
Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/Radar,
or any mirror site named on that site. If you downloaded it from elsewhere, please let me
know (particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Radar). Please do not point them at the
file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you
open the file.

In order to generate this file, I need to scan the pages, split the double pages and remove any
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then
generate the pdf file.

Hopefully after all that, I end up with a presentable file. If you find missing pages, pages in the
wrong order, anything else wrong with the file or simply want to make a comment, please
drop me a line (see above).

It is my hope that you find the file of use to you personally – I know that I would have liked to
have found some of these files years ago – they would have saved me a lot of time !

Colin Hinson
In the village of Blunham, Bedfordshire.

TEXAS INSTRUMENTS

TERMINAL EMULATOR PROTOCOL MANUAL

May 18, 1981

IMPORTANT NOTICE REGARDING TECHNICAL DATA

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING
THIS LITERATURE OR ANY INFORMATION DERIVED THEREFROM AND MAKES
ALL MATERIAL AVAILABLE SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THIS
LITERATURE AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED
THE PURCHASE PRICE OF THIS BOOK. MOREOVER, TEXAS INSTRUMENTS
SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER BY ANY
OTHER PARTY AGAINST THE USER OF THIS LITERATURE.

PROTOCOL MANUAL CONTENTS

Table Of Contents

SECTION 1

INTRODUCTION

PURPOSE 1. 1
AUDIENCE 1.2
CONVENTIONS 1.3

SECTION 2

THE TI-99/4 ENVIRONMENT

INTRODUCTION 2.1
VIDEO CONTROL 2.2
GRAPHICS MODE 2.2. 1
TEXT MODE
SOUND
SOUND LIST
SOUND LIST CONTROL BLOCK

2. 2.2
2. 3
2. 3. 1
2.3.2

SPEECH 2. 4
SPEECH DICTIONARY 2. 4. 1
TEXT-TO-SPEECH 2. 4. 2
DISK FILES 2. 5
FIXED LENGTH RECORD FILES 2. 5. 1
VARIABLE LENGTH RECORD FILES 2.5.2
BASIC PROGRAM IMAGE FILES 2. 5.3
BASIC FORMAT DATA FILES 2. 5.4
DISK DIRECTORY 2. 5. 5
END OF FILE DETECTION 2. 5.6

SECTION 3

CODED DATA

REASONS FOR ENCODING DATA 3.1
DATA CODING 3. 2

PROTOCOL MANUAL CONTENTS

SECTION 4

EMULATOR CONTROL FORMATS

CONTROL CHARACTERS
SPECIAL ESCAPE SEQUENCES
EXTENDED WRITES

4.1
4.2
4.3

OPER >20 - DEFINE CHARACTERS 4.3. 1
OPER >21 - LOAD SOUND TABLES 4. 3. 2
OPER >22 - PLAY SOUND TABLE 4. 3. 3
OPER >23 - STOP SOUND 4. 3.4
OPER >24 - SELECT CHARACTER BANK 4.3.5
OPER >25 - DEFINE COLOR SETS 4. 3.6
OPER >26 - SPEAK AND DISPLAY TEXT 4.3.7
OPER >27 - SPEAK TEXT WITHOUT DISPLAY 4.3.8
OPER >28 - SPEAK ALLOPHONES 4. 3. 9
OPER >29 - LOOK UP WORDS 4. 3. 10
OPER >2A - SPEAK WORDS ASSOCIATED WITH NUMBERS 4.3.11
OPER >2B - CHANGE SCREEN COLOR 4.3.12
OPER >2C - RETURN STATUS 4. 3. 13
OPER >2D - TRANSMIT COMMAND 4.3. 14

SECTION 5

FILE TRANSFER

LRC ERROR DETECTION 5.1
TRANSMISSION BLOCKS AND RECORDS 5.2
TRANSMIT COMMAND FORMAT 5.3
TRANSMISSION RECORD FORMATS 5.4
ACK RECORD FORMAT 5.5
NAK RECORD FORMAT 5.6
FILE TRANSFER FROM REMOTE TO HOST 5.7
FILE TRANSFER FROM HOST TO REMOTE 5.8

APPENDIX

DEFAULT CHARACTER SET A
EXAMPLE OF EMULATOR TO HOST FILE TRANSFER B
EXAMPLE OF HOST TO EMULATOR FILE TRANSFER C

PROTOCOL MANUAL INTRODUCTION

SECTION 1

INTRODUCTION

1. 1 PURPOSE

This manual provides a complete description of the
communication protocol used by the terminal emulator packages
(starting with Terminal Emulator II). It describes the steps
needed to display text, create and display graphics and create
and execute sound and speech on the TI-99/4 using the terminal
emulator protocols.

1.2 AUDIENCE

This manual is designed for programmers of host systems
charged with writing software to interface with the terminal
emulator packages.

1.3 CONVENTIONS

The following conventions will be observed:

1. Hex numbers will be denoted with a greater than symbol
(>). For example hex 20 will be written as >20.

2. Bits will be numbered from left to right. For example
the bit numbering for a byte would be:

+—+ +—+—+ + + + +
:0t1121314:516171
+—+ +—+—+—+ +—+

Texas Instruments 1-1

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

SECTION 2

THE TI-99/4 ENVIRONMENT

2.1 INTRODUCTION

Effective use of the terminal emulator protocols requires a
working knowledge of the TI-99/4. This section provides
information about video control, sound, speech and file access
needed to implement the protocols on a host system. Later
sections describe the actual format of the protocols.

2.2 VIDEO CONTROL

The terminal emulator supports the graphics and text modes
of video operations. The graphics mode will be explained
followed by the differences between graphics and text modes.

2.2.1 GRAPHICS MODE. The TI-99/4 supports 256 different
characters for screen display. The characters are identified by
numeric codes >0 to >FF. Codes in the range >20 to >7E are
supplied a default definition by the terminal emulator. For
example, code >41 is defaulted to the letter A. (See appendix A
for a complete list of defaults.) The user can redefine any of
the 256 characters by using the protocols (see section 4.3.1.

NOTE

Any of the 256 characters can be given a
definition by the user. However, not all the
characters can be displayed by the emulator
package. Characters >00, >OA, >OC, >1B, >80,
>8A, >8C and >9B cannot be displayed by the
emulator in graphics mode.

2.2.1.1 The Screen Display. In graphics mode the screen is
divided into 24 lines with 32 characters on each line. Thus,
there are a total of 768 character positiions on the screen. The

Texas Instruments 2-1

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

lines are numbered from 0 to 23 and the columns are numbered from
0 to 31.

The terminal emulator maintains a logical cursor position on
the screen. The cursor symbol is not displayed while in graphics
mode. The next character received will be placed on the screen
at the position identified by the cursor. The cursor is then
advanced to the next screen portion. To display a character at
the given cursor position the character code is transmitted to
the TI-99/4. For example, to display the default character
specified by code >41 (the letter A) on the screen, the host
system would transmit the >41 to the emulator.

The protocol lets the user position the cursor on the
screen. Thus the host could display one character at line 10
column 6 and the next character at line 0 column 0. (See section
4.2).

2.2.1.2 Character Banks. Standard data transmission allows for
7 bits of data and 1 bit to check for parity. Because of the
parity bit the maximum number that can be transmitted to the TI-
99/4 is >7F. Using standard transmissions the host cannot
display characters in the range >80 to >FF.

To overcome this limitation the terminal emulator has
divided the characters into two banks for display purposes. Bank
1 (or the lower bank) contains the characters >O to >7F and bank
2 (or the upper bank) contains the characters >80 to >FF. By
default the terminal emulator will use bank 1 to display
characters. The protocols, however, contain a command sequence
to let the host switch between banks.

When the emulator is using the upper bank, >80 is added to
the received character code before the code is placed on the
screen. For example, suppose the user wants to display >41, >BO
and >41. Since the emulator defaults to the lower bank the user
transmits >41 for the first character. The character >BO is in
the upper bank (>80 to >FF) so the host must send the command
sequence to switch banks. The host can send either >BO or >30
(>B0 — >80) for the second character. Since the parity bit is
always removed by the emulator, the byte will be >30 when the
emulator is ready to display it.

NOTE

Some host systems may put limitations on the
transmission of characters in the range >80
to >FF. Be certain the constraints of the
host system are understood when designing

Texas Instruments 2-2

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

programs. Regardless of what transmissions
the host allows, all bytes in the range >80
to >FF will be converted to the range >0 to
>7F when the parity bit is removed.

Since the emulator is now operating on the upper bank, >80 will
be added to the received byte and >BO (>30 + >80) will be
displayed.

The final character to send is >41 which is in the lower
bank (>0 to >7F). The user must send the control sequence to
switch banks so the emulator will once again be operating on the
lower bank. The character can then be transmitted. (See section
4.3.5).

2.2.1.3 Character Definition. There are 768 character positions
on a standard graphics screen. Each pattern position is composed
of an 8—by-8 grid of dots called pixels. Each pixel in the
character grid can be either "on" or "off". A character
definition simply defines the status (on or off) of each of the
64 pixels in a character grid.

To define a character using the terminal emulator protocols
the user specifies the code of the character to be defined (>0 to
>FF) and eight bytes of hex data. There are a total of 64 bits
in the eight bytes of data. Each of the bits corresponds to one
of the pixels in the character grid. The eight bits in byte one
refer to the first row of eight pixels, the eight bits in byte
two refer to the second row of 8 pixels and so on.

If a bit in the character definition contains a 1 the
corresponding pixel is turned on. If a bit contains a 0 the
corresponding pixel is turned off. Figure 2-1 is an example of
the hex data required to define the letter T. (See section
4.3.1).

Character Grid Hex Data

Row 1 1 1 1 1 1 1 1 1 Byte 1 FF
Row 2 1 1 1 1 1 1 1 1 Byte 2 FF
Row 3 0 0 0 1 1 0 0 0 Byte 3 18
Row 4 0 0 0 1 1 0 0 0 Byte 4 18
Row 5 0 0 0 1 1 0 0 0 Byte 5 i8
Row 6 0 0 0 1 1 0 0 0 Byte 6 18
Row 7 0 0 0 1 1 0 0 0 Byte 7 ie
Row 8 0 0 0 1 1 0 0 0 Byte 8 18

Figure 2-1 LETTER T DEFINITION

Texas Instruments 2-3

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

2.2.1.4 Defining Character Color. The TI-99/4 supports 16
different colors on the video display. However any given
character can only contain two colors called the foreground color
and the background color. The colors are denoted by numeric
codes ranging from >0 to >F. Table 2-1 lists the colors and hex
codes supported by the emulator.

Table 2-1 COLOR CODES

Hex Color

>0 Transparent
>1 Black
>2 Medium Green
>3 Light Green
>4 Dark Blue
>5 Light Blue
>6 Dark Red
>7 Cyan
>8 Medium Red
>9 Light Red
>A Dark Yellow
>B Light Yellow
>C Dark Green
>D Magenta
>E Gray
>F White

Each pixel in the character grid on the video can be either
the foreground or the background color. The bits in the
character definition specify the color. If the bit contains a 1
the corresponding pixel uses the foreground color (the pixel is
"on"). If the bit contains a 0 the corresponding pixel uses the
background color (the pixel is "off").

For color control the 256 characters are divided into 32
groups called color sets. Each color set contains eight
characters. Table 2-2 gives the color sets.

Table 2-2 COLOR SETS

Color Set Characters

> 0 >00 to >07
> 1 >08 to >OF
> 2 >10 to >17
> 3 >18 to >1F
> 4 >20 to >27
> 5 >28 to >2F

Texas Instruments 2-4

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

> 6 >30 to >37
> 7 >38 to >3F
> 8 >40 to >47
> 9 >48 to >4F
> A >50 to >57
> B >58 to >5F
> C >60 to >67
> D >68 to >6F
> E >70 to >77
> F >78 to >7F
>10 >80 to >87
>11 >88 to >8F
>12 >90 to >97
>13 >98 to >9F
>14 >AO to >A7
>15 >A8 to >AF
>16 >BO to >27
>17 >28 to >BF
>18)CO to >C7
>19 >C8 to >CF
>1A >DO to >07
>12 >D8 to >DF
>1C >EO to >E7
>10 >E8 to >EF
>1E >FO to >F7
>1F >F8 to >FF

All characters in a given color set are assigned the same
foreground and background colors. For example, assume character
>23 has a foreground color of black and a background color of
cyan. Then all characters in color set >4 (characters >20 to
>27) will have the same foreground and background colors. The
only way characters can have different colors is for them to be
from different color sets.

One byte is required to define the color for a color set.
Numbering bits 0 to 7 from left to right, bits 0-3 contain the
foreground color and bits 4-7 contain the background color. For
example, assume color set >B is to have a foreground color of
black and a background color of cyan. From Table 2-1 we know
black has a color code of >1 and cyan has a color code of >7.
The byte required to define the color would be >17.

The host system can define the foreground and background
colors for the characters using the protocols. The host must
supply the color set identifer (>0 to >1F) followed by the
desired foreground and background colors. (See section 4.3.6).

Texas Instruments 2-5

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

2.2.1.5 Defining Screen Color. The TI-99/4 also lets a user
assign a color to the entire screen. This includes the area at
the top and bottom of the screen, called the border, where
characters cannot be placed. The screen color is the color
displayed when transparent (color code >O) is used as a character
color. The protocols supports a command sequence that lets the
host define the screen color. (See section 4.3.12).

2.2.2 TEXT MODE. Text mode differs from graphics mode in the
following ways:

1. Each line on the screen is 40 characters long. Thus
there are 960 character positions on the display.

2. Each character grid on the screen consists of six
columns and eight rows of pixels for a total of 48
pixels per character. Eight bytes of data are still
required to define the grid. However, the last two
bits in each byte are ignored by the system.

3. All characters are limited to the same foreground and
background colors. A special command sequence is used
to change the colors. The same command sequence will
change the screen color (refer to 2.2. 1.5) when the
emulator is in graphics mode.

4. Characters >00 to >IF, >7F,)80 to >9F and >FF will not
be displayed while in text mode.

The protocol has a special command sequence used to switch
between text and graphics modes. (See section 4.2).

2. 3 SOUND

The TI-99/4 supports three sound generators and one noise
generator. The terminal emulator protocols let the host system
control the generators. The generators can be used to create
music and sound effects.

2.3.1 SOUND LIST. The volume and frequency of the generators
are controlled by a memory resident table called a sound list.
The sound list is composed of variable length control blocks.
The general format of a control block is:

Texas Instruments 2-6

PROTOCOL MANUAL THE TI-99/4 ENVIRDNMENT

+ + + —+
ILENCTHIDATAITIMEF
+ —+ + +

LENGTH is a one byte field that specifies the number of bytes
contained in DATA. DATA is a variable length area that controls
the volume and frequency output of the generators. TIME is a one
byte field that specifies the time interval the TI-99/4 is to
wait before it starts processing the next control block. The
timer is in 60ths of a second.

For example, assume that the user has defined ten bytes of
generator control information (a complete explanation of this
area is below). The TI-99/4 is to process a block with the ten
bytes of data and pause for 1/2 second. The length byte (LTH)
would contain >A to specify that ten bytes of control information
follows (DATA). Next would come the actual control information.
And finally the timer byte (TIME) would contain a >1E to specify
that a pause of 1/2 second (30/60ths of a second) is to occur
before processing the next control block. The sound will remain
constant until the next control block is processed. The actual
sound list would be:

+ + -+ + + + + + + + + +— +
tOAIBOiB11B21B3+B41B5+B61B71B8/B911E1
+ + +--+ + + + + + + + + +

A sound list on the TI-99/4 can be terminated in two ways.
One option is to stop processing the sound lists completely. To
do this the timer byte of the last control block within the list
must contain a zero. The control block associated with the zero
timer byte will be processed.

NOTE

Once a generator has been started it will
continue to output sound at a constant volume
and frequency until a control block in a
sound list modifies the settings. Unless the
programmer wants a sound to continue at a
constant volume and frequency, the control
block that terminates the sound list (control
block with a timer byte of zero) should turn
off all generators by setting all volumes to
off.

Texas Instruments 2-7

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

The other termination option is to use the last entry in a
sound list to branch to the start of the same sound list or to
the start of another sound list. Using this method the host can
produce continuous sound with a limited amount of control data.
To link to another sound list (or to the start of the same list)
specify a length byte of zero followed by the two byte address of
the next sound list. The protocols have a command sequence to
turn off all sound generators. This provides a means of stopping
continuous sound. (See section 4.3.4).

The emulator package has set aside 16 table areas in memory
to hold sound lists. The tables are numbered >0 to >F. Each
table is 128 bytes in length and the areas are contiguous in
memory. The first table (number 0) is at address >1100, the
second table (number 1) is at >1180 and so on. The host can use
the protocols to store data in the tables. (See section 4.3.2).

A sound list may be larger than 128 bytes. If it is larger
than 128 bytes it will use part of the next table in sequence to
hold the excess. For example, assume table >3 is loaded with a
224 byte sound list. Then all of table >3 is used and 96 (224 —
128) bytes of table >4 are also used. If the user tried to load
another sound list into table >4 he would destroy the last 96
bytes of the sound list loaded in table >3.

Assume the host wants to place a sound list in table >2 and
link it to play music continuously. The host constructs the
sound list and loads it into table >2. The last control block in
the list would contain a length byte of zero followed by address
>1200 (memory address of sound table >2).

2.3.2 SOUND LIST CONTROL BLOCK. The control block specifies
three items of information: volume level for sound and noise
generators; frequency for sound generators and frequency for the
noise generator. The information can be specified in any
sequence and for any number of generators.

2.3.2.1 Volume Level. Eight bits of information are required to
control volume levels. The bits are numbered 0 to 7 from left to
right. The format of the bits is:

1. bit 0 — Must be set to 1.

2. bits 1-2 — Denotes the generator to control. Valid
entries are:

a. 00 — Sound generator 0.

b. 01 — Sound generator 1.

Texas Instruments 2-8

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

c. 10 — Sound generator 2.

d. 11 — Noise generator.

3. bit 3 — Set to 1 to indicate volume control.

4. bits 4-7 — Volume setting to use. Possible values (in
binary) range from 0000 to 1111. 0000 is the highest
volume, 1000 is a medium volume and 1111 turns the
generator off.

For example to turn generator i to the highest volume the
volume level byte would be: 1 01 1 0000. To turn the generator
0 to a medium volume the volume level byte would be: 1 00 1
1000. To turn generator 3 (noise generator) off the volume level
byte would be: 1 11 1 1111.

2.3.2.2 Sound Generator Frequency Control. Two bytes are
required to control the fequency of the sound generators. The
bits are numbered 0 to 15 from left to right.

The frequency is converted to a value called the frequency
count. The count is then specified in the control byte instead
of the original frequency. The count is always specified as ten
bits of data. The formula used for the conversion is COUNT =
111860 / FREQUENCY. For example, the count for a frequency of
110 Hz would be 111860 / 110 which is 1016.9. Since the count
must be an integer this rounds to 1017.

NOTE

The frequency range allowed is 110 Hz to
55,938 Hz, or a count of 1017 to 2.

The format of the frequency bytes is:

1. bit 0 — must be set to 1.

2. bits 1-2 — Generator to work with. Valid entries are:

a. 00 — Sound generator 0.

b. 01 — Sound generator 1.

c. 10 — Sound generator 2.

Texas Instruments 2-9

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

NOTE

The noise generator (bit setting 11) is not a
valid entry.

3. bit 3 — Set to 0 to indicate frequency control.

4. bits 4-7 — The LAST four bits of the count.

5. bits 8-9 — Set to 00.

6. bits 10-15 — The FIRST six bits of the count.

As an example assume that generator 1 is to be set to a
frequency of 5,676 Hz. First the frequency must be converted to
the count. Using the formula specified in 2.3.2.2 gives: COUNT
= 111860 / 5676 = 19.7. The count is then rounded to 20. Next
the count must be converted to 10 bits. This gives: 000001
0100. Remember, the last 4 bits (0100) go into bits 4-7 and the
first 6 bits (000001) go into bits 10-15.

The full 16 bits required to set the frequency for the above
example is:

1 10 0 0100 00 000001

2.3.2.3 Noise Frequency Control. Eight bits are required to
control the frequency of the noise generator. The bits are
numbered 0 to 7 from left to right. The format of the byte is:

1. bit 0 — Must be set to 1.

2. bits 1-2 — Generator to work with. MUST be set to 11
for the noise generator.

3. bit 3 — Set to 0 to indicate frequency control.

4. bit 4 — Must be set to 0.

5. bit 5 — Type of noise indicator. 0 = White noise, 1 =
Periodic noise.

6. bits 6-7 — Quality of noise. Valid entries are 00, 01,
10 and 11. If 11 is used the noise is dependent on the
frequency specified for generator 3.

Texas Instruments 2-10

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

Different "qualities' of noise can be produced by varying
bits 6-7. The best approach is to try the different values
allowed and observe the results. Experiment with bits 6-7 as 00,
01 and 10. Also set bits 6-7 to 11, try different counts for
generator 3 and observe the different "qualities" of noise.

2.4 SPEECH

Dictionary speech and text—to—speech are two forms of speech
supported by the emulator protocols. A speech synthesizer must
be connected to the TI-99/4 before either form of speech can be
used.

2.4.1 SPEECH DICTIONARY. The speech peripheral that attaches to
the TI-99/4 has a list of words it can speak called the speech
dictionary. These words are created by recording the words and
converting the recording to linear predictive code. The data is
then stored in the peripheral. The speech peripheral manual
contains a complete list of the words in the dictionary. The
protocols let the host speak the words from the dictionary.

2.4.2 TEXT—TO—SPEECH. The emulator also supports the text—to—
speech capability which can be used in two ways. One method is
to use protocol commands and transmit text strings to the
emulator. The emulator will use rules of grammar to convert the
text string to allophones. The allophones will then be spoken.
Any text string can be spoken using text—to—speech.

The other method is to use protocol commands to transmit the
allophones themselves to the emulator. The terminal emulator
command module manual explains allophones. (See sections 4.3.7
to 4.3.11).

2. 5 DISK FILES

The diskettes used by the TI-99/4 are divided into sectors.
Each sector is 256 bytes in length. Disk space is allocated to
files by whole sectors. A file that is 257 bytes long is
allocated two disk sectors. Only one byte out of the second
sector will be used.

The TI-99/4 supports three types of disk files. They are:

1. Fixed Length Record.

Texas Instruments 2-11

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

2. Variable Length Record.

3. Basic Program Image.

2.5.1 FIXED LENGTH RECORD FILES. At file creation time the user
specifies the length of the data records. All records in the
file have the same length. File management will group the
records into disk sectors.

For example, assume a file has been created with 80 byte
records. Each disk sector will contain three records. The three
records use 240 bytes (3 times 80) of the 256 bytes in the
sector. The remaining 16 bytes of the sector are not used.

2.5.2 VARIABLE LENGTH RECORD FILES. At file creation time the
user specifies a maximum length for the data records. The format
of the data on disk is one byte containing the actual length of
the data followed by the data. The maximum length allowed is >FE
(254 decimal). File management will put as many records as
possible in a disk sector. A length of >FF denotes the end of
data in a sector.

For example, a user has created a variable length file with
a maximum record size of 250 bytes. The user has already written
one record to the file containing 200 bytes of data. The format
of the disk sector is:

+ + + +
tC81200 bytes of data155 unused bytes!
+ + + +

Thus 201 bytes of the sector (one byte for >C8 (decimal 200)
denoting the record length and 200 bytes for the data) have been
used.

Next, the user writes a 47 byte record to the file. The
format of the sector is now.

+ + + + + +
6C8:200 bytes of datal2F147 bytes of data17 unused bytes!
+ + + + + +

Now 249 bytes of the sector (201 bytes for the first record, one
byte for >2F (47 decimal) denoting the length of the second
record and 47 bytes for the second record's data) have been used.

Texas Instruments 2-12

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

Finally, the user writes a 50 byte record to the file. File
management requires 51 bytes to write the record to disk (one
byte for the length and 50 bytes for the data). The current
sector, however, only has 7 unused bytes remaining. The end of
sector marker (>FF) is placed in the current sector and the third
record is written to the next sector. The disk sector after the
write is:

+ + + + + + +
:C8:200 bytes of data:2F:47 bytes of datafFFt6 unused bytes:
+— + + + + + +

2.5.3 BASIC PROGRAM IMAGE FILES. File management starts with
the first sector in a program file and completely fills each
sector with data until all program data is saved. The last
sector in the file may not be completely full. File management
maintains a pointer to the first unused byte in the last sector
of a program file. No special symbols (such as >FF for the
variable length file) are used to mark the end of the sector in a
program file.

Assume the user are going to save a BASIC program that is
400 bytes long to disk. Sector bytes are numbered from 0 to 255
(a total of 256 bytes on the sector). The first sector will be
completely filled. The file will occupy 144 bytes of the second
sector. The remaining 112 bytes of the second sector will be
unused. The pointer to the byte after the last used byte in
sector two will be 144 (>90). The format of the sectors will be:

+ +
Sector 1 — :256 data bytes (0-255)1

+ +
+ +

Sector 2 — :144 data bytes (0-143)1112 unused (144-255):
+ +

2.5.4 BASIC FORMAT DATA FILES. When a BASIC program accesses
the disk, file management obtains a record from disk and passes
the record to the BASIC interpreter. The interpreter must know
the format of the data within the record. Currently BASIC
supports display and internal data formats. Refer to the User's
Reference Manual for additional information about data formats.

NOTE

The data format is a requirment of BASIC, not
file management. The following rules must be

+

+

Texas Instruments 2-13

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

observed only for files that are to be
accessed by BASIC programs.

2.5.4.1 Multiple Items in a Record. With BASIC it is possible
to create records with more than one data item in each. When
semi—colons (;) or commas (,) are used to separate variables in a
PRINT statment, the variables are written to the same record.
For example, the BASIC sentence:

PRINT #1: A$; B$

would first put A in the record. Next B would be placed in the
record after A. Since B is not followed by a semi—colon the
record would then be given to file management.

To read more than one item from a record a comma (,) is
used. For example, the BASIC sentence:

INPUT #1: A, B

would take the first item from the record and place the item in
the variable A. The second item would be removed from the same
record and placed in variable B.

NOTE

If only one item of data is in the record,
the BASIC interpreter will read the next
record from the file to fill variable B.

2.5.4.2 Display Format. Display format is designed to act as if
the data were coming from or going to the screen. Multiple data
items in the same record must be separated by a comma. For
example, the data record:

+ + + +-+ + +--t + + + +-+ + +-+ + + + + +
IDIIISIPILIAIYI IDIAITIAI,121 IIITIEIMISI
+ + +—+—+ + + + + +—+—+ + + + + + + + + +

would contain two items. "DISPLAY DATA" is the first item in the
record. The comma (,) marks the end of the first item. "2
ITEMS" is the second item in the record. The BASIC sentence
required to create the record is:

PRIN1 #1: "DISPLAY DATA"; ", "; "2 ITEMS"

Texas Instruments 2-14

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

NOTE

The user must manually place the comma (,) in
the data. The system will not automatically
insert a comma between data items.

If a comma is not in the data, the record consists of one
item. For example:

+—+++++++ +—+++++++++++
IDIIISIPILIAIYI IDIAITIAI 111 IIITIE1M1
+ + +—+ + + +—+ + + + + + + + + +—+ + +

would be a record with only one item. Either of the following
BASIC sentences would create the record:

PRINT #1:"DISPLAY DATA";" 1 ITEM"
PRINT #1:"DISPLAY DATA 1 ITEM"

Display format data can be in either fixed length or
variable length records. The above examples are fixed length
records (they do not contain a record length byte). An example
of a variable length record with two items is:

+ + + +—+ + +—+ +—+ + + + + + + +—+ +—+ +—+
1141DIIISIPILIAIYI IDIAITIAI,121 1I1TIE1MISI
+ + + + + + +—+ + + + + + + + + + + + + + +

The >14 is one byte of hex data specifying the number of bytes in
the record.

NOTE

Fixed length records are not always
completely filled with data. For example,
assume the word "TWO" is written to a fixed
length record 80 bytes long. Only the first
three bytes of the record would contain valid
data. The remaining 77 bytes would be
unused. Unused bytes of fixed length display
format records must be filled with >20
characters.

Texas Instruments 2-15

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

2.5.4.3 Internal Format. With internal format files each item
in the record has its own length indicator. Commas are not used
to separate items within a record as in display format files. An
example of a fixed length record, internal format with two items
is:

+ + +-+ + + +-+ + + + + + + + +-+-+ + + + + +
IODIIINITIEIRINIAILI IDIAiTIAi07i21 IIITIEIMISI
+ ++-++++-++++ ++-++ ++++++++

The >OD is one byte of hex data specifying there are decimal 13
bytes of data in the first item. The >07 is one byte of data
specifying there are seven bytes of data in the second item. An
example of a fixed length record, internal format with one item
is:

+ ++-++++-+++++ ++ ++++++++
I14IIINITIEIRINIAILI IDIAITIAI 111 IIITIEIMI
+ + + + + + +-+ + + + + + + + + + + + + + +

The >14 is one byte of hex data specifying decimal 20 bytes of
data in the first item.

The length indicators for internal format data should not be
confused with the length indicators for variable length data
records. One is used by the BASIC interpreter, the other by file
management. Examples of variable length records with internal
format data are:

+ + + + + + + + + 7 + + + + + + + + + + + + + +
I1610DIIINITIEIRINIAILI IDIAITIA107I2I IIITIEIMISI
+ + -++++-++++-+-+++++ ++++++++
+ + ++++++++++++++ ++++-+++
115I14IIINITIEIRINIAILI 1DIA1T1A1 Ill IIITIEIMI
+ + ++++-+++-++++++-+ +-+-++++-+

The first byte of each record is the hex number specifying the
amount of data in the record. This byte is used by file
management.

NOTE

Fixed length records are not always
completely filled with data. For example,
assume the word "TWO" is written to a fixed
length record BO bytes long. Only the first
three bytes of the record would contain valid
data. The remaining 77 bytes would be
unused. Unused bytes of fixed length

Texas Instruments 2-16

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

internal format records must be filled with
>00 characters.

disk directory
currently on the
disk directory.
important to the
to right. The

2.5.5 DISK DIRECTORY. Each diskette contains a
that specifies the type and location of files
disk. Each file on the disk has an entry in the
Eight bytes of the disk directory entry are
protocols. Bits are numbered 0 to 7 from left
bytes are:

1. Byte 1-2 — Total number of sectors in the file.

2. Byte 3 — File flags.

a. Bit 0 — Type of record. 0 = Fixed length
records, 1 = Variable length records.

b. Bits 1-3 — Not used.

c. Bit 4 — Protect flag. 0 = Not delete/write
protected, 1 = Delete/write protected.

d. Bit 5 — Not used.

e. Bit 6 — BASIC file information. 0 = Display
format, 1 = Internal format. This bit is not
used by file management.

f. Bit 7 — Type of file. 0 = Data file, 1 = Program
image.

3. Byte 4 — Number of records per disk sector. Not used
with variable length or program image files.

4. Byte 5 — End of file offset. Not used with fixed
length records. For variable length files points to
the end of sector marker (>FF) for the last sector in
the file. For example, if the EOF offset is >CO3 at
offset >CO in the last sector of the file you would
find the end of sector marker (>FF). For program image
files points to the byte after the last data byte in
the sector. For example, if the EOF offset is >CO, at
offset >CO in the last sector of the file would be the
first unused byte of the sector. Offset >BF would
contain the last byte of data in the sector.

5. Byte 6 — Record size. For fixed length records

Texas Instruments 2-17

PROTOCOL MANUAL THE TI-99/4 ENVIRONMENT

contains the actual record length. For variable length
records contains the maximum record size allowed. Not
used for program image files.

6. Bytes 7-8 — Total number of records in the file with
the order of the bytes reversed. Not used for program
image files. For example, if a file contains 423
records (>O1A7) the entry would be >A7O1.

2.5.6 END OF FILE DETECTION. Each of the three disk file types
has its own method for detecting an end of file conditioin. The
methods are:

1. Program Image — Bytes 1-2 of the disk directory specify
the total number of disk sectors in the file. Maintain
a count of the number of sectors processed. Continue
processing until the count equals the number of sectors
in the file. Remember, a program image file may use
only part of the last disk sector. When processing the
last sector use the end of file offset, specified in
byte 5 of the disk directory, to determine the number
of bytes actually used.

2. Fixed Length Records — Bytes 7-8 of the disk directory
specify the total number of fixed length records in the
file. Maintain a count of the number of records
processed. Continue processing until the count equals
the number of records in the file.

3. Variable Length Records — Bytes 1-2 of the disk
directory specify the total number of disk sectors in
the file. Maintain a count of the number of sectors
processed. Continue processing until the count equals
the number of sectors in the file.

•

Texas Instruments 2-18

PROTOCOL MANUAL CODED DATA

SECTION 3

CODED DATA

3.1 REASONS FOR ENCODING DATA

The terminal emulator package cannot accept the full range
of >O to >FF as data in one byte. One bit of each byte is
reserved for parity. This limits the maximum data range for a
byte to >0 through >7F.

Some values are also reserved as control characters for
communications systems. Transmission of data in the range >0 to
>1F can have varying results from system to system.

The valid range for data transmission then is limited to >20
through >7F. Some of the special features of the emulator, such
as sound, graphics and file transfer, require transmission of
eight bit bytes. This means some data must be encoded so that
transmitted bytes fall within the >20 to >7F range.

3.2 DATA CODING

Each coded byte of data contains six actual data bits. The
bits are numbered 0 to 7 from left to right. Bit 0 is reserved
for parity and can be ignored during encoding. Bit 1 is always
set to 1 to ensure the byte will not be in the range >0 to >1F.
Bits 2 to 7 contain the actual data.

Only six bits of actual data are allowed per coded byte.
This method maps three bytes of normal data to four bytes of
coded data. The mapping is:

BYTE 1 BYTE 2 BYTE 3 BYTE 4

Normal Data xxxx xxxx yyyy yyyy zzzz zzzz
Coded Data 01xx xxxx Olxx yyyy Ofyy yyzz Olzz zzzz

As an example, assume >1B >95 >F4 >01 is to be encoded, The
binary representation of the four bytes is:

0001 1011 1000 0101 1111 0100 0000 0001.

Texas Instruments 3-1

PROTOCOL MANUAL CODED DATA

The binary representation of the coded data is:

0100 0110 0111 1000 0101 0111 0111 0100 0100 0000 0101 0000.

The hex data after encoding is >46 >7B >57 >74 >40 >50.

NOTE

The emulator package does not validate bit 1
for a binary 1. If the host system has
problems with transmitting a >7F the system
can reset bit 1 to 0 converting the >7F to a
>3F. Bit 1 should always be set to 1 if the
transmitted byte would be in the range >00 to
>1F with bit 1 set to 0. The emulator always
sets bit 1 to 1 when transmitting encoded
data to the host.

Texas Instruments 3-2

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

SECTION 4

EMULATOR CONTROL FORMATS

Control characters, escape sequences and extended writes are
the three methods of passing control information to the emulator.

4.1 CONTROL CHARACTERS

Certain one byte codes in the range >0 to >1F have been
reserved as control bytes. When the emulator is in the text mode
and a control code is received, the emulator will perform a are—
defined function_ Control codes supported are:

1. SOH (>01) — Home the cursor. When >01 is received the
cursor is moved to the upper left hand corner of the
display.

2. BEL (>07) — Produce a "beep" sound from the TI-99/4.

3. BS (>08) — Backspace the cursor one character position.
Place a space (>20) in the position the cursor occupied
before the backspace occured. As an example assume
that " " denotes the cursor and the current line is:

ABCD

Two backspace bytes are received. The new line will
be:

AS

4. LF (>0A) — Advance the cursor to the next line without
changing the column position. For example, if the
cursor is at column 12 line 4 and a >OA is received,
the cursor will be positioned to column 12 line 5.

5. CR (>00) — Return the cursor to the beginning of the
current line. The cursor character will disappear from
the display until another character is received.

Texas Instruments 4-1

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

NOTE

A carriage return (>00) will not
automatically generate a line feed (>OA).

b. FF (>0C) — Clear the screen and place the cursor in the
upper left hand corner of the display.

NOTE

The above control characters are only in
effect when the computer is in text mode.
While in graphics mode codes >00, >OC and >OA
will be ignored. The other codes will be
displayed.

4.2 SPECIAL ESCAPE SEQUENCES

Escape sequences pass information to the emulator in both
text and graphic modes. All escape sequences have >12 as their
first byte. When >12 is received the emulator expects the next
byte to be a special operation code defining the action to be
performed. Supported escape sequence operation codes are:

1. >59 — Set the logical cursor address. The operation
code followed by two bytes specifing the column and
line number for the cursor. The position bytes are
specified relative to >20. For example >12 >59 >30 >25
sets the cursor to column >10 (>30 — >20) and line >5
(>25 — >20).

2. >3A — Locks the keyboard on the computer. Keys pressed
are not trasmitted until the keyboard is unlocked. The
complete sequence is >12 >3A

3. >32 — Unlocks the keyboard on the computer. The
complete sequence is >1B >3B.

4. >47 — Begin an extended write. A complete explanation
of extended writes is given in section 4.3.

5. >48 — Home the cursor. Position the cursor in the

Texas Instruments 4-2

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

upper left hand corner of the display. This sequence
will not clear the video display. The complete
sequence is >1B >48.

6. >53 — System reset. Used to abort the file transfer.
If file transfer is in progress the system exits the
transfer and returns to normal processing. The
complete sequence is >IB >53.

7. >79 — Place the computer in graphics mode. The command
will clear the screen and place the logical cursor in
the upper left hand corner of the display. A cursor
character is not displayed in graphics mode. The
complete sequence is >1B >79.

NOTE

The hardware requires about 90 milliseconds
to switch modes. If any data is received
during the switching period garbage will
appear on the screen.

8. >7A — Place the computer in text mode. The command
will clear the screen and place the cursor in the upper
left hand corner of the display. The complete sequence
is >1B >7A.

NOTE

The hardware requires about 90 milliseconds
to switch modes. If any data is received
during the switching period garbage will
appear on the screen.

If the byte following the >1B is not one of the above codes
the escape sequence is terminated and the received byte is
ignored.

Texas Instruments 4-3

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

4.3 EXTENDED WRITES

The general format of the extended write is:

+ + —+ + + + + + + +
1214717F112:2860PER:DATA1131291
+ + —+ + + + —+ + + +

The >1B >47 >7F is the sequence which signals an extended write
is about to begin. The >1B >28 indicates that the operation code
is contained in the next byte.

OPER is a one byte extended write operation code specifiying
the write being performed. DATA is the data associated with the
extended write. The format of DATA depends on the write
operation code. The sequence >13 >29 signals the end of the
extended write.

Once an extended write has started (>1B >47 >7F >13 >28 has
been received) the only way to terminate the write processing is
with the sequence >12 >29. Any bytes between >1B >28 and >1B >29
are considered part of the write and will not be processed in the
normal manner. Supported operations are listed below.

4.3.1 OPER >20 — DEFINE CHARACTERS. Command sequence to define
one or more consecutive characters. The first two bytes specify
the code of the first character to be defined. The remainder of
the data is the information required to define the character(s)
(see section 2.2. 1.3). Valid character codes are >00 to >FF.
The command requires the one byte character code be sent as two
bytes. Bits 0-3 of the character code bytes are always 0010 (or
>2). Bits 0-3 of the code byte are copied to bits 4-7 of the
first character code byte. Bits 4-7 of the code byte are copied
to bits 4-7 of the second character code byte. For example,
character code >57 would be converted to >25 >27 in the command.

The data defining the character (all bytes between the
character code and >13 >29) must be encoded as specified in
section 3.

Assume the host wants to define character ›BA as a T and
character >8B as a L. Since the >8A and >83 are consecutive
codes they can be defined with one extended write command. The
command format calls for the code of the first character to be
expressed as two bytes. In this example the two bytes would be
>28 >2A.

Next the eight bytes defining each code must be determined.
From the example in section 2.2.1.3 we know the eight bytes

Texas Instruments 4-4

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

required to define the T are >FF >FF >18 >18 >18 >18 >18 >19.
Using the technique described in the example we find the data
needed to define the L is >CO >CO >CO >CO >CO >CO >FF >FF.

The 16 bytes of data (eight bytes needed to define T and
eight bytes needed to define L) must be encoded using the method
described in section 3. The data after encoding is:

+ + -+- + + + -+ + + + + + + + +— + + +— +
17F17F17C15B14614116015814614116314017014C14314017014C143
+ + +--+ + + + + + + + + + + + + + +
+— + —+--+
17F17F1701

The complete command sequence required to define character
>8A as a T and >BB as an L would be:

+ + + + +--+ + + +- + + + + + + + + + +
11814717F11B12812012812A17F17F17C158146141160158146141163
+— + + + + + + + + + + + + + + + + + +
+ + +— +— + + + + + + +— + + +
;4017014C14314017014C14317F17F17011B1291
+ + + +--+ —+ + + + + + + +

4.3.2 OPER >21 — LOAD SOUND TABLES. Load a table with a sound
list. Refer to section 2.3 for information on sound lists. The
first byte is the sound table number + >20. The remainder of the
data is the encoded sound list.

The emulator supports sound tables >0 to >F. Valid entries
for the table number in the command are >20 to >2F. For example,
to specify sound table >A the first byte would be >2A <>A + >20).

The sound tables are 128 bytes in length and contiguous in
memory. Sound lists can be longer than 129 bytes. For example,
assume a 200 byte sound list is to be loaded into table O. Table
0 would contain 128 bytes of the list and table 1 would contain
the remaining 72 bytes. Since part of table 1 is being used for
the first sound list, the next list would have to be loaded into
table 2.

4.3.3 OPER >22 — PLAY SOUND TABLE. Play the sound list in the
sound table specified by the table number. The first byte is the
table number + >20. For example, to specify sound table >A is to
be played the first byte would be >2A (>A + >20). The complete
command required to play a sound list in table >A is:

Texas Instruments 4-5

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

+ + + + + + —+ + + +
11B14717F;1B:28122f2A:1Bt29:
+ + + + + + + + —+ +

4.3.4 OPER >23 — STOP SOUND. Stop playing sound lists. No
information is required other than the operation code (>23). The
command will turn off all sound generators. The complete command
required to stop sound is:

+ + —+--+ + + —+ +--+
t1Bd47t7F11Bl28t2311B129!
+ + —+ + + + + + +

4.3.5 OPER >24 — SELECT CHARACTER BANK. Select the character
bank to be used for display. Refer to section 2.2. 1.2 for
details on character banks. The first byte specifies the bank to
use. The code >47 (an ASCII L) selects the "lower" bank
(character codes >0 to >7F) and >55 (an ASCII U) selects the
"upper" bank (character codes >80 to >FF). The complete command
required to select the upper bank is:

+ + +— + + + + —+ +
41Bl4717F11B128:24;55l1BD29;
+ + + + + + +— + + +

4.3.6 OPER >25 — DEFINE COLOR SETS. Define the foreground and
background colors to be used for one or more consecutive color
sets. Refer to section 2.2.1.4 for details on color sets. The
first byte is the set number of the first color set to be defined
+ >20. The remaining data are the foreground/background color
codes. The color code bytes must be encoded as specified in
section 3.

Each byte after the set number specifies a foreground and a
background color. Bits 0-3 of each byte specify the foreground
color of a color set. Bits 4-7 of each byte specify the
background color of a color set. For example, to specify a
foreground color of black and a background color of cyan the byte
would be >17. The 1 is the color code for black (2.2.1.4) and
the 7 is the color code for cyan.

Assume color set >1A is to have a foreground color of black
and a background color of cyan. Set >1B is to have a foreground
color of dark red and a background color of light yellow. Set
>1C is to have a foreground color of dark blue and a background
color of gray. Since the three sets are consecutive, one
extended write can be used to define the colors. The command

Texas Instruments 4-6

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

calls for the first byte to be the first set number to define +
>20. In this example the byte would be >3A (>1A + >20). Using
table 2-1 we find the color byte for the set >1A is >17, the
color byte for set >1B is >6B and the byte for set >1C is >4E.

The bytes required to define the colors of the three sets
are >17 >6B >4E. The three bytes must be encoded as described in
section 3. The data after encoding is >45 >76 >6D >4E. The
complete command required to define color sets >1A to >1C would
be:

+ + + -+ +--+ + + + + + + + +
E1B14717F11B128l25t3AE45t7616Dt4E11B1291
+ + + + + + + + + + + + + +

4.3.7 OPER >26 — SPEAK AND DISPLAY TEXT. Display the text data
contained within the extended write and speak the data after the
write terminates. The text data must be upper case letters. For
example, the complete command needed to have the emulator speak
and display the phrase "HOW ARE YOU" is:

+ + +--+ + + + + + + + + + + + + + + + +
11B;47t7F:1B12812614814F,57120141/52:45120559,4F:55l1B129:
+— + +— + + + + + + + + + + + + + + +— + +

NOTE

The host must not transmit to the emulator
while the emulator is speaking. Below are
two methods which could be used to determine
when speech has terminated.

1. The host should estimate the amount
of time required to speak the
string transmitted to the remote
(the rate of speech will vary 10 to
15 per cent depending on the speech
synthesizer). The host should
pause for that estimated time
interval.

2. The user on the remote should be
instructed to press enter when
speaking is completed. If the host
receives enter (>0D) from the
remote, the speech is completed and
transmissions can continue.

Texas Instruments 4-7

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

4.3.8 OPER >27 — SPEAK TEXT WITHOUT DISPLAY. Speak the text
data contained within the extended write. The only difference
between this write and extended write >26 is that the text is not
displayed to the screen using this write. Only upper case words
can be spoken using this command. The complete command needed to
have the emulator speak the phrase "HOW ARE YOU" is:

+ + + + + + -+ + + + + + + + + + + + + +
11814717F11B12812614814F15712014115214512015914F155/ 181291
+ + + + + + + + + + + + + + + + + + +— +

4.3.9 OPER >28 — SPEAK ALLOPHONES. Speak the allophone data
contained within the extended write command. Refer to the manual
supplied with the terminal emulator command module for a
description of allophones. The allophone data must be encoded as
described in section 3.

4.3.10 OPER >29 — LOOK UP WORDS. Equate the number specified in
the command to the supplied text data. Find the text data in the
speech dictionary. If the word is not in the dictionary the
command will be ignored.

The first byte in the command is the number for the text
data. The valid range for the byte is >20 to >7F. The rest of
the data contains the word the number is to be associated with.
The complete command required to associate the number >3A with
the word "HELLO" is:

+ + -+ + + + +— + + + + + + + +
11314717F11B12812913A14814514C14C14F11$1291
+ + —+ + + + +— + + + + + + + +

4.3.11 OPER >2A — SPEAK WORDS ASSOCIATED WITH NUMBERS. Each
byte of data in the command is a number that has been equated to
text using extended write >29. Speak the words associated with
the numbers. Remember, extended write >29 must be used to
associate the words with the numbers. Valid number ranges are
>20 to >7F.

Assume extended write >29 was used to associate >20 with
"HELLO", >35 with "HOW", >47 with "ARE" and >2A with "YOU". The
complete command required to speak the sentence "HELLO HOW ARE
YOU" is:

+ + +- + + + + + + + + + +
11314717F11B12812A12013514712A11B1291
+ -+ + + + + + + + + + + +

Texas Instruments 4-8

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

4.3.12 OPER >2B — CHANGE SCREEN COLOR. Change the screen color
in graphics mode. This includes the border at the top and bottom
of the screen. If the emulator is in text mode this write will
set the foreground and background colors. Refer to section 2.2.2
for more information.

NOTE

The screen color is the color used when
transparent is defined as a color to be used
for characters. For example, assume
character X has a foreground color of black
and a background color of transparent. With
the screen color set to cyan character X will
be displayed as black and cyan. Changing the
screen color to red displays character X as
black and red.

The data consists of two bytes specifing the color. Bits 0-
3 of both bytes contains 0010 (or >2). When in graphics mode
bits 4-7 of the first byte contains the color of the screen.
Table 2-1 gives the valid color codes. The second byte is
ignored in graphics mode. For example, to set the screen color
to cyan in graphics mode the complete command would be:

+ + +— +— + + + + + + +
+1B:47:7F:1B12812B:2712011B:291
+ + + +— + + + + + + +

In text mode bits 4-7 of the first byte contains the
foreground color and bits 4-7 of the second byte contains the
background color. For example, to set the foreground color to
black and the background color to cyan in text mode the complete
command would be:

+ + + + + + + + + + +
11Bt47t7F11B128l2B621l27i1B4291
+ + + + + + + + + + +

NOTE

Escape sequences specified in section 4.2 are
used to switch between text and graphic
modes.

Texas Instruments 4-9

PROTOCOL MANUAL EMULATOR CONTROL FORMATS

4.3. 13 OPER >2C — RETURN STATUS. Return the status of the
terminal emulator module. The format of the reply is:

+ + + + + + + + +
101l1Bl28lVERSIONlSCREENlMODEiWRAPl1Bl28!

+ + + + +

Each parameter requires one byte. The parameters are:

1. VERSION — Version of the emulator being used. The
emulator version number is added to >20. For example,
Terminal Emulator II would return >22 (>20 + >2).

2. SCREEN — Screen width selected by the user. Valid
entries are 34, 36, 38 or 40 (>22, >24, >26 or >28).

3. MODE — Display mode currently in effect.

a. >47 — Emulator is in graphics mode.

b. >54 — Emulator is in text mode.

4. WRAP — Line wrap option currently in effect.

a. >46 — Wrap is off. The emulator uses logical
line lengths of 80 bytes to display the data.

b. >4E — Wrap is on. The emulator uses logical line
length selected by the user to display the data.

4.3.14 OPER >2D — TRANSMIT COMMAND. Initiates the file
transfer. The format of the command is explained in section 5.

Texas Instruments 4-10

PROTOCOL MANUAL FILE TRANSFER

SECTION 5

FILE TRANSFER
The terminal emulator supports the transfer of files between
computer systems. The protocol provides for full error detection
during the transfer.

5.1 LRC ERROR DETECTION

The emulator uses the Longitudinal Redundancy Check (LRC)
method of error detection. During the file transfer the sender
calculates an LRC byte for each record transmitted. The LRC byte
is transmitted as the last byte of the record. The LRC must be
greater than >21. If the calculated LRC is less than >21 then
>21 is added to the value before transmission. The format of the
transmission is:

+------+— +
1RecordlLRC1
+------+---+

The LRC is calculated by performing successive exclusive_or
operations (XOR) on all the bytes in the record. If the result
is less than >21 then >21 is added to the LRC. As an example
assume that the record to be transmitted is 4 bytes long and
consists of >54 >45 >53 >54. To calculate the LRC we would first
XOR >54 and >45.

>54 0101 0100
>45 0100 0101

Result — >11 0001 0001

The result of >54 XOR >45 is >11. Next we XOR >11 and >53 giving
>42. Finally we XOR >42 and >54 giving >16. Since the XOR of
the record is less than >21 we must add >21. The LRC byte is >37
(>16 + >21). The transmission for our example would be:

+--+--+--+--+--+
1541451531451371
+--+--+--+--+--+

Texas Instruments 5-1

PROTOCOL MANUAL FILE TRANSFER

5.2 TRANSMISSION BLOCKS AND RECORDS

The protocol divides the file being transferred into blocks.
The blocks are further sub—divided into records. The size of the
blocks and records depend on the file being transmitted. Table
5-1 gives the various record sizes and number of records per
block for the different files.

Table 5-1 TRANSMISSION RECORD SIZE

Data Encoded Logical Transfer Transfer
Device for Transfer Record Size Record Size Records/Block

+ +
DISK 1
DISK 1

CASSETTE!
!CASSETTE:
:CASSETTE:
!CASSETTE:
+ +

As an example of the use of the table, assume we are transfering
a disk file. The data does not need to be encoded (all bytes in
the file are in the range >20 to >7F) and the logical record size
is 95. For column one we have "disk", for column two we have
"no" and column three does not affect disk files. Thus we use
row one to get the block information. For this example each
transmission record will contain 64 bytes of data and there will
be four transmission records in each block.

Assume we are going to transfer a file from cassette. The
data does need to be encoded (some bytes are in the range >00 to
>1F or >80 to >FF) and the logical record size is 100. For
column one we have "cassette", for column two we have "yes" and
for column three we have 1-128. Thus, we use row five to get the
block information. For this example, each transmission record
would contain 57 bytes of data and there would be six
transmission records in each block.

Each block has a block number assoicated with it. The block
number is a two byte value that starts at >2020. The first block
in the file has a number of >2020, the second block has a number
of >2021 and so on. The maximum value allowed in a block number
byte is >7E. Block >7E in the file has a block number of >207E.
Block >7F in the file however has a block number of >2120.

Each block is divided into records. The number of records
in a block is given in Table 5-1. The record number is a one
byte value that starts at >20. The record number resets to >20

 + + + +
No 1 1-256 1 64 / 4 1
Yes 1 1-256 1 69 1 5 1
No 1 1-128 / 64 1 4 1
No 1 129-192 1 64 1 3 1
Yes 1 1-128 1 57 1 6 1
Yes 1 129-192 1 64 1 4 1
 + + + +

Texas Instruments 5-2

PROTOCOL MANUAL FILE TRANSFER

for each data block transmitted.

5.3 TRANSMIT COMMAND FORMAT

Extended write >2D is the transmit command. It is used to
notify the receiving system that a file transfer is to occur and
to pass parameters to the receiver. The format of the command
is:

+ + —+ + —+ +— + + + + +
11BE4717Ft1B128@2DIDATAt1BS29iLRC!
+ + + + + + —+ + + + +

The DATA part of the transmit command must be encoded as
described in section 3. The format of the data is:

1. Byte 1 — Denotes the type of file being transfered.
Valid codes are:

a. >43 — File is coming from cassette.

b. >44 — File is coming from disk.

2. Bytes 2-9 — Disk directory information. Bytes 2-6 and
8-9 only have meaning if byte 1 contains a >44. Byte 7
always has meaning. Refer to section 2.5.5 for a
complete description of the eight bytes. Remember, the
disk directory information in the transmit command
starts at byte 2. The format of the eight bytes is:

a. Bytes 2-3 — Number of sectors in the file.

b. Byte 4 — File flags. Refer to section 2.5.5 for
more information about the flags.

c. Byte 5 — Number of records per sector. Not used
for fixed length records or program image files.

d. Byte 6 — End of file offset.

e. Byte 7 — Record size. Byte 7 is required for
both disk and cassette data files.

f. Byte 8-9 — Number of records in file, with bytes
reversed. Not used for program image files.

3. Bytes 10-11 — Data record size. Length of DATA in
transmission record.

Texas Instruments 5-3

PROTOCOL MANUAL FILE TRANSFER

4. Byte 12 — Number of transmitted records per block.

5. Byte 13 — Emulator version number. Terminal Emulator
II is version number >01.

6. Byte 14 — Delay interval in increments of 5 seconds.
This is the number of 5 second intervals the receiver
is to wait for transmission from the sender before
assuming data loss has occured. For example, if this
byte contains 4 the receiver is to wait 20 seconds (4
times 5) for transmission from the sender. If no
transmission is received a NAK record is to be sent to
the host.

7. Byte 15 — Type of error checking. Current versions
only support LRC error checking. Byte 15 must be set
to >4C for LRC checking.

8. Byte 16 — Type of data coding. Valid entries are:

a. >36 — Coded file data. Data is encoded as
described in section 3.

b. >37 — ASCII file data. No encoding is done.
Data must be in the range >20 to >7F or
unpredictable results will occur!

9. Byte 17 — Type of data record retransmission to use.
Current versions will only support >4E as a valid
entry.

5.4 TRANSMISSION RECORD FORMATS

There are three transmission record formats: one for the
first record, one for all records except the first and last
records and one for the last record. The format of the first
data record is:

+ + + + —+— + + + + + + +
102:0111DQBLKt1EIREC<1B128IDATA1171LRCI
+ + —+ + + + + + + + + +

The bytes >02 and)01 signal the start of a data record. Byte
>1D signals that the two following bytes will contain the block
number. BLK is a two byte area specifing the block number of the
record being transmitted. Section 5.2 describes the block
number.

Texas Instruments 5-4

PROTOCOL MANUAL FILE TRANSFER

Byte >1E signals that the next byte will be the record
number. REC is a one byte area specifing the record number of
the record being transmitted. Section 5.2 describes the record
number. Remember, the number of records in a block is specified
in the transmit command.

Bytes >1B and >28 signal the beginning of the data portion
of the first record. DATA contains the file data. The length of
the transmitted DATA (not the length of data before encoding) is
specified in the transmit command. The transmit command also
tells if the data has been coded or not. If the transmit command
specifies encoding, only DATA will be coded, not the other bytes
in the transmission.

NOTE

If the data is coded it is coded as a block,
not as a record. To decode the data
correctly, the entire block must be decoded.

A >17 specifies the end of the data record. The LRC byte
always follows the >17 code.

The data record format for all records between the first and
last records is:

+ + —+ + —+— + + +--+ +
102101;1D+BLKI1ESRECIDATA:171LRCI
+ +—+ + +—+ —+ + + +

The only difference between this format and the first one is that
this format does not contain the >13 >28 before DATA.

The data record format for the last record in the file is:

+ + +— + +— + + + + + + +
102t0111DIBLKIIE!RECIIDATAl1B129I031LRCI
+ + +--+ + + + + + + + +

The only difference between the previous format and this one is
this format ends in an 51B 529 >O3. These three bytes tell the
remote system that this is the last record in the file transfer.

Texas Instruments 5-5

PROTOCOL MANUAL FILE TRANSFER

5.5 ACK RECORD FORMAT

An ACK record is sent for each data record correctly
received. The format of the record is:

+ + +— + —+— —+ —+ + + + + +
:01f1D:BLK,1EIRECI1B129106118l291LRC:
+ + —+ + +— + + + + + + +

The BLK field is a two byte field containing the block number of
the received record. The REC field is a one byte field
containing the record number of the received record. A >O6 is
the ASCII ACK code.

5.6 NAK RECORD FORMAT

A NAK record is sent whenever an error is detected in a
transmission. The format of the record is:

+ + + + + + + + + + —+ + +
i0111D;BLKIIEIRECI1B1281151IDt181291LRCI
+ + + + + +---+ + + + + + +

BLK is a two byte area containing the block number the sender of
the NAK was expecting. REC is a one byte area containing the
record number the sender was expecting. A >15 is the ASCII NAK
code. The ID field is one byte that specifies the type of record
being NAK'D. A >30 indicates the NAK is for a data record, a >31
indicates the NAK is for a response record (a NAK or ACK record).

The sender should maintain a count of the number of NAKs
sent while trying to transfer a record. If more than five NAKs
are encountered for any single record the sender should abort the
transfer. When the emulator is sending the file it will allow up
to five NAKs. When the emulator is receiving the file it will
allow up to eight NAKs.

5.7 FILE TRANSFER FROM REMOTE TO HOST

Appendix B provides an implementation example of remote to
host file transfer.

The protocols use the transmit command (extended write >2D)
to signal a file transfer is about to occur and to pass
parameters to the host. Section 5.3 describes the transmit
command. Hosts that echo the bytes they receive must know in

Texas Instruments 5-6

PROTOCOL MANUAL FILE TRANSFER

advance that the file transfer is about to start. The echo must
be turned off before the transmit command is received.

The host calculates an LRC byte for the write (as described
in 5.1) and compares the calculated value to the received LRC
value. If they do not match the host sends a system reset (>1B
>53) terminating the transfer.

Once the host determines the transmit command was received
without error a read buffer command (>1B >38) is transmitted to
the remote. The read buffer informs the remote that the host has
received and processed the transmit command and is ready to start
the file transfer. The remote then begins sending transmission
records to the host. Section 5.4 describes the format of data
records.

The error checking is the same for all received
transmissions (data records and ACK/NAK responses). First the
LRC of the record must be calculated. If the calculated LRC does
not match the received value a NAK is sent to the remote using
the expected block and record numbers. The host then waits for
the remote to resend the record.

Provided the LRC bytes match, the host checks the block
number of the record against the expected block number. If the
block number does not match the expected value a system reset is
sent (>1B >53). The host exits the file transfer and returns to
normal processing.

Next the host checks the expected record number against the
received record number. If the numbers do not match the host
sends a NAK using the expected block and record numbers. The
host then waits for the remote to retransmit the record.

If no errors are detected the host processes the data
record. The expected record number is incremented to the next
data record. If this is the last record in a block, the block
number is incremented to the next block and the record number is
set to >2O. An ACK is sent for the record just received and the
host waits for the next record.

After the last record is received without errors and the
host sends an ACK, the remote will send an end of file record.
The EOF record is an ACK with a block number of >7E7E and a
record number of >7E. The EOF ACKs will be refered to by number.
The EOF ACK the remote sends to the host after the last record is
ACK-1.

The host does normal error checking on ACK-1. If no errors
are detected the host sends the same ACK (ACK-2) back to the

Texas Instruments 5-7

PROTOCOL MANUAL FILE TRANSFER

remote. If the remote does not receive ACK-2 correctly it will
send a NAK back to the host. If the remote does receive ACK-2 it
will send the same ACK (ACK-3) back to the host.

The host is now awaiting ACK-3 from the remote. Four things
can happen.

1. The host can receive a NAK from the remote. If the
host does receive a NAK it will resend ACK-2 and
continue to wait for ACK-3.

2. The host can receive ACK-3 from the remote. If the ACK
is received the host is to exit file transfer and
return to normal processing.

3. The host can receive a transmission from the remote
with an error. If an error occurs the host is to exit
the file transfer and return to normal processing.

4. The host can time out waiting for a response. If the
host does time out it is to exit the file transfer and
return to normal processing.

While reading bytes from the remote the host constantly
checks for a system reset (>1B >53). If the reset is detected
the host terminates the file transfer and returns to normal
processing.

The transmit command specifies a time interval to the host.
The interval is the maximum time to wait for a byte from the
remote. If the time limit is exceeded without receiving a byte
the host assumes the transmission was lost and sends a NAK using
the expected block and record numbers.

The transmit command specifies how the data is sent. Files
with variable length records or files with data in the range >4
to >1F or >8O to >FF are encoded as described in section 3. If
the host is to manipulate the file it must be decoded. The
remote encodes a block of data at a time. The host must decode
the data a block at a time. It cannot decode the records
independently of one other.

5.8 FILE TRANSFER FROM HOST TO REMOTE

Transmissions received by the host cannot be echoed. Echo
must be turned off before the file transfer can begin. Appendix
C provides an implementation example of host—to—remote file

Texas Instruments 5-8

PROTOCOL MANUAL FILE TRANSFER

transfer.

When transferring a file to a TI-99/4 disk file the host
must construct a 256 byte disk sector. The sector is transmitted
as one transmission block. Transfer to cassette does not require
a knowledge of how the file is stored on the cassette. The
records are moved directly into the transmission block.

The host must construct and send the transmit command
(extended write >2D) to the remote. The extended write is used
to notify the remote a file transfer is to occur and to pass
parameters to the remote. Section 5.3 describes the information
contained in the write. The host calculates an LRC byte for the
transmit command and attaches the LRC to the end of the command.

After the extended write is transmitted to the remote the
host waits for the read buffer command (>1B >38). The read
buffer notifies the host that the remote has processed the
extended write and is ready to receive the file transfer. The
host does not time out waiting for the read buffer.

After the read buffer is received, the host gets a block of
data. If the transmit command specified the data is to be
encoded, the host encodes the entire block using the method
described in section 3. Any file with data in the range >O to
>IF or >80 to >FF must be encoded. Also files with variable
length records must be encoded.

The host divides the block into data records. The length of
the data record is specified in the transmit command. The host
transmits the block a record at a time. An LRC byte is
calculated for each record and attached as the last byte of the
record. After the record is transmitted the host waits for a
reply from the remote. If the host waits longer than the time
specified in the transmit commmand the host assumes the response
has been lost and sends a NAK to the remote using the block and
record number of the transmitted record.

The host performs extensive error checking on the responses.
First the host calculates an LRC byte for the response. If the
calculated LRC does not match the received LRC the host sends a
NAK using the block and record number of the last record
transmitted. If the LRC is correct the host compares the
received block number to the block number of the last record
transmitted. If the block numbers do not match the host sends a
system reset (>1B >53) and exits the file transfer. If the block
numbers match the host compares the received record number to the
record number of the last record transmitted. If the record
numbers do not match the host sends a NAK using the block and
record numbers of the last record transmitted.

Texas Instruments 5-9

PROTOCOL MANUAL FILE TRANSFER

If there are no errors in the response the host checks for
an ACK or a NAK response. If the remote sent a NAK the host
retransmits the last record and then waits for a response. If
the remote sent an ACK the host transmits the next record.

After the host has processed the response for the last-
record in the transfer it sends an end of file record. The EOF
record is an ACK with a block number of >7E7E and a record number
of >7E. The ACKs will be refered to by number. The EOF ACK is
ACK-1.

After sending ACK-1 the host waits for a response. When the
response is received it goes through the normal error checking.
If an error is detected a NAK is sent with block and record
numbers of >7E. If no errors are detected and the response is a
NAK the host retransmits ACK-1 and waits for a response. If the
response is an ACK (ACK-2) the host transmits an ACK (ACK-3)
using block and record numbers of >7E and exits the file
transfer.

The host constantly checks the input for a system reset (>1B
>53). If a system reset is detected the host exits the file
transfer and returns to normal processing.

The host specifies a time interval in the transmit command.
The interval is the maximum time the remote is to wait for a byte
from the host. The host should use the same interval as the
maximum time it will wait for a byte from the remote. If the
time limit is exceeded without receiving a byte the host assumes
the transmission was lost. It sends a NAK using the block and
record numbers of the last data record transmitted.

Texas Instruments 5-10

PROTOCOL MANUAL DEFAULT CHARACTER SET

APPENDIX A

DEFAULT CHARACTER SET

The terminal emulator
When the emulator switches to
is loaded.

Hex code Character

supplies a default character set.
text mode the default character set

Hex Code Character
20 Space 30 0
21 . ' 31 1
22 32 2
23 # 33 3
24 $ 34 4
25 % 35 5
26 & 36 6
27 37 7
28 (38 8
29) 39 9
2A * 3A
2B + 3B ;
2C 3C
2D — 3D =
2E 3E >
2F / 3F ?

Texas Instruments A-1

PROTOCOL MANUAL DEFAULT CHARACTER SET

Hex code Character Hex Code Character
40 e 60 `
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
45 E 65 e
46 F 66 f
47 6 67 g
48 H 68 h
49 I 69 i
4A J 6A J
4B K 6B k
4C L 6C 1
4D M 6D m
4E N 6E n
4F 0 6F o
50 P 70 p
52 R 72 r
53 S 73 s
54 T 74 t
55 U 75 u
56 V 76 v
57 W 77 w
58 X 78 x
59 Y 79 y
5A Z 7A z
5B C 7B {
5C \ 7C
5D 1 7D }
5E " 7E ^'
5F

Texas Instruments A-2

PROTOCOL MANUAL EXAMPLE OF EMULATOR TO HOST FILE TRANSFER

APPENDIX B

EXAMPLE OF EMULATOR TO HOST FILE TRANSFER

This appendix lists one method for implementing the emulator
to host file transfer on the host. It is intended only as an
example of the file transfer on the host.

2. Turn off echo of incoming characters.

2. Wait for transmit command.

3. Transmit command received.

a. Check LRC byte for error. If error send reset
command and exit file transfer.

b. No error, set expected block number to)2020 and
expected record number to)20. Send read buffer
command.

4. Wait for response.

a. Start timer.

b. If timer expires send NAK using expected block
and record numbers. Go to step 4.

c. If system reset received exit file tranfer.

5. Response received.

b. Check LRC byte for error. If error send NAK using
expected block and record number. Go to step 4.

7. Check received block number against expected block
number. If not equal send system reset. Exit the file
transfer.

9. NAK Received. Resend the response for the received
record number. Go to step 4.

9. Record received.

a. Check received record number against expected
record number. If not equal send NAK using

Texas Instruments B-1

PROTOCOL MANUAL EXAMPLE OF EMULATOR TO HOST FILE TRANSFER

expected block and record numbers. Go to step 4.

b. Extract data from record and save into
accumulation area.

10. Send ACK using expected block and record numbers.

11. Increment the expected record number. If this is the
last record in the block:

a. If data is encoded then decode the data.

b. Save data to disk.

c. Increment expected block number. Set record
number to >20.

12. If not the last record in the transmission go to step
4.

13. End of transmission logic. Wait for response.

a. Start timer.

b. If timer expires send NAK using block number of
>7E7E and record number of >7E.

c. If system reset received exit the file transfer.

14. Response received.

15. Check LRC byte for error. If error send NAK using
block number of >7E7E and record number of >7E. Go to
step 13.

16. NAK received. Resend the ACK for the last data
transmission. Go to step 13.

17. ACK received.

a. Check received block number for >7E7E. If not
equal send system reset. Exit the file transfer.

b. Check received record number for >7E. If not
equal send NAK using block number of >7E7E and
record number of >7E. Go to step 13.

18. Send ACK using block number of >7E7E and record number
>7E.

Texas Instruments B-2

PROTOCOL MANUAL EXAMPLE OF EMULATOR TO HOST FILE TRANSFER

19. Wait for response.

a. Start timer.

b. If timer expires exit the file transfer.

20. Response received.

a. If response has an error in it exit the file
transfer.

b. If response is a NAK send ACK using block number
of >7E7E and record number of >7E. Go to step
19.

21. Exit the file transfer.

Texas Instruments B-3

PROTOCOL MANUAL EXAMPLE OF HOST TO EMULATOR FILE TRANSFER

APPENDIX C

EXAMPLE OF HOST TO EMULATOR FILE TRANSFER

This appendix contains one method for implementing the host
to emulator file transfer on the host. It is intended only as an
example of the file transfer on the host.

1. Turn off echo of incoming characters.

2. Construct transmit command.

3. Send transmit command to remote.

4. Wait for responses.

a. If system reset received exit the file transfer.

b. If anything other than a read buffer command is
received send a system reset and exit the file
transfer.

5. Set current block number to >2020.

6. Read a block from disk. If end of file encountered go
to step 17.

7. Set current record number to >20.

8. If data needs to be encoded then encode the block

9. Break the block into transmission records.

10. Send a transmission record.

11. Wait for response.

a. Start timer.

b. If timer expires then send a NAK using the
current block and record numbers. Go to step 11.

c. If system reset received exit the file transfer.

12. Response received.

Texas Instruments C-1

PROTOCOL MANUAL EXAMPLE OF HOST TO EMULATOR FILE TRANSFER

13. Check LRC of the response. If error send NAK using the
current block and record numbers. Go to step 11.

14. Check received block number against the current block
number. If they are not equal send a system reset and
exit the file transfer.

15. NAK received. Go to step 10 (this resends the record).

16. ACK received.

a. Increment current record number.

b. If all records in current block transmitted
increment current block number. Go to step 6.

c. Go to step 10 (this sends next record in the
block).

17. End of transmission logic. Send ACK with block number
of >7E7E and record number of >7E.

18. Wait for response.

a. Start timer.

b. If timer expires then send NAK with block number
of >7E7E and record number of >7E. Go to step
18.

c. If sytem reset received exit the file transfer.

19. Response received.

20. Check LRC of the response. If error send NAK using a
block number of >7E7E and a record number of >7E. Go
to step 18.

21. Check the received block number against >7E7E. If they
are not equal send a system reset and exit the file
transfer.

22. Check the received record number against >7E. If they
are not equal send a NAK using a block number of >7E7E
and a record number of >7E. Go to step 18.

23. NAK received. Go to step 17 (this resends the ACK).

24. ACK received.

Texas Instruments C-2

PROTOCOL MANUAL EXAMPLE OF HOST TO EMULATOR FILE TRANSFER

a. Send an ACK using a block number of >7E7E and a
record number of >7E.

b. Exit the file transfer.

Texas Instruments C-3

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53

