Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by the Henlow Signals Museum, believed to be out of copyright. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time!

Colin Hinson
In the village of Blunham, Bedfordshire.

|16E-023I-I

TRANSMITTER, TYPES TIOI58, TIOI58A, Tl6719, TIOI58B, TI6719A (MARCONI HS3I (MODIFIED), HS3IA, HS3I/I AND HS3IA/I)

GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL

(Ministry of Defence)
FOR USE IN THE
ROYAL AIR FORCE
(Prepared by the Ministry of Technology)

> TRANSMITTER, TYPES T.10158, T.10158A, T. $16719, \mathrm{~T} .10158 \mathrm{~B}, \mathrm{~T} .16719 \mathrm{~A}$
(MARCONI 3.5 kW H.F. I.S.B. TELEGRAPH/TELEPHONE TRANSMITTER TYPES HS 31, HS 31 (Modified), HS31A, HS31/1 AND HS $31 \mathrm{~A} / 1$)

$$
\begin{gathered}
\text { A.P.116E-0231-1 } \\
\text { (WasA.P.2922D VOL.1) } \\
\text { 2nd Edition }
\end{gathered}
$$

FIRST AID IN CASE OF ELECTRIC SHOCK

DO NOT TOUCII THE VICTIM WITH YOUR BARE HANDS until the circuit is broken SWITCH 0FF. If this is not possible, PROTECT YOURSELF with dry insulatin material and pull the victim clear of the conductor.

THE EXPIRED AIR METHOD OF ARTIFICIAL RESPIRATION

(Approved by the Royal Life Saving Society)

1. Lay the patient on his back with his arms to his sides. If on a slope have the stomach slightly lower than the chest. Make a brief inspection of the mouth and throat to ensure that they are clear of obvious obstruction.
2. Kneel on one side of the patient level with his head, place one hand under his neck and the other on top of his head. (Fig.1).
LIFT THE NECK AND TILT THE HEAD BACK AS FAR AS POSSIBLE.
3. Move the hand from under the neck and place it on the
 chin of the patient, the thumb between the chin and mouth, the index finger along the line of the jaw, the remaining fingers curled. (Fig.2). Whilst positioning the patient, open your mouth and take deep breaths.
4. Using the thumb of the hand on the chin to keep the lips sealed, open your mouth wide and make a seal round the patient's nose and blow into it. (Fig.3).
5. After blowing, turn your head to observe the rise of the chest. (Fig.4). If no air enters the patient's lungs, the nose may be blocked and the mouth should be opened using the hand on the chin: open your mouth wide and making a seal round his mouth blow into it. Turn the head to observe the chest rise. This may be used as an alternative to blowing into the nose even When the nose is not blocked but the nose must be sealed either with the cheek or by moving the hand from the top of the head and pinching the nostrils. THE HEAD MUST BE KEPT AT FULL BACKWARDS TILT.

Start with ten quick deep breaths and then continue at the rate of twelve to fifteen breaths per minute. This should be continued until the patient revives or a doctor certifies death.
7. In the case of facial injuries it may be necessary to do a manual method of artificial respiration. (Holger Nielsen).
8. It is ESSENTIAL to commence artificial respiration without delay and to send for medical assistance 1 m mediately.

TREATMENT FOR BURNS

If the patient is also suffering from burns, then, without hindrance to artificial respiration, observe the following:-
(a) DO NOT ATTEMPT TO REMOVE CLOTHING ADHERING TO THE BURN.
(b) If help is available or as soon as artificial respiration is no longer required the wound should be covered with a DRY dressing.
(c) Oil or grease in any form should NOT be applied.

Further details of charts and books on artificial respiration may be obtained from:-
The Royal Life Saving Society, 14 Devonshire Street, Portland Place, London, W. 1.

NSN and UNIT IDENTITY	TRANSMITTER NSN 5820-99-					
	$\begin{aligned} & 933-2372 \\ & \text { (T10158) } \end{aligned}$	$\begin{aligned} & 933-2182 \\ & \& 622-8256 \\ & (\mathrm{~T} 10158 \mathrm{~A}) \\ & \hline \end{aligned}$	$\begin{aligned} & 933-2195 \\ & \text { (T101588) } \end{aligned}$	$\begin{aligned} & 933-2187 \\ & (T 16719) \end{aligned}$	$\begin{aligned} & 222-3831 \\ & (\text { ex.T16719) } \end{aligned}$	$\begin{aligned} & 933-2199 \\ & (T 16719 A) \end{aligned}$
5820-99-622-8255 Control Power Supply		*				
5820-99-933-2183 Control Power Supply	*	*				
5820-99-933-2221 Control Power Supply			*			
5820-99-933-2168 Control Power Supply				*	*	
$5820-99-933-2914$ Control Power Supply						*
$\begin{aligned} & 5820-99-971-7078 \\ & \text { Power Supply } \end{aligned}$	*	*		*	*	
$\begin{aligned} & 5820-99-933-2171 \\ & \text { Power Supply } \end{aligned}$			*			*
$\begin{aligned} & 5820-99-933-2222 \\ & \text { Power Supply } \end{aligned}$	*	*		*	*	
$\begin{aligned} & 5820-99-933-2221 \\ & \text { Power Supply } \end{aligned}$			*			
$\begin{aligned} & 5820-99-933-2915 \\ & \text { Power Supply } \end{aligned}$						*
$\begin{aligned} & 5950-99-933-2188 \\ & \text { R.F. Unit } \end{aligned}$	*					
$\begin{aligned} & \text { 5950-99-933-2196 } \\ & \text { R.F. Unit } \end{aligned}$			*			
$\begin{aligned} & \text { 5950-99-933-2217 } \\ & \text { R.F. Unit } \end{aligned}$						*
$\begin{aligned} & \text { 5950-99-933-2169 } \\ & \text { R.F. Unit } \end{aligned}$				*	*	
$\begin{aligned} & \text { 5950-99-933-2179 } \\ & \text { R.F. Unit } \end{aligned}$		*				
$\begin{aligned} & 5820-99-971-2012 \\ & \text { Mixer Stage Frequency } \end{aligned}$	*	*				
$\begin{aligned} & 5820-99-933-2197 \\ & \text { Mixer Stage Frequency } \end{aligned}$			*			

UNIT COMPOSITION OF EQUIPMENTS (Cont.)

	TRANSMITTER NSN 5820-99-					
NSN and UNIT IDENTITY	$\begin{aligned} & 933-2372 \\ & (T 10158) \end{aligned}$	$\begin{aligned} & 933-2182 \\ & \& 622-8256 \\ & (T 10158 A) \end{aligned}$	$\begin{aligned} & 933-2195 \\ & \text { (T10158B) } \end{aligned}$	$\begin{aligned} & 933-2187 \\ & (T 16719) \end{aligned}$	$\begin{aligned} & 222-3831 \\ & \text { (ex.T16719) } \end{aligned}$	$\begin{aligned} & 933-2199 \\ & \text { (T16719A) } \end{aligned}$
5820-99-933-2200 Mixer Stage Frequency						*
$\begin{aligned} & 5820-99-933-2218 \\ & \text { Mixer Stage Frequency } \end{aligned}$				*		
$\text { \| } 5820-99-222-3833$ Mixer Stage Frequency					*	
$\begin{aligned} & \text { 5820-99-971-2020 } \\ & \text { Amplifier R.F. } \end{aligned}$	*	*				
$\begin{aligned} & \text { 5820-99-933-2913 } \\ & \text { Amplifier R.F. } \end{aligned}$						*
$\begin{aligned} & \text { 5820-99-933-2207 } \\ & \text { Amplifier R.F. } \end{aligned}$			*			
$\begin{aligned} & \text { 5820-99-933-2181 } \\ & \text { Amplifier R.F. } \end{aligned}$				*	*	

MODIFICATION STATE OF THE EQUIPMENT

Modification Record Labels are fitted to the units of the equipment isted below. Embodiment of a modification is indicated by scoring through the relevant number on the appropriate label.

Where the modification state has not been established at the date of issue of the manual then the date of issue of this page defines the design state.

The amendment state of this manual is related to the modification state of the equipment. To ensure that this relationship may be determined at any time, the following table is re-issued with successive amendments to the manual.

Mod. Summary Page	Unit or Sub-unit Title	Modification State of Unit or Sub-unit Related to Amendment State of Manual											
A	Control Power Supply Type S28/1 5820-99-933-2183	5	5	5	7								
B	Control Power Supply Type S28/2 5820-99-933-2221	3	3	3	5								
C	Control Power Supply Type S28/3 5820-99-933-2168	5	5	5	7								
D	Control Power Supply Type S28/4 5820-99-933-2914	3	3	3	5								
E	Power Supply $5820-99-971-7078$	1	1	1	1								
F	Power Supply Type S62/2 $5820-99-933-2171$	4	4	4	4								
G	Power Supply Type S62/3 5820-99-933-2222	4	4	4	4								
H	Power Supply Type S65/1 5820-99-933-2221	1	1	1	1								
J	Power Supply Type S65/2 5820-99-933-2915	1	1	1	1						;	'	,
K	R.F. Unit Type S2/1 5950-99-933-2188	7	7	7	7							$!$	
L	R.F. Unit Type S2/2 5950-99-933-2196	2	2	2	3								
M	R.F. Unit Type S2/3 5950-99-933-2217	3	3	3	3								
N	R.F. Unit Type S2/4 5950-99-933-2169	9	9	9	9								
	Amendment State of Manual	6	7	8	9								

MODIFICATION STATE (Continued)


```
Control Power Supply
    Type S28/1
    5820-99-933-2183
```

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6272. Removal of redundant h.t. overload relays and improvement in valve protection relays.	Existing valve protection inadequate.
2	RMC. Mod.6615. Replaces existing lamps by lamps with tungsten filaments.	To improve longevity.
3	RMC. Mod.9108. Retrospective provisioning and application of identity and modification labels.	To record reference identities and mod. strike-offs.
4	RMC. Mod.9785. Modification to achieve bias control and backfire indication.	Reduces repair time after failure.
5	RMC. Mod.0109. Metal rectifier MR1 repositioned to facilitate removal of Ventaxia fan.	Improved servicing.
6	Mod. A. 3978. Fitting, on failure, of a replacement type fan assembly having ball bearings and access for external lubrication.	Bearing seizure has caused burn out of motor of fan assemblies used for air cooling on control power suppl. cabinet.
7	Mod. A.4745. Replacement contactor.	Old type unobtainable.

Control Power Supply

Type S28/2
5820-99-933-2221

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9110. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.
2	RMC. Mod.9785. Modification to achieve bias control and backfire indication.	Reduces repair time after valve failure.
3	RMC. Mod.0109. Metal rectifier MRI repositioned to facilitate removal of Ventaxia fan.	Improved servicing.
4	Mod. A. 3978. Fitting, on failure, of a replacement type fan assembly having ball bearings and access for external lubrication.	Bearing seizure has caused burn out of motor of fan assemblies used for air cooling of control power supply cabinet.
5	Mod. A. 4745 . Replacement contactor.	01d type unobtainable.

MODIFICATION SUMMARY
 ```Control Power Supply \\ Type S28/3 \\ 5820-99-933-2168```

A Sunmary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6272. Removal of redundant h.t. overload relays and improvement in valve protection relays.	Existing valve protection inadequate.
2	RMC. Mod.6615. Replaces existing lamps by lamps with tungsten filaments.	To improve longevity.
3	RMC. Mod.9109. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.
4	RMC. Mod.9785. Modification to achieve bias control and backfire indication.	Reduces repair time after valve failure.
5	RMC. Mod.0109. Metal rectifier MRI repositioned to facilitate removal of Ventaxia fan.	Improved servicing.
6	Mod. 3978. Fitting, on failure, of a replacement type fan assembly having ball bearings and access for external lubrication.	Bearing seizure has caused burn out of motor of fan assemblies used for air cooling of control power supply cabinet.
7	Mod. A. 4745 . Replacement contactor.	old type unobtainable.

```
Control Power Supply
    Type 528/4
    5820-99-933-2914
```

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9111. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.
2	RMC. Mod.9785. Modification to achieve bias control and backfire indication.	Reduces repair time after valve failure
3	RMC. Mod.0109. Metal rectifier MRI, repositioned to facilitate removal of Ventaxia fan.	Improved servicing.
4	Mod. A. 3978. Fitting, on failure, of a replacement type fan assembly having ball bearings and access for external lubrication.	Bearing seizure has caused burn out of motor of fan assemblies used for air cooling of control power supply cabinet.
5	Mod. A. 4745 . Replacement contactor.	Old type unobtainable.

MODIFICATION SUMMARY

Power Supply
5820-99-971-7078

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mods.9108 and 9109. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.

A.P. $116 \mathrm{E}-0231-1$
A.L. 6 Sep 72

MODIFICATION SUMMARY

Power Supply
Type S62/2
5820-99-933-2171

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

$\begin{array}{c}\text { Mod. } \\ \text { Strike-off }\end{array}$	Summary of Modification	Reason		
1	$\begin{array}{l}\text { RMC. Mod.6615. Various circuit changes } \\ \text { (incorporated before delivery on certain } \\ \text { units). } \\ 2\end{array}$	$\begin{array}{l}\text { RMC. Mods.9110 and 9111. } \\ \text { Retrospective provisioning and } \\ \text { application of identity and modification } \\ \text { labels. } \\ - \\ 4 \\ \text { performance. }\end{array}$		
$\begin{array}{l}\text { RMC. Mod.9785. Modification to achieve } \\ \text { bias control and backfire indication. }\end{array}$	$\begin{array}{l}\text { To record reference } \\ \text { identities and mod. } \\ \text { strike-offs. }\end{array}$			
Reduces repair time after				
valve failure.			$]$	
:---				

A.P. 116E-0231-1
A.L. 6 Sep 72

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

$\begin{array}{c}\text { Mod. } \\ \text { Strike-off }\end{array}$	Summary of Modification	Reason
1	$\begin{array}{l}\text { As RMC. Mod.6615. Various circuit } \\ \text { changes (included before delivery). }\end{array}$	$\begin{array}{l}\text { Improved protection and } \\ \text { performance. }\end{array}$
2	$\begin{array}{l}\text { RMC. Mods.9108 and 9109. } \\ \text { Retrospective provisioning and } \\ \text { application of identity and modification } \\ \text { record labels. } \\ \text { RMC. Mod.7424. Valve BR.191B replaced } \\ \text { by Valve Type ACT.70. } \\ \text { RMC. Mod.9785. Modification to achieve } \\ \text { bias control and backfire indication. }\end{array}$	$\begin{array}{l}\text { To record reference } \\ \text { identities and mod. } \\ \text { strike-offs. }\end{array}$
Improved performance.		
Reduces repair time after		
valve failure.		

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

Power Supply
Type S65/l
5820-99-933-2221

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9110. Retrospective provisioning and application of identity and modification labels.	To record reference identities and mod. strike-offs.

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

> Power Supply
> Type S65/2
> $5820-99-933-2915$

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9111. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

R.F. Unit
Type S2/1 5950-99-933-2188

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6565. Protection against overheating and entry of dust by improved ventilation, filtering and sealing.	Improved reliability.
2	RMC. Mod. 6615 (part). Improved method of adjustment of sliding contacts of the anode tuning assembly.	Improved performance.
3	-	-
4	RMC. Mod.7424. Valve Type BR.191B replaced by Valve Type ACT. 70.	Improved performance.
5	RMC. Mod.8281. Improved spring contacts and guide wheels.	Improved reliability.
6	RMC. Mod.8282. Improved end-stops on manual control heads.	Improved reliability.
7	RMC. Mod.8978. Protection against damage by resonance.	Improved in production.
-	RMC. Mod.9136. Changes identity to 'R.F. Unit, Type S2/5, 5950-99-9332179'. Changes transmitter identity to T10158A. Provides an r.f. output to frequency measuring equipment.	-

A.P.116E-0231-1
A.L. 6 Sep 72
R.F. Unit

Type $52 / 2$
5950-99-933-2196

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

MODIFICATION SUMMARY

R.F. Unit

Type S2/3
5950-99-933-2217

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

$\begin{array}{c}\text { Mod. } \\ \text { Strike-off }\end{array}$	Summary of Modification	Reason
1	$\begin{array}{l}\text { RMC. Mod.9111. Retrospective } \\ \text { provisioning and application of identity } \\ \text { and modification record labels. } \\ \text { RMC. Mod.9140. Provides an r.f. output } \\ \text { for remote frequency measurement. } \\ \text { RMC. Mod.1784. Transmitter } \\ \text { Types T16719 and T16719A fitted with } \\ \text { r.f. filter. }\end{array}$	$\begin{array}{l}\text { To record reference } \\ \text { identities and mod. } \\ \text { strike-offs. }\end{array}$
Improved facilities.		

and resonance.\end{array}\right\}\)
A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

R.F. Unit
Type S2/4
5950-99-933-2169

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6565. Protection against overheating and entry of dust by improved ventilation, filtering and sealing.	Improved reliability.
2	RMC. Mod.6615. Improved methods of adjustment of sliding contacts of the anode tuning coil assembly.	Improved performance.
3	RMC. Mod.9109. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.
4	RMC. Mod.7424. Valve Type BR.191B replaced by Valve Type ACT. 70.	Improved performance.
5	RMC. Mod.8281. Improved spring contacts and guide wheels.	Improved reliability.
6	RMC. Mod.8282. Improved end-stops on manual control heads.	Improved reliability.
7	RMC. Mod.8981. Protection against damage by resonance.	Incorporated in production.
8	RMC. Mod.9139. Provides an r.f. output to operate remote frequency measuring equipment.	Improved facilities.
9	RMC. Mod.1784. Transmitter Types T16719 and T16719A, fitted with r.f. filter.	To eliminate overload and resonance.

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

R.F. Unit

Type $52 / 5$
5950-99-933-2179

A Sumary of modifications to the doove is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.5358. Provides an output for remote frequency measurement.	Improved facilities.
2	RMC. Mod.6565. Protection against over-heating and entry of dust by improved ventilation, filtering and sealing.	Improved reliability.
3	RMC. Mod.6615. Improved method of adjustment of sliding contacts of the anode tuning coil assembly.	Improved performance.
4	RMC. Mod.9108. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.
5	RMC. Mod.7424. Valve BR.191B replaced by Valve ACT. 70.	Improved performance.
6	RMC. Mod.8281. Improved spring contacts and guide wheels.	Improved reliability.
7	RMC. Mod.8282. Improved end-stops on manual control heads.	Improved reliability.
8	Mod. No.A.4049. Resiting of the pick-up and capacitor assembly.	To acconmodate further modifications in this area.

MODIFIOTIUN SUMMAKY

Control Power Supply

5820-99-622-8255

A Summary of modifinations to the above is given below. This summary is provided for information onty, and does Not constitute an authority () demand modificazion kits where the equipment held has not been modified.

MODIFICATION SUMMARY

> Mixer Stage Frequency
> $5820-99-971-2012$

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6615. Reduction of bias to afford protection from distortion due to fluctuating mains voltage. Elimination of parasitic oscillation.	Improved protection and performance.
2	RMC. Mod.9108. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs. Rgainst instabilities and drift. Valve Type CV138 replaced by Valve Type CV4014.
Improved performance and protection.		
anderion		

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

Mixer Stage Frequency
Type S4/2
5820-99-933-2197

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9110. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

> Mixer Stage Frequency
> Type S4/3
> $5820-99-933-2200$

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9111. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.

MODIFICATION SUMMARY

Mixer Stage Frequency
Type S4/5
5820-99-933-2218

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6615. Reduction of bias to afford protection from distortion due to fluctuating mains voltage. Elimination of parasitic oscillation.	Improved protection and performance.
2	RMC. Mod.9109. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.
-	RMC. Mod.1312. Application of this modification changes the NSN to 5820-99-222-3833.	-

A.P. $116 \mathrm{E}-0231-1$
A.L. 6 Sep 72

MODIFICATION SUMMARY

Amplifier R.F.
5820-99-971-2020

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6565. Protection against over- heating and ingress of dust. RMC. Mod.6567. Provision of mixer level control. RMC. Mod.9108. Retrospective provisioning and application of identity and modification labels. RMC. Mod.8979. Protection against instabilities.	Improved reliability. Improved performance. identities and mod. strike-offs. Introduced during production.
4		

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

Amplifier R.F.
Type S37/1
5820-99-933-2913

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.9111. Retrospective provisioning and application of identity and modification record labels.	To record reference identities and mod. strike-offs.

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

Amplifier R.F.
Type S37/2
5820-99-933-2207

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	As RMC. Mod.6615. Various circuit changes (included before delivery). RMC. Mod.9110. Retrospective provisioning and application of identity and modification record labels.	Improved protection and performance. To record reference identities and mod. strike-offs.

A.P.116E-0231-1
A.L. 6 Sep 72

MODIFICATION SUMMARY

Amplifier R.F.
Type S37/3
5820-99-933-2181

A Summary of modifications to the above is given below. This summary is provided for information only, and does NOT constitute an authority to demand modification kits where the equipment held has not been modified.

Mod. Strike-off	Summary of Modification	Reason
1	RMC. Mod.6565. Protection against overheating and entry of dust by improved ventilation, filtering and sealing. RMC. Mod.6567. Provision of mixer level control. RMC. Mod.9109. Retrospective provisioning and application of identity and modification record labels.	Improved reliability.
3	Improved performance. To record reference idritites and mod. strike-offs.	

A.P. $116 \mathrm{E}-0231-1$
A.L. 6 Sep 72

LIST I

MARCONI IDENTITIES					
Transmitter	Frequency	Control Power Supply	$\begin{aligned} & \text { R.F. } \\ & \text { Unit } \end{aligned}$	Mixer Stage Frequency	$\begin{gathered} \text { Amplifier, } \\ \text { R.F. } \end{gathered}$
$\begin{gathered} \text { HS31 } \\ \text { (W. } 37918 \mathrm{Ed.B}+ \\ \text { WQ. } 13379+ \\ \text { T30-7476-01 + } \\ \text { WQ. } 14666 \mathrm{Ed.A} \text {) } \end{gathered}$	$4-27.5 \mathrm{Mc} / \mathrm{s}$	$\begin{aligned} & \text { W. } 37908 \\ & \text { Ed.B + } \\ & \text { T30-7476-01 } \\ & + \text { WQ. } 13379 \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { W. } 37907 \\ & \text { Ed.C + } \\ & \text { WQ. } 14666 \\ & \text { Ed.A } \end{aligned}$	W. 37920 E. \cdot D + T30-7476-01	$\begin{aligned} & \text { W. } 39081 \\ & \text { Ed.D + } \\ & \text { T30-7476- } \\ & \text { OI } \end{aligned}$
$\begin{gathered} \text { HS 31 } \\ (\mathrm{W} .37918 \mathrm{Ed.B}+ \\ \text { WQ. } 13506 \mathrm{Ed.A}+ \\ \text { T30-7476-02 }+ \\ \text { WQ. } 13379 \mathrm{Ed.A}+ \\ \text { WQ. } 14666 \mathrm{Ed.A}) \end{gathered}$	$4-27.5 \mathrm{Mc} / \mathrm{s}$	$\begin{array}{\|l} \hline \text { W. } 37908 \\ \text { Ed.B + } \\ \text { T30-7476-02 } \\ + \text { WQ. } 13379 \\ \text { Ed.A } \end{array}$	$\begin{aligned} & \text { W. } 37907 \\ & \text { Ed.C + } \\ & \text { WQ. } 13506 \\ & \text { Ed.A + } \\ & \text { T30-7476- } \\ & 02+ \\ & \text { WQ. } 14666 \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { W. } 37920 \\ & \text { Ed.D + } \\ & \text { T30-7476-02 } \end{aligned}$	$\begin{aligned} & \text { W. } 39081 \\ & \text { Ed.D + } \\ & \text { T30-7476- } \\ & 02 \end{aligned}$
$\begin{gathered} \text { HS 31A } \\ (\mathrm{W} .37918 \mathrm{Ed.B}+ \\ \text { WQ. } 12610 \mathrm{Ed.A}+ \\ \mathrm{WQ} .13379 \mathrm{Ed.A}+ \\ \text { T30-7476-03 + } \\ \text { WQ. } 14666 \mathrm{Ed.A}) \end{gathered}$	$2.5-20 \mathrm{Mc} / \mathrm{s}$	$\begin{aligned} & \text { WQ. } 14953 / \mathrm{B} \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ. } 14956 / \mathrm{B} \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ. } 14957 / \mathrm{B} \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ.14958/B } \\ & \text { Ed.A } \end{aligned}$
$\begin{aligned} & \text { HS31/1 } \\ & (\mathrm{W} .37918 \mathrm{Ed.C}+ \\ & \text { WQ. } 14952 / \mathrm{B} \\ & \text { Ed.A) } \end{aligned}$	$4-27.5 \mathrm{Mc} / \mathrm{s}$	$\begin{aligned} & \text { WQ.14953/B } \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ. } 14956 / B \\ & \text { Ed.A } \end{aligned}$	WQ.14957/B Ed.A	$\text { WQ. } 14958 / B$ $\text { Ed. } A$
$\begin{gathered} \text { HS31A/1 } \\ \text { (W. } 37918 \text { Ed. }+ \end{gathered}$ WQ.14959/B Ea.A)	$2.5-20 \mathrm{Mc} / \mathrm{s}$	$\begin{aligned} & \text { WQ. 14960/B } \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ. } 14961 / \mathrm{B} \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ. } 14962 / \mathrm{B} \\ & \text { Ed.A } \end{aligned}$	$\begin{aligned} & \text { WQ. } 14963 / \mathrm{B} \\ & \text { Ed.A. } \end{aligned}$

KEY TO MARCONI MODIFICATION DRAWINGS
WQ. 126101 Mod. Conversion of HS31 to HS3IA
WQ. 13379 Mod. Fitting of 6 inch fan
WQ. 13506 Mod. Fitting of additional P.U. point for monitoring WQ. 14666 Mod. Fitting of ACT70 valve
WQ. $14952 / \mathrm{B}$)
WQ. $14953 / \mathrm{B}$) (9110 Addition of Identity and Modification labels WQ. $14956 / \mathrm{B}$ (Mod. 9110 Addition of Identity and Modification labels WQ.14957/B Mod. 9110 Addition of Identity and Modification labels

LIST 2

A.M. IDENTITIES				
Transmitter	Control Power Supply	R.F. Unit	Mixer Stage Frequency	$\begin{gathered} \text { Amplifier, } \\ \text { R.F. } \end{gathered}$
$\begin{gathered} \text { T.10158 } \\ 5820-99-933-2372 \\ \text { (was 10D/20455) } \\ \text { HS31 } \end{gathered}$	$\begin{gathered} \text { Type } 528 / 1 \\ 5820-99-933- \\ 2183 \end{gathered}$	$\begin{gathered} \text { Type S2/1 } \\ 5950-99-933- \\ 2188 \end{gathered}$	$\begin{gathered} \text { 5820-99-971- } \\ 2012 \end{gathered}$	$\begin{array}{\|l} 5820-99- \\ 971-2020 \end{array}$
$\begin{gathered} \text { T.10158A } \\ 5820-99-933-2182 \\ (\text { was } 10 \mathrm{D} / 22729) \\ \text { HS } 31 \end{gathered}$	$\begin{gathered} \text { Type } \mathrm{S} 28 / \mathrm{I} \\ 5820-99-933- \\ 2183 \end{gathered}$	$\begin{gathered} \text { Type } S 2 / 5 \\ 5950-99-933 \\ 2179 \end{gathered}$	$\begin{gathered} 5820-99-971- \\ 2012 \end{gathered}$	$\begin{array}{\|l\|} \hline 5820-99- \\ 971-2020 \end{array}$
$\begin{gathered} \text { T.16719 } \\ 5820-99-933-2187 \\ \text { (was 10D/22609) } \\ \text { HS31A } \end{gathered}$	$\begin{gathered} \text { Type } S 28 / 3 \\ 5820-99-933- \\ 2168 \end{gathered}$	$\begin{gathered} \text { Type } S 2 / 4 \\ 5950-99-933- \\ 2169 \end{gathered}$	$\begin{gathered} \text { Type S4/5 } \\ 5820-99-933- \\ 2218 \end{gathered}$	$\begin{aligned} & \text { Type } 537 / 3 \\ & 5820-99- \\ & 933-2181 \end{aligned}$
$\begin{gathered} \hline \text { T.10158B } \\ 5820-99-933-2195 \\ \text { (was 10D/23678) } \\ \text { HS31/1 } \end{gathered}$	$\begin{gathered} \text { Type } 528 / 3 \\ 5820-99-933- \\ 2221 \end{gathered}$	$\begin{gathered} \text { Type } \mathrm{S} 2 / 2 \\ 5950-99-933- \\ 2196 \end{gathered}$	$\begin{gathered} \text { Type } 54 / 2 \\ 5820-99-933 \\ 2197 \end{gathered}$	$\begin{aligned} & \text { Type S37/2 } \\ & 5820-99- \\ & 933-2207 \end{aligned}$
$\begin{gathered} \hline \text { T.16719A } \\ 5820-99-933-2199 \\ \text { (was 10D } / 23682 \text {) } \\ \text { HS3IA/I } \end{gathered}$	$\begin{gathered} \text { Type S28/4 } \\ 5820-99-933- \\ 2914 \end{gathered}$	$\begin{gathered} \text { Type } \mathrm{S} 2 / 3 \\ 5950-99-933- \\ 2217 \end{gathered}$	$\begin{gathered} \text { Type } 54 / 3 \\ 5820-99-933 \\ 2200 \end{gathered}$	$\begin{aligned} & \text { Type S37/1 } \\ & 5820-99- \\ & 933-2913 \end{aligned}$

KEY TO MARCONI MODIFICATION DRAWINGS (Conta.)

WQ. $14958 / \mathrm{B} \quad$| (Mod. 6616 |
| :--- |
| (Mod. 9110 |
| Incorporated before delivery |
| Addition of Identity and Modification labels |
| |
| |
| (Mod. 7850 |
| Improvement of neutralizing circuit response. |

WQ. $14959 / B)$
WQ. $14960 / B)$$\quad$ Mod. 9111 Addition of Identity and Modification labels.
WQ.14961/B (Mod. 91ll Addition of Identity and Modification labels. ting of additional P.U. point for monitoring.
WQ. $14962 / B)$
WQ. $14963 / B)$ Mod. 9111 Addition of Identity and Modification labels.

Photo No. 33950
A.P.116E.0231-1

2nd Edn.
Oct. 167
IA

Transmitter, Types T.10158, T.10158A, R.16719, T.10158B, T.1673.9A
1 INTRODUCTION I
2 TECHNICAL SUMMARY 2
2.1 Salient Features 2
2.2 Performance 2
3 EQUIPNENT LIST 4
3.1 List of Units 4
3.2 List of Valves 4
4 DESCRIPTION OF EQUIPMENT 5
4.1 Transmitter Layout 5
4.1.1 Rectifier and Control Unit Cubicle 5
4.1.2 Radio Frequency Unit Cubicle 5
4.2 Controls and their Functions 6
4.2.1 Meter Panel 6
4.2.2 Contactor Panel 6
4.2.3 Control Panel 6
4.2.4 H.T. and Filaments Panel 7
4.2.5 Fuse Panel 8
4.2.6 Meter Panel (R.F. Cubicle) 9
4.2.7 Top Panel (R.F. Cubicle) 9
4.2.8 4 th and 5th R.F. Amplifier 9
4.2.9 Mixer Unit 9
4.2.10 Bottom Panel 10
4.3 General Description of Equipment 11
4.3.1 Rectifier and Control Unit 11
4.3.2 Radio Frequency Unit 12
4.3.2.1 Mixer Unit 12
4.3.2.2 4th and 5th R.F. Amplifier 13
4.3.2.3 Amplifier Stage 6 15
4.3.2.4 Output Circuit 16
4.3.2.5 Cooling Fan 17
5 CIRCUIT DESCRIPTION GENERAL 17
5.1 R.F. Circuits 17
5.1.1 Monitoring

Page

5.2 Power Supplies 18
5.3 Overload Protection and Interlocks 19
6 CIRCUIT DESCRIPTION DETAILED 20
6.1 Grid Reference 20
6.2 Radio Frequency Circuits 20
6.2.1 Harmonic Generator 20
6.2.2 Mixer Stage 21
6.2.3 Stages 1,2 and 3 22
6.2.4 Stages 4 and 5 24
6.2.5 Stage 6 25
6.2.6 Output Circuit 26
6.2.7 Monitor Frequency Changer 27
6.3 Power Supplies 27
6.3.1 Main H.T. Rectifier 27
6.3.2 Auxiliary H.T. Unit 28
6.3.3 Bias Rectifier Unit 28
6.3.4 Filament Supplies 29
6.3.5 Control Circuits Supplies 29
6.4 Control Circuits 29
6.4.1 Switching On Sequence 29
6.4.2 H.T. OFF and Trip Reset 33
6.4.3 Remote Control 33
6.4.4 Overload Circuits 33
6.4.5 Frequency Selector Control Circuit 34
7 INSTALLATION 35
7.1 General 35
7.2 Packing, Transport and Delivery 35
7.3 Assembling the Transmitter 35
7.4 Valve Installation 36
7.4.1 Fitting the Stage 6 Valve V5 (BRI91) 36
8 SETTING-UP 37
8.1 Preliminary 37
8.2 Checking Relay and Contactor Operation 38
8.2.1 Checking the Operation of the Air Pressure Switch 40
Pagt
8.3 Checking Filament Supplies 40
8.3.1 Stage 6 Filament 40
8.3.2 Stage 5 and Rectifier Filaments 41
8.3.3 Auxiliary Filaments 41
8.4 Checking Bias and Auxiliary H.T. Supplies 42
8.5 Checking thr Main H.T. Rectifier Output 42
8.6 Adjusting the Bias Voltages 42
8.7 Setting-Up the Overload Relays 43
8.8 Pilot Carrier Compression 44
8.9 Noise Level 45
8.10 Method of Neutralizing 45
8.11 Stage 5-6 Preset Capacitor Coupling 45
9 TUNING 46
9.1 Single Tone Operation CW/FSK 46
9.1.1 Calculation of Harmonic Generator and Crystal Drive Frequency 46
9.1.2 Preliminary 47
9.1.3 Checking Neutralizing 48
9.1.4 Final Tuning 49
9.2 Two Tone Operation (I.S.B.) 49
9.2.1 Final Adjustments for Optimum Linearity 51
9.3 D.S.B. SIGNAL ADJUSTMENT 52
10. OPERATING INS TRUCTIONS 52
10.1 Starting-Up Instructions 52
10.2 Overload Reset 53
10.3 Closing Down Instructions 54
11. MAINTENANCE 55
11.1 Routine Maintenance 55
11.1.1 Daily (when the set is in use) 55
11.1.2 Weekly 55
11.1.3 Two-Monthly 55
11.1.4 Quarterly 55
11.1.5 Yearly 57
11.2 Alignment of the Mixer Unit 57
11.2.1 Preliminary Adjustment of the

 Harmonic Generator 58 58
 11.2.2 Preliminary Alignment of the Mixer and Stages 1,2 and 3 60
11.2.3 Balancing the Mixer Stage 66
11.2.4 Setting-Up the Monitor Frequency Changer 68
11.2.5 Final Adjustment of the Mixer Unit 69
11. 3 Spare Parts 70
11.4 Setting-Up the Manual Drive Assemblies (HS31 \& HS31A) 70
11.5 Setting-Up the Range Control 72
11. 6 Setting-Up the Feeder Tune Control 72
11.7 Self-Lubricating Contacts 72
11.8 Air Filters 73
11.9 Removal of Front Panels 73
11. 10 Removal of the Manual Drive Assemblies 74
11.11 Use of Type ACT70 Valve in Stage 6 74
11.12 Six-Inch Ventilator Fan 75
11.13 Back-Fire Indicators 76
11.14 Suction Fan Motor - Switch and Bearing Replacement 77COMPONFNTS LISTSRefer to Section 11.3 Spare Parts, Page 70.SiJPPLEMENTS(These follow the Illustrations)
Supplement 1 to AP 116E-0231-1
HS31 inter-type differences
Supplement 2 to AP 116E-0231-1
Remote (Extended) Control of Transmitter Type HS3l at R.A.F. Hittadau, Gan.
ILLUSTRATIONS
Title Photo No. Fig. No.
Transmitter, Types T10158, T10158A, T16719, 10158B, T16719A

HS 31 R.F. Unit, Part 1	WZ.17588/D	Sh. 1	10
HS31A R.F. Unit, Part 1	WZ.17364/D	Sh. 1	10A
HS $31 / 1$ R.F. Unit, Modification 1785			10B (a)
HS31/1 R.F. Unit (including Output Circuit)	WZ.26509/D	Sh. 1	10B
HS31A/1 R.F. Unit, Modification 1784			10C (a)
HS31A/1 R.F. Unit (including Output			
Circuit)	WZ.27279/D	Sh. 1	10C
HS31 R.F. Unit, Modification 1785			11 (a)
HS31 R.F. Unit, Part 2 (Output Circuit)	WZ. $17588 / \mathrm{D}$	Sh. 2	11
HS31A R.F. Unit, Modification 1784			11 A (a)
HS 31A R.F. Unit, Part 2 (Output Circuit)	WZ.17364/D	Sh. 2	11 A
HS 31 Mixer Unit, Part 1	WZ.27281/D	Sh. 1	12
Hs31A Mixer Unit, Part 1	WZ.24354/D	Sh. 1	12A
HS31/1 Mixer Unit, Part 1	WZ.26511/D	Sh. 1	12B
HS 31A/1 Mixer Unit, Part 1	WZ.27281/D	Sh. 1	12C
HS31 Mixer Unit, Part 2	WZ.17590/D	Sh. 2	13
HS31A Mixer Unit, Part 2	WZ.24354/D	Sh. 2	13A
HS31/1 Mixer Unit, Part 2	WZ.26511/D	Sh. 2	13B
HS31A/1 Mixer Unit, Part 2	WZ.27281/D	Sh. 1	13C
HS31 Rectifier and Control Unit, Part 1	WZ. $12784 / \mathrm{D}$	Sh. 1	14
HS31A Rectifier and Control Unit, Part 1	WZ.17361/D	Sh. 1	14A
HS31/1 \& HS 31A/1 Rectifier and Control Unit, Part 1	WZ.26506/D	Sh. 1	14B
Fan and Mod. A.4745			14C
HS31 \& HS31A Rectifier and Control Unit, Part 2	WZ.17361/B	Sh. 2	15
HS31/1 \& HS31A/1 Rectifier and Control Unit, Part 2	WZ.26506/B	Sh. 2	15A
Circuit Diagrams and Component and Fan Layout	Diagrams		
HS31, HS31A, HS31/1 =nd HS31A/1 Peak Voltmeter Unit (W. 38793 Ed.A)	WZ.12770/B	Sh. 1	7
HS31, HS 31A, HS $31 / 1$ and HS31A/1 Peak Voltmeter Unit (W. 38793 Ed.D)	WZ. 12771/B	Sh. 1	8
Component Layout Diagrams			
HS31 \& HS31A Rectifier and Control Unit, Part 1	WZ. 12785/D	Sh. 1	1
Part view of R.C.U. showing location of Fan X3 (Mod.A. 3978)			1 (a)
HS31/1 \& HS31A/1 Rectifier and Control Unit, Part 1	WZ. $26507 / \mathrm{D}$	Sh. 1	1A
Part view of R.C.U. showing location of Fan X3 (Mod.A. 3978)			1A(a)
HS31 \& HS31A Rectifier and Control Unit, Part 2	WZ. $12785 / \mathrm{B}$	Sh. 2	2
HS31/1 \& HS31A/1 Rectifier and Control Unit, Part 2	WZ.26507/B	Sh. 2	2A
HS31 R.F. Unit, Modification 1785			3 (a)

ILLUSTRATIONS (Cont.)

Title

```
HS3l R.F. Unit, Part l
HS3IA R.F. Unit, Modification 1784
HS31A R.F. Unit, Part l
HS31/1 R.F. Unit, Modification 1785
HS3l/l R.F. Unit, Part l
HS31A/l R.F. Unit, Modification 1784
HS31A/I R.F. Unit, Part l
HS3l & HS31A R.F. Unit, Part 2
HS31/l & HS3IA/l R.F. Unit, Part 2
HS3l R.F. Unit, Part }
HS3IA R.F. Unit, Part 3
HS3I/1 R.F. Unit, Part 3
HS31A/l R.F. Unit, Part 3
HS3l Mixer Unit
HS3IA Mixer Unit
HS31/1 Mixer Unit
H337A/1 Mixer Unit
```

Block Diagram

Drawing No.
WZ.17589/D Sh.I
WZ. 17365/D Sh.I
WZ.26510/D Sh.I
WZ.27280/D Sh.I
WE.17589/D Sh. 2
WZ.26510/D Sh. 2
W2.17589/D Sh. 3
WZ. $17365 / \mathrm{D} \mathrm{Sh} .3$
WZ. $26510 / \mathrm{D} \mathrm{Sh} .3$
WZ.27280/D Sh. 3
WZ.17591/D Sh.I
VZ. $24355 / \mathrm{D} \mathrm{Sh.I}$
WZ.26512/D Sh.l
WE.27282/D Sh.I 6C
Fig. No
3
$3 A(a)$
3A
$3 B(a)$
3B
3C(a)
3 C
4
4 A
5
5A
5B
5 C
6
6 A
6B

W2.31711/D Sh.1
9

Control Layout Diagrams
FSS31/1 \& HS31A/1, Transmitter
WZ.29574/D Sh.
24
HS31 \& HS3IA, Rectifier and Control Unit
ES31 ~ is 31A, R.F. Unit
HS31/1 \hat{x} HS31A/1, Rectifier and
Control Unit
HS31/1 \& HS31A/I, R.F. Unit
Functional Diagrams
Control Circuits, HS3I \& HS3IA
Control Circuits, HS 31/1 \& HS 31A/1
Power Supply Circuits, HS3l Series
ITS $1 / 1$, Modification No. 1785
[1S31/1 Feeler Capacitor Arc \& Stage 6 Grid Current Trip Circuit
ISS31A/1, Modification No. 1784
HS $31 \mathrm{~A} / 1$ Feeder Capacitor Arc \& Stage 6 Grid Current Trip Circuit

WZ.26510/D Sh.1 3B
WZ.12785/B Sh. 2
WZ.17589/D Sh.I 3
2

W2.31712/D Sh. $1 \quad 17$
WZ.31712/D Sh. 2 17A
W2.31713/D Sh.1 17B
22(a)
W2.26146/B Sh.I 22 22A(a)

WZ.27283/B Sh.I 22 A
Title Drawing No. Fig. No

Performance Diagrams

HS31 \& HS31/1 Typical Power Figures	WZ.12791/D Sh. 1	18
HS31A \& HS31A/1 Typical Power Figures	WZ.17366/D Sh. 1	18A
HS31 \& HS31/1 Calibration Curves, Part 1	WZ.12792/D Sh. 1	19
HS31A \& HS31A/1 Calibration Curves, Part 1	WZ.17367/D Sh. 1	19A
HS31 \& HS31/1 Calibration Curves, Part 2	WZ.12792/D Sh. 2	20
HS31A \& HS31A/1 Calibration Curves, Part 2	WZ.17367/D Sh. 2	20A

Inter-unit Connections

HS31/1 R.F. Unit	WZ.26509/D Sh.2	11B
HS31A/1 R. F. Unit	WZ.27279/D Sh.2	11 C
HS31 \& HS 31 A, Transmitter	WZ.17363/D Sh.1	16
HS31/1 \& HS31A/1, Transmitter	WZ.26508/D Sh.1	16 A

Miscellaneous
HS31, HS31A, HS $31 / 1 \& H S 31 A / 1$,
Location and Functions of Interlock
Switches
WZ.26788/D Sh. 1
23
HS31 Mechanical Drive Assemblies
WZ.16303/D Sh. $1 \quad 21$
HS31A Mechanical Drive Assemblies
WZ.17369/D Sh. 1
21A
HS31/1 \& HS31A/1 Mechanical Drive Assemblies

WZ. 26516/D Sh. 1
Suction Fan Motor - Exploded View 25
APPENDIX 1 Feeder Monitoring Equipment for HS31 (this Appendix is filed under separate cover).

ABBREVIATIONS

I.S.B.	- Independent Sideband
D.S.B.	- Double Sideband
C.W.	- Continuous Wave Telegraphy
P.E.P.	- Peak Envelope Power
P.S.P.	- Peak Signal Power
F.S.K.	- Frequency Shift Keying
R.F.	- Radio Frequency
Fils	- Filaments
fHG Mc/s or fHG	- The Frequency Output of the Harmonic Generator
frad Mc/s or frad	- The Radiated Frequency
H.G.	- Harmonic Generator or Frequency Multiplier
V	- Volt
A or amp	- Ampere
Ω	- Ohm
W	- Watt
m	- Milli (0.001)
μ	- Micro (0.000001)
k	- kilo (1000)
M	- Mega (1,000,000)

dB	- Decibel
A.C.	- Alternating Current
D.C.	Direct Current
IP's	- Inter-modulation Produc
WW	- Wire Wound

3.5 kW H.F. I.S.B./TELEGRAPH/TELEPHONE TRANSMITTER TYPES HS31, HS 31A, HS 31/1 AND HS 31A/1

1 INTRODUCTION

This Air Publication, with its Supplement l, covers the HS3l series of transmitters. Where possible, the differences between the variants are dealt with in the main book, but, where necessary, reference is made to the appropriate section in the Supplement.

The HS 31 series, comprising HS 31, HS31A, HS31/1 and HS31A/1, are general purpose transmitters for use in the frequency range 2.5 to $27.5 \mathrm{Mc} / \mathrm{s}$, the HS31 and HS $31 / 1$ covering 4 to $27.5 \mathrm{Mc} / \mathrm{s}$, and the HS31A and HS31A/l 2.5 to $20 \mathrm{Mc} / \mathrm{s}$.

External units are used to provide the drive and service of operation. Drive frequencies are normally supplied by Type HD2l Crystal. Drive Units.

For F.S.K. or FS Diplex services these would normally be used in conjunction with a Type HD20 F.S.K. Drive Assembly providing the necessary Keying and Monitoring Equipment. For FS Diplex operation the Type

For HS31A and HS31A/1 see Supp. 1 Sect.l. HD61B Frequency Shift Diplex Equipment may also be employed. In this case the drive output is at radiated frequency and the HD2l Crystal Drive Units are not required.

For I.S.B. operation the Crystal Drives may be used with either Type HD5l or Type SSD2 I.S.B. Drive Equipments.

The frequency range is covered without external change of coils or components, and the transmitter may be tuned, using any one of the six input frequencies supplied by the six Crystal Oscillator Units, without adjustment of these units after the initial setting-up.

Air cooling is provided by a fan mounted in the bottom of the R.F. Cubicle. Air is exhausted from the transmitter and passes via a duct between the two cubicles, leading to a vent on the roof of the transmitter. Provision may be made for fitting ducting to remove the heated air from the transmitter room.

The transmitter is interlocked electrically and mechanically to prevent damage; and to safeguard the user. The doors of the two cabinets are fitted with locks mechanically connected to the isolating and/ or earthing switches.

ON/OFF switching, of the transmitter, may be carried out by remote control.

An envelope correction circuit is incorporated in the transmitter to minimize the I.S.B. distortion.

2.1 SALIENT FEATURES

Types of service available
(a) C.W. Telegraphy ON/OFF keying with optional anti-fading Frequency Modulation (A1 and F2)
(b) Frequency Shift Telegraphy (Fl)
(c) Independent Sideband (A3b)
(d) D.S.B. Telephony, Low Power (A3)

NOTE: To provide services (a) and (b), the Type HD22 Keying Unit or a Type HD61B Frequency Shift Diplex Equipment is used. For services (c) and (d), the Type HD51 I.S.B. Drive or a Type SSD2 Single Sideband Generating Equipment is used.

Power Supply: Transmitter 380-420 three-phase, four wire a.c., 50 - or $60 \mathrm{c} / \mathrm{s}$.

Overall
Voltage regulation $\pm 6 \%$ Frequency Tolerance $\pm 2.5 \%$.

Power Consumption
(at 0.9 power factor)

Control
I.S.B. with 2 tone modulation 7 kW
C.W. Mark 9 kW
C.W. Space 3.7 kW
F.S.K.

9 kW .
Local operation, with optional remote ON/OFF switching.

Main Unit Dimensions

Output Impedance

Cooling
$\begin{array}{ll}\text { Height } & 7 \mathrm{ft} 6 \text { in }(2.28 \mathrm{~m}) \\ \text { Width } & 5 \mathrm{ft} 6 \text { in }(1.67 \mathrm{~m}) \\ \text { Depth } & 4 \mathrm{ft} 4 \mathrm{in}(1.32 \mathrm{~m}) .\end{array}$
600Ω balanced. 50Ω can be provided using an external wideband transformer, and a coupling filter.

The fan extracts approximately 340 cu . ft of air per minute, at a pressure of 3 inch water gauge.

2.2 PERFORMANCE

Frequency Range
4 to $27.5 \mathrm{Mc} / \mathrm{s}$ (HS31 \& HS 31/1) 2.5 to $20 \mathrm{Mc} / \mathrm{s}$ (HS31A \& HS $31 \mathrm{~A} / \mathrm{I}$) covered in varying ranges in the various sub-units of the transmitter.
Power to Aerial
from $4-21 \mathrm{Mc} / \mathrm{s}$ (HS31 \& HS 31
$2.5-20 \mathrm{Mc} / \mathrm{s}(\mathrm{HS} 31 \mathrm{~A} \&$

HS31A/1)
from $21-27.5 \mathrm{Mc} / \mathrm{s}(H S 31 \& H S 31 / 1)$
(3.5 kW PEP on I.S.B.
(3.5 kW on C.W. (ON/OFF) and F.S.K.
(1.5 kW Carrier on D.S.B.
(2.5 kW PEP on I.S.B. (2.5 kW on C.W. (ON/OFF) and F.S.K. (1.5 kW Carrier on D.S.B.

Less than 200 mW .
0.1W nominal from Primary Crystal Drive (3.45 to $6.95 \mathrm{Mc} / \mathrm{s}$)
0.25 W from I.S.B. or keyed telegraph drive ($3.1 \mathrm{Mc} / \mathrm{s}$).
(a) Individual components in a band $200 \mathrm{c} / \mathrm{s}$ either side of a carrier up to -16 dB relative PEP are less than -30 dB relative to that carrier.
(b) All components of a single tone up to $-6 d B$ relative PEP are less than -50 dB relative PEP.

Less than 1.0 dB for any level of single frequency signal up to PEP.

3rd Order IP's not greater than - 36 $d B$ relative to either of two equal test tones for any power level up to PEP.

Less than 10% measured at 80% modulation depth including 2% of D.S.B. Drive Unit.

Less than $2 \frac{1}{2} \mathrm{~dB}$ from $200-3500 \mathrm{c} / \mathrm{s}$ measured at 60% modulation depth (including 2 dB of D.S.B. Drive Unit).

3.1 LIST OF UNITS

See Lists 1 and 2 inside front cover.

3.2 LIST OF VALVES

An abridged valve data list is given in Section 11.
\# See Section 11.11.
\# \# This valve is not suitable for I.S.B. service unless, on a static test, with $\mathrm{Va}=1 \mathrm{kV}, \mathrm{Vg} 2=500 \mathrm{~V}$ and $\mathrm{Vgl}=-25 \mathrm{~V}$, the Ig 2 does not exceed, and is preferably less than, 16 mA . If the transmitter is used on I.S.B. service, and a new V3 or V4 is required, order CV2131/2121.

4.1 TRANSMITTER LAYOUT

The HS3l series of Transmitters consists of two cubicles mounted side by side with an air duct between them. The left-hand cubicle is the Rectifier and Control Unit (RCU) and the right-hand cubicle is the Radio Frequency Unit (R.F. Unit).

4.1.1 Rectifier and Control Unit Cubicle

Component Layouts: HS31 \& HS31A, Figs.l \& 2: HS31/1 \& HS31A/1, Figs.1A and 2A.

This cubicle contains the various sub-units and component panels of the power units.

Across the front of the cubicle are mounted four separate panels bearing the control circuit relays and contactors, the control switches etc., various indicating lamps and the fuses. These panels are protected by a full length door when the transmitter is in operation. In the door are apertures giving access to the control panels, and a glass inspection window revealing the relays and contactors. Above the door is a hinged meter panel fitted with a single mechanical interlock which prevents the door being closed, and therefore prevents the supplies being switched on, while the panel is raised and the backs of the meters exposed. A six inch extractor fan is fitted in the roof of the cubicle to aid ventilation.

4.1.2 Radio Frequency Unit Cubicle

This cubicle contains all of the radio frequency circuits and the cooling fan. Various stages are contained in separate sub-units which are described in Sections 4.3.2.1, 4.3.2.2 and 4.3.2.4.

The aerial feeder terminals are mounted on the roof of the cubicle. Incoming and outgoing connections are made via plugs and sockets also on the roof'. The connections to and from the drive equipment are made via the coaxial plugs PLB-PLD.

This cubicle also has a full length front door but it is not interlocked to the control circuit as access is desired when tuning the transmitter.

The three sub-units may all be withdrawn on runners from the cabinet for servicing. The Mixer Unit is not interlocked to the control circuit, as access to controls mounted on the chassis is desired when tuning the transmitter. The other two sub-units are interlocked to the control circuit; the 4 th and 5th R.F. Amplifier by the switch on the panel above the unit, and the Aerial Circuit by the rear door of the cubicle which is interlocked and must be opened before the unit can be withdrawn.

4.2 CONTROLS AND THEIR FUNCTIONS

Control Layouts:
Rectifier and Control Unit:
(HS31 \& HS 31A Fig. 2
Rectifier and Control Unit: (HS3I/1 \& HS3IA/1 Fig.2A. (HS31 \& HS31A Fig. 3
(HS31/1 \& HS31A/1 Fig.3B.
The following section lists all the controls, meters and fuses, together with their functions, under their panel titles.

4.2.1 Meter Panel

A.C. Volts - M1 This may be switched to indicate the voltage of
any phase of the supply.
A.C. Amps - M2 Indicates the current taken from the YELLOW phase
of the supply.

4.2.2 Contactor Panel

This carries the relays and contactors which control filaments, bias and h.t. supplies.

ST Start Relay
FC Filament Relay
FF Full Filament Relay
OR Overload Reset Relay
SP Remote Control Relay
FD Filament Delay Switch
LA Auxiliary H.T. Relay
MC Main H.T. Contactor
ILR External Interlock Pilot Relay (HS31/1 and HS31A/1 only).

4.2.3 Control Panel

This carries the various control switches and push buttons.
Switches

```
Auto/Manual Selector Switch - SWN
Local/Remote Selector Switch - SWG
Frequency Selector Switch - SWL
Stage 6 Grid Current Overload - SWR (HS3I/1 & HS3IA/1 only).
```

Start Button	- SWC
Stop Button	- SWD
H.T. ON Button	- SWE
H.T. OFF \& Reset Button	- SWF

Also mounted on the control panel are various indicator lamps.
The six frequency indicator lamps are associated with the sixposition frequency selector switch, SWL, which controls, via SWG in the Mixer Unit, the selection of primary crystal oscillator.

In line with the push buttons START and H.T. ON are the lamps which indicate the extent of control, i.e. Fils. ON, H.T. ON, etc.

50V D.C. Lamp	- LP1
Filament Lamp	- LP2
Auxiliary H.T. Lamp	- LP3
H.T. Lamp	- LP4
Trip Lamp	- LP5

4.2.4 H.T. and Filaments Panel

This carries four controls.
A.C. Voltmeter Switch - SWH associated with M3 on the meter panel. Stage 5 and Rectifier Filament Control - RV2, RV3 and RV4. Stage 6 Filament Control - RV1. H.T. Volts Low/Full Selector Switch - SWJ.

4.2.5 Fuse Panel

This is the bottom panel of the front assembly.
The functions of the fuses are listed below.

Fuse	Location	Rating
FSI	50V D.C. Rectifier A.C. Input	2 amps
FS2	50 V D.C. Rectifier A.C. Input	2 amps
FS3	50V D.C. Rectifier A.C. Input	2 amps
FS4	*Fan Supply	10 amps
FS5	6.3V Filaments and Aux. H.T. Rectifier Filament Supply	2 amps
FS6	Spare	
FS7	Main H.T. Fuse	25 amps
FS8	Main H.T. Fuse	25 amps
FS9	Main H.T. Fuse	25 amps
FSl0	Stage 5 and Main H.T. Rectifier Filaments	2 amps
FSll	Stage 5 and Main H.T. Rectifier Filaments	2 amps
FSl2	Stage 5 and Main H.T. Rectifier Filaments	2 amps
FS13	Not used	
FS14	Stage 6 Filaments	6 amps
FS15	Stage 6 Filaments	6 amps
FS16	Auxiliary H.T. Unit Supply	2 amps
FSI7	Bias Unit Supply	2 amps
FS18	Filament Delay Switch Supply	0.5 amp
FS19	Spare	
FS20	Spare	
FS21	Not used	
FS22	'Ledex' Switch Control Supply (Frequency Selection)	1 amp
FS23	50V D.C. Supply to Control Relays up to Auxiliary H.T. Relay	3 amps
FS24	Main H.T. Contactor and Overload Reset Relay Control Supply	5 amps
FS25	Indicator Lamps Supply	1 amp
FS26	Spare	
FS28-35	Not used on HS3I	

* HS3l \& HS 31A only. For HS 31/1 \& HS31A/1 see Supp.1.

STAGE 6 GRID CURRENT (M7)
STAGE 6 CATHODE CURRENT (M6)
FEEDER INDICATOR (M1O)
4.2.7 Top Panel (R.F. Cubicle)

RANGE (SWA, SWB, SWC \& SWD)

FEEDER TUNE (C64, SWP, SWM)

STAGE 5 H.T. INTERLOCK switch (SWF)
4.2.8 4th and 5th R.F. Amplifier

STAGE 5 TUNE (II5)
STAGE 4 TUNE (L5-L10, C12)

STAGE 5 NEUTRALIZING (C16)
DRIVE LEVEL (RV7) (HS 31 \& HS 31A)
(RV2) (HS31/1 \& HS 31A/1)
STAGE 4 GRID PEAK VOLTS (MI)

STAGE 4 ANODE CURRENT (M2)
STAGE 5 GRID CURRENT (M3)
STAGE 5 GRID PEAK VOLTS (M4)

STAGE 5 CATHODE CURRENT (M5)

Indicates Stage grid current. Stage 6 cathode current.

Indicates the power to the aerial.

Operates all the frequency range switches in the transmitter via chains and couplings.

Tunes the coupling coil L20.
4th and 5th R.F. Amplifier interlock switch (main h.t.).

Turns Ll5 for tuning purposes
Turns the coil turret L5-L10 and also capacitor Cl2.

Turns Cl6 which neutralizes Stage 5 .

Varies drive input to Stage 4.
Indicates signal input level to Stage 4.

Indicates anode current to V1 and V2. Indicates grid current to V3 and V4.

Indicates signal input level to Stage 5.

Indicates cathode current to V3 and V4.

This control is ganged to the tuning capacitors of the harmonic generator stages and their associated amplifier stages:- capacitors C5, C14, C25, C4.1 and C47.

To this control is ganged the anode tuning capacitors of the mixer stage and r.f. amplifier stages 1, 2 and 3:capacitors C65, C66, C82, C94 and CIOO.

This a three position range switch employed to select the harmonic generator stages to be used and to select the required tuned circuits for the anode circuits of the two amplifier stages which follow the harmonic generators.

NOTE: The frequency ranges marked against the positions of this switch refer to the harmonic generator output frequencies and not to the final radiated frequencies.
H.G. METERING (SWB)

MIXER \& MONITOR METERING (SWD)
frad Mc/s (SWC)

This switch selects various currents in the harmonic generator circuit for measurement on MI. Its final position (7) connects the meter to SWD.

Used in conjunction with SWB (see above) it selects various currents in the mixer and Stages 1,2 and 3 circuits for measurement on MI.

This a three position range switch which selects the appropriate tuned circuit for the anode circuits of the mixer and Stages 1,2 and 3.

NOTE: The frequency ranges marked against the positions of this switoh refer to the final radiated frequency.
MONITOR (LKA)
This U-link is used to connect various monitor signals from Stages 3, 4, 5 and 6 to the Monitor Frequency Changer.

4.2.10 Bottom Panel

STAGE 6 COUPLING (L20)

STAGE 6 TUNE (LI9)

This control turns a lead screw which propels L20 up or down around Ll9 thus varying the coupling.

This control turns LI9 which propels a contact assembly up or down its length thus varying its inductance.

FIL. VOLTMETER SWITCH (SWJ)

AUX. VOLTMETER SWITCH (SWK)

4.3.1 Rectifier and Control Unit

Component Layout: (HS31 \& HS 31A) Figs.1 \& 2
(HS31/1 \& HS31A/1) Figs.1A \& 2A
The main a.c. supply enters via terminal board TBI mounted on the left-hand wall of the cabinet at the top rear.

In the upper part of the cabinet, immediately under the roof, are two brackets occupying the width of the cabinet. Mounted on the one nearest the front are the terminal boards carrying the remainder of the incoming and outgoing connections; the Stage 6 filament limiting resistor, $R 4$; and a preset variable resistor, R2, which controls the 6.3 V auxiliary filaments supply. On the bracket immediately behind, (i.e. nearer the rear door), are the 6.3 V auxiliary filament transformer, TR2, and the Stage 6 filaments transformer TR3. Beside these, on the same bracket, is a terminal board, X 2 , not used.

Behind this bracket is mounted MRI, the metal rectifier, which provides the 50 V d.c. supply for the control circuits.

Mounted on the right-hand wall of the cubicle, at the top, are the overload relays $O D$ and $O E$. Relays $O D$ and $O E$ are operated by the current flowing in Stages 5 and 6. RV6 is in parallel with $O E$ and provides adjustment of its operating point.

Below the relay assembly is the bias unit. This is contained on a flat chassis mounted on rails, allowing the whole unit to be slid out from the rear of the cubicle.

Immediately below the bias unit is a similarly constructed and mounted unit for the Auxiliary H.T. Supply.

Standing on the floor below the auxiliary h.t. unit are the main h.t. transformer and the smoothing capacitors C9-Cll.

The h.t. rectifier valves are assembled on the left-hand wall of the cubicle, mounted on top of their filament transformers. Immediately above them are three resistors, R17, R18 and RI9, which form a potentiometer chain providing 600V for the screen grid of Stage 5 from the 4 kV h.t. line. When a Type ACT70 valve is used in Stage 6, resistor Rl9 is returned to earth instead of to the bias supply.

Below the h.t. rectifier valves are the metal rectifiers forming MR2, which provides 5 volts d.c. for Stage 5 filaments. Mounted underneath these is SWK the Stage 5 filaments reversing switch, and alongside it Ll the filament rectifier smoothing choke, and TR4, the filament rectifier transformer.

Also mounted on the floor of the cubicle, with LI and TB4, are TRI the 50 V d.c. supply unit transformer, and L 7 the main $\mathrm{h} . \mathrm{t}$. smoothing choke.

The plug PLAJ on a flexible cable, situated on the left-hand wall of the cabinet, above the main h.t. rectifier valves, is not used in HS 31.

The interconnecting cables between the rectifier cubicle and the r.f. cubicle are taken out through an aperture at the top of the lefthand wall at the front, adjacent to the terminal blocks.

In the centre of Fig.l is shown a rear view of the components mounted on the panels at the front of the cubicle.
r $\mathrm{HS} 31 / 1$ HS 31A/1 e also pp. 1 ct.4.3.1.

Behind the h.t. rectifier valves, attached to the left-hand wall of the cabinet, are the two interlock switches, SWA and SWB. These are operated by the 'lock-handles' on the front and rear doors respectively, of the cubicle, and remove the a.c. input from all circuits and earth the $4 \mathrm{kV} \mathrm{h.t} .\mathrm{line} \mathrm{when} \mathrm{either} \mathrm{door} \mathrm{is} \mathrm{unlocked}$.

4.3.2 Radio Frequency Unıt

Component Layout: (HS 31) Figs.3, $4 \& 5 .(H S 31 A)$ Figs. $3 \mathrm{~A}, 4 \& 5 \mathrm{~A}$. (HS 31/1) Figs.3B, 4A, 5B. (HS31A/1) Figs.3C, $4 A \& 5 C$.

This unit is described in the following text in a functional order commencing with the mixer unit.

4.3.2.1 Mixer Unit

Component Layout: (HS 31) Fig.6. (HS 31A) Fig.6A. (HS31/1) Fig.6B. (HS 31A/I) Fig.6C.

This is a separate sub-unit in the front centre of the cabinet. It is mounted on runners to enable it to be easily withdrawn for maintenance and adjustment.

The unit contains the harmonic generator (or frequency doubler stages) and its power amplifier stages, a mixer stage, the first three stages of the six stage final amplifier chain and the monitor frequency changer.

Inter-unit connections are made by plugs and sockets on long flexible leads at the rear of the unit.

Also on the rear of the chassis is the Ledex switch SWG. This switch is controlled by SWL the FREQUENCY switch on the front of the Rectifier and Control Unit (R.C.U.) and selects the desired external crystal drive unit and illuminates the appropriate frequency lamp on the Control Panels of the R.C.U., and selects the appropriate gain control potentiometer.

The Monitor Frequency Changer is contained in the front right-hand corner of the unit immediately behind its associated U-link selector. Behind it are the mixer bias potentiometers and their REMOTE/MANUAL changeover switch, SWF. RV5 is the MANUAL bias control (level control) used in place of the preset potentiometers, RV6-RV11, when SWF is in the MANJAL position.

If an external Frequency Shift Diplex Equipment is used the Mixer Unit is bypassed and will have no effect on the transmitted signal, although being an integral part of the transmitter it will still

For HS $31 / 1$ \& HS31A/1 see also Supp. 1 Sect.4.3.2.1

HS31 \& HS31A only. For HS $31 / 1$ \& $\mathrm{HS} 31 \mathrm{~A} / 1$ see Supp. 1 Sect.4.3.2.2 function. If the transmitter is set to AUTO the wave indicator lamps will light as the FREQUENCY switch is operated but these will have no significance. The Monitor Frequency Changer is also bypassed by a link which allows the radiated frequency to be fed back to the monitoring receiver.

4.3.2.2 4th and 5th R.F. Amplifier

Component Layout: (HS31) Fig.5. (HS 31A) Fig.5A. (HS31/1) Fig.5B. (HS31A/l) Fig.5C.

These stages are contained in a separate sub-unit mounted above the Mixer Unit. The unit may be withdrawn on runners and is mechanically interlocked with the Stage 5 interlock switch, SWF, mounted on the front panel immediately above the unit.

The plan view of the component layout shows, at the front, the Stage 5 anode tuning coil assembly, an end view of which is also shown in the separate sketch 'J'. In the back left-hand corner is the Stage 5 anode circuit range switch, SWA, which is ganged with range switches associated with Stage 6 and the output circuit and connects in circuit, with the anode tuning coil, the required tuning capacitance (c32, C33, C34). The drive to this switch from the RANGE control on the front of the r.f. cabinet, is made through a coupling so that the whole sub-unit may be withdrawn from the cabinet; care must be taken, therefore, to see that the switch is in the correct position to mate with the driven member of the coupling before the unit is pushed back into the cabinet.

Beside SWA are valves V3 and V4 of Stage 5.

HS $31 \&$ HS 31A only. For HS $31 / 1$ \& HS 31A/1 see Supp. 1 Sect.4.3.2.2

Associated with Stage 5 is a row of five potentiometers, RV1-RV5 situated at the foot of the r.f. cabinet (see front layout Fig.3); these potentiometers provide for adjustment of an envelope correction circuit to minimize i.s.b. distortion. Any one of the five potentiometers may be in circuit, making available individual adjustment of the correction circuit on each frequency range, thus ensuring best possible linearity throughout the tuning range of the transmitter. Switching the potentiometers is done by a small wafer switch, SWB, mounted on and operated by the 'RANGE' control on the front of the r.f. cabinet.

The underside view on the component layout drawing shows the Stage 4 tuning mechanism, in the front left-hand corner (considered from underneath). Mounted immediately behind this are the valves of Stage 4. The flexible drive to the Stage 5 neutralizing capacitor (Cl6), is also shown. The tuning mechanism of Stage 4 is shown on sketch ' K ': its single tuning control on the front panel drives a 6-coil turret, comprised of coils L5 to Ll0, and at the same time turns a continuouslyvariable capacitor, Cl2. Each coil in turn is switched in parallel with the capacitor, which is tuned through its full capacity range for each coil connection. By this arrangement the circuit covers the entire frequency range of the transmitter in six stages, by movement of one control.

The front panel control drives the capacitor shaft and the capacitor tunes during 180° of each revolution of the shaft. The shaft also drives a slotted cam which engages with projections on the face of a small wheel on the coil turret shaft, and during the other half of each revolution of Cl2, turns the turret through 60°. Thus after each tuning cycle of Cl2 a different coil is switched into circuit. Connection to each coil is made via sets of studs on mycalex strips adjacent to each coil; the appropriate set engages with contact springs on the framework of the assembly when the associated coil is in circuit.

During the half revolution in which the turret is turning, another cam opens an interlock switch. This is switch SWL, connected in series with the h.t. control circuit, so that h.t. is removed during coil changing.

The Stage 5 anode tuning coil with the end plates (Ref. 55 and Ref. 59 on the plan view) removed, is shown in sketch ' J '. The tuning control on the front panel turns the coil and an insulated jockey wheel (Ref. 85) bearing on the inductor advances a contact carriage (Ref.68) along the length of the coil. Electrical contact with the inductor is made by four ball contacts on the contact carriage.

4.3.2.3 Amplifier Stage 6

$$
\begin{aligned}
\text { Component Layout: } & (\text { HS 31) Figs. } 3 \& 4 .(\text { HS 31A Figs. } 3 \mathrm{~A} \& 4 . \\
& (\text { HS } 31 / 1) \text { Figs. } 3 \mathrm{~B} \& 4 \mathrm{~A} .(\mathrm{HS} 31 \mathrm{~A} / 1) \text { Figs. } 3 \mathrm{C} \& 4 \mathrm{~A} .
\end{aligned}
$$

This is the final amplifier and is housed at the rear of the r.f. cabinet. A general rear view is shown in Fig.3. The valve and the associated components, except for the anode tuned circuit components, art contained in the compartment in the top left of the cabinet, an interior view of this compartment appears in the separate sketch, 'B'. The anode coil assembly is contained in the lower compartment and is shown in detail in sketches ' F 'and ' G ' in Fig. 4.

The stage uses a triode in a grounded grid arrangement; this lends itself to compact circuit construction. The valve is supported ky its anode cooling fin assembly which fits into a cylinder at the top of the anode coil structure (see sketch 'G') in the lower compartment. On a level with the grid ring of the valve, and surrounding the valve, is an aluminium sheet. Thus the valve grid, together with this sheet, screens the valve input circuit from its output circuit. Mounted on the sheet, which is hinged to facilitate fitting the valve, are the grid circuit components (see sketch 'B'). The anode tuning of the stage is effected by a continuously variable helically wound inductor, Ll9, mounted in the lower compartment; it is shown in sketch 'G' in Fig.4. The coil is turned by a handle at the bottom right of the front panel of the cabinet, immediately below the mixer unit.

Rotation of the coil causes a four point contact assembly to move up or down the length of coil, making the variable tapping point, at the same time short-circuiting some of the turns to reduce 'end effect'.

In the sketch the valve is shown in position. The anode connection is made by spring ball contacts (item 35) which bear on a brass drum that forms part of the coil end assembly. The other end of the contact springs are attached to the support into which the anode cooling fin structure of the valve fits. An end view of the coil appears in sketch 'A', and shows the connecting clamps and the arrangement of the mycalex supports on which the coil is wound.

Coupling from the anode circuit to the output circuit is made by the coil, L20, wound around L19 (sketch 'G'). Its position with relation to Ll9 is variable by a lead screw turned by a control mounted beside the anode tuning control, on the front panel.

The entire assembly can be moved from the cabinet, but this is not required for normal maintenance.

HS31 \& HS31A only. For HS31/1 \& HS31A/1 see Supp. 1 Sect.4.3.2.3.

Capacitors are switched across the anode tuning coil to cover the tuning range of the transmitter. The capacitors are on the switch assembly, SWC, which is mounted in the lower compartment of Stage 6 circuit, in the top right-hand cormer and is ganged with SWA and SWB, already mentioned in the description of Stage 5 Section 4.3.2.2, and with the output circuit range - switch SWD, described below. SWC is shown in more detail in sketch ' F ' in Fig. 4 .

4.3.2.4 Output Circuit

Component Layout: (HS31) Figs.3, 4 \& 5. (HS31A) Figs. 3A, 4 \& 5A. (HS 31/1) Figs.3B, 4A \& 5B. (HS 31A/1) Figs.3C, $4 A \& 5 C$.

The components of the matching circuit between Stage 6 and the aerial feeder, occupy a compartment at the rear of the r.f. cabinet, in the top right-hand corner - see rear view. They are mounted between vertical cast-alloy plates, forming a rigid assembly which can be withdrawn on runners; a left-hand side view (considered from the rear) of this assembly, is shown in sketch 'A'.

The range switch, SWD (SWC in HS $31 / 1 \& H S 31 A / 1$), which alters tappings on fixed inductors L22 and L23, is ganged to SWC (SWB in HS 31/1 \& HS31A/1) in Stage 6 and SWA and SWB (SWA only in HS3l/1 \& HS31A/1) in Stage 5. All of these switches are controlled by the RANGE control on the front of the cabinet.

The drive to SWD (SWC in HS $31 / 1 \& H S 31 A / 1$) is made through a coupling to enable the unit to be withdrawn from the cabinet; therefore, when replacing the unit, care must be taken to see that the switch is in the same position as when the unit was removed to mate correctly with the driving member of the coupling.

The circuit is tuned by a variable differential capacitor C64, in conjunction with four padding capacitors C68-71, through a switch, SWP, controlled by the FEEDER TUNE control on the front of the r.f. cabinet. Operated in conjunction with SWP is an interlock switch SWM, mounted immediately behind the tuning control, which prevents arcing on SWP by removing h.t. when switching in circuit the pading capacitors.

The variable capacitor has ${ }_{0}$ butterfly shaped plates ${ }_{0}$ and is set up to turn from maximum capacity at 0°, through minimum at 90°, maximum at 180°, to minimum at 220°.

Padder capacitors C68-C71, are connected into the circuit by switch assembly SWP, which is fixed to the spindle of capacitor C64. This switch is mounted such that the padders are only in circuit when the capacitor turns through its first 120°.

On the gearbox shaf't is a cam with which the roller follower microswitch, SWM, is associated. This switch is an interlock switch which ensures that the h.t. is off when SWP is in transition. The switch, due to the cam, is closed during the period of capacitor travel through the first and third quadrants and open during the second quadrant.

The cycle of operation of the assembly is as follows 0° to 270°.

Capacitor Movement in Degrees	HS31 and HS31A Scale Reading	HS31/1 and HS31A/1 Scale Reading	Capacitor C64 Capacity	Switch SWM	Switch SWP	Capacitors C68-C71 in/out
0	0	0	max	closed	closed	in
90	33	66	min	opens	closed	in
120	43	87		open	open	out
180	67	133	max	closes	open	out
270	100	200	min	closed	open	out

If the feeder tuning control is turned in the opposite direction, the sequence occurs in reverse order. If the control is turned through 0 to 100, the switching completes a full cycle and returns to its original position.

4.3.2.5 Cooling Fan

Mounted in the base of the r.f. cubicle is a suction fan which draws cooling air down through the amplifier stages from an inlet in the top of the cubicle. The inlet is on the rear facia panel and is covered by an air filter which is removable without switching off the transmitter. The hot air drawn by the fan into the duct at the base of the cubicle is expelled from the vent on the cubicle roof via a duct between the two cubicles.

5 CIRCUIT DESCRIPTION GENERAL

5.1 R.F. CIRCUITS

Block Diagram Fig.9.
Any one of the HS3l range may be used as a transmitter or a power amplifier. When used as a power amplifier, the drive at radiated frequency is applied to the grid circuit of Stage 4.

When used as a transmitter two r.f. inputs are applied to the Mixer Unit; one is a frequency from the primary crystal oscillator and is between 3.45 and $6.95 \mathrm{Mc} / \mathrm{s}$. It is applied to the Mixer Unit where it is either doubled or quadrupled in the harmonic generator stages. The resultant frequency, described as the harmonic generator frequency (fHG),
is then fed to the control grids of the balanced mixer stage. The second input is the i.f. drive, bearing the signal intelligence to be transmitted. This is fed to the cathode circuit of the mixer stage. The sum and difference components of the two inputs appear simultaneously in the anode circuit of the mixer, and the required output is selected by tuning the anode circuit to the higher or lower component as desired. The output taken from the anode circuit is the frequency to be radiated and is applied through six amplifier stages to the aerial feeder circuit.

Stage 5 amplifier has an envelope correction circuit in its cathode circuit. This correction circuit minimizes the i.s.b. distortion in the transmitter.

The first three stages of the amplifier chain are contained in the Mixer Unit; Stages 4 and 5 are mounted in a separate sub-unit above the Mixer Unit; Stage 6 occupies most of the rear part of the r.f. cabinet.

5.1.1 Monitoring

To facilitate correct operation of the transmitter, provision is made for feeding monitor signals from various parts of the amplifier chain back to the i.s.b. drive unit for examination in a monitoring receiver. To do this, whichever monitor signal is required is fed into a frequency changer circuit in the Mixer Unit, and there combined with the output of the harmonic generator stages to be converted to a 3.1 Mc / s signal (HS31 \& HS31/1 only $-2.15 \mathrm{Mc} / \mathrm{s}$ for HS 31 A and HS31A/1) suitable for feeding to the drive equipment.

5.2 POWER SUPPLIES

All of the various power supplies are located in the Rectifier Cabinet. An input of $380 / 420 \mathrm{~V}, 50$ or $60 \mathrm{c} / \mathrm{s}, 3$-phase, is used.

The main h.t., for Stages 5 and 6 , is 4 kV , and is produced by a 3-phase full-wave rectifier using Xenon-filled diodes.

Auxiliary h.t. supplying the remaining stages, is produced by a full-wave hard valve rectifier circuit which provides 450 V unstabilized and 280 V stabilized.

Bias voltages are produced from a metal rectifier circuit. Various outputs are obtained from an adjustable potentiometer across the output of the rectifier.

Filament voltage for Stage 5 is 5 Volts d.c. provided by a 3-phase metal rectifier circuit. Stage 6 filament supply is 12.6 V a.c., and the supply for the remainder of the r.f. valves is 6.3 V a.c. All these three supplies are provided by transformers in the Rectifier Cabinet.
\#
For i.f. drive input frequencies see Supp.l, Table l.

The various h.t. and filament supply circuits are switched on and off by a sequenced relay and contactor control circuit, the operation of which is initiated by, push button switches on the main control panel.

The control circuits are energized by 50V d.c. negative from a

1 \& HS31A

y. For

$1 / 1 \& H S 31 A / 1$
Supp. 1
t. 3.2 . metal rectifier circuit.

The cooling fan is supplied direct from one phase of the a.c. input,

5.3 OVERLOAD PROTECTION AND INTERLOCKS

An increase in the current drawn by Stage 5 or Stage 6, will cause the operation of one of the overload relays mounted in the rectifier cabinet.

The contacts of the relays will interrupt the control circuit of the main h.t. contactor switching off the 4 kV rectifier, and at the same time energizing the overload lockout relay. The lockout relay keeps the $h . t$. contactor isolated when the overload relays de-energize, lights the H.T. TRIP indicator lamp and operates a warning bell.

Main h, t_{0} Is reset by pressing the TRIP RESET button to de-energize the lockout relay and then pressing the H.T. ON button.

The front and rear doors of the rectifier cabinet are fitted with 'lock-handles'; these operate switches which, when the 'lock-handles' are set to 'UNLOCK', to enable the doors to be opened, 'break' the h.t. control circuit and earth the output line of the main h.t. rectifier. The rear door of the r.f. cabinet is also provided with a 'lock-handle'. This similarly operates a switch to break the h.t. control circuits and earth the $h_{0} \pm$ line of Stage 6 before the door can be opened.

In aodition to these, in the control circuits are contacts of switches associated with certain tuning controls; these remove h.t. if the controls are operated with h.t. on.

In the top centre of the front of the r.f. cabinet is a switch labelied 'STAGE 5 H.T. INTERLOCK', which 'breaks' the h.t. control circuits and earths the Stage 5 h.t. line when it is set to SAFE. A latch associated with it prevents access to Stage 4 and 5 until it has been set to SAFE, Inside the $r_{e} f$. cabinet at the rear, is a switch associated with a latch on the door to the compartment containing the final amplifier anode compartments. This ensures the removal of the filament supply from the valve before the door can be opened. It protects the valve filament seals from overheating due to loss of cooling air pressure when the compartment is open.

In the air exhaust duct is an air pressure switch which switches off all supplies in the event of failure of the cooling air supply.

6 CIRCUIT DESCRIPTION DETAILED

6.1 GRID REFERENCE

To facilitate explanation, description and ease of reference, the following method of component identification is used. All drawings have a grid round them lettered horizontally and numbered vertically, thus if all these grid points were joined the drawing would be divided into a number of small squares which can be identified by a letter and a number i.e. IA, 2A etc.

Components referred to in the text following are suffixed by a grid reference, e.g. R25 (7F) which will facilitate location on the drawing concerned. To avoid confusion, this applies, in general, only to HS 31 and HS31A, but components on HS $31 / 1$ and HS31A/1 circuit diagrams which have similar functions to HS3l and HS31A components will occupy similar positions on the diagrams.

6.2 RADIO FREQUENCY CIRCUITS

6.2.1 Harmonic Generator

Circuit Diagram: (HS 31) Fig.12, (HS 31A) Fig.12A, (HS 31/1) Fig.12B, (HS 31A/1) Fig.12C.

The harmonic generator consists of three frequency multiplier stages V1, V2 and V3 followed by two amplifier stages, V4 and V5/V6 in parallel. The tuning capacitors of each stage, C5, C14, C25, C41 and C47, are ganged to a single control on the front panel of the unit.

Various combinations of the multiplier stages are selected by SWA, the harmonic generator frequency range switch ($f H G \mathrm{Mc} / \mathrm{s}$), to give an output frequency of twice or four times the primary crystal oscillator frequency (fxtal). These combinations are shown in the table below (HS31 and HS31/1 only. For HS31A and HS31A/1 see Supp.1, Table 3).

SWA Range Mc / s	fxtal Mc / s	Function			$\begin{aligned} & \mathrm{fHG} \\ & \mathrm{Mc} / \mathrm{s} \end{aligned}$	Mult. Factor
		V1	V2	V3		
4-8	3.45-4	Doubler	-	-	6.9-8	2
8-16	4-6.95	Ampl.	Doubler	-	8-13.9	2
	3.475-4	Doubler	Doubler	-	13.9-16	4
16-24.4	4-6.1	Ampl.	Doubler	Doubler	16.24 .4	4

SWA also selects the appropriate anode tuned circuit of the amplifier stages V4 and V5/6, allowing them to be tuned over the entire frequency range without external change of components, and switches the required final harmonic generator frequency to the control grids of the mixer stage.

The tuned cirouit of oach amplifier stage has trimmers selected by SWA to enable the circuits to be tracked. Similarly, each tuned circuit of the amplifier stages has a separate trimmer.

The meter M1 (90) and the selector switch SWB, provide monitoring of the following:-

V1	cathode current - across R8(7B)
V2	cathode current - across R16(7D)
V3	cathode current - 3 cross R25(7F)
V4	cathode current - across R37(7H)
V5/V6	grid curront - across R40) 7I)
V5/V6	cathode current - across R44(7J)

In the seventh position of thr switch, connection is made via point ' m ' (70) to the mixer meter switch sWD, shown in Fig. 13 of the circuit diagram. The connections of this switch are listed in the following sub-section.

6.2.2 Mixer Stage

NOTE: When an external Frequency Shift Diplex Equipment is used the Mixer Unit is, with the exception of the Monitor links on the front panel, bypassed. To ensure non-operation of the FREEQUENCY indicator lamps on the control panel giving spurious indication the AUTO/MANUAL switch should be set to MANUAL.

Circuit Dieagram Fig. 13.
Valves V7 and V8 form the balanced mixer stage. The i.f. input from the drive equipment is applied to the cathode circuit across R56 and R58, via the unbalanced to balanced transformer $\operatorname{TRI2}(7 B)$ and socket SKS (7C). The output of the harmonic generator stages is applied to the control grids. The resultant output, fHG + i.f. or fHG - i.f., is taken from the anode tuned circuits. Either of these tuned circuits, TR6/C67, TR7/C68 or TR8/C69, are selected by wafers SWC15(2B) and SWC17(6B) of the range switch SWC, depending on the frequency to be radiated. Tuning is effected by the variable capacitors C65 and C66, which are ganged to the mixer tuning control on the front panel of the unit. Trimmers on each tuned circuit enable individual setting-up.

The stage is balanced by the h.t. potentiometer RVI(4B) and the capacitor C63(4B). Resistors R57 and R61(4B) decoupled by C62(4B) provide auto bias.

The output level from the mixer stage is adjusted by variable suppressor grid bias. There are two methods of control; either by variations of potentiometer RV5(5L), when switch SWF(5L), is in the MANUAL position, as drawn, or by automatic selection of six preset potentiometers, RV6-RV1I (5M-5N), when SWF is set to REMOTE. Normally MANUAL control is used. Automatic selection of RV6-RV1l by remote control is
carried out by the 'Ledex' controller SWG, which also carries out the selection of the six different primary crystal oscillator drives. Thus, if desired, the six potentiometers may be used to preset the mixer output level for the six available radiated frequencies.

The 'Ledex' switch SWG rer'erred to above, is an electrically operated switch and is caused to turn to any of the six positions by operation of the frequency selector switch, SWL, on the Rectifier Unit control panel. Its control circuit is described in Section 6.4.5., here are described only its various functions.

SWG has five wafers. The on/off contact SWGI and wafer SWG2 are associated with control of movement of the switch. SWG3 lights one or other of the six frequency indicator lamps, by connecting the 50 V d.c. supply to the appropriate lamp, via pins l-6 of PLP. Wafer SWG4 connects the 50 V d.c. supply to one of the six pins of socket SKL. This connects via external wiring to the primary oscillator equipment and there controls another electro-mechanical switch which provides the automatic selection of the six different crystal oscillator frequencies.

Wafer SWG5 connects one of the potentiometers RV6-RVII to the mixer bias supply line coming in on Pin 12 of plug PLN(20). Wafer SWG6 connects the variable points of the same bias potentiometer to the suppressor grids of the mixer valves, $\mathrm{V} 7 / \mathrm{V} 8$, to provide the adjustment of mixer output level for each available radiated frequency as described.

6.2.3 Stages 1, 2 and 3

Circuit Diagram:

$$
\begin{aligned}
& \text { Fig.13(HS. } 31), \text { Fig.13A (HS 31A), Fig.13B (HS } 31 / 1), \\
& \text { Fig.13C }(\mathrm{HS} .31 \mathrm{~A} / 1)
\end{aligned}
$$

NOTE: When an external Frequency Srift Diplex Equipment is used Stages 1, 2 and 3 of the intermal Mixer Unit are not used but being an integral part of the transmitter will operate wi thout being driven.

The output of the mixer stage, i.e. the frequency to be radiated, is transformer coupled by TR6, TR7 or TR8, whichever is in circuit in the mixer stage, to the grid of the first amplifier stage, V9(7E) via SWCl3-(6D). Valve V9 is a buffer amplifier operating in class 'A'. It is followed by two class 'AB' amplifiers, Stage 2, VIO, and Stage 3, V1l.

Each amplifier has three separate tuned anode circuits, each covering a part of the frequency range of the transmitter. They are switched into circuit by the 3-position switch, SWC, which also switches the anode tuned circuits of the mixer stage. Each tuned circuit has its own trimmer capacitor, allowing individual adjustment of tuning over the frequency range covered by that circuit. The main tuning capacitors of eacn stage, C82(5F) for Stage 1, C94(5G) for Stage 2 and C100(4H) for Stage 3, are ganged to a single tuning control on the front panel of the unit with the tuning capacitors of the mixer stage.

Bias for Stage 1 is auto bias over R78 and R79(7E), decoupled by C77.

Grid bias for Stages 2 and 3 is adjustable by the potentiometers RV3 and RV4 (5L) supplied from the l05V stabilized output of the bias rectifier unit, via Pin 3 of plug PLN.

The r.f. output, from Stage 3 is fed via SWCI and SWC2(6J) to the coaxial socket, SKQ and thence to the sub-unit containing Stages 4 and 5. Also taken from SWCl is a reduced output to a monitor plug PLBE. This is for use in the monitor frequency changer unit - V12 and V13 which is described in Section 6.2.7.

Switch $\operatorname{SWD}(30)$ is the meter switch associated with harmonic generator meter switch, SWB, and the meter, M1, as explained in Section 6.2.1. It connects to the following points:-

Position

V7/8		Mixer cathode current - across R6I (4B)
V9		Stage 1 cathode current - across R79(8E)
V10		Stage 2 cathode current - across R88(8G).
VII	-	Stage 3 cathode current - across R98(8H).
V 12	-	Monitor Frequency Changer cathode current across $\mathrm{Rll} 7(4 \mathrm{~K})$.
V13	-	Monitor Frequency Changer output valve cathode current - across R130)4L).

Power supplies for the unit are brought in on plug PLN(1-2N).
There are two h.t. supplies, both provided by the auxiliary h.t. unit in the Rectifier Cabinet. Firstly, 450 V on Pin 1 for Stage 2 and 3 anode supply, secondly, 280 V stabilized, on Pin 2 for Stages 2 and 3 screen supplies and anode and screen supplies for all other valves in the unit. The screen supply to Stages 2 and 3 is applied through the tumbler switch, SWE (1H). This enables Stages 2 and 3 to be switched off during balancing of the mixer, to prevent oscillation due to amplification of the harmonic generator frequency through Stages 2 and 3 and subsequent feedback into the harmonic generator.

The filament supply is 6.3 V a.c. from the Rectifier Cabinet, supplied via Pins 4, 5, 6 and 7, 8, 9 of plug PLN.

Supplied via Pin 3 of PLN is the 105 volts stabilized supply for Stage 2 and Stage 3 bias potentiometers, RV3 and RV4.

6.2.4 Stages 4 and 5

Circuit Diagram: (HS31) Fig.10, (HS31A) Fig.10A, (HS 31/1) Fig.10B, (HS31A/1) Fig.10C.

Stage 4 which consists of two CV428 valves, V1 and V2, operating in parallel as a class A amplifier stage, is fed via plug PLCB the centre pivot of link LKA, Cl and the stopper networks $L 2 / R 2$ and $L 3 / R 7$. The two positions of the link allow either: (a) the output of an external Frequency Shift Diplex Equipment to be fed into Stage 4 via SKK, the attenuator network, R34 to R52 and RV7, and plug PLCA, or (b) the output of the amplifier, Stage 3 in the Mixer Unit, via SKH and PLCC.

The attenuator, R34, to R52 and RV7, reduces the power output of the HD61B (20-40 watts) to the required power input of stage 4 (approximately 1 watt).

Bias for Stage 4 is obtained from the bias unit in the Rectifier Cabinet, and is applied to the control grids via the r.f. choke Ll from Pin 3 of plug PLJ. H.T. is obtained from the 450 V line of the auxiliary h.t. unit via Pin 2 of PLJ.

The tuned circuit comprises one of the series of coils, L5-Ll0, and the variable capacitor Cl2, with bandspread capacitor Cl3 switched in on the lower frequencies. Tuning is done by a single control which switches the coils into circuit one at a time and at the same time rotates Cl2.

The precise functioning of the mechanism is explained in Section 4.3.2.2. Associated with the tuning mechanism is switch SWL(7G), which breaks the control circuit of the auxiliary h.t. supply unit, see Section 6.4.1, when coil switching is in progress. Capacitor Cl5(4I) provides pickup for the monitoring point, socket $\operatorname{SKM}(2 \mathrm{E})$, which feeds the monitor frequency changer.

Stage 5 comprises valves V3 and $V 4$ in parallel, operating in class 'AB'. Bias provided from the bias unit in the Rectifier Cabinet is supplied via Pin 10 of plug PLJ(8I), the choke $\operatorname{Lll}(5 I)$ and the tuning coil, L5(4H) in HS31 and HS31A, and L6 in HS31/1 and HS31A/1.

IS $31 \& H S 31 / 1$ only. For IS 31 A \& IS31A/1 see jupp. 1 ject.6.2.4.

The anode tuned circuit consists of L15 and the three ceramic capacitors C32, C33 and C34, switched by the range switch SWA. On the lowest frequency range C32 and C33 are connected in parallel. On the next range $C 33$ only is in circuit and on range 3 the padder capacitor C34 is switched in series with C33. For the highest frequencies, the self capacities of the valve and circuit only are used. It should be noted that on the HS3l the lowest range is not normally used.

The h.t. for Stage 5 is 4 kV supplied by the main h.t. rectifier and applied through the choke L27 and the anti-parasitic choke/resistor combination R28-L14. The short-circuited resistor, RI6(4J), provides damping for parasitics at v.h.f. The screen grids are supplied from a 600 volt line, in the HS31 and HS31A, and from a 480 volt line in the HS $31 / 1$ and HS31A/l, derived from the 4 kV line by a potentiometer in th Rectifier Cabinet.

The overall linearity of the amplifying stages is improved by an envelope correction circuit operating on Stage 5 as follows:-

The filaments are connected across resistors R25 and R26(6J). The mid-point of these two is connected via R27 and L29 in parallel, and R19 to earth. Resistor R19 is a meter shunt and R27 provides envelope correction. It is virtually short-circuited to d.c. by L29 and therefore has no effect on standing bias, but as it is not decoupled to a.f. there is developed across it a 'Feedback' voltage dependent on the modulation component of the signal. To provide individual adjustment of the correction circuit on all frequency ranges, R27 is shunted by one of the 5 potentiometers, RVI-RV5(6M), switched into circuit by SWB, ganged to the anode circuit range switch, SWA.

The high gain of the stage necessitates neutralization. This is achieved by a bridge circuit consisting of C24 and C16/C17 and the grid filament capacity (shown dotted) and the anode/grid capacity of the valves. The circuit is adjusted by variation of Cl6, brought out to a front panel control. Adjustment is only required when setting-up initially and holds over the whole frequency band.

The output to Stage 6 is via C35.

6.2.5 Stage 6

Circuit Diagram: (HS31) Fig.10, (HS 31A) Fig.10A, (HS31/1) Fig.10B (HS 31A/l) Fig.10C.

This stage consists of a single triode, V5, in a grounded grid cir cuit. This arrangement avoids the need for neutralization, as the anode to grid capacitive currents due to the output voltage do not filow throue the input circuit. In addition, linearity is improved, as the stage has a low and appreciable constant input impedance and thus variation of grid current over the r.f. cycle does not appreciably affect the regulation of the driving stage.

Input to the stage is across C45(314) which forms a capacity potentiometer with the coupling capacitor C 35 , and presents a low impedance to harmonics of the input permitting a higher operating efficiency of the stage. (In the HS 31 A and HS31A/1 the input to the stage is across C45 and C77, with C77 being switched out on the 6 to $20 \mathrm{Mc} / \mathrm{s}$ range).

IS $31 \& \operatorname{HS} 31 / 1$ only. For iS31A \& IS 31A/1 see Supp. 1
Sect. 6.2 .5

The filament choke Ll7 is wound from concentric cable. One leg of V5 filament is connected to the inner conductor, the other leg to the outer conductor and the filament supply is applied to the other end. Thus the supply circuit is isolated from r.f. The cathode circuit is grounded via the centre tap of RV6 in HS 31 and via RV1 in HS31/1, connected between the inner and outer of L17, and the meter shunt R22.

The grid is earthed to r.f. by C43, C44 and C48, C49. Grid bias is applied via Ll8(4N) and the grid current meter shunt R23 from the bias rectifier in the Rectifier Cabinet.

The anode tuned circuit is L19 and one of the capacitors C56, C57 or C58, or, on the higher frequencies, the self capacitance of the valve and circuit. The range switch, SWC, (SWB in HS $31 / 1$ and HS $31 \mathrm{~A} / 1$) is ganged to SWA, the Stage 5 range switch. The h.t. supply is 4 kV provided by the main h.t. rectifier unit, fed via the r.f. chokes L2l and L28.

Coupling to the output circuit which provides impedance matching between Stage 6 and the aerial feeder, is provided by the variable mutual inductance between L19 and L20.

6.2.6 Output Circuit

Circuit Diagram: (HS31) Fig.11, (HS31A) Fig.11A, (HS31/1) Fig.10B, (HS31A/1) Fig.10C.

The coupling coil is tuned by $C 64$ and the fixed capacitors C68-C69 and C70-C71, see Section 4.3.2.3. The fixed inductors L22 and L23 assis tuning on the lower frequency ranges, while the parallel inductor L26 is used on the highest range. These inductors are selected by the output range switch, SWD (SWC in HS31/1 and HS31A/1), which is ganged mechanically to the Stage 5 and Stage 6 range switch.

PVM4 is a peak voltmeter unit which feeds the feeder indicator M1O. C65 provides pick-up for the monitor frequency changer (see Section 6.2.7).

Where the 50 ohms output impedance is provided, (by the use of an external transformer), filter W. 102405 ED. B is connected to the output terminals of HS31 and HS31/1. The filter is mounted externally on the roof of the R.F. unit. Similarly, when 50 ohms output impedance is provided in transmitters HS31A and HS31A/1 filter 7.102405 ED.C
replaces coils L32 and L33 (in HS31A) or L3 30 to L33 (in HS31A/1), all located in the roof of the R.F. unit.

6.2.7 Monitor Frequency Changer

Circuit Diagram: (HS31 \& HS 31A) Fig.13, (HS31/1 \& HS31A/1) Fig.13A.
NOTE: When an external Frequency Shift Diplex Equipment is used the Monitor Frequency Changer, being part of the Mixer Unit, is not used, but use is made of the monitor links on the front panel to feed the monitor signals at radiated frequency to the remote monitoring equipment via $S K X$.

This circuit consists of V12 and V13(3K-L) etc. It is used to convert signals from various monitor points throughout the amplifier chain to $3.1 \mathrm{Mc} / \mathrm{s}$ in HS31 and HS $31 / 1$ and to $2.15 \mathrm{Mc} / \mathrm{s}$ in HS31A and HS31A/1, for feeding to the monitoring equipment normally fitted in the i.s.b. drive rack.

Monitor signals at radiated frequency are applied to the cathode of V12 via plug PLBC(lJ). PLBC may be connected by the U-link, LKA, to any of plugs PLBA, PLBB, PLBD or PLBE, which connect to monitor points in the output circuit, Stage 5, Stage 4 and Stage 3, respectively. To the grid of V12 is fed the output frequency of the harmonic generator. The two inputs are mixed in V12 and the resultant difference signal at $3.1 \mathrm{Mc} / \mathrm{s}$ (HS31 and HS31/1) or $2.15 \mathrm{Mc} / \mathrm{s}$ in HS31A and HS31A/1, carrying the modulation, is amplified by V13 and fed via socket SKT(2M) to the monitoring equipment.

6.3 POWER SUPPLIES

Circuit Diagram: (HS31) Figs. 14 \& 15. (HS 31A) Figs. 14 A \& 15. (HS31/1 \& HS 31A/1) Figs.14B \& 15A.

6.3.1 Main H.T. Rectifier

This provides the 4 kV h.t. supply for Stage 5 and Stage 6. The circuit is a conventional 3-phase, full-wave rectifier. The valves, Vl-V6, are filled with Xenon gas and will operate satisfactorily over a wide range of temperature, making an extensive air conditioning system and a long warming up period unnecessary.

Each rectifier valve has its own filament transformer, energized from the three-phase supply, via contacts FC4, FC5 and FC6(7G) of the filament contactor. The rheostats RV2, RV3 and RV4(8G) which are ganged, adjust the filaments supply and also control the input to the rectifier providing Stage 5 filament supply.

The supply to the h.t. transformer TR8(6L), is fed via contacts MCl, MC2 and MC3(8L) of the main h.t. contactor MC when it is energized by pressing the H.T. ON button.

The manner in which the overload relays control the h.t. contactor is explained in Section 6.4.4.

The output of the rectifier is smoothed by L7(1M) and C9(3N) etc.
The potentiometer chain Rl7, RI8, RI9 (20 \& 30) drops the 4 kV supply down to 600 V , or 480 V in HS $31 / 1$ and HS31A/1, for stage 5 screen supply. M3 is the H.T. Voltmeter, mounted on the front of the Rectifier Cabinet.

Switches SWA4 and SWB4(3N) are contacts of the interlock switches on the front and rear doors of the cabinet. They close, and earth the 4 kV h.t. line when the doors are opened. At the same time other contacts of the same switches break the h.t. control circuits and disconnect the incoming a.c. supply as described in the control circuits Section 6.4.1.

6.3.2 Auxiliary H.T. Unit

This is the full-wave hard valve rectifier circuit, V7, V8 etc. It provides two outputs:- 280V, stabilized by V9, providing screen voltage for Stages 2 and 3 and anode and screen voltage for the rest of the valves in the Mixer Unit.

450V, unstabilized, for Stages 2 and 3 anodes and Stage 4 anode and screen supply.

6.3.3 Bias Rectifier Unit

This is the full-wave rectifier circuit, MR3(4H) etc. It provides five negative voltage outputs.
(a) 105 volts, stabilized by V10, via TB9 terminal 8 to the Stages 2 and 3 grid bias potentiometers.
(b) Grid bias for Stage 6, via TB9 terminal 5, adjustable to 110 volts approximately by RVI2 on the meter panel at the front of the cabinet.
(c) Grid bias for Stage 5, via TB5 terminal 15, adjustable to 110 volts approximately by RV1l on the meter panel at the front of the cabinet.
(d) Gria bias for Stage 4, via TB5 terminal 14, adjustable to 25 volts approximately by RVIO on the meter panel at the front of the cabinet.

The bias supplies required depend to some extent on individual valves, and the variable resistors RVIO, RVII and RV12 may therefore require some adjustment when valves are changed (see Section 8.6).

The primary winding of the bias transformer TR5 is used as an auto transformer for the a.c. supply to the six inch ventilator fan on the roof of the cubicle.

6.3.4 Filament Supplies

Stage 6 filament voltage is 12.6 volts, supplied from TR3(3F). R4 is in series at the first instant of switching on, to limit the current in the cold filaments.

Stage 5 filament supply is 5V d.c. from the metal rectifier circuit MR2 (3G) etc. The voltage output is varied by RV2, RV3 and RV4(7 7 G) and by the preset resistors R8, R9 and R10)6G). RV2, RV3 and RV4 also control the h.t. rectifier filament voltage, therefore initial setting-up of Stage 5 filament is done by R8, R9 and R10, at the same time adjusting RV2, RV3 and RV4 for correct h.t. rectifier filament voltage.

The filaments of the remainder of the r.f. valves are supplied by 6.3 V a.c. from $\operatorname{TR2} 2(3 F)$.

6.3.5 Control Circuits Supplies

The majority of the control circuits are supplied by 50V d.c. negative, from the three-phase metal rectifier circuit MRI(3E) etc. The filaments delay switch FD, is energized from the RED phase of the a.c. supply.

The cooling fans in HS3l and HS31A are energized from the YELLOW phase of the a.c. input. The fans in HS $31 / 1$ and HS $31 A / 1$ are referred to in Supp.1, Sect.5.2.

6.4 CONTROL CIRCUITS

The switching on and off of the transmitter is controlled entirely from the control panel on the front of the Rectifier Cabinet. The filament, bias and h.t. circuits are energized in succession by relays and contactors, operated by pressing the push-buttons on the control panel. Each succeeding relay and contactor circuit is interlocked with the circuit preceding it, so that if, for instance, the filament control circuit failed, or was switched off, the h.t. control circuit would automatically be de-energized.

To protect the user, the a.c. input and the main h.t. control circuits are interlocked with switches operated by lock-handles on the front and rear doors of the Rectifier Cabinet.

6.4.1 Switching On Sequence

Circuit Diagram: (HS 31) Figs.14, 15, 17. (HS31A) Figs.14A, 15, 17. (HS $31 / 1 \& H S 31 \mathrm{~A} / 1$) Figs.14B, 15A, 17A.

This section explains the control circuit only; operating procedure appears in Section 10 .

For the purpose of this description it is assumed that the transmitter is tuned.
(a) Operate the door switches SWA and SWB. (By closing and locking the front and rear doors of the Rectifier Cabinet).

Contacts SWAl-3 and SWBl-3 will close in the a.c. supply lines. Meter Ml may be switched to show any phase of the supply. The 50V d.c. power supply unit is energized and the 50 V d.c. indicator lamp will light.

Contacts SWA4 and SWB4 remove the safety 'earths' from the main h.t. line.

Contacts SWA6 and SWB6 prime the circuit of the auxiliary h.t. relay, LA.
(b) Operate SWH, the associated door switch of the lower internal door of the Stage 6 valve compartment.
(c) Operate SWG, the rear door switch of the r.f. cabinet, by closing and locking the door.

SWGl removes the safety earth from the Stage 64 kV h.t. line.
SWG2 primes the Auxiliary H.T. Contactor LA.
(d) Operate SWF, the Stage 5 Interlock Switch. SWF removes the safety earth from the Stage 54 kV h.t. line. SWF2 primes the Auxiliary H.T. Contactor LA.
(e) Set the LOCAL/REMOTE switch on the control panel SWG to LOCAL. This puts control of the START RELAY ST to the local START push-button SWC.
(f) Press the START push-button SWC.

Five relays will operate in succession, switching on filaments, bias and auxiliary h.t. in turn.

1. The START RELAY ST, will be energized via SWG and SWH.

Contact STI, bypasses the START push-button, to allow the button to be released.

ST2 closes, allowing subsequent operation of the filament contactor $F C$ and the full filament relay $F F$.

ST3 closes in the circuit of the main h.t. contactor MC.

ST4 starts the fan.
ST5 primes h.t. on line.
2. As the fan speeds up the FILAMENT CONTACTOR FC will close, via ST2 and the contact of the air interlock switch SWN.

SWN is an air pressure switch in the air exhaust duct and is included to ensure filaments are switched off in the event of loss of air cooling.

When the filament contactor has closed, contact FCl, energizes the 6.3 V auxiliary filaments supply and the filament supply for the auxiliary h.t. unit.

FC2-FC3 energizes the filaments supply of Stage 6, at reduced voltage, via R4.

FC4-5-6 energize Stage 5 filament supply and main h.t. rectifier filament supply.

FC7 energizes relay FD.
FC8 primes relay FF.
(FC9 is not used).
3. As soon as FC7 has closed, the filaments delay switch FD, will operate, energized from one phase of the a.c. supply.

FDl energizes relay FF after 30 secs.
FD2 energizes the auxiliary h.t. relay LA via a contact of FF , after 35 secs.

The function of the delay switch is to allow time for the valves to warm up after initial switching on of filaments, before applying full filament voltage to Stage 6 by operation of relay FF and switching on auxiliary h.t. by operation of relay LA.
4. As soon as FDI 'makes' the full filament relay FF operates. FFl short-circuits R4 and puts on full filaments to Stage 6. FF2 energizes the bias unit.

FF3 operates auxiliary h.t. relay LA - when FD2 makes.
FF4 lights FILS ON lamp.
(FF5 spare).
5. After FD2 and FF3 have closed, the auxiliary h.t. relay LA 'makes' via ST2 and 4 interlock switches connected in series thence, through SWA6-SWB6 etc. The interlocks are: switch SWF which is the Stage 5 interlock switch on the front of the r.f. cabinet, SWG which is the r.f. cabinet rear door switch, SWL the Stage 4 coil turret interlock and SWM the Feeder tune interlock.

The contacts of LA operate as follows:-
LA2 energizes the auxiliary h.t. unit. LA3 primes the main h.t. contactor. LA4 lights the auxiliary h.t. lamp. (LAl and LA5 spare).

HS31 \& HS31A only. For HS $31 / 1$ \& HS31A/1 see Supp. 1 Sect.6.4.1.
(g) Press the H.T. ON button SWE. The main h.t. contactor, MC, will 'make', energized via: ODl and OEl which are contacts of the overload relays and are normally closed; ORI and OR2 which are contacts of the overload reset relay and are normally closed, and ST3 and LA3 which are contacts of the START relay and the auxiliary h.t. relay previously described.

Contacts MCl, MC2 and MC3 energize the main h.t. rectifier.
MC4 bypasses the H.T. ON button allowing it to be released.
MC5 lights the h.t. lamp.
MC6 opens to remove the short-circuit across the economy resistor R28(C6).

The transmitter is now fully operating.
NOTE: Interlock Circuits.
Facilities exist in this transmitter to extend the control circuit to ancillary equipment. This facility is made available to tagboard TB5 terminals 1 and 2 where in the standard equipment a shorting link is fitted.

The external interlock circuit is therefore connected in series with the Main H.T. Contactor and can be used in connection with feeder switching.

331 \& HS 31 A
ny. For S31/1 \& HS 31A/1 be Supp .1 ect.6.4.2

Pressing SWF, the H.T. OFF \& RESET button, will release the main h.t. contactor, MC, switching off the high voltage rectifier only.

Complete switching off may be effected simply by pressing the main STOP button SWD, when all of the control circuit is de-energized.

SWF is also used to de-energize the trip reset relay OR if this has energized subsequent to an overload - see Section 6.4.4. The main hit. control circuit is then reset, and the contactor MC can be energized by pressing the H.T. ON button.

6.4.3 Remote Control

Control Circuit Diagram: (H S31 \& HS 31A) Fig. 17. (HS $31 / 1 \&$ HS 31A/1) Fig.17A.

Remote control of switching on and off is provided for by relay SP. If the Local/Remote switch $S W G$ is set to remote, the 50 V d.c. control supply voltage is connected via FS22 and SWG2 to terminal 7 of TB6 and through the remote ON/OFF switch (shown dotted) to make connection to tag 12 of TB6.

When SP is energized by closing the remote ON/OFF switch, SP closes and the 50 V control supply energizes the start relay ST through SP and SWG (now set to remote). The remainder of the relays operate in the sequence already described. The main H.T. ON push-button SWE, is shortcircuited by SWG and the h.t. contactor MC comes on automatically after the operation of LA.

6.4.4 Overload Circuits

The Penultimate and Final stages of the r.f. amplifier each have overload relays in their anode supply circuits. These relays, OD for Stage 5 and $O E$ for Stage 6, are set to operate when excessive current is drawn from the 4 kV h.t. supply. The relay operating current is set by the relay tensioning springs in the case of Stage 5, and in the case of Stage 6 by the tensioning springs and a shunt variable resistor RV6.

When an overload occurs, i.e. a stage draws excessive current, the overload relay will be energized causing its associated contacts to change over.

The relay contacts ODI and OED are connected in series in the controd circuit of the main h.t. contactor; they are normally closed, opening on an overload. Contacts OD2 and OE2 are connected in parallel in the operating circuit of the overload trip relay OR; these are normally open, closing on an overload.

When an overload causes one of the relays to operate, its No.l contact will open and de-energize the main h.t. contactor, removing main h.t. At the same time the No. 2 contact will close and energize the
overload trip relay OR. ORI and OR2 in series, open in the circuit of the h.t. contactor, keeping it isolated when the overload relay de-energizes on removal of h.t. OR3 makes a hold-on circuit for OR. OR4 closes to light the trip lamp, OR5 closes to ring the alarm bell.

To reset the circuit, the H.T. OFF/TRIP RESET button SWF, must be pressed. This breaks the circuit of OR. The hold-on contact OR3 opens and contacts ORI and OR2 close. Main h.t. may then be re-applied by pressing the H.T. ON button SWE.

On remote control, the circuit may be reset remotely only by opening the ON/OFF switch. ST5 then de-energizes the reset relay, OR. The set is then switched on again by reclosing the ON/OFF switch. This procedure would not normally be used; investigation should first be made to discover the nature of the overload. (For HS $31 / 1$ and HS $31 \mathrm{~A} / 1$ see also Supp.1, Sect.6.4.4.).

6.4.5 Frequency Selector Control Circuit

NOTE: This section is not applicable when an external Frequency Shift Diplex Equipment is used.

To simplify operation of the transmitter, the primary crystal oscillators may be switched to provide six different inputs to the harmonic generator, by operation of the 'Ledex' switch, SVI, in the Mixer Unit. The various functions of the switch are described in Section 6.2.2. Here, is described its operating circuit.

SWG is controlled by the frequency selector switch, SWL, on the main control panel.

SWN is the AUTO/NARTUAL changeover switch. There is no requirement for the MANJAL setting on the HS3l range of transmitters; the switch is a standard fitting for this type of control panel and should always be left at AUTO.

SWG is the Local/Remote switch. When set to LOCAL; the 50V d. control supply is applied via FS22 to one wafer of SWN and from thert, in the AUTO position, to SWL. Depending on the setting of SWL, the supply will be fed via one of tags l-6 on TB6 to pins $10-15$ on plug PLP on the mixer unit. Connection is then made through wafers SWGI and SWG2 of the 'Ledex' switch to its operating coil. The switch then turns until the 'dead' space on wafer SWG2 reaches the control lead contact carrying the 50 V supply; the switch will then stop and stay in that position until the setting of the frequency selector switch, SWL, is altered.

There is no provision for remote operation of the switches as the remainder of the transmitter has to be manually tuned.

Installation requirements differ according to site conditions and each specific installation will normally have supplied its own Installation Folder, containing full instructional drawings. The following therefore, should be regarded as general guidance rather than specific instructions.

7.1 GENERAL

A site plan is invariably included in the installation folder. The transmitter room must be dry and well ventilated.

The overall dimensions of the transmitter are given in Section 2.1. Care must be taken when siting try transmitter, to provide sufficient access on all sides to facilitate the fitting of large components and to allow the doors to be fully opened and units to be withdrawn for maintenance and adjustment.

Provision must be made for running mains supply, traffic, telephone and control leads.

7.2 PACKING, TRANSPORT AND DELIVERY

The equipment is carefully inspected and tested prior to despatch. When it is disconnected and packed for transport, all heavy items are removed from the cabinets and packed separately. The wiring in the cabinets and the inter-unit wiring, is disturbed as little as possible. Where the wiring must be removed, the cable ends and their respective terminal points are marked with corresponding numbers. The cabinets are suitably braced internally to withstand transport.

The serial numbers of the cases and their contents will be clearly indicated on the Advice Notes and Packing Notes. The latter are usually inserted in a tin compartment on the crate or case. Any irregularities should be endorsed on the carrier's documents and the Company or its authorised agents notified immediately. Where damage has occurred, the case, its contents and the packing should be retained for examination.

The cases are despatched in a weatherproof condition, however, it does not necessarily follow that they are in that condition on arrival. Therefore, should installation be delayed, the equipment should be stored under cover as soon as possibie.

7.3 ASSEMBLING THE TRANSMITTER

The cabinets are to be mounted on a wooden plinth; the surfaces of this must be level otherwise difficulty will be experienced in opening doors, operation of door switches etc. The rectifier and control cabinet is mounted on the left.

Fit transformers and other heavy items which will have been removed for purposes of transport. NOTE that transformers are not screwed down but are placed on pegs for easy fitting.

Before placing the cubicles in position, remove and discard the outer bolts from the brackets in the lower corners of the cubicles; both front and rear. Once the cubicles have been placed in position and the upper cabinet assembly mark carried out, screw the cubicles to the plinth (through the vacated holes) by means of the coach bolts found in the linen bag attached to the transmitter.

The a.c. input enters via TBI in the top left (viewed from the rear) of the rectifier cabinet - see Fig.l. The external connections to and from the r.f. cabinet are made via plugs and sockets on its roof - see Fig. 3.

Connect up the inter-unit wiring. A diagram of inter-unit connections is shown on drawing Fig.16. Connections between the Rectifier Cabinet and the R.F. Cabinet are made from terminal boards on a bracket at the top of the Rectifier Cabinct. These are shown on the UPPER VIEW on drawing Fig. 2 to the plugs and sockets on the roof of the R.F. Cabinet shown on drawing Fig.3. Connectior between the various sub-units in the R.F. Cabinet is by plugs and sockets. The wiring is carried on channels inside the cabinet and will not normally be disturbed, therefore simply connect up each sub-unit as it is fitted. The connections between subunits are best seen on Figs. 10 and 11, the r.f. unit circuit diagram, in conjunction with the main inter-unit connections diagram Fig.16. The disposition of the various plugs and sockets may be seen on the relevant component layouts. Fit sub-units, meters and such other components as have been removed for packing and transport.

Check wiring by 'ringing through' or some other quick method. Take care not to 'ring through' any meters.

Check the fuses using the list given in Section 4.2.5. Check for continuity as well as correct rating.

7.4 VALVE INSTALLATION

Fit the valves. Ensure that connections are tight and where flexible connectors are used ensure that there is no strain on those which might damage the seals of the valves.
7.4.1 Fitting the Stage 6 Valve V5 (BR191)

1. Open the r.f. cubicle rear door and the Stage 6 cathode compartment door.
2. Remove the three wing nuts on the front of the valve connectors and lift off the connector assembly.
3. Undo the fasteners, open the grià deck and clip it up by the catch on the left-hand wall.
4. Insert the BRI91 with the metal seal towards the rear of the cubicle.
5. Lower the grid deck and fasten down.
6. Reassemble the connector assembly and replace wing nuts.
7. Slacken off the three wing nuts on the rear of the connector assembly, insert the three flexible valve connectors between the plates and tighten up the wing nuts.
8. Check (a) that the capacitor caps are in their correct position,
(b) that all wing nuts are tight.
9. The valve is now installed.

When fitting a Type ACT 70 valve, ensure that the black centre-tap cathode connector is towards the rear of the transmitter.

8 SETTING-UP

After installation, before any attempt is made to operate the transmitter, it must be systematically checked, commencing with the interlocks and control circuits and working through filaments, bias and auxiliary h.t. supplies, to the main h.t. supply.

8.1 PRELImINARY

1. Check that the primary taps of all transformers, except TR9-14 are correct for the mains supply in use. In order to obtain adequate control on STAGE 5 and RECTIFIER FILAMENT regulators, the primary taps on TR9-14 must be set to 20 volts less than the mains voltage.

The single phase transformer primary taps are listed in Table 1 to assist setting-up.

Table 1

Function	$\begin{gathered} \text { Circuit } \\ \text { Ref. } \end{gathered}$	Identity No.	Primary Tap				
			240 V	220 V	220V	0	+10V
6V Fils.	TR2	W. 24068 Sh. 59	13	11	9	5	3
12V Fils.	TR3	W. 24582 Sh. 13	18	16	14	6	4
Bias	TR5	W. 23241 Sh. 33	13	11	9	5	3
Aux. H.T.	TR6	W. 24586 Sh. 26	13	11	9	5	3
Rect. Fils.	TR7	W. 24743 Sh. 27	7	6	5	3	2
H.T. Rect. Fils.	TR9-14	W. 27206 Sh. 4	14	12	10	5	3

For 4.05-4.1 kV the secondary taps on the h.t. transformer, TR8 must be set to the 3000 V terminals.
2. Check the secondary taps of the following transformers.

Table 2

Function	Circuit Ref.	Identity	Secondary Taps
50V Control	TRI	W.37518 Sh.2	4 4lV
5V Fils.	TR4	W.37518 Sh.3	6.1 V
Bias	TR5	W.23241 Sh.33	190V
Aux. H.T.	TR6	W.24586 Sh.26	435 V
Main H.T.	TR8	W.22129 Sh.3	3000V

3. Check the zero settings on all meters and adjust as necessary.
4. Set the following control switches:-

AUTO/MANUAL switch to AUTO. LOCAL/REMOTE switch to LOCAL.
5. Purh the 4th and 5th R.F. Amplifier sub-unit firmly into the r.f. cabinet and set the STAGE $5 \mathrm{H} . \mathrm{T}$. INTERLOCK control to 'WORKING'.
6. Test Equipment required: external voltmeter with an accuracy of 1%.
7. Check that TB5(1) and (2) are linked either directly or via an external interlock circuit (HS $31 / 1$ and HS31A/1).

8.2 CHECKING RELAY AND CONTACTOR OPERATION

The control circuits are explained in Section 6.4 to which, reference should be made.

1. Remove fuses FS5, FS7-FSl2 and FSI4-FSI7 (see Fig. 2 or 2B). This will isolate the filaments and h.t. circuits and allow the operation of the various relays and contactors to be checked without the supplies they control being switched on.
2. Close the external isolator switch. Set the FEEDER TUNE and ST. 4 TUNE to 5, set FREQUENCY switch to A and carry out instructions 4 and 5 of Section 8.1.
3. Close and lock the front and rear doors of the Rectifier Cabinet The door switches SWA and SWB will close and the a.c. voltmeter, MI on the meter panel at the top of the Rectifier Cabinet will now indicate. Using its selector switch (SWH) on the H.T. and FILAMENTS control panel, check the voltage of each phase of the supply.

The 50V d.c. indicator lamp (LPI) and frequency Lamp A (LP6) will light.

Check that the a.c. supply is switched off when either the front or rear door lock-handles are set to 'unlock', this will chesk the operation of the switches SWA and SWB.
4. Close and relock the doors of the cabinet.

Close the rear doors of the Stage 6 compartments in the r.f. cabinet and operate the filament interlock (SWH) adjacent to the lower door.

Close and lock the rear door of the r.f. cabinet.
5. Press the START button, SWC. The start relay ST will close and the fan start. As the air pressure builds up, the air interlock switch SWN, will close and energize the filament contactor $F C$, which will energize the delay relay FD.

30 secs after FD has operated, FF will operate and the FILS lamp, LP2, will light. After a further 5 secs, the auxiliary h.t. relay LA will 'make' and the AUX H.T. lamp, LP3, will light.
6. When satisfied that the above sequence has occurred, press the h.t. on button SWE. The main h.t. contactor MC will 'make' and the h.t. lamp, LP4, light.
7. In the auxiliary h.t. contactor control circuit are interlocks associated with the Stage 4 tuning control and the feeder tuning control, the STAGE 5 INTERLOCK switch on the front of the r.f. cabinet and the r.f. cabinet rear door switch; check that the auxiliary h.t. relay, LA, and the main h.t. contactor, MC, immediately de-energize and the associated lamps (LP3 and LP4) go out when either of the tuning controls are moved sufficiently to operate their associated interlocks (see Section 4.3.2.2. and 4.3.2.4 for details) and when the STAGE 5 INTERLOCK switch is set to SAFE, and when the lock-handle on the r.f. cabinet rear door is set to 'unlock', thus proving the operation of each associated interlock.

Ar̂ter checking each interlock relay LA should automatically operate again and LP3 should light when the interlock is reclosed. Reset the main h.t. by pressing the H.T. ON switch SWE.
8. Set the frequency selector switch, SWL, on the control panel, to each of its six positions in turn. At each setting check that the appropriate indicator lamp lights. This will prove the operation of the 'Ledex' switch in the Mixer Unit.
9. Press the H.T. OFF and TRIP RESET button. The main h.t. contactor MC will de-energize and the h.t. lamp extinguish. Press the STOP button and the remainder of the relays will de-energize and all the lights, except the 50 V d.c. indicator, will be extinguished.

8.2.1 Checking the Operation of the Air Pressure Switch

Locate the two nozzles provided in the transmitter air ducting; one is in the bottom of the Stage 6 coil unit and one in the top of the valve compartment.

Remove the sealing screws from the nozzles and connect a pressure gauge. With a piece of card, block the air intake filter and switch on the transmitter. Press the START button. Relay ST will close and the fan will start. The reading on the pressure gauge will be very low. Gradually slide the card from the air intake and check that the air switch closes (indicated by the operating of FC) at 1.2 in w.g.

If the switch does not close at 1.2 in w.g., remove the cover from the air switch and adjust the spring pressure, by means of the knurled screw, until it does. Do not forget to replace the sealing screws before putting the transmitter into service.

Gradually reduce the air flow by sliding the card back over the air intake and check that the lowest point at which the switch opens is greater than 0.8 in w.g.

8.3 CHECKING FILAMENT SUPPLIES

Test Equipment required: voltmeter with accuracy of 1% at 12.6 V a.c.

8.3.1 Stage 6 Filament

Replace fuse FSI4, and FSI5 (6 amp fuses), then close ard lock the front door of the Rectifier Cabinet.

Set the Filament Volmeter on the front of the r.f. cabinet to the Stage 6 filament position (12.6V). Turn the Stage 6 filament control on the front of the Rectifier Cabinet fully anticlockwise.

Press the START button and note the reading on the voltmeter. It should show a reduced reading at first and then after 30 seconds, when relay FF operates, rise to full value.

Adjust the Stage 6 filament control, until the indicated voltage is approximately 12.6 V a.c.

Connect the external voltmeter to the filament pins on the BRI91. Readjust the Stage 6 filament control for 12.6 V a.c. on this meter and note the slightly higher reading on the filament voltmeter M8 on the front panel; when setting Stage 6 filaments this reading should be uied Disconnect the external voltmeter.

During operation the filament voltage should be checked and maintained at the slightly higher voltage, noted on the front panel meter, by means of the Stage 6 filament control.

8.3.2 Stage 5 and Rectifier Filaments

Switch off and connect the external voltmeter across the secondary terminals of one of the main h.t. filament transformers, and secure the meter in a position in which it can be seen through the rear window of the Rectifier Cabinet, when the door is shut. Insert fuses FSIO, 11 and 12 (2 Amp).

Set the Filament Voltmeter on the r.f. cabinet to show STAGE 5 filament voltage.

Set the STAGE 5 and RECTIFIER FILAMENT control on the front of the Rectifier Cabinet fully anticlockwise.

Shut doors and switch on; adjust the control for a reading of 5 V a.c. on the test meter across the rectifier filaments. Note the reading of Stage 5 filament voltage on the meter on the $r . f$. cabinet. It should be 5 volts. If not, adjust the preset resistors, R8, R9 and R10 inside the Rectifier Cabinet, or the secondary taps on TR4. After each adjustment check the rectifier filament voltage shown on the test meter, and maintain it at 5 volts by adjustment of the front panel control.

Adjustment is correct when both filament voltages are correct with the front panel control at approximately mid-setting, this allows adequate adjustment of both supplies for variations of mains voltage.

Switch off and remove the external voltmeter.

8.3.3 Auxiliary Filaments

This is a preset adjustment for which no panel controd i, nocossary.

Insert fuse FS5(2A) and set the filament voltmeter switch to AUX. 6.3 V a.c.

Switch on. The meter should read 6.3V a.c. If not, the preset resistor R2 must be adjusted. To do this it is necessary to switch off and open the rectifier unit door to enable the meter panel to be hinged forward so allowing access to the resistor.

8.4 CHECKING BIAS AND AUXILIARY H.T. SUPPLIES

With the transmitter switched off, replace the fuse FSI7 (2 amp).
Close the cabinet doors and press the START button. Wait for the filaments and auxiliary h.t. lamps to light.

Check the bias voltages on the Auxiliary Voltmeter in the r.f. cabinet, they should be approximately as follows:-

Mixer Suppressor, 75V; Stages $2 \& 3,75 V$; Stage 4, 25V; Stage 5, 110V; Stage 6, llov.

Any major discrepancy in bias value should be investigated and corrected; the exact bias levels of each stage must be adjusted after application of h.t. see Section 8.6.

Switch off the transmitter and replace fuses FSI6(2A). Switch on again and check the auxiliary h.t. voltages on the Auxiliary Voltmeter. They should be:- 450 V and 280 V . The 450 V h.t. may be high if the static feed on Stage 4 has not been adjusted. See 8.6(vi).

8.5 CHECKING THE MAIN H.T. RECTIFIER OUTPUT

With the transmitter switched off, replace fuses FS7, FS8 and FS9(25A). Close the doors. Press the START button and check that the filament and auxiliary h.t. indication lamps light. Press the H.T. ON button. Check that the h.t. indicator lamp lights. The H.T. Voltmeter on the meter panel at the top of the Rectifier Cabinet should show 4 kV . Set the h.t. volts selector switch to LOW. The voltmeter should now show a lower reading, depending upon the load on the rectifier. With only static feeds on the Stage 6 valve it will be about 3.3 kV .

8.6 ADJUSTING THE BIAS VOLTAGES

The bias voltages (except mixer suppressor bias) are set up by adjusting the static feeds (i.e. with no r.f. drive) to each stage, and will require adjustment after valve replacement if optimum performance is to be obtained.

The bias voltages for the mixer and Stages $4-6$ are adjusted by variable resistors; those for Stages 2 and 3 in the Mixer Unit are accessible when the unit is pulled forward on its runners, but those for Stages 4-6 are mounted on the meter panel at the front of the Control, Power Supply Cabinet, and can be adjusted without switching the transmitter off.
(i) Close the doors. Press the START button and check that the filaments and auxiliary h.t. lamps light. Press the H.T. ON button and check that the h.t. indicator lamp lights. Set H.T. VOLTS switch to FULL. Set the H.G. METERING switch to MIXER .
(ii) Withdraw the Mixer Unit on its runners.
(iii) Set the MIXER and MONITOR METERING switch to VIO so that the meter indicates Stage 2 cathode current.
Adjust the Stage 2 bias potentiometer RV4 for a reading of 40 mA on the meter.
(iv) Set the meter switch to Vll (reading Stage 3 cathode current). Adjust RV3 the Stage 3 bias potentiometer, for a reading of 25 mA on the meter.
Push the Mixer Unit back into the cabinet.
(v) Set the AUXILIARY VOLTMETER switch on the front of the r.f. cabinet to read MIXER SUP. BIAS; it should be 105 V approx.
(vi) Set the AUXILIARY VOLTMETER switch to read Stage 4 bias; and check the Stage 4 cathode current; it should be 90 mA when the bias reading is $20-25 \mathrm{~V}$. If necessary adjust the Stage 4 bias potentiometer RV10, on the meter panel on the front of the Control, Power Supply Cabinet, to obtain a reading of 90 mA . Check that the stage h.t. is approximately 450 V . It may be necessary to alter the transformer taps (TR6) to obtain the correct voltage.
(vii) Set the AUXILIARY VOLTNETER switch to read Stage 5 bias; and check the Stage 5 cathode current; it should be 60 mA when the bias reading is $100-110 \mathrm{~V}$. If necessary, adjust the Stage 5 bias potentiometer RVIl, on the meter panel at the front of the Control, Power Supply Cabinet, to obtain a reading of 60 mA .
(viii) Set the AUXILIARY VOLTMETER switch to read Stage 6 bias and check the Stage 6 cathode current; it should be 0.32A when the bias reading is $100-110 \mathrm{~V}$. If necessary, adjust the Stage 6 bias potentiometer RV12, on the meter panel at the front of the Control, Power Supply Cabinet, to obtain a reading of $0.32 A^{*}$

8.7 SETTING-UP THE OVERLOAD RELAYS

The overload relays are set up when the transmitter has been tuned and is operating on full power. The instructions are contained in this section for the sake of completeness.

The relays are situated in the Rectifier Cabinet, and are not accessible when the power supply is on. Accordingly, adjustments must be made progressively. It will be seen that there is a small red flag associated with each relay contact assembly; this falls into a downward position when the relay operates to provide a rapid indication of which relay has tripped when a fault occurs. Before resuming operation after a trip, the flag must be returned to its normal position manually.
\#
See Section 11.11 when using an ACT 70 valve in Stage 6.

Apply r.f. drive, and set the cathode current of Stage 5 to 280 mA , detune the stage if necessary. Take care to restrict the time duration of this detune period, as excessive temperature rise in the valves may take place. It is also advisable to keep a check on Stage 6 feed, as, with an excessive feed, due to detuning Stage 5, Stage 6 relay 0 E will operate the overload relay.

If the relay trips before the current reaches 280 mA , switch off, remove the relay cover and tighten up the tensioning spring, then switch on again and carry on increasing the cathode current. Repeat until the relay just trips at 280 mA .

If the relay trips after the current reaches 280 mA , switch of f and slacken off the tensioning spring, then switch on and slowly increase the current again. Repeat until the relay just trips at 280 mA .
(b) Stage 6 Relay $O E$

Setting-up this relay is done by adjustment of its tensioning spring and of shunt resistance, RV6.

Set RV6 to about mid-way. Switch on and adjust Stage 6 cathode current to 1.8 amps . If it is necessary to detune the Stage to obtain this current; it must be done only for very short periods as for Stage 5

If the relay trips at less than 1.8 amps , switch off and turn RV6 clockwise; switch on again and carry on increasing the current. Repeat until the relay just trips at 1.8 amps . If this adjustment cannot be obtained, set RV6 to its mid-position and tighten up the relay tensioning spring. Carry on checking and adjusting the spring until the relay just trips at 1.8 amps.

If the relay does not trip at 1.8 amps , reduce the current, switch off and turn RV6 a little anticlockwise; switch on again and increase the cathode current again. Repeat until the relay just trips at l. 8 A . In this case if the adjustment of RV6 does not bring the relay to the required operating point, set it to mid-position and slacken off the relay tensioning spring.

In the HS $31 / 1$ and HS3IA/1 there are additional overload relays; the setting-up of these is described in Supplement l, Section 8.7.

8.8 PILOT CARRIER COMPRESSION

(a) Set up the transmitter for Two Tone Operation as described in Section 9.2.
(b) Set the I.F. Drive to give -26 dB carrier and one of the two tones at the level used to check PEP (see Section 9.2 (e)). Check that when the tone is switched off the change in pilot carrier level is less than $l d B$.

8.9 NOISE LEVEL

(a) Set up the transmitter for Single Tone Operation as described in Section 9.1.
(b) Switch off the pilot carrier. Check on the spectrum analyser with the trace running at a 30 second period and the $6 \mathrm{c} / \mathrm{s}$ filter in circuit that every noise component is more than $\mu_{4} d B$ below the level of the tone.

8.10 METHOD OF NEUTRALIZING

Neutralizing should be carried out when the set is first tuned and subsequently should only be necessary after changing valves. It should be carried out at $20 \mathrm{Mc} / \mathrm{s}$, or alternatively at the highest frequency normally used.

Either of two methods may be used.
(a) Adjust Stage 5 tuning control for minimum cathode current.

With the drive level reduced, detune on either side of the tuning point and note Stage 6 grid current. If Stage 5 is properly neutralized, the drop in cathode current will coincide with a peak of Stage 6 grid current. If there is an increase of Stage 6 grid current on one side of the tuning point, rotate the Stage 5 neutralizing control a little in the same direction as the tuning control was turned to give the rise. Retune Stage 4. Swing the tuning control through the tuning point again and note the cathode and Stage 6 grid currents. Continue adjusting the neutralizing control and checking the currents until the dip in Stage 5 cathode current and the rise in Stage 6 grid current exactly coincide.

NOTE: It is important to retune Stage 4 after each adjustment of the neutralizing control.
(b) Completely detune Stage 5.

Adjust the level control to give approximately 100 mA Stage 5 cathode current. Tune through minimum cathode current then detune completely on the other side of the tuning point and note the current.

Adjust the neutralizing control until the cathode reading is the same when the stage is completely detuned on either side of the tuning point, readjusting Stage 4 tune as necessary.

8.11 STAGE 5-6 PRESET CAPACITOR COUPLING

In the HS31/1 and HS31A/1, Stage 5 is coupled to Stage 6 by a preset capacitor C35. The method of setting-up this capacitor is described in Supplement 1, Section 8.11.

When the transmitter is first installed or after being closed down for maintenance, it should be checked as described in Section 8 before being tuned.

Test Equipment Required: Spectrum Analyser 0A.1094 (A.P.103540)
Artificial load for transmitter (600 a) .

9.1 SINGLE TONE OPERATION CW/FSK

9.1.1 Calculation of Harmonic Generator and Crystal Drive Frequency

 For any radiated frequency in the range $4-275 \mathrm{Mc} / \mathrm{s}$ the frequency multiplication required in the harmonic generator stages of the mixer unit and the crystal oscillator frequency to be used is calculated as follows:-$f R A D=$ Final radiated frequency in Mc / s.
fx $=$ Crystal oscillator frequency in Mc / s.
$m \quad=$ Frequency multiplication in harmonic generator stages of the mixer unit.
i.f. = Keyed signal to mixer from keying unit (3.1 Mc/s for HS 31 and HS31/1).

When fRAD is less than $10 \mathrm{Mc} / \mathrm{s}$
$m=2$

$$
f R A D=2 f x-i . f \cdot M c / s \text { or } f x=\frac{f R A D+i . f .}{2} \mathrm{Mc} / \mathrm{s}
$$

When fRAD is between 10 and $17 \mathrm{Mc} / \mathrm{s}$
$\mathrm{m}=2$

$$
f R A D=2 f x+i . f . M c / s \text { or } f x=\frac{f R A D-i . f .}{2} \mathrm{Mc} / \mathrm{s} \text {. }
$$

When f RAD is greater than $17 \mathrm{Mc} / \mathrm{s}$

$$
\begin{aligned}
m= & 4 \\
& f R A D=4 f x+i . f . M c / s \text { or } f x=\frac{f R A D-i . f}{4} \cdot M c / s .
\end{aligned}
$$

An explanation of the manner of operation of the harmonic generator and the reasons underlying the selection of the primary crystal frequencies appears in Section 6.2.1.

9.1.2 Preliminary

(a) Connect the i.f. drive to SKP and set it to give one tone.
(b) Select the HG input crystal to the frequency required (calculated in Section 9.1.1).
(c) With the exception of the Stage 6 Coupling set all the tuning controls to the settings shown on the calibration curves for the frequency required (calculated in Section 9.1.1).
(d) Set Stage 6 Coupling to 0 . Set the Stage 6 grid trip switch on the front of the Rectifier and Control Unit to CW/FSK depending on frequency.
(e) Set the HG input level to 0.1 watt and the i.f. drive to 0.25 watt. Turn all the mixer bias controls to MAINJAL and A-F fully counterclockwise. Set the MIXER GAIN switch to MANUAL .
(f) Turn the Drive Control (Stage 4 input) on the 4 th and 5th R.F. Amplifier to maximum.
(g) See Supp.1, Sect.9.1.2 for setting of links in the HS 31A and HS 31A/1.
(h) Press the START button and when AUX. H.T. lamp has lit tune the HG section of the Mixer Unit for Peak Ig of V5/V6 or Peak Ic of V7/V8.
(i) Turm the mixer-gain control, MANUAL, clockwise about halfway and tune the mixer section for maximum reading of Stage 4 Vg . When the maximum has been found adjust the MANUAL control for about 10 volts on the STAGE 4 GRID VOLTS meter.
(j) Set the mixer-gain switch to AUTO and check that the Frequency Selector switch on the control panel selects the appropriate gain control. Set up as for the Manual Control.
(k) Return to MANUAL control.
(1) Tune Stage 4 for a maximum reading on Stage 5 grid peak voltmeter. Adjust the reading by the MANUAL control till the grid current is just showing on Stage 5 grid current meter. Turn the front panel drive control (DRIVE LEVEL) to zero.
(m) Turn the Main H.T. Selector to 'LOW' and increase the drive level till Stage 5 cathode current is about 30 mA .
(n) Tune Stage 5 for minimum cathode current, in Stage 5, keeping the drive level adjusted so that the Stage 6 cathode current does not rise above 0.6 A or grid current above 100 mA .
(o) Adjust Stage 6 tuning control for minimum cathode current, taking care that the grid current does not rise above 100 mA .
(p) Set the drive level to give approximately 100 mA Stage 6 grid current and increase the coupling till the grid current just begins to fall or the FEEDER INDICATOR shows a reading. Check the tuning of Stages 4,5 and 6 keeping Stage 6 grid current below 100 mA .
(q) Adjust the FEEDER TUNE for peak indicator feeding. This should correspond to a fall in grid current and a rise in cathode current indicating the loading of the valve.
(r) Reduce the drive level control to zero and switch the h.t. to 'FULL'.
(s) Increase the drive level to give a Stage 6 grid current of 200 mA and readjust Stage 6 tuning control for minimum cathode current.
(t) Increase Stage 6 coupling, retuning the anode circuit and adjusting the drive level in steps until the cathode and grid currents of Stage 6 are approximately 1.5 A and 200 mA respectively.
(u) Check the feeder circuit tune by moving the FEEDER TUNE control a few degrees in each direction. This should cause an increase in grid current in both cases.
(v) If this is not so the control should be adjusted slightly in the direction in which the grid current falls and the anode circuit retuned.
(w) Check again the feeder circuit tune and if necessary repeat the procedure until the grid current rises slightly whichever direction the FEEDER TUNE control is moved.

9.1.3 Checking Neutralizing

Check that when Stage 5 is detuned in either direction the grid current of Stage 6 falls. If the grid current shows a marked tendency to rise, the neutralizing control should be adjusted to correct this, and the control setting logged.

After any adjustment of the neutralizing control it will be found necessary to readjust Stage 4 tune. The method of neutralizing is described in Section 8.10.

9.1.4 Final Tuning

Increase the drive level for the Stage 6 Ig required for the frequency in use, see Table 3. If necessary, readjust the coupling to obtain the requisite cathode current also shown in Table 3 ...

Table 3

Type	Frequency	Stage 6 Ig	Stage 6 Ic	Stage 5 Ic	Power Output
 HS31/1	$4-21 \mathrm{Mc} / \mathrm{s}$ $21.27 .5 \mathrm{Mc} / \mathrm{s}$	250 mA $\mathrm{HS} 31 \mathrm{~A} \&$ HS $31 \mathrm{~A} / 1$	$2.5-20 \mathrm{~mA}$	$1.6 \mathrm{~A} / \mathrm{s}$	250 mA

If a water cooled artificial load is being used for tuning purposes check the power in the load, it should not be less than the figure given in Table 3.

Check all meter readings against the typical power figures given in Fig. 18 (HS31 and HS31/1) or Fig.18A (HS31A and HS31A/1).
9.2 TWO TONE OPERATION (I.S.B.)
(a) Tune the transmitter for Single Tone Operation, Section 9.1.1 to 9.1.4.
(b) Reduce the drive level to zero and switch the I.F. Drive to Two Tone, 0.25 watt output (zero level).
(c) Connect the Spectrum Analyser to the monitor distributi n poin marked STAGE 6 on the front of the Mixer Unit and tune the analyser to the radiated frequency.
(d) Increase the drive level till the Stage 6 grid current roads approximately 130 mA . Check the tune of Stage 6 and increase the Stage 6 coupling until the Stage 6 grid and cathode currents correspond to the figures given for the frequency in use, see Table 4.

Table 4

Type	Frequency	Stage 6 Ig	Stage 6 Ic	Stage 5 Ic	Power Output
 HS31/1	$4-21 \mathrm{Mc} / \mathrm{s}$ $21-27.5 \mathrm{Mc} / \mathrm{s}$	100 mA HS31A $/ 1$	$2.5-20 \mathrm{Mc} / \mathrm{s}$	100 mA	1.1 A
	$160-1 \mathrm{~A}$	$160-170 \mathrm{~mA}$	3.5 kW		
2.5 kW					

NOTE: The figures given in Tables 3, 4, 5, 6 ara 7 are for a ER191 valve. For figures pertaining to $A C T 70$ valves see Section 11.11.

Check the tune of the feeder circuit (FEEDER TUNE) and if necessary readjust as described in Section 9.1.2 (r)-(w).
(e) The levels given in (d) will give a mean output level of 1.25 kW (PEP 3.5 kVI), if a water cooled load is in use, check this and note the feeder indication to provide a subsequent check of power output level.
(f) Detune Stage 5, moving the control in an anticlockwise direction, till the cathode current increases by 10 mA (this improves the linearity of the stage) and if necessary increase the drive level to maintain the level of power output.
(g) Now adjust the Stage 5 feedback potentiometer appropriate to the frequency range in use, to give the lowest level of IP's as indicated on the Spectrum Analyser.
(h) Check the IP's for each level of arive in 2 dB steps down to -10 dB . In each case the highest IP shoula not exceed a level of -36 dB below the level of either tone.

It may be necessary to readjust the feeaback to obtain a compromise between the best conditions at high and low àrive levels. The worst condition is often found when Stage 6 grid current is approximately $15 \mathrm{~mA},-6 \mathrm{~dB}$ to -8 dB .

NOTE: It is only necessary to adjust the stage 5 feedback potentiometers at the centres of the frequency ranges. Therefore, if more than one frequency is used on any one range, the feedback potentiometer should be adjusted on the frequency nearest true centre of the range. It will not be necessary to make further adjustment when shifting a working frequency to arowwere else in that range, for trat reason the feedback potentiometers are preset controls and no soale logging facilities are necessary.

9.2.1 Final Adjustments for Optimum Linearity

The distortion introduced by Stages 5 and 6 is dependent on bias and loading of the valves. It may be found that a considerable departure from the static feeds quoted in 8.4 give a worthwhile improvement in linearity, this applies particularly to Stage 5 valves (Clll2) not made by the English Electric Valve Company.

To obtain linearity the static feeds may be set within the limits shown in Table 5.

Table 5

Stage	Static Feed
Stage 5 Ic	$45-60 \mathrm{~mA}$
Stage 6 Ig	$0.2-0.32 \mathrm{~A}$

These figures apply with an h.t. of 4.0 kV , slightly higher figures will apply if the h.t. is greater.

In consequence the loading figures of Stage 6 should be found to lie within the limits shown in Table 6.

Table 6
Stage 6 Loading Limits

Type	Frequency	$I g$	Ic	Power Output
HS31 \&	$4-21 \mathrm{Mc} / \mathrm{s}$	$75-100 \mathrm{~mA}$	$0.96-1.1 \mathrm{~A}$	3.5 kW PEP
HS $31 / 1$	$21-27.5 \mathrm{Mc} / \mathrm{s}$	$40-60 \mathrm{~mA}$	$0.7-0.8 \mathrm{~A}$	2.5 kW PEP
HS31A \&	$2.5-20 \mathrm{Mc} / \mathrm{s}$	$75-100 \mathrm{~mA}$	$0.95-1.1 \mathrm{~A}$	3.5 kW PEP
HS31A $/ 1$				

The Stage 5 cathode current however should not be allowed to exceed 180 mA , and if the drive level is sufficient to cause Stage 5 grid current to flow then the specification level IP's will be found difficult to achieve.

If Stage 5 is loaded to the limit, i.e. 240 mA at $21 \mathrm{Mc} / \mathrm{s}$ CW (HS31 and HS31/1) or $20 \mathrm{Mc} / \mathrm{s} \mathrm{CW}$ (HS31A and HS31A/1) this will in general be found to be optimum.

The degree of mistune however may require to be slightly less than the nominal 10 mA (see Section 9.2 (f) rise Stage 5 cathode current. When the IP's either side of the two tones are unequal in amplitude it is often useful to detune to the degree required for balance; greater than 10 mA rise of cathode current should not be necessary.

9.3 D.S.B. SIGNAL ADJUSTMENT

(NOTE: HS31/1 or $H^{\text {¹ }} 1 \mathrm{~A} / 1$ Stage 6 grid trip switch set to I.S.B.).
The carrier level is adjusted by first setting-up the transmitter with a two tone I.S.B. (Section 9.2) signal.

Apply the carrier via the D.S.B. equipment and adjust the gain of the mixer stage with the front panel drive control at maximum for the power output given in Table 7 with the Stage 6 Ig and Ic at the levels indicated.

Table 7^{*}

Type	Frequency	Stage 6 Ig	Stage 6 Ic	Power Output
HS $31 \&$	$4-21 \mathrm{Mc} / \mathrm{s}$	60 mA	0.95 A	1.5 kW
HS $31 / 1$	$21-27.5 \mathrm{Mc} / \mathrm{s}$	50 mA	0.9 A	1.0 kW
HS $31 \mathrm{~A} \&$	$2.5-20 \mathrm{Mc} / \mathrm{s}$	60 mA	0.95 A	1.5 kW
HS3IA $/ 1$				

Check the resporise from 200 to $350 \mathrm{c} / \mathrm{s}$ at a modulation depth of 60% and the distortion at a number of tore frequencies between 200 and $3500 \mathrm{c} / \mathrm{s}$ at 80% modulation depth.

The response should not vary by more than $\pm 2 \frac{1}{2} d B$ and the distortion be not greater than 10%.
NOTE: These figures include the characteristics of the drive unit, i.e. $\pm 2 d B$ response and 2% distortion.

10 OPERATING INSTRUCTIONS

This section contains 'switching' instructions only. It is assumed that the transmitter has been set up and tuned as described in Sections 8 and 9 , and is in all respects ready for use and that the drive equipment is correctly set up and is switched ON.

10.1 STARTING-UP INSTRUCTIONS

1. Close and secure the front and rear doors of the Rectifier Cabinet and the rear door of the R.F. Cabinet.
2. Close the external wall isolator switch.

* These figures apply to BRI91B valve; for ACT70 valve refer to Sect.11.ll.

3. Check that the various control switches are set to their correct positions as follows:-

AUTO/MANUAL switch to AUTO (when using HD61B, to MANUAL). LOCAL/REMOTE switch to LOCAL.
H.T. Volts selector switch to FULL.

The primary oscillator equipment may be set up to provide crystal drive frequencies for up to six different radiated frequencies. The crystal oscillators are selected by operation of the FREQUENCY SELECTOR switch, which must now be set to the oscillator required.
4. Check the voltage of each phase of the a.c. supply.
5. Check that the 50V d.c. indicator lamp and one of the FREQUENCY indicator lamps have lit. (When using HD61B only 50V d.c. lamp will light).
6. Press the START button.

The fan will start.
Check that after half a minute the filament indicator lamp lights, followed by the auxiliary h.t. lamp.

Check the filament voltages on the voltmeter on the R.F. Cabinet and adjust as necessary by the filament controls on the Rectifier Cabinet.

Check the bias and auxiliary h.t. supplies on the voltmeter on the R.F. Cabinet, and the static current of Stage 4.
7. Press the H.T. ON button.

Check that the h.t. indicator lamp lights. Check the reading on the h.t. voltmeter on the meter panel and the static currents of Stages 5 and 6 .
8. Apply the i.f. drive input.

Check that the voltage and current readings of each stage are in accordance with the figures obtained when the transmitter was tuned.

10.2 OVERLOAD RESET

If the overload relays trip, the main h.t. contactor will be de-energized and the h.t. indicator lamp will be extinguished.

Unless there is an apparent defect, main h.t. may be restored by pressing the H.T. OFF \& RESET button and then the H.T. ON button.

Check the meter readings.
If the overload relays trip again on reapplication of h.t., the cause must be investigated.

10.3 CLOSING DOWN INSTRUCTIONS

(a) Temporary Stoppage.

Transfer any incoming traffic.
Press the H.T. OFF \& RESET switch - this will remove main h.t. only.
(b) Complete Close Down.

Transfer any incoming traffic.
Press the STOP button.
All circuits except the 50 V supply will be de-energized. The 50 V unit will remain on as long as the a.c. supply is connected to the transmitter and the doors of the Rectifier Cabinet are locked. If either of the doors is unlocked, the associated interlock switch will be operated and the a.c. supply disconnected from all circuits.

Finally, open the external a.c. supply switch. The transmitter i: now completely disconnected from the mains.

11.1 ROUTINE MAINTENANCE

11.1.1 Daily (when the set is in use)
(a) Take a complete set of ineter readings and check them against the readings noted when the transmitter was tuned.
(b) Check the filament, bias and h.t. meter readings.
(c) Check the air filter and replace if dirty. Wash the dirty filter as instructed in Section 11.8.

11.1.2 Weekly

Check that the fan is running quietly and is cool.
Check that the filament connections of the high-power valves are tight. Reverse the filament connections of Stage 5 by means of the switch (SWK) every week of service.

Blow out any dust which may have accumulated in the cubicles. Remove any dust from the envelopes of the high-power valves with a soft rag moistened with white spirit. Cleaning must only be done when the valves are quite cold. Check that the dust filters are clean. (Filters of the polythene type may be cleaned in warm water, see Section 11.8.)

Check that the overload relays operate as described in the setting-up instructions, Section 8.7.

Check that the 'Ledex' switch operates when the frequency selector switch is operated.

11.1.3 Two-Monthly

Every two months, remove the caps from the grease cups of the a.c. motor used in the suction fan, and fill the cups with grease ALVAIA RA. Light pressure should be applied to ensure that the grease reaches the bearings. Refit the caps.
11.1.4 Quarterly

Check the functioning of the filament delay switch.
Examine the contactors and relays. The bearings of the contactors may be lightly oiled; over oiling is worse than not oiling at all. The relays should never be oiled.

If the contacts of contactors require cleaning, this should be done with carbon tetrachloride or one of the patent contact cleaning fluids. If they are badly burnt it may be possible to restore the surfaces by careful filling with a smooth file and then burnishing, taking care to maintain the original shape of the contact. Abrasive paper should never be used.

Relay contacts may be cleaned with a cleaning fluid. If contacts are badly burnt, the whole relay should be replaced.

$$
\text { A.P. } 116 \mathrm{E}-0231-1
$$

Check the r.f. unit fan. This requires only the normal machine maintenance. The oil level in the bearing will require occasional topping up.

Check that all four ball contacts on the Spring Contact Assembly of the anode coil (L19) are making contact throughout the whole travel of the coil, check also that the contact pressure is approximately $2 \frac{1}{2} \mathrm{lb}$

If all the balls do not make contact at the correct pressure, they should be adjusted as follows:-

NOTE: Reference numbers quoted in the following adjustments will be found in Fig. 4.

1. Wind the Spring Contact Assembly (Ref.84) to the top of the coil.
2. Adjust the pressure on the ball contacts by slackening the special nuts holding the top of the rod in position in the slot in the mounting plate, setting the rod nearer the coil for greater pressure and away from the coil for less pressure. Tighten the special nuts.
3. Wind the Spring Contact Assembly to the bottom of the coil.
4. Adjust the pressure on the ball contacts by slackening the special nuts holding the bottom of the rod in position, and adjusting the rods position in the same way as for (2) above. Tighten the special nuts.
5. Repeat (1) - (4) as often as necessary until the Spring Contact Assembly exerts a uniform pressure of $2 \frac{1}{2} \mathrm{lb}$, along the whole length of the coil (LI9).

NOTE: Thee pressure of these contacts should not be allowed to fall below 2 lib each. Adjust or replace if this figure is not achieved.

A method of checking the pressure of the ball contacts on the coil; is to make a loop of wire around a contact and hook a spring balance through the loop. Full the contact away from the coil at its point of contact by means of the ring at the end of the spring balance, and check that the spring balance reads approximately $2 \frac{1}{2} \mathrm{lb}$ at the 'breaking' point. Check that the anode coil and ball contacts are clean. If not, clean with a soft cloth and apply a very thin film of MS5 Silicon grease to the contact surface of coil. See Section ll. 7 for self-lubricating contacts.

11.1.5 Yearly

Check over all terminal connections.
Check all clamp and/or flexible cables for signs of wear.
Check the insulation of the power circuits.
Verify that all cubicles and other pieces of equipment are properly earthed, and that the earth connections are sound.

Lightly oil lock mechanism on door switch.

11.2 ALIGNMENT OF THE MIXER UNIT

Circuit Diagram Figs. 12 and 13.
Component Layout Fig.6. Calibration Curves Fig.19.
Test Equipment required:
1 Two Tone Test Generator TF1143 (AP. 103480 and 103481)
1 Spectrum Analyser OA1094 (AP.103540)
1 Signal Generator TF1449 or CT218
1 Valve Voltmeter TF428 or CT854 (to be connected by 2 yards of coaxial cable and terminated in 220Ω and 33 pF in parallel).
2 Avometers 40,7 or 8 or AP47A
1 Insulation test set.
1 Test rig for mixer panel
1 Artificial load for transmit (6008)
Also required crystal oscillator panel such as $\mathrm{HD61B}$ or HD 21 .
The drawing references against component identities throughout this section, refer to the component layout.

The Mixer Unit is set up at the factory and should not require alignment when the transmitter is first installed.

The following section described the complete procedure for alignment, but it should be noted that sub-sections 11.2 .3 and 11.2 .5 , covering balancing and final alignment should be sufficient for normal purposes.

The alignment is to be carried out in a screened room on multitransmitter stations to eliminate effects of r.f. fields on the test equipment using the test harness described below.

The test ring for the mixer panel is a metal stand with an angle iron framework top pivoted in the centre; it has guides and clips to hold the mixer unit firmly when placed on the rig. This allows the mixer panel to be turned over and locked in any convenient position whilst aligning it.

Around the test rig the test equipment should be placed at a convenient level for the person aligning the units. The unit requires a power supply which gives an output of 280 V stabilized, 400 V d.c., 6.3 V a.c. and -150 V d.c.
11.2.1 Preliminary adjustment of the Harmonic Generator.
(i) Withdraw the Mixer Unit on its runners and remove its baseplate.
(ii) Connect a valve voltmeter across R131(4J) in the Monitor Frequency Changer Unit, i.e. across the output of the Harmonic Generator Unit.

Set all cores and trimmers to approximately their mid-positions.
(iii) Set the Harmonic Generator frequency range switch $S W A(5 K)$, fHF MHz , to the $4 / 8 \mathrm{MHz}$ range.
(iv) Connect a Signal Generator to the 'H.G. INPUT' socket, SKR(8B), and apply an input at 4 MHz of approximately 1 to 2 volts.

Set the H.G. TUNE control to the 4 MHz tuning point given by the calibration curves.

Adjust TR1(5B), L2(2H) and TR3(2K) for maxinum reading on the valve voltmeter.
(v) Set the H.G. TUNE control to the 8 MHz point given by the calibration curves.

Adjust $\mathrm{C} 6(3 \mathrm{C}), \mathrm{C} 32(2 \mathrm{H})$ and $\mathrm{C} 50(2 \mathrm{~K})$ for maximum on the valve voltmeter.
(vi) Repeat (iv) and (v) as often as necessary, but tune the 'H.G. TUNE' control for maximum on the valve voltmeter after reference to the callbration curves, adjusting the coils and trimmers until no increase in output occurs on readjustment.
(vii) Set the 'fHG MHz' switch to $8 / 16 \mathrm{MHz}$.
(viii) Set the 'H.G. TUNE' control to the 3 MHz point given by the calibration curves.

Adjust TR2(5D), L3(3H) and TR4(3K) for maximum reading on the valve voltmeter.
(ix) Set the 'H.G. TUNE' control to the 16 MHz point given by the calibration curves.

Adjust trimmers $\mathrm{C} 7(4 \mathrm{C}), \mathrm{C} 16(7 \mathrm{E}), \mathrm{C} 33(3 \mathrm{H})$ and $\mathrm{C} 51(3 \mathrm{~K})$ for maximum output on the valve voltmeter.
(x) Set the panel meter switch $\operatorname{SWB}(7 \mathrm{~N})$, to the 'V2' position.

Set the 'H.G. TUNE' control approximately as in (viii) and tune it about this point for maximum reading on the panel meter.

Adjust TR2, L3 and TR4 for maximum on the valve voltmeter.
(xi) Set the 'H.G. TUNE' control as for (ix) and tune it for maximum reading on the valve voltmeter.

Adjust C7, C16, C33 and C51 for maximum on the voltmeter.
(xii) Repeat (x) and (xi) as often as necessary, until no increase in output occurs on readjustment.

Check that the maximum on the panel meter and the maximum on the valve voltmeter are coincident.
(xiii) Set the 'fHG MHz ' switch, to $16 / 24 \mathrm{MHz}$.
(xiv) Set the 'H.G. TUNE' control to the 16 MHz tuning point given by the calibration curves.

Adjust $\mathrm{L} 1(5 \mathrm{~F}), \mathrm{L} 4(4 \mathrm{H})$ and $\mathrm{TR} 5(4 \mathrm{~K})$ for maximum reading on the valve voltmeter.
(xv) Adjust the Signal Generator frequency to 6.1 MHz and set the 'H.G. TUNE' control to the 24.4 MHz point given by the calibration curves.

Adjust $\mathrm{C} 8(4 \mathrm{C}), \mathrm{C} 17(7 \mathrm{D}), \mathrm{C} 26(5 \mathrm{~F}), \mathrm{C} 34(4 \mathrm{H})$ and $\mathrm{C} 52(4 \mathrm{~K})$ for maximum reading on the valve voltmeter.
(xvi) Set the panel meter switch SWB , to the 'V3' position.

Adjust the Signal Generator frequency to 4 MHz and set the 'H.G. TUNE' control as in (xiv) and tune it about this point, for maximum on the panel meter.

Adjust L1, L4 and TR5 for maximum output on the valve voltmeter.
(xvii) Adjust the Signal Generator frequency to 6.1 MHz , set the 'H.G. TUNE' control as in (xv) and tune it for maximum on the valve voltmeter, then adjust trimmers C8, C17, C26, C34 and C52 for maximum on the valve voltmeter.
(xviii) Repeat (xvi) and (xvii) as often as necessary until no increas in output occurs on readjustment.

Check that the maximum on the panel meter and the maximum on the valve voltmeter are coincident.
(xix) The Voltage readings obtained on the valve voltmeter at all frequencies should be between 6.0 and 8.0 volts.

The preliminary adjustment of the Harmonjc Generator is now complete.
($x x$) Disconnect the valve voltmeter.

11.2.2 Preliminary Alignment of the Mixer and Stages 1,2 and 3

NOTE 1: If the unit has been removed from the transmitter a dummy load will now be required. The dummy load should consist of a $220 \Omega 2 \mathrm{~W}$ resistor in parallel with 33 pF capacitor.

NOTE 2: The frequencies involved in this Section and Sections 11.2.3 and 11.2.4 will depend on the transmitter and the Drive Units to that Transmitter. Specific frequencies are therefore not given in the text, but, for convenience, the Table 8 which gives the frequencies appears on pages facing the text concerned. The asterisked figures in text relate to the righthand column of Table 8.
(i) Connect the dummy load across the output of the Unit i.e. from $\operatorname{SKQ}(1 I)$ to earth.

Connect a valve voltmeter in parallel with the load via 2 yds of 75Ω coaxial cable.

If the unit has not been removed from the transmitter, the normal Stage 4 feed and the ST4 GRID PEAK VOLT meter should be used.
(ii) Apply a single tone ${ }^{F} 1$ input at -6 dB relative to PEP (250 mW) to socket $\operatorname{SKS}(7 \mathrm{C})$.
(iii) Set $\operatorname{SWF}(5 \mathrm{~K})$ to MANUAL.

Set the mixer balance controls RVI(4B) and C63(3B) to midposition and the manual gain control RV5(5L) to maximum.
(iv) Adjust AMPLIFIER control RV4(5L), the Stage 2 cathode current potentiometer, for 40 mA on the panel meter Ml.

Table 8

Alignment Frequencies

Section and Paragraph	 HS31/1 Mc/s	HS 31A \& HS 31A/1 (using 2.15 Mc/s)	HS 31A \& HS 31A/1 (using 3.1/6.2 Mc/s)	Reference
11.2 .2 (ii)	3.1	2.15	6.2	$* 1$

Continued on Page 63

Adjust RV3 (4F), the Stage 3 cathode current potentiometer, for 25 mA on the panel meter M1.
(v) Set the mixer range switch, $\operatorname{SWC}(3 \mathrm{M})(\mathrm{fRAD} \mathrm{Mc} / \mathrm{s})$, to ${ }^{*} 2$ and set M1 to read mixer cathode current (V7/V8).
(vi) Set the 'fHG Mc/s' switch to ${ }^{*} 3$. Apply an input of ${ }^{*} 4$ to SKR.

Set the 'H.G. TUNE' control to the ${ }^{\text {F }} 5$ point given by the calibration curves, then tune it, about this point, for maximum on M1.
(vii) Set the 'MIXER IUNE' control to the ${ }^{*} 6$ point given by the calibration curves.

Adjust TR6(8M), L12(6L) Ll6(6L) and TR9(5L) for maximum on the valve voltmeter.
(viii) Set the 'fHG Mc/s' switch to $F 7 \mathrm{Mc} / \mathrm{s}$.

Apply an input of $* 8$ to SKR. (see also $\# 9$ in Table 8).
Set the 'H.G. TUNE' control to the $\mathrm{F} l 0$ point given by the calibration curve and then tune it about this point for maximum on M1.
(ix) Set the 'MIXER TUNE' control to the F ll point given by the calibration curves.

Adjust $C 67(7 F), C 73(6 G), C 84(6 G)$ and C104(4G) for maximum on the valve voltmeter.
(x) Repeat (vi) to (ix) as often as necessary, but tune the 'MIXER TUNE' control for maximum on the valve voltmeter after reference to the calibration curves, adjusting the coils and trimmers until no increase in output occurs on readjustment.
(xi) Set the 'fHG Mc / s ' switch to F 12.

Apply an input of $\# 13$ to SKR.
Set the 'H.G. TUNE' control to the $¥ 14$ point given by the calibration curves and then tune it, about this point, for maximum on ML.
(xii) Set the 'fRAD Mc/s' switch to 15 .

Set the 'MIXER TUNE' control to the $\# 16$ point given in the calibration curves.

Table 8 (Cont.)

Continued on Page 65

Adjust $\operatorname{TR} 7(8 \mathrm{M}), \mathrm{LI} 3(7 \mathrm{M}), \mathrm{LI7}(5 \mathrm{~L})$ and $\operatorname{TRIO}(4 \mathrm{~L})$ for maximum on the valve voltmeter.
(xiii) Apply an Input of $¥ 17$ to SKR.

Set the 'H.G. TUNE' control to the 318 point given by the calibration curves and tune it about this point, for maximum on M1.
(xiv) Set the 'MIXER TUNE' control to the $\mathcal{F} 19$ point given by the calibration curves.

Adjust C68(8F), C74(7F), C85(5G) and C105(4G) for maximum on the valve voltmeter.
(xv) Repeat (xi) to (xiv) as often as necessary, but tune the 'MIXER TUNE' control for maximum on the valve voltmeter after reference to the calibration curves, adjusting the coils and trimmers until no increase in output occurs on readjustment.
(xvi) Set the 'fHG Mc/s' switch to $F 20$.

Apply an input of ≈ 21 to SKR. (see also ≈ 22 in Table 8).
Set the 'H.G. TUNE' control to the 23 point given by the calibration curves and tune it about this point, for maximum on M1.
(xvii) Set the 'fRAD Mc/s' switch to 24.

Set the 'MIXER TUNE' control to the $\# 25$ point given by the calibration curves.

Adjust TR8(8M), Ll4(7M), L18(6M) and TRII(4M) for maximum on the valve voltmeter.
(xviii) Set the 'fHG Mc/s' switch to $¥ 26$.

Apply an input of $\# 27$ to SKR.
Set the 'H.G. TUNE' control to the $\% 28$ point given by the calibration curves and tune it about this point, for maximum on M1.
(xix) Set the 'MIXER TUNE' control to the $¥ 29$ point given by the calibration curves.

Adjust $C 69(8 F), C 75(6 F), C 86(6 F)$ and Cl06(4F) for maximum on the valve voltmeter.

Table 8 (Cont.)

$\begin{aligned} & \text { Section } \\ & \quad \text { and } \\ & \text { Paragraph } \end{aligned}$	$\begin{gathered} \mathrm{HS} 31 \& \\ \mathrm{HS} 31 / 1 \\ \mathrm{Mc} / \mathrm{s} \end{gathered}$ Mc/s	HS 31A \& HS 3 IA/ 1 (using $2.15 \mathrm{Mc} / \mathrm{s}$)	$\begin{gathered} \text { HS 3IA \& HS 3IA/I } \\ \text { (using } 3.1 / 6.2 \\ \mathrm{Mc} / \mathrm{s} \text {) } \end{gathered}$	Reference
	6.45	3.925	3.45	\# 17
	12.9	7.85	6.9	* 18
	16	10	10	* 19
	8/16	4/8	4/8	\# 20
	6.45	3.925	3.45	F 21
	$\begin{aligned} & \text { Apply } \\ & \text { as in } \end{aligned}$	Single Tone input Section ll.2.2 (ii)	$2.15(3.1 \mathrm{Mc} / \mathrm{s}$	* 22
	12.9	7.85	6.9	F 23
	16/27.5	10/20	10/20	* 24
	16	1 C	10	\# 25
	16/24.4	16/24.4	16/24.4	\% 26
	6.1	4.4625	4.225	* 27
	24.4	17.85	16.9	\# 28
(xix)	27.5	20	20	* 29

Continued on Page 67
(xx) Repeat (xvi) to (xix) as of ten as necessary, but tune the 'MIXER TUNE' control for maximum on the valve voltmeter after reference to the calibration curves, adjusting the coils and trimmers until no increase in output occurs on readjustmen
(xxi) The voltage readings obtained on the valve voltmeter at all frequencies should be between 5 and 7 volts.
(xxii) Replace the baseplate and disconnect the external valve voltmeter if necessary.

11.2.3 Balancing the Mixer Stage

Remove the 30 input from the mixer.
Connect a valve voltmeter across C82(6G). (Remove the perspex shield).

Set the Mixer switch to 'V7/V8'.
Set the 'fRAD Mc/s' switch to * 31 .
Set the 'fHG Mc / s ' switch to $' 8 / 16 \mathrm{Mc} / \mathrm{s}$ '.
Set the mixer level control $\operatorname{RV} 5(7 E)$ to maximum.
Set SWF to MANJAL.
(i) Apply an input of 32 to SKR.

Set the 'H.G. TUNE' control to the $\because 33$ point given by the calibration curves and tune it about this point for maximum reading on M1.

Set the 'MIXER TUNE' control to the \# 34 point given by the calibration curves and tune it for maximum on the valve voltmeter.

Adjust the mixer balance capacitor C63(8L) and trimmers $C 68(8 F)$ and $C 74(7 F)$ for maximum on the valve voltmeter.

Carefully adjust $C 63$ and the balance potentiometer RVI(7 H), alternately, to reduce the reading on the valve voltmeter to a minimum.

Remove the valve voltmeter and return SWE to NORMAL.
Repeat (xiii), (xiv) and (xv) of Section 11.2.2, if necessary use the external load and external valve voltmeter (see Section 11.2 .2 note).

Table 8 (Cont.)

$\begin{aligned} & \text { Section in } \\ & \text { A.P. } 116 \mathrm{E}-0231-1 \end{aligned}$	HS31 \& HS 31/1 Mc / s	HS 31A \& HS 31A/1 (using $2.15 \mathrm{Mc} / \mathrm{s}$)	$\begin{gathered} \text { HS 31A \& HS 31A/1 } \\ \text { (using } 3.1 / 6.2 \\ \mathrm{Mc} / \mathrm{s} \text {) } \end{gathered}$	Reference
11.2 .3 line 1	3.1	2.15	3.1 or 6.2	F 30
line 5	8/16	5/10	5/10	* 31
line 9	4	5	5	\# 32
line 10	16	10	10	\# 33
line 13	16	10	10	* 34

11.2.4 Setting-up the Monitor Frequency Changer
 (See Note 2, Section ll.2.2)

Set the 'fHG Mc/s' switch and the 'fRAD Mc/s' switch to \quad r 35/36.
Set the Monitor Frequency Changer U-link on the front panel to DRIVE (LKA from PLBC to PLBE).

Apply an input of 337 to the $\mathrm{h} . \mathrm{g}$. input socket $\operatorname{SKR}(4 \mathrm{H})$.
Apply a single tone $\# 38$ input at -6 dB , relative to $\operatorname{PEP}(250 \mathrm{~mW})$ to socket $\operatorname{SKS}(8 \mathrm{~F})$.

Set the 'H.G. TUNE' control to the 339 point given by the calibration curves and tune it about this point, for maximum on MI. (Switch setting 'V7/V8' cathode current).

Tune the 'MIXER TUNE' control for maximum output on the ST. 4 peak VOLTS meter.

Connect a valve voltmeter in parallel with a 75Ω resistor, across the output of the Monitor Frequency Changer at socket $\operatorname{SKT}(5 E)$.

Tune Cl28(4E) and Cl33(5E) for maximum output on the valve voltmeter.

Remove the valve voltmeter and 75 load.
The Monitor Frequency Changer is now set-up.

Table 8 (Cont.)

$\left\lvert\, \begin{aligned} & \text { Section in } \\ & \text { A.P.1.16E-0231-1 } \end{aligned}\right.$	HS31 \& HS 31/1 Mc / s	HS3IA \& HS3IA/1 (using $2.15 \mathrm{Mc} / \mathrm{s}$)	$\begin{gathered} \text { HS31A \& HS 31A/1 } \\ \text { (using } 3.1 / 6.2 \\ \mathrm{Mc} / \mathrm{s} \text {) } \end{gathered}$	Reference
11.2.4 line 1	8/16	4/8	4/8	* 35
line 1	8/16	10/20	. -	* 36
line 4	6.45	3.925	-	\# 37
line 5	3.1	2.15	-	* 38
line 7	12.9	7.85	-	* 39

11.2.5 Final Adjustment of the Mixer Unit

The final adjustment of the unit must be carried out, working into its normal load, in the transmitter.

Set the meter M1 to show mixer cathode current (position 'V7/V8').
Apply an input of $4 \mathrm{Mc} / \mathrm{s}$ to the H.G. INPUT socket, SKR.
Set the 'fHG Mc/s' switch to ' $4 / 8 \mathrm{Mc} / \mathrm{s}$ '.
Set the 'H.G. TUNE' control to the $4 \mathrm{Mc} / \mathrm{s}$ point given by the calibration curves and tune it about this point, for maximum on M1.

Carefully adjust the tuning coils L2 and TR3, of the h.g. amplifier stages, for maximum on Ml.

Set the 'H.G. TUNE' control to the $8 \mathrm{Mc} / \mathrm{s}$ point given by the calibration curves and tune it about this point, for maximum on MI.

Carefully adjust the trimmers C32 and C50.
NOTE: Only very slight adjustments will be necessary to obtain optimum results.

Set the 'fHG Mc/s' switch to ' $8 / 16 \mathrm{Mc} / \mathrm{s}$ '.
Align the tuning coils, L3 and TR4 at $8 \mathrm{Mc} / \mathrm{s}$ and the trimmers C33 and C51 at $16 \mathrm{Mc} / \mathrm{s}$ in the same manner as range $4 / 8 \mathrm{Mc} / \mathrm{s}$ has been described.

Set the 'fHG Mc/s' switch to $16 / 24.4 \mathrm{Mc} / \mathrm{s}$.
Align the tuning coils, L 4 and TR5, at $16 \mathrm{Mc} / \mathrm{s}$.
Apply an input of $6.1 \mathrm{Mc} / \mathrm{s}$ to SKR .
Align the trimmers C 34 and C52 at 24.4 (fHG). This should be carried out in a manner similar to that of the $4 / 8 \mathrm{Mc} / \mathrm{s}$ range the only difference being change in the tuning frequency.

Having completed the final adjustment of the Harmonic Generator, carefully repeat the alignment of the Mixer and Stages 1,2 and 3 as described in Section 11.2.2, using Stage 4 as the output load and the ST. 4 GRID PEAK Volts as the output indicator.

11.3 SPARE PARTS

Three types of Components Lists are used, as follows:-
HS 31 Use (a) AP.116E-0231-3 or (b) existing Marconi list retained in this Air Publication as Pages 73-111 (Components List No.1); this has been amended (by AL8) to cover Mod. 9785 (External control of bias, and fitting of back-fire indicators).

HS31A Use Components List No.2, identified by T4260 in bottom inside corner of pages, and following the HS3l list, in conjunction with the Cross Reference Lists facing the circuit diagrams for HS 31A.

For components used in Mod. 9785 see list for HS 31.
HS31/1 Use Components List No.3, identified by T5553 in bottom inside corner of pages, and following the HS31A Master Components List, in conjunction with the Cross Reference Lists facing the circuit diagrams for HS31A.

For components used in Mod. 9785 see list for HS3l.
HS31A/1 Use AP.116E-0243-3
For components used in Mod. 9785 see list for HS 31.

11.4 SETTING-UP THE MANUAL DRIVE ASSEMBLIES (HS31 \& HS31A)

All the variable tuning controls are driven by manual drive assemblies mounted on the front panel. There are basically two types of drive assembly used, these are the single turn type and the multi-turn type. The single turn types, the handles of which rotate less than 360°, are used for the RANGE switch and the FEEDER TUNE controls. The multi-turn types, the handles of which rotate a number of complete revolutions, are used for STAGE 4 TUNE, STAGE 5 TUNE, STAGE 6 TUNE and the STAGE 6 COUPLING.

To set-up the manual drive assemblies it is necessary to check that:-
(a) the dial stops are correctly set.
(b) the components are set in the correct position.
(c) the dials are correctly set.

The correct positions of (a), (b) and (c) for HS31 and HS 31A are listed under the control names; for HS $31 / 1$ and HS $31 A / 1$ refer to Section 11.4 in Supplement 1.

RANGE switch
(a) Dial Stops: $1,2,3,4 \& 5$.
(b) Components: Set the driving spindle so that the wiper arm of SWB (immediately below it) is in the fully clock wise contact position.
(c) Dial set to: 1 .

FEEDER IUNE
(a) Dial Stops: 0 and 100 .
(b) Components: Set the capacitor $C 64$ to maximum capacity with the padders $068,69,70$ and 71 connected by switch SWP.
(c) Dial set to: 0 .

STAGE 4 TUNE
(a) Dial Stops: 0 and 210 .
(b) Components: Set the turret with the largest inductor (L5) connected across the capacitor C12. Set Cl2 to maximum capacity (ready to tune L5).
(c) Dial set to: 0 .

STAGE 5 TUNE
(a) Dial Stops: 0 and 210 .
(b) Components: Set the inductor (LI5) wiper contacts to within approximately $1 / 8$ turn (2 in) from the righthand end of inductor.
(c) Dial set to: 210 .

STAGE 6 TUNE
(a) Dial Stops: 0 and 210.
(b) Components: Set the inductor (L19) wiper contacts approximately $1 / 4$ turn (3 in) from the top of the inductor.
(c) Dial set to: 210 .

STAGE 6 COUPLING
(a) Dial Stops: 0 to 210 .
(b) Components: Lower the inductor to the full extent of the extension rods, and set the inductor by rotating the front driving shaft approximately $\frac{1}{2}$ turn.
(c) Dial set to: 0 .

Slight adjustment may be required when fitting the assemblies to the coupling but the settings given allow for this. After fitting check the complete range coverage.

11.5 SETTING-UP THE RANGE CONTRQL

Layout: (HS21) Fig.21, (HS31A) Fig.21A, (HS31/1 \& HS 31A/l) Fig.21B.
It may be necessary to strip the mechanical drive of the range switch assembly for various reasons. Sketch A shows the positions of the drive components:-

HS 31 and HS31A
SWA in Stage 5
SWB in Stage 6
SWC in Stage 6
SWD in the output circuit

HS31/1 and HS31A/1

SWA in Stage 5
SWB in Stage 6
SWC in the output circuit
relative to the spindles and pins.

11.6 SETTING-UP THE FEEDER TUNE CONTROL

Layout: (HS31) Fig.21, (HS 3IA) Fig.21A, (HS $31 / 1 \& H S 31 A / 1)$ Fig.21B.
It may also be necessary to strip the mechanical drive of the Feeder tune assembly for various reasons. Sketch 'B' shows the positions of the driven components:-

C64)
SWP) In the output circuit
SWM))
relative to the spindles and pins.

11.7 SELF-LUBRICATING CONTACTS

Where the sintered type of self-lubricating contacts are fitted, no oil is required on the coil, which should be kept perfectly clean. If there are any signs of excess wear on the contacts they may require re-impregnating with oil. In this case, the contact should be removed
and immersed in a light machine oil warmed to about $60^{\circ} \mathrm{C}$. Excess oil should be removed before replacing and after first switching on. When the contact has reached operating temperature, it should again be wiped to remove excess oil exuded from the pores.

NOTE: Should L19 contacts (see Figs. 4 or $4 A$ Sketch G, item 40) require replacing, fit Spring Contact and Guide Wheel Assembly Ref.10AS/ 5950-99-933-2057 (Marconi WZ.31079/B): this uses silver graphite contacts and incorporates a $1 \frac{1}{4}$ inch diameter Guide Wheel (original was $1 \frac{1}{8}$ inch diameter).

To ease running-in of new contacts, apply the thinnest possible film of medium grease to the coil, then wipe it off again immediately - the trace of grease remaining will be adequate for running-in purposes.

In normal use, no lubricant whatever should be applied.

11.8 AIR FILTERS

The air filters consist of closely folded polythene filtering medium rigidly welded at every fold to transverse polythene supports, the whole being mounted into a synthetic resin frame, which is made to make an airtight seal with the filter holder.

To clean the filters they should be removed from the holder and washed in luke warm (not more than 120 F) solution of any of the common industrial or household detergents. The detergent has no harmful effect on either polythene or resin frame and so in obstinate cases a strong solution may be used. However in normal atmosphere and if washing is carried out regularly the filter should come completely clean in quite a weak solution.

The filter may be soaked and agitated in the solution to help remove the dirt.

When clean the filter should be removed from the detergent solution and rinsed in a cold water bath or under the tap until all signs of the detergent have been removed. The filter should then be allowed to dry naturally before replacing in the filter frame. Artificial heat should not be used to accelerate the drying process.

11.9 REMOVAL OF FRONT PANELS

The upper and lower front panels of the R.F. Unit are removable. The upper panel, containing the RANGE control handle and FEEDER TUNE control can be removed by:
(a) removing the screw in the handle of the STAGE $5 \mathrm{H} . \mathrm{T}$. INTERLOCK switch and pulling off the handle.
(b) releasing the 4 hexagonal headed captive screws, two on each side of the panel and pulling the panel forward.

The lower panel containing the STAGE 6 TUNE and STAGE 6 COUPLING can be removed by:
(a) releasing the 4 hexagonal headed captive screws, two on each side of the panel and easing forward the right-hand side. Care must be taken as the panel is connected to the cabinet cableform at the left-hand side by a tag-board.

11.10 REMOVAL OF THE MANUAL DRIVE ASSEMBLIES

The manual drive assemblies are removed by unscrewing the four retaining screws and lifting off.

11.11 USE 0F TYPE ACT70 VALVE IN STAGE 6

The Type ACT70 valve is mechanically a direct replacement for the Type BRI91B. Power output and distortion are not affected by the change, but slightly different setting-up conditions are required as follows:

1. The screen potentiometer of Stage 5 should be connected to earth instead of being returned to the negative side of the bias supply.
2. The static cathode current of Stage 5 should be set initially to 100 mA . This value may be adjusted within the range 60 mA to 100 mA during adjustments for optimum linearity. Similarly Stage 6 may be set between 0.2 and 0.32A.
3. The grid and cathode currents of Stage 6 should be set by adjustment of feeder coupling and drive level as follows:-

21 Mc	C.W./F.S.K.	3.5 kW	$I_{g}=250 \mathrm{~mA}$	$10=1.6 A$
$2.5 / 21 \mathrm{Mc} / \mathrm{s}$	I.S.B. (2 tone)	3.5 kW P.E.P.	$\mathrm{Ig}=100 \mathrm{~mA}$	Ic $=1.1 \mathrm{~A}$
2.5/21 Mc/s	D.S.B. (Carrier)	1.5 kW	$\mathrm{Ig}_{\mathrm{g}}=60 \mathrm{~mA}$	$I c=0.95 \mathrm{~A}$
$21 / 27 \mathrm{Mc} / \mathrm{s}$	C.W./F.S.K.	2.5 kW	$I g=160 \mathrm{~mA}$	Ic $=1.25 \mathrm{~A}$
$21 / 27 \mathrm{Mc} / \mathrm{s}$	I.S.B. (2 tone)	2.5 kW P.E.P.	$\mathrm{Ig}=60 \mathrm{~mA}$	$I_{c}=0.8 \mathrm{~A}$
21/27 Mc/s	D.S.B. (Carrier)	1.0 kW	$\mathrm{Ig}=50 \mathrm{~mA}$	$\mathrm{Ic}=0.9 \mathrm{~A}$

N.B. Stage 5 Cathode current should not be greater than 240 hA on C.W./F.S.K. and 180 mA on I.S.B. (2 tone).

11.12 SIX-INCH VENTILATOR FAN

The fan is mounted on a mila steel plate on top of the Rectifier and Control Unit. For maintenance, the fan (Identity WIS.8262/B Sh. 1 Ref.1) is removed by undoing 3 cleats on the power lead, disconnecting the 4-pin plug (WIS. $3733 / \mathrm{C}$ Sh. 1 Ref.I) and socket (WIS. $3727 / \mathrm{C}$ Sh. 1 Ref.2), and unscrewing 10 screws which fix the plate to the Rectifier and Control Unit. The fan and plate can then be dismantled for oiling and surface cleanirg; it is recommended that this should be carried out every 3 months.
(i) Oiling

Access to the oil holes is obtained by unscrewing the oiler plugs. At the rear erd, the plug will be found under the plastic end cover. Care should be taken to avoid over-oiling.

The fan is fitted with porous metal sleeve bearings having felt oil reservoirs. Oil should be added as required but DO NOT use more than ten drops of high grade thin machine oil for each bearing.
(ii) Surface Cleaning

Frequency of surface clocining will depend on the type of duty that the unit has to perform.

The plastic components should be wiped over with lukewarm water and soap and polished with a clean dry cloth.

When Modification No.A. 3978 has been incorporated, fan Identity WIS. $8262 / \mathrm{B}$ Sh. 1 Ref. 1 is replaced by ventilating fan Ref.No.10K/4140-99-633-2694. This requires bearing lubrication (34B/9100510 Grease XG271) to be replenished at six monthly intervals.

11.13 BACK-FIRE INDICATORS

The blowing of one or more of the h.t. fuses FS7-9 in the Control Power Supply unit can be due to reverse current i.e., back-fire in one or more of the six GXU2 rectifiers. To ascertain whether any of these have back-fired, use the compass WIS.7204/C provided with the modification kit to check the polarity of the cores of the chokes LIl-16 in the anode circuits of the valves Vl-V6 as shown in the Figs.l and IA facing diagrams. Normally the polarity of all six should be the same, and reversed polarity of any core indicates that the associated rectifier valve has back-fired. After changing the valve, and before switching on, reverse the core of the associated choke so that it will give the same polarity indication as the others.
11.14 SUCTION FAN - MOTOR BEARING AND SWITCH REPLACEMENT
11.14.1 General

An exploded view of the a.c. motor in the suction fan assembly is given in Fig.25. All references in the following procedures are to this illustration
11.14.2 To Remove Motor from Fan Assembly
(a) Gaining access through the fan-casing inlet, slacken off the grub-screws retaining the impeller to the motor shaft.
(b) Supporting the motor in position, remove and retain the four bolts securing the motor to the fan casing.
(c) Holding the fan impeller in position, withdraw the motor from the casing. Lower the impeller gently until it rests on the bottom of the casing.
11.14.3 To Refit the Motor to the Fan Casing
(a) Lift the impeller and position centrally within the casing.
(b) Offer up the motor, aligning the motor shaft with the impeller boss, and ensure that the key on the shaft lines up with the keyway in the boss.
(c) Insert the motor shaft in the impeller boss, and push home. Align and insert the motor-retaining bolts, and tighten fully.
(d) Ensure that the impeller is central within the casing, then tighten fully the retaining grub-screws.
11.14.4 Drive End Bearing Removal
(a) Remove the motor from the fan casing as in para.11.14.2.
(b) Remove and retain the key (5) from the motor shaft.
(c) Remove and retain the three screws (25) securing the bearing caps.
(d) Remove and retain the outer bearing cap (1). Remove and discard the wave washer (24).
(e) Remove and retain the nut (2), spring washer (3) and plain washer (4) from each of the four through studs (6).
(f) Remove the motor end cover (23).

NOTE: If the cover is difficult to remove, it is permissible to tap it gently, using a hide or rubber mallet.
(g) Using a suitable extractor, withdraw the bearing (22) from the shaft.
A.P.116E-0231-1
A.L. 7 Jun 73
(a) Using a suitable hollow drift or tube, with an outer diameter such that it bears only on the inner race of the bearing, press the new bearing (22) on to the motor shaft. The ends of the tube or drift must be parallel to ensure that the bearing is pressed on square to the shaft.
(b) Screw a suitably threaded rod of ample length into one of the tapped holes in the inner bearing cap. Refit the motor end cover (23) passing the rod through one of the three bearing cap securing holes. Secure the end cover to the motor body, using the nuts, spring washers and plain washers retained from 11.14.4(e), and ensuring the ventilation holes line up with those in the opposite end cover.
(c) Slide a new wave washer (24) over the motor shaft.
(d) Position the outer bearing cap (1) over the rod inserted in sub-para.(b), and secure by two screws (25) in remaining holes.
(e) Withdraw the threaded rod and refit the third securing screw (25) to the bearing cap.
(f) Fit the key to the motor shaft.
(g) Refit the motor to the fan casing (see 11.14.3).
11.14.6 Non-drive End Bearing Removal
(a) Remove the motor from the fan assembly (11.14.2).
(b) Remove and retain the three screws (12) securing the bearing caps, and withdraw the outer cap (13).
(c) Remove and retain the four screws (8) securing the terminal block cover (7) and withdraw the cover.
(d) Remove the leads from the four terminals, noting carefully the position of each lead on the terminals.
(e) Remove and retain the nut (11) spring washer (10) and plain washer (9) from each of the four through studs (6). Withdraw the motor end cover (16).

NOTE: If the end cover is difficult to remove it is permissible to tap it gently, using a hide or rubber mallet.
(f) Remove and discard the external circlip (14).
(g) Force the weights of the centrifugal switch (21) outwards to move the inner bearing cap away from the bearing (15), then remove the bearing, using a suitable extractor.

WIRING DETAILS
11.14.7 Non-drive End Bearing Replacement
(a) Using a suitable hollow drift or tube, with an outer diameter such that it bears only on the inner race of the bearing, press the new bearing (15) on to the motor shaft. The ends of the tube or drift must be parallel to ensure that the bearing is pressed on square to the shaft.
(b) Fit a new external circlip (14), ensuring that it beds fully into the groove on the motor shaft.
A.P. 116E-0231-1
A.L. 7 Jun 73
(c) Uffer up the motor end cover (16). Pass a suitably threaded rod of ample length through the uppermost of the three bearing cap securing holes, and through the appropriate hole in the inner bearing cap. Ensure that the stationary switch (17) is positioned with the terminal leads uppermost (i.e. towards the terminal block).
(d) Secure the end cover (16) to the motor body, using the nuts (11) spring washers (10) and plain washers (9) retained from para.11.14.6(e). Do NOT tighten at this stage.
(e) Position the outer bearing cap (13) over the rod inserted in sub-para. (c), and secure by two screws (12) in the lower holes.
(f) Withdraw the threaded rod, and refit the third securing screw (12) to the bearing cap.
(g) Tighten fully the four end-cover retaining nuts (11) and the three bearing cap securing screws (12).
(h) Refit the leads to the four terminals, ensuring they are correctly positioned as noted in para.11.14.6(d).
(j) Refit the terminal block cover (7) and secure with the four screws (8).
(k) Refit the motor to the fan assembly, using the procedure given in para.11.14.3.
11.14.8 Removal and Replacement of Stationary Switch
(a) Remove the motor from the fan assembly (para.11.14.2).
(b) Remove the non-drive end end cover and bearing (para.11.14.6).
(c) Remove the inner bearing cap complete with stationary switch (17).
(d) Remove and retain the two screws (19) and spring washers (18) securing the stationary switch to the inner bearing cap. Discard the switch (17).
(e) Secure new stationary switch to the inner bearing cap using the two screws and spring washers retained in (d). Refit switch and inner bearing cap to motor shaft.
(f) Refit bearing and end cover (para.11.14.7).
(g) Refit motor to fan assembly (para.11.14.3).
11.14.9 Removal and Replacement of Centrifugal Switch
(a) Remove motor from fan assembly (para.11.14.2).
(b) Remove non-drive end end cover (16) (para.11.14.6, sub-paras.(b) to (e) inclusive).
(c) Remove drive end end cover (23) (para.11.14.4, sub-paras. (b) to (f) inclusive).
(d) Withdraw the non-drive end bearing (15) from the rotor (para.11.14.6, sub-paras. (f) and (g)).
(e) Withdraw the inner bearing cap complete with stationary switch (17).
(f) Refer to the illustration below. Remove the tension springs from the centrifugal switch and withdraw the bakelite ferrule. Withdraw the switch from the rotor.

NOTE: As the switch is a force fit on the rotor, care must be taken not to damage the rotor or windings.
(g) Remove the tension springs and bakelite ferrule from the new switch.
(h) Press the switch on to the motor shaft to the dimensions given in the illustration below.

IMPORTANT: Great care must be taken not to touch the phosphor-bronze stop, pressure on which during this operation can render the switch non-operative.

NOTE 1: Accuracy of positioning to ob tain the dimension shown is essential for correct operation.

NOTE 2: It is important to ensure that the back face of the switch is square with the axis of the shaft.
(j) Refit ferrule and tension springs.
(k) Check the action of the switch by pulling the roller spindles outwards (see illustration).
(1) Refit the inner bearing cap complete with stationary switch (17).
A.P. 116E-0231-1
A.L. 7 Jun 73

CENTRIFUGAL SWITCH - FITTING DIAGRAM
(m) Refit bearing (15) (para.11.14.7, sub-para. (a)).
(n) Refit end covers (para.11.14.5, sub-paras.(b) to (f) inclusive, and para.11.14.7, sub-paras.(b) to (j) inclusive).
(p) Refit the motor to the fan assembly (para.11.14.3).

FOR
RECTIFIER AND CONTROL UNIT
(Drg. No. W. 37908 Sh. 3 Ed.B)
NOTES
l. When ordering spares quote information from all columns for identities marked $\%$ or identity only for all other items.
2. The references in column 1 are shown on circuit diagram Figs. 14 and 15 and component location diagrams Figs. 1 and 2.
3. For identical items the total quantity is given at the first entry.

Ref.	Description	Value	$\begin{gathered} \text { Tol. } \\ \% \\ \% \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
	RESISTORS FIXED						
R1	Mica Card ww.	1068	10	220w	$\text { WIS. } 3852 / \mathrm{B}$ $\text { Sh. } 1 \text { Ref } .24$	AP. 104443	1
R2	Mica Card ww.	1078	10	45W	WIS. $3852 / \mathrm{B}$ Sh. 1 Ref. 25	AP. 104 444	1
R3	Comp.Grade 2	1.5 k R	10	IW	PC.66612/21	2. 222231	1
R4	Non-Vit.WW Double Tube	68Ω	10	2 Amps	$\begin{aligned} & \text { WIS. } 3320 \\ & \text { Sh. } 2 \operatorname{Ref} .18 \end{aligned}$	AP. 104/46	1
R5	Not Used						
R6	ww Vit. Enam.	338	5	3W	PC. $67008 / 4$	2.243325	2
R7	As R6						
R8	Mica Card, Ww.	538	10	45w	$\begin{aligned} & \text { WIS. } 4006 / \mathrm{B} \\ & \text { Sh. } 1 \text { Ref } .20 \end{aligned}$	AP. 104445	3
R9	As R8						
R10	As R8						
R11	Non-Vit. Ww	2,1608	10	90w	WIS.6265/C	AP. 104347	1
					Sh. 1 Ref. 1		
R12	Non-Vit. WW.	4198	10	90w	WIS.3615/C	AP. 104348	1
					Sh. 1 Ref. 6		
R13	Vit. WW.	16,500s	5	358	P. $18282 / \mathrm{KP}$	AP. 104349	1
					* Sh. 6		
Rl_{4}	Carbon Wire Ends	$220 \mathrm{k} \Omega$	20	IW	WIS. 3903 Sh. 1 Ref. 3	2.213080	3
R15	As R14						
R16	As R14						
R17	Vit. WW.	43,7508	5	150w	$\begin{aligned} & \text { P.18282/KK } \\ & \text { Sh. } 6 \end{aligned}$	2. 242210	2
R18	As R17						
R19.	Vit. Ww.	15,0008	5	100w	PC.67006/20	Z. 242167	1
R20	to R24 Not Used						
R25	Vit. Ww.	18008	5	35W		AP. 104350	6
R26	Not Used						
R27	Not Used						
R28	Mica, WW.					AP. 103523	1
R29	H.T. Volt. Resistor				WIS.5675/B $\text { Sh. } 1 \text { Ref.1 }$	AP.104456	1
	RESISTORS VARIABLE						
RVI	WW.	12Ω	10	100w	$\begin{aligned} & \text { WIS. } 3147 \\ & \text { Sh. } 1 \text { Ref. } 4 \end{aligned}$	AP.104\%47	1
$\begin{aligned} & \text { RV2 } \\ & \text { RV3 } \end{aligned}$	Ww. 3 Gang	80ת	10	50w		AP.104448	1
$\left.\begin{array}{l} R V 5 \\ R_{4} \end{array}\right\}$	- 3 Gang		10	50 W	Sh. 1 Ref. 34	A. .104448	

Schedule WZ.12784/A

	Fef.	Description	Value	$\begin{gathered} \mathrm{Tol} \\ \% \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
		RESISTORS VARIABLE	nt'd.)					
	$\begin{aligned} & \text { RV5 } \\ & \text { RVV } \end{aligned}$	Not Used wW	258	10	80	WIS.5865/B	-	1
			258	10	80	$\text { Sh. } 2 \text { Ref. } 46$	-	
	$\begin{aligned} & \text { RV7-9 } \\ & \text { RV10 } \end{aligned}$	Not Used WW	1000s	10	20		-	2
	RV11	As RV10	1000su	10	20	PC.67405/43	-	2
	RV12	ww.	2008	10	120	PC.67409/50	-	1
		INDUCTORS				W. 24581/B	AP. 194321	1
	Ll	35A	. 0075 H			Sh. 11	AP. 194321	
	L2	600 mA	3.5H			$\begin{aligned} & \text { W. } 31577 / B \\ & \text { Sh. } 3 \end{aligned}$	AP. 104345	2
	L3	As L2						
	L5	0.4 A	5.5H			$\begin{aligned} & \text { W. } 31577 / B \\ & \text { Sh. } 1 \end{aligned}$	AP. 104346	2
	L6	As L5					AP. 104320	1
	L7	1.5A	3.8 H			$\begin{aligned} & \text { W. } 24581 / \mathrm{B} \\ & \text { Sh. } 10 \end{aligned}$	AP. 104320	1
	$\left\lvert\, \begin{aligned} & \mathrm{L} 8-10 \\ & \mathrm{~L} 11 \end{aligned}\right.$	Not Used Backfire Indicator				W.65949/B		6
	L12-16	As Lll FUSES				Ed.B		
	FSI	Cartridge			2 A	$\begin{aligned} & \text { WIS } .5703 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } \end{aligned}$	AP. 104329	7
	FS2	As FSI						
	FS3							
	FS4	Cartridge			10A	$\begin{aligned} & \text { WIS. } 5703 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 4 \end{aligned}$		1
	FS5	As FSl						
	FS6	Not Used						
	FS7	Cartridge			15A	WIS . 4806/B Sh. 1 Ref 5	AP. 104200	3
	FS8-9	As FS7				Sh. 1 Ref. 5		
	FSIO-]	2 As FSI						
	FS13	Not Used						
	FSI 4	Cartridge			6 A	WIS.5703/C $\text { Sh. } 1 \text { Ref. } 3$	AP . 104331	2
	FSI5	As FSI 4					2.590110	2
	FSI6	Cartridge			2 A	Sh. 1 Ref. 9	2.590110	
$3.116 \mathrm{E}-$	FS17	As FSI6						
ad Edn. AL. 1 S Schedule WZ.12784/A								
入ly, 1968 (79								

Ref.	Description	Value	T0I.	Rating	Identity	Service Ref.	Qty.
	Fises (Cont'a)						
FSI 8	Cartridge			500 mA	$\begin{aligned} & \text { WIS. } 2947 \\ & \text { Sh. } 1 \text { Ref. } 5 \end{aligned}$	2.590108	
Fisia	Prot Used						
FS20	As FSI8						
FS21							
FS22	Cartridge			1A	$\begin{aligned} & \text { WIS. } 2947 \\ & \text { Sh. } 7 \text { Ref. } 7 \end{aligned}$	2.590109	2
ES23	Cartridge			3A	$\begin{aligned} & \text { WJS. } 2947 \\ & \text { Sh.I Ref. } 10 \end{aligned}$	2.590111	1
FS21/	Cartridge			5A	$\begin{aligned} & \text { WIS. } 291+7 \\ & \text { Sh.i Ref. } 11 \end{aligned}$	2.590112	1
F325	As FS22						
FS 26	Not Used						
FS27	Not Used						
TS28	Not Used						
PS29	Not Ifsed						
FS30	Not Used						
F331	Not Used						
FS32	Not Used						
F33	Niot Usea						
F334	Not Used						
FS35	Not Tsea						
	LAMPS						
TPI	No. 2 Carbon Tubular	5.35W		50 V	PC. $4.8601 / 5$	X. 959220	11
LP2	As LPl						
LP3	As LPl						
LP4	As LPI						
LP5	As LPl						
LP6	As LPI						
LP7	As LPI						
LP8	As LPl						
LP9	As LP1.						
LPIO	As LPl						
LPII	As LPl						
	METERS						
M1	0-300V AC Voltmeter				WTS. 4235 Sh. 9 Ref. 158	AP. 104558	1
M2	0-25A Ammeter				WIS. 4.235	AP. 104559	1
					Sh. 9 Ref. 159		
Schedule WZ.12784/A80							

Ref.	Description	Value	$\begin{array}{\|c} \hline \text { TOI } \\ 5 \\ \pm \\ \hline \end{array}$	Rating	Identity	$\begin{array}{\|c} \text { Service } \\ \text { Ref. } \end{array}$	Qty.
M3	$\begin{aligned} & \text { METERS (Cont'd) } \\ & 0-6 \mathrm{kV} \text { Voltmeter } \end{aligned}$				$\begin{aligned} & \text { WIS . } 4235 \\ & \text { Sh. } 9 \\ & \text { Ref. } 160 \end{aligned}$	AP. 104560	1
	PLUGS						
PLAJ	$\angle 4$ iray				$\begin{aligned} & \text { VIS. } 3738 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 2 \end{aligned}$	AP. 104177	1
	RECTIFIERS (METAL)						
NRI	Sclenium 3 Phase Full Wave				WIS. $4609 / \mathrm{B}$ Sh. 2 Ref. 15	AP. 104332	1
MR2	$\left\lvert\, \begin{aligned} & \text { Selenium } 3 \text { Phase Full } \\ & \text { Wave } \\ & 2 \text { Urits Wired in Paral } \\ & \text { Making 1 Rectifier } \end{aligned}\right.$				$\begin{aligned} & \text { WIS . } 4669 / B \\ & \text { Sh.I Ref. } 13 \end{aligned}$	AP. 104333	2
MR3	Selenium				$\begin{aligned} & \text { WIS. } 3222 / C \\ & \text { Sh. } 4 \operatorname{Ref} .22 \end{aligned}$	AP. 104334	1
MR4	Not Used						
MR5	Not Used						
MR6	Not Used						
	REIAYS \& CONTACTORS						
FC	$\left\lvert\, \begin{aligned} & 9 \text { Pole Makine } \\ & \text { Cortuctor } \end{aligned}\right.$					AP. 104339	1
ST	$\begin{aligned} & 5 \text { Pole Raking } \\ & \text { Cor,tuctor } \end{aligned}$					A.P. 104340	1
FF	5 Pole Makin $\hat{\varepsilon}$ Cort-ctor				$\begin{array}{\|l\|\|} \text { WIS. } 5609 \\ \text { Si.I Ref.I } \end{array}$	4P. 104340	1
If	5 Pole Makin¢					AP. 104340	1
	Contactor						
NC	3 Pole Making Contacto with 3 Aux. Contacts (2 Wake 1 Break)			$)$		AP. 104341	1
OR	Relay - Plug-In Type					. 104337	1
	3 Making and 2 Breakinc Contacts				Sh. 1 Ed.N	. 104337	
SP	Relay - Plug-In Type				TR. 8740	AP. 104338	1
	2 kaking Contacts				Sh. 2 Ed.I		
FD	Time Switch				T31-0964-01	6645-99-955	1
OD	Valve Protecting Reiay				$\text { WIS . } 4373 / \mathrm{B}$ $\text { Sh. } 2 \text { Ref. } 7$	7533 AP. 104510	2
OE	As OD						
OA	Not Used						

Ref.	Description	Value	$\begin{gathered} \text { Tol. } \\ \% \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
	VALVES						
VI	CV. 2518 (GXU-2)					CV. 2518	6
V2	As VI						
V3	As VI						
V4	As V1						
V5	As Vl						
V6	As V1						
V7	CV. 378 (U54)					CV. 378	2
V8	As V7						
V9	CV. 1069 (STV280/80)					CV. 1069	1
V10	CV. 686 (VR.105/30)					CV. 686	1
	MISCELLANEOUS MECHANI	ITE					
1	Fuseholder				WIS.4809/C	AP. 104328	3
					Sh. 1 Ref. 9		
2	Fuseholder				WIS.5612/C	AP. 104327	12
					Sh. 1 Ref. 1		
3	Fuseholder				WIS .4154/C	Z. 590100	20
					Sh. 1 Ref. 1		
4	Valveholder, International Octal.				PC. 81814	Z. 560031	2
5	Valveholder B5				PC. 81805	2.560013	1
6	Lamp Jack				WIS 1877	AP. 104227	11
					Sh. 1 Ref. 1		4
	Resistor Mounting				Sh. 1 Ref. 1		
8	Resistor Mounting				WSK. 3172		6
					Sh. 1 Ed.K		
9	Anode Clip				TV. $30330 / \mathrm{C}$	AP. 104543	6
10	Resistor Mounting				Sh. 1 Ref .2 $-.40253 / \mathrm{B}$		1
	Resistor Mounting				Sh. 1 Ed.A		
11	Valve Retainer				WIS. $3449 / \mathrm{C}$	AP. 104412	1
					Sh. 1 Ref. 1		
12	Valve Retainer				$\begin{aligned} & \text { WIS. } 3701 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 22 \end{aligned}$	AP. 68388	2
13	Not Used						
14	Not Used						
15	Stand Off Insulator				$\begin{aligned} & \text { WIS. } 5416 / C \\ & \text { Sh. } \operatorname{Ref} .1 \end{aligned}$	AP.104441	3
16	Valve Retainer				WIS. 6271/C Sh. 1 Ref. 1	AP. 70240	

Schedule WZ.12784/A
84

COMPONENTS LIST

> FOR
> R.F. UNIT
> (Drg.No. W. 37907 Sh .9 Ed.C)

NOTES

1. When ordering spares quote information from all columns for identities marked $\#$ or identify only for all other items.
2. The references in column 1 are shown on circuit diagrams Figs. 10 \& 11 component location diagrams Figs.3,4,5.
3. For identical items the total quantity is given at the first entry.

Ref.	Description	Value	$\left\lvert\, \begin{gathered} \text { Tol } \\ \% \\ \pm \end{gathered}\right.$	Rating	Identity	Service Ref.	Qty.
	CAPACITORS						
CI	Mica Metallised	6.800 pF	5	$\begin{gathered} 350 \mathrm{~V} \end{gathered}$	PC.18801/8	Z. 124737	1
C2	Mica, Disc	. $003 \mu \mathrm{~F}$	20	800 V	WIS. $4522 / \mathrm{C}$	Z.104484	15
				DC	Sh. 1 Ref. 5		
C3	Paper Foil, Tubular, Metal Case, Insul.	. $01 \mu \mathrm{~F}$	25	$\begin{aligned} & 350 \mathrm{~V} \\ & \mathrm{DC} \end{aligned}$	PC.19202/7	Z. 115625	17
C4	As C3						
C5	As C 3						
C6	As C3						
C7							
C8	Ceramic, Tubular, Insulated	33 pF	10	$\begin{gathered} 500 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	PC.18202/7	Z. 132283	1
	As C3						
Cl0	As C3	$16-250 \mathrm{pF}$					
Cll							
$\mathrm{Cl2}$	Variable, Air	16-250 pF			WIS. 3699/C Sh. 1 Ref. 11	AP. 104190	1
Cl3	Ceramic, Tubular	200 pF	5		*WIS. $3450 / \mathrm{B}$ Sh. 1 Ref. 9	2.132344	1
Cl 4	As C 3						
Cl5	Ceramic, Tubular	2.2 pF	10	$\begin{gathered} 500 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	PC. $18201 / 3$	2.132250	1
C16	Variable Air,	$0-210.6 \mathrm{pF}$			UIS .9367/C		1
					Ref. 1		
Cl 7	Ceramic, Tubular,	270 pF	2	750 V	PC. 18223-18	5910-99-	1
	Insulated			DC		012-7123	
C18	Mica, Disc.	500 pF	20	$\begin{gathered} 800 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	$\text { IS . } 4522 / C$ $\text { Sh. } 1 \operatorname{Ref} .2$	AP. 104485	1

Ref.	Description	Value	$\begin{gathered} \text { Tol. } \\ \% \\ \pm \end{gathered}$	Rating	Identity	Service	Ref.
	CAPACITORS (Cont'd)						
C19	As C3						
C20	As C2						
C21	As C2						
C22	As C2						
C23	As C2						
C24	Air Dielectric Fixed						1
C25	As C2						
C26	As C3						
C 27	As C2						
C28	As C2						
C29	As C2						
C30	As C2						
C31	As C2						
032	Hi-Load	200 pF	20	$7.5 \mathrm{kV}$	${ }^{*}$ WIS . $5080 / \mathrm{B}$	AP. 104479	2
				peak	Sh. 1 Ref.3D		
C33	Hi-Load	125 pF	20	7.5 kV peak	*WIS. 5080/B Sh. 1 Ref. 3D	AP.104480	2
C34	Hi-Load	200 pF	20	7.5 kV	*WIS.5080/B	AP.104481	1
				peak	Sh. 1 Ref. 3 C		
C35	Vacuum	25 pF	10	32 kV peak	$\begin{aligned} & \text { WIS. } 4735 / \mathrm{C} \\ & \text { Sh. } 1 \operatorname{Ref} .2 \end{aligned}$	AP. 67742	1
036	Hi-Load	1250 pF	20	7.5 kV peak	$\begin{aligned} & \text { FWIS. } 5080 / \mathrm{B} \\ & \text { Sh. } 1 \mathrm{Ref} .1 \mathrm{E} \end{aligned}$	AP .104482	1
C37	Not Used						
C38	Not Used						
039	Not Used						
C40	Not Used						
C41	Mica Foil	$2.200 \mu \mathrm{~F}$	20	$\begin{gathered} 750 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	PC.18702/B	$\begin{aligned} & \text { AP. } 5910- \\ & 115729 \end{aligned}$	1
C42	As C2						
C 43	Mica Disc.	. $01 \mu \mathrm{~F}$	20	$\begin{aligned} & 2000 \mathrm{~V} \\ & \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { WIS. } 4721 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 1 \mathrm{~A} \end{aligned}$	AP. 104486	4
C44	As $\mathrm{C}_{4} 3$						
045	Hi-Load Capacitor	130 pF	10	7.5 kV	WIS.4418/C	AP.104487	1
046	Hi-Load	50 pF	20	peak 7.5 kV		AP. 63494	2
				peak	Sh. 1 Ref. 4		
C47	As C 46						
C48	As C 43						
C49	As C 43						
C50	As C2						
C51	As C3						
C52	As C2						

Schedule WZ.17588/A
88

Ref.	Description	Value	$\begin{array}{\|c\|} \hline \text { Tol } \\ \% \\ \pm \\ \hline \end{array}$	Rating	Identity	Service Ref.	Qty.
053	$\begin{aligned} & \text { CAPACITORS (Cont'd) } \\ & \text { Mica Foil } \end{aligned}$. $01 \mu \mathrm{~F}$	20	$\begin{gathered} 350 \mathrm{~V} \\ \mathrm{DC} \end{gathered}$	PC.18701/5	Z.124, 84	2
$\begin{aligned} & \mathrm{C} 54 \\ & \mathrm{C} 55 \end{aligned}$	$\begin{array}{lll} \text { As } & C 2 \\ \text { As } & C 3 \end{array}$						
C56	As C32						
C57	As C33						
C58	Hi-Load Capacitor	125 pF	20	$\left\lvert\, \begin{aligned} & 7.5 \mathrm{kV} \\ & \text { peak } \end{aligned}\right.$	$\begin{aligned} & * N T S .5080 / B \\ & S h . I ~ R e f .3 C \end{aligned}$	AP. 104552	1
C59	Hi-Load Capacitor	1250 pF	20	7.5 kV peak	$\begin{aligned} & \text { ※NIS. } 5080 / \mathrm{B} \\ & \text { Sh. } 1 \text { Ref. } 1 \end{aligned}$	AP. 104478	2
C60	As C59						
C61	As C 3						
C62	As C3						
C63	As C3						
C64	Variable Air Dielectric				$\begin{aligned} & \text { W. } 48433 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104533	1
C65	Preset Air Dielectric				$\begin{aligned} & \text { W. } 49688 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104534	2
C66	As C 65						
$\begin{aligned} & \mathrm{C} 67 \\ & \mathrm{c} 68 \end{aligned}$	As C3						
C68	Hi-Load Capacitor	125 pF	20	$\begin{aligned} & 7.5 \mathrm{kV} \\ & \text { peak } \end{aligned}$	$\left\|\begin{array}{l} \text { WIS. } 5080 / B \\ \text { Sh. } 1 \operatorname{Ref} .3 \mathrm{~F} \end{array}\right\|$	AP. 104483	4
C69	As C 68						
C70	As C68						
C71	As C68				H.31-8847-01	6,24-bu, 5	1
C72	Mica Foil	10.000 pF	10	$\begin{aligned} & 750 \mathrm{~V} \\ & \mathrm{DC} \end{aligned}$		-	主
C73	As C53						
C74	Mica Disc	. $002 \mu \mathrm{~F}$	20		$\begin{aligned} & \text { WIS. } 7478 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 3 \end{aligned}$	$\begin{aligned} & 5910-99- \\ & 972-9622 \end{aligned}$	1
C75	Not Used						
C80	Silvered Ceramic	10 pF	20	4 kV DC	$\begin{aligned} & \text { WIS. } 4240 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 2 \end{aligned}$		2
C81	As C80						
	RESISTORS (FIXED)						
RI	Comp.Grade 2	2208	10	1/2W	PC.66611/17	Z. 221153	1
R2	Comp.Grade 1	338	5	1/4W	PC.66602/2	Z. 219016	2
R3	ww Vit. Enam.	$10 \mathrm{k} \Omega$	5	4.1/2W	PC. $67009 / 19$	Z.244097	1
R_{4}	WW Vit. Enam.	$15 \mathrm{k} \Omega$	5	6W	PC.67010/20	Z. 244114	1
R5	Comp.Grade 2	1008	10	1/4W	PC.66610/13	Z. 221110	2
R6	$\begin{aligned} & \text { Shunt, WW } 250 \mathrm{~mA} \\ & 100 \mathrm{mV} \end{aligned}$		1		$\begin{aligned} & \text { WIS. } 3914 / \mathrm{C} \\ & \text { Sh. } 2 \text { Ref. } 19 \end{aligned}$	AP. 104267	1
R7	As R2						
R8	As R5						
R9 R10	Comp.Grade 2 As R9	$10 \mathrm{k} \Omega$	10		PC.66612/31	2. 222241	3

Ref.	Description	Value	$\begin{gathered} \text { Tol } \\ \% \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
	RESISTORS (FIXED) (Cont'd)						
R11	As R9						
R12	Comp.Grade 2	15 k R	10	1W	PC. 66612/33	$\text { Z. } 222243$	
R13	Shunt WW 5 mA $100 \text { mV }$		1		$\left\|\begin{array}{l} \text { WIS. } 3914 / C \\ \text { Sh. } 3 \text { Ref. } 31 \end{array}\right\|$	AP. 104450	1
R14	Comp.Grade 2	338	10	1/2W	PC.66611/7	Z. 221048	2
R15	Comp.Grade 2	1008	10	1W	PC.66616/13	Z. 211110	2
R16	Carbon	208	20	50w	$\left\lvert\, \begin{aligned} & \text { WIS. } 5161 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 22 \end{aligned}\right.$	AP. 104511	1
R17	As Rl5						
R18	As R14						
R19	Shunt 400 mA 100 mV		1		$\left\|\begin{array}{l} \text { WIS. } 3914 / C \\ \text { Sh. } 3 \text { Ref. } 45 \end{array}\right\|$	AP.104451	1
R20	Not Used						
R21	Not Used						
R22	Shunt 2A 100 mV		1		$\left\|\begin{array}{l} \text { WIS. } 3914 / \mathrm{C} \\ \text { Sh. } 3 \\ \text { Ref. } 46 \end{array}\right\|$	AP.104452	1
R23	Shunt 350 mA 100 mV		1		$\left\|\begin{array}{l} \text { WIS. } 3914 / \mathrm{C} \\ \text { Sh. } 4 \text { Ref. } 51 \end{array}\right\|$	AP. 104453	1
R24	Wirewound			600V	WIS 4235		1
				Wkg.	Sh. 7 Ref. 12 ¢		
R25	Ww Vit. Enam.	2.28	10	3N	PC. 67008/25	Z. 243459	2
R26	As R25						
R27	WW Vit. Enam.	1 ks	5	4.1/2W	PC.67009/13	2.244001	1
R28	Carbon	20,	10	35W	$\left\|\begin{array}{c} \text { WIS. } 5161 / C \\ \text { Sh. } 1 \\ R e f .21 \end{array}\right\|$	AP. 104512	1
R29	As R12						
R30	As R12						
R31	Carbon	208	20		$\left\|\begin{array}{l} \text { WIS. } 5161 / \mathrm{C} \\ \text { Sh. } 1 \\ \text { Ref. } 21 \end{array}\right\|$	AP. 104512	1
R32	Comp.Grade 2	758	2	3/4W	PC. $66619 / 5$	Z. 215383	
R33	Comp.Grade 2	100』	10	1/2W	PC.66611/13	Z. 221111	1
R34	Comp.Grade 2	$1.2 \mathrm{k} \Omega$	10	2 W	PC.66616/26	Z. 212017	2
R35	Comp.Grade 2	188	10	2W	PC. $66616 / 4$	Z. 211017	2
R36	As R35						
R37	As R34						
R38	Comp.Grade 2	${ }_{22 \Omega}^{1 \mathrm{k} \Omega}$	10	$2 W$ $2 W$	PC.66616/25 PC.66616/5	Z. 212005 Z. 211026	2
R40	As R39						
R41	As R38						
R42	Comp.Grade 2	8208	10	2W	PC. 66616/24	Z. 211227	1
R43	Comp.Grade 2	338	10	2W	PC. 66616/7	Z. 211047	2
R44	As R43						
R45 R46	Comp.Grade 2 As R 45	560,	10	2W	PC.66616/22	2.211206	2

Schedule WZ.17588/A

Ref.	Description	Value	$\begin{gathered} \text { Tol. } \\ \% \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
L15	INDUCTORS (Cont'd) Variable, Complete Assy.				$\begin{aligned} & \text { W. } 39080 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104550	1
L16	Not Used						
L17	Choke				$\begin{aligned} & \pi .40912 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104568	1
L18	Choke 20 Turns				$\begin{aligned} & N .32060 / B \\ & \text { Sh. } 1 \text { Ed.C } \end{aligned}$	AP. 104546	1
L19	Anode Coil Assy.				$\pi .40700$		1
L20	Coupling Coil Assy.				$\left\{\begin{array}{l} \text { Sh. } 1 \text { Ed.B } \\ 7.49270 \\ \text { Sh. } 1 \text { Ed.A } \end{array}\right\}$	AP. 104313	1
L21	Choke 43 Turns				$\begin{aligned} & \text { W. } 33076 / \mathrm{B} \\ & \text { Sh. } 1 \text { Ed. } \end{aligned}$	AP. 104545	1
L22	22.1/2 Turns				104/W40408/C	AP. 104547	2
L23	As L22						
$\begin{aligned} & \mathrm{L} 24 \\ & \mathrm{~L} 25 \end{aligned}$	Not Used						
	Not Used						
L26	Single Loop				<.49084/B	AP. 104548	1
					Sh. 1 Ed.A		
L27	Choke 1600 Turns				WSK. 13422	AP. 104570	1
L28	Choke 76 Turns	$350 \mu \mathrm{H}$			Sh. 1 Ed. H W. 6171	AP. 104567	
					Sh. 1 Ea.V		
L29	Choke				$\begin{aligned} & \mathrm{N} .24575 / \mathrm{B} \\ & \text { Sh. } 6 \end{aligned}$	AP. 104569	
	LINKS						
LKA	Coaxial				$\begin{array}{r} \text { IS. } 3408 / \mathrm{C} \\ \text { Sh. } \mathrm{Ref} .1 \end{array}$	AP. 100830	1
	METERS						
M1	D.C. Moving Coil Scaled 0.15 V	$\left\|\begin{array}{l} 500 \mu \mathrm{~A} \\ 100 \mathrm{mV} \end{array}\right\|$	1		$\begin{aligned} & \text { IS. } 3954 / B \\ & \text { Sh. } 15 \end{aligned}$	AP. 104388	1
					Ref. 11		
M2	D.C. Moving Coil	1 mA	1		WIIS. 3686	AP. 104243	1
	Scaled 0.250 mA	100 mV			Sh. 6 Ref. 85		
M3	D.C. Moving Coil	1 mA	1		TIS. $3954 / \mathrm{B}$	AP. 104385	1
	Scaled 0-5 mA	100 mV			Sh. 13		
M4	D.C. Moving Coil	$500 \mu \mathrm{~A}$	1		Vef. $\mathrm{RIS} .3954 / \mathrm{B}$	AP. 104386	1
	Scaled 0-250 mA	100 mV			Sh. 13 Ref. 114		

Schedule WZ.17588/A

Ref.	Description	Value	Tol. \% \pm	Rating	Identity	Service Ref.	Qty.
M5	METERS (Cont' d) D.C. Moving Coil Scaled 0.400 mA	$\begin{array}{r} 1 \mathrm{~mA} \\ 100 \mathrm{mV} \end{array}$	1		$\begin{aligned} & \text { WIS. } 3686 \\ & \text { Sh. } 12 \\ & \text { Ref. } 189 \end{aligned}$	AP. 104387	
M6	D.C. Moving Coil Scaled 0-2A	$\begin{array}{r} 1 \mathrm{~mA} \\ 100 \mathrm{mV} \end{array}$	1		$\begin{aligned} & \text { WIS. } 4235 \\ & \text { Sh. } 14 \\ & \text { Ref. } 218 \end{aligned}$	AP. 104555	1
M7	D.C. Moving Coil Scaled 0-350 mA	$\begin{array}{r} 1 \mathrm{~mA} \\ 100 \mathrm{mV} \end{array}$	1		$\begin{aligned} & \text { WIS. } 4235 \\ & \text { Sh. } 16 \\ & \text { Ref. } 247 \end{aligned}$	AP. 104556	1
M8	D.C. Moving Coil Rectifier Dual Scale to Read A.C. or D.C.	$0-15 \mathrm{~V}$	1		$\begin{aligned} & \text { WIS. } 4235 \\ & \text { Sh. } 14 \\ & \operatorname{Ref.~} 214 \end{aligned}$	AP. 104551	1
M9	D.C. Moving Coil Scaled 0-600V D.C.	$\begin{array}{r} 1 \mathrm{~mA} \\ 100 \mathrm{mV} \end{array}$	1		$\begin{aligned} & \text { WIS. } 4235 \\ & \text { Sh. } 7 \\ & \text { Ref. } 129 \end{aligned}$	AP. 104259	1
M10	D.C. Moving Coil Scaled 0-1000	$\begin{gathered} 500 \mu \mathrm{~A} \\ 50 \mathrm{mV} \end{gathered}$	1		$\begin{aligned} & \text { WIS. } 4235 \\ & \text { Sh. } 10 \\ & \text { Ref. } 174 \end{aligned}$	AP. 104557	1
	PEAK VOLTMETERS						
PVM1					$\begin{aligned} & \text { W. } 38793 \\ & \text { Sh. } 1 \text { Ed.D } \end{aligned}$	AP. 104410	1
PVM2					$\begin{aligned} & \text { N. } 38793 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104389	2
PVM3	Not Used						
PVM4	As PVM2 PLUGS						
PLA	Coaxial				$\begin{aligned} & \mathrm{N} .36715 / B \\ & \text { Sh. } 1 \text { Ref. } 2 \end{aligned}$	AP. 64650	1
PLB	Coaxial				$\begin{aligned} & \mathrm{IV} .36715 / \mathrm{B} \\ & \text { Sh. } 1 \text { Ref. } 3 \end{aligned}$	AP. 64650	1
PLC	Coaxial				$\begin{aligned} & N .36715 / \mathrm{B} \\ & \text { Sh. } 1 \text { Ref. } 4 \end{aligned}$	AP. 64650	2
PLD	Coaxial				$\begin{aligned} & \text { W. } 36715 / B \\ & \text { Sh. } 1 \operatorname{Ref} .5 \end{aligned}$	AP. 64650	1
PLE	18 Way				$\begin{aligned} & \text { W. } 41113 \\ & \text { Sh. } 1 \text { Ref.1 } \end{aligned}$	AP. 104585	1
PLF	18 Way				$\begin{aligned} & \text { WIS. } 3738 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } \end{aligned}$	AP. 104176	5
PLG	As PLF						
$\stackrel{\text { PLH }}{\text { PLJ }}$	As PLC As PLF						

Ref.	Description	Value	Tol. $\%$ \pm	Rating	Identity	Service Ref.	Qty
PLK	PLUGS (Cont'd) Coaxial				$\begin{aligned} & \text { WIS. } 5355 / \mathrm{B} \\ & \text { Sh. } 1 \text { Ref } .8 \end{aligned}$	AP. 67169	1
PLL	6 Way (Red)				$\begin{aligned} & \text { W. } 41113 \\ & \text { Sh. } 1 \text { Ref. } 2 \end{aligned}$	AP. 104584	1
PLM	Coaxial (Yellow)				$\begin{aligned} & \text { W. } 36715 / \mathrm{B} \\ & \text { Sh. } 1 \mathrm{Ref} .6 \end{aligned}$	AP. 64650	1
PLN	to PLP Not Used						
PLQ	Coaxial (Black)				W. 51158/C Sh. 1 Ref. 1	AP. 61032	1
PLR	Coaxial (Green)				$\begin{aligned} & \text { W. } 51158 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 2 \end{aligned}$	AP. 61032	1
PLS	Coaxial (Blue)				W. 51158/C Sh. 1 Ref. 3	AP. 61032	1
PLT	Coaxial (Red)				W. $51158 / \mathrm{C}$ Sh. 1 Ref .4	AP. 61032	1
PLU	Coaxial (Yellow)				W. $51158 / \mathrm{C}$ Sh. 1 Ref. 5	AP. 61032	1
PLV	Coaxial (Grey)				$\text { W. } 51158 / \mathrm{C}$ Sh. 1 Ref. 6	AP. 61032	1
PLW	Coaxial (Brown)				$\begin{aligned} & \text { W. } 51158 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ref. } 7 \end{aligned}$	AP. 61032	1
PLCA	Coaxial				$\begin{aligned} & \text { IS. } 3106 / C \\ & \text { Sh. } 1 \operatorname{Ref} .3 \end{aligned}$	AP. 101016	3
PLCB	As PLCA						
PLCC	As PLCA						
PLAB	As PLF						
PLAC	to PLay Not Used						
PLAZ	As PLF						
	SOCKETS						
SKA	Coaxial				WIS. $5355 / \mathrm{B}$ Sh. 1 Ref. 9	AP. 104571	7
SKB	As SKA						
SKC	As SKA						
SKD	As SKA						
SKE	18 Way				$\begin{aligned} & \text { WIS. } 3732 / \mathrm{C} \\ & \text { Sh. } \end{aligned}$	AP. 104204	
SKF	18 Way				W. 41061	AP. 104202	1
					Sh. 1 Ref. 6		
SKG	18 Way				W. 41061 Sh. 1 Ref. 7	AP. 104202	1
SKH	As SKA						

Schedule WZ.17588/A
94

Ref.	Description	Value	Tol. \% \pm	Rating	Identity	Service Ref.	Qty.
SKJ	$\begin{aligned} & \text { SOCKETS (Cont'd) } \\ & 18 \text { Way (Green) } \end{aligned}$				W. 41061 Sh. 1 Ref. 9	AP. 104202	1
SKK	As SKA						
SKL	Not Used						
SKM							
SKN	12 Way (Light Grey)				W. 41061 Sh. 1 Ref.	AP. 104202	1
SKP	18 Way (Tan)				$\begin{aligned} & \quad 102 \\ & \text { W. } 41061 \\ & \text { Sh. } 1 \\ & \text { Ref. } 105 \end{aligned}$	AP. 104202	1
SKR	to SKZ Not Used						
SKAA							
SKAB	18 Way				W. 41061 Sh. 1 Ref. 26	AP. 104202	1
SKAC	to SKAY Not Used						
SKAZ	18 Way (Tan)				W. 41061 Sh. 1 Ref. 106	AP. 104202	1
	SWITCHES						
SWA	1 Pole, 5 Pos.				$\text { W. } 38959$ Sh. 1 Ed.A	AP. 104369	1
SWB	1 Wafer, Single Pole, 5 Way				$\begin{aligned} & \text { WIS. } 5670 / \mathrm{C} \\ & \text { Sh. } 97 \end{aligned}$		1
SWC	1 Pole, 5 Pos.				$\begin{aligned} & \text { W. } 40066 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104472	1
SWD	4 Pole, 5 Pos.				6/W.40408/C	AP. 104573	1
SWE	Not Used						
SWFI	Complete Assy.				$\text { W. } 39161$ Sh. 1 Ed.A	AP.1044, ${ }^{4}$	1
SWF2	1 Pole c/o				$\text { WIS. } 5586 / \mathrm{A}$	AP. 104208	4
SWGI	Complete Assy.				W. 36725 Sh. 1 Ed. B	AP. 104473	1
SWG2					W.40269/C	AP. 104463	1
					Sh. 1 Ed.B		
SWH	1 Pole			2.5 kVA	$\begin{aligned} & \text { WIS. } 5197 / \mathrm{B} \\ & \text { Sh. } 6 \end{aligned}$	AP. 104476	1
SWJ	2 Pole I Wafer				$\text { WIS. } 5820 / \mathrm{B}$ $\mathrm{Sh} .34$	AP. 104468	1
SWK	1 Pole, 2 Wafers				$\begin{aligned} & \text { WIS. } 5820 / \mathrm{B} \\ & \text { Sh. } 34 \end{aligned}$	AP. 104468	1

[^0]

Schedule WZ.17588/A

Ref.	Description	Value	$\begin{gathered} \text { Tol } \\ \% \\ \pm \\ \hline \end{gathered}$	Rating	Identity	Service Ref.	Q̂ty.	
	MISCELLANEOUS MECHANICAL ITEMS (Cont'd)							
61	Shaft Assy.				$\therefore .39617 / B$	AP. 104561	1	
					$\begin{aligned} & \text { Sh.I Ed.A } \\ & \text { IO/N. } 39080 / B \end{aligned}$	AP. 104423		
62	Former Mycalex				I			
63 64	Former Mycalex				$\left\lvert\, \begin{aligned} & 10 / \pi \cdot 39080 / B \\ & 10 A / W \cdot 39080 / B \end{aligned}\right.$	$\begin{aligned} & \text { AP. } 104423 \\ & \text { AP. } 104424 \end{aligned}$	1	
64	Former Mycalex				10B/W.39080/B	AP.104425	1	
65	Former Mycalex				10C/W.39080/B	AP. 104426	1	
66	Former Mycalex					14/W.39080/B	$\begin{aligned} & \mathrm{AP} .104427 \\ & \mathrm{AP} .104428 \end{aligned}$	1
67	Former Mycalex				15/W.39080/B	1		
	Contact Assy.				W. $49358 / \mathrm{B}$			
					Sh. 1 Ed.B	AP. 104532	4	
69	Insulating Rod				WSK. 10464 Sh. 1 Ref. 10			
70	Conical Insulator				WIS. $626 / \mathrm{C}$		1	
					Sh. 1 Ref. 1			
71	Valveholder Ceramic 5 Pin				WIS .4844/C	AP. 104411	2	
					Sh. 1 Ref. 2			
72	Insulator Stand-				:IS.5416/C	AP. 194442	10	
					Sh. 1 Ref. 4			
73	Insulator StandOff Base Mycalex				VIS .5416/C	AP.104440	2	
					Sh. 1 Ref. 1			
$\begin{aligned} & 74 \\ & 75 \end{aligned}$					49/W.32056/C	AP. 104429	1	
	Base Mycalex Terminal Block Mycalex				16/W.32738/C	AP. 104430		
76	Spring Contact Spring Contact Plate Mycalex				$\begin{aligned} & 30 / W \cdot 32738 / C \\ & 28 / W \cdot 32738 / C \end{aligned}$	AP. 104503	4	
77						AP.104431	1	
7879		Condenser Plate Mycalex			$\begin{aligned} & 54 / \mathrm{W} .32738 / \mathrm{C} \\ & \text { WIS } .5716 / \mathrm{C} \end{aligned}$			
	Flexible Drive					AP. 104414	1	
	Assembly							
80	Manual DriveAssembly				$\begin{aligned} & \text { W. } 38958 \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP. 104415	3	
81	$\begin{aligned} & \text { Manual Drive } \\ & \text { Assembly } \end{aligned}$				$\begin{aligned} & \text { N. } 38958 \\ & \text { Sh. } 2 \text { Ed.B } \end{aligned}$	AP. 104416	1	
82	$\begin{aligned} & \text { Manual Drive } \\ & \text { Assembly } \end{aligned}$				$\begin{aligned} & \text { W. } 39163 \\ & \text { Sh.I Ed.A } \end{aligned}$	AP.104417	1	
83	Manual Drive Assembly				W. 39340	AP.104418	1	
					Sh. 2 Ed. ${ }^{\text {B }}$			
84	Assembly Spring Contact Assembly				N. $49274 / \mathrm{C}$	AP. 104497	2	
					Sh. 1 Ed.A			
85	$\begin{aligned} & \text { Assembly } \\ & \text { Spring } \end{aligned}$				23/W.39080/C	AP. 104541	4	
86	Contact Mounting Mycalex Contact Assembly				3A/W.40408/C	AP. 104520	1	
87					$\begin{aligned} & \text { T.18195/C } \\ & \text { Sh. } 1 \text { Ed.A } \end{aligned}$	AP.104489		

Schedule WZ.17588/A

COMPONENTS LIST

FOR
MIXER UNIT
(Drg. No. W. 37920 Sh.7-9 Ed.D)

NOTES

1. When ordering spares quote information from all columns for identities marked * or identity only for all other items.
2. The references in column I are shorn on circuit diagrams Figs. 12 and 13 and component location diagrams Fig.6.
3. For identical items the total quantity is given at the first entry.

Ref.	Description	Value	$\begin{gathered} \text { Tol. } \\ \% \\ \pm \\ \hline \end{gathered}$	Rating	Identity	Service Ref.	Qty
C23	CAPACITORS (Cont Mica	d.) 1000 pr	10	750V DC	$14.3158547-01$ zuIS. $4342 / \mathrm{B}$ Sh. I Flef. 7	$624 \cdot 6.988$ -7.72482	25 25
C24	As C23						
C25	As 65						
C26	As 66						
027	As Cl8						
C28	As Cl0						
C29	As Cl						
C30	Ceramio	$6.8 \mu \mu \mathrm{~F}$	10	750V DC	PC. $18201 / 7$	2.132422	1
031	As C2						
C32	Variable air spaced	$4.8-100 \mathrm{pF}$			$\begin{aligned} & \text { WIS. } 3040 / \mathrm{C} \\ & \text { Sy. } 1 \text { Ref. } 9 \end{aligned}$	2. 160006	20
C33	As C32						
034	As C32						
C35	As Cl 8						
036	As C2						
$C 37$ $C 38$	As As 23 As C23						
C38	As C23 As C23						
C40	As C23						
C4I	As 65						
C42	As C2						
043	As C23						
C44	As C23						
C45	As As 23 As C23						
C46	As C23 As C5						
C48	As C 23						
C49	As C 2						
C50	As C32						
C51	As C32						
C52	As C32						
053	As Cl8						
C54	As C2						
C55	As C2						
. C 56	Paper	. $01 \mu \mathrm{~F}$	20	400V DC	PC. $19308 / 7$	2.115827	7
C57	As C2						
C58	As C2						
C59	Silvered Mica	$220 \mu \mu \mathrm{~F}$	5	350 V DC	FiVIS .4483/B Sh. 1 Ref. 1	Z. 123288	1.
C60	Silvered Mica	$390 \mu \mu \mathrm{~F}$	5	350V DC	FWIS . $4483 / \mathrm{B}$ Sh. 1 Ref. 1	Z. 123376	1
C61	As 656						
C62	As C56						

Schedule WZ. 17590 A

Ref.	Description	Value	Tol	Rating	Identity	Service Ref.	Qty.
	CAPACITORS (Cont'd.)						
C63	Variable Air Spaced	$\begin{aligned} & 3.3- \\ & 34.5 \mu \mu \mathrm{~F} \end{aligned}$			WIS. 3534/C Sh. 1 Ref. 2	AP. 104344	1
C64	As C2						
C65	As C5						
C66	As C5						
C67	As C32						
C68	As C32						
C69	As C32						1
C70	Mica, Foil As C2	$150 \mu \mu \mathrm{~F}$	10	750V DC	PC.18802/15	2.123663	1
C72	Not Used						
C73	As C32						
C74	As C32						
C75	As C32						
C76	Mica Metallised	$68 \mu \mu \mathrm{~F}$	10	750V DC	PC.18802/11	Z. 123918	1
C77	As C2						
C78	Paper	. $05 \mu \mathrm{~F}$	20	500V DC	PC. 19203/17	Z. 115505	1
C79	As C23						
C80	As As C23						
C81	As C23 As C5						
C83	As C As c2						
C84	As C32						
C85	As C 32						
C86	As C32						
C87	As C23						
C88	As C2						
C89	As C23						
C90	As C23						
C91	As C23						
C 92	As C23						
C93	Not Used As C5						
C94	$\begin{array}{\|ll} \text { As } & \text { C5 } \\ \text { As } & \text { C23 } \end{array}$						
C95	$\begin{array}{ll} \text { As } & \text { C23 } \\ \text { As C2 } \end{array}$						
C97	As C23						
C 98	As C23						
C99	As C23						
C100	As C5						
Cl 01	As C23 Not Used						
Cl03	Paper	. $25 \mu \mathrm{~F}$	25	150V DC	PC.19301/2	Z. 115563	2
Cl 04	As C32						
Cl05	As C32						
C106	As C32						

Ref.	Description	Value	ToI. $\%$ \pm	Rating	Identity	Service Ref.	Qty.
	CAPACITORS (Conta.)						
C107	Mica, Foil, Moulded Case	. $001 \mu \mathrm{~F}$	20	350 V DC	PC.18701/2	2.124479	4
C108	Not Used						
C109	Mica Foil, Moulded Case	$220 \mu \mu \mathrm{~F}$	20	750V DC	PC.18702/2	Z. 123293	1
C110	As C23						
C111	Not Used						
Cl12	As Cl03						
C113	Not Used						
Cl14	Not Used						
C115	As C107						
Cll6	As C 2						
C117	As C107						
C118	As C2						
Cl19	As C56						
Cl20	As C56						
Cl 21	As C107						
C122	Not Used						
C123	Not Used						
C124	Paper	. $1 \mu \mathrm{~F}$	20	350V DC	PC. 19207/15	2.115597	2
C125	Mica	$100 \mu \mu \mathrm{~F}$	10	750 V DC	PC.18802/13	Z. 132300	1
C126	As C2						
Cl27	As C2						
Cl28	As C32						
C129	As C2						
C130	Mica, Metallised, Moulded Case	$470 \mu \mu \mathrm{~F}$	5	750V DC	PC.18802/21	2.123948	1
Cl31	Mica, Metallised, Moulded Case	$10 \mu \mu \mathrm{~F}$	10	750V DC	PC.18802/1	Z. 123900	1
C132	As C2						
Cl33	As C32						
C134	As C2						
1135	As C56						
C136	As C57						
	RESISTORS						
R1	Comp. Grade 2					2.221027	
R2	Comp. Grade 2	568	10	1/2W	PC.66611/10	Z. 221081	1
R3	Comp. Grade 2	$33 \mathrm{k} \Omega$	10	1/2W	PC.66611/43	Z. 222195	6
R4	Comp. Grade 2	338	10	1/4W	PC. 66610/7	Z.221047	26
R5	As R4 ${ }^{\text {Com }}$ Grade						
	Comp. Grade 2	$100 \mathrm{k} \Omega$			$\text { PC. } 66611 / 49$	Z. 223039	
R7	Comp. Grade 2	$2.2 \mathrm{k} \Omega$	10	1/2W	PC. 66611/29	Z. 222048	4

Schedule WZ.17590A
104

Ref.	Description	Value	$\begin{array}{\|c} \text { Tol. } \\ 0 \\ \vdots \\ \pm \end{array}$	Rating	Identity	Service Ref.	Qty .
R8	RESISTORS (Conta.) Wirewound	5.55\%	1	3W	$\begin{aligned} & \text { ※WIS. } 2896 / \mathrm{C} \\ & \mathrm{Sh} .2 \operatorname{Ref} .10 \end{aligned}$	AP. 103023	6
R9	Comp. Grade 2	$6.8 \mathrm{k} \Omega$	10	1/2W	PC.66611/35	2.222111	10
R10	As R4						
R11	As R6						
R12	As R3						
R13	As R4						
R14	As R4						
R15	As R7						
R16	As R8						
R17	As R9						
R18	As R4 Comp. Grade 2						
R19	Comp. Grade 2 As R3	$10 \mathrm{k} \Omega$	10	1/2\%	PC.66611/37	Z. 222132	6
R21	As R4						
R22	As R4						
R23	As R6						
R24	As R7						
R25	As R8						
R26	As R9						
R27	As R4						
R28	As R9						
R29	Comp. Grade 2	150 ks	10	1/2W	PC.66611/51	2.223060	
R30	Comp. Grade 2	$1 \mathrm{k} \Omega$	10	$1 / 2 \mathrm{~N}$	PC. $66611 / 25$	Z. 222006	5
R31	As R9						
	Comp. Grade 2 As R4	$8.2 \mathrm{k} \Omega$	10	1/2W	PC.66611/36	Z. 222123	4
R33	$\begin{array}{ll} \text { As } & \text { R4 } \\ \text { As } & \text { R4 } \end{array}$				-		
R35	As R4						
R36	Comp. Grade 2	3308	10	1/2:1	PC.66611/19	Z. 221174	3
R37	As R8 Grade 2	22 ko		1/2W	PC.66611/41	-. 222174	2
R39	As R9	22 kaj	10	1/2w	P0.66611/41	-. 222174	
R40	As R8						
R41	As R4						
R42	As R4						
R43	As R36						
R44	Wirewound	. 5058	5	3W	$\begin{aligned} & \text { ※IS. } 2896 / \mathrm{C} \\ & \mathrm{Sh} .2 \operatorname{Ref.10} \end{aligned}$	AP. 103024	6
R45	As R4						
R46	As R4						
R47 R48	Comp. Grade 2 As R47	2208			PC.66611/17	2. 221153	
R49	Comp. Grade 2	3.3 k	10	I/2W	PC.66611/31	Z. 222069	2

Schedule WZ.17590A

Ref.	Description	Value	$\begin{gathered} \mathrm{Tol} . \\ \% \\ \pm \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
	RESISTORS (Contd.)						
R93	As R47						
R94	As R47						
R95	Not Used						
R96	Not Used						
R97	Not Used						
R98	As R44						
R99	Comp. Grade 2	1008	10	1/4W	PC.66610/13	Z. 221110	2
R100	As R4						
Rl01	As R30						
R102	As R3						
R103	Not Used						
R104	As R19						
R105.	Comp. Grade 2	3308	10	1/4W	PC.66610/19	Z. 221173	1
R106	Comp. Grade 2	2708	10	1/4w	PC.66610/18		1
R107	Thermistor				$\begin{aligned} & \text { YIS. } 5740 / \mathrm{C} \\ & \text { Sh. } 1 \text { Ed. } 4 \end{aligned}$	$\text { AP. } 104326$	1
R108	As R19						
R209	Comp. Grade 2	680』	10	1/2w	PC.66611/23	Z. 221216	2
Rll0	Comp. Grade 2	688	10	1/2\%	PC.66610/11	Z. 221089	1
R111	As R99						
R112	Comp. Grade 2	$47 \mathrm{k} \Omega$	10	1/2w	PC.66611/45		1
R113	As R38						
R114	Comp. Grade 2	4.7 k 2	10	1/2N	PC.66611/33	Z. 222096	1
R115	Comp. Grade 2	100』	10	1/2N	PC.66611/13	Z.221111	2
R116	As R7						
R117	As R44						
R118	Comp. Grade 2 As R118	56a	10	1/2W	PC.66611/10	Z. 221081	3
R120	Comp. Grade 2	22.2	10	1/2.I	PC. $66611 / 5$	Z. 221027	3
R121	As Rl20						
R122	Comp. Grade 2	688	10	1/2:"	PC.66611/11	Z. 221090	1
R123	As Rl20						
R124	As Rll8						
R1.25	As R6						
R126	As R4						
R127	As R30						
R128	As Rll 5						
R129	As R109						
R130	As R44						
R131	As R47						
R132	As R43						
RI33	As R3						
R134	As R4						
RI35	As R4						

Schedule TVE.17590A

Ref.	Description	Value	Tol $\begin{gathered}\text { Tol } \\ \% \\ \pm\end{gathered}$	Rating	Identity	Service Ref.	Qty.
	RESISTORS VARIABLE						
RV1	Comp. Linear	$5 \mathrm{k} \Omega$	20	3/4W	PC. 67203/9	2.261510	1
RV2	Not Used						
RV3	Wirewound	25 k 2	10	3W	WIS . $4.175 / \mathrm{B}$ Sh. 1 Ref. 63	Z. 272301	8
RV4	As RV3						
RV5	Wirewound	$25^{\circ} \mathrm{k}$	10	3W	$\begin{aligned} & \text { WIS. } 4175 / \mathrm{B} \\ & \text { Sh. } 1 \operatorname{Ref} .64 \end{aligned}$	Z. 272302	1
RV6	As RV3						
RV7	As RV3						
RV8	As RV3						
RV9	As RV3						
$\left\|\begin{array}{l} \text { RVIO } \\ \text { RVII } \end{array}\right\|$	As RV3						
	As RV3						
LI	INDUCTORS						
	3.1/2 Turns				$\begin{aligned} & \text { W. } 26958 / \mathrm{B} \\ & \text { Sh. } 154 \mathrm{~S} \\ & \text { W. } 36413 / \mathrm{C} \\ & \text { Sh.1 Ed. } 0 \end{aligned}$	AP. 104370	1
L2	21 Turns				W. 50593	AP. 104372	2
					Sh. 1 Ed.F		2
L3	10 Turns				$\begin{aligned} & \text { W. } 37149 \\ & \text { Sh. } 1 \text { Ed. } \end{aligned}$		2
L4	4 Turns				$\begin{aligned} & \text { W. } 50593 \\ & \text { Sh. } 1 \text { Ed.B } \end{aligned}$	AP. 104373	2
$\begin{aligned} & \text { L5 } \\ & \text { L6 } \end{aligned}$	3.1/2 Turns				147/737628/C		10
	600 Turns \& 400				W.18936/C	AP. 104566	2
	Turns				Sh. 1 Ed. A		
	As L5						
$\begin{aligned} & \text { L7 } \\ & \text { L8 } \end{aligned}$	As L5						
L9	As L5						
$\left\lvert\, \begin{array}{ll} \text { LLO } \\ \text { LII } \end{array}\right.$	As L5					AP. 104567	1
					Sh. 1 Ref. 1	AP. 104567	
L12	22 Turns				W. $37206 / \mathrm{B}$	AP. 104374	1
					Sh. 1 Ed. A		
L13	9 Turns				TI. $37207 / \mathrm{B}$	AP. 104375	1
					Sh. 1 Ed. ${ }^{\text {a }}$		
LI 4	3 Turns				$\begin{aligned} & \text { W. } 37208 / \mathrm{B} \\ & \text { Sh. } 1 \mathrm{Ed} . \mathrm{A} \end{aligned}$	AP. 104376	1
$\begin{array}{\|l\|l\|} \text { L15 } \\ \text { L16 } \end{array}$	$\begin{array}{ll} \text { As } & \text { L5 } \\ 21 \text { Turns } \end{array}$				$\text { W. } 50593$	AP. 104372	1
	21 Turns				$\text { Sh. } 1 \text { Ed. }$	AP. 104372	

Schedule WZ.17590A

Ref.	Description	Value	$\begin{gathered} \text { Tol. } \\ \% \\ \pm \\ \hline \end{gathered}$	Rating	Identity	Service Ref.	Qty.
L17	$\begin{aligned} & \text { INDUCTORS (Contd.) } \\ & 10 \text { Turns } \end{aligned}$				$\left\lvert\, \begin{aligned} & \text { W. } 37149 \\ & \text { Sh. } 1 \text { Ed.C } \end{aligned}\right.$		1
L18	As L_{4}						
L19	As L5						
L20	As L6						
L21	Not Used						
L22	Not Used						
L23	As L5						
L24	As L5						
L25	As L5						
L26	A6 Turns				$\begin{aligned} & \text { W. } 33035 / B \\ & \text { Sh. } 1 \text { Ed.D } \end{aligned}$	AP. 104363	1
L27	Not Used						
L28	Not Used						
L29	'Ledex' Selector				$\begin{aligned} & \text { WIS. } 5540 / B \\ & \text { Sh. } 7 \end{aligned}$	AP. 104368	1
	LINKS						
LKA	Coaxial				$\left\|\begin{array}{l} \text { WIS. } 3409 / \mathrm{C} \\ \text { Sh. Ref.1 } \end{array}\right\|$	AP. 100830	1
	METERS						
M1	M.C. F.S.D. $=1 \mathrm{~mA}$ DC Scale 0-10 Res. 508				$\begin{aligned} & \text { WIS. } 3686 \\ & \text { Sh. } 4 \text { Ref. } \\ & 61 \end{aligned}$	AP. 104351	1
	PLUGS						
$\left\lvert\, \begin{array}{r} \mathrm{PLA} \\ \text { to } \end{array}\right.$	Not Used						
PLM	$12 \text { Way }$				$\left\|\begin{array}{l} \text { WIS. } 3737 / \mathrm{C} \\ \text { Sh. } 1 \\ \text { Ref. } 9 \end{array}\right\|$	AP. 70371	1
PL0	Not Used						
PLP	$18 \text { Way }$				$\left\lvert\, \begin{aligned} & \text { WIS. } 3738 / \mathrm{C} \\ & \text { Sh. } 1 \end{aligned}\right.$	AP. 104176	1
$\left\lvert\, \begin{array}{r\|} \text { PLQ } \\ \text { to } \end{array}\right.$	Not Used						
PLZ							
$\left\lvert\, \begin{array}{r} \text { PLAB } \\ \text { to } \end{array}\right.$	Not Used						
PLAZ							

COMPONENTS LIST

FOR
PEAK VOLTMETER
(Drg. No. W. 38793 Sh.1 Ed.A)

NOTES

1. When ordering spares quote information from all columns for identities marked $*$ or identity only for all other items.
2. The references in column 1 are shown on circuit and component location diagram Fig. 7.
3. For identical items the total quantity is given at the first entry.

Ref.	Description	Value	Tol $\%$ \pm	Rating	Identity	Service Ref.	Qty.
	CAPACITORS						
Cl	Silvered Ceramic	10 pF	20	4 kV DC	*WIS.4240/C Sh. 1 Ref. 2	AP. 102961	1
C2	Ceramic Tubular	47 pF	5	750V DC	${ }^{*}$ WIS. $3450 / \mathrm{B}$ Sh. 1 Ref. 7	2.132288	1
C3	Ceramic Tubular	2,200 pF	20	350V DC	PC.18203/7	2.132631	1
	RESISTORS FIXED						
R1	Comp. Grade 1	$3.9 \mathrm{k} \Omega$	5	1/4W	PC. 66604/32	Z. 215311	1
R2	Comp.	$62 \mathrm{k} \Omega$	5	1/4W	$\begin{aligned} & \text { WIS. } 3903 \\ & \text { Sh. } 1 \text { Ref. } 5 \end{aligned}$	Z.216097	1
	INDUCTORS						
LI	$250 \mathrm{~mA}$	1.5 mH	5		$\begin{aligned} & \text { WIS. } 3069 \\ & \text { Sh. } 1 \end{aligned}$	AP . 100643	1
	RECTIFIERS						
MRI	Germanium Crystal				$\begin{aligned} & \text { WIS. } 4203 / C \\ & \text { Sh. } 1 \text { Ref. } 2 \end{aligned}$	CV. 448	1
1	MISCELLANEOUS MEC Terminal	ANICAL ITE			$\text { WIS. } 4793 / \mathrm{C}$ Sh. 1 Ref. 7	2.560882	3

COMPONENTS LIST

FOR
PEAK VOLTMETER
(Drg. No.W. 38793 Sh.1 Ed.D)
NOTES

1. When ordering spares quote information from all columns for identities marked $*$ or identity only for all other items.
2. The references in column 1 are shown on circuit and component location diagram Fig.8.
3. For identical items the total quantity is given at the first entry.

Ref.	Description	Value	$\begin{gathered} \mathrm{Tol} \\ \% \\ 0 \\ \pm \end{gathered}$	Rating	Identity	Service Ref.	Qty.
	CAPACITORS						
Cl	Ceramic, Tubular	330 pF	20	350 V DC	PC.18203/2	2. 132627	1
C2	Ceramic, Tubular	2,200 pF	20	350 V DC	PC.18203/7	2. 132631	1
	RESISTORS FIXED						
R1	Comp. Grade 1	$3.9 \mathrm{k} \Omega$	5	1/4\%	PC.66604/32	Z. 215311	1
R2	Comp. Insul.	62 k 2	5	1/4W	$\begin{aligned} & \text { WIS. } 3903 \\ & \text { Sh. } 1 \text { Ref. } 5 \end{aligned}$	2.216097	1
	INDUCTORS						
LI	250 mA	1.5 mH	5		WIS. 3069 Sh. 1	AP. 100643	1
	RECTIFIERS						
MRI	Germanium Crystal				WIS . 4203/C Sh. 1 Ref. 2	CV. 448	1
1	Terminal				WIS . $4793 / \mathrm{C}$ Sh. $1 \operatorname{Ref} .7$	2.560882	3

```
MCL:- T.4260
Issue:- 3
Date:- 15-3-66
```


MASTER COMPONENTS LIST
 FOR
 TRANSMITTER TYPE HS.3IA
 TYPE NO.3975A

Technical Handbook Ref. T. 4260
NOTES:

1. Component schedules in this handbook are presented in the form of a master components list, which includes all components used in this equipment. Each component is identified by means of a spares reference number, column 1 , in addition to the normal part identity in column 6.
2. Components shown on individual circuit diagrams may be identified in the master list by means of the cross-reference tables associated with each circuit diagram. The numbers given are the spares reference numbers.
3. For spares ordering purposes it is only necessary to quote the exact handbook reference at the top of this page together with the spares reference number. Individual part identities can be given as a cross check if desired, but are not necessary.
4. Prices are subject to change without notice.
5. The following abbreviations are used throughout this Master List:

Cap.	Capacitor	Osc.	Oscillator
Carb.	Carbon	Pap.	Paper
Cer.	Ceramic	Picofarad	
C/O	Changeover	Micro-Microfarad	
Coef.	Coefficient	Psn.	Position
Comp.	Composition	Potr.	Potentiometer
DP	Double Pole	Primary (winding)	
DT	Double Throw	PVC	Polyvinyl Chloride
En.	Enamelled		Compound Insulated
Elyc.	Electrolytic	Rect.	Rectifier
Fil.	Filament	Res.	Resistor
FSD	Full Scale Deflection	Sec.	Secondary (winding)
Gd.	Grade	Sil.Mica.	Silver Mica
HS	High Stability	Sil.Mica.Prot.	Silver Mica Protected
Indr.	Inductor	SP	Single Pole
Insd.	Insulated	Temp.	Temperature
Insr.	Insulator	Term.	Terminal
Lg.	Long	Transf.	Transformer
Lin.	Linear	Tub.	Tubular
Metd.	Metallised	Vble.	Variable
Mld.	Moulded	Vit.	Vitreous
Neg.	Negative	W/W	Wirewound

т. 4260

Nos.1- $\stackrel{\text { A }}{506}$
1736
CP

No.	Description	Value	$\begin{gathered} \text { Tol. } \\ \$ \\ \underset{ \pm}{\prime} \end{gathered}$	Rtg.	Identity	Qty.	$\begin{gathered} \text { Price } \\ \text { Each } \\ \text { E. s. d. } \end{gathered}$	Scale
1	Cap. Cer. Insd.	330pF	20	500 V	PC.18208-2	1	1.0	1 S
2	Cap. Cer. Insd.	2200pF	20	500 V	PC.18208-7	2	1.0	1 S
3	Cap. Cer.	10 pF	20	4 kV	WIS.4240-C-1-2	1	11.0	1 S
4	Cap. Cer. Tub.	47 pF	5	750 V	WIS.3450-B-1-7	1	2.6	1 S
5	Cap. Pap.	$10 \mu \mathrm{~F}$	15	250 V	WIS.4321-B-1-11	4	1.3.0	1 S
6	Cap. Pap.	$8 \mu \mathrm{~F}$	20	600V	WIS.4172-B-1-4	3	1.17 .0	1 S
7	Cap. Pap.	$4 \mu \mathrm{~F}$	15	750 V	WIS.2354-B-1-6	1	19. 6	1.5
8	Cap. Pap.	$4 \mu \mathrm{~F}$	10	6 kV	WIS.4451-B-1-4	3	28.9.0	1 S
9	Cap. Mica	$0.01 \mu \mathrm{~F}$	5	350 V	PC.18801-10	2	6.0	15
10	Cap. Pap.	$0.01 \mu \mathrm{~F}$	20	10 kV	PC.19226-2	2	16. 0	1 S
11	Cap. Elyc. Double Section	$\begin{aligned} & 100- \\ & 200 \mu \mathrm{~F} \end{aligned}$	$+50$	350 V	PC. 18408-4	1	12. 0	IS
12	Cap. Mica	6800 pF	5	350 V	PC.18801-8	1	10. 0	IS
13	Cap. Mica	3000 pF	20	800 V	WIS.4522-C-1-5	15	12.0	35
14	Cap. Pap.	$0.01 \mu \mathrm{~F}$	25	350 V	PC. 19202-7	16	2.0	45
15	Cap. Cer.	33 pF	5	750 V	PC.18223-7	1	1.0	IS
16	Cap. Vble.	16-250p			WIS.3699-C-1-11	1	1.10 .6	
17	Cap. Cer.	270pF	2	750V	PC.18223-18	1	1. 0	1 S
18	Cap. Cer.	2.2FF	$\pm \frac{1}{2} p$ F	750 V	PC.18212-3	1	1.0	IS
19	Cap. Vole. 2 Gang	$7-100 \mathrm{pF}$	$+7$	100pF	WIS.5346-C-1-4	1	1. 2.6	
20	Cap. Cer.	270pF	20	350 V	PC.18202-18	1	1.0	15
21	Cap. Mica	500 pF	20	800 V	WIS.4522-C-1-2	1	7. 6	1 S
22	Cap. Hi-Load	150pF	20	7.5 kV	WIS.5080-B-1-3C	1	3.9.0	1 S
24	Cap. Vacuum	25 pF	10	32 kV	WIS.4735-C-1-2	2	15.0.0	1 S
25	Cap. Hi-Load	工250pF	20	7.5 kV	WIS. 5080-B-1-1E	1	3. 0.0	15
26	Cap. Mica Foil	2200 pF	20	750 V	PC.18702-8	1	2. 0	1 S
27	Cap. Mica Disc	$0.01 \mu \mathrm{~F}$	20	2000 V	WIS.4721-C-1-1A	4	4.14.6	15
28	Car. Hi-Load	130 pF	10	7.5 kV	WIS.4418-C-1-4	1	4.6.0	15
29	Cap. Hi-Load	50 pF	20	7.5ky	WIS.7665-B-1-3	2	2.11 .6	IS
30	Cap. Mica Foil	0.01. FF	20	350 V	PC.18701-5	2	2. 6	IS
31	Cap. Hi-Load	200pF	20	7.5 kV	WIS. 5080-B-1-3D	1	3.9.0	IS
32	Cap. Hi-Load	125 pF	20	7.5 kV	WIS.5080-B-1-3D	1	3.9.0	IS
33	Cap. Hi-Load	125 pF	20	7.5 kV	WIS.5080-P-1-3C		3.9.0	IS
34	Cap. Hi-Load	1250 pF	20	7.5 kV	WIS. 5080-B-1-1	2	3.0.0	1S
35	Cap. Vble. Air				W. $48433-1-A$	1	95.0.0	
36	Cap. Preset Air				W. $52596-\mathrm{C-1-A}$ WIS. $5080-\mathrm{B}-1-3 \mathrm{~F}$	2 4	$\begin{array}{lll}3.0 & 0 \\ 3 . & 9.0\end{array}$	
37	Cap. Hi-Load Cap. Mica	125 pF $0.01 \mu \mathrm{~F}$	20	7.5 ky 750 V	WIS.5080-B-1-3F	4 1	3.9 .0 9.0	IS
39	Cap. Mica Disc	$.002 \mu \mathrm{~F}$	20	8 COV	WIS.7478-C-1-3	1	11. 0	IS
40	Cap. Sil. Cer.	80 pF	20	7.5 kV	WIS.4142-c-1-6	1	1.18 .6	IS
41	Cap. Hi-Load	200 pF	20	4.5 kV	WIS.4418-C-]-4	1	1.18. 0	IS
42	Cap. Hi-Load	200 pF	20	7.5 kV	WIS. 5080-P-1-3F	2	3.12 .6	1 S
43	Cap. Sil. Cer.	10pF	20	4 kV	WIS.4240-C-I-2	2	11.0	15
44	Cap. Cer. Insd.	.0014F	20	500 V	PC.18208-5	2	1. 0	IS
45	Cap. Pap. Metd.	$0.01 \mu \mathrm{~F}$	20	5 COV	PC.19203-14	29	1. 6	5 S
46	Cap. Vble. Two 3-gang	$\begin{array}{r} 9 \cdot 5-225 \\ \text { sectio } \end{array}$	$\frac{\mathrm{p}}{\mathrm{p}} \mathrm{n}$	rex	WIS.5537-1-2	2	9.10. 0	

No.	Description	Value	$\begin{gathered} \text { Tol } \\ \$ \\ \$ \\ \hline \end{gathered}$	Rtg.	Identity	Qty.	$\underset{\text { E. Price }}{\substack{\text { Pach } \\ \text { E. s. d. }}}$	Scale
94	Indr. 15.5 Turns				W.40509-C-1-B	1	2.4 .0	1B
95	Indr. 9 Turns	$2.15 \mu \mathrm{H}$	5		W. 34446-C-1-B	1	3.0.0	1B
96	Indr. 5 Turns	O.83 H	5		W. 34445-C-1-B	1	2.10 .0	1 B
97	Indr. 8 Turns				74-W. 32738-C	1	1.8.0	
98	Indr. 6 Turns				75A-W.32738-C	1	19.0	
99	Choke 150 Tums				W. 32060-B-1-A	1	4.7.6	1B
100	Choke 34 Turns				W. 49681-1-A	1	7.10. 0	IB
101	Indr. Vble. Assembly				W. 58081-1-A	1	462.10 .0	
102	Choke 20 Tums				W. 32060-P-1-C	1	3.2.6	IB
103	Anode Coil Assembly				W. 40700-1-B	1	237.16.0	
104A	Coupling Coil			t of	W. 54807-1-A	1	8.15.0	
104B	Coupling Coil			t of	W.54808-1-A	1	8.15. 0	
105	Indr. 43 Turns				W. $33076-B-1-D$	1	3.6.6	1B
106	Indr. $22 \frac{1}{2}$ Turns				104-W.40408-C	2	2.9.6	
107	Indr. 2 Tums				W. 53021-R-1-B	1	4. 4.0	1B
108	Choke 1,600 Turns				WSK.13422-1-H	1	2.15 .0	1B
109	Choke 76 Tums	$350 \mu \mathrm{H}$			W.6171-1-V	1	14.7.6	1B
110	Choke				W. 24575-B-6	1	13.15. 0	1B
111	Choke				W. 57573-1-A	1	52.10.0	
112	Choke				W. 40912-1-A	1	22.6.6	
113	Choke 7 Turns				2-W. 52576-B	,	6.11 .6	
114	Indr. $3 \frac{1}{2}$ Turns				W. 36413-C-1-0	1	4.14 .0	1B
115	Indr. 21 Turns				W. 50593-1-F	1	1.2.0	1 B
116	Indr. 10 Turns				W. 37149-1-C	1	2. 7.6	1B
117	Indr. 4 Turns				W. 50593-1-B	1	1.2.0	1B
118	Indr. $3 \frac{1}{2}$ Turns				147-W.37628-C	10	1.0.0	
119	Indr. 600 \& 400 Turns				W.18936-C-1-A	2	17.6	1 S
120	Indr.				WIS.1161-1-1]	3.0	15
121	Indr. 34 Turns				W.41184-B-36	1	3.0.6	IB
122	Indr. 15 Turns				W. 41184-B-37	1	3.0.6	1 B
123	Indr. 7 Turns				W.41185-B-3	1	3.3.0	1 l
124	Indr. 331 ${ }^{\frac{1}{2} \text { Tums }}$				W.48441-1-A	1	6.11 .6	1B
125	Indr. 16⿺ ${ }^{\frac{1}{2} \text { Turns }}$				W. 4844]-1-B	1	6.11 .6	IB
126	Indr. $7 \frac{1}{2}$ Turns				W. 48441-1-C	1	6.11 .6	1B
127	Indr.				W.33035-B-1-C	1	5.10. 0	1B
128								
130								
131								
132								
13381	Lamp Tub.	0.24W		6V	PC.48601-2	11	3.0	65
135								
136								
1.37	Link Coaxial				PC.60211-1	2		
138	Link				W. $57575-\mathrm{C-1-1}$	1	3.19.0	
139	Lirk				W. 57575-C-1-2	1	3.5.6	
140		-						
D +								4260

No.	Ocscription Vaiue	$\begin{gathered} \text { Tol. } \\ \$ \end{gathered}$	Rtg.	Identity	Qty.	Scale
130	Former Mycalex 10C-W. 39080-B				1	
131	Former Mycalex 14-W. 39080-B				1	
132	Former Mycalex 15-W. 38080-\$				1	
133						
134	Fuse Cartridge 2A WIS.5703-C-1-1				7	12 S
135	Fuse Cartridge 10A WIS.5703-C-1-4				1	6 s
136	Fuse Cartridge 25A WIS.4806-B-1-7				3	12 S
137	Fuse Cartridge 6A WIS.5703-C-1-3				5	12 S
138	Fuse Cartridge 2A WIS.294†-1-9				2	
139	Fuse Cartridge 500mA WIS.2947-1-5				2	
140	Fuse Cartridge 1A WIS.2947+1-7				2	
141	Fuse Cartridge 3A WIS.2947-1-10				1	
142	Fuse Cartridge 5A WIS.2947+1-11				1	
143 744						
144 145	Fuseholder WIS.4809-C-1-9				3	
145	Fuseholder WIS.5612-C-l-1				12	
146	Fuseholder WIS.4154-C-1-3				20	
147						
148	Indr. 250 mA 1.5 mA WIS. $3069+1-1$				4	1 s
149	Indr. 30A 0.0075H W. 24581-B-11				1	
150	Indr. $600 \mathrm{~mA} 3.5 \mathrm{HW} .31577-\mathrm{B}-3$				2	IB
151	Indr. 0.4.A 5.5H W. $31577-\mathrm{B}+1$				2	1B
152	Indr. 1.5A 3.8H W. $24581-\mathrm{B}-10$				1	
153						
154	Indr. 68-W. 32056-C				4	
155.	Indr. $2500-3000 \mu \mathrm{H} \pm 5 \% \mathrm{WCP} .341-1-\mathrm{BC}$				1	
156	Inĉr. W. 40509-C-I-A				1	
157	Indr. W. 40509-C-1-B				1	
158	Indr. $2.15 \mu \mathrm{H} \pm 5 \% \mathrm{~W} .34446-\mathrm{C}+1-\mathrm{B}$				1	
159	Indr. W. 34445-C-1--B				1	
160	Indr. $74-\mathrm{W} .32738-\mathrm{C}$				1	
161	Indr. 75A-W. 32738-C				1	
162	Indr. W. 32060-B-1--A				1	
163	Indr. W. 49681-1-A				1	
164	Indr. W. 39080-1-A				1	
165	Indr. W. 40912-1-A				1	
166	Indr. W. 32060-B-1-C				1	
167	Indr. W. $40700-1-B$				1	
168	Indr. W. 49270-I-A				2	
169	Indr., W. 33076-B-1-D				1	
170	Indr. 104-W. 40408-C				2	
171	Indr. W. 49084-B-1-A				1	
172	Indr. WSK.13422-1-H				1	

No.	Description	Value	$\begin{gathered} \text { Tol. } \\ \vdots \\ \pm \end{gathered}$	Rtg.	Identity	Qty.	$\begin{gathered} \text { Price } \\ \text { Each } \\ \text { E. s. d. } \end{gathered}$	Scale
283								
284								
285286								
287	Res. Vble. W/W	12Ω	10	100W	WIS. 3147-1-4	1	4.0.0	1 S
288	Res. Vble. W/W 3 Gang	809	10	50W	WIS.3337-1-34	1	10.11. 6	1B
289	Res. Vble. W/W	258	10	80W	WIS.5865-B-2-46	1	3. 4.6	1 S
290	Res. Vble. W/W	1 k \%	10	$2 \frac{1}{2} W$	PC.67403-29	5	12. 0	2 S
291	Res. Vble. W/W	38	10	60W	PC.67407-39	1	2. 8.0	IS
292	Res. Vble. W/W	5008	20	1/2W	PC.67401-18	1	9. 6	IS
293	Res. Vble. Comp. Lin.	$5 \mathrm{k} \Omega$	20	3/4W	PC.67203-9	1	11. 0	1 S
294	Res. Vble. W/W	25 k 仡	10	3W	WIS.4175-5-1-63	8	11.0	2 S
295	Res. Vble. W/W	25k8	10	3 W	WIS.4175-B-1-64	1	11. 0	1 S
297								
298	Socket 24 way				W.41061-1-81	1	2.15 .0	
299	Socket Coaxial				WIS.5355-B-1-9,	7	6.6	
300	Socket 18 way				W.41061-1-6	1	2.8.0	
301	Socket 18 way				WIS. 3732-C-1-1	I	12.6	
302	Socket 18 way				W.41061-1-7	1	2. 8. 0	
303	Socket 18 way				W.41061-1-9	1	2.8.0	
304	Socket 12 way				W.41061-1-102	1	1.18 .0	
305	Socket 18 way				W.41061-1-105	1	2. $4 \cdot 0$	
306	Socket 18 way				W.41061-1-26	1	2. 8.0	
307	Socket 18 way				W.41061-1-106	1	2. 8.0	1B
308	Scoket Coaxial				WIS.3956-C-1-3	8	1. 0	
309	Socket 6 way				WIS.3731-C-1-7	1	7. 6	
310								
311								
312								
313	Switch 5 Pole				W. 50027-1-A			
314	Switch Micro SP C/0				W.40269-C-1-A	1	2.17.6	
315	Switch 5 Pole				W.50027-1-B	1	22.10. 0	
316	Switch Micro SP C/O				W.40269-C-I-B	,	2.17 .6	
317	Switch Push Button DP				W. 13433-B-1-A	3	2.6.6	
318	Switch Push Button 2 Gang DP				WQ.7640-I-C	1	33.15. 0	
319	Switch 2 Wafer 4 Pole c/0				WIS. 3456-E-148	,	5.17.0	
320	Switch 1 Wafer 1 Pole 3 Psn				WIS.3456-B-111	1	4. 6. 6	
321	Switch SP C/0				WIS.5197-B-11	1	18. 0	
322	Switch Knife DP C/0			30A	WIS.4095-B-1-1C	1	3.6.0	
323	Switch SP I Wafer 6 Psn.				WIS. 3456 -B-155	1	4.6.6	
324	Switch Micro SP C/0				WIS.5586-C-1-1	1	12. 0	
325	Switch 3 Wafer 4 Pole C/O				WIS. 3456-B-133	1	6.7.6	
326	Switch Assembly SP 5 Psn.				W. 28959-1-A	1	175. 0.0	
327	Switch SP 5 way				WIS.5670-C-97	1	1.1.0	
328	Switch Assembly SP 5 Psn.				W. 40066-1-A	1	131. 5. 0	
329	Switch 4 Pole 5 Psn.				6-W.4C408-C	1	7.10.0	
330	Switch Assembly				W. $39161-1-A$		90.0.0	

$+$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. \& Description \& Value \& \[
\begin{gathered}
\mathrm{Tol} . \\
S_{ \pm} \\
\hline
\end{gathered}
\] \& Rtg. \& Identity \& Qty. \& Scale \\
\hline 378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424 \& \begin{tabular}{l}
Transf. \(22 \& 2\) Turns \\
Transf. \(13 \& 2\) Turns \\
Transf. \(33 \frac{1}{2} \& 9\) Turns \\
Transf. \(16 \frac{1}{2} \& 4\) Turns \\
Transf. \(7 \frac{1}{2}\) \& 2 Turns \\
Transf. Input \\
Transf. Output \\
Valve GXU-2 \\
Valve U54 \\
Valve STV280/80 \\
Valve OA3 or VR75/40 \\
Valve \\
Valve QY4250 \\
Valve BR. 191 \\
Valve CVI38 \\
Valve \\
Valve \\
Valve \(\mathbb{N} 77\) \\
Alarm Indicator \\
Terminating Board \\
Suction Unit \\
Ball Contact \\
Spring Contact \\
Ball Contact \\
Spring Contact \\
Fan Axial* \\
Air Filter \\
Anode Clip \\
Ball Contact Assembly \\
Ball Contact Assembly \\
Bearing Plate Mycalex \\
Base Mycalex \\
Coil Support Mycalex
\end{tabular} \& \& To C \& \& \begin{tabular}{l}
W. \(41184-B-80\) \\
W. \(41185-B-8\) \\
W. \(48442-1-K\) \\
W. \(48442-1-D\) \\
W. 48442-2-L \\
WIS. \(5680-\mathrm{B}-88\) \\
W. 33035-B-I-G \\
CV2518 \\
CV378 \\
CVI069 \\
CV3798 \\
CV428 \\
CV138 \\
CV4014 \\
CV391 \\
's Requirements. \\
W. \(41618-\mathrm{C}-1-\mathrm{A}\) \\
WIS. 573I-B-2-3 \\
W. 40987-C-1-A \\
47-W. 39081-C \\
W. \(41074-\mathrm{C}-\mathrm{I}-\mathrm{A}\) \\
41-W. 32056-C \\
10K/1070564 \\
W. \(65675-2-B\) \\
W. 30330-C-1-2 \\
W. 18195-C-1-A \\
W. 38961-C-1-A \\
65-W. 37919 \\
49-W. 32056-C \\
3-W. 40700-B \\
4-W. 40700 \\
4A-W. 40700 \\
4B-W. 40700 \\
4C-W. 40700 \\
8-W. \(40700-\) B
\end{tabular} \& 1
1
1
1
1
1
1
1
1

6
2
1
1
2
2
1
7
2
2
2
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 \&

\hline
\end{tabular}

No.	Description Value	$\underset{ \pm}{\text { Tol. }}$	Rtg.	Identity	Qty.	$\begin{gathered} \text { Price } \\ \text { Each } \\ \text { E. s. d. } \end{gathered}$	Scale
472	Spring Assembly			W.58293-C-1-B	1	6.11 .0	
473	Spring Assembly			W. 58293-C-1-A	1	6.11. 0	
474	Spring Assembly			W. 58294-C-1-A	2	4.12.0	
475	Spring Contact			30-W.32738-C	4	7. 6	IS
476	Spring Contact			72-W.37919-C	6	6.6	2 S
477	Spring Contact			101-W. 37907 -C	4	1. 0.0	IS
478	Spring Contact			101A-W. 37907-C	3	15. 0	IS
479	Spring Contact			54-W. 36728-C	3	6.0	IS
480	Spring Contact Assembly			W. 49274 -C-1-A	2	2. 2.6	1 S
481	Spring Contact Assembly			W.40784-C-1-A	3	1. 4.0	1S
482	Spring Contact Assembly			W. 40785 -C-1-A	4	13.0	1 S
483	Spring Contact Assembly			W.49276-C-1-A	1	1.10.0	1S
484	Spring Contact Assembly			W. 50138-B-1-A	61	2.10. 0	IS
485	Spring Contact Assembly			W.40712-C-1-A	2	2.0.0	15
486	Spring Contact Assembly			W.40713-C-1-A	2	2.4.0	IS
487	Spring Flat			127-W. 37919-C	2	5. 0	
488	Switch Blade Assembly			W. 39454-E-1-A	1	4. 1. 6	
489	Spring Contact Plate Mycalex			28-W. 32738-C	1	10.0	
490	Support Plate Mycalex			2-W. 38959-B	1	4.14.0	
491	Stand-Off Insr.			WIS.5416-C-1-3	2	5. 6	
492	Stand-Off Insr.			WIS.5416-C-1-4	10	4.6	
493	Term.			WIS.47,3-C-1-7	6	1. 6	
494	Term. Block Mycalex			16-W. 32738-C	6	8. 0	
495	Top Panel Mycalex			108A-W.40408-B	1	9.0.0	
496	Valveholder Cer. 5 Pin			WIS.4844-C-1-2	2	17.0	
497	Valveholder International Octal			PC. 81814-1	2	1. 0	
498	Valveholder B5			PC. $81805-1$	1	1. 6	
499	Valve Retainer			WIS.3449-C-1-1	1	3. 6	
500	Valve Retainer			WIS.3701-C-1-22	2	2.0	
501	Valve Retainer			WIS.6271-C-1-1	1	5. 0	
502	Wheel			22-W.39080-C	1	5.7.6	
503	Socket 10 way			WIS.5609-1-1E	2	13.6	
504	Valveholder B8G			PC.81813-1	2	3.6	
505	Valveholder B7G			PC.81811-1	11	1.0	
506	Wheel (to be supplied with No 484)			134A-W $37919-C$	1	2. 4.0	

```
MCL: - T.5553
Issue:- 5
```


MASTER COMPONENTS LIST

FOR
3.5kW HF ISB/TELEGRAPH/TELEPHONE TRANSMITTER TYPE HS. $31 / 1$

$$
\text { (W. } 37918 \mathrm{Ed.C} \text {) }
$$

NOTES:

1. Component schedules are presented in the form of a master components list, which includes all components used in this equipment. Each component. is identified by means of a spares reference number, column 1 , in addition to the normal part identity.
2. Components shown on individual circuit diagrams may be identified in the master list by means of the cross-reference tables associated with each circuit diagram. The numbers given are the spares reference numbers.
3. For spares ordering purposes it is only necessary to quote the exact reference at the top of this page together with the spares reference number. Individual part identities can be given as a cross check if desired, but are not necessary.
4. Prices are subject to change without notice.
5. All items reference PC are standardised items and comply with Government specifications where these exist.
6. All items reference WIS are manufactured by component or other supplieri to a Marconi specification which, where appropriate, complies with a Government specification.
7. All items reference W are manufactured by MWT and while materials and practices are in accordance with appropriate Government specifications, these items cannot be regarded as 'Standard Items'.
8. The scale column shows the suggested spares per equipment edition or type. Where applicable, S \& B relate to Station and Base spares respectively.
P.T.O.
9. The following abbreviations are used throughout this Master List:

Cap.	Capacitor	Osc.	Oscillator
Carb.	Carbon	Pap.	Paper
Cer.	Ceramic	pF	Picofarad
C/0	Changeover	Micro-Microfarad	
Coef.	Coefficient	Psn.	Position
Comp.	Composition	Potr.	Potentiometer
DP	Double Pole	Prim.	Primary (winding)
DT	Double Throw	PVC	Polyvinyl Chloride
En.	Enamelled		Compound Insulated
Elyc.	Electrolytic	Rect.	Rectifier
Fil.	Filament	Res.	Resistor
FSD	Full Scale Deflection Sec.	Secondary (winding)	
Gd.	Grade	Sil.Mica.	Silver Mica
HS	High Stability	Sil.Mica.Prot.	Silver Mica Protected
Indr.	Inductor	Single Pole	
Insd.	Insulated	Temp.	Temperature
Insr.	Insulator	Transf.	Terminal
Lg.	Long	Tub.	Transformer
Lin.	Linear	Vble.	Variable
Metd.	Metallised	Vit.	Vitreous
Mld.	Moulded	W/W	Wirewound
Neg.	Negative		

No.	Description and dentity	Qty.	```Price Each FO.B. U.K. & Sterling```	Scale
1	Base Mycalex 49-W.32056-C	1	1.45	
2	Cap. Cer. $10 \mathrm{pF} \pm 20{ }^{\circ} \mathrm{LkV}$ PC. $18220-2$	1	0.60	IS
4	Cap. Cer. $47 \mathrm{pF} \pm 5 \%$ 750V PC.18120-23	1	0.15	1 S
5	Cap. Cer. 2200pF $\pm 20 \%$ 500V PC. $18208-7$	2	0.05	IS
6	Cap. Cer. $330 \mathrm{pF} \pm 20 \% 500 \mathrm{~V} \mathrm{PC.18208-2}$	1	0.05	1 S
7	Cap. Pap. 10uF $\pm 10 \%$ 250V WIS.4321-B-1-1I	4	1.40	IS
8	Cap. Pap. $80 \mathrm{~F} \pm 20 \% 600 \mathrm{~V}$ WIS. $4172-\mathrm{B}-1-4$	3	1.85	IS
9	Cap. Pap. 4 UF $\pm 15 \% 750 \mathrm{~V}$ PC. $19072-6$	1	1.70	IS
10	Cap. Pap. $4 \mathrm{WF} \pm 10 \% 6 \mathrm{kV}$ PC. $19185-4$	3	24.50	
11	Cap. Mica 0.01uF $\pm 5 \%$ 350V PC. $18801-10$	3	0.35	IS
12	Cap. Pap. 0.25uF ± 25 ci 350V PC. 19303-3	1	0.20	IS
13	Cap. Mica 10000pF $\pm 5 \%$ 350V PC. $18801-10$	2	0.35	1S
14	Cap. Pap. O.0luF $\pm 20 \% 10 \mathrm{kV} \mathrm{PC.19226-2}$	2	0.85	IS
15	Cap. Elyc. 100-200uF +50\% -20\% 350V PC.18408-4	1	0.80	1S
16	Cap. Mica 6800pF $\pm 5 \% 350 \mathrm{~V}$ PC. $18801-8$	1	0.35	IS
17	Cap. Mica $3000 \mathrm{pF} \pm 20 \% 8000 \mathrm{VPC.18738-1}$	16	0.60	3 S
18	Cap. Pap. O.01uF $\pm 25 \%$ 350V PC.19202-7	16	0.10	3 S
19	Cap. Cer. $33 \mathrm{pF} \pm 5 \% 750 \mathrm{~V}$ PC. $18223-7$	1	0.05	1 S
20	Cap. Vble. Air 16-250pF PC.20144-11	1	4.70	
21	Cap. Cer. $200 \mathrm{pF} \pm 5 \%$ WIS. $7326-\mathrm{B}-1-8$	1	0.15	1 S
22	Cap. Cer. 2.2pF $\pm \frac{1}{2} \mathrm{pF} 750 \mathrm{~V}$ PC.18212-3	1	0.05	IS
23	Cap. Vble. Air 7-100pF per Section PC. 20008-3	1	1.30	
24	Cap. Cer. $270 \mathrm{pF} \pm 200$. 750 V PC. $18223-18$	0		
25	Cap. Mica 500pF $\pm 20 \%$ 800V PC.18738-5	1	0.45	IS
26	Cap. Air Dielectric ST. 5 Neutralising Pick-Up W.49362-C-1-A	1	10.00	
27	Cap. Hi-Load 200pF $\pm 20 \% 7.5 \mathrm{kV} \mathrm{PC.18333-7}$	2	3.80	
28	Cap. Hi-Load 125pF $\pm 20 \%$ 7.5kV PC.18333-8	2	3.95	
29	Cap. Hi-Load 200pF $\pm 20 \% 7.5 \mathrm{kV}$ PC. $18333-9$	1	3.80	
30	Cap. Vble. Vacuum 8-50pF l5kV PC. 20408-1	1	97.00	
31	Cap. Hi-Load 1250pF $\pm 20 \%$ 7.5kV PC. $18333-6$	1	3.80	
32	Cap. Pap. 4 uF $\pm 20, \% 600 \mathrm{~V}$ PC. $19212-3$	1	0.95	1 S
33	Cap. Mica O.01uF ± 20, 2000V D.C. WIS.472l-C-I-l	1	6.95	
34	Cap. Mica $10000 \mathrm{pF} \pm 20 \%$ 250V PC.18701-5	2	0.15	IS
35	Cap. Mica 0.01uF $\pm 20 \%$ 2000V WIS.4721-C-1-1A	4	5.90	
36	Cap. Hi-Load 130pF ± 10 \% 7.5 kV PC. $18304-7$	1	2.85	IS
37	Cap. Hi-Load $50 \mathrm{pF} \pm 20,57.5 \mathrm{kV} \mathrm{PC.18216-5}$		2.60	IS
38	Cap. Hi-Load 125pF $\pm 20,0$, 7.5 kV PC. $18333-10$	1	3.80	
39	Cap. Hi-Load $1250 \mathrm{pF} \pm 20,07.5 \mathrm{kV}$ PC. $18335-7$	2	3.65	
40	Cap. Air Dielectric W.48433-2-B	I	160.00	
41	Cap. Air Dielectric W.49688-1-A	2	26.00	
42	Cap. Cer. $125 \mathrm{pF} \pm 20,670 \mathrm{kVA}$ PC. $18219-1$	4	3.80	
43	Cap. Mica $10000 \mathrm{pF} \pm 20,3$ 350V PC.18701-5	1	0.20	IS

No.	Description and Identity	Qty.	Price Each F.OB. U.K. £ Sterling	Scale
44	Cap. Mica 0.002uF $\pm 20 \%$ 800V PC. $18738-3$	1	0.50	1S
45	Cap. Cer. $10 \mathrm{pF} \pm 20 \% 4 \mathrm{kV}$ WIS.7711-C-1-4	2	0.55	IS
46	Cap. Cer. 0.001uF $\pm 20 \%$ 500V PC.18208-5	2	0.05	1S
47	Cap. Pap. 0.01uF $\pm 20 \%$ 500V PC.19203-14	29	0.05	5 S
48	Cap. Vble. 3-Gang 9.5-225pF per Section WIS.5537-1-2	2	x 11.00	
49	Cap. Vble. $3-30 \mathrm{pF} 75 \mathrm{~V}$ W. $53587-\mathrm{C-1-C}$	6	0.45	
50	Cap. Cer. $10 \mathrm{pF} \pm \frac{1}{2} \mathrm{pF} 750 \mathrm{~V}$ PC.18223-1	1	0.05	1S
51	Cap. Cer. $100 \mathrm{pF} \pm 2 \%$ 750V PC. $18223-13$	3	0.05	1S
52	Cap. Cer. $47 \mathrm{pF} \pm 2 \%$ 750V PC.18223-9	5	0.05	2 S
53	Cap. Mica 0.0luF $\pm 10 \%$ 750V WIS. $7494-\mathrm{B}-1-1$	23	0.45	5 S
54	Cap. Cer. 6.8pF $\pm \frac{1}{2} \mathrm{pF} 750 \mathrm{~V}$ PC.18212-7	1	0.05	1s
55	Cap. Vble. 4.8-100pF PC. 20002-7	19	0.40	
56	Cap. Mica $220 \mathrm{pF} \pm 5 \% 350 \mathrm{~V}$ PC. $18802-17$	1	0.10	1 S
57	Cap. Mica 390pF $\pm 5 \% 350 \mathrm{~V}$ PC. $18802-20$	1	0.15	1 S
58	Cap. Pap. 0.0luF $\pm 20 \%$ 400V PC.19308-7	4	0.15	1S
59	Cap. Vble. 3.3-34.5pF WIS.3534-C-1-2	1	2.20	
60	Cap. Vble. 4.8-16pF PC. 20002-4	1	0.35	
61	Cap. Mica 150pF $\pm 10 \%$ 750V PC.18802-15	1	0.10	IS
62	Cap. Mica 68pF $\pm 10 \% 750 \mathrm{~V}$ PC.18802-11	1	0.10	1 S
63	Cap. Pap. 0.05uF $\pm 20 \%$ 500V PC.19203-18	1	0.10	1S
64	Cap. Pap. 0.25uF $\pm 25 \%$ 150V PC.19301-2	2	0.15	1S
65	Cap. Mica 1000pF $\pm 20 \%$ 350V PC.18701-2	4	0.05	1S
66	Cap. Mica 220pF $\pm 20 \% 750 \mathrm{~V}$ PC. $18702-2$	1	0.05	1 S
67	Cap. Pap. O.1uF $\pm 20 \%$ 350V PC.19202-15	1	0.05	1 S
68	Cap. Mica $100 \mathrm{pF} \pm 10 \% 750 \mathrm{~V}$ PC.18802-13	1	0.10	IS
69	Cap. Mica 470pF $\pm 5 \%$ 750V PC. $18802-21$	1	0.15	IS
70	Cap. Mica $10 \mathrm{pF} \pm 10 \% 750 \mathrm{~V}$ PC.18610-1	1	0.10	IS
71	Cap. 0.01uF $\pm 10 \%$ WIS. $7494-B-1-15$	1	0.45	1 S
72	Cap. Cer. 0.0luF -20\% + 80\% 500V PC.18207-7	4	0.05	1 S
73	Cap. Pap. 0.02uF $\pm 20 \%$ 500V D.C. PC.19203-16	2	0.05	1S
74 75	Cap. Mica $330 \mathrm{pF} \pm 20 \% 750 \mathrm{~V}$ PC. $18702-3$	1	0.05	1 S
76				
77				
78				
79 80				
81	Cheek End Mycalex 1-W.48433-C	1	4.30	
82	Cheek End Mycalex 32-W.48433-C	1	$4 \cdot 30$	
83				
$\begin{aligned} & 84 \\ & 85 \end{aligned}$	CIip Anode W. 30330-C-1-2D	6	1.00	2S
86	Contact 54-W.37628-C	3	0.40	IS
	+			
D		x per set	$\begin{aligned} & \mathrm{T} .5553 \\ & \mathrm{CP} \end{aligned}$	

NO	Description	Value	Tol.	Rtg.	Identity	Qty.	Scale
141							
142	Meter 0-300V AC Voltmeter				WIS.4235-9-158	1	
143	Meter 0-25A Anmeter				WIS.4235-9-159	1	
144	Meter $0-6 \mathrm{kV}$ Voltmeter				WIS.4235-9-160	1	
145	Meter 0-15V		± 1		WIS. 3954-B-13-112	1	
146	Meter $0-250 \mathrm{~mA}$		± 1		WIS. 3686-6-85	1	
147	Meter 0-5mA		± 1		WIS. 3954-B-13-113	1	
148	Meter 0-250mA		± 1		WIS. 3954-B-13-114	1	
149	Meter 0-400mA		± 1		WIS. 3686-12-189	1	
150	Meter 0-2A		± 1		WIS.4235-14-218	I	
151	Meter $0-350 \mathrm{~mA}$		± 1		WIS.4235-16-247	1	
152	Meter 0-15V		± 1		WIS.4235-14-214	1	
153	Meter 0-600V		± 1		WIS.4235-7-129	1	
154	Meter 0-1000V		± 1		WIS.4235-10-174	1	
155	Meter 0-10V				WIS. 3686-4-61	1	
156	Meter Peak Voltmeter				W. 38793-1-D	1	
157	Meter Peak Voltmeter				W. 38793-1-A	2	+
158							
159 160							
161	Rect. Selenium				WIS.4669-B-I-I3	2	
162	Rect. Selenium				WIS.3222-C-4-22	1	1B
163	Germanium Crystal Rect.				WIS.4203-C-1-2	2	1 L
164	Rect. Selenium				WIS.4669-B-2-15		1B
165							
166							
167	Plug 24 way				WIS.3738-C-1-2		
168	Plug Coaxial				W. 36715-B-1-2	1	
169	Plug Coaxial				W. 36715-B-1-3	1	
170	Plug Coaxial				W. $36715-\mathrm{B}-1-4$	2	
171	Plug Coaxial				W. 36715-B-1-5	1	
172	Plug 18 way				W. 41113-1-1	1	
173	Plug 18 way				WIS. 3738-C-1-1	6	
174	Plug Coaxial				WIS.5355-B-1-8	1	
175	Plug 6 way				W. 41113-1-2	1	
176	Plug Coaxial				W. 36715-B-1-6	1	
177	Plug Coaxial				W. 51158-C-1-1	1	
178	Plug Coaxial				W. 51158-C-1-2	1	
179	Plug Coaxial				W. 51158-C-1-3	1	
180	Plug Coaxial				W. 51158-C-1-4	1	
181	Plug Coaxial				W. 51158-C-1-5	1	
182	Plug Coaxial				W. 51158-C-1-6 W. $51158-\mathrm{C}-1-7$	1	
183 184	Plug Coaxial				W. 51158-C-1-7 WTS. $3106-\mathrm{C-1-3}$	1	
184 185	Plug Coaxial				WIS. $3106-\mathrm{C-1-3}$ WIS. $3106-\mathrm{C}-1-1$	3 5	
186	Plug 12 way				WIS.3737-C-I-9	1	
187							

но.	Description	Value	$\begin{gathered} \text { Tol. } \\ \$ \\ \pm \end{gathered}$	Rtg.	Identity	Qty.		Scale
188								
189	Contactor*				WIS.5609-I-1B*	1		
190	Contactor 5 Pole				WIS.5609-1-1C	3		
191	Contactor 9 Pole				WIS.5609-1-1D	1		
192	Relay 3M 2B				WQ. $8740-1-M$	1		IB
193	Relay 2M				WQ.8740-1-L	1		IB
194	Relay Time Switch				W. 88142-B-1-A	1		1B
195	Relay Valve Protecting				WIS.4373-B-2-7	2		IB
196								
197								
198	Res. W/W	1068	10	220W	WIS.3852-B-1-24	1		IS
199	Res. W/W	1078	10	45W	WIS.3852-B-1-25	1		IS
200	Res. W/W	$1.8 \mathrm{k} \Omega$	2	14W	WIS.7415-B-1-37	1		15
201	Res. W/W	68Ω	10	2Amp	WIS. 3320-2-18	1		IS
202	Res. W/W	338	5	3W	PC. 67008-4	2		IS
203	Res. W/W	538	10	45W	WIS.4006-B-1-20	3		1 S
204	Res. W/W	2160Ω	10	90W	WIS.6265-C-I-1	1		IS
205	Res. W/W	4198	10	90W	WIS.3615-C-1-6	1		1 S
206	Res. W/W	$16.5 \mathrm{k} \Omega$	5	35W	P.18282-KP-6	1		15
207	Res. Carb.	$220 \mathrm{k} \Omega$	20	1W	WIS.3903-1-3	3		
208	Res. W/W	43.7508	5	150W	P.18282-KK-6	2		IS
209	Res. W/W	$15 \mathrm{k} \Omega$	5	100W	PC. 67006-20	1		15
210	Res. W/W	$1.8 \mathrm{k} \Omega$	5	35W	PC. 67919/1	1		15
211	Res. H.T. Voltmeter				WIS.5675-B-I-I	1		
212	Res. W/W	$1.2 \mathrm{k} \Omega$	5	3W	WIS.7417-B-1-7	11		35
213	Res. Comp. Non-Insd.	2208	10	2W	PC. 66616-17	3		
214	Res. Insd.	338	5	1/4W	PC. 66602-2	2		15
215	Res. W/W	$10 \mathrm{k} \Omega$	5	$4 \frac{1}{2} \mathrm{~W}$	PC. 67009-19	1		1 S
216	Res. W/W	$15 \mathrm{k} \Omega$	5	6 W	PC.67010-20	1		1s
217	Res. Insd.	1008	10	1/4W	PC. 66610-13	4		
218	Res. W/W Shunt	250 ma	± 1	100 mV	WIS. 3914-C-2-19	1		15
219	Res. Insd.	$10 \mathrm{k} \Omega$	10	IW	PC.66612-31	3		
220	Res. Insd.	$15 \mathrm{k} \Omega$	10	IW	PC. 66612-33	3		
221	Res. W/W Shunt	5 mA	1	100 mV	WIS. 3914-C-3-31	1		15
222	Res. Comp. Insd.	338	10	1/2W	PC.66611-7	2		
223	Res. Comp. Non-Insa.	1008	10	1W	PC. 66616-13	2		
224	Res. Carb.	208	20	50W	WIS. 5161-C-1-22	1		
225	Res. W/W Shunt	400 mA	1	100 mV	WIS. $3914-\mathrm{C}-3-45$	1		
226	Res. W/W Shunt	2A	1	100 mV	WIS. 3914-C-3-46	1		15
227	Res. W/W Shunt	350 mA	1	100 mV	WIS. 3914-C-4-51	1		15
228	Res. W/W				WIS. 4235-7-129	1		
229	Res. W/W	2.28	10	3W	PC.67008-25	2		
230	Res. W/W	$1 \mathrm{k} \Omega$	5	$4 \frac{1}{2} \mathrm{~W}$	PC.67009-13	2		15
231	Res. Carb.	20Ω	20	35W	WIS.5161-C-1-21	2		
232	Res. Comp. Insd.	1008	10	1/2W	PC.66611-13	3		
233	Res. Comp. Non-Insd.	$1.2 \mathrm{k} \Omega$	10	2W	PC. 66616-26	2		
234	Res. Comp. Non-Insd.	188	10	2W	PC. 66616-4	2		
235	Res. Comp. Non-Insd.	$1 \mathrm{k} \Omega$	10	2W	PC. 66616-25	2		

$\mathrm{F} \quad+$ *Wotsac replacement for item 189: CC 270003 (Type UCA7) (Mod. A. 4745)

AL 9, Sep 75

No.	Description and Identity	Qty.	Price Each F.O.B. U.K. £ Sterling	Scale
173	Indr. 350uH W. 6171-1-V	1	14.00	
174	Indr. W.24575-B-6	1	13.50	
175	Indr. W. $91388-\mathrm{B-1-A}$	2	20.50	
176	Indr. W. 92003-C-1-A	2	2.40	
177	Indr. (Former) W. 26958-B-154	1	2.25	
178	Indr. (Winding) W. 36413-C-1-0	1	5.50	
179	Indr. W. 50593-1-F	2	2.20	
180	Indr. W. 37149-1-C	2	2.40	
181	Indr. W. 50593-1-B	2	1.20	
182	Indr. 147-W.37628-C	10	0.40	
183	Indr. W.18936-C-1-A	1	1.35	IS
184	Indr. WIS.1161-1-1	1	0.15	1 S
185	Indr. W. 37206-B-1-A	1	2.05	
186	Indr. W. 37207-B-1-A	1	2.05	
187	Indr. W. $37208-\mathrm{B}-1-\mathrm{A}$	1	1.65	
188	Indr. W. 33035-B-1-D	1	1.35	
189	Indr. 'Ledex' Selector WIS.7166-B-3	1	7.85	
190	Indr. W.91403-C-1-A	5	1.25	
191				
192				
193				
194				
195				
196	Indicator (Alarm) To Customer's requirements.			
197				
198	Insr. Cer. PC.43003-1	2	6.40	1 S
199	Insr. Conical PC.43312-1	4	0.15	15
200	Insr. Stand-Off WIS.5416-C-1-3	2	0.30	1S
201	Insr. Stand-Off WIS.5416-C-1-4	21	0.25	3 S
202	Insr. (Pillar) WSK.10464-1-9	4	4.25	1 B
203	Insr. (Piece Mycalex) 3-W.40203-C	1	4.30	1B
204	Insr. (Rod) WSK.10464-1-10	4	4.35	1 B
205	Insr. Conical PC.43311-1	1	0.05	IS
206				
207	Insr. Stand-Off WIS.5416-C-1-1	3	0.35	1 S
208	Insr. WIS.5593-C-1-5	11	0.20	3 S
209				
210	Jack Lamp WIS.1877-1-1	11	0.25	
211				
212	Lamp 0.24W 6V PC. 48601 -2	11	0.05	12S
213				
214 215	Link R.F. Coaxial PC.602ll-1	2	0.65	1s
	+			
T. 5553 (G				

No.	Description and Identity	Qty.	$\begin{array}{\|c\|} \hline \text { Price Each } \\ \text { F@.B. U.K. } \\ \mathcal{L} \\ \text { Sterling } \end{array}$	Scale
216	Meter Volt W. 38793-1-D	1	80.50	
217	Meter Volt 0-300V WIS.4235-9-158	,	7.35	
218	Ammeter 0-25A WIS.4235-9-159	1	4.20	
219	Meter Volt 0-6kV WIS.4235-9-160	1	5.55	
220	Meter 0-15V WIS. 3954-E-13-112	1	6.45	
221	Meter 0-250mA $\pm 1 \%$ WIS. $3686-6-85$	1	5.85	
222	Meter 0-5mA $\pm 1 \%$ WIS. $3954-13-113$	1	5.50	
223	Meter 0-250mA $\pm 1 \%$ WIS. $3954-13-114$	1	6.20	
224	Meter 0-400mA $\pm 1 \%$ WIS. 3686-12-189	1	3.30	
225	Meter 0-2A $\pm 1 \%$ WIS.4235-14-218	1	9.90	
226	Meter 0-350mA $\pm 1 \%$ WIS.4235-16-247	1	10.50	
227	Meter $\pm 1 \%$ WIS. $4235-14-214$	1	7.90	
228	Meter ± 10 WIS.4235-7-129	1	4.05	
229	Meter $\pm 1 \%$ WIS.4235-10-174	1	10.00	
230	Meter M.C. F.S.D. lmA D.C. O.l0V 50 ohms WIS.3686-4-61	1	6.10	
231	Meter Volt W. 38793-1-A	2	28.00	
232				
233	Mounting Res. WIS.5742-C-1-1	4	0.20	
234	Mounting Res. WSK.3172-1-K	6	14.50	
235	Mounting Res. W.40253-B-1-A	1	7.50	
236	Mounting Board Mycalex 1-W.49688-C	1	9.95	
237	Mounting Board Mycalex 177-w. 37907-C	2	0.95	
238	Mounting Plate Coil 107-W.40408-C	2	4.30	
239	Mounting Contact 3-W.40408-C	4	2.00	
240	Mounting Contact 51-W.40408-C	1	1.70	
241	Mounting Rotor 5-W.40408-C	2	1.80	
242	Mcunting Board 49B-W.32056-C	1	1.4 .5	
243	Mounting Plate 1-W.40066-B	1	4.30	
244	Mounting Coupling Coil Plate 34A-W. 37919-B	1	7.65	
245	Mounting Board I-W.39080-B	1	4.30	
246	Mounting Plate I-W. 38959-B	1	9.20	
247	Mounting Board IA-W.39080-B	1	4.30	
248	Mounting Contact 3A-W.40408-C-1	1	$4 \cdot 30$	
249 250				
251	Panel Mycalex 108B-W.40408-B	1	16.50	
252	Penel Contact 15-W.39161-C	1	1.60	
253				
254	Plate 65-W. 37919	1	1.95	
255	Plate 109-W. 37919	1	15.95	
256	Plate 2-W. 38959-B	1	4.30	
257	Plate 5-W. 37919	1	13.50	
258	Plate 54-W. 32738-C	1	4.30	

No.	Description and Identity	Qty.	Price Each F.O.B. U.K. £ Sterling	Scale
259	Plate 28-W. 32738-C	1	0.45	
260				
261				
262	Plug 24-way WIS.3738-C-1-2	1	0.80	
263	Plug Coaxial PC.60207-1	15	0.20	
264	Plug 18-way W.41113-1-1	1	2.90	
265	Plug 18-way WIS.3738-C-1-1	6	0.55	
266	Plug Coaxial (Blue) W. 36715-B-1-2	1	0.70	
267	Plug Coaxial WIS.5355-B-1-8	1	0.45	
268	Plug 6-way (Red) W.41113-1-2	1	7.35	
269	Plug Coaxial (Yellow) W. 36715-B-6	1	5.65	
270	Plug Coaxial (Black) W.5ll58-C-1-1	2	1.90	
271	Plug Coaxial (Green) W. 5ll58-C-1-2	1	2.05	
272	Plug Coaxial (Blue) W. 5ll58-C-l-3	1	2.05	
273	Plug Coaxial (Red) W. 51158-C-1-4	1	2.15	
274	Plug Coaxial (Yellow) W. 51158-C-1-5	1	2.00	
275	Plug Coaxial (Grey) W. 5ll $58-\mathrm{C}-1-6$	1	2.00	
276	Plug Coaxial (Brown) W. 51158-C-1-7	1	2.15	
277				
278				
279	Rect. Germanium Crystal CV448	2	0.20	3 S
280	Rect. Selenium 3 Phase Full Wave WIS.4669-2-15	1	10.50	
281	Rect. Selenium 3 Phase Full Wave WIS.4669-1-13	2	14.50	
282	Rect. Selenium WIS.3222-C-4-22	1	6.50	
283				
284	Relay 3M \& 2B WQ.8740-1-M	1	13.50	
285	Relay 2M WQ.8740-1-L	1	13.50	
286	Relay WIS. 5551-1-4	1	10.00	
287	Relay PC.64903-16	1	2.05	1 S
288	Relay Valve Protecting PC.63706-7	2	43.00	
289	Res. Comp. 3.9k ohms $\pm 5 \% 0.25 \mathrm{~W}$ PC.66604-32	2	0.05	IS
290	Res. Comp. 62k ohms $\pm 5 \% 0.25 \mathrm{~W}$ L/PC. $66773-49$	2	0.10	1 S
291	Res. W/W 106 ohms $\pm 10 \%$ 220W WIS. $3852-\mathrm{B}-1-24$	1	2.20	IS
292	Res. W/W 107 ohms $\pm 10 \%$ 45W WIS. $3852-B-1-25$	1	0.70	1 S
293	Res. W/W 1.8k ohms $\pm 2 \% 14 \mathrm{~W}$ PC. $67103-37$	1	0.20	Is
294	Res. W/W 68 ohms $\pm 10 \%$ 2A WIS. $3320-2-18$	1	6.75	
295	Res. W/W 33 ohms $\pm 5 \%$ 3W PC.67008-4	2	0.10	IS
296	Res. W/W 53 ohms $\pm 10 \%$ 45W WIS . 4006-B-1-27	3	0.65	1 S
297	Res. W/W 2160 ohms $\pm 10 \%$ 90W WIS. $6265-\mathrm{C}-1-1$	1	0.95	IS
298	Res. W/W 419 ohms $\pm 10 \%$ 90W WIS. $3615-\mathrm{C-1}-6$	1	0.80	1 s
299	Res. W/W 16500 ohms $\pm 5 \%$, 35 W P. $18282-\mathrm{KP}-6$	1	0.60	IS
300	Res. Carb. Wire Ends 220 k ohms $\pm 20 \%$ IW PC.66321-76:	3	0.05	
301	Res. W/W 43750 ohms $\pm 5 \%$ 150W P.18282-KK-6	2	1.45	1S

No.	Description and ldentity	Qty.	Price Each F.O.B U.K. £ Sterling	Scale
302	Res. W/W 15000 ohms $\pm 5 \%$ 100W PC. 67006 -20	1	0.80	1 S
303	Res. W/W 1800 ohms $\pm 5 \% 35 \mathrm{~W}$ P.18282-KT	1	0.35	1S
304	Res. W/W Part of Main Contactor Panel WIS. 9273-1-1		7.40	
305	Res. HT Voltmeter WIS.5675-B-1-1	1	35.00	
306	Res. W/W 1. 2 k ohms $\pm 5 \%$ 3 WIS. $7417-\mathrm{B}-1-7$	11	0.25	3 S
307	Res. Carb. 150 ohms $\pm 20 \%$ 55W WIS.7549-B-1-9		1.65	1 S
308	Res. W/W 15 ohms $\pm 5 \%$ 6W PC.67010-2	1	0.10	IS
309	Res. W/w lk ohms $\pm 5 \%$ 3W PC.67008-13	1	0.10	1S
310	Res. W/W 2. 2 k ohms $\pm 5 \%$ / 6 W PC. 67010-15	1	0.10	1S
311	Res. Comp. 33 ohms $\pm 5 \%$ 0.5N PC.66611-7	3	0.05	
312	Res. W/W 47 ohms $\pm 5 \%$ 1.5W PC. 67007-5	1	0.15	1S
31.3	Res. W/W 150 ohms $\pm 5 \%$ 1.5W PC.67007-8	1	0.15	1 S
314	Res. W/W 330 ohms ± 5 \% 1.5W PC. 67007-10	1	0.15	1 S
315	Res. W/W 680 ohms $\pm 5 \%$ 1.5W PC. 67007-12	1	0.15	1 S
316	Res. W/W 2. 2 k ohms $\pm 5 \%$ 1.5W PC. $67007-15$	1	0.15	1S
317	Res. Comp. 220 ohms $\pm 10 \%$ 2W PC.66616-17	3	0.05	
318	Res. Comp. 33 ohms $\pm 5 \%$ 0.25N PC.66602-2	2	0.05	1S
319	Res. W/W lok ohms $\pm 5 \%$ 4.5N PC. 67009-19	1	0.15	1S
320	Res. W/W l5k ohms $\pm 5 \% 6 \mathrm{~W}$ PC. 67010-20	1	0.15	1S
321	Res. Comp. 100 ohms $\pm 10 \% 0.25 \mathrm{~W}$ PC.66610-13	4	0.05	
322	Res. W/W $\pm 1 \%$ WIS. 3914-C-2-19		0.95	1S
323	Res. Comp. 10k ohms $\pm 10 \%$ 0.75W PC.66612-31	3	0.05	
324	Res. Comp. 15k ohms $\pm 10 \% 0.75 \mathrm{~W}$ PC.66612-33	3	0.05	
325	Res. W/w $\pm 1 \%$ WIS. $3914-\mathrm{C}-3-31$	1	0.95	1S
326	Res. Comp. 100 ohms $\pm 10 \%$ 2 ${ }^{\text {W P PC. 66616-13 }}$	2	0.05	
327	Res. Comp. 20 ohms $\pm 20 \%$ 50W WIS.5161-C-1-22	1	5.15	
328	Res. W/W 400 mA 100 mV t 1% WIS. $3914-\mathrm{C}-45$	1	0.95	1S
329	Res. W/W $2 \mathrm{~A} 100 \mathrm{mV} \pm 1 \%$ WIS. $3914-\mathrm{C}-46$	1	0.95	1 S
330	Res. W/w $350 \mathrm{~mA} 100 \mathrm{mV} \pm 1 \%$ WIS. $3914-\mathrm{C}-51$	1	0.95	1S
331	Res. W/w 600V Operation WIS.4235-7-129	1	0.95	1 S
332	Res. W/W 2.2 ohms $\pm 10 \%$ SW PC.67008-25	2	0.15	1S
333	Res. W/W lk ohms $\pm 5 \%$ 4.5W PC.67009-13	1	0.15	1 S
334	Res. Comp. 20 ohms $\pm 10 \% 35 \mathrm{NPC.66408-21}$	2	4.85	
335	Res. Comp. 100k ohms $\pm 10 \%$ 2W PC.66616-49	1	0.05	
336	Res. Comp. 100 ohms $\pm 10 \%$ 0.5W PC. 66611-13	1	0.05	
337	Res. Comp. 1.2k ohms $\pm 10 \%$ W PC. 66616-26	2	0.05	
338	Res. Comp. 18 ohms $\pm 10 \%$ 2W PC.66616-4	2	0.05	
339	Res. Comp. 1 k ohms $\pm 10 \%$ 2W PC.66616-25	2	0.05	
340	Res. Comp. 22 ohms $\pm 10 \%$ W FC.66616-5	2	0.05	
341	Res. Comp. 820 ohms $\pm 10 \%$ 2W PC.66616-24		0.05	
342	Res. Comp. 33 ohms $\pm 10 \%$ 2W PC.66616-7	2	0.05	
343	Res. Comp. 560 ohms $\pm 10 \%$ 2W PC.66616-12	2	0.05	
344	Res. Comp. 47 ohms $\pm 10 \%$ 2W PC.66616-9	2	0.05	
K	$\begin{aligned} & \mathrm{T} \cdot 5553 \\ & \mathrm{CP} \end{aligned}$			

No.	Description and dentity	Qty.	$\begin{array}{\|c\|} \hline \text { Price Each } \\ \text { F.O.B. U.K. } \\ £ \\ \text { Sterling } \end{array}$	Scale
388				
389	Res. Vble. W/w 12 ohms $\pm 10 \%$ l00w WIS.3147-1-4	1	2.40	
390	Res. Vble. W/W 3-Gang 80 ohms $\pm 10 \%$ 50W WIS. $3337-1-34$	1	11.10	
391	Res. Vble. W/w 25 ohms $\pm 10 \%$ 80w PC.47408-60	1	2.85	
392	Res. Vble. W/W 500 ohms 0.5W PC.6740l-18	2	0.50	1S
393	Res. Vble. W/W 3 ohms $\pm 10 \%$ 60w PC. 67407-39	1	2.45	
394	Res. Vble. W/W 500 ohms $\pm 20 \%$ 0.5W PC.67401-18	0	0.50	1 S
395	Res. Vble. W/W 250 ohms $\pm 10 \%$ 2.5W PC.67403-22	1	0.70	1S
396	Res. Vble. Comp. 5 k ohms $\pm 20 \% 0.75 \mathrm{~W}$ PC. $67203-9$	1	1.15	IS
397	Res. Vble. W/w 25 k ohms $\pm 10 \%$ 2.5W PC.67403-46	9	0.60	2S
398				
399	Retainer Valve WIS. $3449-\mathrm{C-I-1}$	1	0.20	1S
400	Retainer Valve WIS.3701-C-1-22	2	0.15	1 S
401	Retainer Valve WIS.6271-C-1-1	1	0.35	IS
402				
403	Shaft Assembly W. $39617-B-1-A$	1	15.00	
404				
405	Socket Coaxial PC.60204-1	10	0.05	
406	Socket Coaxial PC.60209-1	5	0.55	
407	Socket 18-way WIS.3732-C-1-1	1	0.65	
408	Socket 18-way W. $41061-1-6$	1	1.15	
409	Socket 18-way W.41061-1-7	1	1.15	
410	Socket Coaxial WIS.5355-B-1-9	3	0.45	
411	Socket 18-way Green W.41061-1-9	1	1.15	
412	Socket 12-way Light Grey W.41061-1-102	1	0.85	
413	Socket 18-way W.41061-1-118	1	4.15	
414	Socket 18-way W.41061-1-119	1	1.15	
415	Scoket 18-way W. 41061-1-26	1	1.15	
416	Socket 24-way W.41061-1-81	1	4.15	
417				
418				
429	Spring W.7447-C-2-28B	1	0.15	IS
420	Spring Flat 127-W. 37919-C	2	0.25	1S
421	Spring Assembly W. 39660-C-A	2	3.00	IS
422	Spring (Contact Angle) 23-W.40408-C	1	2.85	
423				
424	Spindle Assembly W.40693-1-A	1	13.00	
425				
426	Starter WIS. $8063-\mathrm{B}-1$	0		
427				
428	Suction Unit WIS.6412-B-5-7	1	87.00	
429				
430	Support Mycalex 3-W.40700-B	1	4.30	
M $\quad \underset{\mathrm{CP}}{\mathrm{T} .5553}$				

No.	Description and ldentity	Qty.	$\left\|\begin{array}{\|c\|} \hline \text { Price Each } \\ \text { F.O.B. U.K. } \\ \& \\ \text { Sterling } \end{array}\right\|$	Scale
431	Support Mycalex 4-W. 40700	1	4.30	
432	Support Mycalex 4A-W. 40700	1	4.30	
433	Support Mycalex 4B-W. 40700	1	4.30	
434	Support Mycalex 4C-W. 40700	1	4.30	
435	Support Mycalex 8-W.40700-B	1	$4 \cdot 30$	
436				
437	Switch 5 Pole W. 50027-1-A	1	22.50	
438	Switch Micro W.40269-C-1-A	1	2.90	1S
439	Switch 5 Pole W. 50027-1-B	1	23.00	
440	Switch Micro W. 40269-C-l-B	1	2.90	IS
447	Switch Push Button W.13433-B-1-A	3	1.85	
442	Switch Push Button WQ.7640-1-C	1	16.50	
443	Switch 4 Pole C/O WIS.3456-B-148	1	4.60	
444	Switch SP WIS. 3456-B-111		2.90	
445	Switch SP C/0 20A WIS.5197-B-11	1	1.35	
446	Svitch Knife 2 Pole 30A WIS.4095-B-I-1C	1	4.65	
447	Switch SP WIS.3456-155	1	3.70	
448	Switch Micro SP WIS.5586-C-I-1		0.70	IS
449	Switch 4 Pole WIS.3456-133	1	5.45	
450	Switch 2 Pole WIS.5670-C-138	1	1.00	
451	Switch 12-way WIS.3421-C-50		5.70	
452	Switch 7-way WIS.5670-C-145	1	1.25	
453	Switch 12-way WIS.3421-C-51	1	7.95	
454	Switch 6-way WIS.5670-C-146	1	1.00	
455	Switch SP On/Off PC.71301-2	2	0.35	IS
456	Switch 'Ledex' Selector WIS.7166-B-3-1	1	16.50	
457	Switch SP 5 Psn. W. 38959-1-C	1	275.00	
458	Switch SP 5 Psn. W. $40066-1-A$	1	230.00	
459	Switch 4 Pole 5 Psn. 6-W.40408-C	1	4.10	
460	Switch SP C/0 WIS.5586-C-1-2	3	0.65	
461	Switch Assembly W. $39161-1-A$	1	71.50	
462	Switch Assembly W. 36725-1-B	1	46.50	
463	Switch W.40269-C-1-B	1	2.90	
464	Switch SP 2.5kVA WIS.5197-B-6	1	0.90	
465	Switch 2 Pole WIS.5820-B-34	1	3.70	
466	Switch SP WIS.5820-B-35	1	3.75	
467	Switch SP WIS.12824-4	1	22.50	
468	Switch. Output Circuit Pad Switch - Part of No. 40 (Tuning Cap)			
469	Switch Time T31-0964-01	1	39.00	
470				
471 472 473	Switch Blade Assembly W.39454-B-1-A	1	4.25	
473				

No.	Description and Identity	Qty.	$\begin{aligned} & \text { Price Each } \\ & \text { F.O.B. U.K. } \\ & \mathcal{\&} \\ & \text { Sterling } \end{aligned}$	Scale
474	Term. PH.76201-3	6	0.10	IS
475	Term. 6-way 30A W.57404-C-1-1	1	11.50	
476	Term. Porcelain SK.48864-1-H	3	0.85	15
477	Term. 20-way W. $22469-\mathrm{B}-1-\mathrm{U}$	3	4.00	
478	Term. 4-way W. 40168 -B-1-A	1	10.00	
479	Term. 10-way W. 22469-B-l-K	1	8.50	
480	Term. 8-way W. 22469-B-I-H	1	7.30	
481	Term. 4-way WIS.1631-1-4	1	0.25	
482	Term. :	1	0.35	
482A	W. 21988-C-1-2	1	4.55	
483	Term. 20-way W. 33265-1-Q	1	7.70	
484	Term. 2-way 42-W. 39081-C	1	5.30	
485	Term. 3-way WIS.1632-l-3	1	0.25	
486	Term. 10-way W. 33265-1-W	1	10.50	
487	Term. Block 16-W. 32738-C	6	4.30	
488	Term. Board W.41618-C-1-A	1	9.15	
489				
490				
491	Transf. 6.3V W. 24068-59	1	24.00	1 B
492	Transf. 15V W. 24582-13	1	60.50	1B
493	Transf. W. 37518-3	1	70.00	1 B
494	Transf. W. 23241-33	1	27.50	1B
495	Transf. W. 24586-26	1	48.50	1 B
496	Transf. W. 24743-27	1	21.50	1B
497	Transf. W. 22129-3	1	575.00	
498	Transf. W. 27206-4	6	33.50	1B
499	Transf. W. 37518-2	1	93.00	1B
500	Transf. W.26958-B-152	1	2.70	1 B
501	Transf. W. 26958-B-153	1	2.85	1B
502	Transf. W. 50593-1-G	2	3.20	
503	Transf. W. 50593-1-D	2	2.95	
504	Transf. W. 50593-1-E	1	2.95	
505	Transf. W.41184-B-45	1	2.20	
506	Transf. W. $41184-B-46$	1	2.15	
507	Transf. W. 41185-B-6	1	2.15	
508	Transf. W. 37149-1-17	1	2.40	
509	Transf. Input W. 33035-B-1-E	1	2.25	
510	Transf. Output W. 33035-B-I-D	1	1.35	
511				
512				
513	Valve GXU-2 CV2518	6		
514	Valve U. 54 CV378	2		
515	Valve STV. 280 - 80S	1		
$P \stackrel{+}{4}$				

AL 9, Sep 75

FIG. I(a) PART VIEW OF R.C.U. SHOWING LOCATION OF FAN X3 (MOD.3978)

FIG. IA (a) PART VIEW OF R.C.U. SHOWING LOCATION OF FAN X3 (MOD. A3978)

COMPONENT LAYOUT CHANGES ARISING
(Fitting of Back-fire Indicators

> COMPONENT LAYOUT CHANGES ARISING FROM MODIFICATION N0. 9785
> (Fitting of Back-fire Indıcators and Remote Bias Control)

2nd Edn.
Oct. ' 67
IA

COMPONENT LAYOUT CHA CGES ARISING FROM MODIFICATIO\ 10.9785
(Fitting of Back-fire Indicators and Remote Bias Control)
T' SWITCH
" switch.
al/remote" selector switch
VOLTMETER" SWITCH.-

Component Layout R.F. Unit HS3l

(WZ.17589/D Sh.l)

Modification No. 1785

Modification No. 1785 entails the addition of R.F. Filter Type W. 102405 Ed.B to the R.F. unit of HS3l when 50 ohms output impedance is provided by the use of Transformer Type HAll2. The filter and the transformer are both located on the roof of the cabinet.

> R.F. UNIT 3.5kW ISB TRANSMITTER TYPE HS.31A
> (WQ. $12610 \mathrm{Ed} \cdot \mathrm{A} \& \mathrm{~W} .37907 \mathrm{Ed.C}$)

Cross Reference List for WZ.17365/D Sh. 1

Ref. 1	Insulator Ceramic	No. 451
$\mathrm{R} \in \mathrm{f}$. 2	Air Filter	No. 413
Ref. 4	Mounting Board Mycalex	No. 460
Ref. 5	Mounting Board Mycalex	No. 461
Ref. 6	Insulator	No. 450
Ref.ll	Coil Mountin天 Plate Mycalex	No. 425
Ref.l2	T'op Panel Mycaler	No. 495
Ref. 13	Contact Mounting Mycalex	No. 430
Ref. 14	Fnd Cheek Mycalex	No. 439
Ref. 15	Contact Kountirg Mycalex	No. 431
Ref. 16	Rotor Mounting Mycalex	No. 468
Ref. 17	Contact Assembly	No. 426
Ref. 18	Contact Assembly	No. 427
Ref. 20	Spring Contact	No. 477
Ref.21	Stand-Off Insulator	No. 491
Ref. 22	Mounting Board Mycalex	No. 462
Ref. 23	Spring Contact	Ivo. 478
Ref. 24	Grid Cortact Spring	No. 447
Ref. 25	Stand-0fs Insulator	No. 492
Ref. 80	Manual Drive Assembly	No. 456
Ref. 82	Marual Drive Assembly	No. 457
Ref. 83	Manual Drive Assembly	No. 458
Ref. 86	Contact Mounting Mycalex	No. 432
Ref. 87	Contact Assembly	No. 427
Ref. 88	End Cheek Mycalex	No. 440
Ref. 89	Contact Assembly	No. 428
Ref. 90	Coupling Mycalex	No. 438
Ref.91	Wheel	No. 502

R.F. Unit of Transmitter HS3lA (WZ.17365/D Sh.1)

Modification No. 1784

L32 and L33 are replaced by R.F. Filter W. 102405 Ed.C when 50 ohms output impedance is provided by the use of Transformer Type HAll2. The filter is located in the top section of the cabinet in place of L32 and L33 and the transformer is located on top of the cabinet.

Component Layout R.F. Unit HS3l/l

(WZ.26510/D Sh.1)

Modification No. 1785

Modification No. 1785 entails the addition of R.F. Filter Type W. 102405 Ed.B to the R.F. unit of HS $31 / 1$ when Transformer Type HAIl2 is used to provide 50 ohms output impedance. The filter and the transformer are both located on top of the cabinet.

R.F. Unit of Transmitter HS3la/l
 (WZ.27280/D Sh.1)

Modification No. 1784

L30, L31, L32, and L33 are replaced by R.F. Filter Type W. 102405 Ed.C when 50 ohms output impedance is provided by the use of Transformer Type HAll2. The filter is located in the top section of the cabinet in place of L30, L31, L32, and L33, the transformer is located on top of the cabinet.


```
R.F. UNIT 3.5kW ISB TRANSMITTER TYPE HS.3IA
    (W6.12610 Ed.A & W. }37907\textrm{Ed.C
```

Cross Reference List
for WZ.17365/D Sh. 3

Ref. 32
Ref. 53
Ref. 56
Ref. 57
Ref. 58
Ref. 59
Ref. 60
Ref. 61
Ref. 68
Ref. 69
Ref. 70
Ref. 71
Ref. 72
Ref. 73
Ref. 74
Ref. 75
Ref. 76
Ref. 77
Ref. 78
Ref. 79
Ref. 81
Ref. 85

Ball Contact Assembly
No. 416
Insulator Conical Porcelain No. 450
Support Plate Mycalex
Coupling Bar Mycalex
Mounting Plate Mycalex
Spring Assembly
Spring Assembly
Spring Assembly
Contact Assembly
Insulating Rod
Conical Insulator
Valveholder Ceramic
Insulator Stand-Off
Insulator Stand-Off
Base Mycalex
Terminal Block Mycalex
Spring Contact
Spring Contact Plate Mycalex
Condenser Plate Mycalex
Flexible Drive Assembly
Manual Drive Assembly
Spring

No. 490
No. 437
No. 464
No. 472
No. 473
No. 474
No. 429
No. 453
No. 435
No. 496
No. 454
No. 449
No. 418
No. 494
No. 475
No. 489
No. 434
No. 443
No. 459
No. 469

O- 250 VOLTS WHEN CONNECTED TO TERMINAL I \& EARTH.
CIRCUIT AND CQMPONENT LAYOUT
PEAK VOLTMETER UNIT
WZ.12770/B Sh.l Iss.l

RANGE $\left\{\begin{array}{l}0-15 \text { VOLTS WHEN CONNECTED TO TERMINAL I \& EARTH } \\ 0-5 \text { VOLTS WHEN CONNECTED TO TERMINAL } 2 \& E A R T H .\end{array}\right.$

AP. 2922D
Vol.l
April 1965

CIRCUIT AND COMPONENT LAYOUT

PEAK VOLTMETER UNIT
WZ. $12771 / \mathrm{B}$ Sh.l Iss.l

FIG. 9 BLOCK DIAGRAM

Changes arising from Modification 1312.
(Monitoring of Transmitter, Radio Type T. 16719 when radiating on frequencies between 2.5 and $20 \mathrm{Mc} / \mathrm{s}$).

The modification applies only to Transmitter, Radio, Type 16179 (H S31A) in the HS. 31 series, and involves the use of an I.F. of $3.1 \mathrm{Mc} / \mathrm{s}$ throughout the ARAD range.

The fixtal/fHG conversion table on Fig. 9 applies to HS. 31 and HS. $31 / 1$ (ARAD $4-27.5 \mathrm{Mc} / \mathrm{s}$) when using an I.F. of $3.1 \mathrm{Mc} / \mathrm{s}$. The conversion table relating to HS .31 A when using an I.F. of $3.1 \mathrm{Mc} / \mathrm{s}$ to permit the use of Monitor, R.F., Type 10160 (Marconi HD.24) under Modification 1312 is given below. The fetal DRIVE input to SKB will then range from 3.2 to $6.55 \mathrm{Mc} / \mathrm{s}$.

			OMS			822	†Cप	$\varepsilon L T$	ZVId	$68 T$	DYI			Gz	980
		LてE	GMS			L己己	£टप	$\varepsilon L I$	वVId	$8 \varepsilon \tau$	ç7］			㲸	૬¢0
		9こを	VMS			9 92	टટप	E8t	MId	LEL	VXI			$\varepsilon 乙$	ટะจ
				$\varepsilon \downarrow 乙$	LSy	S己2	6Lप	28T	NId					$\varepsilon \tau$	Tદ
				こちて	958	こ己己	8Lप	T8T	กTd					$\varepsilon \tau$	O\＆
				こもて	GGy	ところ	LTप	08t	UTd			$\varepsilon 7$	I83	$\varepsilon \tau$	6 60
LOt	Ex	LOE	Z\＃YS	こって	7Gצ	ヤट己	9Lצ	$6 L T$	STd	ZIT	T\＆T	をt	08.2	$\varepsilon \tau$	8こう
907	2X	908	gYYS	こちて	ESY	\＆ट乙	GTX	8LT	प＇1d	ITT	$0 ¢ T$	It	LLO	$\varepsilon \tau$	L20
Sot	tx	S0\％	dYS	ELZ	［G¢	こころ	\checkmark tq	LLI	OTd	OLT	6 6T	七乙	910	¢	920
		70¢	NXS	हL乙	OG4	Lट己	عโษ	9LT	WId	601	82T	Ot	GLO	$\varepsilon \tau$	G20
		662	WHS	て \downarrow ¢	6tu	O乙乙	टTप	GLT	TId	80 T	LटI	OE	ELO		
G6\％	G_{Λ}	662	\＃YS	0才て	8t¢	6L2	［tצ	VLI	YTId	SOL	LZT	8ε	$2 L 0$	$\varepsilon \tau$	£ 20
ヤ6¢	$\nabla \Lambda$	ع0¢	CXS	OヤZ	L $\downarrow \mathrm{Z}$	6 T2	OTצ	$\varepsilon L T$	fId	a 10 T）	0 OT	7t	$\varepsilon 90$	$\varepsilon \tau$	टこっ
$\downarrow 6 \varepsilon$	$\varepsilon \wedge$	662	HXS	$6 \varepsilon 乙$	97¢	6Tz	64	OLT	HTd	－	OZI	¢T	［90	$\varepsilon \tau$	L20
を6\％	2	208	DHS		G价	LTZ	8 C	$\varepsilon L T$	DId	EOL	6LT	七\＆	090	$\varepsilon \tau$	020
$\varepsilon 6 \varepsilon$	T Λ	00\％	HYS	8ع乙	カヤ¢	カIZ	L¢	$\varepsilon L \tau$	－${ }^{\text {ITd }}$	20t	8LT	VE	659	切	6โ0
		T0¢	THS	8をح	を切	8 22	98	LLL	पTd	TOL	STI	$\varepsilon \varepsilon$	85，	L2	8 L0
		662	THS	LEZ	己》¢	LTZ	94	ILT	匹Id	00t	ฤIT	टह	LSD	OZ	LTD
64\％	叱山	662	DYS	G\＆	Tbu	9 92	妈	OLT	ОTd	T6	ع［T	T 1	950	6 T	920
8¢乏	हqu	662	c．XS	9を己	Oby	ST2	£y	69］	ITd	I6	2TT	仜	GG．	8 L	GT0
LSE	乙¢	6 62	VXS	$9 \varepsilon 乙$	$68 \pm$	㲸	ट¢	89］	VId	66	LTI	$\varepsilon \tau$	∇G_{0}	¢	૪TD
9¢を	L¢区			G\＆己	8દも	とこて	［4．			86	OLT	0ε	ESO	LT	\＆LD
				をદ乙	LEษ					L6	67	$\varepsilon \tau$	2S0	97	こโロ
		262	LAY	† \downarrow 己	9¢ษ			EsI	6 N	96	81	tI	［G）	牨	［T0
		L62	9A파	泛	¢¢ษ			LSI	8 N	56	LT	$\varepsilon \tau$	$0 S_{0}$	¢ τ	OLD
โ๕ย	－TMS	062	$G_{\wedge \cup}$	を¢乙	$\nabla \varepsilon \underline{q}$	LSI	ごNAX	T¢ T	LN	$\checkmark 6$	97	L 2	570	¢	60
โદย	TMS	062	$\nabla \Lambda$ ¢	ことて	દદษ	955	TKM	OGT	9K1	E6	ST	L2	$8 \downarrow 0$	GI	80
$9 \varepsilon \varepsilon$	XMS	06z	$\varepsilon \Lambda บ$	Lદて	โદษ			67 T	GIN	26		62	L $\dagger 0$	¢T	LO
Gદદ，	IMS	052	乙＾Y	O2Z	OEy			8ฤT	$\checkmark \mathrm{N}$	L6	ET	62	970		90
จ६ย，	HMS	062	LAY	Oこ2	бट7			LヵT	हK／	T6	ZT	82	570	切	50
をยદ	ZDMS			Tદ乙	82\％			97t	2 W	98	LT	L2	切	七I	¢0
ટદદ	TDMS			OEZ	LZ甘	ヤ8t	DDTX	Sbt：	LIN			L	$\varepsilon ャ 0$	切	\＆
โદદ	CTMS			622	924	785	¢ワTป					$\varepsilon \tau$	てヤD	عL	20
Oعを	LHMS			622	GટZ	78L	VOId					92	TヤO	टI	To
－ON	－」әу	－on	•əぬ	ON	•əə	ON	－дәу	－ O	－əу	－ $0 \times$	－əəぬ	－ON	－วə	－ON	－$\frac{1}{}$

－P牛 6•पS LO6LE•M

VTE＊SH HdXI צ．

807	OTX	507	ทอบS	LTE	OSY	G2¢	$\varepsilon[t]$	$\angle 92$	YITd	$0 \angle T$	Z2T	＋	720		LED
T	6 X	＋7，	ZVYS		674	tze	LTY	592	f1d	697	TZT	7¢	ELO	T¢	9¢0
80t．	8X	G功	gFus	Tht	$8+$		TTE	992	HTC	89τ	OZT	\＆	$2 \angle 0$	O\＆	Sco
807	$\angle \mathrm{X}$	と L^{+}	dXS	やゆく	LTH	¢ $2 ¢$	OLY	992	ЭTX	L9T	6TT	2†	TLO	62	75_{0}
807	9X	こ「7	NYS		974	£ ¢	68	992	［IIC	99］	8TT	己	020	82	¢¢0
LOT	$5 \times$	OT	WHS	$\varepsilon \downarrow$	$5+$	TZE	84	792	GId	597	LTT	己	690	LZ	250
LOT	$7 \times$	OTて	प्रYS	でワ	T＋1／8	80ε	L4	¢92	वTd		9 TT	ご	890	$\angle T$	Tร． 0
90T．	$\varepsilon \mathrm{X}$	［T7	PXS	$z^{+1} \Sigma$	$\Sigma \rightarrow$ cti	こて¢	94	¢92	OIE	792	GTT	8 L	290	$\angle T$	$0<0$
ETL	2X	0切	HYS	TH	でサ	T2E	¢\％	¢92	gId	¢9	7 TT	T	99.	$\angle T$	620
827	TX	607	ทบs	625	T \dagger \％	02¢	＋4	¢92	VId	$7{ }^{\text {T }}$ L	ETT	工力	590	$\angle T$	880
		807	HMS	O＋7	0＋${ }^{\text {ch }}$	6TE	¢ $¢$			${ }^{7} 7 \mathrm{C}_{\text {L }}$	टTT	07	790	$\angle T$	L20
6 TS	ς_{Λ}	LO7	TXS	$0^{\circ} \mathrm{T}_{5}$	6¢ t	8 T¢	24	622	0 Lm	29］	LII	8 L	590	8 L	920
8TG	74	907	Cus	655	8¢ 4	LTE	ty	8こ己	6N1	T95	0TT		290	$\angle T$	520
8TG	¢ 1	907	0xS	15E	LEy			LZて	8N	09］	6 T	8 L	T90	92	720
LTG	2A	907	gYS	85¢	9¢を	巩己	tuna	922	LW	69T	81	68	090	$\angle T$	ᄃ20
LTG	TA	907	VYS	8¢E	GE ${ }^{\text {d }}$		Chid	GてZ	901	85］	$\angle \mathrm{T}$	6ε	690	$\angle T$	乙乙，
				LEE	7¢ ${ }^{\text {c }}$	T¢乙	टूपत	7 72	5 N	15 L	91	8ε	85：	$\angle T$	L20
987	＋gis		$\angle A X$	9¢¢	¢¢ ${ }^{\text {d }}$	9 T乙	LINAC	¢ Z	＋NT	9GT	57	82	L50	$\angle T$	020
587	と昡		9 1 צ	GCE	Z¢ y			でて	EM	GST	＋	LZ	950	8 L	6 T 0
787	己gi		$G_{\Lambda Q}$	7¢¢	TEY			LZ乙	2W	75 L	¢I	8 L	G50	¢	8 T
587	TGis		7 T	$72 ¢$	O\＆y			0こ乙	LNT	Н¢T	27	LT	750	H2	LTO
		565	¢ 1 H	†て¢	62\％	592	DOTd			875	TI	$7 ¢$	¢S0	を	970
897	dMS	C6\％	乙NX	7¢¢	8Zप	¢92	OOTd	77^{7}	VYT			$\angle \tau$	250	己	$5 T 0$
497	NMS	166\％	TAX	EE¢	LZE	¢92	gqra					$8 T$	TS0	8 T	
097	nWS			ここと	9 CL	¢92	vord					$\angle \tau$	050	TZ	\＆TD
1097	TMS			ट¢¢	S己d	592	ZVId					GE	67.0	OZ	2T0
997	ZMS			TLE	72 ck	592	çId	912	¢¢T	εL	580	GE	870	8 L	LT0
G9＋	IMS			OES	¢ 2 t	0L2	KTC	9／T	2¢T	EL	780	$\angle \varepsilon$	$\angle 70$	8 T	OTD
＋9\％	HMS			628	己ZG	9＜2	MId	$G L T$	TCT	TT	$\Sigma 80$	LE	970	8 I	60
ETt	ट．ns	288	894		TZ8	GL2	ATd	$G L T$	O\＆7	TT	282	9ε	570	6 T	80
297	工力MS	$\angle 7 \Sigma$	LGE		OZE：	＋72	nTd	$7 \angle T$	62T	G7	180	GE	770	8 T	$\angle 0$
097	己EMS	$9+1 / 2$	954	8こ¢	6 tg	$\varepsilon L L$	IId	$\varepsilon L T$	82T	57	080	GL	く 70	8 L	90
T9＋	TAMS	978	Ģy	TTE	8ty	2して	SId	ZLT	$\angle 己 T$		620	LT	270	8T	50
65t	OMS	975	${ }_{7}{ }^{\text {ç }}$	928	$\angle T Y$	TL2	צ＇T	TLT	92 T		820		T $\dagger 0$	8 T	70
897	GMS	975	ऽG8	LZE	9 T8	0L2	Ord		S2T		LLD	¢¢	070	8 T	¢0
197	VMS		258	925	GTY	692	Wrdd		727		$9<0$	2\＆	680	$L T$	20
		$\angle T \varepsilon$	T54	TLE	Tty	892	＇TId	$0 \angle T$	とてJ		G 10		$8 ¢ 0$	$9 t$	T0
－ ON	\cdot ；әу	－ O	\cdot •วу	－ O	－ y ¢	－ O	\cdot •əy	－ O	－əəษ	－ OH	－ョу	－ O	－วy	－	－${ }^{\text {2 }}$

$$
\begin{gathered}
\text { R.F. UMTT } \\
\text { (Refer to Master Com onents List T5553) } \\
\text { Cross Reference List } \\
\text { for WZ.26509/D Sh. } 182 \text { (Fig.10\&11) }
\end{gathered}
$$

MISCELLANEOUS MECHANICAL ITEMS

Ref. 1	Insulator Ceramic	No. 198
Ref. 2	Air Filter	No. 119
Ref. 3 A No.119		
Ref. 4	Mounting Board Mycalex	No. 236
Ref. 5	Mounting Board Mycalex	No. 237
Ref. 6	Insulator	No. 199
Ref. 7		
Ref. 8		
Ref. 9		
Ref.l0		
Ref.ll	Coil Mounting Plate Mycalex	No. 238
Ref. 12	Top Panel Mycalex	No. 251
$\mathrm{R} \in \mathrm{f} .13$	Contact Mounting Mycalex	No. 239
Ref. 14	Eni Cheek Mycalex	No. 81
Ref. 15	Contact Mounting Mycalex	No. 240
Ref. 16	Rctor Mounting Mycalex	No. 241
Ref. 17	Contact Assembly	No. 87
Ref. 18	Contact Assembly	No. 88
Ref. 19		
Ref. 20	Spring Contact	No. 89
Ref. 21	Sjard-0ff Insulator	No. 200
Ref. 22	Nounting Board Mycalex	No. 242
Ref. 23	Spring Contact	No. 90
Ref. 24	Gria Contact Spring	No. 91
Ref. 25	Stand-Off Insulator	No. 201
Ref:26	Ball Contact Assemoly	No. 88
Rer. 27	Spring	No. 419
Ref. 28	Switch Blade Àssembly	N0. 472
Ref. 29	Contact Panel Mycalex	No. 252
Ref. 30	Insulating Pillar	No. 202
Ref. 31	Mounting Plate Mycalex	No. 243
Ref. 32	Ball Contact Assembly	No. 93
Ref. 33	End Plate Mycalex	No. 257
Ref. 34	Bearing Plate Mycalex	No. 254
Ref. 35	Spring Contact Assembly	No. 94
Ref. 36	End Plate Mycalex	No. 255
Ref. 37	Spring Contact Assembly	No. 95
Ref. 38	Spring Contact Assembly	No. 96
Ref. 39 (No.		
Ref. 40	Spring Contact Assembly	No. 97
Ref. 41	Spring Flat	No. 420
Ref. 42	Coupling Coil Mounting Plate Mycalex	No. 244
Ref. 43	Spring Contact Assembly	No. 98
Ref. 44	Spring Contact Assembly	No. 99
Ref. 45	Spring Contact	No. 100

R.F. UIVIT
 (Refer to M_{a} ster Components List T5553)
 Cross Reference List
 for WZ.265u9/D Sh. I\&2 (Fig.IO\&II)
 MISCELLANEOUS MECHANICAL ITEEIS CON.D:

Ref. 46	Spindle Assembly	No. 424
Ref. 47	Coil Support Mycalex	No. 430
Ref. 48	Coil Support Mycalex	No. 431
Ref. 49	Coil Support Mycalex	No. 432
Ref. 50	Coil Support Mycalex	No. 4.33
Ref. 51	Coil Support Mycalex	No. 434
Ref. 52	Coil Support Mycalex	No. 435
Ref. 53	Insulator Conical Porcelain	No. 199
Ref. 54	Insulating Piece Mycalex	No. 203
Ref. 55	Mounting Board Mycalex	No. 245
Ref. 56	Support Plate Mycalex	No. 256
Ref. 57	Coupling Bar Mycalex	No. 116
Ref. 58	Mounting Plate Mycalex	No. 246
Ref. 59	Mounting Board Mycalex	No. 247
Ref. 60	Spring Assembly	No. 421
Ref. 61	Shaft Assembly	No. 403
Ref. 62	Former Mycalex	No. 127
Ref. 63	Former Mycalex	No. 128
Ref. 64	Former Mycalex	No. 129
Ref. 65	Former Mycalex	No. 130
Ref. 66	Former Mycalex	No. 131
Ref. 67	Former Mycalex	No. 132
Ref. 68	Contact Assembly	N0. 101
Ref. 69	Insulating Rod	No. 204
Ref. 70	Conical Insulator	N0. 205
$\mathrm{R} \in \mathrm{f}$. 71	Velveholder Ceramic 5 Pin	No. 530
Ref. 72	Insulator Stand-0ff	No. 201
Ref. 73	Insulator Stand-Off	N0. 207
Ref. 74	Base Mycalex	No. 1
Ref. 75	Terminal Block Mycalex	No. 487
Ref. 76	Spring Contact	No. 102
Ref. 77	Spring Contact Plate Mycalex	No. 259
Ref. 78	Condenser Plate Mycalex	No. 258
Ref. 79	Flexible Drive Assembly	No. 118
Ref. 80	Manual Drive Assembly	No. 119
Ref. 81	Manual Drive Assembly	No. 120
Ref. 82	Manual Drive Assembly	No. 121
Ref. 83		
Ref. 84	Spring Contact Assembly	No. 103
Ref. 85	Spring	No. 422
Ref. 86	Contact Mounting Mycalex	No. 24.8
Ref. 87	Contact Assembly	No. 88
Ref. 88	End Cheek Mycalex	No. 82
Ref. 89	Contact Assembly	No. 105
Ref. 90	Coupling Mycalex	No. 11.5

NOTE: The preceding Cross Raference List for T5553 identified 'for WZ.26509/D Sh. $1 \& 2$ (Figs. 10 \& 11)' applies only to Fig.10B (WZ.26509/D Sh.1) Jollowing for identities of components in Fig. 11 (WZ.17508/D Sh.2) refer to Components List No.1, R.F. Unit.

R.F. Unit of Transmitter HS31/l
 (WZ.26509/D Sh.1)

Modification No. 1785

Modification No. 1785 entails the provision of Filter Type W.IO240 Ed.B at the output of HS31/l when 50 ohms output impedance is provided. by Transformer Type HAll2.

R.F. Unit of Transmitter HS3lN/
 (WZ.27279/D Sh.l)

Modification No. 1784

L30, L31, L32 and L33 are replaced by R.F. Filter Type W. 102405 Ed.C when 50 ohms output impedance is provided by the use of Wideband Transformer Type HAlI2.

R.F. Unit of Transmitter HS3l
 (WZ.17588/D Sh.2)

Modification No. 1785

Modification No. 1785 entails the provision of Filter Type W. 102405 Ed.B at the output of Transmitter HS3l when 50 ohms output impedance is provided by Transformer Type HAll2.

AP. 2922D
Vol.l
April 1965

CIRCUIT
RADIO FREQUENCY UNIT, SHEET 2
WZ. $17588 / \mathrm{D}$ Sh. 2 Iss. 3

FIG. 11
R.F. UNIT 3.5 kW ISB TRANSMITTER TYPE HS . 31 A

WQ. $12610 \mathrm{Sh} .1-6$ Ed.A
W. 37907 Sh. 9 EȦ.C

Cross Reference List for WZ. $\mathrm{W} 7364 / \mathrm{D}$ Sh. 2

NOTE: SWP is part of C64. See Item 427

Circuit Diagram R.F. Unit HS3lA
 (WZ.17364/D Sh.2)

Modification No. 1784

Filter W. 102405 Ed.C replaces L32 and L33 when 50 ohms output impedance is provided in Transmitter HS31A using Transformer Type HAll:

CIRCUIT DIAGRAM
R.F. UNIT, PART 2 (OUTPUT CIRCUIT) HS31A

FIG.11A
WZ. 17364/D SH. 2 ISS. 3

MIXER UNIT HS.3IA
W. 37920 Sh.7-9 Ed.D

WQ. $12610 \mathrm{Sh} .7 \mathrm{Ed} . \mathrm{A}$
Cross Reference List
for WZ.24354/D Sh. 1

Ref.	No.														
Cl	44	C23	51	C44	51			R4	242	R25	251	R46	242		
C2	45	C24	51	C45	51	L1	114	R5	242	R26	252	R47	260		
C3	45	C25	46	C46	51	42	115	R6	249	R27	242	R48	260	TRI	372
C4	45	c26	47	C47	46	43	116	R7	250	R. 28	252	R53	260	TR2	373
C5	46	C27	50	C48	51	L4	117	R8	251	R29	254	R54	260	TR3	374
66	47	C28	49	C49	45	L5	118	R9	252	R30	255	R62	256	TR4	375
C7	47	C29	44	C50	53	46	119	R10	242	R31	252	R64	263	TR5	376
C8	47	C30	52	C51	53	L7	118	R11	249	R32	256	R101	255		
69	48	c31	45	C52	53	48	118	R12	248	R33	242	R102	248		
C10	49	C32	53	C53	50	49	118	R13	242	R34	242			V1	396
Cll	45	033	53	054	45	410	118	R14	242	R35	242			V2	396
Cl2	45	C34	53	C55	45	L11	120	R15	250	R36	257			V3	396
C13	45	035	50	C57	45			R16	251	R37	251			V4	396
C14	46	C36	45	C58	45			R17	252	R38	258			V5	396
C16	47	C37	51	Cl16	45			R18	242	R39	252			V6	396
C17	47	C38	51			MI	155	R19	253	R40	:251				
C18	50	039	51					R20	248	R41	242	SKR	308		
C19	49	C40	51					R21	242	R42	242				
C20	45	C4I	46			RI	246	R22	242	R43	257				
021	50	C42	45			R2	247	R23	249	R44	259	SWA	337		
022	45	C43	51			R3	248	R24	250	R.45	:242	SWB	338		

MISCETLANEOUS MECHANICAL ITHMS

Ref.l Spring Contact
Ref. 3 Valveholder for Vl-V6
Ref. 4 Insulator (Stand-Off)

No. 479
No. 505
No. 448

MIXER UNIT
(Refer to Master Components List T5553)
Cross Reference List
for WZ.26511/D Sh.l\&2 (Fig.12\&13).

Ref.	No.														
	(177														
L.	(178	L. 15	182	L29	189	PLBB	263	RV6	397	SKX	405	TR3	502	V 3	520
L2	179	L16	179	L30	190	PLBC	263	RV7	397	SKY	405	TR4	503	V 4	520
L3	180	L17	180	L31	190	PLBD	263	RV8	397	SKZ	405	TR5	504	V5	520
L4	181	L18	181	L32	190	PLBE	263	RV9	397			TR6	505	V6	520
L5	182	L19	182	L33	190	PLBF	263	RV10	397	SWA	451	TR7	506	V7	521
L6	183	L20	183	L34	190	PLBG	263	RV11	397	SWB	452	TR8	507	V8	521
L7	182	L21				PLN				SWC	453	TR9	502	V9	522
L8	182	L22				PLP	265	SKQ	405	SWD	454	TR10	503	V10	522
L9	182	L23	182					SKR	405	SWE	455	TR11	508	V11	523
L10	182	L24	182	LKA	214	RVI	396	SKS	405	SWF	455	TR12	509	V13	523
L11	184	L25	182			RV2		SKT	405	SWG	456	TR13	510		
L12	185	L26	188	M1	230	RV3	397	SKU	405						
L13	186	L27				RV4	397	SKV	405	TRI	500	V1	520		
L14	187	L28		PLBA	263	RV5	397	SKW	405	TR2	501	V2	520		

MISGELLANEOUS MECHANICAL ITEMS

Ref.l Spring Contact
Ref. 2 Valveholder B8G for V10 \& V1l
Ref. 3 Valveholder B7G with Skirt for V1 to V9, V12 \& V13
Ref. 4 Insulator

No. 86
No. 526
No. 527
No. 208

NOTE: The preceding Cross Reference List for T5553 identified 'for WZ.26511/D Sh. 1 \& 2 (Figs. 12 \& 13)' applies only to Fig.12B (WZ.26511/D Sh.1). For identities of components in Fig. 13 (WZ.17590/D Sh.2), refer to
Components List No.1, Mixer Unit.

R.H. R\&C UNIT

A. P. 116E-0231-

2nd. Edn, A.L. Maroh, 1969.

> RECTIFIER \& CONTROL UNIT W. 37908 Sh. 3 Ea.B
> Cross Reference List
> for WZ.17361/D Sh.1 (Fig.14A)

MISCELLANEOUS MECHANICAL ITEMS
Ref. 1 Fuseholder (For FST-9)
Ref. 2 Fuseholder (For FSI-5,10-12,14-15)
Ref. 3 Fuseholder (For FSI6-18,20,22-25)
Ref. 4 Valveholder (For V7 \& V8)
Ref. 5 Valveholder (For V9)
Ref. 6 Lamp Jack (For LPl-11)
Ref. 7 Resistor Mounting (For R1 \& R2)
Ref. 8 Resistor Mounting (For RI7-19)
Ref. 9 Anode Clip
Ref. 10 Resistor for Mounting(For R13 \& R25)
Ref.ll Valve Retainer (For V9)
Ref.l2 Valve Retainer (For V7 \& V8)
Ref. 15 Stand-Off Insulator
Ref. 16 Valve Retainer (For V10)
No. 446
No. 444
No. 445
No. 497
No. 498
No. 455
No. 465
No. 466
No. 414
No. 467
No. 499
No. 500
No. 449
No. 501
Socket for Relays OR \& SP
No. 503
R.H. R\&C UNIT

A. P. 116E-0231-1

2nd. Ean, A.I.
Maroh, 1969.

FAN

Fitted to all Rectifier and Control Units Refer to Figs. $14,14 \mathrm{~A}$ and 14 B

Contactor replacement

Applicable to all Rectifier and Control Units Refer to Figs. $14,14 \mathrm{~A}$ and 14 B

Fig. 14 C

RECTIFIER \& CONTROL UNIT
Refer to Master Components List 15553 Issue
Cross Reference List
for WZ. $26506 / D \mathrm{Sh} .1$ \& WZ. $26506 / \mathrm{B}$ Sh. 2 (Fig.14B \& 15A)

Ref.	No.														
C1	7	FSIl	134					R31		RV3	390	SWG	S443	TR5	4
C2	7	FSI2	134			PLAJ	:262	R32		RV4	'390	SWH	: 444	TR6	\% 495
C3	7	FSI3						R33	306	RV5		SWJ	1445	TR7	\% 496
C4	7	FS14	237			R1	;291	R34	:306	RV6	,391	SWK	246	TR8	497
C5	8	FSI5	137	LI	149	R2	:292	R35	306	RV7	392	SWL	[447	TR9	498
C6	8	FSI6	138	L2	150	R3	293	R36	306	RV8		SWM	448	TRIO	498
C7	3	FSI7	238	L3	150	R4	:294	R37	306			SWN	1449	TR11	498
C8	9	FSI8	'139	L4		R5		R38	306	RELAYS	\&	SWP		TR12	498
										CONTAC	TORS				
C9	10	FSI9		L5	; 151	R6	295	R39	[306	FC)		SWQ		TR13	498
C10	10	FS20	139	L6	151	R7	¢295	R40	:306	ST)		SWR	i450	TR14	498
Cl1	10	FS21		L7	! 152	R8	296	R41	306	FF)	111				
C12		FS22	140	L8		R9	296	R42	:306	IA)		TB1	475	V1	513
C13		FS23	141	L9		R10	296	R43	306	MC)*		TB2	476	V2	513
C14		FS24	242	L10	153	R11	297	R44	, 307	OR	284	TB3	1476	V3	513
C15	11	FS25	140			R12	298	R45	:307	SP	285	TB4	476	V4	513
C16	12	FS26		LPI)		RI3	[299	R46	:307	FD	469	TB5	4	V5	513
C17	13	FS27		LP2)		R14	300	R47	;308	OD	288	tb6	477	v6	513
C18	13	FS28		LP3)		R15	\% 300	R48	;309	OE	'288	TB7	477	V7	514
C19	! 14	FS29		LP4)		R16	300	R49	:310	OG	286	tB8	1478	v8	514
C20	14	FS30		LP5)		R17	301	R50	:311	OJ	287	TB9	479	V9	515
021	: 15	FS 31		IP6)	: 213	R18	[301	R51	:312	ILR	112	TB10	: 480	V10	516
		FS32		LP7)		R19	-302	R52	:313			TBII			
		FS33		LP8)		R20		R53	:314			TB12		XI	196
FS1	134	FS 34		LP9)		R21		R54	¢315	SKAJ	416	TB13		X2	488
FS?	234	FS35		LP10)		R22		R55	316			TB14		X3	123
FS3	134	FS 36		LPII)		R23				SWA	237	TB15	:481	X4	532
FS4	135	FS37		MI	217	R24				SWA6	438	TB16			
FS5	134	FS38		M2	218	R25	303			SWB	239		482		
FS6		FS39		M3	219	R26				SWB6	240	TB17)	$482 A$		
FS7	\$36	FS40				R27				SWC	441	TR1	499		
FS8	136	FS41	T37	MRI	280	R28	¢304			SWD	241	TR2	491		
FS9	236	FS42	137	MR2	281	R29	-305	RV1	¢389	SWE	241	TR3	492		
FSIO	-34	FS43	'137	MR3	282	R30		RV2	[390	SWF	1442	TR4	493		
Wo	tisac	plac	emen	for	'item	Ref:	MC:	CC 2	003	(Type		$\text {) (} \mathrm{Mo}$	'. A	75)	

Page 1 of 2
Issue 4
AL 9, Sep 75

MISCELLANEOUS MECHANICAL ITEMS

Ref. 1	Fuseholder	No. 144
Ref. 2	Fuseholder	No. 145
Ref. 3	Fuseholder	No. 146
Ref. 4	Valveholder I.O.	No. 528
Ref. 5	Valveholder B5	No. 529
Ref. 6	Lamp Jack	No. 210
Ref. 7	Resistor Mounting	No. 233
Ref. 8	Resistor Mounting	No.234
Ref. 9	Anode Clip	No. 84
Ref.10	Resistor Mounting	No. 235
Ref.11	Valve Retainer	No. 399
Ref.12	Valve Retainer	No. 400
Ref.13		
Ref.14		No.
Ref.15	Stand-Off Insulator	No.
Ref.16	Valve Retainer	No.111

> R.H. R\&C UNIT

A. P. 116E-02312nd. Edn, A.L. Maroh, 2969.

CIRCUIT DIAGRAM
A.P.116E-0231-1

2nd Edn. Oct. '67

RECTIFIER AND CONTROL UNIT, PART 2
HS 31/1 AND HS 31A/1

FIG.15A
WZ. $26506 / \mathrm{B} \mathrm{SH} .2$ ISS. 1

	$\begin{array}{\|l\|} \hline \text { RADIATED } \\ \text { FREQ. } \\ \text { Mc/s. } \\ \hline \end{array}$	$\begin{aligned} & \text { OSC } \\ & \text { FREQ. } \\ & \mathrm{MCl/5} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { HGI (VI) } \\ \text { Ic } \\ \hline \end{array}$	$\begin{gathered} \mathrm{HG} \mathrm{Z}(\mathrm{~V}) \\ \mathrm{IE}) \\ \mathrm{IE} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline H G 3(V 3) \\ I c \\ m A \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \mathrm{AMP}(\mathrm{VA}) \\ \mathrm{I}_{\mathrm{E}} \mathrm{~A} \\ \hline \end{array}$	$\mathrm{AMP}_{\text {A }}^{\text {I }}$			ITOR $\begin{gathered}\text { V13. } \mathrm{ma} \\ \text { MA }\end{gathered}$	$\begin{gathered} \text { MIXER(V7/8) } \\ I_{e} \\ \mathrm{~mA} \\ \hline \end{gathered}$	$\left\{\begin{array}{c} \text { STI (vg) } \\ \mathrm{I}_{6} \\ \mathrm{~mA} \\ \hline \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { ST2 (V10) } \\ I_{c} \\ \mathrm{~mA} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { ST3 }(V I I) \\ I_{e} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ST4 } \\ & \text { Eq } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ST4} \\ \mathrm{Ia} \\ \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{gathered} \text { ST5 } \\ \text { E } \\ V \\ \hline \end{gathered}$	$\begin{aligned} & \text { STS } \\ & \text { IC } \\ & \text { mA } \\ & \hline \end{aligned}$	¢ $\begin{gathered}\text { ST6 } \\ \text { Tg } \\ \text { mA }\end{gathered}$	$\begin{gathered} 5 T 6 \\ I_{e} \\ A \\ \hline \end{gathered}$	$\begin{aligned} & \text { H.T } \\ & K V \end{aligned}$	$\begin{array}{\|c\|} \hline \text { A.C.C } \\ \text { CURRENT } \\ A \end{array}$	$\begin{aligned} & \text { MEAN } \\ & \text { P/O } \\ & \text { KW } \end{aligned}$	$\begin{aligned} & \text { P.E.P. } \\ & \text { Kw. } \end{aligned}$
2 T	4.0	$3 \cdot 55$	$2 \cdot 8$	$2 \cdot 0$	$1 \cdot 75$	$4 \cdot 7$	$1 \cdot 0$	18	8	19	12	$8 \cdot 6$	41	25	$4 \cdot 5$	92	55	149	80	1.06	$4 \cdot 1$	13.0	1.8	3.6
c w	4.0	$3 \cdot 55$	2-8	2.0	$1 \cdot 8$	$4 \cdot 7$	$1 \cdot 0$	18	8	19	12	$8 \cdot 5$	41	27	$10 \cdot 5$	90	110	210	240	1.6	4.05	$15 \cdot 7$	$3 \cdot 8$	
2 T	6.0	4.55	$2 \cdot 6$	$5 \cdot 4$	$1 \cdot 8$	$3 \cdot 0$	0.6	16	8	19	12	$8 \cdot 5$	40	25	$4 \cdot 0$	92	70	139	75	$1 \cdot 0$	$4 \cdot 1$	13.2	$1 \cdot 8$	$3 \cdot 6$
c w	6.0	4.55	$2 \cdot 6$	$5 \cdot 5$	$1 \cdot 8$	3.1	0.6	15	8	19	12	8. 5	40	25	$9 \cdot 5$	91	109	200	220	$1 \cdot 55$	$4 \cdot 05$	$15 \cdot 1$	$3 \cdot 6$	
2 T	$8 \cdot 5$	5.8	$2 \cdot 6$	$5 \cdot 4$	$1 \cdot 8$	$3 \cdot 0$	0.6	16	8	19	12	$8 \cdot 5$	40	25	$4 \cdot 8$	92	65	143	68	1.01	4.1	12.1	$1 \cdot 8$	$3 \cdot 6$
c w	8.5	5.8	$2 \cdot 6$	5.5	1-8	$3 \cdot 1$	0.6	15	8	19	12	$8 \cdot 5$	40	25	$8 \cdot 0$	92	100	220	215	1.51	4.05	15.0	$3 \cdot 6$	
2 T	$10 \cdot 0$	6.55	$2 \cdot 6$	$5 \cdot 4$	$1 \cdot 8$	$3 \cdot 0$	0.6	16	8	19	12	$8 \cdot 5$	40	25	$4 \cdot 4$	91	59	139	81	1.05	4.1	$13 \cdot 2$	$1 \cdot 8$	3.6
c w	10.0	6. 55	$2 \cdot 6$	5.5	1-8	$3 \cdot 1$	0.6	15	8	19	12	8.5	40	25	$7 \cdot 0$	88	90	175	205	$1 \cdot 45$	$4 \cdot 0$	$15 \cdot 0$	$3 \cdot 6$	
2 T	15.0	5.95	$2 \cdot 6$	$5 \cdot 4$	1.8	$3 \cdot 0$	0.6	16	8	19	12	$8 \cdot 5$	40	25	4.0	94	55	141	70	1.05	4.1	$13 \cdot 3$	$1 \cdot 8$	$3 \cdot 6$
c W	15.0	5.95	$2 \cdot 6$	5.5	$1 \cdot 8$	3.1	0.6	15	8	19	12	$8 \cdot 5$	40	25	7-9	90	106	200	240	1.52	$4 \cdot 05$	$15 \cdot 2$	$3 \cdot 6$	
2 T	18.0	3.725	$2 \cdot 6$	$5 \cdot 4$	1.8	$3 \cdot 0$	0.6	16	8	19	12	$8 \cdot 5$	40	25	$3 \cdot 9$	92	59	130	60	0.98	4.05	$13 \cdot 0$	$1 \cdot 8$	$3 \cdot 6$
c W	18.0	3.725	$2 \cdot 6$	5.5	$1 \cdot 8$	3.1	0.6	15	8	19	12	$8 \cdot 5$	40	25	$8 \cdot 0$	89	104	209	220	1-51	4.0	$15 \cdot 4$	$3 \cdot 6$	
2 T	22.0	4.725	$2 \cdot 4$	$5 \cdot 6$	$4 \cdot 9$	$4 \cdot 7$	$1 \cdot 2$	18	9	19	12	8.5	41	24	$3 \cdot 6$	90	50	133	31	0.75	$4 \cdot 0$	$12 \cdot 5$	$1 \cdot 4$	$2 \cdot 8$
c W	22.0	4.725	$2 \cdot 3$	$5 \cdot 6$	4.9	$4 \cdot 7$	$1 \cdot 2$	18	$8 \cdot 5$	19	12	$8 \cdot 4$	40	25	6.6	88	88	205	110	$1 \cdot 25$	$3 \cdot 95$	$14 \cdot 9$	$2 \cdot 8$	
2 T	$27 \cdot 5$	6.1	$2 \cdot 4$	5.6	$4 \cdot 9$	$4 \cdot 7$	$1 \cdot 2$	18	9	19	12	$8 \cdot 5$	41	24	$3 \cdot 8$	94	49	130	50	0.78	$4 \cdot 05$	12.4	$1 \cdot 4$	2.8
c w	27.5	6.1	2. 3	5.6	4.9	$4 \cdot 7$	$1 \cdot 2$	18	$8 \cdot 5$	19	12	$8 \cdot 4$	40	25	$7 \cdot 6$	91	92	220	150	$1 \cdot 25$	$4 \cdot 0$	$14 \cdot 3$	$2 \cdot 8$	
AP. 2922 D Vol. 1 April 19											TYPICAL WZ. 1279	$\begin{aligned} & \text { POWER } \\ & \text { /D Sh. } \end{aligned}$	FIGURES $1 \text { Iss. } 3$											FIG. 18

	$\begin{array}{\|c} \hline \begin{array}{c} \text { RADIATED } \\ \text { FRER } \\ \text { MC/S } \end{array} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline H G_{1}(V I) \\ I_{C} \\ \mathrm{~mA} \\ \hline \end{array}$	$\begin{array}{\|c} H G_{2}(\mathrm{~V} 2) \\ \mathrm{Ic}^{2} \\ \hline \end{array}$		$\begin{gathered} \mathrm{AMP}(\mathrm{~V} 4) \\ \mathrm{IC} \\ \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline A M P P \\ \hline \text { IG } \\ \hline \end{array}$	$\begin{gathered} (\mathrm{V} 5 / 6) \\ \hline \frac{1 /}{1 /} \\ \hline \mathrm{mA} \\ \hline \end{gathered}$	$\begin{array}{\|c} \frac{\mathrm{MO}}{\mathrm{Vin}} \mathrm{IC} \\ \mathrm{mAA} \\ \hline \end{array}$		$\left\lvert\, \begin{gathered} M \mid X E R(V] / Q) \\ I_{2} \\ \mathrm{~mA} \\ \hline \end{gathered}\right.$	$\begin{gathered} \hline \mathrm{STI} \mathrm{IV} 9) \\ \mathrm{Ic} \\ \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ST2 (Vi0) } \\ I_{c} \\ \text { mA } \\ \hline \end{array}$	$\begin{gathered} \mathrm{ST} 3(\mathrm{VII}) \\ \mathrm{Ie}_{\mathrm{e}} \\ \mathrm{~mA} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ST}_{4} \\ & E_{9} \\ & \hline \end{aligned}$	$\begin{gathered} \text { ST4 } \\ \text { Ta } \\ \text { mA } \end{gathered}$	$\begin{gathered} \text { ST5 } \\ E_{9} \\ \hline \end{gathered}$	$\begin{gathered} \text { STS } \\ \text { Ic } \\ \text { mA } \\ \hline \end{gathered}$	$\begin{gathered} \text { ST6 } \\ T_{9} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { ST6 } \\ \mathrm{I}_{6} \\ A \\ \hline \end{gathered}$	$\begin{aligned} & H^{\top} \\ & \mathrm{KV} \end{aligned}$	$\begin{gathered} \text { CURRENT } \\ A \end{gathered}$	MEAN P/O kw	P. E. P. Kw
2 T	2.5	-	2.8	4.1	$1 \cdot 5$	6.2	0.2	13	8	16	10	8.6	38	25	3.5	92	65	149	98	1.06	4.1	13.0	1.8	$3 \cdot 6$
c w	2.5	-	2.8	$4 \cdot 1$	1.5	6.2	$0 \cdot 2$	13	8	16	10	8.5	37	24	6	90	100	210	255	$1 \cdot 6$	4.05	$15 \cdot 7$	$3 \cdot 6$	
$\begin{aligned} & \text { D.S.B } \\ & \text { (CARRIER) } \end{aligned}$	2.5	-	2.8	$4 \cdot 9$	1.6	$3 \cdot 8$	$0 \cdot 5$	17	8	18	13	8	40	28	$2 \cdot 2$	94	61	129	65	0.85	4.05	11.6	$1 \cdot 5$	
2 T	4.0	-	$2 \cdot 6$	2.4	1.8	4.3	1.0	20	8	16	9	8.5	38	25	$3 \cdot 0$	92	70	139	107	1.1	4.1	$13 \cdot 2$	1.75	3. 5
c w	4.0	-	$2 \cdot 6$	2.4	1.8	$4 \cdot 3$	1.0	20	8	16	9	8.5	38	25	$4 \cdot 8$	85	100	185	260	1.55	4.05	15.1	3.5	
$\begin{array}{\|c\|} \hline \text { O.S.B } \\ \text { (CARRIER) } \\ \hline \end{array}$	$4 \cdot 0$	-	$2 \cdot 6$	$2 \cdot 8$	$1 \cdot 9$	$3 \cdot 7$	1.0	22	\bigcirc	17	11	$8 \cdot 3$	39	27	2.8	91	69	135	73	0.9	4.05	$12 \cdot 5$	1.5	
2 T	4.9	-	2.6	$2 \cdot 6$	$1 \cdot 8$	8.4	0.1	12	8	16	9	8.5	38	25	2.5	67	65	143	93	1.06	$4 \cdot 1$	12.8	1.75	3.6
C W	$4 \cdot 9$	-	$2 \cdot 6$	$2 \cdot 6$	$1 \cdot 8$	$8 \cdot 4$	0.1	12	8	16	9	8.5	38	25	4.2	82	100	200	265	$1 \cdot 57$	4.05	$15 \cdot 0$	$3 \cdot 5$	
$\begin{array}{c\|} \hline \text { B.S.B. } \\ \text { (CARRIER) } \\ \hline \end{array}$	$4 \cdot 9$	-	2.6	$3 \cdot 3$	1.9	8.2	0.1	13	8	18	11	8.4	38	28	$2 \cdot 4$	87	65	140	66	0.86	4.05	12	$1 \cdot 5$	
$2 T$	$8 \cdot 0$	-	2.6	$3 \cdot 2$	$1 \cdot 4$	8.6	0.1	12	8	16	8	8.5	40	25	2.5	88	50	115	91	1.05	4.1	12.0	1.75	$3 \cdot 6$
cw	8.0	-	2.6	$3 \cdot 2$	1.4	$8 \cdot 6$	0.1	12	8	16	8	8. 5	40	25	5.4	80	96	165	255	$1 \cdot 55$	4.0	15.0	$3 \cdot 5$	
$\begin{array}{\|c\|} \hline \text { D.S.B. } \\ \text { (CARRIER) } \\ \hline \end{array}$	$8 \cdot 0$	-	$2 \cdot 6$	$3 \cdot 5$	$1 \cdot 5$	$8 \cdot 4$. 05	13	8	17	9	8.4	40	27	2.5	88	50	115	65	$\cdot 9$	4.05	$12 \cdot 0$	1.5	
$2 T$	$10 \cdot 2$	-	2.6	1.8	1.6	$4 \cdot 8$	1.0	20	8	16	12	8.5	40	25	3.5	90	65	130	105	1.05	4.1	$13 \cdot 3$	1.75	$3 \cdot 6$
cw	10. 2	-	$2 \cdot 6$	1.8	1.6	$4 \cdot 8$	1.0	20	8	16	12	8.5	40	25	$7 \cdot 9$	81	115	170	250	1.52	4.05	$15 \cdot 2$	$3 \cdot 5$	
$\begin{array}{\|c\|} \hline \text { D.S.B. } \\ \text { (CARRIER) } \\ \hline \end{array}$	$10 \cdot 2$	-	$2 \cdot 6$	$2 \cdot 1$	1.7	$4 \cdot 5$	0.9	22	θ	17	15	$8 \cdot 3$	39	27	3.5	90	64	129	74	$\cdot 9$	4.05	$12 \cdot 5$	$1 \cdot 5$	
2 T	11.1	-	$2 \cdot 6$	3. 2	1.5	8.7	0.1	11	8	16	8	8.5	40	25	3	86	59	120	90	1.02	4.05	$12 \cdot 5$	1.75	$3 \cdot 6$
cw	11.1	-	$2 \cdot 6$	$3 \cdot 2$	1.5	8.7	0.1	11	8	16	8	8.5	40	25	6.5	80	104	166	250	$1 \cdot 5$	$4 \cdot 0$	14. 5	3.5	
$\begin{array}{\|c\|} \hline \text { D.S.B. } \\ \text { (CARRIER) } \\ \hline \end{array}$	11.1	-	$2 \cdot 6$	$3 \cdot 5$	1.6	8.4	0.1	12	8	17	9	$8 \cdot 4$	39	27	2.9	86	59	118	61	. 85	4.05	11.5	$1 \cdot 5$	
$2 T$	13.1	-	2.6	4.6	1.8	3.4	0.5	16	9	16	11	8.5	41	30	$2 \cdot 8$	86	55	140	90	1.1	4.1	12.5	1.75	3.6
$c w$	13.1	-	2.6	4.6	1.8	3.4	0.5	16	8.5	16	11	$8 \cdot 4$	40	29	6.8	76	108	180	260	$1 \cdot 5$	4.05	14.9	$3 \cdot 5$	
$\begin{array}{\|c\|} \hline \text { D.S.B. } \\ \text { (CARRIER) } \\ \hline \end{array}$	13.1	-	$2 \cdot 6$	5•1	1.9	$3 \cdot 1$	0.4	18	8	18	13	$8 \cdot 4$	40	33	$2 \cdot 8$	85	55	138	60	0.92	4.05	$11 \cdot 5$	1.5	
2 T	20	-	$2 \cdot 8$	5.0	$4 \cdot 9$	7.3	0.3	18	7	16	12	8.5	38	24	$3 \cdot 3$	91	68	155	105	1.05	4.05	12.4	1.75	3.6
cw	20	-	2.8	$5 \cdot 0$	4.9	7.3	0.3	18	7	16	12	8.4	37	25	6. 8	85	110	210	250	1.6	4.0	15.5	$3 \cdot 5$	
D.SB. (CARRIER)	20	-	$2 \cdot 8$	$5 \cdot 6$	5	7.0	0.5	20	7	17	14	$8 \cdot 3$	37	27	$3 \cdot 3$	90	67	153	70	0.87	4	11.4	4.5	7

radiated frequency Mc/s

Radiated frequency in mc/s

[^1]A.P. P1 $16 \mathrm{E}-0231-1$
2nd Edn. Oct.

Feeder Capacitor Arc and Stage 6 Grid Current Trip Circuit, HS31/1 (WZ.26146/B Sh.1)

Modification No. 1785

Modification No. 1785 entails the provision of Filter W. 102405 Ed.B at the output of HS31/l when 50 ohms output impedance is provided by use of Transformer HAll2.

FLNCTIONAL DIAGRAM
FEEDER CAPACITOR ARC AND STAGE 6 GRID CURRENT TRIP CIRCUIT HS $31 / 1$

F1G. 22
WZ. 26146/B SH. ISS. 2

Feeder Capacitor Arc and Stage 6 Grid Current Trip Circuit of HS3lA/l (WZ.27283/B Sh.l)

Modification No. 1784

L30, L31, L32 and L33 are replaced by Filter W. 102405 Ed.C when 50 ohms output impedance is provided by use of Transformer Type HAll2.
A.P.116E-0231-1

Fig. 22A(a)

FEEDER CAPACITOR ARC \& STAGE 6

GRID CURRENT TRIP CIRCUIT HS31A/ 1

FIG.22A
WZ. $27283 / \mathrm{B}$ SH. 1 ISS. 2

RECTIFIER \& CONTROL UNIT
RADIO FREQUENCY UNIT

SUCTION FAN ASSEMBLY 6105-99-622-3206

Cross Reference List for Fig. 25
(Refer to Components List No. 1 - page 100)

Dwg. Ref.	No.						
14	98	17	95	21	94	24	97
15	92	20	96	22	93		

TRANSMITTERS, RADIO
TYPES T.10158, T.10158A, T. 16719
T.10158A, T.16719A
(Marconi HS 31, HS31 modified, HS 31A HS31/1 and HS 31A/1

Supplement 1
to
A.P.116E-0231-1

2nd Edition

NOTE: The Section titles in this Contents List are the same as those bearing the same Section numbers in the main book (A.P.116E-0231-1).

1. INTRODUCTION
2. TRANSMITTER DIFFERENCES
(4. DESCRIPTION OF EQUIPMENT)
4.1 General
4.2.5 Fuse Panel (Fuse List)
4.2.8 4th and 5th R.F. Amplifier (Controls and meters)
(4.3 GENERAL DESCRIPTION)
4.3.1 Rectifier and Control Unit
4.3.2.1 Mixer Unit
4.3.2.2 4 th and 5th R.F. Amplifier
4.3.2.3 Amplifier Stage 6
(5. CIRCUIT DESCRIPTION)
5.2 Power Supplies
(6. DETAILED CIRCUIT DESCRIPTION)
6.2.1 Harmonic Generator
6.2.4 Stages 4 and 5
6.2.5 Stage 6
6.2.6 Output Circuit
6.2.7 Monitor Frequency Changer
(6.3 POWER SUPPLIES)
6.3.1 Main H.T. Rectifier
6.3.5 Control Circuit Supplies
(6.4 CONTROL CIRCUITS)
6.4.1 Switching-on Sequence
6.4.2 H.T. Off and Trip Re-set
6.4.4 Overload Circuits
(8. SETIING UP)
8.7 SETTING UP THE OVERLOAD RELAYS
8.7.1 Stage 6 Grid Current
8.7.2 Arc Suppression
8.7.3 Suction Unit and Starter
8.11 STAGE 5-6 PRESET COUPLING CAPACITOR ADJUSTNENT
(11. MAINTENANCE)
11.4 Manual Drive Assemblies

3.5 kW H.F. I.S.B. TRANSMITTERS
Types HS 31, HS 31/1, HS31A and HS31A/1

1 INTRODUCTION

The Types HS31, HS31/1, HS31A, HS31A/1 are general purpose transmitters for use in the frequency range 2.5 to $27 \mathrm{Mc} / \mathrm{s}$, HS 31 A and HS31A/1, covering the band 2.5 to $20 \mathrm{Mc} / \mathrm{s}$, and the HS31 and HS $31 / 1$ the Band 4 to $27.5 \mathrm{Mc} / \mathrm{s}$. The four transmitters are similar, but in the HS31 and HS $31 / 1$ the frequency range is covered without external changes of coils, whereas the HS31A and HS31A/1 have internal links which, set in one position, cover the band $2.5-17 \mathrm{Mc} / \mathrm{s}$, and, in the other, the Band 0 - ($20 \mathrm{Mc} / \mathrm{s}$. External units are used to provide the drive and the type of service required. Drive frequencies are normally supplied by Type HD21 Crystal Drive Units. The type of service is supplied by various units at different intermediate frequencies depending on the service and type of transmitter. The i.f. may also be dependent on the required radiated frequency i.e. above or below $4 \mathrm{Mc} / \mathrm{s}$.

2 TRANSMITTER DIFFERENCES

The variations in frequency range between the HS 31 and HS 31 A and between HS $31 / 1$ and HS $31 \mathrm{~A} / 1$ transmitters cause three main differences:
(a) in the unit identities,
(b) in the intermediate frequencies,
(c) in the r.f. tuning and loading circuit components.

The differences in the unit identities used in the four transmitters are clearly shown in List 2 at the front of the handbook and Table 1 following gives the differences in intermediate frequencies. The variations in r.f. tuning and loading comporents are covered in Section 4 (Description of Equipment).

Table 1
List of Ancillary Units and Intermediate Frequencies

HS31 and HS31/1			HS31A and HS31A/1		
Type of Service	Aux. Unit	$\begin{gathered} \mathrm{I} \cdot \mathrm{~F} \cdot \\ (\mathrm{Mc} / \mathrm{s}) \end{gathered}$	Aux. Unit	$\begin{gathered} \text { I.F. }(\mathrm{Mc} / \mathrm{s}) \\ (\text { Above } 4 \mathrm{Mc} / \mathrm{s} \\ f R A D) \end{gathered}$	$\begin{gathered} \text { I. F. }(\mathrm{Mc} / \mathrm{s}) \\ \text { (Below } 4 \mathrm{Mc} / \mathrm{s} \\ \text { f RAD) } \end{gathered}$
FSK	HD22	3.1	HD22	3.1	6.2
FSK Diplex	HD22	3.1	$\begin{aligned} & \text { (Modified) } \\ & \text { HD22 } \\ & \text { (Modified) } \end{aligned}$	3.1	6.2
	HD61B	3	HD51		
I.S.B.	HD51 SSD2	3.1	(Modified)	2.15	2.15

Table 1 (Contd.)

HS31 and HS31/I			HS 31 A and $\mathrm{HS} 31 \mathrm{~A} / 1$		
Type of Service	Aux. Unit	$\begin{gathered} \text { I. } \mathrm{F} \cdot \\ (\mathrm{Mc} / \mathrm{s}) \end{gathered}$	Aux. Unit	$\begin{gathered} \text { I. F. }(\mathrm{Mc} / \mathrm{s}) \\ (\mathrm{Above} 4 \mathrm{Mc} / \mathrm{s} \\ f \mathrm{RAD}) \end{gathered}$	$\begin{gathered} \text { I.F. }(\mathrm{Mc} / \mathrm{s}) \\ (\mathrm{Bel} \text { ow } 4 \mathrm{Mc} / \mathrm{s} \\ f(\mathrm{RAD}) \end{gathered}$
$\begin{aligned} & \text { D.S.B. } \\ & \text { C.W. } \end{aligned}$	HD51 HD22	-	$\begin{gathered} \text { HD5I } \\ \text { (Modified) } \\ \text { HD22 } \\ \text { (Modified) } \end{gathered}$	$\begin{aligned} & 2.15 \\ & 3.1 \end{aligned}$	2.15 6.2

4.1 GENERAL

The information given in the main book (A.P.116E-0231-1), together with this Supplement, provides a complete marual on the Marconi Transmitter Types HS31, HS $31 / 1, H S 31 \mathrm{~A}$ and HS31A/1. Where desirable, the main book has been amerded, but where repeated references would cause complicated notes to be added this supplement has been referred to. For ease of comparison between the Supplement and A.P.116E-0231-1, the paragraph headings and numbers are the same in the Supplement as those in the main book in which the transmitter differences occur.

4.2.5 Fuse Panel

The change from a single phase r.f. unit blower in the HS 31 and HS31A to a 3-phase blower in the HS $31 / 1$ and HS31A/ 1 causes FS4 to have a different function, and three additional fuses (FS4I-43) to be needed. The table in A.P.116E-0231-1 covers the HS 31 and HS31A, whilst the sdditional fuses for the HS $31 / 1$ and FSS1A/1 are listed in Table 2,,\ldots the 2 amp . FS4 substituted for the 10 amp . fuse in HS31 and HS31A.

Table 2

Fuse	Location		Rating
FS4	Blower Starter Supply	2 A	
FS41	Blue Phase R.F. Unit Blower	6A	
FS42	Yellow " " "	"	"
FS43	Red	" "	$"$

4.2.8 4th and 5th R.F. Amplifier

Ir. the HS $31 / 1$ and HS $31 \mathrm{~A} / 1$ transmitters, the Stage 5 Feedback control RV3 is situated on the 4 th and 5th R.F. Amplifier Panel, and provides, by means of a.f. feedback, adjustment of the envelope correction circuit in Stage 5, to minimize I.S.B. distortion.

4.3.1 Rectifier and Control Unit

In the HS $31 / 1$ and HS31A/1 are two additional overload relays $O G$ and $O J$, mounted on a separate sub-unit at the top of the right-hand wall of the cubicle, viewed from the rear, near the rear door. These relays are operated by excess currents in the stage 6 grid circuit or when an arc develops across the feeder capacitor (C64 in the r.f. unit).

The three-phase r.f. unit blower in the HS $31 / 1$ and HS31A/1 has a starter unit, and this, with its associated fuses FS4l, 42 and 43, is mounted in front of the bias unit, immediately accessible inside the front door. This starter incorporates its own trip reset circuit oporated by buttons on its front panel.

Standing on the floor of the HS $31 / 1$ and HS31A/1 cubicles are the main h.t. discharge surge limiting resistors $\mathrm{R} 44-\mathrm{R} 46$.

4.3.2.1 Mixer Unit

In the HS31/1 and HS31A/1 sub-units, above the Monitor Frequency Changer U-link selector sockets, is a single co-axial socket labelled MONITOR OUTPUT $3.1 \mathrm{Mc} / \mathrm{s}(H S 31 / 1) 2.15 \mathrm{Mc} / \mathrm{s}$ (HS3IA/1). This is an alternative outlet for the $3.1 \mathrm{Mc} / \mathrm{s}$ HS $31 / 12.15 \mathrm{Mc} / \mathrm{s}$ (HS $31 \mathrm{~A} / 1$) monitoring signal for use when a Spectrum Analyser tuned to $3.1 \mathrm{Mc} / \mathrm{s}$ (HS31/1) $2.15 \mathrm{Mc} / \mathrm{s}$ (HS $31 \mathrm{~A} / 1$) is placed beside the transmitter. The roof outlet is for the cable which passes $3.1 \mathrm{Mc} / \mathrm{s}(\mathrm{HS} 31 / 1) 2.15 \mathrm{Mc} / \mathrm{s}$ (HS31A/1) to the monitoring rack in the Drive Room. To use this facility the socket must be connected to SKT on the mixer chassis when it is desired to monitor the $3.1 \mathrm{Mc} / \mathrm{s}(\mathrm{HS} 31 / 1) 2.15 \mathrm{Mc} / \mathrm{s}$ (HS31A/1) signal at the transmitter. A dummy socket SKZ is fixed to the chassis to anchor the unused plug PLT on either output.

4.3.2.2 4th and 5th R.F. Amplifier

In the HS $31 / 1$ and HS $31 \mathrm{~A} / 1$, the adjustment of an envelope correction circuit to minimize I.S.B. distortion is provided by a feedback poten tiometer RV3, which is situated on the front panel.

The required tuning capacitance, which is switched into circuit with the anode tuning coil by SWA, differs in the HS 31 A and HS31A/1 from the HS 31 and HS $31 / 1$.

In the HS 31A, the tuning capacitors switched by SWA are C32 and C75, whilst in the HS 31A/1 they are C75 and C76.

Storage clips are provided behind the front panel in the HS 31 A for storing the capacitor C76 when the transmitter is operating in the range 6.0 to $20.0 \mathrm{Mc} / \mathrm{s}$ (see Section 9.1 of this supplement).

4.3.2.3 Amplifier Stage 6

To cover the lower frequencies of the HS31A and HS31A/1 the

Capacitors are switched across the anode tuning coil to cover the tuning range of the transmitter. In the HS31/1 and HS $31 \mathrm{~A} / 1$ the capacitors are on the switch assembly, SWB, which is mounted in the lower compartment of Stage 6 circuit in the top right-hand corner, and is ganged with SWA already mentioned in the description of Stage 5, Section 4.3.3.2, and with the output circuit range switch SWC, described below; SWC is shown in more detail in Sketch 'F' in Fig. 4 .

5.2 POWER SUPPLIES

The cooling fan in the HS $31 / 1$ and HS31A/l differs from that in the HS31 and HS31A in that it is 3-phase and is supplied via a starter which incorporates phase failure and overload protection. Its operating coil is controlled via FS4 and ST4 relay contact.

5.2.1 Harmonic Generator

The HS31, HS 31/1, HS31A and HS31A/I transmitters have different intermediate frequencies, the HS31 and HS $31 / 1$ being $3.1 \mathrm{Mc} / \mathrm{s}$ and the HS 31A and HS31A/1 2.15, 3.1 or $6.2 \mathrm{Mc} / \mathrm{s}$. The use of $2.15 \mathrm{Mc} / \mathrm{s}$ is necessary to avoid the i.f. lying within the $2.5-4 \mathrm{Mc} / \mathrm{s}$ frequency band.

To allow the use of $3.1 \mathrm{Mc} / \mathrm{s}$ drive units (for economy reasons) with an HS31A or HS31A/1, the fundamental $3.1 \mathrm{Mc} / \mathrm{s}$ drive is used above $4 \mathrm{Mc} / \mathrm{s}$ radiated frequency, doubling to $6.2 \mathrm{Mc} / \mathrm{s}$ for radiated frequencies below $4 \mathrm{Mc} / \mathrm{s}$. When this system is used monitoring exists only at radiated frequency, but equipment modified to RMC Mod. 1312, and using an I.F. of 3.1 Mc/s, will give an output at I.F. for external monitoring. Radiated frequencies between 2.9 and $3.3 \mathrm{Mc} / \mathrm{s}$ cannot, however, then be used. A crystal frequency table, to replace Table 3 below, faces Fig. 9 in the main book.

The basic crystal formula of the transmitters is the same, but the primary crystal frequency range differs in each case. Table 3 shows the HS31A and HS3IA/1 crystal frequency range (the range for HS31 and HS31/1 is given in Section 6.2.1 in the main book.

Table 3
Crystal Frequency Table

SWA Range Mc / s	$\begin{gathered} \text { i xtal. } \\ \mathrm{Mc} / \mathrm{s} \end{gathered}$	Function			$\begin{aligned} & f \mathrm{HG} \\ & \mathrm{Mc} / \mathrm{s} \end{aligned}$	Mult. Factor m
		V1	V2	, V3		
4-8	4.65-7.15	Ampl.	-	-	4.65-7.15	1
	3.575-4	Doubler	-	-	7.15-8	2
8-16	4-6.425	Ampl.	Doubler	-	$8-12.85$	2
	3.2125-4	Doubler	Doubler	-	12.85-16	4
16-24.4	4-4.4625	Ampl.	Doubler	Doubler	16-17.85	4

A.P. $116 \mathrm{E}-02 \frac{1}{3}$ 2nd Edn. Sup

4 AL.1, July '

6.2.4 Stages 4 and 5

The Stage 5 anode tuned circuit differs in the various transmitter: and Section 6.2.4 in the main book covers the HS31 and HS31/1. The following covers the HS31A and HS3IA/I.

The anode tuned circuit consists of L15 and the two ceramic capacitors C32 (HS3IA) C76 (HS3IA/1) and C75, switched by the range switch SWA. On the lowest frequency range C32 (HS31A) C76 (HS31A/1) is connected in parallel with Ll5. On the next range C32 (HS31A) C76 (HS31A/1) in series with C75 is in circuit and on the other ranges, the self capacities of the valve and circuit tune the inductance.

To provide adjustment of the envelope correction circuit in the HS31/1 and HS31A/1, R27 is shunted by RV3.

In the HS3IA, the output to Stage 6 is via C35 or C35 and C76 in parallel. In the HS31/l and HS3IA/l the output to Stage 6 is via a variable vacuum capacitor (35) that is set to give the correct loading of V 3 and V_{4}; it is set up when the valves are first used and should not require resetting.

6.2.5 Stage 6

To cover the lower frequencies of the HS31A and HS31A/1, the filament chokes differ from those of the HS3l and HS31/1 already described in the main book. The following describes the HS31A and HS3IA/1.

The filament chokes L30 and L31 (L34 and L35 in HS31A/1) are wound from concentric cable. One leg of $V 5$ filament is connected to the inner conductor, the other leg to the outer conductor and the filament supply is applied to the other end. Thus the supply circuit is isolated from r.f. The cathode circuit is grounded via the centre tap of RV6 (RV1 in HS3IA/1) connected between inner and outer of L3I (L35 in HS3IA/1), and the meter shunt R22. Link LKB is used to short L31 (L35 in HS31A/l) out of circuit on the 6.0 to $20 \mathrm{Mc} / \mathrm{s}$ range.

In the HS3I/l and HS31A/l, the grid current flows through one winding of relay $O G$ and excessive current will operate the trip circuits. Excessive grid current may result from feeder faults many of which cause the valve to unload with low anode current and consequently high grid current and grid dissipation.

6.2.6 0utput Circuit

The HS31/l and HS31A/l transmitters have a suppressor circuit incorporated to suppress any arc which may occur across C64. This circuit comprises R32, C40 and relay OG in the RCU. An r.f. arc will produce a d.c. path to earth for the 50 V d.c. via relay $O G$. $O G$ will be energized and its contact OGl will cause OJ to be energized. The contacts of OJ de-energize the main contactor MC and lockout the transmitter via relay OR.

In the HS31/l and HS31A/l, feeder static leak chokes are situated in the roof of the cubicle. In the HS31A/l these will be replaced by Filter W. 102405 Ed.C when 50 ohms output impedance is provided.

6.2.7 Monitor Frequency Changer

The HS31/1 and HS31A/1 have an external monitoring point PLBF which is used when the transmitter is driving a power amplifier, thus allowing points in the power amplifier to be monitored in the same manner as described in Section 6.2.7 in the main book. Also incorporated in the HS $31 / 1$ and HS31A/l is PLBG, which, in conjunction with PLT, SKT and SKZ, permits the use of a Spectrum Analyser tuned to $3.1 \mathrm{Mc} / \mathrm{s}$ (HS31/1) $2.15 \mathrm{Mc} / \mathrm{s}$ (HS $31 \mathrm{~A} / \mathrm{l}$) to be used in the transmitter hall.

6.3.1 Main H.T. Rectifier

In the HS3l and HS31A the smoothing capacitors are earthed direct whereas in the HS31/I and HS31A/l they are earthed via three resistors R44, 45 and 46.

6.3.5 Control Circuit Supplies

The HS3l/l and HS31A/l cooling fans are supplied, via a starter which incorporates phase failure and overload protection, from the 3-phase a.c. input.

6.4.1 Switching-on Sequence

5(g) When, in the HS31/1 and HS31A/1, the H.T. ON button SWE is pressed, the interlock pilot relay ILR will close and the main h.t. contactor MC, will 'make', energized via ODI, OEl and OJI, which are contacts of the overload relays and are normally closed, ORI and OR2, which are contacts of the overload reset relay and are normally closed, ST3 and LA3, which are contacts of the START relay and the auxiliary h.t. relay, and ILRI, which is a contact of the external circuit interlock pilot relay.

The remainder of the switching-on sequence is the same as that for the HS3l and HS31A described in Section 6.4.1 in the main book.

In the HS3l/l and HS31A/1 the external interlock circuit is incorporated in the control circuit, whereas in the HS3l and HS31A facilities exist for making it available as described in the main book.

6.4.2 H.T. OFF and Trip Reset

When SWF, the H.T. OFF and RESET button is pressed the interlock pilot relay ILR in the HS3I/l and HS3IA/1 is released, with the main h.t. contactor, MC, switching off the high voltage rectifier only.

6.4.4 Overload Circuits

In the HS31/1 and HS31A/1 transmitters there are two additional overload circuits to those described in the main book, as follows:

1. Stage 6 Grid Circuit

To protect the Stage 6 valve from grid overloads a circuit, comprising SWR, R47, RV7, R5l - R55 and a coil of relay OG, is included in the grid supply line. In the HS31A/1 the grid current varies with the service and two trip settings, C.W./F.S.K. and I.S.B., are required; these are set by R52, R54 and R55 selected by SWR. In the HS31/1, the grid current varies with the service and frequency and so various trip settings are required; these are set by R51 - R55 selected by SWR.

When an overload occurs, excessive grid current through OG operate: it, closing contact OGl which causes relay OJ to be energized. This relay has two contacts which are connected as the contacts of $O D$ and $O E$ are, and they function in a similar manner, see Section 6.4.4 in the main book.
2. Arc Protection Circuit

An arc across the Feeder Tune Capacitor completes the 50 V d.c. circuit of relay $O J$, which operates via relay $O G$ to remove the h.t., as described in Section 6.4.4 in the main book.

Reset nu STOP button.

8.7 SETTING-UP THE OVERLOAD RELAYS

The HS31/1 and HS31A/1 transmitters have additional overload relays to those described in the main book, and the following is the information necessary for the setting-up of these additional relays.

8.7.1 Stage 6 Grid Current

(a) Set up the transmitter as described in Sections 9.1.1-9.1.4
(b) Reduce the drive level and Stage 6 coupling, maintaining the stage 6 grid current at about 200 mA .
(c) Turn the drive level to zero.
(d) Turn the Stage 6 grid current trip switch to 'I.S.B. ABOVE $21 \mathrm{Mc} / \mathrm{s}$ ' (HS 31/1) 'I.S.B.' (HS 31A/1). Increase the drive level to $100 \mathrm{~mA}(\mathrm{HS} 31 / 1), 150 \mathrm{~mA}(\mathrm{HS} 31 \mathrm{~A} / 1)$ Stage 6 grid current or until the trip operates, whichever is the lower.
(e) Adjust the trip setting control RV7 until the relay operates with the grid current of 100 mA (HS $31 / 1$) 150 mA (HS31A/1).
A.P.116E-0231-1

This must be done in steps, the transmitter being switched off each time to gain access to RV7, situated at the rear of the R.F. Unit.
(f) In the $\operatorname{HS} 31 / 1$, check that the current at which the relay operates on the other switch position is as follows:

| C.W. above $21 \mathrm{Mc} / \mathrm{s}$ | - | $200-250 \mathrm{~mA}$ |
| :--- | :--- | :--- | :--- |
| I.S.B. below $21 \mathrm{Mc} / \mathrm{s}$ | - | $150-200 \mathrm{~mA}$ |
| C.W. below $21 \mathrm{Mc} / \mathrm{s}$ | - | $280-350 \mathrm{~mA}$ |

For the HS $31 \mathrm{~A} / 1$, the current at which the relay operates on the other switch position should be approximately 300 mA .

I.S.B.	-	$150-200 \mathrm{~mA}$
C.W.	-	$280-350 \mathrm{~mA}$

8.7.2 Arc Suppression

To check the arc suppression circuits, connect a short circuit across one half of the Output Tuning Capacitor, press the START button and check that the AUX. H.T. is switched on.

Press the H.T. ON button - the OVERLOAD lamp should light immediately and it should be impossible to bring on the Main H.T. (supply path to MC open-circuit by relay contacts of OR).

8.7.3 Suction Unit and Starter

(a) Remove the starter cover and set the overload pointer at 100\% overload. The adjustment is made by a pointer situated at the left-hand side of the mechanism.
(b) Remove all the fuses from the transmitter except FSl - 4, FS23-25 and FS4l-43 inclusive.
(c) Close and lock the transmitter doors, close the main supply switch and press the START button. The suction unit should now start to run.
(d) Press the STOP button and as the fan runs down check that the direction of rotation agrees with the arrow on the motor casing. If rotation is incorrect, reverse any two of the three motor connections; refer to the instructions on the motor terminal box.
(e) Remove one of the three fuses FS41, 42 and 43 , close the doors and press the START button. The motor should not start and will indicate overload by a clearly audible hum; within 12 seconds the starter overload should drop out, but do not keep the mains applied to

If the trip out does not occur, check the wiring and, in the absenc of fault, the starter should be returned to the factory. To reset the starter press the red button, after allowing approximately 5 minutes for the starter heater elements to cool down.

NOTE: Normal line current motor munning 1.0 amp .
2 phases only - running, approximately 2.2 amp .
2 phases only - stalled on starting, approximately 7.0 amp .

8.11 STAGE 5-6 PRESET COUPLING CAPACITOR ADJUSTMENT

In the $H S 31 / 1$ and $H S 31 A / 1$, the output of Stage 5 enters Stage 6 via C35, a variable vacuum capacitor that is set to give the correct loading of V3 and V4.

The following describes the setting of C35.
(a) Set the transmitter up for single tone operation at $21 \mathrm{Mc} / \mathrm{s}$ (HS31/1) $16 \mathrm{Mc} / \mathrm{s}$ (HS31A/1) as described in Sections 9.1.1 to 9.1.4 in the main book.
(b) Reduce the drive level to zero and switch the I.F. Drive to 2 tone.
(c) Increase the drive level until Stage 6 grid current reads approximately 130 mA . Check the tune of Stage 6 and then increase the Stage 6 coupling until the drive of 100 mA Stage 6 grid current corresponds to I.IA Stage 6 cathode current. Check the tune of the feeder circuit (FEEDER TUNE) and if necessary readjust as described in Section 9.1.2 (p) in the main book.
(d) Check and note the cathode current of Stage 5, it should be 160 mA . If not, it is necessary to adjust the variable coupling capacitor and retune to obtain the 160 mA with the Stage 6 drive at the level quoted in (c) above.
(e) The setting of Stage 5-6 coupling achieved under the above conditions in the HS3l/l should be adequate to cover the rest of the band on all services, but will probably require adjustment if Stage 5 valves are changed.

In the HS31A/1, the setting of Stage $5-6$ coupling achieved under the above conditions should be adequate to cover the range $6-20 \mathrm{Mc} / \mathrm{s}$ on all services. To cover the low frequency range, the above procedure is repeated at $5.6 \mathrm{Mc} / \mathrm{s}$.

11.4 Manual Drive Assemblies

All the variable tuning controls are driven by manual drive assemblies mounted on the front panel. There are basically two types of drive assembly used, these are the single turn type and the multiturn type. The single turn types, the handles of which rotate less than 360 , are used for the RANGE switch and the FEEDER TUNE controls. The multi-turn types, the handles of which rotate a number of complete revolutions, are used for STAGE 4 TUNE, STAGE 5 TUNE, STAGE 6 TUNE and STAGE 6 COUPLING.

To set-up the manual drive assemblies it is necessary to check that: -
(a) the dial stops are correctly set.
(b) the components are set in the correct position.
(c) the dials are correctly set.

The correct positions of (a), (b) and (c) for HS31/1 and HS31A/1 are listed below under the control names.

RANGE switch
(a) Dial stops: 1, 2, 3, 4 and 5 .
(b) Components: (i) Stage 5: Switch blade making on all contacts.
(ii) Stage 6: Switch blade making on all contacts.
(iii) Feeder circuit: The switch blade should be clear of all contacts. The contacts of range l are not fitted.
(c) Dial set to: I.

FEEDER TUNE

(a) Dial stops: 0 and 210
(b) Components: Set the capacitor C64 to maximum capacity with padder capacitors C68-71 in circuit.
(c) Dial set to: 0

Check that the interlock micro-switch SWM mounted on the tuning capacitor assembly opens when the capacitor reaches minimum with the fixed padders still in circuit and that the switch makes again at the maximum capacity following, in which position the fixed padders are now
out of circuit. If necessary adjust the position of the micro-switch. STAGE 4 TUNE
(a) Dial stops: 0 and 210 .
(b) Components: Set the turret with the largest inductor (L5) connected across the capacitor Cl2. Set Cl2 to maximum capacity (ready to tune $工 5$).
(c) Dial set to: 0 .

STAGE 5 TUNE

(a) Dial stops: 0 and 210 .
(b) Components: Set the inductor (L15) wiper contacts to within approximately $1 / 8$ turn (2 ") from the right-hand end of inductor.
(c) Dial set to: 210 .

STAGE 6 TUNE
(a) Dial stops: 0 and 210 .
(b) Components: Set the inductor (LI9) wiper contacts approximately $1 / 4$ turr. (3") from the top connection of the inductor.
(c) Dial set to: 210 .

STAGE 6 COUPLIIiG
(a) Dial stops: 0 and 21C.
(b) Componerts: Lower the inductor to the full extent of the extension rod stops, and set the inductor by rotating the front driving shaft approximately \bar{z} tarn.
(c) Dial set to: 0 .

STAGE 5-6 PRESET COUPLING
Adjust the variable capacitor 6 turns of the control from maximum capacity.

Slight adjustment may be required when fitting the assemblies to the couplings but the above settings allon fcr this. After fitting check the complete range coverage.
A.P.116E-0231-1 2nd Edn.
Supp.1 Oct. '67
IA

Supplement No. 2

to
AP.116E-0231-1
2nd Edition

REMOTE (EXTENDED) CONTROL OF TRANSMITTER TYPE HS31 AT R.A.F. HITTADDU, GAN.

AP 116E-0231-1
2nd Edn.
AL. 8 Oct 73

List of Contents

Para
INTRODUCTION 1
TRANSMITTER MODIFICATION 4
Drive Muting Relay Unit (H3l-88272) 8
OPERATION SUMMARY
Local 9
EXTENDED 10
MAINTEN ANCE
General 15
List of Illustrations
Fig.
Component Layout Change Diagram 1
Remote Control Functional Diagram 2
Drive Muting Relay Unit 3

Master Components List

The Master Components List at the end of this supplement includes electrical components and selected mechanical components not covered in the mains manual AP 116E-0231-1, 2nd Edition.

INTRODUCTION

1. The Control Transmitter Unit provides remote operational switching of the HS3l transmitter when the transmitter is switched to remote control and lamp and meter indications of the state of the transmitter on both local and remote control.
2. As the HS3l is manually tuned, tuning must be completed on Local Control before switching to Remote Control.
3. This supplement outlines the changes incorporated by Modification Nos.A3785 and A4031 to the HS3l transmitter, and should be referred to in conjunction with the manual on Station Control, AP 116E-0244-1E, Supplement I, Chapter 3.

TRANSMITTER MODIFICATION

NOTE: The incorporation of this modification changes the reference identity numbers of the Transmitter HS31, and the Control Power Supply as follows:

OLD	Nomenclature	NEW
Ref.No.5820-99-933-2182	Transmitter Radio HS31	Ref.No.5820-99-622-8256
Ref.No.5820-99-933-2183	Control Power Supply	Ref.No.5820-99-622-8255

To provide extended control facility to the Transmitter HS3l a tagstrip TB16 is added to the Control Fower Supply and mounted beneath the existing tagstrip TB6, as shown in the Component Layout Change Diagram Fig.l.
5. Included in these changes is the addition of a Relay ILR to the Contactor Panel, and a 3 -way terminal block fixed alongside the existing block TB2 in the Indicator Panel. The new terminals are numbered 13, 14 and 15.
6. Also included is the fitting of a Drive Muting Relay Unit H31-8827-01, Fig.3. This unit is external to the HS3l Transmitter and is operated by the Aerial Interlock line hreaking the r.f. drive to the transmitter.
7. Refer to the Remote Control Functional Diagram Fig.2. The HS3l Transmitter Ref.No.5820-99-622-8256 when modified, is linked to the Control Transmitter Ref .No.5820-99-972-5345 as shown. The changes to the existing wiring, and new connections, are described in detail in the Modification Leaflets A3785 and A4031 but their function is described as follows:

TB16.1 Connects the 50V supply to energize RLA to light the AVAILABLE lamp and to be available for the START switch SA when the local/remote switch is at REMOTE.
TB16.2 Connects the supply to the remote start pilot relay SP when the START switch is closed.

TB16.3 \& 4 Relays RLB and RLC are energized by the Auxiliary and Main H.T. contactors to light the READY and H.T. ON indicator lamps respectively.
TB16.7 \& 8 Connect the 50V supply when on REMOTE to the H.T. START switch and to the drive mute relay coil via the aerial interlock contacts.

TB16.9 Connects the interlock relay ILR, fitted as part of the modification, which is energized via the H.T. START switch SC in the Control Transmitter, allowing the Main H.T. contactor MC to close.

TBI6.10 \& 11 On REMOTE these complete the overload trip relay circuit via the reset part of $S D$.

TB16.12 Not used.
TBI6.13 Connects the transmitter trip relay RLF to light the TRANSMITTER TRIP lamp and initiate the alarm circuit.
TB16. 14 Connects the aerial trip relay RLG to light the AERTAL TRIP lamps and initiate the alarm circuit.

Drive Muting Relay Unit (H31-8827Z)
8. Refer to Fig.3. The relay socket terminals SKA3 and SKAl are connected to the tagstrip TB16-8 and 15. R.F. sockets SKC and SKB supplied are fitted to the r.f. line which allows the unit to be connected in series; the line for the drive connected to the INPUT plug PLB, and the line to the transmitter is connected to the OUTPUT plug.

OPERATION SUMMARY

Local

9. When the transmitter is operated locally all the indicators light with the exception of the AVAILABLE lamp. This shows the central operator that the equipment is in use but not available for service by him. It should be noted that the alarm circuit is inoperative.

EXTENDED
10. When the transmitter has been set up and tuned locally into the required aerial, control is passed to the extended point by switching the transmitter back to Mains ON (50V d.c. lamp on) and setting the Remote/LOCAL switch to REMOTE.

NOTE: The aerial selection which took place as part of the tuning procedure must not be changed at this time as it will affect the loading of the transmitter. If either the frequency or the aerial is changed the transmitter mast be returned to Local Control and retuned.
11. At the control station the lamps AVAILABLE and AE INTERLOCK will show the station controller that the transmitter is under his control.
12. To switch on the transmitter press the START switch. Initially the START lamp will light and after approximately 35 s will be extinguished and the READY lamp light.
13. Press the H.T. START switch:, the H.T. ON lamps will light and the transmitter is ready for use.
14. To switch off the transmitter press the STOP/TRIP RESET switch and all circuits will return to the state described in Para. 10.

MAINTENANCE

General
15. The Control Transmitter is fitted as an extension of the transmitter control circuits. Thus it can be proved to be faulty or not by returning to Local Control and switching on. If the transmitter becomes operative on Local Control and not on Fxtended Control the fault lies in the extension circuit, if it remains inoperative on both, the fault is in the transmitter.

2nd Edn. Supp. 2 AL. 8 0ct 73

Cross Reference List for WZ.31065/D (Fig.2)

Ref.	но.	Ref.	No.												
ILR	2	TB16	3												

MISCELLANEOUS ITEMS
$\begin{array}{ll}\text { Socket for ILR } & \text { No. } 9 \\ \text { End Moulding for TBl6 } & \text { No. } 13 \\ \text { STUD for TBl6 assy. } & \text { No. } 18 \\ \text { 3-way Terminal Block } & \text { No. } 12\end{array}$ (Part of TB2)

DRTVE MUTING RELAY UNIT
(Refer to Master Components List AP Il6E-0231-1)
Supplement No. 2
Cross Reference List for H3I-88272 (Fig.3)

Ref.	No.														
RLA	6	$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{C} 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Rl	5	$\begin{aligned} & \text { PILA } \\ & \text { PLB } \\ & \text { PLC } \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \\ & 8 \end{aligned}$								

MISCELLANEOUS ITEMS

$$
\begin{array}{ll}
\text { Socket for PLA } & \text { No. } 11 \\
\text { Socket for PJ, } & \text { No. } 10 \\
\text { Socket for PLC } & \text { No. } 10
\end{array}
$$

A.P.116E-0231-1 2 ND EDITION. Supp. 2
A.L. 8

SKA

[^2]FIG. 3

masten Components list

FOR

transmitter (hS3l) REMOTE (EXTENDED) CONTROL

AP 116E-0231-1
2nd Edn. Supp. 2
AL. 8 Oct 73

FEEDER MONITORING EQUIPMENT
FOR
TRANSMITTER
TYPE T. 10158
(Marconi Type HS 31)

Technical Appendix No.l
to
A.P.2922D Vol. 1

(c)
Pag:
1 INTRODUCTICN 1
2 EQUIPMENT LIST l
2.1 Coupler Assemblies 1
2.2 Portable Rerlectometer Panel
(Type Sl/ 1 Ref. No.6625-99-993-1343) 1
2.3 Indicator Panel Assembly 1
2.4 Remote Metering Equipment 1
3 DESCRIPTION 2
3.1 General "
3.2 Coupler Assembly 3
3.2.1 Mechanical. ;
3.2.2 Electrical
3.3 Indicator Panel Assembly1
3.3.1 Mecharical 4
3.3.2 Electrical 4
3.4 Portable Reflectometer Unit b
3.4.1 Mechanical 5
3.4.2 Electrical 6
3.5 Remote Reflectometer Panel θ
4 SETPING UP 7
4.1 General 7
4.2 Trip Levels 7
5 MAINTENANCE 7
5.1 Coupler Units
5.2 Portable Reflectometer Panel $\%$
5.3 Indicator Panel Assembly 8

Illustrations

Circuit Diagrams \& Component Layouts	Drg. No.	Fig. No.
Coupler Assembly	$\mathrm{HK} / \mathrm{SK} / 52 \mathrm{Sh} .2$	1
Portable Reflectometer Panel	WZ.16129/B Sh. 2	3
Indicator Panel Assembly	WZ.31015/B Sh.1	2
Feeder Monitoring Equipment Block Diagram	WZ. 30872 Sh. 1	4
Remote Metering Equipment Simplified Circuit	WZ. 30871 Sh. 1	5
Reflectometer Interconnections	WZ. 31158/B Sh.l	6
COMPONENTS LISTS		
		List No.
Coupler Assembly		1
Indicator Panel		2
Portable Reflectometer Panel		3

1 INTRODUCTION

The feeder monitoring system described herein provides visual indication of transmitted power and standing wave ratio (s.w.r.) in output feeder systems and is intended for use with a transmitter fitted with coaxial output feeders of 50 ohms characteristic impedance.

Forward and reflected waves in the feeder are sampled by directional couplers inserted at a convenient point near the feeder outlet on the transmitter roof and the coupler outputs are connected to a P.0. jack socket for use with a portable plug-in reflectometer panel. The coupler outputs can also be switched to provide duplicate readings at a common meter panel located in a central position.

In the event of the s.w.r. in any output feeder exceeding a predetermined level, the h.t. of the transmitter concerned is tripped and cannot be reinstated until the cause of the abnormal level is removed.

2 EQUIPMENT LIST

2.1 Coupler Assembly

Feeder Type	Type No.	Drg. No.
Telecon HM9 $*$	2865 N	W. $53928 \mathrm{Sh} .6 \mathrm{Ed.N}$
* Requires $2 \mathrm{in} / \mathrm{HM} 9$ adaptors, Drg. No. T80-0249 Sh. 1		
Reflectometer Panel (Type Sl/l Ref. No. $6625-99-993-1343)$		
Type No.	Drg. No.	
$2959 G$	W. 55604 Sh.l Ed.G	

2.3 Indicator Panel Assembly

Type No.	Drg. No.
4768 A	W. 68874 Eh. 1 Ed. A

2.4 Remote Metering Equipment

Meter, Power
Drg. No.
WIS. 9288/B Sh. 1 Ref.I
Meter, SWR
WIS. 4235 Sh. 16 Ref. 252
Relays K. 300 2C, $\pm 10 \%, 100 \mathrm{~V}$
PC. $64901 / 12$

3.1 General

The forward and reflected waves on the aerial feeders are sampled at convenient points by directional couplers. Each coupler consists of a small coil supported in the space between the inner and outer conductor of a rigid coaxial feeder. One end of the coil is earthed via a resistive load and the other is brought out via an insulated bush to the external circuits. The coil is coupled both inductively and capacitively to the transmission line and the mutual inductance between the line and the coil can be varied both in magnituae and sign by rotation of the coil but the capacity is not altered to the same extent. This makes it possible to adjust the coil so that the inductive and capacitive pick-up voltages cancel, and there is no output from a wave travelling in one direction in the transmission line. For a wave in the opposite direction in which the phase relationship is reversed, the inductive and capacitive voltages will be additive and there will be a voltage output. Two couplers therefore are employed, one set to respond to the forward wave and the other to the reflected wave. The two couplers are arranged close together in a short length of transmission line, referred to as a coupler assembly, and their outputs are fed to circuits mounted on a platform forming part of the assembly, and enclosed by a metal cover. For brevity the directional coupler responding to the forward wave and that to the reflected wave are referred to as forward and backward couplers respectively, and their outputs are called forward and backward signals, the last designations bearing no relation to the direction of flow of these outputs in subsequent rectifying and indicating circuits.

The outputs from both couplers after passing through equalising networks which provide frequency compensation, are then rectified. The resulting currents are then fed via output terminals TBI(1) and $\mathrm{TB} 1(3)$ to the Indicator Panel Assembly which is mounted on the transmitter front near the feeder outlet. Inside the unit the backward line current is connected to one pole (SWAl) of a TEST TRIP key switch SWA, the forward line current is similarly connected to another pole SWA2. Pole SWA3 is connected to a d.c. supply for testing and setting the $h . t$. trip circuit. With switch SWA in the normal position, both forward and backward line currents are fed back to the coupler via terminals TBI(4) and TBl(2) respectively, where they pass through variable resistors providing a fine sensitivity control and then through the coils of a sensitive dual wound trip relay. The latter is thereby operated at a predetermined current difference giving a trip level reasonable independent of power. The relay contacts RLAl when closed cause relay RLA 3 to operate and break the transmitter interlock circuit and trip the transmitter off.

The monitoring circuit is terminated on the frame of the coupler unit via the frame and two auxiliary contacts on a P.0. type jack. Inserting the plug attached to a portable reflectometer panel breaks the two auxiliary contacts and the circuits to earth is then completed via the portable unit and the plug sleeve.

Remote indication of transmitted power and s.w.r. is provided by a metering panel mounted in the Test Equipment Rack. A two pair cable is fed from each transmitter monitoring point to the banks of a uniselector contained in the Power and Frequency Monitor Rack. When a transmitter is selected by a key switch on the control desk the lines from the selected transmitter are connected via the uniselector to the power and s.w.r. meters located in the Test Equipment Rack.

In order to maintain the local metering and trip levels independent of the remote meters when they are switched out of circuit, an equivalent resistance is inserted in each line by means of a relay fitted with two sets of changeover contacts. One relay is provided for each transmitter to be monitored.

To cater for the different power output levels of the types of transmitter to be monitored a special triple scale power meter is used on both the portable and remote metering panels.

3.2 Coupler Assembly

3.2.1 Mechanical

The unit consists of a short cylindrical aluminium casting machined internally and fitted with a concentric inner conductor terminated in the appropriate coaxial connectors. The casting is extended to form a platform through which two directional couplers are let into holes in the platform and project into the space between inner and outer conductors. Depth of penetration is determined by a collar held by grub screws: after setting to the correct depth and rotating to the correct position the two couplers are locked in position by grub screws in bosses on the casting. On no account should their position be altered. Three potentiometers are supported by a bracket at one side: their spindles are locked and RV2 and RV3 which affect the meter calibration should not be disturbed. AP.O. type jack is mounted at one end of the platform and a dual wound trip relay at the other. Connections are made to a terminal block ind are taken out through a hole in the platform. A rectangular cover fits over the assembly and is held in position by a single screw at the front. A hole is provided in the cover to enable the portable meter unit to be plugged into the P.O. type jack. Each end of the cylindrical casting is split and provided with a nut and bolt for clamping in position on the feeder.

NOTE: The arrow on the coupler body must agree with the direction of transmission.

3.2.2 Electrical

Circuit Diagrams Fig.I
In the coupler unit the forward signal is picked up by coil X2 and rectified by the germanium crystal rectifier MR2 and smoothed by the resistance-capacity network $\mathrm{R} 4, \mathrm{C} 5$ and C6. An identical coil Xl picks
up the backward signal which is rectified and doubled by MRI, MR4, C2 and C8. The rectified output is smoothed by $\mathrm{R} 3 . \mathrm{C} 2$ and C3. The identical coils $X 1$ and $X 2$ have a rising frequency output characteristic and to compensate for this the filters C1, R1 and C4, R2 have been inserted to give a substantially flat response. The components MR3, C7 and R5 are also compensating elements to counteract the effect of nonlinear rectification at low levels.

The rectified outputs of X 1 and X 2 representing the backward and forward line voltages respectively, are taken to the output terminals $\mathrm{TBI}(1)$ and $\mathrm{TBI}(3)$ respectively and thence to terminals $T B 2$ (1) and TB 2 (3) on the Indicator Panel Assembly. Inside this unit the backward line voltage (TB2(1)) is connected to a pole of the TEST TRIP switch SWA and then via the moving contact to terminal TB2(4). The forward line voltage (TB2(3)) is connected to another pole of SWA and then via the moving contact to terminal TB2(2). Both TB2(4) and TB2(2) are connected back to the coupler assembly via terminals $T B 1(4)$ and $T B 1(2)$ respectively These terminals are connected to variable resistors RV3 and RV2 which are the fine sensitivity controls for the backward and forward currents. Coarse control is afforded by the penetration of the couplers as previously described. RV3 and RV2 are connected to a dual wound moving coil trip relay RLA. The polarities of the coils are such that the currents work in opposition, the backward current seeking to close contact RLAl and thereby furnish a trip, and the forward current tending to hold this contact open. The forward coil of RLA is shunted by a variable resistor RVI which is used to set the trip level at which the relay will operate. The backward and forward lines from the relay coils are terminated to earth via the auxiliary contacts of jack JKA and the remote meters or via the jack ring when the portable meter is plugged in.

3.3 Indicator Panel Assembly

Circuit Diagram Fig. 2

3.3.1 Mechanical

The unit consists of a chassis on which various components are mounted and a rectangular metal cover secured by four screws. The unit is fixed in position by four screws through the rear panel. An indicator lamp and key switch project through the front face of the cover and two holes are provided for adjusting two preset potentiometers mounted on the chassis. The two position key switch is non-locking in the test position.

3.3.2 Electrical

The Indicator Panel has the following functions:-
(a) To lock out the transmitter on a fault condition and to indicate that tripping has occurred.
(b) To generate and apply test signals for checking the trip operation.

When the s.w.r. on the lines rises above the predetermined limit, RLA in the Coupler Unit operates and contact RLAl connects a 50 V negative control voltage to relay RLA in the Indicator Panel, causing it to operate, with rectifier MRI acting as a spark quench. Contact RLAI in the Indicator Panel breaks the transmitter interlock circuit, tripping the transmitter off. This results in the release of the trip relay RLA in the Coupler Unit and the breaking of contact RLAl but contact RLA2 holds on relay RLA and prevents the transmitter being restarted. Contact RLA3 completes the circuit of the fault indicator lamp LPI.

A $6.3 V$ a.c. supply, derived from the transmitter, enters the unit via terminals $\mathrm{TB} 2(10)$ and (11), is rectified by MR2, smoothed by Cl and connected to potentiometers RV1 and RV2, the circuit being completed through one pole of the TEST TRIP switch SWA when switched to the test position. The potentiometers RV1 and RV2 are adjusted to simulate the d.c. voltages obtained from couplers X1 and X2 and are used to check visually the response of the trip circuit in the Coupler Unit. The TEST TRIP switch normally passes signals from XI and X2 to the monitoring circuits via poles SWAl and SWA2. Potentiometer RV1 and RV2 can be adjusted with a screwdriver through the two holes provided in the front panel, and in conjunction with the portable meter unit, the response of the trip circuit over the power range may be observed.
3.4 Portable Reflectometer Unit

Circuit Diagram Fig. 3

3.4.1 Mechanical

The portable reflectometer is built into a small metal box with a sloping front. It can be stood on a convenient support or may be hung on the feeder near a coupler assembly, two hooks at the back being provided for this purpose. A carrying handle is also fitted.

On the front panel are two large square faced meters, one calibrated to read power and the other to read standing wave ratio. The power meter is provided with a triple scale to cater for the different power outputs of the transmitters on the station. The scale ranges are as follows:-

Scale	Transmitter	Range kW
Top	HS. 51	$0-42$
Middle	HS. 71	$0-14$
Bottom	HS. 31	$0-4.2$

The power output from each type of transmitter is read directly on the scale without switching at the panel, the outputs from the various couplers being adjusted by the maker to suit the type of transmitter to which they are to be fitted.

All components are mounted behind the front panel and the cable which is connected to the coupler assemblies by means of a jack plug, leaves the instrument through a bushed hole in the side.

Circuit Diagram Fig. 3
The forward signal is applied firstly to a power indicator MI the scale being calibrated to read outgoing power in the feeder. The scale used is determined by the response of the directional coupler circuits. The signal is then passed to the control coil of ratiometer M2 and then to earth via the case of the unit and the sleeve of plug PL. The backward signal is applied to the deflection coil of M2 and then to earth. The meter M2 indicates the ratio between the current flowing in the control coil and the current flowing in the deflector coil. The movement has no restoring spring, but any current (above a certain minimum) in the control coil will bring that coil into a neutral plane and the pointer to the zero mark. Deflection is then caused by current in the deflection coil and, by virtue of the specially shaped permanent magnet pole pieces, the deflection bears the required relationship to the current ratio. Full scale deflection is given when control and deflection currents are equal. The values of the components in the coupler circuits are so chosen that equal currents are produced when the s.w.r. in the feeder is infinite, the ratiometer scale is therefore calibrated l to infinity. All meter coils are bypassed by fairly large value mica capacitors Cl, C2 and C3 to prevent erroneous readings due to stray r.f. fields.

3.5 Remote Reflectometer Panel

Circuit Diagram Fig. 5

This comprises a panel on which are mounted two meters, one reading power and the other s.w.r. The Power meter is identical with that fitted on the Portable Reflectometer Unit but there is an extra scale added to the s.w.r. meter to read 'Power Factor'. This gives the ratio of transmitted power to the power indicated on the power meter.

To find the power transmitted to the load the power meter reading must be multiplied by the P.F. reading since the power meter indicates the power of the forward wave, a proportion of which is reflected at the load terminals.

The power and s.w.r. for any transmitter on the station will be indicated on this panel after selecting the desired transmitter by switching at the control desk. All lines not connected through to the meter panel via the uniselector are terminated with equivalent resistances switched into circuit by relays, one relay with two sets of changeover contacts is required for each transmitter to be monitored.

4.1 General

The Coupler Assemblies and Indicator Panels are permanently connected in the feeders at points where monitoring facilities are required. The portable reflectometer panel is intended to be carried around from one coupler to another as required. Duplicate readings are given at the remote metering panel by switching at the control desk.

4.2 Trip Levels

Proceed as follows:-
(a) Switch on the filament and control supplies of the transmitter.
(b) Set the POWER LEVEL and S.W.R. LEVEL controls RVI and RV2 respectively, on the Indicator Panel Assembly to minimum output.
(c) Plug the portable reflectometer panel into the jack located in the Coupler Unit.
(d) Depress the TEST TRIP SW.tch SWA in the Indicator Unit.
(e) Adjust the POWER LEVEL control until the reading on the portable meter corresponds to 3.5 kW .
(f) Increase S.W.R. LEVEL control slowly until the fault lamp on the Indicator Panel shows a trip, then turn the control back to minimum.
(g) On the Rectifier and Control Unit press the H.T. OFF and RESET button: the indicator lamp should be extinguished.
(h) Undo the locking device on potentiometer RVI in the Coupler Unit and by successively increasing the S.W.R. LEVEL, adjusting RVI and resetting the trip after each trial; continue until the trip occurs with a s.w.r. of 2 shown on the meter. Release the TEST TRIP switch and lock RVI at this setting.

5 MAINTENANCE

5.1 Coupler Units

The setting of the directional couplers should in no circumstances be altered. They are locked in position, and cannot be reset without special equipment. They should be returned to The Marconi Company Limited for recalibration if they are disturbed or damaged.
5.2 Portable Reflectometer Panel

The panel should require little attention apart from the removal of the Cable Connections if these become worn from use.
5.3 Indicator Panel Assembly

This unit should require no attention apart from the replacement of an indicator lamp in the event of a failure.

FOR
INDICATOR PANEL TYPE 4768A
(Drg. No. W. 68874 Sh. 1 Ed.A)

NOTES 1. When ordering spares quote identity only.
2. References in column 1 are normally shown on the circuit and component location diagram Fig. 2.
3. For identical items the total quantity is given at the first entry.

Ref. Description Value | Tol |
| :---: | :---: | :---: | :---: |
| $\%$ |
| \pm |\quad Rating Identity \quad Qty

CAPACITORS

| Cl | Electrolytic, | $50 \mu \mathrm{~F}$ | +100 |
| :--- | :--- | ---: | :--- | | l2V Peak |
| :--- |
| Plain Foil, |
| Tub. |

RESISTORS (FIXED)

R.2	Composite Grade 2 Insulated	560Ω	± 10	$\frac{3}{4} \mathrm{~W}$	$\mathrm{PC.66612/16}$
R3	Composite Grade 2 Insulated	$8.2 \mathrm{k} \Omega$	± 10	$\frac{3}{4} \mathrm{~W}$	PC.66612/30
R4	Composite Grade2 Insulated	470 k	± 10	$\frac{1}{4} \mathrm{~W}$	$\mathrm{PC.66610/57}$

RESISTORS (VARIABLE)

RVI	Wirewound Linear	$5 \mathrm{k} \Omega$	± 10	$\frac{1}{2} \mathrm{~W}$	PC.67401/29
RV2	Wirewound	$5 \mathrm{k} \Omega$	± 10	$\frac{1}{2} \mathrm{~W}$	$P C .67401 / 29$

Ref. Description Value | Tol |
| :---: |
| $\%$ |
| \pm |\quad Rating Identity \quad Qty

MISCELLANEOUS ELECTRICAL ITEMS
LP1 Lamp El0 Clear
PC. 48701/2
1
6.5 V 2.3 W
$\begin{array}{lll}\text { MRI } & \text { Rectifier } & \text { I } \\ & \text { Westinghouse } & \\ & \text { T5D/19 }\end{array}$
MR2 Rectifier CG64H I
SWA Switch Lever
PC. $71202 / 2 \quad 1$ 2 Position
RLA Relay 2B 2M
TBI Terminal Block
PC. 65406/15 I 12 Way
WIS. $1631 / 1 / 12$
1

```
COMPONENT LIST No. 3
FOR
PORTABLE REFLECTOMETER PANEL TYPE 2959G
(Drg. No. W. 55604 Ed.G)
```

NOTES 1. When ordering spares quote identity only.
2. References in column 1 are normally shown on the circuit and component location diagram Fig. 3.
3. For identical items the total quantity is given at the first entry.

Ref. Description Value | Tol |
| :---: |
| $\%$ |
| \pm | $~ R a t i n g ~ I d e n t i t y ~ Q t y ~$

CAPACITORS

C1	Mica	$0.01 \mu \mathrm{~F}$	± 20	350 V	$\mathrm{PC} .18701 / 5$	3
C 2	Mica	$0.01 \mu \mathrm{~F}$	± 20	350 V	$\mathrm{PC} .18701 / 5$	
C3	Mica	$0.01 \mu \mathrm{~F}$	± 20	350 V	$\mathrm{PC} .18701 / 5$	

MISCELLANEOUS ELECTRICAL ITEMS

$\left.\begin{array}{llll}\text { PLA } & \text { Plug G.P.O. } & \text { WIS. } 2499 / 1 & 1 \\ \text { Type } 316\end{array}\right)$

PORTABLE REFLECTOMETER PANEL

A.L. 3 to
A.P.2922D

Feb. 1964

FEEDER MONITORING EQUIPMENT
BLOCK DIAGRAM
WZ. 30872 Sh. 1

A.L. 3 to
A.P.2922D

Feb. 1964
REMOTE METERING EQUIPMENT
SIMPLIFIED CIRCUIT
WZ. 30871 Sh. 1
Fig. 5

[^0]: Schedule I/IL.17588/A

[^1]: $\underset{\text { WZ. } 17369 / \mathrm{D} \text { SH. }}{\text { FIS }}$

[^2]: DRIVE MUTING RELAY UNIT H-31-8827-01
 H-31-8827Z SH. 1. ISSUE. 1.

