHINE: 8-32 X 1.0 INCH, PNH STL	93907	OBD
-91	348-0349-00		FT	SHLD GSkT, ELEC:0.187 INCH DIA, 2.75 FT L	07700	2143951
-92	426-0970-00		1	FR SECT., CAB.:REAR (ATTACHING PARTS)	80009	426-0970-00
-93	211-0516-00		2	SCREW,MACHINE:6-32 X 0.875 INCH, PNH STL	83385	OBD
-94	378-0044-01		1	FILTER ELEM,AIR:2.5 $\times 2.5 \times 0.25$	80009	378-0044-01
-95	131-0955-00		4	CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
-96	210-0255-00		4	TERMINAL,LUG:0.391 ID,LOCKING,BRS CD PL	80009	210-0255-00
-97	131-0771-00		2	CONN,RCPT, ELEC: 4 CONT,QUICK DISCONNECT (ATTACHING PARTS)	0000A	RAO-304 W/O NUT
-98	220-0551-00		2	NUT, PLAIN, HEX. 9 9 MM X 0.437 INCH	73743	OBD
-99	210-0012-00		2	WASHER,LOCK:INTL,0.375 ID X 0.50" OD STL	78189	1220-02-00-0541C
-100	386-2408-00		1	PLATE, CONN MTG:ALUMINUM	80009	386-2408-00
	334-3379-00	XB012950	1	MARKER, IDENT:MARKED GROUND SYMBOL	80009	334-3379-00
-101	200-1414-06	B010100 B023829	1	COVER, SCOPE: REAR	80009	200-1414-06
	200-1414-13	в023830	1	COVER, SCOPE: REAR (ATTACHING PARTS)	80009	200-1414-13
-102	211-0101-00		2	SCREW,MACHINE:4-40 X 0.25,100 DEG,FLH STL	83385	OBD
-103	----------		-	Cover includes:		
	200-1399-02		1	. Cover, fan implr:	80009	200-1399-02
	105-0616-00		1	. . Stop, FAN IMPLR:FAN	80009	105-0616-00
-104	378-0807-01		1	. SCREEN, FAN: $2.5 \times 2.5 \times 0.032$, AL	80009	378-0807-01
	131-1333-00	Xb023830	1	CONNECTOR, RCPT, : POWER	80009	131-1333-00
	210-0586-00	XB023830	2	. NUT, PL,ASSEM WA:4-40 x 0.25, STL CD PL	83385	OBD
	211-0038-00	XB023830	2	. SCREW,MACHINE:4-40 X 0.312,FLH, 100 DEG	83385	OBD
-105	200-1445-01		1	COV ASSY, LINE V:	80009	200-1445-01
-106	352-0102-00		1	. FUSEHOLDER:0.262"ID TUBE FOR CRTG FUSE (attaching parts)	80009	352-0102-00
-107	213-0717-00		2	. SCREW, TPG, TF: $4-20 \times 0.312 \mathrm{PNH}, \mathrm{STL}, \mathrm{CD}$ PL	93907	OBD
	214-0773-03		2	. NUT, PLAIN: $6-32 \times 0.324$ dIA, BRS CD PL	80009	214-0773-03
-108	204-0549-01	в010100 в017259	1	BODY ASSY, LINE:	80009	204-0549-01
	204-0549-03	B017260	1	BODY ASSY, LINE: (ATTACHING PARTS)	80009	204-0549-03
-109	210-0407-00		2	NUT, PLAIN, HEX. 6 - 32×0.25 INCH, BRS	73743	3038-0228-402
-110	210-0006-00		2	WASHER,LOCK:非 INTL,0.018THK,STL CD PL	78189	1206-00-00-0541C
			-	BODY, LINE VOLTAGE INCLUDES:		
	131-1318-01		1	. BUS CONDUCTOR:	80009	131-1318-01
	214-0778-00	в010100 в017529	1	. CONT ASSY, ELEC:LINE V SEL,LOW/MED/HI	80009	214-0778-00
	214-0778-01	B017260	,	. CONTACT ASSY, EL:LINE V SEL,LOW/MED/HI	80009	214-0778-01
	210-0666-00		2	. RIVET, TUBULAR:0.188 L X 0.125 OD, BRS	12014	3329-3-16LONG
	344-0135-00		2	. CLIP, ELECTRICAL:FUSE, CU BE Albaloy Pl	80009	344-0135-00
-111	161-0033-07		1	CABLE ASSY, PWR, 3 WIRE, 92 INCH LONG	16428	KH8389
	161-0033-35	XB022405	1	CAbLE ASSY, PWR:3,0.75MM SQ, 220V,91.0 L (OPtION al EUROPEAN ONLY)	80126	OBD
	161-0033-36	XB022405	1	CABLE ASSY, PWR: 3, 0.75 MM SQ, $240 \mathrm{~V}, 91.0 \mathrm{~L}$	80126	OBD

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
1-	161-0033-37	XB022405	1	CABLE ASSY, PWR: $3,0.75 \mathrm{MM}, 240 \mathrm{~V}, 91.0 \mathrm{~L}$ (OPTION A3 AUSTRALIAN ONLY) CABLE ASSY, PWR: 3,18 AWG, 240V, 91.0 L (OPTION A4 NORTH AMERICAN ONLY) (ATTACHING PARTS)	S3109	OBD
	161-0033-38	XB022405			80126	OBD
-112	358-0371-00		1	bSHG, STRAIN RLF:90 DEG, 0.25 INCH DIA HOLE	80009	358-0371-00
-113	200-1004-00		1	CABLE, NIP., ELEC:0.265 ID X 0.38"OD W/FLG	80009	200-1004-00
-114	358-0372-00		1	BSHG, STRAIN RLF: 180 DEG,0.156" DIA HOLE	80009	358-0372-00
	334-1529-00	XB022405	1	Plate, ident: blank	80009	334-1529-00
			-	(OPT. Al, A2, A3, A4)		
-115	386-2332-01		1	PANEL, REAR:LINE VOLT	80009	386-2332-01
		(ATTACHING PARTS)SCREW, MACHINE:4-40 $0.188,100$ DEG, FLH STL				
-116	211-0105-00				83385	OBD
-117	211-0038-00		1	SCREW, MACHINE:4-40 X 0.312, FLH, 100 DEG	83385	OBD
-119	210-0201-00		1	TERMINAL,LUG: 0.12 ID, LOCKING, BRZ TIN PL	86928	OBD
	210-0586-00		1	NUT, PL, ASSEM WA:4-40 X 0.25 , STL CD PL	83385	OBD
	210-0201-00	B010100 в015314	1	TERMINAL, LUG:0.12 ID, LOCKING, BRZ TIN PL	86928	OBD
	210-0202-00	B015315	1	TERMINAL, LUG:0.146 ID, LOCKING, BRZ TINNED	78189	2104-06-00-2520N
	210-0586-00	B010100 B015314	1	NUT, PL, ASSEM WA:4-40 X $0.25, \mathrm{STL}$ CD PL	83385	OBD
	210-0457-00	B015315	1	NUT, PL, ASSEM WA: 6-32 x 0.312, STL CD PL	83385	OBD
-120	200-1459-00		1	COVER,CRT:REAR (ATTACHING PARTS)	80009	200-1459-00
-121	211-0008-00	(ATTACHING PARTS)SCREW, MACHINE: $4-40 \times 0.250$, PNH, STL, CDSUPPORT, CRT. REAR				
-122	386-2246-00				80009	386-2246-00
$\begin{aligned} & -123 \\ & -124 \end{aligned}$	348-0145-00		1	GROMMET, PLASTIC: U-SHP, 1.0×0.42 INCH	80009	348-0145-00
	407-1128-00		1	BRKT, CRT SHIELD: REAR, NYLON (ATTACHING PARTS)	80009	407-1128-00
-125	211-0507-00		3	SCREW, MACHINE: 6-32 X 0.312 INCH, PNH STL	83385	OBD
-126	210-0803-00		,	WASHER, FLAT:0.15 ID X 0.032 THK, STL CD PL	12327	OBD
-127	210-0202-00		1	TERMINAL,LUG:0.146 ID,LOCKING, BRZ TINNED	78189	2104-06-00-2520N
-128	220-0419-00		2	NUT, PLAIN, SQ: 6-32 x $0.312 \mathrm{INCH}, \mathrm{STL}$	83385	OBD
-129	210-0457-00		1	NUT, PL, ASSEM WA:6-32 X 0.312, STL CD PL	83385	OBD
-130	343-0088-00		1	CLAMP, LOOP:0.062 INCH DIA	80009	343-0088-00
-131	- -----		1	COIL, TUBE DEFLE: Y-AXIS(SEE L1385 REPL) (attaching parts)		
-132	343-0217-00		1	CLAMP, COIL: Y-AXIS	80009	343-0217-00
-133	211-0147-00		2	SCREW, MACHINE:4-40 X 0.25 INCH, PNH STL	83385	OBD
-134	210-0994-00		2	WASHER, FLAT: 0.125 ID X $0.25{ }^{\prime \prime}$ OD, STL	86928	5702-201-20
-135	210-0201-00		1	TERMINAL,LUG:0.12 ID,LOCKING,BRZ TIN PL	86928	OBD
-136	337-1645-00		1	SHIELD, ELEC:CRT NECK	80009	337-1645-00
	136-0513-01		1	SOCKET, PLUG-IN: CRT	80009	136-0513-01
-137	136-0202-01		1	. SOCKET, PLUG-IN: 14 PIN	80009	136-0202-01
-138	131-0707-00		4	- CONNECTOR,TERM: 22-26 AWG,BRS\& CU BE GOLD	22526	47439
-139	352-0162-00		1	. HLDR, TERM CONN:4 WIRE BLACK	80009	352-0162-00
	131-0472-01		2	CONTACT, ELEC:FEMALE	80009	131-0472-01
-140	369-0031-01		1	IMPLR, FAN, CENTR	80009	369-0031-01
-141	105-0507-00		1	- STOP, SFT END PL: PLASTIC	80009	105-0507-00
	213-0022-00		1	. SETSCREW:4-40 X 0.188 INCH, HEX SOC STL	74445	OBD
-142	348-0056-00		3	GROMMET, PLASTIC:0.375 INCH DIA	80009	348-0056-00
-143	348-0253-00		1	GROMMET, PLASTIC: BLACK, OBLONG, 3.0X0. 925	80009	348-0253-00
-144	348-0063-00		2	GROMMET, PLASTIC:0.50 INCH DIA	80009	348-0063-00
	348-0064-00		2	GROMMET, PLASTIC:0.625 INCH DIA	80009	348-0064-00
-145	344-0250-00		1	CLIP, ELECTRICAL:COMPONENT MOUNTING (ATtACHING PARTS)	80033	E50005-007
-146	211-0008-00		1	SCREW, MACHINE:4-40 X 0.250 , PNH, STL, CD PL	83385	OBD
-147	210-0586-00		1	NUT, PL,ASSEM WA:4-40 x 0.25,STL CD PL	83385	OBD
-148	---------			delay line, elec: (see dl380 Repl) (ATTACHING PARTS)		
-149	407-1138-00		1	BRKT, DELAY LINE:ALUMINUM	80009	407-1138-00
-150	210-0457-00		1	NUT, PL, ASSEM WA: 6-32 x 0.312,STL CD PL	83385	OBD

Fig. \&

Fig. \&

Fig. \&

Fig. \&

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
3-1	131-1428-00		2	CONTACT, ELEC: GROUNDING CLIP (ATtaching parts)	80009	131-1428-00
-2	211-0017-00		2	SCREW,MACHINE:4-40 X 0.375 INCH, PNH STL	83385	OBD
-3	166-0030-00		2	SPACER, SLEEVE: 0.25 OD X 0.188 INCH LONG	80009	166-0030-00
	672-0045-02		1	CKT BOARD ASSY:GAIN (ATTACHING PARTS)	80009	672-0045-02
-4	211-0207-00	B010100 B018768	2	SCR,ASSEM WSHR:4-40 x 0.312 DOUble SEmS	83385	OBD
	211-0244-00	B018769	2	SCR,ASSEM WSHR:4-40 x 0.312 INCH, PNH STL	78189	OBD
			-	ATTENUATOR ASSY INCLUDES:		
-5	200-1439-00		2	. COVER,CHASSIS:ATTENUATOR (ATTACHING PARTS)	80009	200-1439-00
-6	213-0176-00		2	. SCR, TPG, THD FOR: 2-32 X 0.156 INCH, PNH, STL	83385	OBD
-7	210-0938-00		2	. WASHER, FLAT:0.109 ID X 0.25 INCH OD, STL	75497	AN960-3
-8	211-0008-00	B010100 B020319		. SCREW, MACHINE:4-40 X 0.250, PNH, STL, CD PL	83385	OBD
	211-0661-00	B020320	8	. SCREW,MACHINE:4-40 X 0.25 INCH, PNH, STL	78189	OBD
-9	210-0851-00	B010100 B017669	8	. WASHER, FLAT: 0.119 ID X 0.375 INCH OD, STL	12327	OBD
	210-1307-00	в017670	8	. WASHER, LOCK:0.115 ID, SPLIT, 0.025 THK	86928	A384-25N
-10	131-0679-02		2	. CONNECTOR,RCPT,:BNC,MALE, 3 CONTACT (ATTACHING Parts)	24931	28JR270-1
-11	210-1039-00		2	. WASHER,LOCK: INT,0.521 ID X 0.625 INCH OD	24931	OBD
-12	210-0845-00		2	. WASHER, FLAT:0.500 ID X 0.625 INCH OD, STL	89663	634-R
-13	220-0695-00		2	. NUT, PLAIN, DODEC:0.500-28 X 0.90 INCH, BRS	73743	OBD
-14	441-1058-00		2	- CHASSIS, SCOPE:ATTENUATOR (ATTACHING PARTS)	80009	441-1058-00
-15	129-0299-00		8	. POST, ELEC-MECH: HEX,0.333 INCH LONG	80009	129-0299-00
-16	211-0097-00		4	. SCREW, MACHINE:4-40 X 0.312 INCH, PNH STL	83385	OBD
-17	210-0004-00		12	. WASHER, LOCK: 非 INTL, 0.015THK, STL CD PL	000BK	OBD
-18	211-0001-00		4	. SCREW, MACHINE: 2-56 X 0.25 INCH, PNH. STL	87308	OBD
-19	210-0053-00		4	. WASHER, LOCK: INTL, 0.092 ID X $0.175^{\prime \prime} \mathrm{OD}, \mathrm{STL}$	83385	OBD
-20	210-1008-00		4	. WASHER, FLAT:0.09 Id x $0.188^{\prime \prime}$ Od, BRS	12360	OBD
-21	210-0405-00		4	. NUT, PLAIN, HEX.: 2-56 X 0.188 INCH, BRS	73743	12157-50
-22	----- -----		2	. CKT board assy $\mathrm{CH}, \mathrm{CH} 2 \mathrm{ATTEN}$ (SEE Al, A2 REPL)		
-23	131-1030-00		10	. . CONT ASSY, ELEC:CAM SWITCH, BOTTOM	80009	131-1030-00
	131-1031-00		10	. . CONTACT ASSY, EL:CAM SWITCH, TOP (attaching parts)	80009	131-1031-00
	210-0779-00	в010100 в015654	10	. . RIVET, tubular:0.051 OD X 0.115 INCH LONG	42838	RA-29952715
	210-3082-00	B015655	10	. . EYELET, METALLIC: 0.047 OD X 0.133 L, BRASS	80009	210-3082-00
-24	136-0252-01		36	. . CONTACT, ELEC:0.178 INCH LONG	00779	1-332095-2
	136-0333-00		2	. . SOCKET, PIN TERM:0.138 INCH LONG	00779	1-331677-4
-25	337-1406-00		1	. . Shld, electrical: Cam Contacts	80009	337-1406-00
-26	384-1178-00		2	. Extension Shaft:0.123 OD X 6.1 Inch long	80009	384-1178-00
-27	105-0243-00		2	- ACTUATOR,SWITCH:AC,DC (ATTACHING PARTS)	80009	105-0243-00
-28	213-0214-00		2	. SCRÉW, CAP SCH: 2-56 X $0.375^{\text {"HEX HD STL }}$	70278	OBD
	131-1314-00		2	. CONTACT, ELEC: GROUNDING	80009	131-1314-00
	----- ----		-	- (may be replaced by index numbers 41		
	----------		-	- and 42 ON availability of STOCK)		
	263-1014-00		2	. SW CAM ACTR AS:VOlTS/DIV (ATTACHING Parts)	80009	263-1014-00
-29	211-0116-00	B010100 B021289	12	. SCR, ASSEM WSHR:4-40 x 0.312 INCH, PNH BRS	83385	OBD
	211-0292-00	B021290	12	. SCR,ASSEM WSHR:4-40 X 0.29,BRS NI PL - - - * - -	78189	OBD
	----------		-	- EACH actuator assy includes:		
-30	131-0963-00		2	. . CONTACT, ELEC: GROUNDING	000EX	OBD
-31	214-1139-03		2	. . SpRING, FLAT: RED COLORED	80009	214-1139-03
-32	214-1752-00		2	- . Roller, DETENT:	80009	214-1752-00
-33	210-0406-00		2	. . NUT, PLAIN, HEX. -4-40 X 0.188 INCH, BRS $^{\text {a }}$	73743	12161-50
-34	401-0180-00		1	. . BEARING,CAM SW:FRONT \& REAR (ATtACHING PARTS)	80009	401-0180-00
-35	354-0390-00		1	. . RING,RETAINING:0.338 ID x 0.025" THK, STL	79136	5100-37MD

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
3-36	384-0878-02		1	. . SHAFT, CAM SW:	80009	384-0878-02
-37	105-0282-01		1	- . ACTUATOR, CAM SW: DC,GND, AC	80009	105-0282-01
-38	210-0406-00		4	. . NUT, PLAIN, HEX. : 4-40 X 0.188 INCH, BRS	73743	12161-50
-39	401-0178-00		1	- BEARING,CAM SW:CENTER (ATTACHING PARTS)	80009	401-0178-00
-40	354-0443-00		1	. RING, RETAINING:0.328 FREE IDX 0.448 OD	97464	200-37
-41	210-1189-00		1	- WASHER, FLAT: 0.195 ID X 0.367 INCH OD, BRS	51316	OBD
-42	214-2043-00		1	. . SPRING, HLCPS:CONICAL,0.20 INCH LONG	80009	214-2043-00
-43	105-0343-01		1	- . ACTUATOR, CAM SW:ATTEN	80009	105-0343-01
-44	384-0880-00		1	. . SHAFT, CAM SW: REAR	80009	384-0880-00
-45	210-0406-00		4	. . NUT, PLAIN, HEX. 4 -40 X 0.188 INCH, BRS	73743	12161-50
-46	214-1139-02		1	- SPRING,FLAT: GREEN COLORED	80009	214-1139-02
	214-1139-03		1	- . SPRING, FLAT: RED COLORED	80009	214-1139-03
-47	214-1752-00		2	- . ROLLER,DETENT:	80009	214-1752-00
-48	401-0180-00		1	- . BEARING, CAM SW:FRONT \& REAR	80009	401-0180-00
-49	---		1	- CKT BOARD ASSY:GAIN SWITCH(SEE A4 REPL)		
-50	131-0589-00		6	. . TERMINAL, PIN: 0.46 L X 0.025 SQ	22526	48283-029
-51	131-0608-00		29	. . TERMINAL,PIN:0.365 L X 0.025 PH BRZ GOLD	22526	47357
-52	131-1031-00		10	- . CONTACT ASSY,EL:CAM SWITCH,TOP (ATTACHING PARTS)	80009	131-1031-00
-53	210-0779-00	B010100 B015654	10	. . RIVET, TUBULAR:0.051 OD X 0.115 INCH LONG	42838	RA-29952715
	210-3082-00	B015655	10	. . EYELET, METALLIC: 0.047 OD X 0.133 L, BRASS - - * - - -	80009	210-3082-00
-54	136-0252-07		-	. . SOCKET, PIN CONN:W/O DIMPLE	22526	75060-012
	136-0220-00		-	- . SKT, PL-IN ELEK:TRANSISTOR 3 CONTACT, PCB MT	71785	133-23-11-034
	136-0350-00		-	- . SOCKET, PLUG-IN: 3 PIN,LOW PROFILE	80009	136-0350-00
-55	376-0051-00		2	. . CPLG, SHAFT, FLEX:0.127 ID X 0.375 ID DELRIN	80009	376-0051-00
	213-0022-00		4	- . SETSCREW:4-40 X 0.188 INCH, HEX SOC STL	74445	OBD
-56	------ ---		1	- . RES., VAR, NONWIR: (SEE R128/S128 REPL)		
-57	361-0515-00		1	- . SPACER, SWITCH: PLASTIC	80009	361-0515-00
-58	---------		1	. . RES., VAR, NONWIR: (SEE R228/S228 REPL)		
-59	361-0515-00		1	- . SPACER, SWITCH: PLASTIC	80009	361-0515-00
-60	337-1418-01	B010100 B015685	2	- . SHIELD, ELEC:CAM SWITCH CASTING	80009	337-1418-01
	337-1418-02	B015686	2	. . SHIELD,ELEC:CIRCUIT BOARD (ATTACHING PARTS)	80009	337-1418-02
-61	213-0277-00		6	. . SCR, TPG, THD FOR: 2-56 X 0.312 INCH, PNH STL	83385	OBD
-62	210-0053-00		6	- WASHER, LOCK: INTL, 0.092 ID X 0.175'OD, STL	83385	OBD
-63	210-1134-00		6	. . WASHER,FLAT:0.09 ID X 0.25 INCH OD,BRS	12327	OBD
-64	---------		1	- . SW, PUSH BUTTON:VERT MODE (SEE S300 REPL)		
-65	361-0411-00		4	. . SPACER, PUSH SW:0.13 W X 0.375 INCH L, PLSTC	71590	J64285-00
-66	352-0331-00		2	. . LAMPHOLDER:	80009	352-0331-00
-67	384-1175-00		2	EXTENSION SHAFT:0.123 OD X 5.7 INCH LONG	80009	384-1175-00
-68	384-1100-00		1	EXTENSION SHAFT:0.13 SQ X 6.215" LONG, PLSTC	80009	384-1100-00
	384-1129-00		5	EXTENSION SHAFT:5.607 INCH LONG	80009	384-1129-00
-69	376-0029-00		2	CPLG, SHAFT, RGD: 0.128 ID X 0.312 OD X $0.5^{\prime \prime} \mathrm{L}$	80009	376-0029-00
	213-0022-00		4	. SETSCREW:4-40 X 0.188 INCH, HEX SOC STL	74445	OBD
-70	131-1428-00		2	CONTACT, ELEC: GROUNDING CLIP	80009	131-1428-00
	213-0075-00		4	. SETSCREW:4-40 X 0.094,STL BK OXD, HEX SKT (ATTACHING PARTS)	000BK	OBD
-71	211-0008-00		1	SCREW, MACHINE : 4-40 X 0.250, PNH, STL, CD PL	83385	OBD
-72	210-0054-00		1	WASHER,LOCK: SPLIT,0.118 ID X 0.212"OD STL	83385	OBD
-73	210-0994-00		1	WASHER, FLAT: 0.125 ID X 0.25" OD,STL - - - * - -	86928	5702-201-20
-74	-- -----			CKT BOARD ASSY:VERT PREAMP(SEE A3 REPL) (ATTACHING PARTS)		
-75	211-0116-00	B010100 B021289	7	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH BRS	83385	OBD
	211-0292-00	B021 290	7	SCR,ASSEM WSHR:4-40 X 0.29,BRS NI PL	78189	OBD
-76	129-0413-00		1	POST, ELEC-MECH:0.538 INCH L	80009	129-0413-00
	----------			CKT BOARD ASSY INCLUDES:		
-77	131-1058-00		2	- CONN, PLUG, ELEC: 2 FEMALE BLADE CONT	71785	S-302CCT
-78	136-0269-00		3	- SOCKET, PLUG-IN: 14 CONTACT, LOW CLEARANCE	73803	CS9002-14
-79	136-0252-07			- SOCKET,PIN CONN:W/O DIMPLE	22526	75060-012
	136-0220-00		-	. SKT, PL-IN ELEK:TRANSISTOR 3 CONTACT, PCB MT	71785	133-23-11-034

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
	136-0350-00		-	. SOCKEt, PLUG-IN: 3 Pin,LOW PROFILE	80009	136-0350-00
3-80	214-0579-00		4	. TERM, TEST POINT: BRS CD PL	80009	214-0579-00
-81	131-0608-00		1	. TERMINAL, PIN:0.365 L X 0.025 PH BRZ GOLD	22526	47357
-82	131-1031-00		9	. CONTACT ASSY, EL:CAM SWITCH, TOP	80009	131-1031-00
	131-1030-00		8	. CONT ASSY, ELEC:CAM SWITCH, BOTTOM (ATTACHING PARTS)	80009	131-1030-00
-83	210-0779-00	B010100 в015654	9	. RIVET, TUBULAR:0.051 OD X 0.115 INCH LONG	42838	RA-29952715
	210-3082-00	B015655	9	- EYELET, METALLIC:0.047 OD X 0.133 L , BRASS	80009	210-3082-00
-84	214-1813-00		1	. heat Sink, elec:TRansistor	05820	$213-\mathrm{AB}$
-85	214-1799-00		2	. HEAT SINK, ELEC:TRANSISTOR	05820	215 AB
-86	131-1003-00		8	. CONN, RCPT, ELEC:CKT BD MT, 3 PRONG	80009	131-1003-00
-87			1	- SW, PUSH BUTTON:INVERT(SEE S225 REPL)		
-88	361-0411-00		1	. SPACER, PUSH SW:0.13 W X 0.375 INCH L, PLSTC	71590	J64285-00
	105-0421-00		1	- ACTUATOR, SWITCH:MOMENTARY	80009	105-0421-00
-89	---------		1	- RES., VAR, NONWIR: (SEE R185 REPL)		
-90			1	- RES., VAR, NONWIR: (SEE R285 REPL)		
-91	105-0420-00		1	- . ACTUATOR, SWITCH:MOMENTARY	80009	105-0420-00
-92	214-1779-00		1	. . SPRING, HLCPS: 0.156 OD X 0.844 INCH LONG	04811	OBD
-93	351-0359-00		1	- . GUIDE, SLIDE SW:	80009	351-0359-00
	105-0582-00		1	. ACTR ASSY, SL SW:OUTPUT ATTEN	80009	105-0582-00
-94	376-0146-00		1	. . CPLG, SHAFT, RGD: FOR 0.125 INCH DIA SHAFT	80009	376-0146-00
	213-0048-00		1	. . SETSCREW:4-40 X 0.125 INCH, HEX SOC STL	74445	OBD
-95	105-0517-00		1	- . ACTUATOR, SWITCH: SLIDE, BANDWIDTH LIMIT	80009	105-0517-00
-96	214-1126-01		1	. . SPRING, FLAT: $0.7 \times 0.125, \mathrm{CU}$ be GRN CLR	80009	214-1126-01
-97	214-1127-00		1	. . ROLLER, DETENT:0.125 DIA X 0.125, SST	80009	214-1127-00
-98	351-0355-00		1	- . GUIDE, SLIDE SW:	80009	351-0355-00
-99	348-0253-00		1	GROMMET, PLASTIC: BLACK, OBLONG, 3.0XO. 925	80009	348-0253-00
-100	407-1127-00		1	BRACKET, PREAMP:REAR, BRASS CU-SN-ZN PL (attaching parts)	80009	407-1127-00
-101	210-0586-00		2	NUT, PL,ASSEM WA:4-40 X 0.25, STL CD PL - - * *- -	83385	OBD
-102	129-0385-00		3	SPACER, POST: 1.77 L, W/6-32\& 4-40 THD ENDS	80009	129-0385-00
-103	---------		1	RES. , VAR, FILM: (SEE R1303A, B, C,D REPL)		
-104	211-0507-00		2	SCREW, MACHINE: 6-32 X 0.312 INCH, PNH STL	83385	OBD
-105	210-0202-00		1	TERMINAL, LUG: 0.146 ID, LOCKING, BRZ TINNED	78189	2104-06-00-2520N
-106	210-0457-00		2	NUT, PL, ASSEM WA: 6-32 X 0.312, STL CD PL	83385	OBD
-107	407-1236-00		1	BRACKET, RES:ALUMINUM	80009	407-1236-00
-108	210-0586-00		2	(ATTACHING PARTS)	83385	OBD
-109	337-1711-00		1	SHIELD, ELEC: HI VOLTAGE (attaching parts)	80009	337-1711-00
-110	211-0008-00		4	SCREW, MACHINE:4-40 X 0.250, PNH, STL,CD PL $---\frac{2}{\boldsymbol{x}}-\infty$	83385	OBD
-111	342-0164-00		1	INSULATOR, FILM:3.65 x 4.7, high voltage	80009	342-0164-00
	342-0159-00		1	INSULATOR,FILM:5.10 X 12.4 INCH	80009	342-0159-00
-113	129-0413-00		4	POST, ELEC-MECH: 0.538 INCH L	80009	129-0413-00
-114	210-0994-00		1	WASHER,FLAT: 0.125 ID X 0.25" OD, STL	86928	5702-201-20
-115	----- ----		1	TRANSISTOR:CHAS MTG(SEE Q1456 REPL) (AtTACHING PARTS)		
-116	211-0062-00		1	SCREW,MACHINE: 2-56 x 0.312, PNH,STL	83385	OBD
	210-1156-00		1	WASHER, SHLDR:0.09 ID X $0.085 \mathrm{D}, \mathrm{NYL}, 0.2$ OD	80009	210-1156-00
-118	342-0166-00		1	INSULATOR, PLATE: TRANSISTOR	80009	342-0166-00
	214-1845-00	B010100 B017786	1	HEAT SINK,ELEC:TRANSISTOR	80009	214-1845-00
	214-1845-01	в017787	1	HEAT SINK, XSTR:0.125 DIA HOLE,AL	80009	214-1845-01
-120	----- ----			TRANSISTOR:CHAS MTG(SEE Q1482 REPL) (ATtACHING Parts)		
-121	211-0182-00		1	SCR,ASSEM WSHR: $2-56 \times 0.312$ INCH, PNH, STL	12360	OBD
-122	210-1156-00		1	WASHER, SHLDR:0.09 ID X $0.085 \mathrm{D}, \mathrm{NYL}, 0.2$ OD	80009	210-1156-00

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty.	12345 Name \& Description	Mfr Code	Mfr Part Number
3-123	342-0166-00		1	INSULATOR, PLATE:TRANSISTOR	80009	342-0166-00
-124	343-0088-00		1	CLAMP, LOOP:0.062 INCH DIA	80009	343-0088-00
-125	384-1101-00		2	EXTENSION SHAFT:4.14 INCH LONG	80009	384-1101-00
-126	384-1175-00		1	EXTENSION SHAFT:0.123 OD X 5.7 INCH LONG	80009	384-1175-00
-127	376-0029-00		2	CPLG, SHAFT, RGD: 0.128 ID X 0.312 OD X $0.5^{\prime \prime} \mathrm{L}$	80009	376-0029-00
	213-0075-00		2	. SETSCREW:4-40 X 0.094, STL BK OXD, HEX SKT	000BK	OBD
-128	384-1179-00		1	EXTENSION SHAFT:9.312 INCH LONG	80009	384-1179-00
-129	384-1176-00		1	EXTENSION SHAFT:0.125 OD X 1.45 INCH LONG	80009	384-1176-00
-130	384-1172-00		1	EXTENSION SHAFT:0.125 OD X 1.7 INCH LONG	80009	384-1172-00
-131	384-1171-00		1	EXTENSION SHAFT: 1.05 L X 0.125 OD AL	80009	384-1171-00
-132	376-0051-00		2	CPLG, SHAFT, FLEX: 0.127 ID X 0.375 ID DELRIN	80009	376-0051-00
	213-0022-00		4	. SETSCREW:4-40 X 0.188 INCH, HEX SOC STL	74445	OBD
	376-0051-01		1	CPLG, SHAFT, FLEX: 0.127 ID X 0.375 OD	80009	376-0051-01
	213-0048-00		4	. SETSCREW:4-40 X 0.125 INCH, HEX SOC STL	74445	OBD
-133	-		1	CKT BOARD ASSY: INTERFACE (SEE A9 REPL) (ATTACHING PARTS)		
-134	211-0207-00	B010100 B018768	7	SCR,ASSEM WSHR:4-40 X 0.312 DOUBLE SEMS	83385	OBD
	211-0244-00	B018769	7	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH STL	78189	OBD
	210-0261-00		1	TERMINAL, LUG: 0.14 ID, PLAIN, BRASS	80009	210-0261-00
			-	CKT BOARD ASSY INCLUDES:		
-135	131-1003-00		4	. CONN, RCPT, ELEC: CKT BD MT, 3 PRONG	80009	131-1003-00
-136	131-0566-00		7	. BUS CONDUCTOR: DUMMY RES,2.375,22 AWG	55210	L-2007-1
-137	136-0252-04		-	. SOCKET,PIN TERM:U/W 0.016-0.018 DIA PINS	22526	$75060-007$
	136-0220-00		-	. SKT,PL-IN ELEK:TRANSISTOR 3 CONTACT,PCB MT	71785	$133-23-11-034$
	136-0350-00		-	. SOCKET, PLUG-IN: 3 PIN,LOW PROFILE	80009	136-0350-00
-138	210-0966-00	B010100 B016519	2	. WASHER, NONMETAL:0.312 ID X $0.875^{\prime \prime}$ OD, RBR	80009	210-0966-00
	210-0966-00	B016520	1	. WASHER, NONMETAL:0.312 ID X $0.875^{\prime \prime}$ OD, RBR	80009	210-0966-00
-139	136-0499-10		2	- CONNECTOR,RCPT,:10 CONTACT	00779	4-380949-0
-140	136-0499-12		1	- CONNECTOR, RCPT, : 12 CONTACT	00779	4-380949-2
-141	344-0154-00		2	- CLIP, ELECTRICAL:FUSE,CKT BD MT	80009	344-0154-00
-142	214-0579-00		26	- TERM, TEST POINT: BRS CD PL	80009	214-0579-00
-143	131-0608-00		25	. TERMINAL, PIN: 0.365 L X 0.025 PH BRZ GOLD	22526	47357
-144	131-1261-00		24	. CONTACT,ELEC:F-SHAPED	00779	1-380953-0
-145	214-1291-00	B010100 B018893	1	. HEAT SINK, ELEC: XSTR, 0.72 OD X $0.375^{\prime \prime} \mathrm{H}$	05820	207SB
	214-2593-00	B018894	1	- HEAT SINK,XSTR: (1) TO-5 ALUMINUM	13103	2257B
-146	124-0093-00		1	- TERMINAL BOARD: 5 NOTCH CERAMIC, CLIP MTD	80009	124-0093-00
	355-0046-00		2	. . MOUNT, TERM. BD:0.577 INCH H	80009	355-0046-00
-147	124-0092-00		1	- TERMINAL BOARD: 3 NOTCH, CERAMIC, CLIP MTD	80009	124-0092-00
	355-0046-00		1	. . MOUNT, TERM. BD:0.577 INCH H	80009	355-0046-00
-148	124-0118-00		1	- TERMINAL BOARD: 1 NOTCH, CERAMIC,CLIP MTD	80009	124-0118-00
	355-0046-00		1	. . MOUNT, TERM. BD: 0.577 INCH H	80009	355-0046-00
-149	131-0382-00		1	. TERMINAL, STUD:0.812 L, INSULATED (${ }^{\top} T \mathrm{~T}$ ACHING PARTS)	71279	572-4822-01-05-1
-150	210-0586-00		1	. NUT,PL,ASSEM WA:4-40 X 0.25,STL CD PL	83385	OBD
-151	361-0007-00	B010100 B016519	11	. SPACER, SLEEVE:0.250 INCH DIA, PLASTIC	80009	361-0007-00
	361-0007-00	B016520	8	. SPACER,SLEEVE:0.250 INCH DIA, PLASTIC	80009	361-0007-00
-152	----- -----		-	. RES., VAR, NONWIR:FOCUS(SEE R1380 REPL) (ATTACHING PARTS)		
-153	210-0583-00		1	. NUT, PLAIN, HEX:0.25-32 X 0.312 INCH, BRS	73743	2X20317-402
-154	210-0940-00		1	- WASHER, FLAT:0.25 ID X 0.375 INCH OD, STL	79807	OBD
-155	210-0046-00		1	. WASHER,LOCK:0.261 ID,INTL,0.018 THK,BRS	78189	1214-05-00-0541C
$\begin{aligned} & -156 \\ & -157 \end{aligned}$	386-2433-00		1	- SUPPORT,VAR RES:CIRCUIT BOARD MOUNTING	80009	386-2433-00
	-- -----		1	. SEMICOND DEVICE:VOLT MULT(SEE U1321 REPL) (ATTACHTNG PARTS)		
-158	220-0736-00		2	. NUT, PL, EXT WSHR:8-32 X 0.344 HEX,NYLON	23050	OBD
-159	----- -----		1	. SW, PUSH BUTTON: X10 MAG(SEE S1110 REPL)		
-160	361-0384-00		2	. SPACER, PB SW:0.133 INCH LONG	80009	361-0384-00
-161	----------		1	- SW, PUSH BUTTON: BEAM FINDER(SEE S450 REPL)		
-162	361-0385-00		2	. SPACER, PB SW:0.164 INCH LONG	80009	361-0385-00
			1	- RES., VAR, NONWIR : INTENSITY(SEE R1335A, B REPL)		
$\begin{aligned} & -163 \\ & -164 \end{aligned}$	361-0607-00		1	. SPACER,SWITCH:PLASTIC	80009	361-0607-00

Fig. \& Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
4-1	437-0141-02		1	Cab,elec equip: Standard	80009	437-0141-02
-2	348-0080-01		4	. FOOT, CABINET: BOTTOM	80009	348-0080-01
-3	352-0263-00	B010100 B022414	1	- HLDR, POUCH ASSY:	80009	352-0263-00
	352-0263-01	B022415	1	. hldr, pouch assy:ter blue polycarbonate	80009	352-0263-01
-4	200-1412-00		1	COVER, SCOPE: FRONT	80009	200-1412-00
	367-0195-07		1	handle, Carrying:12.722 L, BLACK vinyl	80009	367-0197-07
-5	200-0602-00		1	. COVER, hdl latch: 2.12 dia x 0.7 ,acetal	80009	200-0602-00
-6	367-0195-00		1	. handle, carrying: (ATTACHING PARTS)	80009	367-0195-00
-7	213-0227-00		4	. SCR,TPG,THD FOR:6-32 x 0.50 DEG,FLH ST	83385	OBD
-8	334-1999-01		1	plate, ident Marked 475A	22670	obd
-9	214-0516-00		2	. SPRING, hLCPS:0.959 dia x 1.250 inch long	80009	214-0516-00
-10	214-1987-00		2	. index,hdl ring:	80009	214-1987-00
-11	214-0515-02		2	. HUB, HDL INDEX: 1.42 DIA X 0.565 THK,AL CD (ATTACHING PARTS)	80009	214-0515-02
-12	213-0139-00		2	. SCR, CAP, HEX HD: 10-24 X 0.375 INCH LONG	000 cy	OBD
-13	210-1182-00	B010100 B022499	2	. WSHR, SPR TNSN:0.218 ID x 0.69 INCH OD	80009	210-1182-00
	210-0805-00	B022500	2	. WASHER,FLAT:0.204 ID X 0.438 INCH OD,STL	12327	OBD

 Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Numbe
5-	016-0556-01		1	ADPTR, RACK MTG:	80009	016-0556-01
-1	367-0022-00		2	. HANDLE, BOW: 1.5×4.5 INCH (ATtACHing parts)	06540	10353-B-1032-25
-2	213-0090-00		4	. SCrew,machine: 10-32 x 0.50 inch, hex	83385	ObD
-3	134-0067-00		4	. button, plug:gray plastic	80009	134-0067-00
-4	213-0334-00		2	. SETSCREW:0.250-28 $\times 0.750 \mathrm{INCH}, \mathrm{SOC} \mathrm{STL}$	56878	OBD
-5	351-0104-00		1	- SLIDE SECT,DWR:12.625 X 2.25 (ATTACHING PARTS)	06666	C-720-2
-6	212-0023-00		2	. SCREW, MACHINE:8-32 x 0.375 INCH, PNH STL	83385	OBD
-7	210-0458-00		2	. NUT, PL, ASSEM WA:8-32 $\times 0.344$ INCH, STL	78189	511-081800-00
-8	210-0808-00		2	. eyelet,metallic:centering (ATTACHING PARTS FOR EACH)	63743	25151.13-3
-9	211-0507-00		1	. SCREW, MAChine: 6 -32 X 0.312 INCH, PNH STL	83385	obd
-10	210-0457-00		1	NUT, PL, ASSEM WA: 6-32 X 0.312 INCH, STL	83385	OBD
-11	386-2669-00		1	. SUPPORT, CABINET: REAR (ATTACHING PARTS)	80009	386-2669-00
-12	212-0023-00		4	. SCREW, MACHINE: 8 -32 X 0.375 INCH, PNH STL	83385	obd
-13	210-0458-00		2	NUT, PL, ASSEM WA: $8-32 \times 0.344 \mathrm{INCH}$, STL	78189	511-081800-00
-14	407-1350-00		1	. BRACKET,ANGLE:VIBRATION DAMPER,ALUMINUM (ATtaching parts)	80009	407-1350-00
-15	212-0023-00		2	. SCREW, MACHINE:8-32 X 0.375 INCH, PNH STL	83385	Obd
-16	210-0458-00		2	. NUT, PL, ASSEM WA: $8-32 \times 0.344$ INCH, STL	78189	511-081800-00
-17	211-0517-00			. SCREW, MACHINE:6-32 $\times 1$ InCH, PNH , STL	83385	OBD
-18	212-0033-00		4	. SCREW, MACHINE: 8 -32 $\times 0.750$ INCH, PNH STL	83385	OBD
-19	437-0154-03		1	- CABINET, SCope:	80009	437-0154-03
-20	351-0101-00	в010100 в018538	1	. Slide, dwr, ext:pair	80009	351-0101-00
	351-0101-02	B018539	1	. SLIde, dwr, ext:w/closed mounting slots	80009	351-0101-02
-21	016-0099-00		1	. HDW Kit, elek Eq: RACKMOUNT HDW	80009	016-0099-00

Fig. \&

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

COMMITTED TO EXCELLENCE
Product: 475/475A

manual change information

Date: April 15, 1975 Change Reference: Correction H'vee, Manual Part No.:

DESCRIPTION

Electrical Parts List correction and schematic changes.

Change to:

C105	$290-0524-00$	Capacitor Elec.4.7uF	10 V	20%
C205	$290-0524-00$	Capacitor Elec.4.7uF	10 V	20%
R454	$311-1263-00$	Resistor Var. IK		
C455	$283-0238-00$	Capacitor.01uF	50 V	$+10-10 \%$
C420	$281-0534-00$	Capacitor 3.3pF	500 V	
R1124	$315-0271-00$	Resistor 270Ω	$1 / 4 \mathrm{~W}$	5%
R1134	$315-0331-00$	Resistor 330Ω	$1 / 4 \mathrm{~W}$	5%
C1323	$283-0162-00$	Capacitor.luF	5000 V	$+80-30 \%$

Remove:

VR1224	$152-0175-00$	Diode zener	5.6 V
VR1134	$152-0166-00$	Diode zener	6.2 V
R450	$311-1260-00$	Resistor Var.	250Ω

Add:

C953	$281-0542-00$	Capacitor 18 pF	500 V	$+10-10 \%$
R953	$315-0433-00$	Resistor $43 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%

Pago of

manual change information

Date: August 1978 Change Reference:

```
H4099
```

Product: $475 / 475 A$ Manual Part No.: \qquad

DESCRIPTION

Electrical and Schematic correction

Change to:
VR482 Zenerdiode 4,3V 152-0395-00

Add:
R482A Resistor $30 \Omega 1 / 4 \mathrm{~W} \quad 315-0300-00$

Location is on Vert. Output Amplifier.

Page
\qquad

Electrical Parts List Correction

Change to:
R447 Resistor 1\% 931 ohm 321-0190-00

manual change information

COMMITTED TO EXCELLENCE
Date: November Change Reference: \qquad See below
Product: 475/475A

DESCRIPTION

Change Reference: | $H 3980$ |
| :--- |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| $H 3925$ |
| $H 4241$ |
| $H 3941$ |
| |
| |

Electrical Parts List Correction

Change to: Cl071 Capacitor 9,95uF 285-0784-04 (Remark: 285-0784-04 is subpart off Timing set 295-0184-00)

Change to:	R1494	Resistor 82 K	$1 / 4 \mathrm{~W}$	5%	$315-0823-00$
	R32	Resistor $4,7 \Omega$	$1 / 8 \mathrm{~W}$	5%	$317-0047-00$
Add:	R30	Resistor 18Ω	$1 / 8 \mathrm{~W}$	5%	$317-0180-00$

Change to:	C 175	Capacitor Var.	$2,5-9 \mathrm{pF}$	$281-0122-00$
	C 275	Capacitor Var.	$2,5-9 \mathrm{pF}$	$281-0122-00$

Change to: R136 Resistor 200 \quad 317-0201-05
R236 Resistor 200 2 317-0201-05
C136 Capacitor 220pF $\quad \therefore 10 \%$ 283-0108-00
C236 Capacitor 220pF 10\% 283-0108-00 (Location: on Vertical Preamplifier)

Change to: DS128 Bulb, Neon ... 150-0183-00
DS228 Bulb, Neon 150-0183-00

DS1091 Bulb, Neon 150-0183-00
DSIll0 Bulb, Neon 150-0183-00
Add: R1692 Resistor 47 $1 / 4 \mathrm{~W} \quad$ 315-0470-00
(Location: on Fan Motor electrical circuit board 670-6002-01)

[^0]: Rear Panel
 Feet

[^1]: When troubleshooting transistors with a voltmeter, measure the emitter-to-base and emitter-to-collector voltages to determine if the voltages are consistent with normal circuit voltage. Voltages across a transistor vary with the type of device and its circuit function. Some of these voltages are predictable. The emitter-to-base voltage of a conducting silicon transistor will normally be 0.6 to 0.8 volts. The emitter-to-collector voltage of saturated transistors is approximately 0.2 volts. Because these values are small, the best way to check them is by connecting the voltmeter across the junction and using a sensitive voltmeter setting, rather than by comparing 2 voltages taken with respect to ground (both leads of the voltmeter must be isolated from ground if this method is used.

[^2]: 'Instrument power cord should be removed from power source.
 ${ }^{2}$ Readings taken with a digital ohmmeter (see item 3 under Troubleshooting Equipment in this section).
 ${ }^{3}$ Readings are normal if within $\mathbf{5 0} \%$ of listed value.

[^3]: c. Return A TRIGGER COUPLING to AC.

[^4]: Calibration Procedure. Completion of each step in the Calibration procedure ensures that this instrument meets the electrical specifications given in the first section of this manual. Where possible, instrument performance is checked before an adjustment is made. For best overall instrument performance when performing a complete calibration procedure, make each adjustment to the exact setting, even if the CHECK- is within the allowable tolerance. It will be necessary to remove the cabinet in order to have full access to the internal adjustments and test points.

[^5]: ${ }^{\text {'Requires a }}$ TM 500-Series Power Module.

[^6]: b. Set the amplitude calibrator for a 20 millivolt output and connect to CH 1 input through a 42-inch 50 -ohm BNC cable.

[^7]: b. Apply a short circuit between the calibrator test points, TP1503 and TP1504. See ADJUSTMENT LOCATIONS 4-B.

[^8]: 'Instruments equipped with DM series Digital Multimeters do not have Option 7 available.

