Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

(A.P.113, Sect. 6B)

AIR PUBLICATION
4809E
VOLUME I
August, 1962
M.G.R.I. 260015 WATT V.H.F. RADIO TELEPHONE (PYE PTC 6/2107V)

GENERAL AND TECHNICAL INFORMATION

Promulgated by Command of the Air Council
A. J Dean

AIR MINISTRY
CHAPTER I Page
GENERAL DESCRIPTION AND SUMMARY OF DATA SUMMARY OF DATA 1
Receiver 3
Transmitter 4
Power Supply 4
COMPONENT CODING 5
CHAPTER II
CIRCUIT DESCRIPTION
RECEIVER 6
Circuit Features 6
Detailed Description 7
TRANSMITTER 10
Circuit Features (25 to $68 \mathrm{Mc} / \mathrm{s}$) 10
Detailed Description (25 to $68 \mathrm{Mc} / \mathrm{s}$) 10
Circuit Features (68 to $174 \mathrm{Mc} / \mathrm{s}$) 11
Detailed Description (68 to $174 \mathrm{Mc} / \mathrm{s}$) 12
POWER SUPPLY 13
RELAY OPERATION 14
CONTROL UNIT 15
CHAPTER III
INSTALLATION AND OPERATION
INSTALLATION 16
Main Unit 16
Control Unit 18
Power Supply 18
Erection of Antenna 19
INITIAL ADJUSTMENTS 19
Test Set 19
Procedure 21
OPERATION 21
Microphone Technique 21
FIELD TESTING PROCEDURE 22
Receiver 22
Transmitter 22
CHAPTER IV
SERVICING
Equipment Required for Routine Maintenance Procedure 24
Additional Equipment Required for Bench Alignment Procedure 24
CHAPTER IV (cont.) Page
DISMANTLING PROCEDURE 25
Main Unit 25
Control Unit 25
ROUTINE MAINTENANCE PROCEDURE 25
General 25
Receiver Performance Checks 26
Transmitter Performance Checks 27
BENCH ALIGNMENT PROCEDURE
RECEIVER 29
V.H.F.Signal Generators 29
I.F.Alignment 29
R.F.Alignment 32
Checking Signal-to-Noise Ratio 34
H.T. Voltage 34
TRANSMITTER 34
Crystal Oscillator Alignment 34
Multiplier Alignment 35
Power Amplifier Alignment 35
Test Readings 36
TRANSISTORS 36
Transistor Circuits 36
Transistor Replacement 37
Transistor Feedback Adjustment Control 37
PRINTED CIRCUITRY 38
D.C.RESISTANCE OF INDUCTORS 39
CHAPTER V
V.H.F. INTERFERENCE SUPPRESSION
Introduction 40
Ignition Interference 40
Dynamo Interference 41
Auxiliary Equipment 42
Tyre and Brake Static 42
Other Possible Sources of Interference 45
PARTS LISTS
Receiver (25 to $68 \mathrm{Mc} / \mathrm{s}$) 48
Receiver (68 to $174 \mathrm{Mc} / \mathrm{s}$) 50
Transmitter (25 to $174 \mathrm{Mc} / \mathrm{s}$) 52
Squelch and Power Supply Unit 54
Interconnections 54
Mechanical Items 55
CRYSTAL INFOR MATION 56AMENDMENTS
Page
Fig. 1 Receiver Block Diag ram - 25 to $68 \mathrm{Mc} / \mathrm{s}$ 6
Fig. 2 Receiver Block Diagram - 68 to $174 \mathrm{Mc} / \mathrm{s}$ 6
Fig. 3 Transmitter Block Diagram - 25 to $68 \mathrm{Mc} / \mathrm{s}$ 10
Fig. 4 Transmitter Block Diagram - 68 to $174 \mathrm{Mc} / \mathrm{s}$ 12
Fig. 5 Typical Installation 17
Fig. 6 Control Unit Construction 18
Fig. 7 Assembly of Coaxial Connectors 20
Fig. 8 Diode Probe 26
Fig. 9 Transistor Servicing Diag ram 36
Fig. 10 Dynamo End Plate 41
Fig. 11 Fitting an Anti-Static Spring to the Hub Cap 43
Fig. 12 Fitting an Anti-Static Bracket to the Brake Shoes 44Fig. 13 Receiver Layout Diagram - 25 to $68 \mathrm{Mc} / \mathrm{s}$Fig. 14 Receiver Circuit Diagram - 25 to $68 \mathrm{Mc} / \mathrm{s}$Fig. 15 Receiver Layout Diagram - 68 to $132 \mathrm{Mc} / \mathrm{s}$Fig. 16 Receiver Circuit Diagram - 68 to $132 \mathrm{Mc} / \mathrm{s}$Fig. 17 Receiver Layout Diagram - 132 to $174 \mathrm{Mc} / \mathrm{s}$
Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22Fig. 23Fig. 24Fig. 25Fig. 26 Interconnection Diag ram

CHAPTER I

GENERAL DESCRIPTION AND SUMMARY OF DATA

The Pye PTC 2107 V.H.F. A. M. Transistor 'Ranger' Mobile Radiotelephone is designed to provide a reliable and continuous means of communication between mobile units and base stations and can be installed in any vehicle which can provide the necessary 12 volt d.c. supply with either positive or negative ground.

The equipment is designed to operate on fixed frequencies between 25 and $174 \mathrm{Mc} / \mathrm{s}$ in schemes employing any channel spacing down to $20 \mathrm{kc} / \mathrm{s}$. A switched version of this equipment providing up to six switch selected channels is available if required.

The transmitter provides an r.f. output of approximately 5 watts, which is adequate for most urban and rural systems.

The receiver is a single superheterodyne in the 25 to $68 \mathrm{Mc} / \mathrm{s}$ range and a double superheterodyne in the 68 to $174 \mathrm{Mc} / \mathrm{s}$ range, the following three versions being available.

Type V (Very Narrow)	20 to $30 \mathrm{kc} / \mathrm{s}$ channelling
Type N (Narrow)	40 to $60 \mathrm{kc} / \mathrm{s}$ channelling
Type W (Wide)	$100 \mathrm{kc} / \mathrm{s}$ channelling or greater

The main unit comprises a robust steel case which contains the transmitter, the receiver and the transistorised power supply unit. This unit is primarily designed for mounting in the trunk of a car, but may be installed in any convenient position in any other vehicle.

The main unit may be removed from its mounting cradle after releasing two fasteners and the covers may be removed after releasing a spring catch, in order to gain access to both top and underside of the chassis.

The small control unit containing the loudspeaker and the operating controls can be fitted in the most convenient position for the operator. The fist microphone, complete with press-to-transmit switch, is independently mounted.

The Type V version of this equipment is designed to meet British Post Office Specification W6288 and the Type N version is designed to meet British Post Office Specification W6289B. Alternative versions are designed to meet existing U.S. Federal Communications Commission and Canadian Department of Transport requirements.

SUMMARY OF DATA

Operation
Frequency range
Frequency bands

Single or double frequency simplex
25-174 Mc/s
Band J 25-32.5 Mc/s
Band H 32.5-42 Mc/s
Band G 42 - $54 \mathrm{Mc} / \mathrm{s}$
Band F 54-68 Mc/s
Band E 68-88 Mc/s

PTC 2107

Frequency bands (cont.)	Band D 88-108 Mc/s Band C 108-132 Mc/s Band B 132-156 Mc/s Band A 148-174 Mc/s
Channel spacing	Type V (VeryNarrow) 20 to $30 \mathrm{kc} / \mathrm{s}$ Type N: (Narrow) 40 to $60 \mathrm{kc} / \mathrm{s}$ Type W (Wide) $100 \mathrm{kc} / \mathrm{s}$ or greater
	Note: With the exception of receiver and transmitter crystals. only one receiver unit requires modifications to change from one channel spacing to another.
Optional features	Multi-channel operation with up to six switchselected channels. (If all channels are within $\pm 0.2 \%$ of the mean carrier frequency the performance of the equipment will be maintained within the quoted specification).
	Thermostatically controlled crystal ovens
	Squelch
	Telephone handset in place of fist microphone
	Shock absorbing mountings for main unit cradle
Power supply	12 volts d.c. nominal, positive or negative ground
Power consumption	$\underline{\text { Receive Standby }}$
	4.4A 6.3A 9.7A
	When squelch is fitted, consumption will be increased by 0.5 A .
Controls	On Control Unit
	```OFF-RX-S/BY switch VOLUME(a.f.gain) control SQUELCH sensitivity control (if fitted). This control can be fitted on the front panel of the main unit if required CHANNEL selector switch (if fitted)```
	On Front Panel of Main Unit
	I. F. gain control (fitted on power supply unit chassis when the SQUELCH control is fitted on the front panel of the main unit) Local transmit switch (for testing)
	On Microphone
	Press-to-transmit switch (Pressel switch if a telephone handset is supplied)
Dimensions	Main Unit (including cradle)
	$15^{1} / 16^{\prime \prime}$ wide $\times 7 \frac{1}{4}{ }^{\prime \prime}$ high $\times 14 \frac{1}{4}{ }^{\prime \prime}$ deep ( $38.3 \mathrm{~cm} \times 18.4 \mathrm{~cm} \times 36.2 \mathrm{~cm}$ )

Metering

Antenna

RECEIVER
Sensitivity

Noise limiter
$9^{\prime \prime}$ wide $\times 33 / 16^{\prime \prime}$ high $\times 3 \frac{3}{4}{ }^{\prime \prime}$ deep
(22.9 cm x $8.1 \mathrm{~cm} \times 9.5 \stackrel{4}{\mathrm{~cm}}$ )

Main Unit (including cradle)
$31 \frac{1}{4} \mathrm{lb} \quad(14.2 \mathrm{~kg})$
Control Unit
$4 \mathrm{lb} \quad(1.8 \mathrm{~kg})$
Main Unit
Steel chassis enclosed in 'lazy U' quick-release hinged covers. Mounted on steel cradle with optional shock-absorbing mountings

## Control Unit

Pressed steel case made in two sections.
Separate microphone mounting

## Main Unit

Covers: Blue hammertone
End panels: Smoke grey (tint No. 692 to B.S. 381C)

## Control Unit

Smoke grey (tint No. 692 to B. S. 381C) with satin chrome escutcheon

External metal fittings are chromium plated and all materials have been chosen to ensure that the equipment will provide reliable operation under the most severe climatic conditions.

A meter socket is provided on the front panel of the main untt to allow connection to a Pye PTC 409 Test Set for routine testing

A quarter-wave vertical whip antenna for vehicle mounting is normally supplied with the equipment, connection to which is by $39 \Omega$ co-axial cable

Approximately 1 watt output for $2 \mu \mathrm{~V}$ e.m.f. input with the following signal-to-noise ratios:-

25 to $68 \mathrm{Mc} / \mathrm{s}$	11 dB
68 to $156 \mathrm{Mc} / \mathrm{s}$	9 dB
148 to $148 \mathrm{Mc} / \mathrm{s}$	8 dB

Series type which effectively suppresses impulse interference such as that caused by motor vehicle ignition systems

V1	R.F. amplifier	EC91	$6 \mathrm{AQ4}$
V2	R.F. amplifier	EC91	$6 \mathrm{AQ4}$
V3	R.F. amplifier ( $25-68 \mathrm{Mc} / \mathrm{s}$ )	EC91	$6 \mathrm{AQ4}$
	$1 \mathrm{st} \mathrm{mixer} \quad(68-174 \mathrm{Mc} / \mathrm{s})$	EC91	$6 \mathrm{AQ4}$
V4	Mixer ( $25-68 \mathrm{Mc} / \mathrm{s}$ )	ECF80	6BL8
	```2nd mixer/oscillator (68-174 Mc/s)```	ECF80	6BL8
V5	lsti.f. amplifier	6BJ6	6BJ6
V6	2nd i.f. amplifier	6BJ6	6BJ6
V7	3rdi.f. amplifier	$6 \mathrm{CB6}$	6CB6
V8	Detector, a.g.c. and lst a.f. amplifier	EBC90	6 AT6
V9	A.F. output	EL90	6AQ5
V10	$\begin{aligned} & \text { Oscillator/multiplier } \\ & \qquad(68-174 \mathrm{Mc} / \mathrm{s}) \end{aligned}$	ECF80	6BL8
V11	Oscillator ($25-68 \mathrm{Mc} / \mathrm{s}$)	6 BH 6	6BH6
MR1	Noise limiter	OA200	
Squelch (if fitted)			
V1	D.C. amplifier and squelch	ECC81	12AT7
MR3	Noise rectifier	WX6	

TRANSMITTER

Power output
Modulation
4 to 6 watts, depending on operating frequency
High level amplitude modulation is employed
Valve complement
British American
Vl Crystal oscillator 6BH6 6BH6
V2 Multiplier (68 to $174 \mathrm{Mc} / \mathrm{s}$ only) 6BH6 6BH6
V3 Multiplier QQV03-10 6360
V4 Power amplifier QQV03-10 6360
V5 Microphone and audio amplifiers

ECC83 12AX7
V6 Modulator amplifier EL84 6BQ5

POWER SUPPLY

Semiconductor complement

VTl Oscillator
VT2 Oscillator
MRI Rectifier
MR2 Rectifier

OC 35 or NKT404
OC 35 or NKT404 OA214, 60AS or 50AS OA214, 60AS or 50AS

In order to identify the location of components a sub-assembly prefix number appears before each code reference throughout this handbook.

The four main sub-assemblies have been allocated numbers as follows:-

Transmitter	1
Power supply unit	2
Receiver	3
Control unit	4

For example:Rl located on the transmitter is designated $1 R 1$
R1 located on the receiver is designated 3R1, etc.

CIRCUIT DESCRIPTION

RECEIVER

CIRCUIT FEATURES

25 to $68 \mathrm{Mc} / \mathrm{s}$

Fig. 1 Receiver Block Diagram - 25 to $68 \mathrm{Mc} / \mathrm{s}$
This receiver employs ten valves in a single superheterodyne circuit. Three grounded grid r.f. amplifiers are followed by a mixer stage employing a crystal controlled overtone oscillator, which produces the i.f. of $2 \mathrm{Mc} / \mathrm{s}$. This is amplified in a three stage i.f. amplifier before detection and a.f. amplification.

Interposed between the detector and the first a.f. amplifier is a series noise limiter designed to suppress pulse type interference such as that caused by vehicle ignition systems. The audio signal from the first a.f. amplifier is capacity coupled to a beam tetrode for final amplification.

68 to $174 \mathrm{Mc} / \mathrm{s}$

Fig. 2 Receiver Block Diagram - 68 to $174 \mathrm{Mc} / \mathrm{s}$

This receiver employs ten valves in a double superheterodyne circuit. Two grounded grid r.f. amplifiers are followed by two mixer stages employing crystal controlled oscillators which produce the first and second intermediate frequencies of $10.7 \mathrm{Mc} / \mathrm{s}$ and $2 \mathrm{Mc} / \mathrm{s}$ respectively. The secondi.f. is amplified in a three stage i.f. amplifier, this and all succeeding stages being identical with the 25-68 Mc/s receiver.

DETAILED DESCRIPTION
Figs. 14, 16 \& 18.
R.F.Amplifiers (25 to $68 \mathrm{Mc} / \mathrm{s}$)

3V1, 3V2 and 3V3 are grounded grid, low noise r.f. amplifiers. The antenna circuit is connected via the contacts of the antenna changeover relay 1 RLD and a low pass filter to the cathode of the first r.f. amplifier 3V1. Inductive interstage coupling between 3 Vl and 3 V 2 is provided by the tuned circuits associated with 3 L 5 and 3 L 6 , and between 3 V 2 and 3 V 3 by the tuned circuits associated with 3 L 10 and 3L11. The amplified signal developed at the anode of 3 V 3 is coupled by 3T1 to the signal grid of the pentode section of the triode-pentode mixer 3 V 4 .

The r.f. coils used in these amplifier stages are wound on ceramic formers fitted with adjustable cores, the separate frequency bands being covered by using cores composed of different types of iron dust material.

R.F. Amplifiers (68 to $174 \mathrm{Mc} / \mathrm{s}$)

3V1 and 3V2 are grounded grid, low noise, r.f. amplifiers. The antenna circuit is connected via the contacts of the antenna changeover relay 1 RLD and a low pass filter to the cathode of the first r.f. amplifier 3 Vl . Inductive interstage coupling between 3 V 1 and 3 V 2 is provided by the tuned circuits associated with 3L5 and 3L6. The amplified signal developed at the anode of 3 V 2 is inductively coupled by the tuned circuits associated with 3 L 10 and 3 L 11 to the cathode of the first mixer 3V3.

The r.f. coils used in these stages comprise silvered ceramic formers fitted with adjustable cores, the separate frequency bands being covered by using cores composed of different types of material.

Mixer and Oscillator (25 to $68 \mathrm{Mc} / \mathrm{s}$)

The heterodyne voltage for the mixer 3 V 4 is obtained from the pentode 3 V 11 , which functions as a crystal controlled overtone oscillator. Crystal trimming is effected by adjustment of 3 Ll 7 in single channel equipments, whilst for switched channel equipments, a separate trimming coil is switched into circuit with each crystal.

The anode circuit of 3 V 11 , comprising $3 \mathrm{~L} 15,3 \mathrm{C} 86$ and 3 C 93 , is coupled to the signal grid of the mixer 3 V 4 via a tap on $3 \mathrm{~L} 15,3 \mathrm{C} 62$ and the secondary of 3T1. The multiplying factor depends on the operating frequency, as quoted in Crystal Formulae on page 56 , and is chosen to give a resultant i.f. of $2 \mathrm{Mc} / \mathrm{s}$.

1 st Mixer and Oscillator (68 to $174 \mathrm{Mc} / \mathrm{s}$)
The first mixer employs a grounded-grid triode 3 V 3 . The heterodyne voltage obtained from the triode-pentode 3 Vl 0 , the pentode section of which functions as a cathode-coupled crystal controlled oscillator. Crystal trimming is effected by means of 3 C 76 on single channel equipments, whilst for switched channel equip-
ments a separate trimming capacitor is switched into circuit with each crystal. A harmonic of the crystal frequency is selected by the transformer 3T10 in the anode circuit of the pentode section. The triode also serves as a multiplier and the selected harmonic of the crystal frequency, chosen to give a first i.f. of $10.7 \mathrm{Mc} / \mathrm{s}$, is taken from a tapping point on 3 Ll 5 and injected into the input circuit of the first mixer 3 V 3 . The resultant signal produced at the anode of 3 V 3 is the firsti.f. of $10.7 \mathrm{Mc} / \mathrm{s}$ which is transformer-coupled by 3 Tl to the grid of the second mixer 3 V 4 a .

2nd Mixer and Oscillator (68 to $174 \mathrm{Mc} / \mathrm{s}$)
The triode section of 3V4 functions as a crystal-controlled oscillator at a frequency of $12.7 \mathrm{Mc} / \mathrm{s}$, except in the cases listed in Crystal Formulae on page 56.

Signal from the oscillator is fed, together with the first i.f. into the grid circuit of the pentode section of 3 V 4 , which acts as the second mixer. The $2 \mathrm{Mc} / \mathrm{s}$ second i.f. component produced at the anode of $3 V 4 a$ is transformer-coupled to the grid of the i.f. amplifier 3 V 5 .

$2 \mathrm{Mc} / \mathrm{s}$ I. F. Amplifier (25 to $174 \mathrm{Mc} / \mathrm{s}$)

This section consists of three i.f. amplifiers which provide most of the gain and selectivity of the receiver. Three r.f. pentodes 3V5, 3V6 and 3V7 are employed, inductive interstage coupling being provided by high-Q i.f. transformers. In Type V receivers the anode circuit of 3 V 4 a is coupled to the grid of 3 V 5 by a double i.f. transformer, 3T3 and 3T2. These transformers are coupled by the capacitor 3 C 73 . The following stages, using $3 \mathrm{~V} 5,3 \mathrm{~V} 6$ and 3 V 7 , are coupled in a similar manner, using $3 \mathrm{~T} 4,3 \mathrm{C} 74$ and 3 T 5 , and $3 \mathrm{~T} 6,3 \mathrm{C} 75$ and 3 T 7 respectively.

In the Type N and Type W receivers, where a wider band-width is required, a single high-Q transformer is employed between each of these stages. The gain of the whole stage is made variable by the inclusion of the i.f. gain control RV3 (normally mounted on the main unit front panel) in the cathode circuit of 3 V 5 .

Detection and A.G.C. (25 to $174 \mathrm{Mc} / \mathrm{s}$)

The final i.f. transformer 3T8 is directly coupled to one diode of the double diode triode $3 V 8$ for detection. The capacitor 3 C 51 feeds a small portion of the i.f. output to the second diode of 3 V 8 ; the resultant $\mathrm{d} . \mathrm{c}$. voltage developed across the load resistor 3 R 32 is fed as a.g.c. bias to the grid returns of $3 \mathrm{~V} 2,3 \mathrm{~V} 4,3 \mathrm{~V} 5$ and 3V6. A.G.C. delay is provided by the voltage developed across the cathode resistor 3R49.

A.F. Amplifier (25 to $174 \mathrm{Mc} / \mathrm{s}$)

The a.f. voltage developed across the diode load is fed, via the noise limiter, a.f. gain (VOLUME) control $4 R V 1$ and the coupling capacitor $3 C 54$ to the grid of the triode section of 3 V 8 . After amplification the a.f. signal is coupled via 3Cl04 to the grid of 3 V 9 , which is a beam tetrode a.f. amplifier capable of delivering over 1 watt of audio power into the 3Ω loudspeaker.

Noise Limiter (25 to $174 \mathrm{Mc} / \mathrm{s}$)

The load circuit of the signal diode includes a silicon diode 3MRl functioning as a series noise limiter. Under normal working conditions, a voltage proportional to the carrier level is developed across 3 R 48 and 3 MRI . In the event of a sudden peak in signal, such as that caused by interference from a vehicle ignition system, the positive side of 3 MRl will be driven rapidly negative and 3 MRl will momentarily fail to conduct. The relatively large time constant of 3 R47 and $3 C 71$ prevents the negative side of 3 MRl from following a rapidly changing signal, whilst normal speech waveform remains unaffected.

The noise limiter forms part of the signal diode load, the input to the limiter being taken from the secondary winding of the finali.f. transformer 3 T8 via the filter $3 \mathrm{C} 68,3 \mathrm{R} 48$ and 3 C 72 . The output from the limiter is fed to the a.f. gain (VOLUME) control 4 RVl via tag 4 of 2 TS 1 . The input to the squelch circuit, if fitted is taken from the secondary of 3 T8 via tag 8 of 2TS1.

Squelch Circuit

Fig. 24
The components of the squelch circuit, if fitted, are mounted on the power supply unit chassis. The double-triode 2Vl is a two-stage d.c. amplifier with the squelch relay $2 R L F$ in the anode circuit of the second section $2 \mathrm{~V} l \mathrm{~b}$.

Contacts 2RLF1 of the relay disconnect the loudspeaker and ground the secondary of the audio output transformer when the relay is in the de-energised condition.

Action of the Squelch Valve 2 V 1

Positive bias at the grid of 2 Vla causes the valve to conduct, resulting in a voltage drop at the anode, and by direct coupling, a negative grid-to-cathode bias at the grid of 2 V 1 b until insufficient current is drawn to operate 2 RLF. Negative bias at the grid of 2 Vla cuts off the valve, resulting in a rise in anode volts and in a positive grid-to-cathode bias at the grid of 2 V 1 b . 2 Vlb now conducts and the relay is energised.

Operation of the Squelch Circuit

Bias at the grid of 2 Vla is determined by the following four squelch voltages:-

1. Positive voltage from the a.g.c. delay resistor 3R49.
2. Positive voltage from the high frequency components of any random noise at the signal diode. This is filtered from any a.f. component by 2 C 6 , 2R6, 2C7 and rectified by 2 MR 3 .
3. Negative voltage from the $i f$. or noise signals from the signal diode of 3 V 8 .
4. Negative voltage from the negative -esistor of 2 Vla i.e. the SQUELCH control 4RV2.

The SQUELCH control is set to ensure that in the no-signal condition the sum of these voltages is positive. The relay is therefore de-energised and the loudspeaker silenced.

When a signal is received the negative voltage from the signal diode (voltage 3) rapidly increases and the positive bias from 2 MR 3 (voltage 2) is simultaneously reduced until the signal voltage exceeds the level determined by the setting of $4 R V 2$. Bias at the grid of 2 Vla is now negative, the relay is energised and the loudspeaker connected.

A feature of this circuit is the self-compensating action against the effect of external noise. An increase in negative bias from the signal diode (voltage 3) due to noise signals is offset by an increase in positive bias from 2MR3 (voltage 2).

CIRCUIT FEATURES (25 to $68 \mathrm{Mc} / \mathrm{s}$)
This transmitter employs three valves in the r.f. section. The output from a pentode crystal oscillator is successively multiplied in each section of a double beam tetrode and coupled to the push-pull power amplifier stage, which also employs a double beam tetrode. The transmitter is connected to the antenna via the contacts of the changeover relay lRLD.

Two valves are employed in the modulator section. The microphone input is amplified by both sections of a double triode acting in cascade. The output from the second section is fed to the output pentode, which provides anode and screen modulation of the power amplifier stage.

Fig. 3 Transmitter Block Diagram - 25 to $68 \mathrm{Mc} / \mathrm{s}$

Oscillator

The pentode lVl functions as a crystal controlled oscillator at fundamental crystal frequency, crystal trimming being effected by adjustment of lCl. On switched channel equipments a separate trimming capacitor is switched into circuit with each crystal. The anode circuit lLl and Cl4 is tuned to the fundamental crystal frequency and the r.f. voltage developed across it is fed to the grid of the first section of 1 V 3 via the capacitor 1 Cl 9 . A test point 1 TP is provided in the anode circuit of the oscillator to enable a suitable frequency measuring instrument to be connected.

Frequency Multiplication

The double beam tetrode lV3 multiplies the crystal frequency to the required signal frequency. The anode circuit 1 L 2 and 1 C 60 of the first section (lV3a) is permeability tuned to the second or third harmonic of the crystal frequency, depending upon operating frequency. The r.f. voltage developed across this circuit is fed to the grid of the second section (lV3b) via the coupling capacitor 1 C 61.

The second section of $1 V 3$ operates as a frequency doubler, its anode circuit, consisting of the split-stator tuning capacitor lC35 and the primary of the multiplier transformer 1 T 3 , being tuned to the operating frequency. The secondary of 1T3 is connected to the grids of the power amplifier 1 V 4.

Multiplication Factors

Band	lV3a	lV3b	Total Multiplication
$25-32.5 \mathrm{Mc} / \mathrm{s}$	x 2	x 2	x 4
$32.5-42 \mathrm{Mc} / \mathrm{s}$	x 2	x 2	x 4
$42-54 \mathrm{Mc} / \mathrm{s}$	x 3	x 2	x
$54-68 \mathrm{Mc} / \mathrm{s}$	x 3	x 2	x

Power Amplifier and Antenna Circuit
The power amplifier stage employs a double beam tetrode lV4, the two sections operating in push-pull. Grid bias is developed across lR14, which is connected between the centre-tap of the secondary winding of the multiplier transformer IT3 and lR15. 1R15 is included to enable the power amplifier grid current to be metered.

The output from the balanced anode circuit 1 L 6 and 1 C 44 is inductively coupled to 1 L 7 and link coupled via a co-axial feeder to a low impedance tap on 1 L 8 in the antenna tuned circuit; this arrangement minimises spurious subcarrier emissions. H. T. is applied to the centre tap of 1 L 6 via 1 R19 and 1 R 30 in series, 1 R30 acting as a meter shunt for metering the power amplifier anode current.

The antenna is connected via the co-axial plug 1PLA and the contacts of the relay 1 RLD. This relay is energised only during transmission by the h.t. supply to the modulator and early r.f. stages.

NOTE: If required a low-pass filter $1 F L 1$ may be added between the antenna plug 1 PLA and the contacts of the antenna changeover relay 1 RLD to reduce spurious emissions above carrier frequency.
lR29 is connected in series with the h.t. supply to the power amplifier screen grid and is normally shorted out by a link. When tuning, this link is removed anc a reduced voltage is applied to the screen grid, thus preventing excessive anode dissipation under 'off tune' conditions.

CIRCUIT FEATURES (68 to $174 \mathrm{Mc} / \mathrm{s}$)
This transmitter employs four valves in the $\mathrm{r} . \mathrm{f}$. section. The output from a pentode crystal oscillator is successively multiplied in a further pentode and each section of a double beam tetrode, the output from which is coupled to the push-pull power amplifier stage, also employing a double beam tetrode. The transmitter is connected to the antenna via the contacts of the changeover relay 1 RLD .

The modulator circuit is identical with that used in $25-68 \mathrm{Mc} / \mathrm{s}$ equipments.

Fig. 4 Transmitter Block Diagram - 68 to $174 \mathrm{Mc} / \mathrm{s}$
DETAILED DESCRIPTION (68 to $174 \mathrm{Mc} / \mathrm{s}$)
Fig. 22

Oscillator

The pentode lV1 functions as a crystal controlled oscillator at fundamental crystal frequency, crystal trimming being effected by adjustment of lCl. On switched channel equipments a separate trimming capacitor is switched into circuit with each crystal. The anode circuit 1 Ll and 1 Cl 4 is tuned to the fundamental crystal frequency and the r.f. voltage developed across it is fed to the grid of the pentode lV2 via the capacitor lCl9. A test point 1 TP is provided in the anode circuit of the oscillator to enable a suitable frequency measuring instrument to be connected.

Frequency Multiplication

In the anode circuit of the pentode IV2, 1 L 2 and 1 C 21 are tuned to the second or third harmonic of the crystal frequency, depending upon the operating frequency. The r.f. voltage developed across this circuit is fed to the grid of the first section of the double beam tetrode lV3 via the capacitor lC25. The anode circuit of lV3a, comprising lC26 and 1T1, is tuned to the second or third harmonic of the output of 1 V 2 , depending upon operating frequency. The secondary of 1 T 1 is directly connected to the grid of the second section (lV3b), which operates as a frequency doubler. Its anode circuit, consisting of the split stator tuning capacitor 1C35 and coil 1 L 4 is tuned to the carrier frequency. lL4 and lL5 couple the output of 1 V 3 b to the grids of the power amplifier lV4. Coupling between lV3b and the grids of the power amplifier lV4 is capacitive (lC58 and lC59) on 68-132 Mc/s equipments and inductive (1 L 4 and 1 L 5) on $132-174 \mathrm{Mc} / \mathrm{s}$ equipments.

Multiplication Factors

Band	1 VZ	1V3a	1 V 3 b	Total Multiplication
68-88 Mc/s	x 2	x 2	x 2	x8
88-108 Mc/s	x 2	$\times 3$	x 2	x12
108-132 Mc/s	x2	$\times 3$	$\times 2$	x 12
132-156 Mc/s	$\times 3$	$\times 3$	x 2	$\times 18$
148-174 Mc/s	$\times 3$	$\times 3$	$\times 2$	$\times 18$

Power Amplifier and Antenna Circuit

The power amplifier stage employs a double beam tetrode lV4, the two sections operating in push-pull.

Grid bias is developed across 1R43 and lR44 on 68-132 Mc/s equipments and across lR14 on 132-156 Mc/s equipments. lRI5 is included to enable the power amplifier grid current to be metered.

The output from the balanced anode circuit 1 L 6 and lC44 is inductively coupled to 1 L 7 and link coupled via a co-axial feeder to a low impedance tap on lL8 in the antenna tuned circuit; this arrangement minimises spurious subcarrier emissions. H.T. is applied to the centre tap of 1 L 6 via 1 Rl 9 and 1 R 30 in series, 1R30 acting as meter shunt for metering the power amplifier anode current.

The antenna is connected via the co-axial plug 1PLA and the contacts of the relay lRLD. This relay is energised only during transmission by the h.t. supply to the modulator and early r.f. stages.

NOTE: Transmitters for operation on the frequency bands $68-108 \mathrm{Mc} / \mathrm{s}$ and 148-174 Mc/s incorporates a low-pass filter lFL1 between the antenna plug IPLA and the contacts of the antenna changeover relay to reduce spurious emissions above carrier frequency. lFLl may be added to transmitters for operation on other frequency bands if required.

1R29 is connected in series with the h.t. supply to the power amplifier screen grid and is normally shorted out by a link. When tuning, this link is removed and a reduced voltage is supplied to the screen grid, thus preventing excessive anode dissipation under 'off tune' conditions.

Modulator Circuit (25 to $174 \mathrm{Mc} / \mathrm{s}$)

An electro-magnetic microphone is used, the output from which is amplified in one section (1 V 5 a) of a double triode. The output from lV5a is capacity coupled by lC48 to the grid of the second amplifier section 1 V 5 b .

The output pentode modulator lV6 is fed from 1 V 5 b by lC47. Modulation is applied to the anodes and screen of the power amplifier valve lV4 by the modulation transformer 1 T2.

The screen voltage of the power amplifier valve lV4 is arranged to limit peak audio voltages and prevent over-modulation. A low-pass filter lC49. lL9 and lC50 is inserted between the secondary of the modulation transformer and the power amplifier valve lV4 to prevent excessive side band radiation under limiting conditions.

POWER SUPPLY

Fig. 24
The circuit consists of two power transistors 2 VTl and 2 VT 2 connected in a multivibrator configuration with the transformer 2 Tl as a centre tapped load. Starting bias is applied to the circuit by means of 2RV4, 2R2 and 2C1. Feedback is provided by connecting out-of-phase windings on transformer 2 Tl to the bases of transistors 2VTl and 2VT2. These transistors are mounted on heat sinks on the rear panel of the main unit and the remainder of the converter components are located on the power supply unit chassis.

The frequency of operation of the transistor power supply unit is approximately $3.4 \mathrm{kc} / \mathrm{s}$.

The output is rectified by two silicon diodes 2 MR1 and 2 MR2 with capacitors 2 C 2 and 2C3 in a voltage doubling circuit. Filtering is provided in the output line by resistors 2 R 3 and 2 R 4 (or the choke 2 Ll) and capacitor 2 C 4 .

NOTE: A polarity changeover panel 2 TS 3 is mounted on the power supply unit and must be connected as shown in the circuit diagram to correspond with the positive or negative ground of the vehicle wiring system.

RELAY OPERATION Figs. 24 \& 26

2RLA H.T. changeover relay, energised in the transmit condition by the vehicle d.c. supply via pin 4 of 2 TS 2 and the microphone (or handset) switch. This switch is connected in parallel with the local transmit switch SB on the front panel of the main unit.

2RLAl connects the voltage doubling capacitor 2 C 2 to tag 2 (low voltage tap) on the converter transformer 2 Tl in the receive condition. When the relay is energised 2 C 2 is connected to tag 7 (high voltage tap) on 2Tl, providing increased h.t. for the transmitter.

2RLA2 connects the smoothed h.t. output to the receiver via tag 11 of 2TS1. When the relay is energised the smoothed h.t. output is connected to the transmitter via tag 25 of 2 TS 1.

2RLB Start relay, energised by the vehicle d.c. supply when the OFF-RX-S/BY switch 4 SA on the control unit is moved to the RX position.

2RLB1 connects the vehicle d.c. supply to the power supply unit and the receiver heaters.

RLC Ledex switch relay, fitted to switch channel equipments only. Energised by the vehicle d.c. supply via pin 2 of SKTB and the CHANNEL selector switch 4 SC on the control unit.

RLCl connects the vehicle d.c. supply to the Ledex motor when 4SC is operated, via tag' 'e' of TS6.
lRLD Antenna changeover relay, energised in the transmit condition by the h.t. supply to the modulator and early r.f. stages.
lRLDI connects the antenna to the receiver when the relay is not energised and to the transmitter when energised.

RLE Standby relay, energised by the vehicle d.c. supply when 4SA is moved to the S/BY position.

RLE1 connects the vehicle d.c. supply to the transmitter heaters.
2RLF Squelch relay energised by the anode current of 2 Vlb when a signal is received.

2RLFl disconnects the loudspeaker and grounds the secondary of the audio output transformer in the de-energised condition.

2RLF2 is not used

The functions of the controls provided on the control unit are as follows:-

4RV1 VOLUME control, connected in the grid circuit of the a.f. amplifier 3V8.
4RV2 SQUELCH control (if fitted), which varies the sensitivity of the squelch circuit.

4SA OFF-RX-S/BY switch, which operates the equipment by switching energising voltage to the coils of the appropriate control relays.

4SC CHANNEL selector switch (if fitted), which completes the energising circuit of RLC and, in conjunction with the Ledex motor, selects the required channel.

Before commencing the installation remove the main unit from its covers, as described in Dismantling Procedure on page 25 , and check that all valves and crystals are firmly seated in position and that no obvious damage has occurred during transit.

These equipments are normally despatched from the factory connected for operation from a POSITIVE GROUND battery supply. Before connecting to the supply it is essential to ensure that the equipment is adjusted to correspond with the positive or negative ground of the vehicle wiring system. The polarity changeover panel 2 TS 3 on the power supply unit chassis is provided to enable either system to be used. Connection details are shown on the power supply unit circuit diagram (Fig. 24).

In vehicles with a 'floating ground' system precautions must be taken to avoid grounding the equipment, and when installing the antenna, to avoid grounding the antenna base and feeder.

Replace the unit in the covers with the toggle catch on the required side, place the unit on the cradle and locate the assembly in position. It should be noted that the design of the covers allows the top half to be completely removed without removing the unit from the cradle and also permits access to the equipment when installed in situations with very limited headroom.

Three important points must be observed in determining the position of the main unit in the restricted space of a car trunk.

1. Sufficient space must be allowed round the equipment to ensure adequate ventilation, (The cradle is mounted on wooden blocks, or shock absorbing mountings, either of which ensure sufficient ventilation under the equipment).
2. The cradle must be mounted on a surface as flat as possible to minimise distortion.
3. It must be positioned so as to permit easy access for maintenance purposes.

Remove the unit from the cradle and, using the cradle as a template, carefully mark the position of the fixing holes. Drill four $9 / 32^{\prime \prime}$ (7.14 mm .) diameter holes through the floor of the vehicle, place one wooden block over each hole and bolt the cradle in position, using the four $\frac{1}{4}$ B.S.F. bolts supplied. The unit can then be secured to the cradle as shown in Fig. 5.

When shock absorbing mountings are fitted the se are normally secured by the $l^{\prime \prime} \mathrm{x} 2 \mathrm{~B} . \mathrm{A}$. bolts supplied with each set of mountings.

Control Unit
Fig. 5 Typical Installation

Remove the control unit from its fixing bracket and separate the two halves of the case, as described in Dismantling Procedure on page 25. Movement of the front section is restricted by the control cable, which is anchored to the rear section of the unit. Disconnect the control leads from the terminal panel 4TS4 in the front section of the unit and secure the fixing bracket in the desired position.

Feed the control cable through from the trunk and reconnect to 4TS4. Reassemble the control unit and mount it on the bracket. It should be noted that the control unit case is so designed that the external lead for the microphone may be brought out from whichever side is required.

Fit the microphone or telephone handset bracket in the required position, using three No.6Z (No. 36 drill) $\times 3 / 8^{\prime \prime}$ self-tapping screws.

Plug the control unit connector plug into the 24 -way socket on the main unit front panel.

Fig. 6 Control Unit Construction

The power leads are taken from the equipment, to which they are connected by a 6 -way plug on the main unit front panel, via the terminal block to the battery. The terminal block should be mounted at a convenient point near the main unit. Ensure that the brown lead is connected to the live battery terminal and the green lead to the terminal connected to the vehicle chassis. Owing to the amount of current required, it is recommended that the equipment be connected directly to the battery and not via the ammeter or ignition switch. In those cases where a 'floating ground' supply is used great care must be taken to avoid grounding the equipment. The power and control cables must not be cleated together in their run from the main unit to the battery and control unit respectively but should be separated as far as possible.

It is imporant that the power leads should be of sufficiently heavy gauge to ensure that the voltage drop to the equipment is not excessive. The following table gives a guide to the size of lead required.

Distance of equipment	Total length	Gauge of	Resistance per
from battery	of lead	conductor	yard of cable
2 yards	4 yards	110/0.0076	0.0052Ω
4 yards	8 yards	162/0.0076	0.0035Ω

Standard Test Voltage

The standard test voltage for test and alignment purposes is 13.2 volts measured at the battery on load, the equipment being connected to the battery by a suitable length of the recommended lead as shown in the above table.

ERECTION OF ANTENNA

The vertical whip antenna normally supplied with this equipment must be mounted on a horizontal metallic surface or ground plane for the best results. The ground plane should preferably be of such a size that the distance from the antenna base to the nearest edge is not less than the length of whip antenna employed.

If the antenna base is to be mounted on a non-metallic surface where a solid plate is not possible, at least four radial conductors of metal strip should be used to simulate a ground plane. These conductors should be connected electrically to the outer braid of the co-axial transmission line.

In general, it is essential to ensure that:-

1. The ground plane or radial conductors make good electrical contact with the outer braid of the co-axial transmission line via the contact plate.
2. The mounting surface is flat, so that the cork or rubber sealing washer can form an effective seal against the entry of water.
3. In cases where a 'floating ground' supply is employed, no metallic part of the antenna or feeder makes contact with the vehicle chassis. Antenna installation instructions are available as supplements to this Manual.

Complete the installation by connecting the antenna feeder socket to the co-axial plug on the main unit front panel.

INITIAL ADJUSTMENTS

TEST SET

The Pye PTC 409 or 405 A Test Set can be used with this equipment. An adaptor cable is supplied with the Test Set to connect its input to the test socket on the main unit front panel. Meter readings are given in the Test Readings on page 36 .

PREPARE THE COAXIAL FEEDER CABLE AS SHOWN

(APPROX 4 cm)

assemble the hexagonal nut and the BRAIDING CONE, COMBING AND CUTTING BRAIDING AS SHOWN.
PUSH CONE UNDER BRAIDING AS FAR AS POSSIBLE

TEMPORARILY SCREW ELBOW IN POSITION TO FORCE BRAIDING CONE UNDER BRAIDING. TRIM OFF SUPLUS BRAIDING

TRIM BACK DIELECTRIC TO WITHIN $1 / 32$ OF CONE. SOLDER THE FERRULE TO THE INNER CONDUCTOR, ENSURING THAT NO SOLDER IS DEPOSITED ON THE OUTSIDE OF THE FERRULE (IF USED WITH
MULTISTRAND INNER CONDUCTOR WHOSE OD. EQUALS FERRULE OD. DELETE FERRULE AND TIN INNER CONDUCTOR. REMOVE ALL FLUX)

TRIM INNER CONDUCTOR

ASSEMBLE THE PLUG IN THE ORDER INDICATED ENSURE FERRULE IS FREE TO TURN WITH CABLE AND TIGHTEN HEXAGONAL NUT BEFORE INSERTING GRUB SCREW.

COMPLETE THE ASSEMBLY By tightening the grub screw

Fig. 7 Assembly of Coaxial Connectors

1. Plug the Test Set into the test meter socket on the front panel of the main unit.
2. Turn the OFF-RX-S/BY switch on the control unit to S/BY.
3. After a period of about a minute receiver noise should be heard, except when squelch is fitted, in which case a noise burst will be heard.
4. Check that pressing the local transmit switch operates the relays 2RLA and lRLD, the operation of which should be quite audible.

Transmitter
\therefore With the antenna connected, switch the Test Set to position 5 and press the local transmit switch on the main unit. Adjust the antenna trimming capacitor 1 C 45 for maximum meter reading, which must not exceed $270 \mu \mathrm{~A}$.
2. Disconnect the Test Set, switch it to position 6 and plug the Test Set antenna into its socket. Place the meter sufficiently close to the radiotelephone antenna to obtain a convenient deflection and readjust lC45 for maximum meter reading. The meter reading should increase slightly with modulation.

Receiver

The only adjustment needed to equipments not fitted with the squelch facility is to the i.f. gain control to obtain the best balance between sensitivity and standing noise. Set the VOLUME control in the midway position and adjust the i.f. gain control RV3 under 'no signal' conditions until noise is barely audible.

On equipments fitted with the squelch facility, the SQUELCH sensitivity control 4RV2 must be set for maximum receiver sensitivity as follows:-

Under 'no signal' conditions, and with the VOLUME and i.f. gain controls set as above, slowly rotate $4 R V 2$ until the squelch relay opens, silencing the receiver. Then back off the control slightly, taking care that the squelch relay does not close again. If required, a less sensitive setting of the control may be used to eliminate unwanted interfering signals of lower strength than the required signal.

OPERATION

Upon completion of the installation and initial adjustments the equipment should be given an operational test run under the supervision of the engineer in charge. At the same time operators should be instructed in the proper handling of the controls.

It is advisable to contact the base station from various locations in the area to be covered in order to determine the relative signal strengths to be expected

MICROPHONE TECHNIQUE

In order to obtain optimum results from the transmitter, proper use of the microphone is essential.

The operator should hold the microphone two or three inches from the lips and speak across its face at a normal level of speech. It this is done, high background noise will be much reduced and the call clearly received. It is to the operator's advantage to make practice calls and develop a microphone technique best suited to his or her speech characteristics.

It is important to appreciate that shouting into the microphone will result in speech clipping and transmission of a distorted signal.

FIELD TESTING PROCEDURE

NOTE: Before leaving the factory, both receiver and transmitter oscillators are accurately aligned against a frequency standard and it will not normally be necessary to readjust the frequency unless a valve, crystal or other component in the crystal circuit is changed.

Under no circumstances should the settings of the transmitter or the receiver crystal trimmers be alteredwithout reference to a frequency substandard or to the base station equipment as described below.

The Pye $2 \mathrm{Mc} / \mathrm{s}$ transistor oscillator PTC 422 is available for use in checking the operating frequency against that of the base station. When checking the operating frequency at least one hour should be allowed for the equipment to reach operating temperature.

RECEIVER

1. Arrange for the base station to radiate a carrier
2. Plug the output lead of the $2 \mathrm{Mc} / \mathrm{s}$ oscillator into pin 1 of the test meter socket on the main unit front panel (sufficient coupling to the i.f. amplifier may be obtained by holding the $2 \mathrm{Mc} / \mathrm{s}$ oscillator close to the i.f. strip).
3. If a high audio beat note is produced, i. e. in excess of $1000 \mathrm{c} / \mathrm{s}$ for Type V equipments and $2000 \mathrm{c} / \mathrm{s}$ for Type N and W equipments, the mobile receiver crystal trimmer $3 \mathrm{Ll} 7(25-68 \mathrm{Nic} / \mathrm{s}$) or $3 \mathrm{C} 76(68-174 \mathrm{Nc} / \mathrm{s}$) should be adjusted for zero beat.
4. Where channel switching is employed procedure 3 should be repeated on each channel.

TRANSMITTER

NOTE: The following procedure is applicable only when used in conjunction with base stations having a receiver with an accurate i.f. of $2 \mathrm{Nic} / \mathrm{s}$, such as the Pye PTC 723/4 and Pye PTC 2710/2.

1. Arrange for the mobile transmitter to radiate a carrier.
2. Connect the output lead of the $2 \mathrm{Mc} / \mathrm{s}$ oscillator to the screen grid of the penultimate i.f. amplifier in the base station receiver (sufficient coupling to
the i.f. amplifier may be obtained by holding the $2 \mathrm{Mc} / \mathrm{s}$ oscillator close to the i.f. strip). The PTC 723/4 and PTC 2701/2 base stations have convenient connecting points at the rear of the cabinets as follows:-

PTC 723/4	TS4.b	(marked V6 Es on rear panel)
PTC 2701/2	TS3.F	

3. If a high audio beat note is produced, i. e. in excess of $1000 \mathrm{c} / \mathrm{s}$ for Type V equipments and $2000 \mathrm{c} / \mathrm{s}$ for Type N and W equipments, the mobile transmitter crystal trimmer lCl should be adjusted for zero beat as reported by the base station engineer. Adjustment must not be made to the base station receiver crystal trimmer without reference to a frequency standard.
4. Where channel switching is employed procedure 3 should be repeated on each channel.

Although unnecessary where wide channel spacing is employed, the field testing procedure becomes increasingly important as the carrier frequency increases and the channel spacing decreases.

SERVICING

The performance figures given in the Bench Alignment Procedure on page 29 are for new equipment and equipment regularly maintained in accordance with the Routine Maintenance Procedure given on page 25 .

In schemes in which equipments operate on marginal signals more maintenance will be required to keep sets at peak performance. However, in systems where signals of good strength can normally be expected, such a high performance may not be necessary.

The engineer in charge of the scheme should exercise discrimination as to the frequency with which full maintanance is required, making due allowance for gradual falling off in performance when regular maintenance is not carried out.

EQUIPMENT REQUIRED FOR ROUTINE MAINTENANCE PROCEDURE

NOTE: The equipment required to carry out the Routine Maintenance Procedure in full is as given below, but where such equipment is not readily obtainable the routine should be completed as far as possible, interpreting the figures given in the light of the limitations of the available test gear.

1. Signal generator. (See V. H. F. Signal Generator on page 29).
2. $0-50 \mu \mathrm{~A}$ meter with a minimum resistance of 500Ω. (Avo Model 8 is suitable)
3. Diode probe. (A suitable circuit is shown in Fig. 8 on page 26).
4. Audio output meter with a scale reading up to 2 watts. (Most standard multirange instruments are suitable).
5. Pye PTC 409 Test Set.
6. Multi-range d.c. voltmeter of $20,000 \Omega /$ volt sensitivity. (Avo Model 8 is suitable)
7. R.F. power output meter. (Bird Termaline Model 612 is suitable).

ADDITIONAL EQUIPMENT REQUIRED FOR BENCH ALIGNMENT PROCEDURE

1. A source of standard test voltage of 13.2 volts d.c. measured at the battery on load. (See Standard Test Voltage on page 19).
NOTE: It is important that a hum-free source of l.t. is applied to the equipment for most receiver tests. When the equipment is supplied from a battery to which a floating charge from a mains rectifier unit is applied, the hum level may be too great to enable the tests to be accurately performed. In these cases the rectifier unit should be switched off.
2. Crystal controlled i.f. signal generator accurate to 0.01%. If only a standard signal generator is available, a crystal controlled $2 \mathrm{Mc} / \mathrm{s}$ oscillator, such as the Pye PTC 422 transistor oscillator, must be provided for calibration purposes.
3. $10 \mathrm{nF}(0.01 \mu \mathrm{~F})$ capacitor.
4. Two small $2.2 \mathrm{k} \Omega$ resistors with extremely short leads.

MAIN UNIT

To remove the unit from the cradle, disconnect the power supply socket, the control cable plug and the co-axial antenna connector. Unlock the two quick release fasteners (see Fig. 5 on page 17) and pull the unit off the two locating pins at the rear of the cradle.

The covers can be removed after releasing the large toggle catch. The 'lift off' type hinges enable the two parts of the case to be separated and once the top half is removed the main unit can be lifted out of the bottom half of the cover.

Each chassis is bolted to two side plates, which are in turn secured to the front and rear panels of the unit. The heat sinks for the power supply unit transistors are mounted on the rear panel. Should the removal of the front panel or the separation of the individual chassis be required the appropriate leads should be unsoldered from 2TS 1 before proceeding further.

On switched channel equipments the switch shaft must be removed before separating individual chassis. To remove the switch shaft, take off the rear panel of the main unit, remove the $6 \mathrm{~B} . \mathrm{A}$. screw and nut which secures the switch shaft to the coupling on the Ledex motor shaft and withdraw the switch shaft through the rear of the main unit. The switch wafers are each locked to the switch shaft by a rotor lock spring and upon re-assembly it must be ensured that these springs are replaced in their recesses in the switch shaft.

CONTROL UNIT

Access to the inside of the control unit can be gained by loosening the captive screw at each side of the escutcheon (see Fig. 6 on page 18) and carefully pulling off the front section. Movement of the front section is restricted by the control cable, which is anchored to the rear section of the unit.

The complete control unit can be removed from its fixing bracket by loosening the captive hexagon head bolt at each end of the unit and lifting the unit off the bracket.

Press-to-Transmit Switch

Access to the press-to-transmit switch in the microphone is gained by removing the four screws at the back of the microphone.

When a telephone handset is fitted access to the switch is gained by unscrewing the microphone cover and lifting out the assembly.

ROUTINE MAINTENANCE PROCEDURE

Nominal figures (in brackets) are given for guidance.

GENERAL

1. Disconnect the control, antenna and supply leads by removing the connectors from the main unit front panel.
2. Remove the top cover of the main unit and remove the equipment from the cradle. (see Dismantling Procedure above).
3. Clean out all dust,etc.
4. Check over the antenna installation, paying particular attention to the grub screws in Pye connectors.
5. Check the battery leads for wear and replace if necessary. Ensure that all connections are firmly tightened.
6. Check the battery voltage, (See Power Supply on page 18).
7. Reconnect the control, antenna and supply leads and check the operation of the OFF-RX-S/BY switch. Operate it several times.
8. Check that the indicator lamps are functioning and firmly secured in their holders (the transmitter must be operated to check the TX ON lamp).
9. Check that all valves and crystals are firmly seated and that there is no noise from intermittent contacts.
10. Check the operation of all the relays. Clean the contacts if necessary.
11. On switched channel equipments check the operation of the CHANNEL selector switch.
12. Check the receiver h.t. voltage (180 volts).
13. Check the transmitter h.t. voltage (280 volts).

RECEIVER PERFORMANCE CHECKS
14. Check the crystal oscillator stage as follows:-

Receivers operating between 25 and $68 \mathrm{Mc} / \mathrm{s}$:- With an r.f. input of $2 \mu \mathrm{~V}$ e.m.f. check the signal-to-noise ratio (lldB). A diode probe should be used in conjunction with the $0-50 \mu \mathrm{~A}$ meter, to check the voltage on the grid (pin 2) of the mixer 3 V 4 (0.5 volts).

Fig. 8 Diode Probe

Receivers operating between 68 and $174 \mathrm{Mc} / \mathrm{s}$:- Connect the $20,000 \Omega /$ volt meter, switched to the 2.5 volt range, across 3 R 42 in the cathode circuit of the triode section of 3 Vl 0 and adjust both cores of 3 Tl 10 for maximum output (0.6 volts).
15. Check the overall sensitivity as follows:-

Set the output meter to high impedance input and connect between tag 4 of 3 T 9 (the a.f. output transformer) and the chassis. Connect the signal generator to the antenna plug and apply an r.f. signal of $2 \mu \mathrm{~V}$ e.m.f. modulated 30% at $1000 \mathrm{c} / \mathrm{s}$.
Check the output (Type V and N equipments 300 mW ; Type W equipments 200 mW).
16. Check the signal-to-noise ratio as follows:-

With the signal generator and output meter connected as in 15 above and with the modulation switched on, note the reading on the $d B$ scale of the output meter. Switch off the modulation and again note the reading on the dB scale.

Subtracting the latter reading from the former reading will give the approximate signal-to-noise ratio at this level (25 to $68 \mathrm{Mc} / \mathrm{s} 11 \mathrm{~dB} ; 68$ to $156 \mathrm{Mc} / \mathrm{s}$ $9 \mathrm{~dB} ; 148$ to $174 \mathrm{Mc} / \mathrm{s} 8 \mathrm{~dB}$).
17. Check the a.g.c. performance as follows:-

With the signal generator and output meter connected as in 15 above apply an input of 20 mV and adjust the a.f. output to 100 mW . Note the maximum change in output when the signal is reduced to $4 \mu \mathrm{~V}$ e.m.f. (Type V and N equipments 8 dB ; Type W equipments 9 dB).
18. In the event of the receiver performance being suspect, compare the voltages on the equipment with the typical voltages given on the receiver circuit diagrams (Figs.14, 16 \& 18). The gain of the receiver can be checked stage-by-stage using the v.h.f. signal generator and the diode probe shown in Fig. 8.

TRANSMITTER PERFORMANCE CHECKS

19. Check the grid current of the multiplier and driver stages as follows:-

Connect the PTC 409 Test Set to the test socket on the main unit front panel, and check the readings obtained. (For further details see Test Readings on page 36).

Switch Position
2
3
4
(25 to $132 \mathrm{Mc} / \mathrm{s}$)

Meter Reading

* $170 \mu \mathrm{~A}$
* $170 \mu \mathrm{~A}$
$120 \mu \mathrm{~A}$

4 (132 to $174 \mathrm{Mc} / \mathrm{s}$) adjust the coupling (see para. 7 on page 35) to give a reading between
$120 \mu \mathrm{~A}$ and $170 \mu \mathrm{~A}$
5
$210 \mu \mathrm{~A}-270 \mu \mathrm{~A}$

* The actual values are relatively unimportant, providing that the readings for power amplifier drive (switch position 4) and power amplifier current (switch position 5) are correct.

20. Check the carrier for hum and noise as follows:-

With the PTC 409 Test Set disconnected from the equipment, switch to position 6, plug in the Test Set antenna and connect a pair of earphones to the jack socket. Operate the transmitter and ensure that there is no hum or noise on the carrier.
21. Check the modulation as follows:-

With the same arrangement as in 20 above speak into the microphone and ensure that the modulator is working satisfactorily.
22. Check the power output (5 watts).
23. In the event of the transmitter performance being suspect, compare the voltages on the equipment with the typical voltages given on the transmitter circuit diagrams (Figs. 20 \& 22).
24. Align the transmitter to the antenna, using a thru-line or reflectometer where available. Otherwise use the procedure described in Initial Adjustments on page 19.
25. Refit the equipment, ensuring that all fastenings are tight and that all connectors are pressed home and secured.
26. Call up the base station for a final operational check, carrying out the Field Testing Procedure described on page 22 if necessary.

BENCH ALIGNMENT PROCEDURE

RECEIVER

V.H.F.SIGNAL GENERATORS

The high order of selectivity employed in this receiver necessitates the use of v.h.f. signal generators in which the degree of frequency modulation is of a very low order. Unless a signal generator of a sufficiently high standard is used accurate r.f. measurements of sensitivity, signal-to-noise ratio and a.g.c. cannot be obtained. The following signal generators are satisfactory:-

1. Boonton Radio Corporation, Boonton, N.Jersey Type 202C (r.f. alignment above $54 \mathrm{Mc} / \mathrm{s}$ only)
2. Marconi Instruments

Type TF995A/1-5
3. Hewlett Packard

Type 608A
Other signal generators not meeting the exacting requirements called for may be used for comparative tests only.

Where signal generators are used which have a resistance termination at the end of the output lead (such as Boonton Type 202C) this must be removed and the lead connected either directly to the receiver input or via a suitable matching pad. The attenuators of many signal generators are calibrated to read closed circuit microvolts, which is the voltage appearing across a load equal to the generator impedance (the Boonton Type 202C is in this category). The open circuit voltage of these generators is twice the attenuator reading.

1.F.ALIGNMENT

In normal service re-alignment is unnecessary. The design is such that the bandwidth and symmetry of the band-pass circuits are maintained even after changing valves. If re-alignment does become necessary use the following procedure:-

NOTES: 1. The primary cores of all i.f. transformers are adjustable from below the chassis and the secondary cores from above the chassis.
2. The lock nuts on adjustable cores should be tightened and the adjustment checked before disconnecting the signal generator and meter, in order to ensure that the circuits have not become detuned.
3. When carrying out the following adjustments the signal generator output should be adjusted as necessary to keep the microammeter slightly below mid scale.
4. The use of a $2 \mathrm{Mc} / \mathrm{s}$ signal generator input to the i.f. stages of receivers operating between 25 and $68 \mathrm{Mc} / \mathrm{s}$ is not recommended since, unless extreme care is taken, regeneration will occur, resulting in incorrect alignment.

1. Connect the a.g.c. line to chassis.
2. Connect the $0-50 \mu \mathrm{~A}$ meter across pins 8 (positive) and 9 (negative) of the test meter socket on the main unit front panel. The meter will then read the detector diode current.
3. Connect the v.h.f. signal generator to the anode (pin 7) of 3 V 3 via the 10 nF capacitor.
4. Set the signal generator (with modulation switched off) to the carrier frequency and adjust 3 C 86 and the secondary core of 3 Tl for maximum diode current.
5. Connect the $2 \mathrm{Mc} / \mathrm{s}$ oscillator to pin lof the test meter socket on the main unit front panel. (Sufficient coupling may be obtained by placing the oscillator near the i.f. amplifier stages).
6. Adjust the signal generator to zero beat, switch off and disconnect the $2 \mathrm{Mc} / \mathrm{s}$ oscillator. The signal generator must be set for zero beat at frequent intervals to ensure that the signal generator remains accurately set to the carrier frequency.

Receivers operating between 68 and $174 \mathrm{Mc} / \mathrm{s}$

1. Connect the a.g.c. line to chassis.
2. Connect the $0-50 \mu \mathrm{~A}$ meter across pins 8 (positive) and 9 (negative) of the test meter socket on the main unit front panel. The meter will then read the detector diode current.
3. Connect the i.f. signal generator to the cathode (pin 5) of 3 V 3 via the 10 nF capacitor.
4. Set the signal generator to $10.7 \mathrm{Mc} / \mathrm{s}$ with the modulation switched off.
5. If only a standard signal generator is available, connect the $2 \mathrm{Mc} / \mathrm{s}$ oscillator to pin l of the test meter socket on the main unit front panel (sufficient coupling may be obtained by placing the oscillator near the i.f. amplifier stages), adjust the signal generator to zero beat, switch off and remove the $2 \mathrm{Mc} / \mathrm{s}$ oscillator. This procedure must be repeated at frequent intervals throughout the alignment procedure to ensure that the signal generator remains accurately set to $10.7 \mathrm{Mc} / \mathrm{s}$.
6. Adjust the primary and secondary cores of 3 T 1 for maximum diode current.

Receivers Type N and W (25-174 Mc/s)
7. Adjust the primary and secondary cores of 3 T 3 and 3 T 8 for maximum diode current.
8. Shunt the primary of 3 T 6 with a $2.2 \mathrm{k} \Omega$ resistor and adjust the secondary core for maximum diode current.
9. Transfer the damping resistor to the secondary of 3 T 6 and adjust the primary core for maximum diode current.
10. Transfer the damping resistor to the primary of $3 T 4$ and adjust the secondary core for maximum diode current.
11. Transfer the damping resistor to the secondary of 3 T4 and adjust the primary core for maximum diode current. Remove the damping resistor.
12. Check the bandwidth and symmetry as describedin paragraph 12 of the Type V receiver alignment procedure below.

Receiver Type V (25-174 $\mathrm{Mic} / \mathrm{s}$)
7. Adjust the primary and secondary cores of 3 T8 for maximum diode current.
8. Shunt the primaries of 3 T 3 and 3 T 2 with $2.2 \mathrm{k} \Omega$ resistors. Adjust the secondary core of 3 T 3 for maximum diode current. Adjust the secondary core of 3 T 2 for maximum diode current.
9. Transfer the damping resistors to the secondaries of 3 T 3 and 3 T 2 . Adjust the primary core of 3 T 3 for maximum diode current. Adjust the primary core of 3 T 2 for maximum diode current.
10. Repeat instructions 8 and 9 above, reading $3 T 4$ for $3 T 3$ and $3 T 5$ for $3 T 2$.
11. Repeat instructions 8 and 9 above, reading 3 T 6 for 3 T 3 and 3 T 7 for 3 T 2 . Remove the damping resistors.
12. Check the bandwidth and symmetry. This test may only be carried out with a signal generator having an accurately calibrated incremental frequency control such as the Marconi Instruments Ltd. Type TF995A/4 or 5. If the Marconi Instruments Ltd. I. F. Response Unit is used, the r.f. carrier level is automatically stepped to correspond with the mean i.f. response, e.g. at the $\pm 11 \mathrm{kc} / \mathrm{s}$ points the r.f. carrier level is increased by 6 dB for Type N receivers R. F. carrier level readings are therefore relative to this fixed stepping, high and low limits being obtained by subtracting the appropriate step from the figures given below.
(a) 25-68 Mic/s only - Disconnect the v.h.f. signal generator from the anode of 3 V 3 and connect the TF995A/4 or 5 to the signal grid (pin 2) of 3 V 4 via the 10 nF capacitor. The unscreened section of the signal generator output lead must be kept as short as possible. Set the signal generator to $2 \mathrm{Mc} / \mathrm{s}$.

68-174 Mc/s only -
Disconnect the i.f. signal generator from the cathode (pin 5) of 3 V 3 and connect the TF995A/4 or 5 in its place via the $10 n F$ capacitor. Set the signal generator to $10.7 \mathrm{Mic} / \mathrm{s}$.
(b) Adjust the signal generator output to obtain a convenient reading on the meter keeping the reading as low as possible to prevent blocking.
(c) Detune the signal generator on each side of $2 \mathrm{Mc} / \mathrm{s}$ ($25-68 \mathrm{Mc} / \mathrm{s}$ receivers) or $10.7 \mathrm{Mc} / \mathrm{s}$ (68-174 Mc / s receivers) by the increments detailed below, adjust the signal generator output until the original meter reading is obtained and note the difference in generator output required to give the original meter reading. The following figures should be obtained.

	Frequency	Carrier Level	
		High	Low
Type V	$\pm 6 \mathrm{kc} / \mathrm{s}$	$+4 \mathrm{~dB}$	$+8 \mathrm{~dB}$
	$\pm 22.5 \mathrm{kc} / \mathrm{s}$	$+88 \mathrm{~dB}$	$+\infty \mathrm{dB}$
Type N	$\pm 5 \mathrm{kc} / \mathrm{s}$	- 3dB	$+1 \mathrm{~dB}$
	$\pm 11 \mathrm{kc} / \mathrm{s}$	$+2 \mathrm{~dB}$	$+9 \mathrm{~dB}$
	$\pm 40 \mathrm{kc} / \mathrm{s}$	$+87 \mathrm{~dB}$	$+\infty \mathrm{dB}$
Type W	$\pm 15 \mathrm{kc} / \mathrm{s}$	- 4 dB	$+4 \mathrm{~dB}$
	$\pm 25 \mathrm{kc} / \mathrm{s}$	$+1 \mathrm{~dB}$	$+12 \mathrm{~dB}$
	$\pm 90 \mathrm{kc} / \mathrm{s}$	$+82 \mathrm{~dB}$	$+\infty \mathrm{dB}$

If the results obtained are widely different from the above, or are asymmetrical check that the i.f. alignment procedure has been carried out correctly.

Receivers Type V, N and W ($25-174 \mathrm{Mc} / \mathrm{s}$)
13. $25-68 \mathrm{Mc} / \mathrm{s}$ only - Disconnect the TF995A/4 or 5 and connect the v. h.f. signal generator to the anode (pin 7) of $3 V 3$ via the 10 nF capacitor. Set the generator to the carrier frequency.

68-174 Mic/s only - Disconnect the TF955A/4 or 5 and connect the i.f. signal generator to the cathode (pin 5) of 3 V 3 via the 10 nF capacitor. Set the generator to $10.7 \mathrm{Mic} / \mathrm{s}$.
14. Remove the microammeter and short circuit from the a.g.c. line.
15. Disconnect the loudspeaker and connect the audio output meter in its place.
16. With the VOLUME control 4RV1 at maximum (fully clockwise) and the signal generator on centre frequency switch on the modulation, set at $1000 \mathrm{c} / \mathrm{s}$, 30% modulation depth. With an r.f. input of $10 \mu \mathrm{~V}$ e. m.f. Type V and N receivers should give an audio output of at least 200 mW and Type W receivers at least 100 mV . Signal-to-noise ratio with this input should be greater than 8 dB (see Checking Signal-to-Noise Ratio on page 34).
17. Disconnect the signal generator.
R.F. ALIGNMENT

Under no circumstances should the settings of the receiver crystal trimmers be altered without reference to a frequency substandard (a similar procedure to that described in Crystal Oscillator Alignment on page 34 may be adopted) or the carrier of the base station transmitter as described in Field Testing Procedure on page 22.

NOTE: Alignment of switched channel equipments should be carried out on the nearest channel to centre frequency. The performance of remaining channels should be checked after alignment. In the case of equipments using two widely-spaced channels it is necessary to effect a compromise tuning of the r.f. section in order to equalise the performance on each channel. Note that the frequency limitation is within $\pm 0.2 \%$ of the centre carrier frequency.

1. Connect the v.h.f. signal generator to the antenna input.
2. Set the signal generator to the carrier frequency, as described in paragraphs 5 and 6 of the 25 to $68 \mathrm{Mc} / \mathrm{s}$ receiver i.f. alignment procedure on page 30 , and modulate the signal 30% at $1000 \mathrm{c} / \mathrm{s}$.
3. Adjust 3Ll, 3C8, 3C9, 3C14, 3Cl5, 3C86 and both cores of 3 Tl for maximum audio output. Note that the iron dust cores used in the r.f. coils should be left in their normal position at the centre of the coil windings, except when the frequency required is near the edge of the band. Under these conditions they may be adjusted, by the minimum amount necessary, to enable trimming to be effected by the capacity trimmers.
4. With an r.f. input of $2 \mu \mathrm{~V}$ e.m.f. check that the signal-to-noise ratio is not less than lldB (see Checking Signal-to-Noise Ratio on page 34.)
5. With an r.f. input of $2 \mu \mathrm{~V}$ e.m.f. check that the audio output is not less than 200 mW (Type W) or 300 mW (Types V and N).
6. Disconnect the signal generator and audio output meter and reconnect the loudspeaker.

Receivers operating between 68 and $174 \mathrm{Mc} / \mathrm{s}$

1. Connect the d.c. voltmeter across the 100Ω resistor 3 R 42 in the cathode circuit of 3 VlOb .
2. Adjust the primary and secondary cores of 3 T 10 for maximum reading on the voltmeter. A typical reading is 0.8 V .
3. Disconnect the voltmeter and connect the v.h.f. signal generator to the antenna input.
4. Set the signal generator to the carrier frequency, as described in paragraphs 5 and 6 of the 25 to $68 \mathrm{Mc} / \mathrm{s}$ receiver i.f. alignment procedure on page 30 , and modulate the signal 30% at $1000 \mathrm{c} / \mathrm{s}$.
5. Adjust $3 \mathrm{C} 2,3 \mathrm{C} 8,3 \mathrm{C} 9,3 \mathrm{C} 14,3 \mathrm{Cl} 5$ and 3 C 86 for maximum audio output.
6. With an r.f. input of $2 \mu \mathrm{~V}$ e.m.f. check that the signal-to-noise ratio is not less than 9dB (68-156 Mc/s) or 8 dB (148-174 Mc/s) (see Checking Signal-toNoise Ratio on page 34).
7. With an r.f. input of $2 \mu \mathrm{~V}$ e.m.f. check that the audio output is not less than 200 mW (Type W) or 300 mW (Types V and N).
8. Disconnect the signal generator and audio output meter and reconnect the loudspeaker.

The following method should be adopted when checking signal-to-noise ratio:-

1. Feed in a signal of the appropriate strength from the signal generator ($10 \mu \mathrm{~V}$ e.m.f. for checking the i.f., $2 \mu \mathrm{~V}$ e.m.f. for checking the r.f.) with the modulation set to 30% at $1000 \mathrm{c} / \mathrm{s}$.
2. Note the audio signal level on the $d B$ scale of the output meter.
3. Switch off the modulation.
4. Again note the audio signal level on the output meter.

Subtracting the reading 4 from the reading 2 will give the 'signal plus noise' to 'noise only' ratio. At the levels used this is very nearly equal to the signal-to-noise ratio and may be regarded as such for the purpose of this test.

H.T. VOLTAGE

Using the standard test input voltage of 13.2 volts d.c. the h.t. voltage developed is 180 volts $\pm 10 \%$, measured at the junction of $2 \mathrm{R} 3 / 2 \mathrm{R} 4$ (or 2L1) and 2C4.

TRANSMITTER

CRYSTAL OSCILLATOR ALIGNMENT
Under no circumstances should the settings of the crystal trimmers be adjusted without reference to a high accuracy narrow channel base station receiver (see Field Testing Procedure on page 22), or to a frequency substandard, as described below.

NOTE: The following section does not form part of the normal alignment procedure. The Field Testing Procedure is normally adequate for netting the transmitter to the base station receiver or re-aligning the crystal oscillator if a valve, crystal or other component in this stage is changed. However, if it is not desired to use the Field Testing Procedure the following method may be adopted.

Adjustment of the crystal trimmers (Cl on single channel equipments and 1Cl-lC6 on switched channel equipments) should be carried out with test equipment of a high standard only, the following instruments being typical of those found to be satisfactory.

1. Berkeley Counter Frequency Meter Model 5570 or 7370 (direct frequency indicating meters).
2. Schomandl Frequency Meter Type F.D.l (zero beat indicating meter).

Detailed information on the operation of these instruments is supplied by the manufacturers, but the following points should be noted:-
(a) Measurement can be made either of the carrier frequency or of the crystal frequency.
(b) If measurement is made of the carrier frequency, the coupling between transmitter and frequency meter should be the minimum required to obtain
a reading. In general there should be no direct coupling and it may be necessary to space the transmitter a few feet away from the meter.
(c) If measurement is made of the crystal frequency, connection to the meter should be by coaxial cable from the tag point 1 TP provided on the transmitter chassis.
(d) If crystal ovens are fitted the effect of the oven heat cycling should be observed and the crystal trimmers adjusted as near as possible in the centre of the total excursion of the oven cycle.
(e) Upon completion of the crystal oscillator alignment it may be necessary to re-align the r.f. stages if the frequency has been changed outside the transmitter pass band.

MULTIPLIER ALIGNMENT

1. Remove the shorting link from 1R29, switch to S/BY and allow one minute to warm up.
2. Connect the Test Set to the test meter socket on the main unit front panel and depress the local transmit switch on the main unit front panel.
3. Switch the Test Set to position 2 and adjust lLl fon maximum meter reading A typical reading is $200 \mu \mathrm{~A}$.
$68-174 \mathrm{Mc} / \mathrm{s}$ only - Adjust 1 L 2 for maximum meter reading (grid current of
1 V 2 and 1 V 3 a). A typical reading is $200 \mu \mathrm{~A}$.
4. 25-68 Mc/s only - Switch the Test Set to position 3 and adjust 1 L 2 for maximum meter reading (grid current of lV3b). A typical reading is $200 \mu \mathrm{~A}$.

68-174 Mc/s only - Switch the Test Set to position 3 and adjust the primary and secondary cores of 1 Tl together for maximum meter reading (grid current of lV3b). Repeat this adjustment until no further increase can be obtained. A typical reading is $200 \mu \mathrm{~A}$.
5. Switch the Test Set to position 4 and adjust lC 35 for maximum meter reading (grid current lV4). A typical reading is $150 \mu \mathrm{~A}$.
6. Adjust lC36, whilst keeping lC35 on tune, until no further increase in meter reading can be obtained.
7. Equipments with operating frequencies above $132 \mathrm{Mc} / \mathrm{s}$ - Vary the coupling between lL4 and lL5 by bending 1 L 4 towards or away from lL5, retuning lC35 as necessary, to give a maximum reading which is not greater than $170 \mu \mathrm{~A}$ (1.7 mA actual). A typical reading is $150 \mu \mathrm{~A}$.

POWER AMPLIFIER ALIGNMENT

1. Switch the Test Set to position 5 and adjust lC44 for greatest dip in the meter reading (anode current of lV4), resetting 1 C 45 if necessary.
2. Connect the r.f. power output meter to the antenna socket and replace the shorting link across lR29. Recheck lC44 for greatest dip in the meter reading.
3. Adjust lC45 for maximum power output.
4. Switch the Test Set to position 4 and check the setting of 1 C 35 .
5. If the meter reading on position 5 is other than $210 \mu \mathrm{~A}-270 \mu \mathrm{~A}(42 \mathrm{~mA}-54 \mathrm{~mA}$ actual $)$ manual re-adjustment of the coupling between 1 L 6 and lL7is necessary. In this case the wholetuning procedure for the power amplifier stage must be repeated.
6. Disconnect the Test Set.

TEST READINGS

Minimum figures to be expected with the PTC 409 Test Set are:-

Switch Position Meter Reading
2 - total grid current of IV2 and lV3a (68-174 Mc/s) or grid current of lV3a (25-68 Mc/s)
3 - grid current of 1 V 3 b
4 - grid current of lV4 (25-132 Mc/s)
4 - grid current of lV4 (132-174 Mc/s)
Adjust the coupling (see para. 7 on page 35)
to give a reading between
5 - anode current of lV4

$$
* 170 \mu \mathrm{~A}
$$

$$
* 170 \mu \mathrm{~A}
$$

$120 \mu \mathrm{~A}$
$120 \mu \mathrm{~A}$ and $170 \mu \mathrm{~A}$
$210 \mu \mathrm{~A}(270 \mu \mathrm{~A} \max)$

* These figures are given for guidance only. The actual values are relatively unimportant, providing that the readings for power amplifier drive (switch position 4) and power arnplifier current (switch position 5) are correct.

Power Output $\quad 5$ watts minimum
H.T. Voltage

Using the standard test input voltage of 13.2 volts d.c. the h.t. voltage developed is 280 volts $\pm 10 \%$ measured at the junction of 2R3/2R4 (or 2LI) and 2C4.

TRANSISTORS

TRANSISTOR CIRCUITS

1. When soldering, complete the soldering operation as quickly as possible and protect the transistor by using a heat shunt on the lead, e.g. grip the wire between the transistor and the joint with a pair of pliers.
2. Always observe the correct polarity when connecting up transistor circuits.
3. Transistors are extremely robust when operated under the correct conditions but they have a very low resistance and may be destroyed by the inadvertent application of quite low potentials. It should be noted that such potentials may exist between the terminals of a test meter or other pieces of test equipment or between a soldering iron and ground.

USING A STANDARD AVOMETER FOR CONTINUITY CHECKS, THE RED LEAD IS NEGATIVE

Fig. 9 Transistor Servicing Diagram
4. The metal cases of the power transistors are at collector potential insulated from the heat sink by porcelain washers, which are coated in silicon compound to ensure efficient thermal contact. This thermal contact and electrical insulation must be maintained.
5. If transistor damage is suspected, continuity checks should be carried out as shown in Fig. 9. The ohmmeter should have an internal or external resistance of approximately $1 \mathrm{k} \Omega$ in circuit. If these results are not obtained, a replacement transistor should be fitted after rectification of the fault.

TRANSISTOR REPLACEMENT

Remove the transistor cover plate, which is retained by two 4 B . A. screws and Nyloc nuts which secure the transistor to the heat sink. Remove the transistor and insulating washers and replace with the new transistor, ensuring that the insulating washers are correctly positioned and observing the precautions given above.

TRANSISTOR FEEDBACK ADJUSTMENT CONTROL

After replacement of a transistor, the feedback adjustment control 2RV4 must be re-set. The optimum position is determined under the least favourable conditions, using an input supply of 15.8 volts $d . c .$, and is indicated when:-

1. The full h.t. voltage is present on the transmitter h.t. line when the equipment is switched from receive to transmit.
2. The frequency of oscillation is maintained under load.
3. The spikes which appear on the oscillator waveform are at minimum amplitude consistent with 1 and 2 above.

Equipment Required

1. Source of standard test voltage (13.2 volts d.c.)
2. Source of l.t. input voltage of 15.8 volts d.c. on load.
3. Oscilloscope
4. $0-500 \mathrm{~V}$ d.c. meter. (Avo Model 8 is suitable)
5. 0.05Ω resistor. ($\frac{3}{4}$ " of No. 20 gauge Eureka wire).

Procedure

1. Insert the 0.05Ω resistor in the lead from one transistor collector to transformer 2 Tl (i.e. collector of 2 VTI to tag 4, or 2 VT 2 to tag 6).
2. Connect the oscilloscope across the ends of the 0.05Ω resistor. Both connections must be isolated from ground.
3. Place the feedback adjustment control slider in the position of minimum resistance in the circuit.
4. Connect the standard test voltage to the equipment, observing polarity
5. Switch to RX.
6. Observe the oscillator waveform, noting the amplitude of the spikes on the square waveform displayed.
7. Set the feedback adjustment control to give a minimum spike amplitude. This must not be adjusted beyond the point at which the oscillator frequency falls.
8. Switch off and connect the 15.8 volts supply in place of the standard test voltage, again observing polarity.
9. Connect the $0-500 \mathrm{~V}$ d.c. meter to the transmitter h.t. line (tag 25 of 2 TS 1).
10. Switch to S/BY and depress the local transmit switch. Check that the oscillator starts without hesitation and that the rated voltage (280 V) is present on the h.t. line.
11. If the oscillator is sluggish in starting and a delay in reaching rated h.t. voltage is apparent, switch off, re-set the feedback adjustment control by increasing its resistance in the circuit, and make a further check.
12. Repeat the adjustment until satisfactory operation (see 10 above) is obtained.

NOTE: In normal working, a reduction in transmitter output due to low h.t. voltage, which can be partially remedied by a reduction in supply voltage, indicates failure of one transistor.

PRINTED CIRCUITRY

The techniques employed in the servicing of printed circuitry are basically similar to those used with conventional equipment. However, the following points should be noted:-

1. The circuitry is covered with a protective layer of polystrene and, to avoid damage, it is preferable wherever possible to take meter readings from the end wires of the components on the upper side of the board.
2. When it is necessary to take readings on the circuitry side of the board needle point test probes should be used.
3. Care should be taken when soldering to avoid application of excess heat, which will result in softening of the thermoplastic adhesive under the copper foil. Best results are obtained by using a hot iron and applying it for minimum time.
4. It is advisable to use as little force as possible in order to remove faulty components. Wires which are bent over against the copper foil should be gently levered up. If care is not taken, the copper foil may lift away from the board before the solder is molten.
5. The leads of replacement components should be carefully cleaned before they are inserted through the holes in the board. They should then be cut to length, bent over against the copper foil sufficiently to hold them in position and soldered as rapidly as possible. 60/40 resin-cored solder is recommended.
6. Excess deposits of solder should be avoided, particularly in the more congested areas of circuitry.
7. It will not normally be necessary to clean the circuitry before soldering, but, should the necessity arise, a small glass-fibre brush should be used. After soldering the exposed copper foil should be recoated with a preservative to
keep out moisture. Durofix or polystyrene dope is recommended. Any particles of solder should be removed from the protective surface.
8. Damaged circuitry can be bridged with tinned copper wire or, in the case of microscopic cracks, a solder bridge is often satisfactory.

D.C. RESISTANCE OF INDUCTORS

POWER SUPPLY UNIT
$\begin{array}{ll}\text { 2RLA } & \text { H.T. changeover relay } \\ \text { 2RLF } & \text { Squelch relay }\end{array}$
2T1
Transformer

Filter choke

Tag Nos.	Resistanc
	200Ω
	$14 \mathrm{k} \Omega$
1-8	2.1Ω
4-5	0.08Ω
5-6	0.08Ω
10-12	0.15Ω
	25Ω

2 Ll
25Ω

RECEIVER UNIT
3T9 Output transformer 180』
3-4 0.5Ω

TRANSMITTER UNIT

lT2	Modulation transformer	$1-2$	95Ω
		$3-4$	89Ω
1L3	Cathode choke		7.6Ω
1L9	Filter choke		186Ω
1RLD	Antenna changeover relay		80Ω

FRONT PANEL

RLB Start relay 60』
RLC Ledex switch relay 170Ω
RLE Standby relay 170Ω

V.H.F. INTERFERENCE SUPPRESSION

This chapter contains information designed to enable an installation engineer to locate and correct various forms of electrical interference. However, this can only be considered as a guide and does not deal exhaustively with the problem of interference to mobile radiotelephone equipment. Throughout this chapter it is assumed that all necessary electrical and mechanical safety precautions will be observed by the engineer.

INTRODUCTION

Electromagnetic fields resulting from sudden variations or interruptions in the current taken by electrical apparatus of the vehicle are the main causes of interference in all radio reception. The most likely source of such fields in petrol engined vehicles is the ignition system. The interference field from this source increases to a maximum in the region of $40-50 \mathrm{Mc} / \mathrm{s}$, and this maximum value of the field may be maintained up to a frequency of $600 \mathrm{Mc} / \mathrm{s}$.

Other items of electrical equipment responsible for causing appreciable interference fields are the generators, the windscreen wiper and fan motors, the vibrating contacts of current and voltage regulators and petrol pumps. A further source of interference is the discharge of electrostatic energy built up on the wheels of the vehicle.

The degree of interference caused depends on the following factors:-

1. The installation layout of the electrical apparatus concerned and the length and routing of the associated wiring.
2. The screening properties inherent in the construction of the vehicle which, in turn, depends on the quality of contact between the various body panels.
3. The position of the antenna on the vehicle.

NOTE: The amount of interference picked up on the antenna can be determined by removing the feeder from the antenna base if this is accessible. When the feeder is only accessible at the equipment end, it may be detached at this point. However, this will not differentiate between the interference picked up by the feeder and that picked up by the antenna itself.

The magnitude of the interference from any, or all, of the above sources may not cause much serious trouble in areas of high signal strength but may assume considerable nuisance value in areas of low signal strength, i.e. at extreme range or in heavily screened areas.

The following notes, which give the sources of interference, their diagnosis and treatment, while covering in general all radio frequency reception, lay special emphasis on v.h.f. equipment.

IGNITION INTERFERENCE

Diagnosis

Regular pulsating noise whilst the engine is running and synchronised with the engine speed.

This is normally the easiest form to eliminate. In modern British cars an interference suppression resistor is built into the distributor lead, but when no such resistor is fitted a cut lead suppressor or similar device should be fitted into the h.t. lead from the coil to the distributor as close to the centre terminal of the distributor as possible. To obtain highly effective suppression of the ignition h.t. system, metal shrouded plugs, cables, distributor and ignition coil should replace those existing. Further, the l.t. supply may be fitted with a suitable radio frequency filter (a one or two capacitor - choke combination housed in a grounded metal case) connected between the ignition switch and the coil, the cable from the coil to the filter being screened.

Additional Treatment

1. Ensure that the h.t. and l.t. leads are well separated.
2. Fit individual plug suppressors.
3. Bond the bonnet to the main bodywork with a short length of heavy grounding braid. Also bond the engine to the main bodywork, using just sufficient length of grounding braid to allow for normal engine vibration relative to the bodywork.

DYNAMO INTERFERENCE

Diagnosis

A continuous whine, varying in pitch with the speed of the engine and occurring at all times when the engine is running.

Due to the radiation of r.f. from even very short leads it is recommended that the suppression capacitor be fitted close to the brushes under the brush cover of the dynamo, as shown in Fig. 10 .

Fig. 10 Dynamo End Plate

Treatment

Two 1000 pF disc ceramic capacitors should be fitted to equipments operating below $68 \mathrm{Mc} / \mathrm{s}$ (bands $\mathrm{F}, \mathrm{G}, \mathrm{H}$ and J) and two 470 pF disc ceramic capacitors should be fitted to equipments operating above $68 \mathrm{Mc} / \mathrm{s}$ (bands $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E).

Fitting Procedure

1. Remove the dynamo from the vehicle.
2. Remove the dust band, brushes and end plate.
3. Drill and tap a hole for a 6 B.A. screw close to each brush holder, as shown in Fig. 10 .
4. Solder a 6 B.A. tag to one end wire on each suppression capacitor (leaving about $\frac{1}{4}$ " of lead at each end) and a suitable tag to the other end wire on each suppression capacitor.
5. Secure the 6 B.A. tag on each capacitor under the appropriate $6 \mathrm{~B} . \mathrm{A}$. screw as shown in Fig. 10 and secure the other tag under the corresponding brush tail anchoring screw on the end plate.
6. Clean and check the commutator and brushes.
7. Replace and secure the end plate and refit the brushes, shortening any brush tails that are longer than necessary for free movement of the brushes.
8. Refit the dust band and replace the dynamo on the vehicle.

AUXILIARY EQUIPMENT

Diagnosis
Interference occurring only when a particular electrical device, such as the windscreen wiper motor, is switched on.

While the radio equipment is in operation switch on each electrical device singly and check its effect on reception.

Treatment

Fit a capacitor (1000 pF for frequencies below $68 \mathrm{Mc} / \mathrm{s}$ and 470 pF for frequencies above $68 \mathrm{Mc} / \mathrm{s}$) between the live side of the device and the chassis. Use the shortest possible leads, well grounded, to the frame of the device. When resilient mounts are used, fit a heavy copper braid from the frame of the device to the main bodywork, keeping the length as short as possible.

TYRE AND BRAKE STATIC
The rotation of the vehicle wheels on the road surface, especially when it is dry, generates electrostatic energy in the tyres. This energy, normally called 'tyre static', gives rise to microampere level currents tending to flow from the tyres to the body of the vehicle. In the case of rear wheels, free and continuous passage for the current to the body exists through the gearing at many points independently of the bearings. In front wheels, however, the passage of current
must lie solely through the bearings. Normally, oil or grease film in the bearings provides complete insulation at this point. It is when this insulation breaks down intermittently, resulting in a series of make-and-break contacts, that interference to the radio equipment is generated.

Application of brakes creates the same type of electrostatic energy and presents the same problem of interference to radio reception under conditions of intermittent insulation at the bearings.

Diagnosis

A continuous hissing sound when the vehicleis in motion, even though the engine is switched off, or a hissing sound which occurs whenever the brakes are applied. This type of interference is more prevalent in dry weather or in dry climates.

DRILL OR OPEN
UP EXISTING HOLE TO CLEAR 4B.A SCREW. THE HOLE MUST BE IN EXACT CENTRE OF CAP

Fig. 11 Fitting an Anti-Static Spring to the Hub Cap

Treatment

1. Anti-static springs can be obtained for fitting to the wheel hubs of most British cars. When these are not available, a pick-up spring should be fitted as shown in Fig. 11. This spring provides a passage for the current from the wheel to the body by by-passing the bearings.
2. Inject anti-static powder, or a little water into the tyre.
3. Paint the tyre with lamp-black or graphite (black lead).

DRILL TWO HOLES AND
SECURE ANTI-STATIC BRACKET

Fig. 12 Fitting an Anti-Static Bracket to the Brake Shoes
4. Pump graphited grease into the front wheel bearings to increase conductivity.
5. Ground the suspension and rear axle with a heavy grounding braid.
6. Fit anti-static brackets to the brake shoes, as shown in Fig. 12, in order to establish conducting paths between the brake shoes and the axle.

OTHER POSSIBLE SOURCES OF INTERFERENCE

Any interference not eliminated by the above operations may be due to bad electrical contact between adjacent parts of the bodywork, giving rise to irregular noises, especially on uneven road surfaces.

The usual points at which such troubles originate are:-
(a) Exhaust system to bodywork.
(b) Engine block to bodywork.
(c) Wings to bodywork.
(d) Rear axle assembly to bodywork (see paragraph 6 of Tyre and Brake Static above).

Treatment

1. With the vehicle stationary, rotate the SQUELCH control (if fitted) until receiver noise is heard, run the engine at varying speeds and check for vibrating oil gauge pipes, throttle cables and for other parts of the system which may be badly grounded. If the cause is found, secure and/or bond the vibrating item to the engine block, using the shortest possible length of heavy grounding braid.
2. If the noise does not appear to be associated with engine vibration but only with road shocks, a careful check of the entire vehicle should be made, paying particular attention to electrical connections and ensuring that all body member and accessories are securely fixed in position.

PARTS LISTS

AND

DIAGRAMS

ORDERING OF SPARE PARTS

To avoid delays and possible errors in the supply of spare parts the reference numbers shown in these parts lists should be quoted in all orders.

RECEIVER - 25 to $68 \mathrm{Mc} / \mathrm{s}$

RECEIVER - 25 to $68 \mathrm{Mc} / \mathrm{s}$ (cont.)

Chassis Assembly Complete
Part No.288274/1-6
When ordering complete chassis assemblies, please state operating frequency.

RECEIVER - 68 to $174 \mathrm{Mc} / \mathrm{s}$ (cont.)

COILS \& CHOKES
COIL CORES

[^0]

Code

C60 | 120 pF |
| ---: |
| |
| 56 pF |
| 27 pF |
| |
| |
| 8.2 pF |

C61 220 pF

* C62 76pF

58 pF 36 pF 39 pF
27 pF
22 pF 22 pF
18 pF

	15 pF
C 63	47 pF
C 64	lnF

Code		
R1	$10 \mathrm{k} \Omega$	
R2	330Ω	
R3	$150 \mathrm{k} \Omega$	
R4	$100 \mathrm{k} \Omega$	
R5	100Ω	
	47Ω	
R6		

R13
R14R16
R17
R18
R19
R20
R21
R22
R23$\begin{array}{ll}\text { R23 } & 22 \\ \text { R24 } & 4 \\ \text { R25 } & 10\end{array}$
R26 $680 \mathrm{k} \Omega$
R27
R28R29
R30
R31
R32
R33 to
R42R42
R43
$82 k \Omega$R44
$82 \mathrm{k} \Omega$
R45 100 2

CAPACITORS (cont.)
Part No
Ceramic $\quad(25.5-32.5 \mathrm{Mc} / \mathrm{s}) \quad \pm 2 \% \quad 653656$
Ceramic ($32.5-42 \mathrm{Mc} / \mathrm{s}$) $\pm 2 \% \quad 653655$

Ceramic	$(42-54 \mathrm{Mc} / \mathrm{s})$	$\pm 1 \mathrm{pF}$	652597
Ceramic	$(54-68 \mathrm{Mc} / \mathrm{s})$	$\pm 0.5 \mathrm{pF}$	652650

(68-174 Mc/s
(25-174 Mc/s
$25-68 \mathrm{Mc} / \mathrm{s})$
666648
Not used ($68-174 \mathrm{Mc} / \mathrm{s}$)
Lemco 1106R(25-32.5 Mc/s) 350V $\pm 2 \%$ Lemco $1106 \mathrm{R}(32.5-42 \mathrm{Mc} / \mathrm{s}) 350 \mathrm{~V} \pm 2 \%$
Lemco $1106 \mathrm{R}(42-54 \mathrm{Mc} / \mathrm{s}) 350 \mathrm{~V} \pm 1 \mathrm{pF}$ Lemco $1106 \mathrm{R}(54-68 \mathrm{Mc} / \mathrm{s}) 350 \mathrm{~V} \pm 1 \mathrm{pF}$ Lemco $1106 \mathrm{R}(68-88 \mathrm{Mc} / \mathrm{s}) 350 \mathrm{~V} \pm 1 \mathrm{pF}$ Lemco $1106 \mathrm{R}(88-108 \mathrm{Mc} / \mathrm{s}) 350 \mathrm{~V} \pm 1 \mathrm{pF}$ Lemco $1106 \mathrm{R}(108-148 \mathrm{Mc} / \mathrm{s}) 350 \mathrm{~V} \pm 1 \mathrm{pF}$ Lemco 1106R(148-174 Mc/s) 350V $\pm 1 \mathrm{pF}$ Ceramic

NOTE: $\ln F=1000 \mathrm{pF}=0.001 \mu \mathrm{~F}$

660880 660854 660836 660864 660846 660845 660835
660844 653102 660433

RESISTORS

$(25-68 \mathrm{Mc} / \mathrm{s})$
$(68-174 \mathrm{Mc} / \mathrm{s})$
的

$\pm 10 \%$$\pm 10 \%$
$\pm 10 \%$
671518671500671532671530671494
671490671520671530
$\pm 10 \%$
$+10 \%$671500
671530

	$(25-68 \mathrm{Mc} / \mathrm{s})$ $(68-174 \mathrm{Mc} / \mathrm{s})$
Not used	$(25-68 \mathrm{Mc} / \mathrm{s})$
	(68-174 Mc/s)
Not used	(25-68 Mc/s)
	(68-174 Mc/s)
Not used	(25-68 Mc/s)
	(68-174 Mc/s)
	(25-68 Mc/s)
	(68-174 Mc/s)

Part No.
671494671526671534

671534
671514
671530 671540
671538 670431 671528 671482
670425 670425 Not used $\quad\binom{25-68 \mathrm{Mc} / \mathrm{s}}{68-174 \mathrm{Mc} / \mathrm{s}}$
(25-68 Mc/s)

Not used
Not used (25-68 Mc/s) $(68-132 \mathrm{Mc} / \mathrm{s}) \frac{1}{4} \mathrm{~W} \quad \pm 10 \% \quad 674572$ (6 channel only) $\pm 10 \%$

Code TRANSFORMER

Part No.
671494

278359
278412
277867 277099/J $277099 / \mathrm{H}$
$277099 / \mathrm{C}$ 277099/F

TRANSMITTER - 25 to $174 \mathrm{Mc} / \mathrm{s}$ (cont.)

Code	COILS \& CHOKES		Part No.	Code	VALVES			Part No.			
¢ Il	Oscillator anode assembly		278356		British	American					
- L2	Multiplier coil		278357	V1	6BH6	6BH6		860099			
L3	Cathode choke		279051	v2			$\begin{aligned} & (25-68 \mathrm{Mc} / \mathrm{s}) \\ & (68-174 \mathrm{Mc} / \mathrm{s}) \end{aligned}$				
L4	Not used	(25-68 Mc/s)			6BH6			860099			
	Multiplier coil	(68-88 Mc/s)	278384	V3	QQV03-10	6360		860395			
	Multipher coil	$(88-108 \mathrm{Mc} / \mathrm{s}$)	278383	V4	QQV03-10	6360		860395			
	Multiplier coil	(108-132 Mc/s)	278361/C	V5	ECC83	$12 \mathrm{AX7}$		860246			
	Multiplier conl	$(132-156 \mathrm{Mc} / \mathrm{s}$)	278361/B	V6	EL84			860327			
	Multıplier conl	$(148-174 \mathrm{Mc} / \mathrm{s})$	278361/A								
L5	Not used	($25-132 \mathrm{Mc} / \mathrm{s}$)									
	P.A.grid conl	($132-156 \mathrm{Mc} / \mathrm{s}$)	278368/B								
	P.A.grid coil	($148-174 \mathrm{Mc} / \mathrm{s}$)	278368/A								
L6	P.A.anode coil	(25-32.5 Mc/s)	278402/J								
	P.A.anode coil	($32.5-42 \mathrm{Mc} / \mathrm{s}$)	278402/H								
	P.A.anode conl	($42-54 \mathrm{Mc} / \mathrm{s}$)	278402/G								
	P.A.anode coil	($54-68 \mathrm{Mc} / \mathrm{s}$)	278402/F								
	P.A.anode conl	(68-88 Mc/s)	278436	Code							
	P.A.anode coil	($88-108 \mathrm{Mc} / \mathrm{s}$)	278385		MISCELIANEOUS			Part No.			
	P.A.anode conl	($108-132 \mathrm{Mc} / \mathrm{s}$)	278369/C								
	P.A.anode coil	$(132-156 \mathrm{Mc} / \mathrm{s})$	278369/B	*FLI	Filter assembly		(25-32.5 Mc/s)	$276199 / 9$$276199 / 8$			
	P.A.anode conl	(148-174 Mc/s)	278369/A		Filter asse	by	($32.5-42 \mathrm{Mc} / \mathrm{s}$)				
L7	Antenna coupling coil	($25-68 \mathrm{Mc} / \mathrm{s}$)	278403		Filter assembly		(42-54 Mc/s)	$276199 / 8$ $276199 / 7$			
	Antenna coupling coil	(68-88 Mc/s)	278362/E		Filter assembly		(54-68 Mc/s)	276199/6			
	Antenna coupling coil	($88-108 \mathrm{Mc} / \mathrm{s}$)	278362/D		Filter assembly		(68-88 Mc/s)	276199/5			
	Antenna coupling coil	($108-132 \mathrm{Mc} / \mathrm{s}$)	278362/C		Filter assembly		(88-108 Mc/s)	276199/4			
	Antenna coupling corl	$(132-156 \mathrm{Mc} / \mathrm{s})$	$278362 / \mathrm{B}$		Filter assembly		(108-132 Mc/s)	276199/3			
	Antenna coupling coil	($148-174 \mathrm{Mc} / \mathrm{s}$)	278362/A		Filter assembly		$(132-148 \mathrm{Mc} / \mathrm{s}$)	276199/2			
-8	Antenna coil	$(25-32.5 \mathrm{Mc} / \mathrm{s})$	278404/J		Filter assembly		(148-156 Mc/s)	276199/1			
	Anterna coil	($32.5-42 \mathrm{Mc} / \mathrm{s}$)	278404/H		Filter assembly		($156-174 \mathrm{Mc} / \mathrm{s}$)	276199			
	Antenna conl	($42-54 \mathrm{Mc} / \mathrm{s}$)	278404/G	RLD	Antenna changeover relay			283070			
	Antenna coil	(54-68 Mc/s)	278404/F	PLA	Antenna plug			730318			
	Antenna coll	(68-88 Mc/s)	$278363 / \mathrm{E}$	SC	Wafer switch (6 channel only)			283178			
	Antenna coll	$(88-108 \mathrm{Mc} / \mathrm{s})$	278363/D	SKTD	Test meter socket			272341			
	Antenna coll	(108-132 Mc/s)	278363/C		Crystal oven			271502			
	Antenna coll	(132-156 Mc/s)	278363/B	XL1	Crystal						
	Antenna coll	(148-174 Mc/s)	278363/A	XL2	Crystal (6 channel only)						
.9	Filter choke		279054	XL3	Crystal (6 channel only)						
	Filter coil assembly	(25-32.5 Mc/s)	278573/1	XL4	Crystal (6 channel only) Crystal (6 channel only)						
	Friter coil assembly	($32.5-42 \mathrm{Mc} / \mathrm{s}$)	278573	XL5							
	Filter coil	(54-68 Mc/s)	278595/6	XL6	Crystal (6 channel only) Crystal (6 channel only)						
	Filter coil	(68-88 Mc/s)	278595/3		Crystal (6 channel only)						
	Filter coil	$(88-108 \mathrm{Mc} / \mathrm{s})$	278595/2		When ordering crystals, please state frequency and type required (see CRYSTAL FORMULAE at the end of the PARTS LISTS).						
	Filter coil	(108-132 Mc/s)	278595/4								
	Filter coil	(132-148 Mc/s)	278595/5								
	Filter coil	$(148-156 \mathrm{Mc} / \mathrm{s})$	278595/1		* Components mounted in cans						
	Filter coil	(156-174 Mc/s)	278595								

Chassis Assembly Complete
Part No.288282/1-4

When ordering complete chassis assemblies, please
state operating frequency.

Code		CAPACITORS			Part No.	Code		RESISTORS		Part No.	
Cl	$12 \mu \mathrm{~F}$	Electrolytic	50 V		680136	R1		Not used			
C 2	$50 \mu \mathrm{~F}$	Electrolytic	$\angle 00 \mathrm{~V}$		266632	RL	5608		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671503
C3	$\angle 0 \mu \mathrm{~F}$	Electrolytic	400 V		266631	R3	68Ω		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671492
C4	$\angle 0 \mu \mathrm{~F}$	Electrolytic	400 V		266631	R4	68Ω		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671492
C5	$75 \mu \mathrm{~F}$	Reversible electrolytic	50 V		266372	R5	2. $\angle \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671510
+C6	680 pF	Ceramic		$\pm \angle 0 \%$	666663	\dagger R6	$150 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671532
+C7	680 pF	Ceramic		$\pm 20 \%$	666663	\dagger R7	2. $2 \mathrm{M} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671546
\dagger C8	0. $25 \mu \mathrm{~F}$	Tubular	$\angle 50 \mathrm{~V}$		669373	†R8	$1 \mathrm{M} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671542
†C9	$8 \mu \mathrm{~F}$	Electrolytic	250 V		$6800<5$	\dagger R9	$120 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671531
C10	$4 \mu \mathrm{~F}$	Electrolytic	350 V		$\angle 66387$	\dagger R10	2. $2 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671510
C11	3 nF	Tubular	350 V		669199	+R11	$1 \mathrm{M} \mathrm{S}^{2}$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671542
NOTE: $\ln F=1000 \mathrm{pF}=0.001 \mu \mathrm{~F}$						\dagger ¢12	$100 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671530
						-R13	6.8182		$\frac{1}{4} \mathrm{~W}$		
						tR14	$100 \mathrm{k} \Omega$		${ }_{3}{ }^{\text {a }}$ W	$\pm 10 \%$	671530
						R15	330 k 8		${ }_{\frac{1}{4}} \mathrm{~W}$	$\pm 10 \%$	671536
						RV3	$25 \mathrm{k} \Omega$	Potentiometer			281133
						$\text { RV } 4$	15Ω	Potentiometer	IW		281099

MISCELLANEOUS

FSI		Fuse 10A	271539
T1		Transformer	277812
MRI		Rectifier OAZ14 or 60 AS or 50 AS	709090
MRL		Rectifier OAZ14 or 60 AS or 50 AS	709090
$\dagger \mathrm{MR} 3$		Rectifier WX6	704494
RLA	2008	Relay	$\angle 83 \angle 74$
\dagger RLF	14152	Relay	703736
V1		Valve ECC81 (12AT7)	860180
TS1		3 nine-way tag strips	204996
TS 2		8 -way tag strip	$\angle 04930$
TS3		4-way tag board	$\angle 75067$
L1		Filter choke	$\angle 79827$
VT1		Transistor OC 35 \% Matched pair	286050
VTL or		Transistor OC35 ${ }^{\text {Matched par }}$	286050
VT 1		Transistor NKT 404 ${ }^{\text {a }}$ (Matched pair	286071
VT 2		Transıstor NKT 404 Matched par	

Chassis Assembly Complete Part No. 288296/2 \& 3
\dagger Squelch circuit components

When ordering complete chassis assemblies, please state whether squelch circuit is required.

INTERCONNECTIONS

Code		COMPONENT		Part No.	Code		COMPONENT (cont.)		Part No.
Cl	$0.5 \mu \mathrm{~F}$	Tubular capacitor (6 channel only) $\quad 450 \mathrm{~V}$			FS3	12A	Fuse and Fuse box		471533
				669384					271530
R1	2. $2 \mathrm{k} \Omega$	Resistor $\frac{1}{4} \mathrm{~W}$	$\pm 10 \%$	671510	ILP 1	12-14V	Set on lamp	0.75 W	272232
RV1	100 ks	Potentiometer		281131	ILP2	12-14V	TX on lamp	0.75 W	272232
RVL	$10 \mathrm{k} \Omega$	Potentiometer		$\angle 81139$	PLA		Antenna coaxial plug		730318
RV3	$\angle 5 \mathrm{k} \Omega$	Potentiometer		281133	PLB		24-way plug		705776
SA		OFF-RX-S/BY switch		283401	PLC		6-way plug		700591
SB		Local transmit switch		283248	PLD		9-way plug		472344
SC		CHANNEL switch (6 channel only)		283399	SKTB		24-way socket		705768
RLB	608	Start relay		720126	SKTC		6-way socket		707914
RLC	1708	Ledex relay		$\angle 83074$	SKTF		9-way socket		203959
RLE	1708	Stand by relay		283377	TS4		2L-way tag strip		272909
LS		Louds peaker		$\angle 850 \angle 6$	TS5		2-way terminal block		271569
MIC		Microphone and lead assembly or Handset and lead assembly		274849	TS6		7 -way tag strıp (6 ch		$\llcorner 71868$
		175229			Ledex assembly (6 ch		$274880 / 2$		

RECEIVER	
Chassis	
B7G valveholder - without skırt	
B7G valveholder - ceramic with skirt	
B7G valveholder- with skirt for B9A screening cans	
B9A valveholder - with skirt ${ }_{3}$	
Capacitor retaining clip for $\frac{3}{8}$ diameter capacitor	
Capacitor r staining clip for $\frac{3}{4}$ " diameter capacitor	
Coil can $2 \frac{1}{4}^{\prime \prime}$ high	
Coil can $2^{\prime \prime}$ high	
Screen (in can 448129)	
Crystal trimmer bracket	
Insulating wrapper (in can 248127)	
Nyloc nut for crystal trimmer	
Terminal	
Insulator for terminal 270846	
Crystal holder (single channel)	
Crystal holder (switched channel)	
Crystal retaining clip (single channel)	
Crystal retaining chp (switched channel)	
Coil can retaining clip	
Spire nut to secure chassis to side plates	
Valve retaining spring	
B7G valve screening can and spring	
B9A valve screening can and spring	
Rubber grommet - $\frac{3}{4} \cdot 1$ bore	
3-way tag strip (e.d.e.	
3 -way tag strip	d=angled tag
4-way tag strıp	$e=f l a t$ tag
4-way tag strip (d. 3e.)	
7-way tag strip	
Crystal oven holder	
Crystal oven retaming clap	
Insulating bead	

TRANSMITTER

Chassis
B7G valveholder - without skirt
B7G valveholder - ceramic with skirt
B9A valveholder - without skirt
B9A valveholder - nylon without skirt
Capacitor retaining clip for $\frac{1}{2}^{\prime \prime}$ diameter capacitor
Meter socket bracket assembly
Power amplifier coul screen assembly
Lid for 274651
Bakelite washer for trimmer
Insulating plate for trimmer
Cable clip
Nyloc nut for crystal trimmer
Terminal
Insulator for terminal $\angle 70842$
Rubber grommet
Valve retaining spring - $1^{\frac{1}{2}}{ }^{11}$ long
Valve retaining spring $-2 \frac{1}{4}$ ' long
B7G valve screening can and spring
Spire nut to secure chassis to side plates
Coit can retaining clip
2-way tag strip
Insulating bead
Coil clamp
Crystal holder (single channel)
Crystal holder (switched channel)
Crystal retaining clip (single channel)
Crystal retaining chp (switched channel)
Crystal trimmer bracket
Switch stop (switched channel)
SQUELCH AND POWER SUPPLY UNIT

Chassis

Capacitor retainıng clip for $\frac{3}{4}$ " diameter capacitor Cableform clamp (free)
Cableform clamp (fixed)
Spacer for polarity changeover panel
Relay cover
Relay base
Fuse holder
Spire nut to secure chassis to side plates
Rubber grommet
8 -way tag strip
9 -way tag strip
Squelch circuit assembly
Squelch mounting plate (part of 276020)
B9A valveholder (part of 276020)
B9A valve screening can and spring (part of 276020)
Capacitor retaining clip (part of $2760 \angle 0$)
10 -way tag strip (part of $\angle 760 \angle 0$)

Part No.
242059
271524
271518
708995
$2715 \angle 3$
700651
700654
$\angle 481 \angle 7$
248129
242013
$244126 / \mathrm{B}$
242062
$320<54$
270842
712622
271498
$274676^{\prime} \mathrm{C} \& \mathrm{D}$
$\angle 71357$
271885
$271 \angle 30$
271222
271911
706312
706315
271200
04920
$\angle 049 \angle 3$
204921
$\angle 04922$
272208
271501
271503
202613

24205
271524
271518
271518
271519
705995
700652
274430
$\angle 74651$
242786
410181
411013
410259
320254
270842
712622
706175
$\angle 71910$
271370
706312
2712LL
7122
271230
$\angle 7 \angle 917$
202613
400038
271498
$274676 / C \& D$
271357
$\angle 71885$
$\angle 42195$
242821
$275604 / \mathrm{A}$
700654
242642
$\angle 43216$
310180
$\angle 48132$
$\angle 48134$
710632
$271 \angle 2 \angle$
271201
204930
204996
276020
$243814^{\prime /}$ A
2715 L3
706315
410254
204935

MAIN UNIT
Part No.
Metering plug and lead assembly
275751
$274909 / 1$
$\angle 43383$
275260/7
276186
244130
$2441 \angle 5$
242029
$\angle 71373$
243318
243319
405736
$238480 / \mathrm{B}$
271231
238742/A
$271 \angle 48$
271947
271759
270622
230357
23057
$\angle 71200$
$\angle 71610$
$\angle 71623$
271621
270568
$\angle 70566$
27487d/1
274892/4
274893/4
274895
230767
271940
242367
208128
271608
208141
208142
203042
$20<933$
L7L479
$\angle 7 \angle 937$
L4L194
272407
274872/2
274890
230896
$\angle 08131$

CONTROL UNIT

Rear section of case	274884/1
Front section of case	274948/1
Knob	$\angle 72059$
Grub screw for 272059	238117
Control unst mounting bracket	$\angle 4 \angle 314$
Screw for 244314	$\angle 38046$
Cable clamp	$\angle 42363$
Terminal strip mounting bracket	$\angle 4 \angle 364$
Louds peaker gasket	244365
Switch locating plate	242366
Potentiometer locating washer	L42404
Screw securing terminal strip to bracket	238469/A
Screw securing control unit to mounting bracket	238469/C
Screw securing cable clamp	238488/A
Screw securing front of case to rear	238485/C
Retaining sleeve for $238485 / \mathrm{C}$	271664
Crinkle washer for switch	272675
Spire nut for $238469 / \mathrm{A}$ and $\angle 38469 / \mathrm{C}$	C712LL
Spire nut for $238485 / \mathrm{C}$	271223
Spire nut for $238488 / \mathrm{A}$	271231
Rubber grommet for control cable	271693
Rubber grommet for microphone lead	$\angle 71694$
Rubber stopper in sade of case	271610
Loudspeaker fabric	271938
Red lampholder	C72L44
Green lampholder	272L45
Control lead assembly (single channel)	275487/5
Control lead assembly (switched channel)	275487/6
Escutcheon (single channel)	271953
Escutcheon (switched channel)	$\angle 48075$
Pye medallion	711789
Switch stop	242821
Microphone cable cleat	704790
Telephone handset and lead assembly	275229
Telephone handset cable cleat	704791

RECEIVÉR
MULTIPLICATION FACTORS

	Carrier		3V10a	3V10b	$3 \mathrm{V11}$	Total Multiplication
	Freque	ency				
Band J	25-32.5	Mc / s	-	-	$\times 1$	xl
Band H	32.5-42	Mc / s	-	-	$x 1$	x1
Band G	42-54	Mc / s	-	-	$\times 2$	$\times 2$
Band F	54-68	Mc / s	-	-	$\times 2$	x 2
Band E	68-88	Mc / s	x3	x4	-	x 12
Band D	88-108	Mc / s	$\times 3$	$\times 4$	-	$\times 12$
Band C	108-132	Mc / s	$\times 3$	$\times 4$	-	$\times 12$
Band B	132-156	Mc / s	x 3	$\times 4$	-	$\times 12$
Band A	148-174	Mc / s	$\times 3$	$\times 4$	-	$\times 12$

CRYSTAL FORMULAE

$\begin{gathered} \text { Carrier } \\ \text { frequency (fc) } \end{gathered}$		$\underset{\text { frequency }(\mathrm{fx})}{\frac{\text { Crystal }}{}}$	Specification No.		
		$\begin{aligned} & \text { Types } \\ & \text { N\&W } \end{aligned}$	$\frac{\text { Type }}{V}$		
25-32.5	Mc/s		$\mathrm{fx}=\mathrm{fc}+2 \mathrm{Mc} / \mathrm{s}$	P28	P28
32.5-42	Mc / s	$\mathrm{fx}=\mathrm{fc}+2 \mathrm{Mc} / \mathrm{s}$	P28	P28	
$42-54$	Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}+2}{2} \mathrm{Mc} / \mathrm{s}$	P28	P28	
54-68	Mc / s	$\mathrm{f} \mathrm{x}=\frac{\mathrm{fc}+\mathrm{z}}{2} \mathrm{Mc} / \mathrm{s}$	P28	P28	

1st Local Oscillator ($68-174 \mathrm{Mc} / \mathrm{s}$)

68-88	Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}+10.7}{12} \mathrm{Mc} / \mathrm{s}$	P19	P19
88-108	Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}+10.7}{12} \mathrm{Mc} / \mathrm{s}$	Pl9	P18
108-132	Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}-10.7}{12} \mathrm{Mc} / \mathrm{s}$	P19	P18
132-156	Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}+10.7}{12} \mathrm{Mc} / \mathrm{s}$	P19	P18
148-174	Mc / s	$\mathrm{f}_{\mathrm{X}}=\frac{\mathrm{fc}-10.7}{1 L} \mathrm{Mc} / \mathrm{s}$	P19	PI8

2nd Local Oscillator (68-174 Mc/s)
Crystal Specification No. Pl6
Crystal frequency $=12.7 \mathrm{Mc} / \mathrm{s}$, except when the assigned frequency is within $100 \mathrm{kc} / \mathrm{s}$ of the following, in which case the crystal frequency is $8.7 \mathrm{Mc} / \mathrm{s}$.

$76.2 \mathrm{Mc} / \mathrm{s}$	$127.0 \mathrm{Mc} / \mathrm{s}$
$88.9 \mathrm{Mc} / \mathrm{s}$	$139.7 \mathrm{Mc} / \mathrm{s}$
$101.6 \mathrm{Mc} / \mathrm{s}$	$152.4 \mathrm{Mc} / \mathrm{s}$
$114.3 \mathrm{Mc} / \mathrm{s}$	$165.1 \mathrm{Mc} / \mathrm{s}$

Additional frequencies at which $8.7 \mathrm{Mc} / \mathrm{s}$ crystals are used may be included.

Switched Channel Receivers

To avoid heterodynes on some switched channel receivers, the frequency of the second local oscillator may lie within the following limits:-

$$
8.7 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{kc} / \mathrm{s} \quad 12.7 \mathrm{Mc} / \mathrm{s} \pm 3 \mathrm{kc} / \mathrm{s}
$$

Should it become necessary to order a replacement crystal it 15 essential to quote the actual frequency of the original crystal. Use of a crystal of any other frequency will result in heterodynes on one or more channels.

TRANSMITTER

MULTIPLICATION FACTORS

	$\underset{\text { Frequency }}{\text { Carrier }}$		1V2	1V3a	1V3b	Total Multiplication
Band J	25-32.5	Mc / s	-	x2	$\times 2$	x4
Band H	32.5-42	Mc / s	-	x2	x 2	$\times 4$
Band G	42-54	Mc / s	-	$\times 3$	$\times 2$	$x 6$
Band F	54-68	Mc / s	-	$\times 3$	$\times 2$	x6
Band E	68-88	Mc / s	x2	x^{2}	${ }^{2}$	$x 8$
Band D	88-108	Mc / s	x2	x3	x2	$\times 12$
Band C	108-132	Mc / s	x 2	x3	x2	$\times 12$
Band B	132-156	Mc / s	x3	x3	$\times 2$	x18
Band A	148-174	Mc / s	x3	x3	x 2	$\times 18$

CRYSTAL FORMULAE

$\underline{\text { frequency }}_{\text {Cfc })}^{\text {Carrier }}$		$\underbrace{\text { Crystal }}_{\text {frequency }}$		$\frac{\text { Specıfication No }}{\frac{\text { Types }}{\text { Ty }} \quad \frac{\text { Type }}{\underline{V}}}$	
$\begin{aligned} & 25-32.5 \\ & 32.5-42 \end{aligned}$	Mc / s Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}}{4}$	Mc / s	P19	P19
$\begin{aligned} & 42-54 \\ & 54-68 \end{aligned}$	Mc / s Mc / s	$f x=\frac{f c}{6}$	Mc / s	P19	P19
68-88	Mc / s	$f x=\frac{f c}{8}$	Mc / s	P19	P19
$\begin{aligned} & 88-108 \\ & 108-132 \end{aligned}$	$\begin{aligned} & \mathrm{Mc} / \mathrm{s} \\ & \mathrm{Mc} / \mathrm{s} \end{aligned}$	$\mathrm{f} \times=\frac{\mathrm{fc}}{12}$	Mc / s	P19	P18
$\begin{aligned} & 132-156 \\ & 148-174 \end{aligned}$	Mc / s Mc / s	$\mathrm{fx}=\frac{\mathrm{fc}}{18}$	Mc / s	P19	P18

AMENDMENT No. 1

To eliminate unwanted sideband radiations, which cause adjacent channel interference on $25 \mathrm{kc} / \mathrm{s}$ spaced schemes, the following change has been made to the transmitter.

TRANSMITTER CIRCUIT DIAGRAMS (C288282/1-4)

Add: \quad C65 a $4 \mu \mathrm{~F}$ electrolytic capacitor between the screen grid (pin 9) of lV6 and chassis, with the negative terminal connected to chassis.

TRANSMITTER PARTS LISTS

Add: C65 $4 \mu \mathrm{~F}$ Electrolytic 350 V Part No. 266387

MECHANICAL ITEMS

Add: 1 Terryclip Part No. 700652

INSTALLATION

Fit the Terry clip underneath the chassis near the base of lV6 and secure in position with an $8 \mathrm{~B} . \mathrm{A}$. nut and bolt; an existing hole is available in the chassis side-flange.

Insert the capacitor in the Terry clip and connect as described above.

TOP CHASSIS VIEW

RESISTOR SYMBOL \qquad CAPACITORS PREFIX 'C' OR PLAIN OUTLINE WITH NO PREFIX

UNDERSIDE CHASSIS VIEW
Fig. 13 RECEIVER LAYOUT DIAGRAM - 25 to $68 \mathrm{Mc} / \mathrm{s}$ (PTC 2107 Ranger)

Fig. 14 RECEIVER CIRCUIT DIAGRAM - 25 to $68 \mathrm{Mc} / \mathrm{s}$

TOP CHASSIS VIEW

UNDERSIDE CHASSIS VIEW

Fig. 15 RECEIVER LAYOUT DIAGRAM - 68 to $132 \mathrm{Mc} / \mathrm{s}$ (PTC 2107 Ranger)

TOP CHASSIS VIEW

UNDERSIDE CHASSIS VIEW
Fig. 17 RECEIVER LAYOUT DIAGRAM - 132 to $174 \mathrm{Mc} / \mathrm{s}$ (PTC 2107 Ranger)

TOP CHASSIS VIEW

RESISTOR SYMBOL
CAPACITORS PREFIX 'C' OR PLAIN OUTLINE WITH NO PREFIX

UNDERSIDE CHASSIS VIEW

Fig. 19 TRANSMITTER LAYOUT DIAGRAM - 25 to $68 \mathrm{Mc} / \mathrm{s}$ (PTC 2107 Ranger)

TOP CHASSIS VIEW

RESISTOR SYMBO

UNDERSIDE CHASSIS VIEW

Fig. 21 TRANSMITTER LAYOUT DIAGRAM - 68 to $174 \mathrm{Mc} / \mathrm{s}$ (PTC 2107 Ranger)

TOP CHASSIS VIEW

RESISTOR SYMBOL [- CAPACITORS PREFIX 'C' OR PLAIN OUTLINE WITH NO PREFIX

UNDERSIDE CHASSIS VIEW
Fig. 23 SQUELCH \& POWER SUPPLY UNIT LAYOUT DIAGRAM (PTC 2107 Ranger)

Fig. 25 MAIN UNIT FRONT PANEL LAYOUT DIAGRAM (PTC 2107 Ranger)

(A.P. II3, Sect. 6B)

SUPPLEMENT

TO
AIR PUBLICATION

4809E

volume I
AUGUST, 1962

MGRI. 26001
5 WATT V.H.F. RADIO TELEPHONE (PYE PTC 6/2I07V)

This supplement should be read in conjunction with the PTC 2107 Service Manual. Issue 3.

INTRODUCTION

The equipment is intended for operation in the frequency band $68 \approx 88 \mathrm{Mc} / \mathrm{s}$; it employs $25 \mathrm{kc} / \mathrm{s}$ channel spacing and provides six switch-selected channels.

It is suitable for either 12 volt or 24 volt operation. "voltage selertion being achieved by means of a plug and socket arrangement in the power supply unit.

Rereiver (Part No. 288357/1 5820-99-933-1241)
The recelver curcuit description and servicing procedure, together with a parts list and circuit diagram are contained in this supplement.

Transmitter (Part No. 288356 5820-99-933-1284)
The transmitter circuit description and servicing procedure are contained in the PTC 2107 Service Manual. Issue 3. The parts list and circuit diagram are lorated at the rear of this supplement.

Power Supply Unit (Part No. 288358 6130-99-933-1287)
The power supply circuit description and servicing procedure, together with a parts list and circuit diagram are contained in this supplement.

SUMMARY OF DATA

Frequency band

Channel sparing

Power supply

Power consumption
$68=88 \mathrm{Mc} / \mathrm{s}$

Type V (very narrow) 20,25 and $30 \mathrm{kc} / \mathrm{s}$
Note: The equipment referred to in this supplement employs $25 \mathrm{kc} / \mathrm{s}$ channel. spacing.

12 volts or 24 volts d.c, nominal. positive or negative ground

	Standby	Transm
12 volt	5.3A	9.3A
24 volt	2. 7 A	5.0A

12 V	13.2 V
24 V	26.4 V

The equipment is connected to the battery by a suitable length of the recommended cable． （See INSTALLATION，page 6）．

Notes：1．A telephone handset is used in place of the fist microphone．
2．A＇receive only＇facility is not fitted．The equipment employs a two－position OFF／ON（standby）switch in the control unit．

3．Amend the control unit dimensions to read：－
9 in wide $\times 41 / 8$ in deep $\times 3 \frac{1}{4}$ in high
（ $22.8 \mathrm{~cm} \times 10.5 \mathrm{~cm} \times 8.2 \mathrm{~cm}$ ）

TECHNICAL DESCRIPTION

RECEIVER

CIRCUIT FEATURES

The receiver employs nine valves in a double superheterodyne circuit．A cascode r ．f ．amplifier is followed by two mixer stages employing crystal－con－ trolled oscillators；the first i。f．is $10.7 \mathrm{Mr} / \mathrm{s}$ and the second i．f．is $2 \mathrm{Mc} / \mathrm{s}$ ．

The second i．f．signal is passed through a three－stage i．f．amplifier before demodulation and a．f．amplification．Interposed between the demodulator and the first a。f．amplifier is a series noise limiter designed to suppress pulse type interference such as that caused by vehicle ignition systems．The audio signal from the first a．f．amplifier is coupled to an output pentode valve for final amplification．

DETAILED CIRCUIT DESCRIPTION

R。F．Stage

Two sections of the double triode 3 V 1 are employed in a cascode r．f．ampli－ fier stage．The antenna circuit is connected via contacts lRLDl of the antenna changeover relay to the tuned grid circuit of 3 V la comprising 3Ll－3Cl． Neutralising is effected by 3L2 with associated capacitor 3C3．The anode of 3Vla is coupled by inductance 3L4 to the cathode of the grounded grid amplifier 3V1b． The amplified signal at the anode of 3 Vlb is fed via three band－pass filters com－ prising 3L3－3C4，3L5－3Cll and 3L6－3Cl3 to the grid of the first mixer 3V2．

The first mixer stage employs a triode 3 V 2 . The heterodyne voltage is obtaned from the double-triode 3V9, the first half of which functions as a crystalcontrolled Pierce oscillator and multiplier. Crystal trimming is effected by the separate capacitors 3C58-3C63.

The third harmonic of the crystal frequency is selected by transformer 3 T 10 in the anode circuit of 3 V 9 a and coupled to the grid of 3 V 9 b via 3 C 76 . 3 V 9 b also serves as a multiplier and the twelfth harmonic of the crystal fre= quency, chosen to provided a first i,f. of $10.7 \mathrm{Mc} / \mathrm{s}$, is injected into the cathode of the first mixer 3 V 2 via $3 \mathrm{Cl} 5-3 \mathrm{R} 5$, from a loop coupled to inductance 3 L 9 . The resultant signal produced at the anode of 3 V 2 is transformer coupled by 3 T 1 to the grid of the 2nd mixer 3 V 3 a .

2nd Mixer and Oscillator

The triode section of 3 V 3 functions as a rystalmontrolled oscllator at a frequency of $12.7 \mathrm{Mc} / \mathrm{s}$ except in the cases listed in the CRYSTAL FORMULAE at the end of the Parts List in the manual.

Output from the oscillator 3 V 3 b , and the $10.7 \mathrm{Mc} / \mathrm{si}$.f. input from 3 V 2 are mixed in the pentode section 3 V 3 a of the second mixer.

The $2 \mathrm{Mc} / \mathrm{s}$ second i.f. component produced at the anode of 3 V 3 a is transformer coupled to the grid of the i.f. amplifier 3V4.

I. F. Amplifier

This section consists of three stages of i.f. amplification which provide most of the gain and selectivity of the receiver. Three r.f. pentodes, 3V4-3V5-3V6 are employed, inductive interstage coupling being provided by high-Q transformers.

The anode circuit of 3 V 3 a is coupled to the grid of 3 V 4 by a pair of i. f . transformers, 3T2-3T3. These transformers are coupled by capacitor 3C82. The following stages using 3V4-3V5-3V6 are coupled in a similar manner by 3T4-3T 5 and $3 \mathrm{~T} 6-3 \mathrm{~T} 7$ respectively.

The i.f. gain control RV3 is in the cathode circuit of the first i.f. amplifier 3V4.

Demodulation and A. G. C.

The final i.f. transformer 3 T 8 is directly coupled to one diode of the doublediode triode $3 V 7$ for demodulation. The capacitor 3 C 46 feeds a small portion of the $i . f$. output to the second diode of 3 V 7 ; the resultant d. c 。 voltage developed across the load resistor 3R29 is fed as a.g.c. bias to the grid returns of $3 \mathrm{~V} 3-3 \mathrm{~V} 4-3 \mathrm{~V} 5$. A. G. C. delay is provided by the voltage developed across the cathode resistor 3R48.

The a．f．voltage developed across the diode load is fed via the noise limiter， capacitor 3C79，the VOLUME（audio gain）control 4RVI and the coupling capaci－ tor 3 C 53 ，to the grid of the triode section of 3 V 7 ．After amplification the a．f． signal is roupled via 3 C 54 to the grid of 3 V 8 ，a pentode a．f．amplifier capable of delivering approximately l watt into the 3Ω loudspeaker．

Noise Limiter

The load circuit of the signal diode includes a silicon diode 3MR1 function－ ing as a series noise limiter．Under normal working conditions a voltage proportional to the carrier level is developed across 3 R 46 and 3 MRI ．In the event of a sudden peak in signal，such as that caused by interference from a vehar le 1 gnation system，the positive side of 3 MR 1 will be driven rapidly negative and 3 MRl will momentarily fail to conduct．The relatively large time constan＊ of $3 \mathrm{R} 45-3 \mathrm{C} 80$ prevents the negative side of 3 MRI from following a rapidly chang－ ing signal，whilst normal speech waveform remains unaffected．

The limiter forms part of the signal diode load，the input to the limiter being taken from the secondary winding of the final i．f．transformer 3 T 8 viz the filter 3C48－3R46－3C81。

The output from the limiter is fed to the VOLUME control 4 RVI via tag 4 on 2TS］。

POWER SUPPLY UNIT

A matched pair of power transsturs VTl－VT2 is connected in a multre vibrator circuit with transformer 2 Tl as the centre－tapped load．

Bias is applied to the circuit by means of the potential divider 2R1－2R2 and the series resistors 2R16－2R17－2R18－2RV4。

The switching action of the converter is controlled by feedback developed in antiphase windings on 2TI and applied to the bases of VT1 and VT2．

The frequency of operation of the converter is approximately $3000 \mathrm{c} / \mathrm{s}$ ．

The output from 2 Tl is rectified by a half－wave voltage doubler syst $\in \mathrm{m}$ ， $2 \mathrm{C} 2-2 \mathrm{C} 3 \mathrm{a}-2 \mathrm{MR} 1-2 \mathrm{MR} 2$ and fed to a filter circuit $2 \mathrm{~L} 1-2 \mathrm{C} 3 \mathrm{~b}$ 。 Capacitor 2C10 provides additional smoothing in the receiver h．t．line．

The socket 2 SKTS is incorporated to make the power supply unit common to both 24 volt and 12 volt equipment，the only difference being a change of connections in the plugs PLS．

Connecting to the Supply

The following section should be read in conjunction with POWER SUPPLY on page 18 in the Manual.

IMPORTANT

Ensure that the correct plug PLS is fitted in the power supply unit to correspond with the available l.t. supply voltage. The two plugs are marked 12 V and 24 V respectively; the plug not in use is mounted immediately behind the main unit front panel. In addition, a reversible plate fitted on the face of the panel is set to indicate the supply for which the equipment is intended.

The battery plug PLC located on the main unit front panel is wired to accept either a 12 volt or 24 volt l.t. input as follows:-

12 volt Operation (see Fig. 1)

The power leads are taken from the equipment, where they are terminated by the socket SKTC, via an intermediate terminal block and a fuse to the battery.

Fig. 1
$\underline{24 \text { volt Operation (see Fig. 2) }}$
The power leads are taken from the equipment, where they are terminated by the socket SKTC, via an intermediate terminal block and a fuse and ballast unit to the battery.

Fig. 2

The table on page 19 of the manual gives a guide to the size of cable required for 12 volt operation. Quadruple the figures given in the total length of lead and distance from equipment columns for 24 volt operation.

SERVICING

Equipment Required for Receiver Alignment Procedure

1. Signal Generator Type 9208B
2. Avometer Model 8
3. Diode Probe.(a suitable circuit is shown in Fig. 3, page 9)
4. Wattmeter Absorption Audio Frequency 6625-99-914-9811
5. 10 nF capacitor
6. T wo small $2.2 \mathrm{k} \Omega$ resistors with extremely short leads
7. Calibrator Frequency 6625-99-933-0967 (2 Mc/s marker oscillator)

Note: This item is required for calibration purposes only if the specified signal generator is not available
8. A source of standard test voltage of 13.2 volts d.c. (12 volt equipment) or 26.4 volts d.c. (24 volt equipment), measured at the battery on load

Nominal figures（in brackets）are given for guıdance when checking the equipment with Standard Test Voltage applied．

1．Check the overall sensitivity as follows：－

Connect the output meter set to high impedance input across tag 4 on 3 T 9 （the audio output transformer）and chassis．Set the VOLUME control 4RVI and the i．f．gain control RV3 at maximum；the former is located on the control unit，the latter on the main unit front panel．Connect the signal generator to the antenna plug and apply an r．f．signal of $2 \mu \mathrm{~V}$ e．m．f．modu－ lated to a depth of 30% at $1000 \mathrm{c} / \mathrm{s}$（l watt）．

2．Cherk the signal－to－noise ratio as follows－

With the $i_{\text {。 }}$ f．gain control at maximum，the signal generator and output meter connected as in l above and the modulation switched on，adjust the a．f．output to approximately 100 mW and note the readirg on the dB srale of the output meter．Switch off the modulation and again note the reading on the dB srale．Subtracting the latter reading from the former reading will give the approximate signal－to－noise ratio at this level（ 14 dB ）。

3 Cherk the a．g．c．performance as follows：－

With the i．f．gain control at maximum and the signal generator and output meter connected as in labove，apply an r 。f．input of 20 mV e． m 。f．and adjust the a．f．output to read 100 mW ．Note the change in output when the signal is reduced to $4 \mu \mathrm{~V}$ e．m．f．（ 8 dB ）。

RECEIVER ALIGNMENT PROCEDURE

I．F．ALIGNMENT

In normal service re－alignment is unnecessary．The design is such that the bandwidth and symmetry of the bandpass circuits are maintained even after changing valves．If re－alignment does become necessary use the following pro－ cedure：－

Notes：1．The primary cores of all i．f．transformers are adjustable from below the chassis and the secondary cores from above the chassis．

2．The lock nuts on adjustable cores should be tightened and the adjustment checked before disconnecting the signal generator and meter，in order to ensure that the circuits have not be－ come detuned．

3．When carrying out the following adjustments the cignal generator output should be adjusted as necessary to keep the microammeter reading slightly below mid－scale。

1. Connect the a.g.c. line to chassis. A suitable point is between the junction 3R28-3C44 and chassis.
2. Connect a $50 \mu \mathrm{~A}$ meter across pins 8 (positive) and 9 (negative) of the test meter socket lSKTD. The meter will read diode current.
3. Remove 3 V 2 and connect the signal generator to the anode connection (pin 7) of the valveholder via the 10 nF capacitor.
4. Set the signal generator to $10.7 \mathrm{Mc} / \mathrm{s}$ with modulation off.
5. Unless the signal generator specified is available, switch on and place the $2 \mathrm{Mc} / \mathrm{s}$ calibrator near the i.f. amplifier stages. Adjust the signal generator for zero beat, switch off and remove the calibrator.
6. Set the i.f. gain control fully clockwise.
7. Set the primary core of 3 T 1 to approximately a mid-way position and tune the secondary for maximum diode current.
8. Tune the primary and secondary of 3 T 8 for maximum diode current.
9. Shunt the primary of 3 T 6 and the primary of 3 T 7 with the $2.2 \mathrm{k} \Omega$ resistors. Tune the secondary of 3 T 6 for maximum diode current.
Tune the secondary of 3 T 7 for maximum diode current.
10. Shunt the secondary of 3 T 6 and the secondary of 3 T 7 with the $2.2 \mathrm{k} \Omega$ resistors. Tune the primary of 3 T 6 for maximum diode current.
Tune the primary of 3 T 7 for maximum diode current.
11. Repeat instructions 9 and 10 above, reading 3 T 5 for 3 T 7 and 3 T 4 for 3 T 6 。
12. Repeat instructions 9 and 10 above, reading 3 T 3 for 3 T 7 and 3 T 2 for 3 T 6 . Remove the damping resistors.
13. Check the bandwidth and symmetry using the signal generator specified.
(a) With the signal generator still set to $10.7 \mathrm{Mc} / \mathrm{s}$ adjust the output to obtain a convenient reading of diode current; note this reading.
(b) Detune the generator on each side of $10.7 \mathrm{Mc} / \mathrm{s}$ by the increments detailed below and increase the carrier level until the original meter reading is obtained. Note the difference in carrier level required to give the original meter reading; the following figures should be obtained.

> Frequency
> $\pm \quad 6 \mathrm{kc} / \mathrm{s}$
> $\pm 22.5 \mathrm{kc} / \mathrm{s}$

Carrier Level	
High	Low
+4 dB	+8 dB
+88 dB	$+\infty \mathrm{dB}$

Should the symmetry be inadequate a very slight re-adjustment of 3 T 8 secondary can be made. However, if the results obtained differ widely from the figures given above, check that the i.f. alignment has been correctly carried out.
14. Re-set the generator to $10.7 \mathrm{Mc} / \mathrm{s}$
15. Remove the microammeter and the a.g.c. short circuit connection.
16. Connect the audio output meter set to high impedance input across $3 \mathrm{~T} 9 \operatorname{tag} 4$ and chassis.
17. With the VOLUME and i.f. gain controls at maximum (fully clockwise), switch on the modulation set at $1000 \mathrm{c} / \mathrm{s} 30 \%$ modulation depth.
18. Adjust the generator output level to obtain a receiver output as detailed below:-

Carrier Level (max) $125 \mu \mathrm{~V}$

Audio Output

500 mW
19. Disconnect the signal generator and replace 3 V 2 .

R. F. ALIGNMENT

Under no circumstances should the settings of the receiver crystal trimmers be altered without reference to a frequency substandard or to the carrier of the base station transmitter.

Notes: 1. Alignment should be carried out on the channel nearest to the mean frequency of the channels in use and the performance of the remaining channels checked after alignment. Note that the specification figures relate to channels within $\pm 0.2 \%$ of the mean frequency.
2. The 1 pF capacitor 3 C 3 (connected across inductance 3 L 2) may be removed from receivers intended for operation at the high frequency end of the band to facilitate neutralising of the r.f. amplifier stage.

METER READS APPROXIMATELY $10 \mu A$ FOR IV RMS INPUT
Fig. 3 Diode Probe Unit

1. Connect the 2.5 V d.c. voltmeter across the cathode resistor 3 R 42 of 3 V 9 b .
2. Tune the primary and secondary windings of 3 T 10 for maximum reading on the voltmeter. Repeat this adjustment, as detuning of the primary may occur when the secondary is tuned (typical reading 2.0 V).
3. Disconnect the voltmeter and set the cores of 3L1-3L2-3L3-3L5-3L6 and 3L9 to the h.f. end of their travel, with as little of the core adjuster visible as possible.
4. Connect a diode probe, constructed as shown in Fig. 3 above, between the cathode (pin 2) of 3 V 2 and chassis. Adjust the core of 3L9 for maximum injection.
5. Disconnect the diode probe and connect the signal generator to the antenna plug PLA.
6. Accurately tune the signal generator to the channel nearest to the mean frequency of the channels in use and modulate the signal to a depth of 30% at $1000 \mathrm{c} / \mathrm{s}$.
7. Set the VOLUME and i.f. gain controls at maximum (fully clockwise) and, throughout section 8 , adjust the signal generator output so that the audio output reading does not exceed 500 mW .
8. Adjust the cores of 3Ll-3L3-3L4-3L5-3L6 and the primary winding of 3 T 1 for maximum audio output.
9. Disconnect the short lead which connects 3L4 to the cathode (pin 3) of 3 Vlb and connect the two $12 \mathrm{k} \Omega$ resistors and 1000 pF capacitor as shown in Fig. 4 below:-

Fig. 4
10. Adjust the signal generator to obtain a convenient reading on the output meter and tune 3 L 2 for minimum meter reading.
11. Remove the $12 \mathrm{k} \Omega$ resistors and 1000 pF capacitor and solder the short lead connection between 3L4 and pin 3 of 3 Vlb .
12. Retune 3Ll and 3L3 for maximum audio output.
13. With an r.f. input of $2 \mu \mathrm{~V}$ e. m.f. and the i.f. gain control set fully clockwise check that the signal-to noise ratio is not less than l4dB (see Checking Signal-to-Noise Ratio).
14. With an r.f. input of $2 \mu \mathrm{~V}$ e. m.f. and the VOLUME and i.f. gain controls set fully clockwise, check that the audio output is not less than 1 wat+.
15. Disconnect the signal generator and audio output meter.

CHECKING SIGNAL - TO-NOISE RATIO

The following method should be adopted when checking signal-to-noise ratio:-

1. Feed in a signal of $2 \mu \mathrm{~V}$ e. m.f. from the signal generator with modulation on. Set to 30% at $1000 \mathrm{c} / \mathrm{s}$ 。
2. Adyuat the a。fo output to approximately 100 mW and note the reading on the dB -ale of the output meter.
3. Switch off the modulation and again note the output meter reading.
4. Subtracting the reading of 3 from the reading of 2 will give the "signal plus noise" to "noise only" ratio. At the levels used this is very nearly equal to the signal-to-no se ratio and may be regarded as such for the purpose of this test.

Transistor Feedback Adjustment Control

After replacement of a transistor, the feedback adjustment control must be resset. The optimum position is determined as detailed in the following sections, under the least favourable conditions using an input supply of 15.8 volts $d . c$. (12 volt operation) or 31.6 volts d.c. (24 volt operation) and is indicated when:-

1. The full h.t. voltage is present on the transmitter h.t. line when the equipment is switched from receive to transmit,
2. the frequency of oscillation is maintained under load, and
3. the mark-space ratio of the collector current waveform is $1: 1$.

Equipment Required

1. Source of standard test voltages (see page 2).
2. Source of 1.t. input voltage of 15.8 volts on load
3. Source of 1.t. input voltage of 31.6 volts on load
4. Oscilloscope (the Telequipment 'Serviscope' S32 is sritable)
5. $0-500 \mathrm{~V}$ d.c. meter (the Avometer Model 8 is suitable)
6. 0.05Ω resistor ($\frac{3}{4}$ in of No. 20 gauge Eureka wire)
7. R. F。Power Output Meter - Wattmeter CT419

Procedure

1. Insert the 0.05Ω resistor in series with the lead from one transistor collector to transformer 2Tli。e. collector of VTl to 2Tlag lo (12 volt) or 2 T 1 tag 9 (24 volt).
2. Connect the oscilloscope across the ends of the 0.05Ω resistor. Both oscilloscope connections must be isolated from ground.
3. Connect the r.f. power output meter (or dummy load) to the antenna plug.

12 volt operation

4. Set the feedback adjustment control slader in the position of maximum resistance in circuit.
5. Connect the standard test voltage to the equipment, observing polarity, and switch ON.
6. Operate the transmit test switch and adjust the feedback adjustment control 2RV4 until a meter reading of 293 volts is obtained.
7. Observe the oscillator collector current waveform; the mark-space ratio should be 1: 1 .
8. Switch OFF and connect the 15.8 volt l.t. supply, observing polarity.
9. Switch ON and operate the transmit test switch. Check that the oscillator starts without hesitation and that the rated $270-315$ volts is present on the h.t. line.
10. If the oscillator is sluggish in starting and a delay in reaching the rated h.t. voltage is apparent, switch OFF, re-set the feedback adjustment control and make a further check.
11. Repeat the adjustment until satisfactory operation is obtained.

24 volt operation

12. Connect resistors 2R16-2R17-2R18 in circuit by open circuiting the links on 2TS4.
13. Connect the standard test voltage to the equipment, observing polarity, and switch ON.
14. Operate the transmit test switch and select the required combination of 2R16-2R17-2R18 by adjustment of the links on 2 TS 4 to give a meter reading of 293 volts.

Note: It may be necessary to make a slight re-adjustment to the setting of the feedback control in order to obtain the correct meter reading.
15. Observe the oscillator collector current waveform; the mark-space ratio should be 1 : 1 .
16. Switch OFF and connect the 31.6 volt $1 . t$. supply, observing polarity.
17. Switch ON and operate the transmit test switch. Check that the oscillator starts without hesitation and that the rated $270-315$ volts is present on the h.t. line.
18. If the oscillator is sluggish in starting and a delay in reaching the rated h.t. voltage is apparent, switch OFF, re-set the feedback adjustment control decreasing the resistance in circuit and make a further check.
19. Repeat the adjustment until satisfactory operation is obtained.

Note: If re-adjustment of the feedback control has proved necessary, recheck the setting for 12 volt operation. The feedback control should be finally set so that an hot. supply of approximately 293 volts is produced with both 13.2 volts and 26.4 volts $1 . t$ inputs.

PARTS LISTS
 AND

DIAGRAMS

Code		CAPACITORS			Part No.	Code		RESISTORS		Part N
Cl	27 pF	Silver mica		$\pm 1 \mathrm{pF}$	660846	R1	82Ω		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671493
C 2	lnF	Disc ceramic			660433	RL	$1 \mathrm{k} \Omega$		$\frac{1}{} \mathrm{~W} \pm 10 \%$	671506
C3	1 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266548	R 3	10Ω		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671482
C4	22 pF	Ceramic		$\pm 2.5 \%$	266557	R4	$470 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671538 671501
C5	2 nF	Disc ceramic			660439	R5	390Ω			$\begin{aligned} & 671501 \\ & 671506 \end{aligned}$
C6	lnF	Feedthrough			266241	R6	$1 \mathrm{k} \Omega$ $100 \mathrm{k} \Omega$		$\frac{1}{W} \mathbf{W} \pm 10 \%$	671506 671530
C7		Ceramic feedthrough			202638	R7	$100 \mathrm{k} \Omega$ $47 \mathrm{k} \Omega$		$\frac{1}{\frac{1}{4} W \pm \pm 10 \%}$	671526
C8	$\ln F$	Disc ceramic			660433	R8	$47 \mathrm{k} \Omega$ $180 \mathrm{k} \Omega$		$\frac{1}{4} W \pm 10 \%$	671533
C9		Ceramic feedthrough			202638 660433	R9 R10	$180 \mathrm{k} \Omega$ 560Ω		$\frac{1}{4} W \pm 10 \%$	671503
C10	lnF 33 p	Disc ceramic			660433	R11	$2.2 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671510
C11	33 pF	Silver mica		$\pm 1 \mathrm{pF}$	660847	R112	$2.2 \mathrm{k} \Omega$ $39 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671525
C12 Cl d		Ceramic feedthrough			202638	R113	$15 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671520
C13	22 pF	Ceramic Ceramic feedthrough		$\pm 2.5 \%$	266557	R14	$180 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671533
C15		Ceramic feedthrough Disc ceramic			262638 660433	R15	$100 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671530
C15 C16	$\ln F$	Disc ceramic Ceramic feedthrough			260433	R16	+ $47 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671526
C16 C17		Ceramic feedthrough			202638 660006	R17	120Ω		$\frac{1}{4} W \pm 10 \%$	071495
C17 C1	10 nF	Disc ceramic			660006 660433	R118	$2.2 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671510
C18 C19	$\ln F$	Disc ceramic			660433 660006	R18	2, $\mathrm{i} \mathrm{M} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671542
C19 C20	10 nF	Disc ceramic			660006 660006	R20	$470 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671538
C20	10 nF	Disc ceramic			660006 660006	R21	$47 \mathrm{k} \Omega$ 47 k		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671526
C21	10 nF	Disc ceramic			660006 266036	R22	120		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671495
C22	1. 7 pF	Ceramic		$\pm 0.1 \mathrm{pF}$ $\pm 10 \%$	266036	R223	$2.2 \mathrm{k} \Omega$		$\frac{3}{4} \mathrm{~W} \pm 10 \%$	671510
C23	$0.1 \mu \mathrm{~F}$	Ceramic	200 V	$\pm 10 \%$ $+10 \%$	266246 650737	R24	Nom. 150Ω	($2 \times 330 \Omega$ in parallel)		671500
C24	4.7 pF	Ceramic		$\pm 10 \%$	650737 650742	R25	Nom. $15 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671520
C25	6.8 pF	Ceramic		$\pm 10 \%$	650742 650739	R26	150		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671496
C26	47 pF	Ceramic		$\pm 10 \%$	650739 660006	R26 R27	$2.2 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671510
C 27 C 28	10 nF	Disc ceramic			6600006	R28	- $1 \mathrm{M} \Omega$		$\frac{1}{4} W \pm 10 \%$	671542
C28 C 29	10 nF 15 pF	Disc ceramic		$\pm 10 \%$	660006 650744	R29	$470 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671538
C29 C 30	15 pF 10 nF	Disc ceramic		$\pm 10 \%$	660006	R 30	$100 \mathrm{k} \Omega$		\% $\mathrm{W} \pm 10 \%$	671530
C31	2pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266025	R 31	$10 \mathrm{k} \Omega$		\% W $\pm 10 \%$	671518
C32	10 nF	Disc ceramic			660006	R 32	$4.7 \mathrm{M} \Omega$		${ }^{W} \mathrm{~W} \pm 10 \%$	671550
C33		Not used				R 33	$470 \mathrm{k} \Omega$		\% ${ }^{\text {w }}$	671538 671502
C34	$0.1 \mu \mathrm{~F}$	Ceramic	200 V	$\pm 10 \%$	266246	R34	470Ω		\% w (10%	671494
C35	10 nF	Disc ceramic			660006	R35	100Ω		¢ $\mathrm{w} \pm 10 \%$	671502
C36	10 nF	Disc ceramic			660006	R36	470Ω		\% $\pm 10 \%$	671526
C37	$0.1 \mu \mathrm{~F}$	Ceramic	200 V	$\pm 10 \%$	266246	R 37	$47 \mathrm{k} \Omega$		${ }_{4}$	671506
C38	2 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266025	R38	$1 \mathrm{k} \Omega$		${ }_{\text {\% }}{ }^{W} \pm 10 \%$	671506
C39	10 nF	Disc ceramic			660006	R 39	$18 \mathrm{k} \Omega$		${ }^{4} \mathbf{W}$ (10%	671521
C40	10 nF	Disc ceramic			660006	R40	$4.7 \mathrm{k} \Omega$		${ }_{4}{ }^{\text {W }}$ W $\pm 10 \%$	671514
C41	10 nF	Disc ceramic			660006	R41	$1.5 \mathrm{k} \Omega$		${ }^{4} \mathrm{~W}$ +10\%	671508
C42	10 nF	Disc ceramic			660006	R42	2708		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671499
C43	$0.1 \mu \mathrm{~F}$	Ceramic	200 V	$\pm 10 \%$	266246	R43	100 ks		${ }^{4} W \pm \pm 10 \%$	671530
C44	10 nF	Disc ceramic			660006	R44	$470 \mathrm{k} \Omega$		- W $\pm 10 \%$	671538
C45	10 nF	Disc ceramic			660006	R45	$470 \mathrm{k} \Omega$		$\frac{1}{W} W \pm 10 \%$	671538
C46	22 pF	Ceramic		$\pm 10 \%$	650738	R46	$180 \mathrm{k} \Omega$		- ${ }^{\text {W }} \mathrm{W} \pm 10 \%$	671533 671526
C47	$0.1 \mu \mathrm{~F}$	Ceramic	200 V	$\pm 10 \%$	266246	R47	47k 56		$\frac{1}{\frac{1}{4} W \pm \pm 10 \%}$	671527
C48	100 pF	Ceramic		$\pm 10 \%$	650740	R489	100ks		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671530
C49	$10 \mu \mathrm{~F}$	Electrolytic	50 V		266383	R49	$2.2 \mathrm{k} \Omega$		$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671510
C50	2 nF	Tubular	350 V		669102	R 51	$2.2 \mathrm{k} \Omega$			
C51	100 pF	Ceramic		$\pm 10 \%$	650740	R51		Not used		
C52	$0.1 \mu \bar{F}$	Ceramic	200 V		266246	to		Not used		
C53	3 nF	Disc ceramic			660439	R69 R70	2208		$\frac{1}{4} W \pm 10 \%$	671498
C54	560 pF	Silver mica	350 V	$\pm 10 \%$	665369		2208			
C55	$8 \mu \mathrm{~F}$	Electrolytic	250 V		680025					
C56	10 nF	Tubular	400 V		669208					
C57	10 nF	Tubular	400 V		669208					
C58	1-12pF	Trimmer			280057					Assembly
C59	$1-12 \mathrm{pF}$	Trimmer			280057			COIL \& CHOKES	Part No.	Part No.
C60	$1-12 \mathrm{pF}$	Trimmer			280057					
C61	1-12pF	Trimmer			280057	Ll		Antenna coil	274822	278497/9
C62	$1-12 \mathrm{pF}$	Trimmer			280057	L2		Neutralising coil	272769	278576/6
C63	$1-12 \mathrm{pF}$	Trimmer			280057	L3		R.F. coil No. 1	274822	278497/11
C64		Not used				L4		Intervalve coupling coil	272776	278580/3
C65	15pF	Silver mica		$\pm \mathrm{pF}$	660844	L5		R.F. coll No. 2	274822	278497/8
C66	6.8 pF	Ceramic		$\pm 10 \%$	650742	L6		R.F. coil No. 3	274822	278497/10
C67	150 pF	Silver mica		$\pm 10 \%$	660875	L7		Cathode choke	-	279051
C68	1 nF	Disc ceramic			660433	L8		Cathode choke	-	279051
C69	1.7 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266036	L9		Multiplier conl	274822	278579/1
C70	3 nF	Disc ceramic			660439 660844					
C71	15 pF	Silver mica		$\pm 1 \mathrm{pF}$	660844					
C72	3 nF	Disc ceramic			660439					
C73	$\ln F$	Feedthrough			266241					
C74		Cexamic feedthrough			202638					
C75	22 pF	Ceramic		$\pm 2.5 \%$	266557					
C76	82 pF	Geramic		$\pm 10 \%$	652831					
C77		Ceramic feedthrough			202638					
C78	$\ln F$	Tubular			669101			TRANSFORMERS		
C79	10 nF	Disc ceramic			660006					
C80	0.111 F	Ceramic	200 V	$\pm 10 \%$	266246	TI		I.F. transformer	$10.7 \mathrm{Mc} / \mathrm{s}$	277113
C81	100 pF	Ceramic		$\pm 10 \%$	650740	T2		I. F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277097
C82	1.7 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266036	T3		I.F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277097
C83	1.7 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266036	T4		I. F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277097
C84	1.7 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266036	T5		I. F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277097
C85						T6		I.F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277097
to		Not used				T7		I.F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277097
C102						T8		I.F. transformer	$2 \mathrm{Mc} / \mathrm{s}$	277091
C103	1 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266548	T9		Output transformer		277891
Cl04	1 pF	Ceramic		$\pm 0.1 \mathrm{pF}$	266548	T10		R.F. transformer		277094

RECEIVER - 68 to $88 \mathrm{Mc} / \mathrm{s}$ (Cont.)		
Code	VALVES \& SEMICONDUCTORS	Part No.
V1	ECC88	860474
V2	EC91	860160
V3	ECF80	860324
V4	6BJ6	860397
V5	6BJ6	860397
V6	$6 \mathrm{CB6}$	860095
V7	EBC90	860236
V8	EL84	860327
V9	ECC88	860474
MRI	OAZ00	721601
MISCELLANEOUS		
SC	Switch wafer	283179

Chassis Assembly Complete Part No. 288357/1 (5820-99-933-1341

TRANSMITTER - 68 to $88 \mathrm{Mc} / \mathrm{s}$

Chassis Assembly Complete Part No. 288356 (5820-99-933-1284)

POWER SUPPLY UNIT

INTERCONNECTION DIAGRAM (Fig. 8)

CONTROL UNIT				FUSE \& BALLAST UNIT (Fig. 2)			
Code			Part No.	This unit comprises:-			
R1	$2.2 \mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W} \pm 10 \%$	671510	Code		COMPONENT	Part No.
RV1	$100 \mathrm{k} \Omega$	Potentiometer	281131				
SA		Switch 3-way (shorting)	283183	TS		Terminal strip	701714
SC		Switch $\mathrm{lp}_{\text {P 6w }}$	283399	FS	10A	Fuse	271539
LS		Loudspeaker	285026	ILP		Lamp (painted black)	248219
ILP1	24V	Indicator lamp	272236			Lamp holder	272263
ILP2	24V	Indicator lamp	272236			Fuse holder	710168
TS7		Tagstrip 22-way	272909				
PLB		Control unit connector 24-way Cover for above	$\begin{aligned} & 705776 \\ & 270569 \end{aligned}$		Fuse	allast Unit complete	276173
		Handset \& lead assembly	275229				

[^0]: When ordering complete chassis assemblies, please
 state operating frequency.

