Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Radar). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same size and alignment. I then run Omnipage (OCR) to generate the searchable text and then generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you personally - I know that I would have liked to have found some of these files years ago - they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.
PRELIMINARY: 6/13/80
REVISION 1: $2 / 14 / 81$
REVISION 2: $6 / 12 / 81$

Prepared by:
John Schabowski, Microprocessor Systems Engineer

TABLE OF CONTENTS
TITLE
SHEET NO.
1.0. SCOPE
1.1 Bescription
1.2 Characteristice
2.0 ARCHITECTURE
2.1 Onmory Allocation
2.2
2.2.1
2.2.2.
2.2.2.1
2.2.2.2
2.2.2.3
2.3
2.3 .1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.2
2.3.2.1
2.3.2.2
2.3.3
2.3.3.1
2.3.3.2
2.3 .4
2.3 .5
2.3.6
2.3.7
2.3.7.1
2.3.7.2
2.3.7.3
2.3.7.4
2. 3.7 .5

Unterfaces
In eming dintarface
Inemory Read θ parations
Memony ir rite Operations
Oirect Memory Access
I neterrupts.
Extermal intarrupt Requasta cinterrupet Leve2 O (RESET)
Non-mashable intarrupt (NMI)
I nterrupet Leveld I through 15
Intermally \&enerated enterruyets
Mace l mstruction Oetection (MID) d aterrupt Arithmatic θ verfeow dinterrupt
Communication Registar Unit d siterface
Single Bit $\subset R U$ Oporationd
Onultiple Bit $\subset R U$ Oparations
rait state Yeneration
External inctruetions
Internal ALU/Other Oparatione Oycles
Special Signals
9995 SE/9990- Bigmal
DESTWRITE fignal
FREEZE- Siznal
IACK signal
MID Aigmal
3.0
3.1 Definition
3.2 Addressing Modes
3.2.1 Workspace Register Addressing
3.2.2 Workspace Register Indirect Addressing
3.2.3 Workspace Register Indirect Auto IncrementAddressing
3.2.4 Symbolic (Direct) Addressing
3.2.5 Indexed Addressing3.2.6 Immediate Addressing
\qquad
3.2.7 . Program Counter Relative Addressing
3.2.8 CRU Relative Addressing
3.3 Definition of Terminology
3.4 Status Register Manipulation on.
3.5 Instructions
3.5.1 Dual Operand Instructions (Multiple Addressing for Source and Definition)
3.5.2 Dual Operand Instructions (Multiple Addressing for Source)
3.5.3 Signed Multiply and Divide Instructions
3.5.4 Extended Operation (XOP) Instruction
3.5.5 Single Operand Instructions
3.5.6 CRU Multiple Bit Instructions
3.5.7 CRU Single Bit Instructions
3.5.8 Jump Instructions
3.5.9 Shift Instructions
3.5.10 Immediate Register Instructions
3.5.11 Internal Register Load Immediate Instructions
3.5.12 Internal Register Load and Store Instructions
3.5.13 Return Workspace Pointer (RTWP) Instruction
3.5.14 External Instructions
3.5.15 MID Interrupt Opcodes
3.6 Instruction Execution
3.6.1 Microinstruction Cycle
3.6.2 Execution Sequence
3.6.3 Eughion Instruction Execution Times

5.0 ELECTRICAL SPECIFICATIONS
5.2 Rumand Recommended Operating Conditions

5.3.1 General
5.3.2 Clock Characteristics
5.3.2.1 Internal Oscillator
5.3.2.2 External Clock Source
6.0 MECHANICAL SPECIFICATIONS

1. Status Register Bit Definitions
2. Dedicated Workspace Registers
3. 9995 SE Pin Description
4. Interrupt Level Data
广.
5. 9995 SE External Instruction Codes
6. Definition of Terminology
7. Instruction Execution Times
8. 9995 SE Maximum Ratings
9. $\quad 9995$ SE Recommended Operating Conditions
10. 9995 SE Electrical Characteristics
11. 9995 SEE Switching Characteristics

FİGURE	IITLE	SHEET NO.
1.	Word and Byte Formats	
2.	9995 SE Memory Map	
3.	9995 SE Block Diagram	
4.	9995 SEJ Flow Chart	
5.	Status Register Bit Assignments	
6.	Workspace Registers Usable as Index Registers	
7.	Workspace Pointer and Registers	
8.	19995 SE Memory Interface	
9.	9995 SE Memory Read Cycle	
10.	9995 SE Memory Write Cycle	
11.	9995 SEl Hold State	
428		
-	Weit state femeretion Fenture	
12.	9995 SE RESET- Signal Timing Relationships	
13.	9995 SE MMI- Signal Timing Relationships	
47		
14.	9995 SE CRU Interface	
-		
15.	999\% SEE CRU Input Cycle	
16.	19995 SE CRU Output Cycle	

17. Single Bit CRU Address Development
18. LDCR/STCR Data Transfers
19. Execution Sequence Example
20. 9995 SE Pin Assignments
21. 9995 SE Clock Timing
22. $\quad 9995$ SE Memory Interface Timing
23. 9995° SE CRU, External Instruction Interface 'Timing
24. 9995 SE HOLD-, RESET-, and NMI- Timing,
25.
26. Timing of Special Signals
品保
27. Switching Characteristics Test Load Circuit
28. Measurement Points for Switching Characteristics
29. Internal Oscillator
30. External Oscillator
31. 9995 SE Mechanical Data
32. Wait State Generation For Memory, $\dot{C R U}$, and External 20. Instruction Cycles For Invaking/Inhibiting Automatic First Wait State Generation Feature 21. $9995 \mathrm{sE} / 9990$ - Signal Effect On Memory Read Cycles 22. 9995 sEj9990-. signal Effect on Memory Write Cycles 23. DESTWRITE Signal Characteristics
33. FREEZE-Signal Characteristics
1.0 SCOPE

This specification establishes the characteristics and performance requirements of the TMS 9995 System Emulator (9995 SE).
1.1 Description

The 9995 SE is a single implementation Λ (N-channel silicon-gate MOS technology) of the CPU (central processing, unit) of the TMS 9995 microprocessor: The 9995 SE, when combined with external circuitry that implements the on-chip, "peripheral functions of the $T M 59995$ is intended to be the vehicle. by which a full-function real-timal comgsetely controllable in -circuit emulator design can be executed:
1.2 Characteristics

The characteristics of the 9995 SE are identical to those of the TM' 9995 EXCEPT that the 9995 SE has:
V. No on-chip RAM
\checkmark. No on-chip Fimer/Event Counter (Oecrementer)
?. No on-chip Flags
V-16-7Bit Memory Data Bus (os honan 8.bit Dart in:

- 18 Prioritized Atardware in interrupts (o shr 7)
- Extra Control Signals For Emulation

The basic word of the 9995 SE architecture is 16 bits in length. \rightarrow Theor-16 shown in Figure 1 . dofinedas All words (Instruction opcodes, operand addresses, word-length data, etc.) are restricted to be on even address boundaries (i.e. the most significant half or 8 bits resides at an even address and the least significant half resides at the subsequent odd address). Any memory access involving a full word that is directed by software to utilize an odd address to begin the word access with will result in the word starting with this odd address minus one to be accessed.

The instruction set of the $9995^{-9} \leq E$ allows both word and byte operations. Byte instructions may address either byte as necessary. A h au accesedmaniaf tire

The 9995 SEmemory map is shown in Figure 2. Shown are the locations in the memory address space for the Reset, NMI, other interrupt and XOP trap vectors. (0)

The block diagram of the 9995 SE is shown in Figure 3. A flow chart, representative of the 9995 SE functional operation, is shown in Figure 4_{i}
2.2 .1

Arithmetic Logic Unit
The arithmetic logic unit (ALU) is the computational component of the 9995 SE. It performs all arithmetic and logic functions required to execute instructions. The functions include addition, subtraction, $A N D, O R$, exclusive $O R$, and complement. A separate comparison circuit performs the logic and arithmetic comparisons to control bits 0 through 2 of the status register. The ALU is arranged in two 8-bit halves to accommodate byte operations. Each half of the ALU operates on one byte of the operand. During word operand operations, both halves of the ALU function in conjunction with each other. However, during byte operand processing, results from the least significant half of the ALU are ignored. The most significant half of the acLU performs all operations on byte operands so tint the status circuitry used in word operations is also used in byte operations.
circuitry used in word operations is also used in by te operations.

The following three (3) internal registers are accessible to the user (programmer) :
(A) Program Counter (PC)
(B) Status Register (ST)
(C) Workspace Pointer (WP)

Other internal registers which are utilized during instruction acquisition or execution are inaccessible to the user.

2.2.2.1 Program Counter

The Program Counter (PC) is a 15 -bit counter that contains the word address of the next instruction follpwing the instruction currently executing. The microprocessor references this address to fetch the next instruction from memory and increments the address in the PC when the new instruction is executing. If the current instruction in the microprocessor alters the contents of PC, then a program branch occurs to the location specified by the altered contents of PC. All context switching operations plus simple branch and jump instructions affect the contents of PC.

2.2.2.2 Status Register

The status register (ST) is a fully implemented 16-bit register that reports the results of program comparisons, indicates program status conditions, and supplies the arithmetic overflow enable and interrupt mask level to the interrupt priority circuits. Each bit position in the register signifies a particular function or condition that exists in the microprocessor. Figure 5 illustrates the bit position assignments. Some instructions use the status register to check for a prerequisite condition; others affect the values of the bits in the register; and others load the entire status register with a new set of parameters. Interrupts also modify the status register. The description of the instruction set later in this document details the effect of each instruction on the status register (see section 3.5). Table 1 lists each bit and identifies what conditions affect that bit.

2.2.2.3 Workspace

The 9995 SE uses blocks of memory words, called workspaces, for instruction operand manipulation instead of internal hardware registers. A workspace occupies 16 contiguous words in any part of memory that is not reserved for other use. The individual workspace registers may contain data or addresses, and function as operand registers, accumulators, address registers, or index registers. Some workspace registers take on special significance during execution of certain instructions. Table 2 lists each of these dedicated workspace registers and the instructions that use them. Figure σ defines the workspace registers that are allowed

Abstract

to be used as index registers. A largef number of workspaces may exist in memory simultaneously to provide a high degree of software flexibility.

Workspace Pointer

To locate the workspace in memory, a hardware register called the workspace pointer (WP) is used. The workspace pointer is a 16 bit register that contains the memory address of the first word in the workspace. The address is left justified with the 16 th bit (LSB) hardwired to logic zero. The 9995 SE accesses each register in the workspace by adding two times the register number to the contents of the workspace pointer and initiating a memory request for that word. Figure 7 illustrates the relationship between the workspace pointer and its corresponding workspace in memory.

For instructions performing byte operation's, use of the workspace register addressing mode (see section 3.2) will result in the most significant byte of the workspace register involved to be used as the operand for the operation. Since the workspace is also addressable as a memory address, however, the least significant byte may be directly addressed, if desired, using any of the more general megory addressing modes.

Context Switching
The workspace concept is particularly valuable during operations that require a context switch, which is a change from one program environment to another, as in the case of a subroutine or an interrupt service routine. Such an operation using a conventional multi-register arrangement requires that at least part of the contents of the register file be stored and reloaded using a memory cycle to store or fetch each word. The $9495 \mathrm{~s} E$ accomplishes this operation by changing the workspace pointer. A context switch requires only three store cycles and fetch tw cycles, exchanging the program counter, status register and workspace pointer. After the switch, the workpace pointer contains the starting address of a new 16 -word workspace in memory for use in the new routine. A corresponding time saving occurs when the original context is restored. Instructions in the 9995 SE that result in a context switch include:- Branch and Load Workspace Pointer (BLWP), Return from Subroutine (RTWP) and the Extended Operation (XOP) instruction. All interrupts also cause a context switch by forcing the 9995 SE to trap to a service subroutine.

Each 9995 SE system interface uses one or more of the signals from one or more of the signal groupings given in the pin description list in Table 3. Each interiace is described in detail in the following paragraphs.
2.3.1 Memory interface

The signals used in the 9995 SE basic interface to system memory are shown in Figure 8.
2.3.1.1 Memory Read Operations

Timing relationships of the memory read sequent are shown in Figure 9. Completion of a memory read cycle and/or generation of Writ states is. determined by the READY input as detailed in Section 2,3.4. Note that MEMEN- remains active (low) between consecutive memory operations. Also during memsing read cycles that an instruction. opcode is being read, I AQ will be asserted as shown ing Figure' 9 .
If an instruction directs that a byte read is to be performed, WORD/BYIE-will be low and only the flyte specifically addressed will be reach on the half of the data bus that corresponds to the byte address.
2.3.1.2 Memory write θ perations

Timing relationships of the memory write sequence are ste own in Figure 10 . Completion of a memory wite cycle and /or generation of wait states is determined by the READY input os detailed in. Section 2. 3.4. Note that MEMEN- remains active (low) between consecutive memory operations.
If an instruction directs that a byte wite is to be performed, WORD/ BYTE- will be low and write data will be valid only on the la self of the date bus that corresponds to the byte specifically addressed. External logic must use WORD/ BYTE. to maintain the integrity of the contents of the other byte in the word.
Certain special signals are applicable to memory write operations as detailed in section 2.3.7.

 finct, followad by the lanst-aignifinant (odd) bifter

Direct Memory Access

The 9995 SE Hold state allows both external devices and the 9995 SE
to share a common external memory. To gain direct memory
access (DMA) to the common memory, the external device first requests the 9995 SE to enter a Hold state by asserting (taking low) the HOLD- input. The 9995 SEwill then enter a Hold state following completion of the cycle (either memory, CRU, external Instruction, or interaal ALU cycles) that it is currently performing. Note however, that a Hold state will not be entered
 sogessodu;
 a CRU cycle.
and control into specifie into specific
states?

Upon entry of a Hold state, the 9995 SE!puts its address, data, وoinm, asserts HOLDA-. The external device can then utilize these signal lines to communicate with the common memory. After the external device has completed its memory transactions, it releases HOLD, and the 9995 SE. will continue instruction execution at the point where it had been suspended. Timing relationships for this sequence are shown in Figure 11.

In order to allow DMA loading of external memory on power-up, the 9995 SE will not, begin instruction execution after a Reset state until HOLD has been removed if HOLD was active (low) at the time RESET was taken from low to high (RESET released).

 whers

The 9995 SE implements 18 prioritized, vectored interrupts, some of which have of which are user-definable. Table 4 defines the source (internal or exernal), assignment, priority level, trap vector location in memory, and enabling/resulting status register interrupt mask values for sach interrupt.

The $: 9995$. 95 will grant intercupt requests only between instructions except for (Level 0) Reset, which will be granted whenever it is requested (i.e. in the middle of an instruction). The basic sequence that the 4995 se performs to service all interrupt requests is as follows (Note, that the 9995 SE performs additional functions for certain interrupts, and these functions will be detailed in subsequent sections):
(1) Prioritize all pending requests and grant the request for the highest priority interrupt that is not masked by the current value of the interrupt mask in the status register or the instruction that has just been executed (See Section 3.5 for these instructions).
(2) Make a context switch using the trap vector specified for the interrupt being granted.
(3) Reset ST7 through ST11 in the status register to zero, and change the interrupt mask (ST12 through ST15) as appropriate for the level of the interrupt being granted.
(4) Resume execution with the instruction located at the new address contained in the PC, and using the new WP. All interrupts will be disabled until after this first instruction is executed, unless: (a) Resety is requested, in which case it will be granted, or (b) the interrupt being granted is the MID request and the NMI interrupt is requested simultaneously, in which case the NMI request will be granted before the first instruction indicated by the MID trap vector will be executed.

Note that this sequence has several important characteristics. First of all, for those interrupts that are maskable with the interrupt mask in the status register, the mask will get changed to a value that will permit only interrupts of higher priority to interrupt their service routines. Secondly, status bit ST10 (overflow interrupt enable) gets reset to zero by the servicing of any interrupt so that overflow interrupt requests cannot be generated by an unrelated program segment. Tirirdly, the disabling of other interrupts until after the first instruction
of the service routine is executed permits the routine to disable other interrupts by changing the interrupt mask with the first instruction (the exception with MID and NMI is explained in Section 2.3.2.2X). Lastly, the vectoring and prioritizing scheme of the 9995 SE permits interrupts to be automatically nested in most cases.- If a higher priority interrupt occurs while in an interrupt service routine, a second context switch occurs to service the nigher priority interrupt. When that routine is complete, a return instruction (RTWP) restores the saved context to complete processing of the lower priority interrupt. Interrupt routines should therefore terminate with the return instruction to restore original program parameters.

Additional details of the 9995 jE interrupts are supplied in the following paragraphs.
2.3.2.1 it External Interrupt Requests
:-
Each of these interrupts is requested when the designated signal is supplied to the 9995 SE.
2.3.2.1.1 Interrupt Level 0 (RESET-)

Interrupt Level 0 is dedicated to the RESET= input of the
9995 SE. When active (IOW), RESET- causes the 9995 SE to stop all control instruction execution and to inhibit (take torlogic level) Them 9995 se will remain in this Reset state as long as RESET- is active.

When RESET-. is released (low-to-high transistion), the 9995 SE performs a context switch with the Level 0 interrupt trap vector (WP and PC of trap vector are inkmemory word addresses 0000% and 0002 x , respectively). Note that the old WP, PC and ST are stored in registers 13, 14, and 15 of the new workspace. The
9995 SE then resets all status register bits, then

 execution with the new PC.

Timing relationships of the RESET- signal are shown in Figure D
Release of the RESET- signal is also the time at which the Automatic First Wait State function of the 9995 sE can be invoked (see Section 2.3 .4).
2.3.2.1.2 Non-Maskable Interrupt (NMI-)

The NMI- signal is the request input for the NMI level interrupt and allows ROM loaders, single-step/breakpoint/maintenance panel functions, or other user-defined functions to be implemented for the 9995 SE, This signal and its associated interrupt level are
named "LOAD" in previous 9900 Family products.
13 NMI- being active (low) according to the timing illustrated in Figure $\%$ constitutes a request for the NMI level interrupt. The 9995 EE services this request exactly according to the basic sequence previously described, with the priority level, trap vector location, and enabling/resulting status register interrupt mask values as defined in Table 4. Note that the 9995 5E will always grant a request for the NMI level interrupt immediately after execution of the currently executing instruction is completed since MMI is exempt from the interrupt-disabling-afterexecution characteristic of certain instructions and also the current value of the interrupt mask.
2.3.2.1.3 Interrupt Levels 1 Through 15

INTREQ - and ICO through IC 3 are the request impute for interrupt levels 1 , through 15. A. request is initiated by taking INTREQ- active (low) and simultaneously supplying the code for the desired interrupt level on ICO through $I<3$. The 9995 SE services each of these requests exactly according to the basic sequew previously described, with the priority, level, traps vector locations, and enabling/results i status register interrupt mask values as defined in Table 4. all interrupt requests should remain active until recognized lit the processor in the interrupt service routine The individual service routines then reset the interrupt requests prior to returning from the routines.

Each of these interrupts is requested when the designated condition has occurred in the $9495 \rightarrow$.
2.3.2.2.1 Macro Instruction Detection (MID) Interrupt

The acquisition and attempted execution of an MID interrupt opcode will cause the MID level interrupt to be requested before execution of the next instruction will begin (MID interrupt opcodes are defined in Section 3.5.15). In addition to requesting the MID level interrupt, the MID Fag io
 exactly according to the basic sequence previously described, with the priority level, trap vector location, and enabling/ resulting status register interrupt mask values as defined in Table 4. Note that the 9985 SE will always grant a request for the MID level interrupt since MID is not affected by the interrupt mask and is higher in priority than any other interrupt except for Level 0 , Reset. If the NMI interrupt is requested during an MID interrupt context switch, the MID interrupt context switch will be immediately followed by the NMI interrupt service sequence before the first instruction indicated by the MID interrupt is executed. This is done so that the NMI interrupt can be used for a single-step function with MID opcodes. Servicing the MID interrupt request is viewed as "execution" of an MID interrupt opcode, and NMI will allow the 9995 SE to be halted immediately after encountering an MID opcode.
and also the external Level 2 request.

It should also be noted that the MID interrupt shares its trap vector with ${ }^{\text {with }}$, section $2.3 \cdot 2.2 .2^{2}$ The interrupt subroutine beginning with the PC of this vector mould weminememrarion to determine the

interrupt subpoutino that hand leo MIP

The MID interrupt has basically two applications. The MID opcodes can be considered to be illegal opcodes and the MID interrupt is then used to detect errors of this nature. The second, and primary application of the MID interrupt is to allow the definition of additional instructions for the 9995 SE . MID opcodes are used as the opcodes for these macro instructions and software in the MID interrupt service routine emulates the execution of these instructions. The benefit of this implementation of macros is that the macro instructions can be implemented in microcode in future processors and software will then be directly transportable to these future processors.

It should be noted that the 9995 SEinterrupt request processing sequence does create some difficulties for re-entrant usage of

2.3.2.2.2 Arithmetic Overflow Interrupt

The occurrence of an arithmetic overflow condition, defined as status register bit 4 (ST4) getting set to one (See Table 1 for those conditions that set ST4 to one) can cause the Level 2 interrupt to be requested. Note that this request will occur at a time such that if the request is granted, it will be granted immediately after the instruction that caused the overflow condition. The 9995 SEservices this request exactly according to the basic sequence previously described, with the priority level, trap vector location, and enabling/resulting status register interrupt mask values as defined in Table 4.

In addition to being maskable with the interrupt mask, the Level 2 overflow interrupt request is enabled/disabled by status register bit 10 (ST10), the Arithmetic Overflow Enable Bit (i.e., ST10=1 enables overflow interrupt request; ST10=0 disables overflow interrupt request). If servicing the overflow intarrupt request is temporarily overridden by the servicing of a higher priority interrupt, the occurrence of the overflow condition will be retained in the contents of the status register (i.e. ST4=1), which is saved by the higher priority context switch. Returning from the higher priority interrupt subroutine via an RTW? instruction causes the overflow condition to be reloaded into status register bit ST4 and the overflow interrupt to be requested again (upon completion of RTWP instruction). The arithmetic overflow interrupt subroutine must reset ST4 or ST10 to zero in the status word saved in register 15 before the routine is complete to prevent generating another overflow interrupt immediately aiter the return.

It should also be noted that the Level 2 arithmetic overflow interrupt shares its trap vector with the MID interrupt 6 sention

 IEVEI वCewng (Figurentit.
 onotitntera request ior a-ievel 3 internunt,

The 9995 sE communication register unit (CRU) is an instruction (software) driven bit-oriented I/O interface. The CRU can directly address, in bit-fields of one to sixteen-qits, up to 32768 input bits and 32768 output bits. The 9995 SE executes three single-bit and two multiple-bit instructions. The single-bit instructions are: TEST BIT (TB), SET BIT TO ONE (SBO), and SET BIT TO ZERO (SBZ); the multiple-bit instructions are: LOAD CRU (LDCR), and STORE CRU (STCR). Details of these instructions are given in Sections 3.5.6 and 3.5.7.

The signals used in the 9995 SE interface to the CRU are shown in Figure 8614.
Timing relationships of the CRU input cycle and the CRU output cycle are shown in Figures 15 and 16 , respectively. Completion of each $\subset R U$ cycle and/or generation of Wait

To
 TAMS 9995 laves MEMEN, high, out

(LDCR or STER instructions)

For multiple bit transfers Λ these input and output cycles are repeated ${ }^{\text {dentil transfer of the entire field of data bits }}$ specified by the CRU instruction being executed has been accomplished. Hold states can occur between these cycles, but will never be granted daring any bit cycle. Single Bit CRU Operations

The 9995 SE performs three single-bit CRU functions: TEST BIT (TB), SET BIT TO ONE (SBO), and SET BIT TO ZERO (SBZ). The SBO instruction performs a CRU output cycle with logic one for the
data bit, and the SBZ instruction performs a CRU output cycle with logic zero for the data bit. A TB instruction transfers the addressed CRU bit from the CRUIN input line to bit 2 of the status register (bit ST2, the EQUAL bit).

The 9995 SEdevelops a CRU bit address for the single-bit operations from the CRU base address contained in workspace register 12 and the signed displacement count contained in bits 8 through 15 of the instruction. The displacement allows two's complement addressing from base minus 128 bits through base plus 127 bits. The base address from WR12 is added to the signed displacement specified in the instruction and the result is placed onto the address bus. Figure $\underset{\sim}{2}$ illustrates the development of a single-bit CRU address.

Multiple Bit CRU Operations

The 9995 SE performs two multipleatit CRU operations: store communications register (STCR) and load communications register (LDCR). Both operations perform a data transfer from the CRU-tomemory or from memory-to-CRU as illustrated in Figure 23,18. Although the figure illustrates a full 16-bit transfer operation, any number of bits from 1 through 16 may be involved.

The LDCR instruction fetches a word from memory and right shifts it to serially transfer it to CRU output bits. If tie LDCR involves eight or fewer bits, those bits come from the right-justified field within the addressed byte of the memory word. If the LDCR involves nine or more bits, those bits come from the right-justified field within the whole memory word. Register 12, bits 0 through 14, defines the starting bit address. When transferred to the CRU interface, each successive bit receives an address that is sequentially greater than the address for the previous bit. This addressing mechanism results in an order reversal of the bits; that is, bit 15 of the memory word (or bit 7) becomes the lowest addressed bit in the CRU and bit 0 becomes the highest bit in the CRU field.

A STCR Instruction transfers data from the CRU to memory. If the operation involves a byte or less transfer, the transferred data will be stored right-justified in the memory byte with leading bits set to zero. If the operation involves from nine to 16 bits, the transferred data is stored right-justified in the memory word with leading bits set to zero. When the input from the CRU device is complete, the lowest addressed bit from the CRU is in the least significant bit position in the memory word or byte.

Wait states can be generated for memory cycles, man sum a CRU cycles, for the 9995 SE using the READY input. A Wait state is defined as extention of the present cycle by one CLKOUT cycle. The timing relationship X of the READY input to the memory interface and the CRU interface signals is shown in Figure 19. 7 . th th er acc Wi

The Automatic First Wait State Generation feature of the 9995 SE allows a Wait state to be inserted in each external memory cycle, regardless of the READY input, as shown in Figure X. The Automatic First Wait State Generation feature can be invoked when RESET is asserted. If READY is active (high) when RESET goes through a low-to-high transition, the first Wait state in each memory cycle will be automatically generated. If READY is inactive (low) when RESET goes through a low-to-high transition, no Wait state will be inserted automatically in each memory cycle. There is a one and one-half CLKOUT.cycle time minimum setup time requirement on READY before the RESET low-to-high transition. The recommended external circuitry for invoking or inhibiting the Automatic First Wait State Generation
20. Feature is shown in Figure Note that this feature does not apply to eithon-intermeit memory cycles or external instruction cycles.
Wait states cannot be generated during squat cycles, and the READY input is ignored during these cycles.

2.3.5 External Instructions

The 9995 SE has five external instructions that allow user-defined external functions to be initiated under program control. These instructions are CXON, CKOF, RSET, IDLE, and LREX. These mnemonics, except for IDLE, relate to functions implemented in the 990 minicomputer and do not restrict use of the instructions to initiate various user-defined functions. Execution or an IDLE instruction causes the 9995 SE to enter the Idle state and remain in this state until a request occurs for an
interrupt level that is not masked by the current value of the Interrupt mask in the status register. (Note that the Reset and NMI interrupt levels are not masked by any interrupt mask value). When any of these five instructions are executed by the 9995 SE, the 9995 SE will use the CRU interface (See Figure No to perform a cycle that is identical to a single bit CRU output cycle (See Figure 21) except for the following: (1) the address being output will be non-specific, (2) the data bit being output will be non-specificind (3) a code, specified in Table X5, will be output on DO-D2 to indicate the external instruction
 9995 SE is in the Idle state, cycles. With the Idle code will occur repeatedly until a request for an interrupt level that is not masked by the interrupt mask in the status register occurs.

A Hold state can occur during an Idle state, with entry to and return from the hold state occurring at the Id ie code cycle boundaries (See Section for details of entry to and return from the Hold state). (2.3.1.3

When the 9995 S关is performing an operation internally and is not using the memory, CRU, or external instruction interfaces
 defined as using biremeny and ondintertereog or is not in the Hold state, the 9995 SEE will, for as long (as many CLKOUT cycles) as the operation takes, do the following with its interface signals: (1) output a nonspecific address on A0-A14 $D 0-1$ and A15/CRUOUT, (2) output non-specific data on 2089 , (3) output logic level high on MEMEN-, DBIN-, and whee Mandarin (4) output logic level low on Ferret, and (5) ignore the READY and CROIN inputs. The HOCD input is still active, however, as the 9995 SEan enter a Hold state while performing an internal ALU/other operation. Also, all interrupt inputs are still active.
2.3.7 Special Signals

The signals described in, the following sections are required for emulation purposes.
2.3.7.1 9995.SE/9990- Signal

The 9995 SE/9990- signal, which is permanently connected to either Vcc or ground in a systen tells the 9995 SE device which memory mop to use with ith internal memory control VCC the 9995 SE will use one uycle, or two cycle memory word accesses, according to the on-chip/off chip memory addresses of the 9995, as shown in Tigures 21 and 22 . Frhen 9995 SE 19990 - is conrected to ground the $99955 E$ will always use, one cycle memory word accessa as shown in Figures 21 and 22 .
it phould be noted, that whenever a two cycle word access is taking place (WORD/BYTE-=1) $9995 S E / 9990$ - connected to $V \subset C$, and address of the word being accessed is in the off -chip memory address space of the TMS 9995) a 9 told state request will not be granted between the two consecutive aycles.
also, whenever 9995 SE/9990- is connected to vce and the address of the word or byte being accessed is in the on-ehip memory address space of the TMS 9995 the first 2 rait state of the access is determined by the READY ingut regardless of whether the automatic trisst rrait o tate Hemeration feature has been inwoked or irehibited.
9995SE/9990- does not offect any non-memary cyeles.
2.3.7.2 DESTWRITE \&ignal

The DESTWRITE outpint becomes active (high) during an instruction ophode prefotch that oceurs wh the results of the currently expeuting instruction have yet to be written, to thair designated destination address. Timing relstionshifs of this sequence are shoin in tigure 23 . DESTWRITE is low at all other times.
2.3.7.3 FREEZE-\&ignal

The FREEZE- input signal conditions the 9995 SE for on immediately following RESET.. Th Conditioning consists of ensuring that during the following RESET-. The 9995 SE inhibits (KNepre at inactive logic level) WE-, DBIN-, MEMEN-, and CRUCLK, and the 9995 SE will Mot change the contents of its PC, WP, of $S T$ registers. Timing. relationships of the FREEZE-sigral are, shown in Figure 24 .
2.3.7.4 IACK Signal

The IACK signal provides a means to acknowledge (reset) interrupt. stimuli. IACK is active (high) when the 9995 SE is reading the WP of the vector during an interrupt (any interrupt, including, RESET, N. I and MID) context switch. TAck is low at all other times. The timing of IACK is exactly the same as AO-A14. for the memory cycle to which it pertains..
2.3.7.5 MID Signal

The MID -signal provides a means of setting an externally ingolemented MID Flag. MID is active (high°) when the 9995 SE ii reading the wp of the vector during an MID inter onset context vuitcA. MID is low at all other times. The timing of MID is exactly the same as. Ao-Al4 for the memsing cycle to which it pertains.

Definition

Each 9995 SE instruction performs one of the following operations:

- Arithmetic, logical, comparison, or manipulation operations on data
- Loading or storage of internal registers (program counter, workspace pointer, or status)
- Data transfer between memory and external devices via . the CRU
- Control functions

- Addressing Modes

The 9995 SE instructions contain a variety of available modes for addressing random memory data (e.g., program parameters and flags), or formatted memory data (character strings, data lists, etc.). These addressing modes are:

- Workspace Register Addressing
- Workspace Register Indirect Addressing
- Workspace Register Indirect Auto Increment Addressing
- Symbolic (Direct) Addressing
- Indexed Addressing
- Immediate addressing
- Program Counter Relative Addressing
- CRU Relative Addressing

The following figures graphically describe the derivation of effective address' for each addressing mode. The applicability of addressing modes to particular instructions is described in Section 3.5 along with the description of the operations performed by each instruction. The symbols following the names of the addressing modes ($R,{ }^{*} R, \ldots{ }^{*} R+\ldots$ OLABEL or ETABLE (R) are the general forms used by 9995 SE assemblers to select the addressing modes for register R .
'Norksoace Register Indirect Addressing, *R
Workspace Register R contains the address of the operand.

The Workspace Register Indirect addressing mode is specified by setting the two-bit T-field (TS or TD) in the instruction word equal to 01.
3.2.3 Worksoace Register Indirect Auto Increment Addressing, *R+

Workspace Register R contains the address of the operand. After acquiring the address of the operand, the contents of Workspace Register R are incremented.

The Workspace Register Indirect Auto Increment addressing mode is specified by setting the two-bit T-field (TS or TD) in the instruction word equal to 11.
3.2.4 Symbolic (Direct) Addressing, ELABEL

The word following the instruction contains the address of the operand.

The Symbolic addressing mode is specified by setting the two-bit T-field (TS or TD) in the instruction word equal to 10 and setting the corresponding S or D field equal to 0 .

Program Counter Relative Addressing
The eight-bit signed displacement in the right byte (bits 8 through 15) of the instruction is multiplied by 2 and added to the updated contents of the program counter. The result is placed in the PC.

The eight-bit signed displacement. in the right byte of the instruction is added to the CRU base address (bits 0 through 14 of workspace register 12). The result is the CRU address of the selected CRU bit.

3.3 Definition of Terminology

The terminology used in describing the instructions of the 9995 s is defined in Table $\times 6$.
3.4 Status Register Manioulation

Various 9995 SE machine instructions affect the status register. Figure 5 shows the status register bit assignments. Table 1 lists the instructions and their effect on the status register.
3.5.1 Dual Operand Instructions with Multiole Addressing for Source and Destination Operand

If $B=1$, the operands are bytes and the operand addresses are byte addresses. If $B=0$, the operands are words and the LSB of the operand address is ignored.

The addressing mode for each operand is determined by the T-field of that operand.

T_{S} or TD	S or D	ADDRESSING MODE	NOTES
00	0,1... 15	Workspace register	1
01	0,1...15	Workspace register indirect	
10	0	Symbolic	4
10	1,2... 15	Indexed	2,4
11	0,1... 15	Workspace register indirect auto increment	3

NOTES: 1. When a workspace register is the operand of a byte instruction (bit $3=1$), the left byte (bits 0 through 7) is the operand and the right byte (bits 8 through 15) is unchanged.
2. Workspace register 0 may not be u'sed for indexing.
3. The workspace register is incremented by 1 for byte instructions (bit $3=1$) and is incremented by 2 for word instructions (bit $3=0$).
4. When $T S=T D=10$, two words are required in addition to the instruction word. The first word is the source operand base address and the second word is the destination operand base address.

3.5.2 $\frac{\text { Dual Operand Instructions with Multiple Addressing Modes for the }}{\text { Source Operand and Worksoace Register Addressing for the }}$

Generai format:

The addressing mode for the source operand is determined by the TS field.

T_{S}	S	ADOAESSING MODE	NOTES
00	$0,1 \ldots 15$	Workspace rogister	
01	$0,1 \ldots 15$	Worksoace register indirect	
10	0	Symbolic	
10	$1,2, \ldots 15$	Indexed	1
11	$0,1, \ldots 15$	Workspace register indirect auto increment	2

NOTES: 1. Workspace register 0 may not be used for indexing. 2. The workspace register is incremented by 2 .

MNEMONIC	OP COOE	meaning	RESULT COMPARED TO O	$\begin{aligned} & \text { STATUS } \\ & \text { BITS } \\ & \text { AFFECTED } \end{aligned}$	DESCRIPTION
	012345				
COC	001000	Compart ones corrasponding	No	2	Tust (D) co dotermine if l's are in asch bit position where 1 's are in (SA). If so, ser STZ.
CZC	001001	Compary zeros corresponding	No	2	Test (O) to determine if O 's are in each bit postion where i's are in (SA). If so, set ST2.
XOR	001010	Exclusive OR	Y88	0-2*	$(\mathrm{D}) ¢(S A) \rightarrow(0)$
MPY	001110	Muliply	No	.	Multuply unsigned (0) by unsigned (SA) and place unsigned 32 bit product in 0 (most
			.		, significant) and $0+1$ (least significant). If WR15 is 0 . the next word in memory aiter WR 15 will De used for the least stgnificant hat of the product.
Oiv	001111	Divice	No	4	If unsigned (SA) is less than or equal to unsigned (D), perform no operation and set ST4. Otherwise. divide unzigned (D) and ($\mathrm{O}+1$) bv unsaread (SA). Quotient - (D), remander - ($D+11$. If $D=15$, the next word in memory after WR is will be used ior the remander.

3.5.3 Signed Multioly and Divide Instructions

The addressing mode for the source operand is determined by the TS field.

TS	S	ADDRESSING MODE	NOTES
00	$0,1 \ldots 15$	Workspace register	1
01	0,1 ... 15	Workspace register indirect	1
10	0	Symbolic	1
10	1,2 ... 15	Indexed	1,2
11	0,1 $\ldots 15$	Workspace register indirect auto increment	1,3

NOTES: 1. Workspace registers 0 and 1 contain operands used in the signed multioly and divide operations.
2. Workspace register 0 may not be used for indexing.
3. The workspace register is incremented by 2.

General Eormat:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	1	0	1	1	14	15	15					

The TS and S fields provide multiple mode addressing capability for the source operand. When the XOP is executed, the following transfers occur:
$(4016+4 D) \longrightarrow(W P)$
$(4216+4 D) \longrightarrow(P C)$
$S A \longrightarrow$ (new WR11)
(old WP) \longrightarrow (new WR13)
(old $P C) \longrightarrow$ (new WR14)
$($ old $S T) \longrightarrow$ (new WR15)

After these transfers have been made, ST6 is set to one, and ST7, ST8, ST9, ST10 (Overflow Interrupt Enable), and ST11 ars all set to zero.

The 9995° SE does not service interrupt trap requests (except for the Reset and NMI Requests) at the end of the XOP iffltruction.
3.5.5 Single Operand Instructions

The TS and S fields provide multiple mode addressing capability for the source operand.

MNEMONIC	$\frac{\text { OP CODE }}{0123456789}$	MEANING	$\begin{aligned} & \text { RESULT } \\ & \text { COMPARED } \end{aligned}$ $\text { TO } 0$	$\begin{gathered} \text { STATUS } \\ \text { BITS } \\ \text { AFFECTED } \end{gathered}$	DESCRIPTION
B	0000010001	Branch	No	---	$S A \rightarrow(P C)$
BL	0000011010	Branch and link	No	---	$(P C) \rightarrow($ WR11) ; SA-(PC)
BLWP	0000010000	Branch and load workspace pointer	No	---	$(S A) \rightarrow(W E) ;(S A+2)-(P C)$; (old WP) \rightarrow (new WR13); (old PC) \rightarrow (new WR14); (old ST) \rightarrow (new WR15); The 9995 SEdoes not service interrupt trap requests (except for the Reset and NMI Requests) at the end of the BLW? instruction.
CLR	0000010011	Clear Operand	No	--	$0 \rightarrow$ (SA)
SETO	0000011100	Set to ones	No	---	$\mathrm{FFFF}_{16} \rightarrow$ (SA)
INV	0000010101	Invert	Yes	0-2	$(\overline{S A}) \rightarrow(S A)$
NEG	0000010100	Negate	Yes	0-4	$-(S A) \rightarrow$ (SA)
ABS	0000011101	Absolute value*	No	0-4	$\|(S A)\| \rightarrow(S A)$
SWPB	0000011011	Swap bytes	No	---	(SA), bits 0 thru $7 \rightarrow$ (SA) bits 8 thru 15; (SA), oits 8 thru $15 \rightarrow(S A)$, bits 0 thru 7.
INC	0000010110	Increment	Yes	$0-4$	$(S A)+1 \rightarrow(S A)$
INCT	0000010111	Increment by two	Yes	0-4	$(S A)+2 \rightarrow(S A)$
DEC	0000011000	Decrement	Yes	0-4	$(S A)-1 \rightarrow(S A)$
DECT	0000011001	Decrement by two	Yes	$0-4$	$(S A)-2 \rightarrow(S A)$
$\chi^{* *}$	0000010010	Execute	No	---	Execute the instruction at SA.

*Operand is compared to zero for status bit.
**If additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these words wiil be accessed from PC and the PC will de updated accordingly. The instruction acquisition signal (IAQ) will not be true when the TMS 9995 accesses the instruction at SA. Status bits are afrected in the normal manner for the instruction executed.
3.5.6 CRU Multiple-Bit Instructions

The C field specifies the number of bits to be transferred. If $C=0,16$ bits will be transferred. The CRU base register (WR12," bits 0 through 14) defines the starting CRU bit address. The bits are transferred serially and the CRU address is incremented with each bit transfer, although the contents of WR12 is not affected. $T S$ and S provide multiple mode addressing capability for the source operand. If eight or fewer bits are transferred ($C=1$ through 8), the source address is a byte address. If nine or more bits are transferred ($C=0$, 9 through 15), the source address is a word address. If the source is addressed in the workspace, register indirect auto increment mode, the workspace register is incremented by one if $C=1$ through 8 , and is incremented by two otherwise. If the source is addressed in the register mode, bits $8-15$ are unchanged if the transfer is eight bits or less.

MNEMONIC	OP CODE	MEANING	$\begin{gathered} \text { RESULT } \\ \text { COMPARED } \\ \text { TO } 0 \\ \hline \end{gathered}$	STATUSBITSAFFECTED	DESCRIPTION
	012345				
LDCR	001100	Load communication register	Yes	0-2,5*	Beginning with LSB of (SA), transfer the specified number of bits from (SA) to the CRU.
STCR	0011101	Store communication register	Yes	0-2,5*	Beginning with LSB of (SA), transfer the specified number of bits from the CRU to (SA). Load unfilled bit positions with 0 .

*ST5 is affected only if $1 \leq C \leq 8$.
3.5.7 CRU Single-Bit Instructions

The signed displacement is added to the contents of WR12 (bits $0-14$) to form the address of the CRU bit to be selected.

MNEMONIC	OP CODE	MEANING	$\begin{gathered} \text { STATUS } \\ \text { BITS } \\ \text { AFFECTED } \end{gathered}$	DESCRIPTION
	01234567			
SBO	00011101.	Set bit to one	'-	Set the selected output bit to 1.
SBZ	00011110	Set bit to zero	---	Set the selected output bit to 0.
TB	0000111111	Test bit	2	If the selected CRU input bit=1, set ST2; if the selected CRU input $=0$, set ST2 $=0$.

3.5.8 Jump Instructions'

General Format:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Jump instructions cause the PC to be loaded with the value selected by PC relative addressing if the bits of ST are at specified values. Otherwise, no operation occurs and the next instruction is executed since the PC points to the next instruction. The signed displacement field is a word count to be added to PC. Thus, the jump instruction has a range of -128 to 127 words from memory-word address following the jump instruction.
No ST bits are affected by jump instructions.

MNEMONIC	OP CODE	MEANING	ST CONDITION TO LOAD PC
	01234567		
JEQ	00010011	Jump equal	$S T 2=1$
JGT	00010101	Jump greater than	ST1 $=1$
JH	00011011	Jump high	$S T O=1$ and $S T 2=0$
JHE	00010100	Jump high or equal	STO $=1$ or ST2 $=1$
JL	00011010	Jump low	STO $=0$ and $S T 2=0$
JLE	00010010	Jump low or equal	STO $=0$ or ST2 $=1$
JLT	00010001	Jump less than	ST1 $=0$ and $S T 2=0$
JMP	000.10000	Jump unconditional	Unconditional
JNC	00010111	Jump no carry	ST3 $=0$
JNE	00010110	Jump not equal	$\mathrm{ST2}=0$
JNO	00011001	Jump no overflow	STH $=0$
JOC	00011000	Jump on carry	ST3 $=1$
Jop	00011100	Jump odd parity	ST5 = 1

3.5.9 Shift Instructions

If $C=0$, bits 12 through 15 of $W R O$ contain the shift count. If $C=0$ and bits 12 through 15 of $W R O=0$, the shift count is 16 .

MNEMONIC	OP CODE	MEANING	$\begin{gathered} \text { RESULT } \\ \text { COMPARED } \\ \text { TO } 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { STATUS } \\ \text { BITS } \\ \text { AFFECTED } \end{gathered}$	DESCRIPTION
	01234567				
SLA	00001010	Shift left arithmetic	Yes	0-4	Shift (W) lef̃t. Fill vacated bit positions with 0 .
SRA	00001000	Shift right arithmetic	Yes	$0-3$	Shift (H) right. Fill vacated bit positions with original MSB of (W).
SRC	00001011	Shift right circular	Yes	$0-3$	Shift (W) right. Shift previous LSB into MSB.
SRL	00001001	Shift right logical	Yes	0-3	Shift (W) right. Fill vacated bit positions with 0's.

Immediate Register Instructions

General Format:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MNEMONIC} \& OP CODE \& \multirow[b]{2}{*}{MEANING} \& \multirow[t]{2}{*}{$$
\begin{gathered}
\text { RESULT } \\
\text { COMPARED } \\
\text { TO } 0 \\
\hline
\end{gathered}
$$} \& status \& \multirow[b]{2}{*}{DESCRIPTION}

\hline \& 012345578910 \& \& \& $$
\begin{gathered}
\text { 3ITS } \\
\text { AFFECTED } \\
\hline
\end{gathered}
$$ \&

\hline AI \& 00000010001 \& Add immediate \& Yes \& 0-4 \& $(W)+I O P \rightarrow(W)$

\hline ANDI \& 00000010010 \& AND immediate \& Yes \& 0-2 \& (W) AND $\mathrm{IOP} \rightarrow$ (W)

\hline CI \& 00000010100 \& Compare immediate \& Yes \& $0-2$

$1-$ \& Compare (W) to IOP and set approm priate status bits.

\hline LI \& 00000010000 \& Load immediate \& Yes \& - 0-2 \& IOP \rightarrow (W)

\hline ORI \& 00000010011 \& OR immediate \& Yes \& 0-2 \& (W) OR IOP \rightarrow (W)

\hline
\end{tabular}

3.5.11 Internal Register Load Immediate Instructions

MNEMONIC	OP CODE	MEANING	DESCRIPTION
	012345678910		
LWPI	00000010111	Load workspace pointar immediate	$I O P \rightarrow(W)$, no $S T$ bits affected.
LIMI	00000011000	Load interrupt mask	IOP, bits 12 thru $15 \rightarrow$ ST12 thru ST15.

MNEMONIC	OP CODE	MEANING	$\begin{gathered} \text { STATUS } \\ \text { BITS } \\ \text { AFFECTED } \\ \hline \end{gathered}$	DESCRIPTION
	0.1234567891011			
STST	000000101100	Store status Register	---	$(S T) \rightarrow(W)$
LST	000000001000	Load status Register	,-0-15	$(\mathrm{W}) \rightarrow(\mathrm{ST})$
STWP	00000×1010010	Store workspace pointer	---	$(\mathrm{WP}) \rightarrow(\mathrm{W})$
LWP	000000001001	Load workspace pointer	---	$(\mathrm{W}) \rightarrow(\mathrm{WP})$

3.5.13 Return Workspace Pointer (RTWP) Instruction

General Format:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0

The RTWP instruction causes the following transfers to occur: $\left(\right.$ WR15 $\rightarrow(S T)^{i}$ $(W R 14) \rightarrow(P C)$ $($ WR1j) \rightarrow (WP)
3.5.14 External Instructions

General	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Format:					$0 P$	$C O D E$					0	0	0	0	0	

External instructions cause three data lines ($D 0$ through $D 2$) to be set to the levels described below, and the line to be pulsed, allowing external control functions to be initiated. CRUCLK

3.5.15 MID Interrupt Opcodes

The instruction opcodes that will cause an MID interrupt request (see Section 8 (7) are (hex numbers) :
2.3.2.2

$$
\begin{array}{ll}
0000-007 F & 0301-033 F \\
00 A 0-017 F & 0341-035 F \\
0210-021 F & 0361-037 F \\
0230-023 F & 0381-039 F \\
0250-025 F & 03 A 1-03 B F \\
0270-027 F & 03 C 1-03 D F \\
0290-029 F & 03 E 1-03 F F \\
02 B 0-02 B F & 0780-07 F F \\
02 D 0-02 D F & 0 C 00-0 F F F \\
02 E 1-02 F F &
\end{array}
$$

Abstract

3.6.1 Microinstruction Cycle

Each 9995 SE instruction is exacuted by a sequence of machine states (microinstructions) with the length of each sequence depending upon the specific instruction being executed. Each microinstruction is completed in one CLKOUT cycle unless Wait states are added to a memory or CRU cycle. (Also, at least two CLKOUT cycles but will be accomplished with a single microinstruction)

3.6.2 Execution Sequence

The 9995 SE incorporates an instruction prefetch scheme which
 the instruction from memory. Without the prefetch, a typical instruction execution sequence is as follows:-

1. Fetch instruction
2. Decode instruction
3. Fetch source operand, if needed
4. Fetch destination operand, if needed
5. Process the operands
6. Store the results, if required

The 9995 SE makes use of the fact that during Step 5 the memory interface is not required; therefore, the fetch of the nex.t instruction can be completed in this time. This instruction is then decoded during the state (s) that is (are) required to store the results of the previous instruction, which creates even more execution overlap. Figure 25 illustrates the case of maximum efficiency (instruction opcodes and operands are located in the internal RAM). Note that it effectively takes only four machine states to perform all six steps.

It should be noted that the instruction prefetch scheme employed by the 9995 SE can cause self-modifying software to execute incorrectly. Incorrect exacution will result when an instruction is supposed to generate the opcode of the very next instruction to be exacuted (the 9995 SE will begin the fetch of the opcode of the next instruction before the currently executing instruction will store the results of its execution).
3.6 .3 Instruction Execution Times destruction execution times for the 9995 SE are a function of :

1) Machine state time, $t \subset 2$
2) Addressing mode mid where operands can be fetched via multiple addressing modes.
3) Number of Wait states introduced, as appropriate.
Table 7 lists the number of machine states and memory accesses required to execute each 9995 SE instruction, For instructions with multiple addressing modes for either or both operands, the main table of table 7 lists machine states and associated memory accesses with all operands addressed in the workspace register mode. To determine the total number of machine states and memory accesses required for other operand addressing modes, the approperiate values from thable A are added to the base amounts for that instruction.
The total execution time for an instruction is:

$$
T=t c z(c+w * M)
$$

where:
$T=$ total instruction execution time $t \subset Z=$ CLKOUT cycle time
$C=$ number of states for instruction execution plus operand address derivation
$w=$ number of 2 rait states introduced
$M=$ per memory cycle.
$M=$ number of memory accessed foin - address derivation.
as an example, the instruction MoN in a system with $t \subset 2=0.333 \mu s$, Mo trait states, and both operands are addressed in the workspace register mode:

$$
T=t c a(c+W * M)=(0.333)(3+0 * 3) \mu S=1.0 \mu \mathrm{~S}
$$

If two wait states per memory access were required:
If the source operand ives addressed in the sigmbolico mode and two wait stater were required:

$$
\begin{aligned}
& C=3+1=4 ; M=3+1=4 \\
& T=(n 33)(4+2 * 4)=4.0 \mathrm{us}
\end{aligned}
$$

Table 3 defines the 9995 SÉpin assignments and describes the function of each pin. Figure 26 illustrates the 9995 sEpin assignment information.

THAg大板 Maximum Ratings
The absolute maximum ratings of the 9995 SE are given in Table $\mathscr{K} 8$.
1胜朋得是 Recommended Operating Conditions
The recommended operating conditions for the 9995 SE are given in Table 0×9.

5．3．2 Clock Characteristics
The 19995 SE has an internal oscillator／clock generator that is controlled by an external crystal．The user may also disable the oscillator and directly inject a frequency source into the
 XTAL Z／CLKIN
5．3．2．1 Internal Oscillator
The internal oscillator is enabled by conneating a crystal across XTALZ／CLKIN and XTALA．The frequency of CLXOUT（CLXXOUT frequency is the machine state frequency）is（one－half the crystal fundamental frequency，fx．The crystal shoutd be a fundamental series－resonant type．Figure 35 details the confotion of the external crystal to activate the internal oscillator．

5．3．2．2 External Oscillator
An external oscillator can be connectad to the 9995 5E using the XTAL2／CLXIN pin as detailed in Figure 36．The frequency of CLKOUT（CLKOUT frequency is the machine state frequency）is 11 Sne－half that of the external oscillator．Table X and Figure 27 define the timing requirements of CLKIN．XTALZ／CLKIN can be driven with standard TTL voltage levels．

TABLE 1. STATUS REGISTER BIT DEFINITIONS
(SEE NOTE 1)

BIT	NAME	$\begin{gathered} \text { INSTRUCTION } \\ \text { AND/OR } \\ \text { INTERRUPT } \end{gathered}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. also, the efrect of other INSTRUCTIONS AND INTERRUPTS
STO	LOGICAL greater THAN	C, CB	If $\operatorname{MSB}(S A)=1$ and $M S B(D A)=0$, or If $M S B(S A)=M S B(D A)$ and $M S B$ of $[(D A)-(S A)]=1$.
		CI	If $\operatorname{MSB}(W)=1$ and $M S B$ of $I O P=0$, or if $M S B(W)=M S B$ of IOP and MSB of $[I O P-(W)]=1$.
		ABS, LDCR	If $(S A) \neq 0$
		RTWP	If bit (0) of WR15 is 1
		LST	If bit (0) of selected WR is 1
		A, AB, AI, ANDI, DEC, DECT, LI, MOV, MOVB, NEG, ORI, S, SB, DIVS, MPYS, INC INCT, INV, SLA, SOC, SOCB, SRA, SRC, SRL, STCR, SZC, SZCB, XOR	If result $\neq 0^{\prime}$
		Reset Interrupt	Unconditionally sets status bit to 0
		All other instructions and interrupts	Do not affect the status bit (see note 2)
	ARITHMETIC GREATER THAN	C, CB	If $M S B(S A)=0$ and $M S B(D A)=1$, or If $M S B(S A)=M S B(D A)$ and $M S B$ of $[(D A)-(S A)]=1$.
		CI	If $M S B(W)=0$ and $M S B$ of $I O P=1$, or if $\operatorname{MSB}(W)=M S B$ of IOP and MSB of $[($ IOP $-(W)]=1$
		ABS, LDCR	If $\mathrm{MSB}(\mathrm{SA})=0$ and (SA) $\ddagger 0$
		RTWP	If bit (1) of WR15 is 1
		LST	If bit (1) of selected WR is 1

TABLE 1. STATUS REGISTER BIT DEEINITIONS (CONTID.)
(SEE NOTE 1)

BIT	NAME	$\begin{aligned} & \text { INSTRUCTION } \\ & \text { AND/OR } \\ & \text { INTERRUPT } \end{aligned}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE EFFECT OF OTHER INSTRUCTIONS AND INTERRUPTS
ST1 (CONTD)	OVERFLOW	$A, A B, A I$, ANDI, DEC, DECT, LI, MOV, MOVB, NEG, ORI, S, SB, DIVS, MPYS, INC, INCT, INV, SLA, SOC, SOCB, SRA, SRC, SRL, STCR, SZC, SZCB, XOR	If $M S B$ of result $=0$ and result $\neq 0$
		Reset Interrupt	Unconditionally sets status bit to 0
		All other instructions and interrupts	Do not affect the status bit (See Note 2)
ST2	EQUAL	C, CB	If $(S A)=(D A)$
		CI	If $(W)=I O P$
		COC	If $(S A)$ and $(\overline{D A})=0$
		CZC	If ($S A$) and ($D A$) $=0$
		TB	If CRUIN $=1$ for addressed CRU bit
		ABS, LDCR	If $(S A)=0$
		RTWP	If bit (2) of WR15 is 1
		LST	If bit (2) of selected WR is 1
		A, AB., AI, ANDI, DEC, DECT, LI, MOV, MOVB, NEG, ORI, S, SB, DIVS MPYS, INC, INCT, INV, SLA, SOC, SOCB, SRA, SRC, SRL, STCR, SZC, SZCB, XOR	If result $=0$
		Reset Interrupt	Unconditionally sets status bit to 0
		All other Instructions and Interrupts	Do not affect the status bit (See Note 2)

TABLE 1. STATUS REGISTER BIT DEEINITIONS (CONTID.) (SEE NOTE 1)

BIT	NAME	$\begin{gathered} \text { INSTRUCTION } \\ \text { AND/OR } \\ \text { INTERRUPT } \end{gathered}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE ETFECT OE OTHER INSTRUCTIONS AND INTERRUPTS
ST3	CARRY	$\begin{aligned} & \mathrm{A}, \mathrm{AB}, \mathrm{ABS}, \mathrm{AI}, \mathrm{DEC}, \\ & \mathrm{DECT}, \mathrm{INC}, \mathrm{INCT}, \\ & \mathrm{NEG}, \mathrm{~S}, \mathrm{SB} \end{aligned}$	If CARRY OUT $=1$
		SLA, SRA, SRL, SRC	If last oit shifted out $=1$
		RTWP	If bit (3) of WR15 is 1
		LST	If bit (3) of selecEed WR is 1
		Reset Interrupt	Unconditionally sets status bit to 0
		All other Instructions and Interrupts	Do not affect the status bit (See Note 2)
ST4	$\begin{aligned} & \text { OVER- } \\ & \text { FLOW } \end{aligned}$	$A, A B$	$\begin{aligned} & \text { If } \operatorname{MSB}(S A)=M S B(D A) \text { and } M S B \\ & \text { of result } \neq M S B(D A) \end{aligned}$
		AI.	If $M S B(W)=M S B$ of IOP and MSB of result $\neq \mathrm{MSB}(W)$
		S, SB	If $\operatorname{MSB}(S A) \neq M S B(D A)$ and $M S B$ of result $\neq M S B(D A)$
		DEC, DECT	If $\mathrm{MSB}(\mathrm{SA})=1$ and MSB of result $=0$
		INC, INCT	If $M S B(S A)=0$ and $M S B$ of result $=0$
		SLA	If MSB changes during shift
		DIV	If $M S B(S A)=0$ and $M S B(D A)=1$, or if $\operatorname{MSB}(S A)=M S B(D A)$ and $M S B$ of $[(D A)-(S A)]=0$
		DIVS	If the quotient cannot be expressed as a signed 16 bit quantity $(800016$ is a valid negative number)
		ABS, NEG	If $(S A)=8000_{16}$
		RTWP	If bit (4) of WR15 is 1
		LST	If bit (4) of selected WR is 1
		Reset Interrupt	Unconditionally sets status bit to 0

TABLE 1. STATUS REGISTER BIT DEEINITIONS (CONT'D)
(SEE NOTE 1)

BIT	NAME	INSTRUCTION AND/OR INTERRUPT	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE EFEECT OF OTHER INSTRUCTIONS AND INTERRUPTS
ST7 ST8 ST9 and ST11	Unused Bits	RTWP	If corresponding bit of NR15 is 1
		LST	If corresponding bit of selected WR is 1 .
		XOP, Any Interrupt	Unconditionally sets each of these status bits to 0
		All other Instructions	Do not affect these_status bits (See Note 2)
ST10	ARITHMETIC OVERFLOW ENABLE	RTWP	If bit (10) of WR is 1
		LST	If bit (10) of selected WR is 1
		XOP, Any Interruot	Unconditionally sets status bit to 0
		All other instructions	Do not affect the status bit (See Note 2)
ST12 ST13 ST14 and ST15	INTERRUPT MASK	LIMI	If corresponding bit of IOP is 1
		RTWP	If corresponding bit of WR15 is 1
		LST	If corresponding bit of selected WR is 1 .
		RST, Reset' and NMI Interrupts	Unconditionally sets each of these status bits to 0
		All other Interrupts	If ST12-ST15=0, no change If ST12=ST1570, set to one Less than level of the interrupt trap taken
		All other Instructions	Do not affect these status bits (See Note 2)

NOTES:

1. See Table 7 for Definition of Terminology Used.
2. The X instruction itself does not affect any status bit; the instruction exacuted by the X instruction sets status bits as defined for that instruction.

REGISTER NO.	CONTENTS	USED DURING
0	Shift count (optional) Multiplicand and MSW of result MSW of dividend and quotient	Shift instructions (SLA, SRA, SRC, and SLC) Signed Multiply Signed Divide
1	LSW of result LSW of dividend and remainder	Signed Multiply Sígned Divide
11	Return Address Effective Address	Branch and Link Instruction (BL) Extended Operation (XOP)
12	CRU Base Address	CRU instructions (SBO, SBZ, TB, LDCR, and STCR)
13	Saved WP register	Context switching (BLWP, RTWP, XOP, interrupts)
14	Saved PC register	Context switching (BLWP, RTWP, XOP, interrupts)
15	Saved ST register	Context switching (BLWP, RTWP, XOP, interrupts)

SIGNAL	PIN	I/O	DESCRIPTION
			POWER SUPPLIES
Vcc	59		Supply voltage (+5 V nom)
Vss	19,44		Ground reference
			CLOCXS
*TALH/CLKİ	25	IN	Crystal input pin for internal oscillator. Also input pin for external oscillator.
$\underset{\substack{\text { XTALI }}}{\substack{\text { PTAL }}}$	24	IN	Crystal input pin for internal oscillator.
CLKOUT 1	26	OUT	Clock output signal. The frequency of CLKOUTlis one half the oscillator input (external oscillator) or crystal (internal oscillator) frequency.
CLKOUT2	27	OUT	Clock output signal. The frequency of CLKOUTZ is one half the oscillator input (external oscillator) or crystal (internal) oscillator) frequency. CLKouTz is one quarter cycle delayed from CLKOUTI

TABLE 3. 9995 SE PIN DESCRIPTION (CONTD)

TABLE 3. 9995 SE PIN DESCRIPTION (CONT'D)

TABLE 3. 9995 SE PIN DESCRIPTION (CONTD)

TABLE 3. 19995 SE PIN DESCRIPTION (CONTID)

TABLE 3. 9995 SE PIN DESCRIPTION (CONTD)

TABLE 4. INTERRUPT LEVEL DATA

PRIORITY LEVEL	VECTOR LOCATION (Memory Address, In Hex	MASK VALUES To ENABLE ACCEPTING THE INTERRUPT (ST/2 thru ST/5)	VALME MASK SET TO UPON TAKING THE INTERRUPT (ST12 thru ST1S)	SOURCE AND ASSIGNMENT
(Highest Priority)	0000	0000 thru llil (see Note 1)	0000	External: Reset (RESET-Signal)
MID	$\begin{array}{\|c\|} \hline 0008 \\ (\text { see } \text { Note 2) } \\ \hline \end{array}$	$\begin{aligned} & 0000 \text { thru IIII } \\ & \text { (See Note 1) } \end{aligned}$	$\begin{gathered} 0001 \\ \text { (See Note 2) } \end{gathered}$	Internal: MID
NMI	FFFC	$\begin{aligned} & 0000 \text { thru } 1111 \\ & \text { (See Note I) } \end{aligned}$	0000	External: (NMI-Signal)
1	0004	0001 thru 1111	0000	External: $I C O-I C 3=0001$
2	$\begin{array}{c\|} \hline 0008 \\ \left(\text { See }{ }^{2}+2\right) \\ \hline \end{array}$	$\begin{aligned} & 0010 \text { thru } 1111 \\ & \text { (See Note 3) } \end{aligned}$	$\begin{array}{\|c\|} \hline 0001 \\ \text { (See Note 2) } \\ \hline \end{array}$	Int. and/or Ext.: Arithmetic overflow, ACO $-1 \leq 3=0010$
3	0000	0011 thru 1111	0010	$\begin{aligned} & \text { External: } \\ & \text { ICo-IC3 }=0011 \end{aligned}$
4	0010	0100 thru 1111	0011	External: ICO-IC3 $=0100$
5	0014	0101 thru 1111	0100	External: $I C O-I C 3=0101$
6	0018	0110 thru. 1111	0101	$\begin{aligned} & \text { External: } \\ & I<0-I \subset 3=0110 \end{aligned}$
7	0016	O111 thru 1111	0110	External: $I C O-I C 3=0111$
8	0020	1000 thru 1111	0111	External: 0 $I C 0-I C 3=1000$
9	0024	1001 thru 1111	1000	External: $I<0-I C 3=1001$
10	0028	1010 thra 1111	1001	External: $I C O-I C 3=1010$
11	002C	1011 thru 1111	1010	External: $I C O-I C 3=1011$
12	0030	1100 thru 1111	1011	External: $I<0-I \subset 3=1100$
13	0034	1101 thru 1111	1100	External: $I C O-I C 3=1101$
14	0038	1110 and 1111	1101	External: $I C O-I C 3=1110$
$\begin{gathered} 15 \\ \text { (Lowest Priority) } \\ \hline \end{gathered}$	0036	111	1110	External: $I C O-I C 3=1111$

NOTES:-

1. Level 0 , MID, and NMI cannot be disabled with the Interrupt Mask.
2. MID and Level 2 use the same trap vector and change the Interrupt Mask to the same value.
3. Generation of a Level 2 request by an Arithmetic Overflow condition (ST4 set to 1) is also enabled/disabled by bit ST10 of the Status Register
table 5: 9995 SE EXTERNAL INSTRUCTION CODES

INSTRUCTION	CODE. DURING CYCLE		
	DO	D1	D2
CRU: SBO, SBZ, TB, LDCR Or STCR	0	0	0
IDLE	0	1	0
RSET	0	1	1
CKON	1	0	1
CROF.	1	1	0
LREX	1	1	1

TABLE G. DEFINITION OF TERMINOLOGY

TERM	DEFINITIONS
	Byte Indicator ($1=$ byte; $0=$ word $)$ Bit Count Destination address register Destination address
IOP $\operatorname{LSB}(n)$ $\operatorname{MSB}(n)$ N	Immediate operand Least significant (right most) bit of (n) Most significant (left most) bit of (n) Don't care
PC Result S SA ST	Program Counter Result of operation performed by instruction Source address register Source address Status register
$\begin{aligned} & \text { STA } \\ & \text { TD } \\ & \text { TS } \\ & W \end{aligned}$	Bit n of status register Destination address modifier Source address modifier Workspace register
WRn (n) $a \rightarrow b$ $\|n\|$	Workspace register n Contents of n a is transferred to b Absoluta value or n

TABLE 6: DEEINITION OF TERMINOLOGY (CONT'D)

TERMS	DEFINITIONS
AND OR	Arithmetic addition Arithmetic subtraction Logical AND Logical OR
$\begin{aligned} & \oplus \\ & \bar{n} \end{aligned}$	Logical exclusive OR '- Logical complement of n Arithmetic multiplication

TAELE 7. INSTRUCTION EXECUTION TIMES

INSTRUC:IO:S	MACHINE STATES C	$\begin{gathered} \text { MEDORY } \\ -\quad \text { ACCESS } \\ \hline \end{gathered}$	OPERAND ADDRESS DERIVATION *	
			SOURCE	DEST
A	4	4	A	A
$A B$	4	4	- A	A
ABS	3	3	A	-
AI	4	4		----
AMDI	4			--
. 3	3		- A	-
BL	5	2	A	-
BLIP	11	-...... 6 .-.-.....	--A...	-
C	4	. 3	- A	A
CB	4	$3 \cdots$	- A	A
$\overline{C l}$	4	3	--	
CKON	7	. 1.		
CKOF	7	1	- -	
CLR	3.	2	. A ...	- ...
COC	4	$\cdots 3$	$A^{\text {a }}$	- ${ }^{\circ}$
C2C	4	3	$\cdots \mathrm{A}$	-
DEC	3	3	A	-
DECT	- 3	---3	A	
DIV (ST4 is seこ)	10.......	...-4	- A	
DIV (ST4 is rese\%)**	28.	- 6	\cdots	
DIVS (ST4 is set)	-10-	… $\quad .4$	A	
DIVS (ST4 is reset)**	33	6	A.	
IDE ${ }^{-}$	$7+2 N$ 1	-	
INC		3	- A	-
INCT		3	\ldots	-
INV . . .	3	3	A	
JUMP (PC is cranzed)	3	1	-	-
(PC is not changed)	- 3	1	...---....-	\cdots
LDCR ${ }^{-1}(C=0)^{\prime}$	41^{1}	3	A	-
$-(1 \leq C \leq 15)$	$9+2 c$	3	$\underline{\text { - }}$	
LI - - - - -	3	3	--	
LIMI	5	2	-	-
LREX	$\cdots 7$	1	--	- -
LST	. 5	2	-	\cdots
LHP	3	- 2		
LWPI	3	2		-
MOV	3	3	A	A
M0V8	3	4	A	A
MP'	23	- 5	A	-
MPYS	25	--5	\ldots	-
NEG	3		A	-
ORI	4	4		-
RSET	7	.-.................		- -
RTHP	6	4	-	$-$

Tabte 7. INSTRUCTION EXECUTION TIMES (CONT'D.)

*The letter A refers to the table that follows.
**Execution tice is dependent upon the partial quotient after each clock cycle during execution.
***Execution time is added to the execution time of the source address.

TABLE 7. INSTRUCTION EXECUTION TIMES (CONT'D) OPERAND ADDRESS DERIVATION - TABLE A

TABLE 8. 9995 SE MAXIMUM RATINGS

TEMPERATURE

 OTHERWISE NOTED)*
Supply voltage, Vcc (see Note 1) 7 V
Input voltage 20 V
Off-state output voltage -7V
Continuous power dissipation 1.0W
Operating free-air temperature range 00 to 700 C
Storage temperature range -550 to +1500 C
*Stresses beyond those listed under "Absolute Maximum Ratings" may causepermanent damage to the device. This is a stree rating oniy arid functionaloperation of the device at these or any other conditions beyond thoseindicated in the "Recommended Operating Conditions" section of thisspecification is not implied. Exposure to absolute maximum rated conditionsfor extended periods may affect device reliability.

NOTE 1: Voltage values are with respect to network ground terminal, Vss.

TABLE 9. 9993 SERECOMMENDED OPERATING CONDITIONS

Parameter	MIN	NOM	MAX	UNITS
Supply voltage, Vcc	4.5	5.0	5.5	V
Supply voltage, Vss		0.0		V
High-level input voltage, $V_{\text {IH }}$ (All inputs)	2.0	-		V
Low-level input voltage, $V_{\text {IL }}$ (All inputs)			0.8	V
High-level output current, $I_{O H}$ (All outputs)			100	UA
Low-level output current, IOL (All outputs)			2.0	mA
Operating free-air temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
V_{OH}, High Lavel Output Voltage	$\begin{aligned} & V C C=M I N, \\ & I_{O H}=M A X \end{aligned}$		2.4	3.4		∇
$V_{\text {OL }}$ Low Level Output Voltage	$\begin{aligned} & \text { Vcc }=\mathrm{MIN}, \\ & I_{0 L}=\mathrm{MAX} \end{aligned}$			0.24	0.4	V
IoFg, Orf-state(High ImpedanceState)Outout Current	$V C C=M A X$	$\mathrm{Vo}=2.4 \mathrm{~V}$			20	UA
		$\mathrm{V}_{0}=0.4 \mathrm{~V}$			-20	
II , Input Current	$V_{I}=$ Vss to Vcc				± 50	UA
IoS Short Circuit Output Current*	$\mathrm{Vcc}=\mathrm{MAX}$					mA
Icc, Supply Current	$V C C=M A X$					
C_{I}, Input Capacitance (All Inputs Except Data Bus)	$\begin{aligned} & f= 1 \mathrm{MHz}, \text { All Other Pins } \\ & \text { at } O V \end{aligned}$			15		pf
$C_{D B}$, Data Bus Capacitance				25		pf
Co Output Capacitance (Except Data Bus)				10		pf

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
**All typical values are at Vcc $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=250{ }^{\circ} \mathrm{C}$.
***Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

TABLE $/ 1 \%$ ． 9995 SE SWITCAING CHARACTERISTICS（CONT＇D） （OVER RECOMMENDED OPERATING CONDITIONS RANGE，

UNLESS OTHERWISE NOTED）

SYMBOL	PARAMETER（1）	MIN	NOM（ 2 ）	MAX	UNIT
tSU3	CRUIN data set－u0 time	100			ns
t．f3	CRUIN data hold time	0			ns
tSU4	READY set－up time， CRU cycles	200			ns
tSU5	HOLD－set－up time	100			ns
tSUó	RESET－，NMI－set－up time	120			ns
tACC	Memory access time （read cycle）	$\begin{gathered} 3 / 4 \mathrm{tc} 2-130 \\ (3) \end{gathered}$			ns
to12	Delay from CLKouTl to CLKOUTA	$\frac{1}{2}+c 2-10$	$\frac{1}{2}+C^{2}$	$\frac{1}{2} t c z+10$	ns
t ${ }^{\text {4 }}$	Address，WORD／BYTE－，R／W－， ST8－Hold time after WE－	$\frac{1}{4} t<2-20$			ns
tHS	Data Hold time	$\frac{1}{4} t c 2-40$			ns
t WL4	WE－pulse width	$\begin{gathered} \frac{1}{2} t c 2-40 \\ (4) \end{gathered}$			ns
七 H6	Address，WORD／BYTE－，R／W－， ST8－，CRUOUT Hold time after CRUCLK	$\frac{1}{4} t<2-20$			ns
tD13	Delay from CLKOUTI to CRuCLK asserted	0		40	ns
t014	Delay from CLKOUTI to CRuCLK asserted	0		40	ns
tR4	CRUCLK rise time		20	40	ns
$t \mathrm{~F} 3$	CRUCLK fall time		20	40	ns
$t \leq 47$	INTREQ－，ICO－IC3 set－up time	100			$n s$
tH7	INTREQ－，ICO－I＜3 hold time	0			ns
4mon		＋6mamxa		mmien	mine
＋ater		－			
t D15	Delay from CLKOUTI to IACK，MID asserted	$\frac{1}{4} t c 2$		$\frac{1}{4} t c 2+40$	ns
\pm D／6	Delay from CLKouTl to IACK，MID assarted	$\frac{1}{4} t \subset \pi$		$\frac{1}{4} t c 2+40$	ns
to 17	Delay from CLKouTl to PESTWRITE asserted	$\frac{1}{4}$ セくス		$\frac{1}{4} t<2+40$	ns
t． 18	Delay from CLKOUTI to DESTWRITE released	$\frac{1}{4} t<2$		$\frac{1}{4} t c 2+40$	ns

TABLE 11.9995 SESWITCHING CHARACTERISTICS
(OVER RECOMMENDED OPERATING CONDITIONS RANGE, UNLESS OTHERWISE NOTED)

SYMBOL	PARAMETER (1)		MIN	NOM(2)	MAX	UNIT
tC1	CLKIN cycle time		160	167	1000	ns
tR1	CLKIN rise time			4	15	ns
tF1	CLKIN fall time			4	15	ns
tWH1	CLKIN high level pulse width		80	$\frac{1}{1} \mathrm{tC} 1-\mathrm{tR} 1$	-60tcl	ns
tWL1	CLKIN low-level pulse width		80	$\frac{1}{2} t C 1-t F 1$. 60 ccl	ns
tD1	Delay from CLKIN to CLXOUT 1			150		ns
tC2	CLKOUT cycle time	External Clock Source		2tC1 ..		ns
		Internal Oscillator (XTAL1 freq. =f x)	$\frac{1.96}{f x}$	$2 f_{x}$	$\frac{2.04}{.9 x}$	ns
tR2	CLXOUT rise time			20	35	ns
tF2	CLKOUT fall time			15	20	ns
tWH2	CLKOUT hish-level pulse width		-teca	$\frac{1}{2} t C 2-t R 2$. 6 tc2	ns
tWL2	CLKOUT low-level dulse width		. $4 t<2$	$\frac{1}{2}$ tc2-tE2	.6tcz	ns
tD2	Delay from CLXOUTI to valid address, weñp/BYTE-, R/w-, STg-		$\frac{1}{4} t<2$		$\frac{1}{4} t c 2+45$	ns
tD3	Delay from CLKOUT to MEMEN-asserted		$\frac{1}{4} t<2$	-	$\frac{1}{4} t \cos +40$	ns
tD4	Delay from CLKOUTI to MEMEN-released		$\frac{1}{4} t<2$		$\frac{1}{4} t<2+5 c$	ns
tSU1	READY set-up time, Memory cycles		100			ns
tH1	READY hold time		0			ns
tDZ	Float Pelay				$\frac{1}{4} t<2+60$	ns
tSU2	Input data set-up time		65			ns
th2	Input data hold time		0			ns
tD5	Delay from CLKOUTI to DBIN-asserted asserted		0		40	ns
tD6	Delay from CLKOUTI to DBINreleased		0		50	ns
tD7	Delay from CLKOUTI to IAQ, HOLDA asserted		0	*	40	ns
tD8	$\begin{aligned} & \text { Delay from CLKOUT to IAQ, } \\ & \text { HOLDA released } \end{aligned}$		0		50	ns
tD9	Delay from CLKOUT/to valid write data		0		40	ns
tD 10	Delay from CLKOUT/ to WE- asserted		0		40	ns
tD11	Delay from CLKOUTI to WE- \because released		0		50	ns
tR3	WE- rise time			25.	50	ns

TABLE 11. 9995 SE SWITCHING CHARACTERISTICS (CONTD)
(OVER RECOMMENDED OPERATING CONDITIONS RANGE, UNLESS OTHERWISE NOTED)

NOTES:-

1. Additional Test Conditions, All Outputs:

$$
I_{O L}=M A X, I_{O H}=M A X, C_{L}=100 \mathrm{pF}
$$

(In figure $34 \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}, \mathrm{R} 1=2,4 \mathrm{~K}, \mathrm{R} 2=24 \mathrm{~K}$)
2. All Nominal Values at $T A=250 C, V c c=N O M$
3. Memory access time (read cycle) MIN parameter is determined as follows:- (No Wait States)

$$
t_{A C C} \quad M I N=\frac{t}{4} C_{t}^{2}, \text { nom-tD2, max-tSU2, MIN-tF2, MAX }
$$

Therefore, for $t_{C 2}=333 \mathrm{~ns}$,.

$$
t_{A C C} M I N=120 \text { ns. }
$$

4. WE- pulse width MIN parameter is determined
as follows:- (No Wait States)
$t W L 4, M I N=\frac{1}{2} t C 2, N O M+t D I, M A X-t R 3, M A X-t D 10, M A X$ $=\frac{1}{2} t c 2-40$
Therefore, for $t \subset ス=333 n s$,
$t w L 4, M I N=127 \mathrm{~ns}$

The absolute maximum ratings of the 9995 SEare given in Table 88.

The recommended operating conditions for the 9995 SE' are given in Table De 9.

5.3.1 General

The electrical characteristics of the 19995 SE for the recommended free-air operating tempetature range are given in Table $\mathbb{N} 10$.
The switching characteristics of the 9995 SE for the recommender operating conditions are listed in Table spand the switching parameters of this table are defined in Figures 27through 32. The test load circuit used for loading the 9995 SE outputs for measurement of the switching characteristics is shown in Figure 33. Switching times are measured at the 10% and 90% points of the voltage waveform, as defined in Figure 34.
5.3.2 Clock Characteristics

The 19995 SE has an internal oscillator/clock generator that is controlled by an external crystal. The user may also disable the oscillator and; directly inject a frequency source into the
 XTAL 2/CLKIN
5.3.2.1 Internal Oscillatior

The internal oscillator is enabled by connecting a crystal across XTAL2/CLKIN and XTALA. The frequency of CLKOUT (CLKOUT frequency is the machine state frequency) is one-half the crystal fundamental frequency, fx. The crystal should be a fundamental series-resonant type. Figure 35 details the conffotion of the external crystal to activate the internal oscillator.
5.3.2.2 External Oscillator

An external oscillator can be connected to the 9995 SE using the XTAL2/CLKIN pin as detailed in Figure 36. The frequency of CLKOUT (CLKOUT frequency is the macinine state frequency) is one-half that of the external oscillator. Table x and Figure 27 define the timing requirements of CLKIN. XTALZ/CLKIN can be driven with standard TTL voltage levels.

The physical dimensions of the 9995 SE 4 -pin dual-in-line package are specified in Figure 37.

TABLE 1. STATUS REGISTER BIT DEFINITIONS (SEE NOTE 1)

BIT	NAME	$\begin{gathered} \text { INSTRUCTION } \\ \text { AND/OR } \\ \text { INTERRUPT } \end{gathered}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE EFFECT OF OTHER INSTRUCTIONS AND INTERRUPTS
STO	LOGICAL GREATER THAN	C, CB	If $M S B(S A)=1$ and $M S B(D A)=0$, or If $M S B(S A)=M S B(D A)$ and MSB of $[(D A)-(S A)]=1$.
		CI	If $M S B(W)=1$ and $M S B$ of $I O P=0$, or if $M S B(W)=M S B$ of IOP and MSB of $[(I O P-(W)]=1$.
		ABS, LDCR	If (SA) $\neq 0$
		RTWP	If bit (0) of WR15 is 1
		LST	If bit (0) of selected WR is 1
		A, AB, AI, ANDI, DEC, DECT, LI, MOV, MOVB, NEG, ORI, S, SB, DIVS, MPYS, INC INCT, INV, SLA, SOC, SOCB, SRA, SRC, SRL, STCR, SZC, SZCB, XOR	$\text { If result } \neq 0$
		Heset Interrupt	Unconditionally sets status bit to 0
		All other instructions and interrupts	Do not affect the status bit (see note 2)
ST1	ARITHMETIC GREATER THAN	C, CB	If $M S B(S A)=0$ and $M S B(D A)=1$, or If $M S B(S A)=M S B(D A)$ and MSB of $[(D A)-(S A)]=1$.
		CI	If $\operatorname{MSB}(W)=0$ and $M S B$ of $I O P=1$, or if $\operatorname{MSB}(W)=\mathrm{MSB}$ of IOP and MSB of $[($ IOP-(W) $]=1$
		ABS, LDCR	If $\mathrm{MSB}(\mathrm{SA})=0$ and $(S A) ~=0$
		RTWP	If bit (1) of WR15 is 1
		LST	If bit (1) of selected WR is 1

BIT	NAME	$\begin{aligned} & \text { INSTRUCTION } \\ & \text { AND/OR } \\ & \text { INTERRUPT } \end{aligned}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE EFEECT OF OTHER INSTRUCTIONS AND INTERRUPTS
ST1 (CONTD)	OVERFLOW	$A, A B, A I$, ANDI, DEC, DECT, LI, MOV, MOVB, NEG, ORI, S, SB, DIVS, MPYS, INC, INCT, INV, SLA, SOC, SOCB, SRA, SRC, SRL, STCR, SZC, SZCB, XOR	If MSB of result $=0$ and result $\neq 0$
		Rėset Interrupt	Unconditionally sets status bit to 0
		All other instructions and interrupts	Do not affect the status bit (See Note 2)
ST2	EQUAL	C, CB	If $(S A)=(D A)$
		CI	If $(W)=$ IOP
		COC	If $(S A)$ and $(\overline{D A})=0$
		CZC	If (SA) and ($D A$) $=0$
		TB	If CRUIN=1 for addressed CRU bit
		ABS, LDCR	If $(S A)=0$
		RTWP	If bit (2) of WR 15 is 1
		LST	If bit (2) of selected WR is 1
		$A, A B, A I, A N D I$, DEC, DECT, LI, MOV, MOVB, NEG, ORI, S, SB, DIVS MPYS, INC, INCT, INV, SLA, SOC, SOCB, SRA, SRC, SRL, STCR, SZC, SZCB, XOR	If result $=0$
		Reset Interrupt	Unconditionally sets status bit to 0
		All other Instructions and	Do not affect tine status bit (See Nota 2)

TABLE 1. STATUS REGISTER BIT DEFINITIONS (CONTID.) (SEE NOTE 1)

BIT	NAME	$\begin{aligned} & \text { INSTRUCTION } \\ & \text { AND/OR } \\ & \text { INTERRUPT } \end{aligned}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE EEEECT OF OTHER INSTRUCTIONS AND INTERRUPTS
ST3	CARRY	$A, A B, A B S, A I, D E C$, DECT, INC, INCT, NEG, S,SB	If CARRY OUT $=1$
		SLA, SRA, SRL, SRC	If last bit shifted out $=1$
		RTWP	If bit (3) of WR15 is 1
		LST	If bit (3) of selected WR is 1
		Reset Interrupt	Unconditionally sets status bit to 0
		All other Instructions and Interrupts	Do not affect the status bit (See Note 2)
ST4	$\begin{aligned} & \text { OVER- } \\ & \text { FLOW } \end{aligned}$	A, $A B$	$\begin{aligned} & \text { If } \operatorname{MSB}(S A)=M S B(D A) \text { and } M S B \\ & \text { of result } \neq M S B(D A) \end{aligned}$
		AI	If $M S B(W)=M S B$ of IOP and MSB of result $\neq \mathrm{MSB}(W)$
		S, SB	If $\operatorname{MSB}(S A) \neq M S B(D A)$ and $M S B$ of result $\neq \mathrm{MSB}(\mathrm{DA})$
		DEC, DECT	If $\mathrm{MSB}(\mathrm{SA})=1$ and MSB of result $=0$
		INC, INCT	If $M S B(S A)=0$ and $M S B$ of result $=0$
		SLA	If MSB changes during shift
		DIV	If $\operatorname{MSB}(S A)=0$ and $M S B(D A)=1$, or if $\operatorname{MSB}(S A)=M S B(D A)$ and $M S B$ of $[(D A)-(S A)]=0$
		DIVS	If the quotient cannot be expressed as a signed 16 bit quantity $(800016$ is a valid negative number)
		ABS, NEC	If $(S A)=8000{ }_{16}$
		RTWP	If bit (4) of WR15 is 1
		LST	If oit (4) of selected WR is 1
		Reset Interrupt	Unconditionally sets status bit to 0

TABLE 1. STATUS REGISTER BIT DEETNITIONS (CONT: D.) (SEE NOTE 1)

BIT	NAME	$\begin{aligned} & \text { INSTRUCTION } \\ & \text { AND/OR } \\ & \text { INTERRUPT } \end{aligned}$	CONDITION TO SET BIT TO 1, OTHERWISE SET TO O FOR INSTRUCTION LISTED. ALSO, THE EFFECT OF OTHER INSTRUCTIONS AND INTERRUPTS
ST4 (CONTD)		All other Instructions and Interrupts	Do not affect the status bit (See Note 2)
ST5	ODD PARITY	CB, MOVB	If (SA) has odd number of l's
		LDCR	If $1 \leq C \leq 8$ and (SA) has odd number of 1's. If $C=0$ or $9 \leq \mathbb{C} \leq 15$, does not affect the status bit.
		STCR	If $1 \leq c \leq 8$ and the stored bits have an odd number of 1 's. If $\mathrm{C}=0$. or $9 \leq c \leq 15$, does not affect the status bit.
		$A B, S B, S O C B, S Z C B$	If result has odd number of 1's.:
		RTWP	If bit (5) of WR15 is 1
		LST	If bit (5) of saleted WR is 1
		Reset Interrupt	Unconditionally sets status bit to 0
		All other Instructions and Interrupts	Do not affect the status bit (See Note 2)
			,
ST6	XOP	XOP	If XOP instruction is executed
		RTWP	If bit (6) of WR15 is 1
		LST	If bit (6) of selected WR is 1
		Reset Interrupt	Unconditionally sets status bit to 0
		All other Instructions and Interrupts	Do not affect the status bit (See Note 2)

TABLE 1. STATUS REGISTER BIT DEFINITIONS (CONT'D) (SEE NOTE 1)

BIT	NAME	INSTRUCTION AND/OR INTERRUPT	CONDITION TO SET BIT TO 1, OTHERWISE - SET TO O FOR INSTRUCTION LISTED. ALSO, THE EFFECT OF OTHER INSTRUCTIONS AND INTERRUPTS
ST7 ST8 ST9 and ST11	Unused Bits	RTWP	If corresoonding bit of WR15 is 1
		LST	If corresponding bit of selected WR is 1 .
		XOP, Any Interrupt	Unconditionally sets each of these status bits to 0
		All other Instructions	Do not affect these., status bits (See Note 2)
ST10	ARITHMETIC OVERFLOW ENABLE	RTWP	If oit (10) of ${ }^{\text {c }} \mathrm{WR}$ is 1
		LST	If oit (10) of selected $W R$ is 1
		XOP, Any Interrupt	Unconditionally sets status bit to 0
		All other instructions	Do not affect the status bit (See Note 2)
ST12 ST13 ST14 and ST15	INTERRUPT MASK	LIMI	If corresponding bit of IOP is 1
		RTWP	If corresponding bit of WR15 is 1
		LST ;	If corresponding bit of selected WR is 1.
		RST, Reset' and NMI Interrupts	Unconditionally sets each of these status bits to 0
		All other Interrupts	If ST12-ST15=0, no change If ST12=ST15 $=0$, set to one Less than level of the interrupt trap taken
		All other Instructions	Do not affect these status bits (See Note 2)

NOTES:

1. See Table 7 for Definition of Terminology Used.
2. The X instruction itself does not affect any status bit; the instruction exacuted by the X instruction sets status bits as defined for that instruction.

TABLE 2. DEDICATED WORKSPACE REGISTERS

REGISTER NO.	CONTENTS	USED DURING
0	Shift count (optional) Multiplicand and MSW of result MSW of dividend and quotient	Shift instructions (SLA, SRA, SRC, and SLC) Signed Multiply Signed Divide
1	LSW of result LSW of dividend and remainder	Signed Multiply Sígned Divide
11	Return Address Effective Address	Branch and Link Instruction (BL) Extended Operation (XOP)
12	CRU Base Address	CRU instructions (SBO, SBZ, TB, LDCR, and STCR)
13	Saved WP register	Context switching (BLWP, RTWP, XOP, interrupts)
14	Saved PC register	Context switching (BLNP, RTWP, XOP, interrupts)
15	Saved ST register	Context switching (BLWP, RTWP, XOP, interrupts)

TABLE 3. 9995 SE PIN DESCRIPTION

TABLE 3. 9995 SE PIN DESCRIPTION (CONTD)

TABLE 3. 9995 SE PIN DESCRIPTION (CONT'D)
 instruction opcode.

TABLE 3. 9995 SE PIN DESCRIPTION (CONTD)

TABLE 3. 9995 SE PIN DESCRIPTION (CONT'D)

TABLE 4. INTERRUPT LEVEL DATA

PRIORITY LEVEL	VECTOR LOCATION (Memory Address, In Hex	MASK VALUES To ENABLE ACCEPTING THE INTERRUPT (ST12 thru ST/S)	VALUE MASK SET TO UPON TAKING THE INTERRUPT (STIR thru STIS)	SOURCE AND ASSIGNMENT
$\begin{array}{c\|} \hline 0 \\ \text { (Highest Priority) } \\ \hline \end{array}$	0000	0000 thru IIII (see Note 1)	0000	External: Reset (RESET- Signal)
MID	$\begin{gathered} 0008 \\ \text { (see Note 2) } \end{gathered}$	0000 thru 1111 (See Note 1)	$\begin{gathered} 0001 \\ \text { (See Note 2) } \end{gathered}$	Internal: MID
NMI	FFFC	$\begin{aligned} & 0000 \text { thru } 1111 \\ & \text { (See Note 1) } \end{aligned}$	0000	External: (NMI - Signal)
1	0004	0001 thra 1111	0000	External: $I C O-I C 3=0001$
2	$\begin{array}{c\|} \hline 0008 \\ \text { (See Note 2) } \\ \hline \end{array}$	$\begin{aligned} & 0010 \text { thru } 1111 \\ & \text { (See Note } 3 \text {) } \end{aligned}$	(See Note 2)	Int. and/or Ext.: Aritkmetic Overflows ICO-IC3 = 0010
3	0000	0011 thru 1111	0010	$\begin{aligned} & \text { External: } \\ & \text { IC0-IC3=0011 } \end{aligned}$
4	0010	0100 thru IIII	0011	$\begin{aligned} & \text { External: } \\ & I \subset O-I C 3=0100 \end{aligned}$
5	0014	0101 thru 1111	0100	External: $I C O-I C 3=0101$
6	0018	0110 thru. 1111	. 0101	$\begin{aligned} & \text { External: } \\ & \text { ICo-IC } 3=0110 \end{aligned}$
7	0016	Olll thru 1111	0110	External: $I C O-I C 3=0111$
8	0020	1000 thru IIII	0111	External: $I C O-I C 3=1000$
9	0024	1001 thru 1111	1000	External: ICO-IC3 $=1001$
10	0028	1010 thru IIII	1001	External: $I C O-I C 3=1010$
11	002C	1011 thra 1111	1010	External: $I C O-I C 3=1011$
12	0030	1100 thru 1111	1011	External: $I<0-I \subset 3=1100$
..... 13	0034	Ifol thru IIII	1100	External: ICO-IC $3=1101$
14	0038	1110 and 1111	1101	External: $I C O-I \subset 3=1110$
$\begin{array}{c\|} 15 \\ \hline \text { Lawest Priority) } \end{array}$	0036	111	1110	External: ICO-IC3 = 1111

NOTES:

1. Level 0, MID, and NMI cannot be disabled with the Interrupt Mask.
2. MID and Level 2 use the same trap vector and change the Interrupt Mask to the same value.
3. Generation of a Level 2 request by an Arithmetic Overflow condition (ST4 set to 1) is also enabled/disabled by bit ST10 of the Status Register.

TABLE 5: 9995 SE EXTERNAL INSTRUCTION CODES

INSTRUCTION	CODE		DURING
	DO	D1	D2
CRU: SBO,SBZ,TB, LDCR Or STCR	0	0	0
IDLE	0	1	0
RSET	0	1	1
CKON	1	0	-1
CKOF	1	1	0
LREX	1	1	1

TABLE G. DEFINITION OF TERMINOLOGY

TERM	DEFINITIONS
B C D DA	Byte Indicator ($1=$ byte; $0=$ word) Bit Count Destination address register Destination address
IOP $\operatorname{LSB}(n)$ $\operatorname{MSB}(n)$ N	Immediate operand Least significant, (risht most) bit of (n) Most significant (left most) bit-of (n) Don't care
PC Result S SA ST	Program Counter Result of operation performed by instruction Source address register Source address Status register
$\begin{aligned} & \mathrm{STn} \\ & \mathrm{TD} \\ & \mathrm{TS} \\ & \mathrm{~W} \end{aligned}$	Bit n of status register Destination address modifier Source address modifier Workspace register
WRn (n) $a \rightarrow b$ $\|n\|$	Workspace register n Contents of n a is transferred to b Absolute value of a

WORD ADDRESSING:

Ls 8															
0	10	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Even 16 -bit Byte Address

BYTE ADDRESSING:

Even 16 -bit. . Odd 16 -bit Byte Address Byte Address

Odd Address $=$ Even Address +1

WORD AND BYTE FORMATS

$$
\text { FIGURE } 1 \text {. }
$$

Note: Addresses Are Word Addresses In Hex

9995 SE MEMORY MAP
FIGURE 2.

* Note: ST7, . ST9, and STII are not used in the 9995 SE but still physically exist in the register. These bits could therefore be used as flag bits, but software transportability should be kept in mind when doing so as these bits are defined in other 9900 microprocessor family and 990. minicomputer family products.

$$
\begin{gathered}
\text { STATUS REGISTER BIT ASSIGNMENTS } \\
\text { FIGURE 5. }
\end{gathered}
$$

WORKSPACE REGISTERS

FIGURE. 6 WORKSPACE REGISTERS USABLE AS INDEX REGISTERS

HORKSPACE PO:MEER
('ir)

HORKSPACK.
AOORESS
WORKSPAGE REGISTERj

MICROPROCESSC. ADOS WORKSPACE POI:TER (hip) TO TWICE THE REG!SEER MUUNER TO OERIVE AOTUAL REGISTER ADORESS

NOTE: ALL MEMORY AORD NOORESSES ARE EVEN.

FISURE 7 WORKSPACE POINTER
AND REGISTERS

Notes:
(1) Valid Address
(2) In Input Mode (Drivers (3) High-Z)
(3) Memory Read Data Must Be Valid At ClKouti Edge Indicated
(4) IAQ Will Only Be Asserted During, Memory Read Cycles If An Instruction Opcode Is Being Read

```
9995 SE MEMORY READ CYCLE
FIGURE 9.
```


Notes:
(1) Valid Address
(2) Valid Memory Write Data
(3) IAQ Will Never Be Asserted During A Memory Write Cycle

```
9995 SE MEMORY WRITE CYCLE
    FIGURE 10.
```


(8)
(8)
(1)
$3+0 \mathrm{~N}$
(
46 ! 4 !

(1) Pon't cave $X \times X X$ indicates that any type of 9995 SE cycle can be taking place
(2) RESET is sampled at every high--to-low CLKOUTI transition
(3) RESET is required to be active (low) for a minimum of four samples to initiate the sequence. The context switch would begin two CLKOUTI cycles after (3) if $\overline{R E S E T}$ were inactive (high) at the next CLKouTI falling edge after (3)
(4) The context switch using the Reset trap vector begins one CLKOUTI cycle after RESET is sampled as having returned to the inactive (high) level.

9995 SE]:RESET SIGNAL TIMING RELATIONSIIIFS

$$
\text { FIGURE } 12
$$

Notes:
(1) $\overline{N M I}$ is sampled at every high-to-low CLKouTl transition
(2) To be recognized, NMI must be active (low) at the end of an instruction. Since instructions are variable in length, the minimum active time for $\overline{N M I}$ is variable according to the instruction being executed. Shown by (2) is the last possible time that $\overline{N M I}$ must be recognized at or by before execution of the next instruction will commence. The NMI context switch begins three clKOUTI cycles after execution of the current instruction is complete.
(3) After an NMI context switch sequence has been jivitiated, $\overline{N M I}$ can remain active (low) indefinitely without causing consecutive NMI trap requests. To enable another NMI trap request, $\overline{N M I}$ must be taken inactive (high) and be sampled at least once at the inactive level.

9995 SE: NMI SIGNAL TIMING RELATIONSHIPS

$$
\text { FIGURE } 13
$$

* Note:

DO-DZ are used to distinguish between. CRU and external instruction cycles. If external instructions are not used in a system, DO-DZ are not necessary in the CRU interface.

9995 SE CRU INTERFACE
FIGURE 14 .

Notes:
(1) Valid Address; $R / \bar{w}=1$
(2) DO-Dス Each Output Logic Zero
(3) Non-specific Output Bit
(4) CRU Input Bit Must Be Valid On CRUIN At CLKouTI Edge Indicated

```
9995 SE. CRU INPUT C.YCLE
                                FIGURE 15*
```


Notes:
(1) Valid Address; $R / \bar{w}=0$
(2) DO-D2 Each Output Logic Zero
(3) Valid cRu Output Bit For Address Being Output
(4) Don't Care

$$
9995 \text { SE }\left.\right|_{\text {FIGURE } 16 .} \text { CRU OUTPUT CYCLE }
$$

FIGURE IT:
SINGLE BIT CRU ADDRESS DEVELOPMENT

FIGURE 1.8:. $\angle D C R / S T L R$ DATA TRANSFERS

MEMORY CYCLES:

CRU CYCLES. AND EXTERNAL INSTRUCTION CYCLES:

CLKOUTI
$\overline{\text { DBIN or }}$ Inverted CRUCLK
READY

Notes:
(1) First Sample Tine Of READY In Cycle
(2) Second Sample Time of READY In Cycle. Additional Wait States Can Be Generated By Keeping READY Low At This And Subsequent Sample Times.
X XXX Denotes Don't Care
WAIT STATE GENERATION FOR \qquad MEMORY, CRU, 'AND EXTERNAL INSTRUCTION CYCLES

$$
\text { FIGURE } 9
$$

(a) Inhibiting Automatic First Wait State, R-C Power-up Reset

(b) Inhibiting Automatic First Wait State, TTL-Speed Reset Request

(c) Invoking Automatic First Wait State (Reset Can Be R-C Power-up or Otherwise)

EXTERNAL CIRCUITRY FOR INVOKING/INHIBITING AUTOMATIC. FIRST WAIT STATE GENERATION FEATURE

$$
\text { FIGURE } 20
$$

Notes:
(1) $9995 \mathrm{SE} / 9990$ - is either connected to V cc or Ground
(2) 9995 SE/9990- is connected to Ground or 9995 SE/9990is connected to $V_{c c}$ and Address of word being accessed is in the on-chip memory address space of the TMS 9995
(3) 9995 SE/9990-is connected to $V C c$ and Address of: word being accessed is in the off-chip memory address space of the TMS 9995.
(4) Valid Address
(5) In input mode (Drivers (a) High-z)
(6) Addressed. Byte of memory read data must be valid at clkouTl edge indicated
(7) This half of data bus is don't care inputs at CLKOUTI edge indicated
(8) IAQ will only be asserted if an instruction opcode is being read

9995 SE/9990- SIGNAL EFFECT ON MEMORY READ CYCLES

$$
\text { FIGURE } 21
$$

CLKOUTI

 AO-A14 $\rightarrow \times(4) \times(4)$

$D 0-D 7$	$=--x$ (5)
$D 8-015$	$=--x$ (6)

MEMES

-

$\overline{\text { DRIN }}$
$\overline{W E}$
WORD/ $\overline{B Y T E}$

-1
I AQ

(1) ${ }^{\text {Byte) }}$

(One Cycle)

Notes:
(1) $9995 \mathrm{SE} / 9990-$ is either connected to $V_{c e}$ or Ground (2) 9995 SE/9990- is connected to Ground or 9995SE/9990is connected to $V_{c c}$ and Address of word being accessed is in the on-chip memory address space of the TMS 9995
(3) 9995 SE/9990- is connected to $V C C$ and Address of word being accessed is in the off-chip memory address space of the TMS 9995
(4) Valid Address
(5) Valid write data for addressed byte of memory address space
(6) Non- specific data

FREEZE SIGNAL CHARACTERISTICS FIGURE 24.

Add: Register - to -Register
STEP STATE COUNT MEMORY CYCLE INTERNAL EUNCTIOI
1
FETCH INSTRUCTION process previous opera
21 write results DECODE INSTRUGTI
32 FETCH SOURCE
43 . FETCH DESTINATION:
54 fetch next instruction ADD
6 WRITE RESULTS decode instruction

$$
\begin{gathered}
\text { EXECUTION SEQUENCE EXAMPLE } \\
\text { FIGURE: } 25 .
\end{gathered}
$$

Note: $t_{C 1}, t_{F 1}, t_{R 1}, t_{W H 1}, t_{W L 1}$, and $t_{D 1}$ Become Undefined Parameters When A Crystal Is Connected Between XTALI/CLKIN And XTAL2, And. The Internal Oscillator Is Consequently Enabled

9995 SE CLOCK TIMING

$$
\text { FIGURE } 27 .
$$

Common Signals:

Common Signals:

Last CLKouT! High-to-
Low Transition of
Previous Cycle
Note: Cycle Shown Is For No Wait States (With Wait States, Clout Cycles Get Added, Eat The Switching Parameters Do Not Change). Also, READY Is A Don't care Input During External Instruction Cycles (Wait States Caner Be Inserted Into External Instruction (ycles).

9995 SE. CRU, ETERNAL INSTRUCTION TIMING FTrARF no

19995 SE HOLD, RESET, AND NMI TIMING
FIGURE 30.


```
9995 SE INTREQ-, ICO-IC3 TIMING
    FIGURE 31.
```


Can be a multiple Clio
cycle memory Access

Each of these memory cycles can have multiple CLKouTl cycles.

TIMING OF SPECIAL SIGNALS
FIGURE 32.

Notes: See Table 11 For Values of $C_{L}, R 1$, and R2.
All diodes are $1 N 916$ or $1 N 3064$

SWITCHING CHARACTERISTICS TEST LOAD CIRCUIT

$$
\text { FIGURE } 33 .
$$

MEASUREMENT POINTS FOR SWITCHING CHARACTERISTICS FIGURE 34.

C_{1} and C_{2} roperssent the total capaciturice on tics find including straps and faraditici.

PARAMETER	TEST CONDITIONS	MIN	NOM MAX	MAI
$C_{\text {rystal Frequency, }} f_{X}$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$		6	
C_{1}, C_{2}	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	10	15	25

INTERNAL OSCILLATOR
FIGURE 35.

EXTERNAL OSCILLATOR

$$
\text { FIGURE } 36 \text {. }
$$

