Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This pdf document was generated by me Colin Hinson from a Crown copyright document held at R.A.F. Henlow Signals Museum. It is presented here (for free) under the Open Government Licence (O.G.L.) and this pdf version of the document is my copyright (along with the Crown Copyright) in much the same way as a photograph would be.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

S.S.B. TRANSMITTER TEST AND MONITORING EQUIPMENT S.T.C. TYPE A. $1407 B$

GENERAL AND TECHNICAL INFORMATION

BY COMMAND OF THE DEFENCE COUNCIL
C.PAunts.

AIR MINISTRY

SINGHE-SIDEBAND TR.ANSMITTER TEST
 AND MONITORTNG EQUIPMENT
 TYPE A. 1407 B

Printed in England
by
STANDARD TELEPHONES AND CABLES LIMITED
Radio Division, New Southgate, London, N. 11.

A.L. 1 December 1970

NOTE TO READERS

The reference number of this publication was altered from A.P. 2883ND, Vol. 1 to A.P. 116E-0256-1 in December 1970. No general revision of page captions has been undertaken, but the code number appears in place of the earlier caption on new or amended leaved issued subsequent to that date.

AMENDMENT SHEET NO. 1

TO

HANDBOOK NO.1064, TSSUE 1

1.0 ADDITION OF POWER SUPPLY \& CONSUMPTION FIGURES

Periormance data given on page 10 should include the following:-
2.2.8 Fover Supply 100 to 130 volts or 200 to 250 volts single phase, $50-60 \mathrm{c} / \mathrm{s}$.
2.2.9 Power Consumption

Ovens off:-	250 VA
Ovens on:-	550 VA

2.0 CHANGE OF OUTPUT LEVEL IIIMT OF $425 \mathrm{c} / \mathrm{s}$ OSCLLATOR

The output level limit quoted in Section 9.0 (b) Chapter 4, page 26, for the $425 \mathrm{c} / \mathrm{s}$ oscillator, should be changed to read:"within $1 \frac{1}{2} \mathrm{db}$ ".

This document belongs to Standard Telephones and Cables Limited and is issued on condition that it is not copied, reprinted or disclosed to a third party either wholly or in part without the consent in writing of Standard Telephones and Cables Limited.

CONTENTS

1.0 GENERAL 9
2.0 TYPICAL PERFORMAINCE 9
CHAPTER 2-DETAILED DESCRIPTION
1.0 CONSTRUCTION 11
2.0 COMPOSTIION OF EQUIPMENT 11
3.0 OVERALI FONCTIONAL DESCRIPITON 12
4.0 CIRCUIT DESGRIPTION OF THE MONITOR UNIT 14
5.0 CIRCUIT DESCRIPTION OF THE FILTER UNIT 18
6.0 DESCRIPTION OF THE JACK PANELS 19
7.0 CIRCUIT DESSCRIPTION OF THE POWER SUPPLY UNIT 20
CHAPPER 3 - INSTALTATION
1.0 THE SHIPPING SFFCIFICATION 21
2.0 PREPARATION OF SITE 21
3.0 UNPACKING AND INSTALITNG THE EQUIPMENT 21
CHAPIER 4 - LINING-UP AND TESTING
1.0 TEST EQUIPMENT REQUIRED 23
2.0 OUTLINE OF PROCEDURE 23
3.0 POWER SUPPLY CHECKS 24
4.0 CHECKING THE FUNCTIONING OF THE 3rd
DEMODULATOR AND THE MONITOR AMPLIFIER 24
5.0 CHECKING THE FUNCTIONING OF THE 2nd DEMODULATOR 25
6.0 CHECKING THE FUNCTIONING OF THE Ist DEMODULATOR 25
7.0 CHECKING THE SIDEBAND SEITCTION 25
8.0 CHECKING THE $1775 \mathrm{c} / \mathrm{s}$ OSCILLATOR 26
9.0 CHECKING THE 1100/425 c/s OSCIILATOR 26
10.0 CHECKING THE COMBINED OUTPUT OF THE OSCILIATORS 26
CHAPTER 5 - OPERATING
1.0 GPNERAL 27
2.0 INITIAL SEITING-UP PROCEDURE FOR THE JACK FANEL 27
3.0 DETAILED MONITORING INSTRUCTIONS 29
Page
CHAPTER 6 - RE-ALIGNMENT
1.0 GENERAL 33
2.0 REmALIGNING THE TEST OSCILLATORS 33
3.0 RE-ALIGNIIG THE DEMODULATORS 33
4.0 VALVE CURRENTS 35
5.0 ORDERING A SPARE PART 36

LIST OF DRAWINGS

Fig.
No. Title
Drawing Reference No.
1 Block diagram of the Monitoring Equipment ... 188-LRE. 2 Sht. 7.3
2 Circuit diagram of the lst \& 2nd Demodulator Unit 109-LRU. 9 Sht. 7.1 Components lists for above 109-LRU. 9 Shts. 7.1.1 to 7.1 .3
3 Circuit diagram of the 3rd Demodulator Unit.. 109-IRU. 10 Sht. 7.1 Components lists for above 109-LRU. 10 Shts.7.1.1 to 7.1. 3
4 Circuit diagram of the Monitor implirier Unit IT1-IRU. 47 Sht. 7.1 Components lists for above 171-LRU. 47 Shts. 7.1.1 to 7.1.3
5 Circuit diagram of the $1775 \mathrm{c} / \mathrm{s}$ Oscillator Unit 16-LRU.217A Sht. 7.1 Components lists for above I6-IRU.217L. Shts. 7.1.1 to 7.1.3
6 Circuit diagram of the 1100/425 c/s Oscilla- tor Unit 16-IRU.217B Sht. 7.2 Components lists for above 16-LRU.217B Shts. 7.2.1 to 7.2.3
7 Circuit diagram of the Filter Unit 8-LRU.297B Sht. 7.4 Components lists for above 8-IRU.297B Shts. 7.4.1 to 7.4.3
8 Circuit diagram of the Power Supply Unit 94-LRU.204A Sht. 7.2 Components lists for above 94-LRU.204A Shts. 7.3 and 7.4
9 Fixing centres for plinth
10 Method of terminating coaxial cables ES.7968 Shts. 1 \& 211 Cabinet wiring diagram of Independent-Side-band Transmitter Drive Unit, Type A.1406Bwith Monitoring Equipment, Type L.1407B 188-LRE. 2 Sht. 4.5

IIST OF DR/WINGS (CONTD.)

Fig.№.Drawing

TitleReference No.12 Cabinet wiring diagram of Variable-FrequencyOscillator Type A .1408 A , with MonitoringEquipment, Type A.1407B 188-IRE. 2 Sht. 4.7

Plate
Number
I Independent-Sideband Transmitter Drive Unit, Type A.1406, with Monitoring Equipment, Type A. 1407 B

II Monitor Unit, Code No. 395-IRU.14B (Plan view)..
III Sub-units removed from Monitor Unit, Code No. 395-LRU.14B

IV Underside view of lst \& 2nd Demodulator Unit, Code No. 109-LRU.9A

V Underside view of 3rd Demodulator Unit, Code No. 109-LRU.10A

VI Underside view of Monitor Amplifier Unit, Code No. $177-L R U .47 \mathrm{~A}$

Underside view of Oscillator Unit ($1775 \mathrm{c} / \mathrm{s}$), Code No. 16-LRU.217A

Underside view of Oscillator Unit (1100 \& $425 \mathrm{c} / \mathrm{s}$), Code No. 16-LRU.217B.

IX Rear view of Filter Unit, Code No. 8-IRU.297B ..
X Front view of Jack Panel, Code No. 87 7 LRUT.50A
XI Rear view of Jack Panel, Code No. $87-$ LRU. 50 A
XII General view of Pawer Supply Init, Code No. 94-LRU.204A.

INTRODUCTION

1.0 GENERAL

Monitoring Equipment, Type A.1407B is intended for monitoring of signals passing through and finally radiated from two independent-sideband transmitters and associated transmitter drive units. It is primarily arranged for use in conjunction with "Standard Radio" equipments, in which a drive unit such as the type A .1406 , delivers a $3.1 \mathrm{Mc} / \mathrm{s}$ pilot carrier with independently modulated sidebands to the transmitter, for conversion therein to the recuired radiated frequency and amplification to the required output level.

Either of the sidebands or, alternatively, a double sideband may be selected for monitoring on a built-in-loudspeaker and for visual indication on an output-level meter. The selected sideband may also be tested for intermodulation product and cross-talk at various points in the drive unit and transmitter.

Apparatus comprising the equipment is mounted on three individual chassis and a jack panel, all of which are incorporated in a single cabinet with or without other equipment according to the manufacturing group number. Two such groups are referred to in this manual. One of these groups consists of a Monitoring Equipment Type 1407 B plus an I.S.B./D.S.B. Drive Unit Type A.1406. The other consists of a Monitoring Equipment Type A. 1407 B plus two V.F.O. Drive Units, Type A.1408, Al.though reference must, of necessity, be made to the overall equipment, it should be understood that the purpose of this manual is to describe the monitoring. apparatus only. Detailed descriptions of the drive and v.f.o. units are given in associated handbooks Nos. 1055-A and 1069-A, respectively.

2.0 TYPICAL PERFORMANCE

2.1 Test Tone Quality

2.1.1 Tone Level

$$
\begin{aligned}
& 1100 \text { and } 1775 \mathrm{c} / \mathrm{s} \\
& 425 \mathrm{c} / \mathrm{s} .
\end{aligned}
$$

2.1.2 Frequency Tolerance

1100 and $425 \mathrm{c} / \mathrm{s} \ldots \pm 7 \mathrm{c} / \mathrm{s}$
$1775 \mathrm{c} / \mathrm{s} \ldots$.
2.1.3 Harmonic Distortion

The r.m.s. sum of harmonic distortion components in one tone is not higher than -42 db relative to the level of the fundamental.
2.1.4 Noise and Hum

The unweighted r.m.s. noise level associated with one tone does not exceed -55 db relative to the tone level.
HB. 1064-B Issue 1 10/52 -9-

Introduction

2.1.5 Intermodulation DistortionThe level of the 3rd order intermodulation product ($425 \mathrm{c} / \mathrm{s}$)of the two test tones, 1100 and $1775 \mathrm{c} / \mathrm{s}$ does not exceed -55 dbrelative to the level of either tone.
2.2 Overall Performance
2.2.1 Loudsnoaker Input
100 mW (at peak output power of transmission)
$2.2 .2 \mathrm{R} . \mathrm{F}$. Input (4 to $28 \mathrm{im} / \mathrm{s}$)
-12 dbm mininum. (R.F. oscillator input $=25 \mathrm{dbm}$)
2.2 .3 3.1 Mc/s Input-10 dbm minimum. ($3 \mathrm{Mc} / \mathrm{s}$ oscillator input $=14 \mathrm{dbin}$)
2.2.4 Harmonic DistortionThe total r.m.s. harmonic content of a single tone, neasuredat the loudspeaker terminals, does not exceed -42 db relative to thefundamental.
2.2.5 Intermodulation Distortion
In the presence of two equal sideband signals of 1100 and $1775 \mathrm{c} / \mathrm{s}$ relative to a carrier frequency of $3.1 \mathrm{Mc} / \mathrm{s}$, the level of the 3rd order intermodulation product at the monitor level meter does not exceed -45 db relative to either tone.
2.2.6 Noise \& Hum
Measured at the loudspeaker terminals, the r.m.s. sum of noise components in the frequency band 100 to $6000 \mathrm{c} / \mathrm{s}$, due to a single sideband tone, does not exceed -50 db relative to tone level.

2.2.7 Frequency Response

In the "no filter" condition, the frequency response, measured on the level meter over the band extending $6 \mathrm{kc} / \mathrm{s}$ on either side of the carrier frequency of $3.1 \mathrm{Mc} / \mathrm{s}$, is between two lines 3 db apart. 2.2 .8 Power Supply
100 to 130 volts or 200 to 250 volts single phase, $50-60 \mathrm{c} / \mathrm{s}$.
2.2.9 Power Consumption
Ovens Off: 250 VA
Ovens On: 550 VA
HB. 1064-B

CHAPTER 2

DETAILED DESCRIPTION

1.0

CONSTRUCTION
Frontal access, only, is required for operating and maintaining the Monitoring Equipment Type 1407B. The cabinet in which it is housed, however, has a readily detachable rear panel to facilitate installation, inspection of general wiring etc.

The three main units of the equipment are arranged in the cabinet racking so that they may be drawn forward, on telescopic runners, for inspection. All wiring connections are maintained during the withdrawal operation but dangerous voltages are automatically removed from the main units (excluding the Filter Unit). The supplies can be restored by fitting a specially designed plug into a socket on the lort-hend side of the cabinet, adjacent to the unit. A unit cannot be pushed "home" while the plug is in circuit. Quick-release fasteners of the pushbutton type lock the units in their "home" positions.

Sub-units in the equipment are of strip construction and employ quick-release fasteners to secure them in position on their perent chassis. Connectors to these sub-units are of sufficient length to enable servicing operations to be undertaken with supplies present.

Operational controls are, as far as possible, protected by hinged panels.

2.0
 COMPOSITION OF EQUIPMENT

As mentioned in Chapter 1, a Monitoring Equipment Type A.1407B is normally fitted in a single cabinet together with other apparatus, the complete assembly being allocated an overall code number. Typical assemblies are quoted belowi-
(1) Independent-Sideband Transmitter Drive Unit, Type A.1406-B with Monitoring Equipment Type A. $1407-B$ (illustrated in Plate I). This assembly has an overall manufacturing code 188-LRE.2D and units are disposed (from top to bottom) in the cabinet as follows:-

Title
Filter Unit (monitor equipment)
S.S.B. Drive Unit

Monitor Unit

Code
8-LRU. 297 B
395-LRU.14A
395-LRU.14B

Title
Jack Panel
Filter Unit (drive equipment)
Power Supply Unit (monitor equipment)
" " " (drive equipment)

Code
87-LRU.50A
8-LRU.297A
94-LRU.204A
94-LRU.204A
(2) Variable-Frequency Oscillators, Type A.1408-A, with Monitoring Equipment, Type 1407-B. The overall manufacturing code of this assembly is 188-LRE.2E and the units are disposed (from top to bottom) in the cabinet as follows:-

Title
$\underset{\|}{\text { Variable-Frequency Oscillator }}$
Monitor Unit
Jack Panel
Filter Unit (monitor equipment)
Power Supply Unit

Code

16-IRU.212A
16-LRU.212A
395-IRU.14B
87-LRU.50C
8-LRU.297B
94-LRU.204A

3.0 OVERAIL FUNCTIONAL DESCRIPTION

(The overall block diagram is given in Fig. 1)

3.1 General

Monitoring can be carried out at the following stages of the signal-production processes of the A. 1406 Transmitter Drive Equipment and its associated transmitter:-
(a) At the input to the A. 1406 carrier modulator ($100 \mathrm{kc} / \mathrm{s}$ signal)
(b) At the output of the Type A. 1406 Drive Unit ($3.1 \mathrm{Mc} / \mathrm{s}$ signal)
(c) At the output of the transmitter demodulator ($3.1 \mathrm{Mc} / \mathrm{s}$ signal)
(d) At the main transmitter output. (R.f. signal)

Selection of the above facilities is given by appropriate setting of coaxial U-links and switches on the Jack Panel and by suitable switching of the monitor. As mentioned in Chapter 1, the system normally caters for selection of monitoring points from two Type A. 1406 Drive Units and two associated transmitters. It is, however, possible to extend the facilities to further drive units and transmitters by "patching in" to terminals in the base of the monitor cabinet.

During operation, the r.f. signal to be checked is applied (from the transmitter) to a first demodulator in the monitor simultaneously with a
portion of the transmitter beating frequency. A tuned circuit in the demodulator selects the band of frequencies centred on $3.1 \mathrm{Mc} / \mathrm{s}$, i.e. the same frequency spectrum as that of the output of the drive unit.

The $3.1 \mathrm{Mc} / \mathrm{s}$ signal thus obtained is passed to a second demodulator using a carrier frequency of $3 \mathrm{Mc} / \mathrm{s}$ derived from the Carrier Modulator Unit (Code No. 17-LRU.76B) in the Type A. 1406 Drive Unit. The resultant band of frequencies, centred on $100 \mathrm{kc} / \mathrm{s}$, is amplified and applied to sideband filters in the Filter Unit. By means of switching, outputs of the filters can be selected as follows:-

(i) All frequencies	
(ii) Upper sideband only	
(iii) Lower sideband only	
(iv)	3rd Order intermodulation product in the
(v)	upper sideband
3rd Order intermodulation product in the	
	Iower sideband

The selected frequency is arranged to pass either to a monitor amplifier or to a third demodulator. The monitor amplifier consists of a calibrated variable attenuator followed by a three-stage amplifier and level meter for comparing relative signal levels. The third demodulator converts the $100 \mathrm{kc} / \mathrm{s}$ signal to audio frequency by reason that it simultaneously receives a $100 \mathrm{kc} / \mathrm{s}$ carrier from the $100 \mathrm{kc} / \mathrm{s}$ Oscillator (Code No. 16-LRU.192h) in the drive unit. The a.f. output of the demodulator is amplified and fed to a loudspeaker situated on the Jack Panel.

When monitoring $3.1 \mathrm{Mc} / \mathrm{s}$ signals the 1 st demodulator is cut out of circuit and the input is applied straight to the 2nd demodulator. For $100 \mathrm{kc} / \mathrm{s}$ monitoring the lst and 2nd demodulators are cut out and the $100 \mathrm{kc} / \mathrm{s}$ signal is applied via the Filter Unit to the 3rd demodulator.

Two oscillator units supply audio tones at frequencies of $1775 \mathrm{c} / \mathrm{s}$ and $1100 \mathrm{c} / \mathrm{s}$ or $425 \mathrm{c} / \mathrm{s}$. These tones are combined in a hybrid transformer and can be applied to the inputs of the Type A. 1406 Drive Units via J-links on the Jack Panel. By connecting the 1775 and $1100 \mathrm{c} / \mathrm{s}$ tones simultaneously to one sideband input, non-linear distortion in a drive unit or transmitter can be measured by comparing the level of the 3 rd order intermodulation product ($425 \mathrm{c} / \mathrm{s}$) with that of one test tone alone. Uross-talk between sidebands can be measured by connecting the $425 \mathrm{c} / \mathrm{s}$ tone to one sideband input and comparing the resultant signal level in the wanted sideband with that in the unwanted one.

Detailed Descriotion

4.0 CIRCUIT DESCRIPTION OF THE MONITOR UNIT Code NO. 395-LRU. 14 B

(The unit is illustrated in Plates II and III)

4.1 General

The Monitor Unit comprises a mounting tray with an associated front panel and contains (from left to right) the following five sub-units:-

Title
lst and 2nd Demodulator
3rd Demodulator
Monitor implifier
Oscillator Unit ($1775 \mathrm{c} / \mathrm{s}$)
" " (1100 and $425 \mathrm{c} / \mathrm{s}$)

Code

109-LRU. 9A
109-LRU.10A
171-LRU.47A
16-LRU.217A
16-LRU. 2178

4.2 1st and 2nd Demodulator Unit (Code No. 109-LRU.9A)

(Plate IV illustrates the unit and the circuit diagram is given in Fig. 2.)

The 1st and 2nd Demodulator Unit has three stages. They are an r.f. demodulator, a $3.1 \mathrm{Mc} / \mathrm{s}$ demodulator and a $100 \mathrm{kc} / \mathrm{s}$ amplifier. Monitoring points in the drive and transmitter system are connected to the input circuits of the unit via the Jack Panel.

Considering operation when it is required to carry out r.f. monitoring, the transmitter r.f. signal is applied to the control grid of V1, via an R.F. Signal Input control, R2, while a portion of the r.f. oscillator frequency is fed to the cathode via a 25 db attenuator. The Monitor Selector, S2, on the front panel of the unit is placed to R.F. (position 1).

A band of modulation frequencies centred on $3.1 \mathrm{Mc} / \mathrm{s}$, resulting from mixing the two inputs referred to above, is selected by a pi-network (L 1 , C4, C5 and C6) which forms the anode circuit of V6. This band of frequencies is applied to the control grid of the $3.1 \mathrm{Mc} / \mathrm{s}$ 2nd demodulatior stage V2. A $3 \mathrm{Mc} / \mathrm{s}$ carrier frequency, from the Carrier Modulator in the drive unit, is simultaneously fed to the cathode of V2. A transformer T1, in the anode circuit of V2 is tuned to. $100 \mathrm{kc} / \mathrm{s}$ and accepts the demodulation product (a band centred on $100 \mathrm{kc} / \mathrm{s}$) of the stage.

The $100 \mathrm{kc} / \mathrm{s}$ signal thus obtained undergoes amplification by V3 before being applied via the Filter Unit (described later) to the 3rd Demodulator or the Monitor Amplifier.

Iss. 1
10/52

When it is required to monitor a. $3.1 \mathrm{Mc} / \mathrm{s}$ signal from the drive unit or transmitter the Monitor Selector, S2, is placed to $3.1 \mathrm{Mc} / \mathrm{s}$ (position 2) thus connecting the input circuit of the and demodulator, V 2 , to the $3.1 \mathrm{Mc} / \mathrm{s}$ signel line via a $3.1 \mathrm{Mc} / \mathrm{s}$ Signal Input control R.12. Similarly, when a $100 \mathrm{kc} / \mathrm{s}$ signal from the drive unit is to be monitored the Monitor Selector is placed to $100 \mathrm{kc} / \mathrm{s}$. This action connects the $100 \mathrm{kc} / \mathrm{s}$ signal to the input of amplifier, V3, from where it is fed in the normal way to the Filter Unit.

Cathode current metering for V1, V2 and V3 is provided by M1 functioning in association with Meter Switch SI.

4.3 3rd Demodulator Unit (Code No. 109-LRU.10A)

(Plate V illustrates the unit and the circuit diagram is given in Fig. 3)

The $100 \mathrm{kc} / \mathrm{s}$ signal conveyed from the lst and 2nd Demodulator Unit to the Filter Unit is presented to one of four filter circuits therein, according to switching. One of these passes the upper sideband (100.1 to $106 \mathrm{kc} / \mathrm{s}$), the second passes the lower sideband (94 to $99.9 \mathrm{kc} / \mathrm{s}$) the third passes $100.425 \mathrm{c} / \mathrm{s} \pm 40 \mathrm{c} / \mathrm{s}$ which represents the 3 rd Order intermodulation product of the test tones ($1775 \mathrm{c} / \mathrm{s}$ and $1100 \mathrm{c} / \mathrm{s}$) in the upper sideband, and the fourth passes $99.575 \mathrm{c} / \mathrm{s} \pm 40 \mathrm{c} / \mathrm{s}$ i.e. the 3 rd Order intermodulation product in the lower sideband.

Upon leaving the selected filter the signal is fed, according to switching, either to the 3rd Demodulator Unit or to the Monitor Amplifier.

The 3rd Demodulator has five stages as follows:-
(a) A $100 \mathrm{kc} / \mathrm{s}$ amplifier
(b) A cathode follower
(c) A balanced demodulator
(d) A phase splitter
(e) An a.f. amplifier

The $100 \mathrm{kc} / \mathrm{s}$ signal input enters the demodulator unit at Tl and, follow ing application to the $100 \mathrm{kc} / \mathrm{s}$ amplifier (VI), is passed, via T3, to the push-pull input of the bolanced modulator formed by rectifiers Rect 1, Rect 2 and associated components. The parallel input is derived from the $100 \mathrm{kc} / \mathrm{s}$ Oscillator (Code No. 16-IRU.192A), in the drive unit, via cathode-follower V2. The signal input level is adjusted by preset potentiometer R2, in the grid circuit of V1, and the oscillator
input level by preset potentiometer, R 8 .
The 2nd harmonic of the audio output of the demodulator is balanced out by appropriate adjustment of potentiometer R15 and the $100 \mathrm{kc} / \mathrm{s}$ carrier leak is suppressed by the parallel tuned circuit formed by T4, C9 and trimmer condenser, ClO.

The resultant A.F. developed across Audio Gain potentiometer R16 (a front panel control) is applied to a double-triode V3, functioning as a phase splitter. The anti-phase outputs of this stage are, in turn, fed to the grids of a low-mu push-pull double-triode amplifier, V4. One secondary winding on the output transformer, T 5 , of the amplifier, is arranged to feed a loudspeaker on the Jack Panel and another secondary winding provides a variable negative feedback to the grid of V3a. The degree of feedback is adjustable by pre-set potentiometer, R29.

Cathode current metering for all the valves is effected by means of MI, selection of the required circuit being made with a front panel Cathode Current switch, SI.

4.4 Monitor Amplifier Unit (Code No. 171-TRU.47A)

(Plate VI illustrates the unit and the circuit diagram is given in Fig. 4)

There are three wide band amplifier stages and one detector stage in the Monitor Amplifier Unit.

When the output of the Filter Unit is switched to the Monitor Amplifier, the $100 \mathrm{kc} / \mathrm{s}$ signal enters the latter at TI and is applied by way of a $0-40 \mathrm{db}$ attenuator, R2, to the control grid of V1. The attenuator, which is controlled from the front panel of the unit, is calibrated in 2 db steps and provides adjustment of input level.

Valve V1, referred to above, is the first of three wideband resistance-capacity coupled amplifiers, V1-V3. The output from the last of these stages is rectified by a germanium crystal and applied to a level meter, M, which is calibrated from -10 db to +3 db . A preset variable resistor, R21, is provided in the circuit for adjustment of zero db reference level on the meter scale. By appropriate switching of SI (a front panel control) cathode currents of V1-V3 may al so be metered by MI. A second scale is provided on the meter for this purpose.

4.5 Oscillator Unit (1775 c/s). Code No. 16-IRU.217A

(Plate VII illustrates the unit and the circuit diagram is given in Fig. 5)

The $1775 \mathrm{c} / \mathrm{s}$ Oscillator Unit uses one half of a type 12AT7 valve in an oscillator stage and the remaining half in an amplifier stage.

The oscillator is of the Hartley type with resistance stabilization via C4, RI. Padding condensers across the oscillator coil enable the resonant frequency of the circuit to be adjusted to within $\pm 5 \mathrm{c} / \mathrm{s}$ of the nominal $1775 \mathrm{c} / \mathrm{s}$. Since the cathode of the oscillator valve is not decoupled negative feedback is present.

The oscillator output is taken off via a potentiometer $R 5, R 6$, in the anode circuit of V1, and applied to the amplifier section of the double-triode. This section feeds into a pi-network which can be tuned to within $\pm 15 \mathrm{c} / \mathrm{s}$ of the nominal frequency by means of padding condensers ClO, Cll. As in the oscillator, negative feedback occurs due to absence of decoupling in the cathode circuit.

The output of the amplifier is passed, via a preset level potentiometer, Rl4, to a 600 ohm hybrid transformer, Tl, where it is combined with the output of the $1100 \mathrm{c} / \mathrm{s}$ oscillator. The secondary winding of Tl is connected to the Jack Panel from which it can be linked to the drive units.

Cathode current metering is accomplished by means of M1 in association with front pancl switch SI.

4.6 Oscillator Unit ($1100 / 425 \mathrm{c} / \mathrm{s}$), Code No, 16-LRU. 217 B

(Plate VIII illustrates the unit and the circuit diagram is given in Fig. 6)

The design of the oscillator and amplifier used in this unit is similar to that described in the previous sub-section. Such differences as do occur are mainly confined to component values and to the switching necessary to change frequency from $1100 \mathrm{c} / \mathrm{s}$ to $425 \mathrm{c} / \mathrm{s}$. This is accomplished by means of an Oscillator Selector S2 (a front panel control). It will be observed that no padding condensers are used to adjust the circuits for operation at $425 \mathrm{c} / \mathrm{s}$. Limits at this frequency are approximately $\pm 5 \mathrm{c} / \mathrm{s}$ for the oscillatory circuit and $\pm 10 \mathrm{c} / \mathrm{s}$ for the amplifier.

HB. 1064-B

The tone output of the unit is fed away, via a preset level potentiometer, R15, to the $1775 \mathrm{c} / \mathrm{s}$ Oscillator Unit where, as previously explained, it is appliod to hybrid transformer Tl.

5.0
 CIRCUIT DESCRIPTION OF THE FILTER UNIT (Code No. 8-LRU, 297B)

(Plate IX illustrates the unit and the circuit diagram is given in Fig. 7)

The unit incorporates six crystal filtors each mounted in an hermetically sealed container and having input and output impcãances of 75 ohms, unbalanced.

To ensure stability the containers are enclosed in an oven, the temperature of which is maintained at $60^{\circ} \pm 2^{\circ} \mathrm{C}$ by three resistance mats R1, R2, R3. The mats are fed from a 75 volt a.c. supply, controlled by thermostatic action. The control circuit consists of two $60^{\circ} \mathrm{C}$ thermostats, THI, TH2, and a relay, RELI, series connected in a 50 volt d.c. supply, derived via a bridge rectifier Rect.l across the a.c. supply. During the heating cycle the relay circuit is completed, contacts, Refla are closed and the resistance mats hoat up. Upon reaching a temperature of $60^{\circ} \mathrm{C}$, THI opens and releases relay REI thus disconnecting the supply to the mats. The second thermostat TH2 is purely precautionary and functions at the same temperature as THI . A further protection against failure of thermostats to open, with consequent overheating of the equipment, is provided in the form of a thermal cut-out C.O.1A. This uses an alloy having a melting point of approximately 700 C .

An indicator lamp, Ll, on the front panel of the unit, is arranged to glow brightly during the heating cycle of the oven and to become dim during the cooling cycle. In the event of the thermal cut-out opening, the lamp is extinguished.

As explained in sub-section 4.3 there are four filter circuits in the unit. Dealing with these, FIA and FIB, connected in tandem, pass the upper sideband of the $100 \mathrm{kc} / \mathrm{s}$ signal i.e. $100.1 \mathrm{kc} / \mathrm{s}$ to $106 \mathrm{kc} / \mathrm{s}$. Filters F2A and F2B pass the lower sideband 94 to $99.9 \mathrm{kc} / \mathrm{s}$. Filter F3 passes $100.425 \mathrm{c} / \mathrm{s} \pm 40 \mathrm{c} / \mathrm{s}$ (which represents the 3 rd order intermodulation product of the $1775 \mathrm{c} / \mathrm{s}$ and $1100 \mathrm{c} / \mathrm{s}$ test, tones in the upper sideband). Filter $F 4$, passes $99.575 \mathrm{c} / \mathrm{s} \pm 40 \mathrm{c} / \mathrm{s}$ i.e. the 3rd order intermodulation product in the lower sideband. Two 9 db pads (R10, R11, R12, and R13, R14, R15) bring the insertion loss of F3, F4 up to 12 db i.e. that presented by F1, F2. A "T" type attenuator of equivalent loss enables both sidebands to be passed.

Detailed Description

A Filter Selector, Sl, controlled from the front panel, enables the $100 \mathrm{kc} / \mathrm{s}$ input to be switched to the required filler circuit or to the 12 db attenvator. An Output Selector, S2, also controlled from the front panel, connects the output from the selected circuit to the 3rd Demodulator Unit or to the Monitor Amplifier Unit.

6.0 DESCRIPTTON OF JKCK PANELS

6.1 General

Two types oi Jack Panel are available according to whether the monitoring equipment is incorporated in a cabinet containing the Drive Unit, Type 11406 or in a cabinet containing the Variable Frequency Oscillators, Type 11408. Jack Panel, Code No. 87-LRU.50A, is used in the former instance and Jack Panel, Code No. 87-LRU.50C, in the latter instance. They will be dealt with separately below.

6.2 Jack Panel Code No. 87-LRU. 50A

(Plates X \& XI illustrates the Jack Panel and the circuit is given in Fig. 11)

The Jack Panel incorporates a series of Umink sockets and selector switches, whereby monitor pick-up points on two transmitters, and on two associated drive units may be linked through to the monitor receiver. It also incorporates a loudspeaker and a telephone jack.

Dealing with the facilities provided, an R.F. Monitoring Selector S3, enables the r.f. signal and oscillator frequencies of either transmitter No. 1 or No. 2 to be switched to the lst and 2nd Demodulator Unit. Similarly, a series of coaxial plugs grouped under the designation 3.1 Mc/s Drive and Monitoring, enable the output from drive units Nos. 1 or 2 to be connected to transmitters Nos. 1 or 2 or, alternatively, for monitoring to the lst and 2nd Demodulator Unit. Additionally 3.1 Mc / s outputs from demodulator units incorporated in the transmitters may be connected through to the 1st and 2nd Demodulator Unit. Spare coaxial plugs are provided.

The $100 \mathrm{kc} / \mathrm{s}$ Monitoring Selector, 52 , enables the $100 \mathrm{kc} / \mathrm{s}$ signal from either drive unit to be switched through to the lst \& 2nd Demodulator Unit. It is so arranged that one drive unit may be monitored without interruption of the other. The $100 \mathrm{kc} / \mathrm{s}$ oscillator frequency from either drive unit is switched to the 3rd Demodulator Unit and the $3 \mathrm{Mc} / \mathrm{s}$ owcillator frequency to the 1st and 2nd Demod Unit, by means of Oscillator Selector Sl.

Detailed Description

Umlink sockets on the right-hand side of the panel permit connection of the programmes from the station terminal equipment to the 600 ohm inputs of the drive units. They also permit connection of the tost tones from the $1775 \mathrm{c} / \mathrm{s}$ A.F. Oscillator Unit to the drive units. Spare sockets are provided.

Further U-link sockets (situated immediately beneath the loudspeaker) are series connected between the speaker and the 3rd Demodulator Unit. Accordingly, the links may be removed from these sockets and a wave analyser or other test equipment inserted in the circuit.

The telephone jack is connected to terminals in the base of the cabinet and is for use in accordance with any station requirements.

6.3 Jack Panel. Code No. 87 -LRU. 50 C

(The circuit diagram is given in Fig.12).
The above jack is similar to that described in subusection 6.2. Arrangements are however made for connecting cutputs from the v.f. oscillators to the transmitters via coexiel U-links.

7.0 POWER SUPFLY UNIT

(Plate XII - illustrates the unit and the circuit diagram is given in Fig.8).

The power unit is of conventional design and produces 250 and 150 volt d.c. h.t. supplies, a 6.3 volt a.c. valve heater supply and a 75 volt a.c. oven heater supply. The Mains input to the unit is singlephase $50 \mathrm{c} / \mathrm{s}$ A.C. at nominal voltages of 110 V or 230 V . The input current is 2 amps at 230 volts and at 4 amps at 110 volts. Tappings on the primary winding of the input transformers cater for Mains supplies within the limits $200-250$ volts and 100 to 130 volts.

Input to the h.t. transformer, TI, is switched under the control of relay $A / 2$. This relay is, in turm, energised from a bridge rectifier, Rect. 1 , across the 75 volt oven supply and its operation is dependent upon all gate switches in the cabintt being closed. Since a gate switch is associated with each main unit (excluding the Filter Unit) all h.t. and filament supplies are removed when a main unit is withdrawn. Oven supplies are, however, unaffected.

The d.c. h.t. supply is obtained from a full-wave rectifier, V, which feeds into a choke-input filter designed to give a high degree of smoothing (better than 60 db). The 150 volt section of this supply is stabilised by neon, V2.

The On/Off switch, $S 1$, is mounted on the front panel together with the Oven Supply lamp, LP1, and the H.T. Supply lamp LP2.

INSTALLATION

CHAPTER 3

RECEIVING $A N D$ UNPACKING THE EQUIPMENT

1.0 THE SHIPPTNG SPECIFICATION

Before unpacking the equipment reference should be made to the Shipping Specification, copies of which are packed with the Equipment, and also sent separately by mail. An explanation sheet included with the specification shows how the latter can assist in casy identification of apparatus.

All equipment should be inspected for damage. If any parts have become detached they should be set aside for later restoration in their appropriate places.

2.0 PREPARATION OF SITE

Since rear access to the equipment is normally only required during installation, the cabinet may be positioned comparatively close to the walls of the building. Cables are arranged to enter the base of the cabinet by way of conventional ducting cut in the floor.

The measurement of fixing holes in the plinth of the cabinet should be noted, by referring to Fig. 9, and $\frac{1}{2}$ " diameter Rigifix inserts set into the floor at appropriate points.

3.0 UNPACKING AND INSTMLITNG THE EQUIPMENT

(a) Remove the cabinet from its container. (NOTE: Four eyebolts are packed with the equipment. These may be screwed into the roof of the cabinet, if required, to provide anchorages for lifting hooks).
(b) Remove the back panel from the cabinet. (The pancl is held in position by quick-release fasteners).
(c) Remove the locking brackets at the rear of the chassis runners. (The brackets aro painted yellow and are fitted by the Shipping Department to maintain the chassis securely in position during transit).
(d) Flace the equipment in its allocated position on the floor of the station. (Note: liny floor covering must not be higher than the bottom surface of the cabinet.)
HB. $1064-\mathrm{B}$
Iss. 1
10/52

Installation

(e) Bolt the cabinet firmly down, remove the front lower panel, and connect up all power and monitoring cables. As previously mentioned, these will normally be laid in ducting cut in the floor of the building. If laid on the surface of the floor or walls, however, they must be adequately protected by suitable covering.

Uniradio 32 coaxial cables are, used for carrying the r.f. signals from the external drive units to the monitoring equipment. The correct method of terminating these cables is detailed in Fig. 10 but reference should be made ± 0 Figures 11 or 12, as appropriate, to obtain information regarding the actual connections to be made.
(f) Pull forward the units on their runners and inspect and if, necessary, clean them.
(g) If the valves have beer shipped separately fit in the positions indicated by attached labels.
(h) Replace back panel.

1.0 TEST EQUIPMENT REOUIRED

1 - Avometer Model 7 (or equivalent meter)
1-S.T.C, Type 74602A Coaxial Transmission Measuring Set -
1 - Valve Voltmeter. Range 0.5 to 25 volts, A.F. to $3 \mathrm{Mc} / \mathrm{s}$.

2.0 QUTLTNE OF PROCEDTRE

A power supply check is carried out to ensure correct output voltage from the Power Supply Unit. Supply voltage to the oven should be $75 \mathrm{~V} \pm 10 \%$ and control voltage to the oven, measured across Rect 1 , in the Power Supply Unit, should be $50 \mathrm{~V} \pm 15 \%$. A check is made to ensure that indicating lamps are functioning correctly.

The drive unit is then put into operation, and the $100 \mathrm{kc} / \mathrm{s}$ signal and oscillator outputs connected through to the demodulating units and are measured with the T.M.S. The output of the loudspeaker is then checked.

The output of the 2nd Demodulator is switched through to the Monitor Amplifier and the level indication of the monitor amplifier meter is checked.

The $3.1 \mathrm{Mc} / \mathrm{s}$ output of the drive unit is connected through to the monitor and the $3.1 \mathrm{Mc} / \mathrm{s}$ signal input and the $3 \mathrm{Mc} / \mathrm{s}$ oscillator inputs to the and Demodulator checked.

The $3.1 \mathrm{Mc} / \mathrm{s}$ drive is applicd to the required r.f. truck (for the explanation it is assumed to be truck No.l of transmitter No.I) and the output of the transmitter demodulator (if fitted) is monitored by feeding it back to the 2nd Demodulator. Finally, if required, a portion of the main transmitter r.f. output is fed back to the lst Demodulator. After under-going initial demodulation it is then passed to the 2nd Demodulator.

With the demodulators adjusted, sidebands selection is checked and then the output of the 1100 and $1775 \mathrm{c} / \mathrm{s}$ Oscillator Units is measured, individually and in combination.

3.0 POWER SUPPLY CHECKS

(a) Adjust the primary tappings on the h.t. and oven transformers, Tl and T2, to the voltage of the mains supply. Check that the short circuit across R 5 has been remored.
(b) Check that the main units are pushed home and then place the Mains On/Off switch, on the Power Supply Unit, to ON. Observe that the Oven Supply indicator lamp, LPT; and tho Filament Supply indication lamp, LP2, on the power unit are illurnated. Will forward the power supply unit and re-close the gato-switch sircuit. Check the potentials of the outgoing a.c. and d.c. supplies. (Soo test s'eets suphiec vith equipaent). Return the unit to its nomal position.
(c) Check that withdrawal of the Monitor Tray breaks the h.t. supply, i.e. lamp LP2 is extinguished.
(d) Observe the Oven Indicator lamp, II, on the Filtor Unit and note that it glows brightly during the heating cycles and dinly during the cooling cycles.
(e) Allow a period of at least 1 hour before commencing any alignment tests.

4.0 CHECKING THE FUNCTIONTNG OF THE 3RX DEMODULATOR AND THE MONITOR AMPL IFIER

(It is assumed below that line-up is boing carried out with the type 41406 Drive Unit. It is also assumed that, of the two drive units which may be monitored, it is No.l that will be selected and that it will be provided with a $1000 \mathrm{c} / \mathrm{s}$ tone input at zero db line-up level. The drive unit will be switched to operate into truck No.l of transmitter No.1).
(a) Turn the Oscillator Selcetor, Sl, and the $100 \mathrm{kc} / \mathrm{s}$ Monitoring Selector, S2, on the Jack Panel to position 1. Turn the Filter Selector, SI, on the Filter Unit, to U.S.B. or L.S.B. (as appropriate), and the Output Selector to L/S (i.e. loudspeaker). Sot the Monitor Selector on the lst and 2nd Demodulator to $100 \mathrm{kc} / \mathrm{s}$ and set the traffic circuit of the drive unit for s.s.b. operaticn. Switch on the $1000 \mathrm{c} / \mathrm{s}$ tone.
(b) Check, with the T.M.S., that the signal input to SK31 on the 3rd Demodulator is $-24 \pm 2 \mathrm{dbm}$ and the oscillator input to SK32 is +4 $\mathrm{dbm} \pm 1 \mathrm{db}$.

Lining-up \& Tosting

(c) With the loudspeaker U-links pluggod into position on the Jack pancl, connect the valve voltmeter across thom. Check that with the Audio Gain control, R16, turned fully clockwise an output of 0.55 V (100 mW) is indicated by the valve voltmcter.
(d) Turn the Output Selector on the Filter Unit to Level. Check the input level at SK34 on the Monitor Amplifier: This should be -24 $\mathrm{dbm} \pm 2 \mathrm{db}$. Set the Input Level control for 40 db attenuation and place the Meter Switch to Level. Adjust R21, if necessery, for a meter indication of zero db .

5.0 CHECKING THE FUNCTIONING OF THE 2nd DEMODULATOR

(a) Connect the $3.1 \mathrm{Mc} / \mathrm{s}$ signal at PI, on the Jack Pancl, to monitor input plug P4, by means of the 15 db attenuator plug.
(b) Turn the Output Selector, on the Filter Unit, to Level and the Filter Selector for the required sideband.
(c) Turn the Monitor Selector, on the lst and 2nd Demodulator Unit, to $3.1 \mathrm{Mc} / \mathrm{s}$ and check thet an input of level of +12 dbin is available at SK27 and +14 dBm at SK26. Adjust Rl2 for an output level of -12 dbm at $5 K 25$ (i.e. into the filters.)

6.0 CHECKING THE FUNCTIONTNG OF THE 1st DEMODUAFTOR (IF USED)

(a) Connect the $3.1 \mathrm{Mc} / \mathrm{s}$ output, plug, Pl, on the Jack Panel, to plug P2 (connection for Transmittor No.1, Truck No.1) by means of a coaxial U-link. Turn the R.F. Selector to position 1 (Transmitter No.1, Truck No.1).
(b) Operate the truck and tune the transmitter to a frequency of $6 \mathrm{Mc} / \mathrm{s}$. Check that the r.f. oscillator voltage, appering across R3 in the lst and 2nd Demodulator is not less than 1.0 volt.
(c) Turn the Monitor Selector to R.F. (position 1) and check that an input of approximately 10 dbm is obtained across socket SK29 (this value will dopend on the signal level in the transmitter). Adjust the R.F. Signal Input control for zero dbm as indicatud by the moter in the Monitor Amplifier.

7.0 CHECKING THE SIDEBAND SELECTION

(a) Change the signal input to the other sideband of the Type A1406 Drive Unit and change the Filter Selector switch position appropriately. Check that the resulting change in output,

Lining-up \& Testing

indicated by the Monitor Amplifier meter, is less than 2 db for an equivalent tone input. (The chenge in output here will be due to both the drive unit and the monitor unit).
(b) Check that when the Filter Selector switch is tuned to the sideband having no input, no output is indicated.
8.0 CHECKING THE $1775 \mathrm{c} / \mathrm{s}$ OSCHLLATOR (COCe NO. 16 -LRU. 217 A)
(a) Connect a 600 ohm load across sockets of the Test Tones monitoring point on the Jack Panel.
(b) Place the Oscillator Selector switch, on the oscillator unit, to the On position.
(c) Connect the valve voltmeter across the 600 ohm loed and check that an output of 1 mW (i.c. zero dbm or 0.775 Volts) is indicated. If necessary adjust Rl4 for the correct condition. Switch off the oscillator.
9.0 CHECKTNG THE $1100 / 425 \mathrm{c} / \mathrm{s}$ OSCHLATOR (Code NO. 16-L.RU. 217 B)
(a) With the valve voltmeter connected as in Section 8.0, switch on the $1100 \mathrm{c} / \mathrm{s}$ oscillator and check that the output indicated is 0.775 volts (zero dbm). If necessary adjust Rl5 in the $1100 / 425 \mathrm{c} / \mathrm{s}$ Oscillator Unit for the correct condition.
(b) Switch the oscillator to $425 \mathrm{c} / \mathrm{s}$ and check that the output level is within $1 \frac{1}{5} \mathrm{db}$ of that quoted above.

10.0 CHECKING THE COMBINED OUTPUT OF THE OSCIILATORS

(a) Switch on both oscillators (1100 and $1775 \mathrm{c} / \mathrm{s}$).
(b) Check that the combined output is 2 to 3 db above the level of either oscillator oporating singly.

It is most essential that operating personnel should have fully acquainted themselves with the general functioning of the equipment. When they are in possession of this knowlodge they can readily make use of the monitoring apparatus, not only for rapid fault finding in the drive units, but also in the transmittor/s.

This chaptor doals with the adjustmonts required for driving two transmitters type DS. 12 or DS. 13 from two drive units type A .1406 , and monitoring the system at the following four points:-
(a) Transmitter output (R.F.)
(b) Output of the tronsmittor domodulator ($3.1 \mathrm{Mc} / \mathrm{s}$)
(c) Output of the drive unit (3.1 Mc/s)
(d) Output of the drive unit channel modulator ($100 \mathrm{kc} / \mathrm{s}$)

The filter ovens should have been switched on for at least two hours before any of the tosts cetailec. in following sections are made.

2.0 INITIAL SETTING-UP PROCEDURE FOR THE JLCK PSNEL

2.1 To connect up a $3.1 \mathrm{Mc} / \mathrm{s}$ drive to an r.f. truck
(a) Insert a pair of U-Iinks to connect the required drivo unit input to its programme line.
(b) Connect the $3.1 \mathrm{Mc} / \mathrm{s}$ signal (at Pl or P 9 , as eppropriate), from the relevant drive unit, to the r.f. truck input by means of a coaxial U-link.
(c) Ensure that the $100 \mathrm{kc} / \mathrm{s}$ Monitor Selector, S2, is in the OFF position.

NOTE: If it is required to cross-patch the drive units and trensmittors, e.g. to Crive transmittcr No. 1 from drive unit No. 2, this can bo dono by using patching cords in place of U-links. Similarly, programe lines can be cross-petched with crive unit inputs. \# (The coaxial U-link attenuator (15 db) mast not be used in this position - It is intended only for monitoring the output of the Drive Unit (see p.28)

Operating

2.2 To switch in the monitor points

2.2.1 Selection of the transmitter output frequency

(a) Set the R.F. Monitoring Selector, S.3, to the appropriate r.f. truck position and set the Monitor U-link on the r.f. truck, to the stage to be monitored.
(b) Set the Oscillator Selector, SI, to the type A. 1406 Drive Unit associated with the r.f. truck undergoing monitoring. Unless crossmatching has been used, each r.f. truck on transmitter No. 1 will be associated with drive unit No. 1. Similarly, each r.f. truck on transmitter No. 2 will be associated with drive unit No. 2.
(c) Ensure that the $100 \mathrm{kc} / \mathrm{s}$ Monitor Selector is in the OFF position.

2.2.2 Selection of the $3.1 \mathrm{Mc} / \mathrm{s}$ output from the transmitter demodulator

(a) Connect the monitor signal, from the r.f. truck under test, to the Monitor Input plug (P4) by moans of a coaxial U-link.
(b) Set the Oscillator Selector to the associated drive unit.
(c) Ensure that the $100 \mathrm{kc} / \mathrm{s}$ Monitor Selector is in the OFF. position.
2.2.3 Selection of the output of the drive unit (3.1 Mc / s)
(a) Connect the $3.1 \mathrm{Mc} / \mathrm{s}$ signal (at Pl or P9 as appropriate), from the relevent drive unit, to the Monitor Input plug (P4) by means of the coaxial U-link attemuator, (NOTA; A drive unit cannot be monitored while it is driving a transmitter.)
(b) Set the Oscillator Selector to the drive unit.
(b) Ensure that the $100 \mathrm{kc} / \mathrm{s}$ Monitor Selector is in the OFF position.

2.2.4 Selection of the output of the drive unit channel modulator ($100 \mathrm{kc} / \mathrm{s}$)

(a) Set the $100 \mathrm{kc} / \mathrm{s}$ Monitor Selector to the relevant drive unit.
(b) Set the Oscillator Selector to the drive unit.

operating

3.0 DETATLED MONTTORING TNSTRUCTIONS

3.1 General

The instructions given below enable a series of checks to be carried out at any of the four monitoring points listed in Section 1.0. The checks are a.s follows:-
(a) Aural monitoring of transmission
(b) Measurement of 3rd order non-linear distortion.
(c) Measurement of cross-talk.

3.2 Aural Monitoring

(a) Set up the U-links and switches on the Jack Panel in accordance with the instructions given in Section 2.0.
(b) Set the Monitor Selector, S2, on the lst and 2nd Demodulator Unit to R.F., $3.1 \mathrm{Mc} / \mathrm{s}$ or $100 \mathrm{kc} / \mathrm{s}$, as required.
(c) If monitoring an s.s.b, or d.s.b. transmission set the Filter Switch, Sl, to U.S.B. + L.S.B. If monitoring i.s.b. transmissions, set the Filter Switch to U.S.B. or L.S.B. as appropriate. Set the Output Selector, on the Filter Unit, to LEVEL.
(d) Turn the Input Attenuator control, R2, on the Monitor Amplifier Unit, to the fully anti-clockwise position. Set the Meter Switch, SI, to LEVEL.
(e) Adjust the appropriate Signal Input control, R2 or R12, on the 1st and 2nd Demodulator Unit, for line-up level, i.e. a zero db indication on peaks as shown by the level meter in the Monitor Amplifier.
(NOTE: Since the $100 \mathrm{kc} / \mathrm{s}$ monitoring input comes in at a fixed level no control is provided in the $100 \mathrm{kc} / \mathrm{s}$ input circuit.)
(f) Turn the Output Selector, on the Filter Unit, to I / S and adjust the Audio Gain Control, R16, on the 3rd Demodulator for a convenient output on the loudspeaker.

3.3 Measurement of non-linear distortion

In the test for non-linear distortion, two audio tones are applied simultaneously to one input of a drive unit. The resultant $425 \mathrm{c} / \mathrm{s}$ intermodulation product is filtered off and its level is measured with
respect to the level of one tone alone. To make such measurements carry out the following operations:-
(a) Set up the U-links and switches on the Jack Panel in accordance with the instructions given in Section 2.0. At the same time, disconnect the programe input to the drive unit by removing the relevant Ulinks. Connect a patching cord between the Test Tone sockets U. 9 and U. 19 and the input sockets of the drive unit.
(b) Turn the Oscillator Selector, on the $1100 / 425 \mathrm{c} / \mathrm{s}$ Oscillator Unit, to $1100 \mathrm{c} / \mathrm{s}$.
(c) Line up the type A. 1406 drive unit for s.s.b. or i.s.b. operation and decrease the input level by 6 db . (This is accomplished by turning back the input attenuator on the Line Amplifier and Channel Modulator Unit.)
(d) Turn the Filter Selector to U.S.B. or L.S.B., as required and turn the Input Attenuator, on the Monitor Amplifier Unit, fully anticlockwise. Set the monitor for line-up level, i.e., adjust the appropriate Signal Input control, on the lst and 2nd Demodulator Unit, for an indication of zero db as shown by the Monitor Amplifier level meter.
(c) Set the Oscillator Selector switch, S2, to $1775 \mathrm{c} / \mathrm{s}$ and turn the Filter Selector Switch to $425 \mathrm{c} / \mathrm{s}$ U.S.B. or $425 \mathrm{c} / \mathrm{s}$ L.S.B., as required.
(f) Adjust the Input Attenuator, on the Monitor implifior, for an indication of approximately zero db as shown by the level meter. Calculate the new level obtained by observing the Input Attenuator sotting and the meter indication.

3.4 Measurement of cross-talk

In making measurements of cross-talk level on audio signal is applied to one input of the Type 4.1406 Drive Unit and the level of the resultant signal in the unwanted sideband is measured with respect to the level in the wanted sideband. The operations are carried out in the following manner:-
(a) Set up the U-links and switchos on tho Jack Panel in accordance with the instructions given in Section 2.0.
(b) Disconnect the progromme input and patch the drive unit input "A" to the Test Tone sockets on the Jack Panel.
(c) Set the Oscillator Selector, on the $1100 / 425 \mathrm{c} / \mathrm{s}$ Oscillator Unit to $425 \mathrm{c} / \mathrm{s}$.
(d) Ilign the type L. 1406 Drive Unit for s.s.b. operation.
(e) Set the Filter Sclector, on the Filter Unit, to $425 \mathrm{c} / \mathrm{s}$ and adjust the appropriate Signal Input control, on the lst and 2nd Domodulator Unit, for line up level.
(f) Put the Filter Selector, on the Filter Unit, to $425 \mathrm{c} / \mathrm{s}$ L.S.B. and observe the indication now obtained on the level meter in the Monitor implifier.

CH:PTER 6

RE-SITGMMEN

1.0 GENER/L

The re-alignment instructions given in this chapter are designed to enable personnel to check adjustments of pre-set controls periodically or after changes of valves or other components. The following test equipment will be required:-

1 - S.T.C. Type 74602A Coaxial Transmission Measuring Set. I - Valve Voltmeter. Range 0.5 to 25 volts, L.F. to $3 \mathrm{Mc} / \mathrm{s}$.
1 - Wave inalyser.

2.0 RE-II IGNING THE TEST OSCHLLTTORS

If re-alignment of the test oscillator becomes necessary it may be carried out by following the procedure detailed in Sections 8 to 10 , Chapter 4.

3.0 RE-IS IGNING THE DENODUK LTORS

3.1 The 1st Demodulator

(a) Set up the 2. 1406 Drive Unit No. 1 for s.s.b. operation with a $1100 \mathrm{c} / \mathrm{s}$ a.f. input and switch off the re-inserted carrier. Switch off the a.f. input.
(b) Remove the r.f. signal input socket gri. 29 and $3.1 \mathrm{fc} / \mathrm{s}$ zig input socket, SK. 27. Connect SK. 29 to P. 27.
(c) Switch on the re-inserted carricr in the drive unit and adjust it for a level of zero dbm as indicated by the TTS across P. 27 .
(d) Connect the valve voltmeter across R. 13 in the lst and 2nd Demodulator. Set the R.F. Signal Input control, Pl, to the maximum position and turn the Monitor Selector to R.F. Tune variable. inductor Ll for maximum output as indicated by the valve voltmeter.
(e) Switch off the re-insertod carricr and restore sockets. SK. 27 and SK .29 to their normal positions. Restore re-insertod carrier to normal level.

3.2 The 3rd Demodulator

(a) Place the Monitor Selector, on the 1st and 2nd Demodulator to the $3.1 \mathrm{Mc} / \mathrm{s}$ position, turn the Filter Selector for the appropriate sideband and the Output Selector, on the Filter Unit, to L / S. Tum the Oscillator Selector, on the Jack Panel to the position 1.
(b) Connect a valve voltmeter, set to the 15 Volt range, between T3-1 and earth on the 3rd Demodulator Unit. Adjust potentiometer R8 for an indication of 4.5 volts on the valve voltmeter.
(c) Switch on the $1100 \mathrm{c} / \mathrm{s}$ tone and adjust the $3.1 \mathrm{Mc} / \mathrm{s}$ Input Control on the lst and 2nd Demodulator until the $101.1 \mathrm{kc} / \mathrm{s}$ signal input to SK. 31 on the 3rd Demodulator is -24 dbm and observe that the output, as indicated by the valve voltmeter is 5.0 volts (carrier plus signal). If not, adjust potentiometer R2.
(d) Remove the loudspeaker U-links on the Jack Panel and terminate the incoming pair with a 3 -ohm load.
(e) Remove the valve voltmeter, set it to the 1.5 Volt range and connect it across the 3-ohm load.
(f) With the Audio Gain control, R.16, on the 3rd Demodulator set fully clockwise, adjust R. 29 for an output of 0.55 V as indicated by the valve voltmeter.
(g) Remove the valve voltmeter and connect a wave analyser in its place. Tune to the second harmonic (about $2200 \mathrm{c} / \mathrm{s}$) and adjust R. 15 for minimum indication on the analyser. In the absence of a wave analyser R15 should be tuned for minimum carrier leak as in (h), below.
(h) Switch off the $1100 \mathrm{c} / \mathrm{s}$ tone, remove the wave analyser and connect a T.M.S. (set to "Level") across the loudspoaker U-links. Adjust ClO, on the 3rd Demodulator Unit for minimum indication of $100 \mathrm{kc} / \mathrm{s}$ carrier leak.

3.3 The Monitor Amplifier Unit

(a) Place the Monitor Selector on the lst and 2nd Demodulator to the $100 \mathrm{kc} / \mathrm{s}$ position, turn the Filter Selector for the appropriate sideband and the Output Selector, on the Filter Unit, to LEVEL. Turn the Oscillator Selector on the Jack Panel to the position 1.
(b) Set the Input Attenuator R2 on the Monitor Amplifier Unit fully anti-clockwise.
(c) Switch on the $1100 \mathrm{c} / \mathrm{s}$ tone and adjust the A1406 for line up level (Odb).
(d) Check that the level meter MI on the Monitor Amplifier Unit reads 0 db . If not ad.just potentiometer R21.

4.0 VALVE CURRENTS

Typical valve currents given in this section apply when equipment is lined up and no signal voltages are applied.
4.1 1st and 2nd Demodulator Unit, 109-LRU,9A

Velve Current
V1 $\quad 4 \mathrm{~mA} \pm 20 \%$
V2 $4 \mathrm{~mA}{ }^{\prime \prime}$.
V3 7 mA "
4.2 3rd Demodulator Unit, 109-IRU. 10A

Valve Gurrent

V1	$12 \mathrm{~mA} \pm 20 \%$
V2	2.0 mA
V3a	0.3 mA
V3b	0.3 mA
V4a	11
V4b	11 mA
11 mA	1

4.3 Monitor Amplifier Unit, 17-IRU.47A

Valve Gurrent
V1
V2
V3
$4.0 \mathrm{~mA} \pm 20 \%$
4.0 mA
4.0 mA
$4.41775 \mathrm{c} / \mathrm{s}$ Oscillator Unit, $16-$ IRUL 217 A

Vla	$3.5 \mathrm{~mA} \pm 20 \%$
Vlb	2.5 mA

HB. 1064-B

- 35 -

Iss. 1 .
10/52
$4.51100 / 425 \mathrm{c} / \mathrm{s}$ Oscillator Unit, 16-LRU.217B
Valve Gurrent
$\begin{array}{ll}\mathrm{Vla} & 3.5 \mathrm{~mA} \pm 20 \% \\ \mathrm{Vlb} & 3.4 \mathrm{~mA}\end{array}$

5.0 ORDERING A SPARE PART

If, in the course of re-aliznment or repair a component is required which is not among the spares provided, it should be obtained through Standard Telephones and Cables Ltd. (Radio Division), Oakleigh Road, New Southgate, London N.11, England. Quote:-
(a) The appropriate drawing number, e.g. "Fig. 5, Circuit diagram of $1775 \mathrm{c} / \mathrm{s}$ Oscillator Unit, 16-LRU.217A Sht. 7.1" as given in the list of drawings in the front of this Handbook.
(b) Component identification as shown on the drawing, e.g. "resistor R6" plus any additional information given in the components lists for the unit.
(c) All data which may appear on a label fixed to an item not made by Standard Telephones and Cables Ltd.
(d) The type and aerial number of the equipment. The serial number will be found on the test report.
(e) Full shipping instructions.

INDEPENDENT-SIDEBAND TRANSMITTER DRIVE UNIT TYPE A14O6B WITH MONITORING EQUIPMENT TYPE A.1407B. OVERALL CODE No. $188-L R E .2 D$

PLATE I

MONITOR UNIT, CODE NO. 395-LRU.14B. (PLAN VIEW)

UNDERSIDE VIEW OF OSCILLATOR UNIT ($1775 \mathrm{C} / \mathrm{S}$) CODE No. 16-LRU.217A

UNDERSIDE VIEW OF OSCILLATOR UNIT（ $1100 \& 425 \mathrm{C} / \mathrm{S}$ ）CODE NO． 16 －LRU． $217 B$

Resistors							ISSUED BV: DEPT 3735	
$\begin{gathered} \mathrm{SCNEX} \\ \mathrm{NQ} \\ \hline \end{gathered}$	VALue	TOL.	RATING	$\begin{aligned} & R C S C \\ & \text { COOING } \end{aligned}$	SERVICE REF NO	REMARKS	ISSUE 1.$\prime 7 \quad 451$RIS WRSRCJ 104 KR28 ADDED.$C H \cdot N \AA 4446-1$JAB	
R1	82π	$\pm 10 \%$		RCJ 820 K				
R2	$1 \mathrm{k} \Omega$					Potentiometer. Dubilier type ya		
R3	$18 \mathrm{~K} \Omega$	$\pm 2 \%$		RCJ 1826				
R4	100Ω	$\pm 10 \%$		RCJ 101 K		WELWYN A3622	Issue. 2. 2. es was roos: twis WELWYN R12 was COLVERN ESR $106 \mathrm{p} / 1 \mathrm{~s}$ 0,10 PCRMASICNA K28 2 R र3, लDDE土 CNNO AXAC.	
				RCH 103 K				
	10 K	$\pm 10 \%$		RCHIO3K				
R6	100Ω	$\pm 10 \%$		RCJIOIK				
R7	$1 \mathrm{k} \Omega$	$\pm 10^{\circ}{ }^{\circ}$		RCJ 102 K				
R8	8.33Ω	$\pm 1 \%$				METER RESISTANCE ETE.I TYPE WE 10 mA		
R9	$6.8 \mathrm{k} \Omega$	$\pm 10 \%$		RCH 682 K				
R10	$2.2 \mathrm{k} \Omega$	$\pm 10 \%$		RCJ 222 K			$\operatorname{CSSLE} 3$	
Rerr:	82π	$\pm 10 \%$		RCJ 820K				
R12	1 kr					Potentiometer Dusilier typeyt		
R13	$100 \mathrm{k} \Omega$	$\pm 10 \%$		RCJ 104k			$\begin{aligned} & 155 U E .4 . \\ & 14 \text { S2 } \\ & \text { R32,384 DEETEO } \\ & \text { C/N } 44669 \end{aligned}$	
R14	$1 \mathrm{~K} \Omega$	=10\%		RCH 102 K				
R15	100 KR	± 10.0		RCJ 104K				
R16	4.7 kr	$\pm 10 \%$		RCH 472 K			$\left\{\begin{array}{c} \text { S5UE } 5 \\ 6.10 .52 \\ R 2708.78 / 4 \\ C H .44 \times 6 / 1 \end{array}\right.$	
R17	$10 \mathrm{k} \Omega$	$\pm 10^{\circ}$		RCJ 103K				
R19	$1 \mathrm{k} \Omega$	$\pm 10^{\circ} \%$		RCJ 102K			$\begin{array}{r} 159.6 \\ 13.1 .53 \\ 815 \text { Ma } 540 \\ 151004 n \end{array}$	
R20	8.33Ω	$\pm 1 \%$				Meter resistance ETE.I. type We 10 mA		
R21	10 ks	± 0.0		RCJ 103 h			(2. $+1+46 / 13$,	
R22	10 ks	$\pm 10 \%$		RCH 103 K				
R23	100 km	$\pm 10 \%$		RCJ 104K				
R24	4.7 kn	$\pm 10 \%$		RCH 472 K				
R25	180ת	$\pm 10 \%$		RCJ181K			$\begin{aligned} & \text { 15s } \\ & 14953 \end{aligned}$	
R26	8.33Ω	$\pm 1 \%$				Meter resistance E. TE \downarrow TYPE We 10 mA	$\left\{\begin{array}{l} 279:-1 \\ 3735-1 \\ \text { DIST H' } \end{array}\right.$	
Res	$4.7 \times \Omega$	$\pm 10 \%$		RCTATAK				
229	150Ω	$\pm 10 \%$		RCGK_5LK				
P30	150π	+ $10^{\circ} \%$		RCBK/SIN				
R31	2.48 .2	$\pm 2 \%$		RCD $2+3$		n'Ewher A3622	OR ${ }^{\text {A B }}$	CHKD.
							APP.	ENG.
							$\left\{\begin{array}{l} 109-\text { LRU- } 9 \\ S_{\text {HEET }} 7 \cdot 1 \cdot 1 \end{array}\right.$	

FIG. 2.
mist

DRN BY DEPT. 3T3S 17.4.5'

FIG.9. FIXING CENTRES FOR PLINTH.

1.0 PRPRiRATION OF cable.

In the folloaing inatructione whore atripping of P.V.c. or polythone is called for, hot atrijpera ahould be ueod if available.
If hot etripora are not arailablo, groat care should be taken not to aick y wire covered by the plantic material
Each of the oporations apecified below ahould be carried out auccoselvely as quicxiy nis posiblo make soldering difficult.
1 Rempo the P.V.C. sheath for a distance of finfrom the ond of the cable.
 $\frac{1,4}{\text { Throad an } 1 .} 180517$ thimble. orer the contral conductor $\frac{1}{\text { ofor }}$ the polythone insulation and undor the coppor scroening. $\frac{1.5}{}$ Dram formard the copper braiding so that it fita tighty over the thimble. 1,6
$\frac{1}{1.7}$
Fit Ip
Solder the cland to the braided in fie. 28051 Chould be appliod to the the braided ecreen, using a moll tinnodiron. This to the corpor braid through the ${ }^{n}$ windom in the clamp. Imediately the coppor brald la complotely "notted" ith soldor, the iron should be removed and all oxcess solder shaken off. It is essential that this soldering ahould be carriod out as quickly as posaibio to avoid molting the polythone under the coppor braid. It should be noted that, as this type of wire inll not twist easily, care
must bo taken to soldar the clamp in the correct plane, for the subeoquent wiring. (sae bolow).
1.8 Cut off any superfluous braid with a knife, care being taken not to leave dion struids anich mignt subsequently cuuse a short circuit.

CENT:
2160/4.

LFi8051
$\underset{\text { ROPPER }}{\text { ROM }}$
poitthene insulating

FIG.

FIG 2
2.0 IOLATING 2mO CABLKS BY MRNNS OT i 2SY/40054 ADAPTOR.

The onds of the rire mist first be prepared as givecipied in para.l. above.
Resove the cover from the $231 / 4004 \mathrm{~A}$ aduptor and slip it over one of the $\frac{2.1}{}$ Renove the cover 9 rom the $238 / 4004 A$ aduptor and slip it or 2. 2 insert the thaga furwed by the IP 180519 clamps 1 into the slots at oach ond in position, avoiding excess solder which mould intorfore with fing and solder $\frac{2.3}{}$ Solder together the huber conductors and cut off any superfluous wire. 2.4 Replace the cover and silp the : iv.c. sleore over the idaptor.

Where connoctor is required for use axternal to unit, a apocial torminatine sleove, 18.718000 , will be called for, this will requite to he slipped on to cable before proparitir to para.1.O. above

1180 the terminatine sleare nill be synthatic

$\frac{3.1}{3.2}$ Menove the outer shell of the $219 / 40 C 5 A$ above.
$\frac{3.2}{}$ Insert the tag, formed by IP. 160512 clamp, into the slot at the ond position. See Tig.3.
$\frac{3.8}{3.4}$ Solder the innor ounductor togother and cut off any superfluous wire.
 3.5 Pit rubber sleove, LP. 108096 or poaition LP. 718000 if fitted, to cover junction of cable to socke t body.
pit oable markers as required.

4.0 JOLMTING ONS CABLR TO A:.O. COnXILL PLUG NO.1. BY MSARS 1 231/4005A. ADAPTCR.

The eld of the cable mugt first be prepared as apecified in Para.l. above. 4.1 Fit the $231 / 4005$ adap tor to the Plug and secure by noans of the amall
cospon supplied w ith the latter and bond with a amall spot of solder as shomn soson supp
in Ing. $^{4} 4$.

 F1:.4.

 opposite aide to opening, und solder in poaition avoldiag excess colder. Solder the inner生生 slip the cover of the adaytor back into position.

The ands of the cables should first be proparod as syecified in fara-1.0 above.
5.1 Remove the cover plate.
$\frac{1}{2}$ In inort the tag formed by the LP 180510 clamp of each cable thto the slots
5.3 Soldor the contral conductors togother a.d cut off any superfluous wires.
5.4 Replace the cover plate.

The instructions are identical nith those given 1 n 5.0-5.4 abovo excopt
that only one 1 C 11185 cable 1 s councted.
FIG.IO

1.0 PRYPMRATION OY CABLS.

In the folloaing inetructione whore atripping of P.V.C. or polythene ia called for, hot atrippers should be used if available.

If hot etrippers are not avaliable, great care should be taken not to pick any wire covered by the plastic material.

Emah of the operatione apecified below ahould be carried out auccesively as quiokly as posaible to avoid any tarniohing of the couper braiding or oontral conductor which would make soldering difficult.
1.1 Recere the P.V.C. sheatn for a distance of in from the ond of the cable.
$\frac{1.2}{1.2}$ Rowove the couper braiding to leave $5 / 10^{\circ}$ from the oud of the P.V.C. sheath. $\frac{1.3}{1.3}$ Puah back the copper braiding and ramere tho polythene insulation to leare $\frac{1}{1 / \mathrm{E}^{n}}$ from the ond of the P.V.C. sheath.
1.4 Thraad an LP. 180517 thimble.over the central conductor and push it bome
over the polythene insulation and under the copper screening.
$\frac{1.5}{}$ Drew forward the copper braiding so that it fits tightly over the thimble.
(seo Fig.1.)
1,6 Fit LP 180519 clamp as indicated in fig. 2.
$\underline{1.7}$ Solder the clanm to the braided screen, using a woll tinned iron. This
should be applied to the clamp and, at the same time, resin corod solder applied to the corper braid through the "window" in the clamp. Imediately the copper braid is completely "wetted" with solder, the iron should be removed and all oxess solder shaken off. It is essential that this solderines should be carried out as quickly as possible to avold molting the polythone under the corper braid.

It should be noted that, as this type of wire will not twist easily, care must be taken to solder the clamp in the correot plane, for the subsequent wiring. (see below).
1.8 Cut off any superfluous braid with a knifo, care being taken not to leave uny strands wich might subsoquently cause a short circuit.

FIG.I.

FIG 2

2.0 JOINTIIG 2TO CABLKS BY MENNS OT in 231/4005A ADAPTOR.

The ends of the wire aust first be prepared as sjecified in para.l. above. 2. 1 Remove the cover from the 231/4004A adaptor and slip it over one of the wires, also slip one $12.5 \mathrm{~mm} \times 38 \mathrm{P} . \mathrm{V} . C$. sleove uver one wire.
2. 2 Insert the tags furmed by the $1 P$ l $8051 y$ clampe into the slote at each ond of the adaptor uaing the slota located at opposite alde to oponing and solder in position, avoiding excess solder which would interfere with fitting of cover. 2.3 Solder together the imber conductors and cut off any superfluous wire.

民. 4 Replace the covor and alip the r.V.S. aleeve over the adaptor.
3.0 JOINTING CNE CABLE TC a $219 / 4003$ S SOCKBT (SCRKE,.ED).

Where connoctor is required for use external to unit, a apecial terminatine sleeve, $1 P .718000$, will be called for, this will require to be slipped on to cable before preparifik to para.l.0. above.

For intornal or interchassis ise the terminatine sleove wll be synthetic

```
2.O JOINTING OF CTNNEGTION TO SCREEN OF LC.II185
    THE ENO OF THE LC ||85 MUST FIRST BE PREPARED AS SPECIFIED ON 1O-15 ABOVE.
2 I RFNOVE :HE INOULATIO: F#,M A IENMTH OF T/OI2 "MML PVC. FED WIRE FOR A
    DISTANCE ". 3".
22 BINE T E BARED CONDUCTOR, OF THE T/OI2 3GR 4 TURAS ROUND THE FYPOSED COPPER
    BRAIDING TF YHE LC.HIBS AND SOLDER. IMM: I, TI LY THE JOINT IS C:JMPLETELY "WETTED"
    WITH S' ', THE RON SHOLLO BE MEN:VED AND ALL FXCEES SOIDER SHANEN OFF.
        IT UF, "NTIAL THMT THIS EOLEERINC SHOJLD BF CARFIFD OUT AS QUICKLY AS POSSIBLE
        -m A.C MF!*N, T IF POL,THENE NLER THE .OFWER BRMD.
2& , "F N. SIPEKH...S BRAI: ET CARE BEIPG TAKEN N:T IO LEAVE ANY STRAND
    WHIKM N: WT SJBSE; & M Y A.SE: SHOR: C.R:'9
2.4 LOUTR , WPLETED LINT WITH LEEV"LF.94924'SEE FIG 2.J
2.5 TO MAA. CINVETION TO TAG OF AF:ARATUS:-PLACE INSERT ON TL:O OF APFARATUS,
    BINP CHN'IFF, NOULT' &OUA INSERT AND TAG AM: SOLDER ALL TOGTTHER.
```

 LPQ49-4 SLEFVE

FIG. 2


```
34 COVER C MPLETED UNTS WITH S_EEVE LP.949&4 TAXIN. GAME THRT ITE RFE F.V
```



```
IS TU MAXE CONNECTION TO TAG OF APPARATUS:- F-ACE INSERT ON TAG OF AFPARATJS
```


FIG.IOa

C'J.ECTIO. C= - 1165

UVIAACIC 32
TC MSCA:PARAT:

- - - -
$E \subseteq .7968$
© HT 2
$1 \mathrm{~m} / \mathrm{m}$ BORE PI.C SLEEVING R\& D

 0
i
i
i

 POLYTMLIF INSU-AT ON ANC INDER THE CUPPER SCREENING

FIG 1.

20 JOMTHN OF CONAECTON TO SCREEN OF LC. 11185

THE END OF THE LC $\| 185$ MUST FIRST BE PREPARED AS SPECIFIED ON $1 O-15$ ABOVE.
? I RFAOVE THE INUULATIO: PE:MAIEMAT: OF T/OI2. $\because M M L P V C$. FED WIRE FOR A DISTANCE "ir 3"

22 BINE ! E BARED CONDUCTGR, OF THE $7 / O 123$ SR 4 TURAS ROUND THE FXPOSED CUPPER BRADING TF THE LC.IIISS AND SOLDER. IMM: HIT: LY THE JOINT IS C:INPLETELY "WETTED" WITH S: " THE RON SHOLLD BE HE: VED AND ALL EXCESS SOLDER SHAXEN OFF. IT $:$:NTAL THT THIS SOLEFRING SHOJLO AF CARDFD OUT AS QUICKLY AS POSSIBLE

2.4 COVTR UPLETED JINT WITH LLEEV'LF. 94924 SEE FIG2.1
2.5 TO MAA, CONVETION TO TAG OF APIARATJS:- PLACE INSERT ON TI., OF AFFARATUS BINE CHNRF, NOUCT \& ROUY INSERT AND TAG AN: SOLDER IUL TOGFTHER.

LP949. 4 SEEVE

FIG. 2

Thin AR \because MinivD TOCETHE It. SRECT

