As you are now the owner of this document which should have come to you for free, please consider making a donation of £1 or more for the upkeep of the (Radar) website which holds this document. I give my time for free, but it costs me money to bring this document to you. You can donate here <u>https://blunham.com/Misc/Texas</u>

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

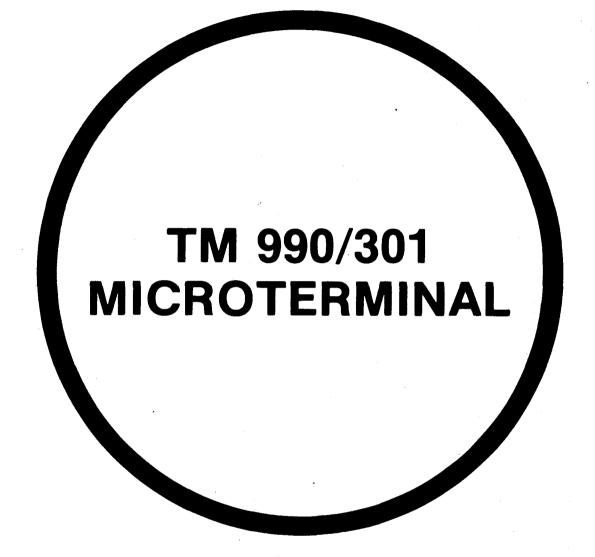
This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website <u>https://blunham.com/</u>, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: <u>https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin</u>

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (<u>https://blunham.com/Misc/Texas</u>). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).


It is my hope that you find the file of use to you.

Colin Hinson In the village of Blunham, Bedfordshire.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

JANUARY 1980

MANUAL HISTORY

This manual contains the following revisions:

	Revision Change	
Date	(From - to)	ECN Number
12/18/79	A to B	454304

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Copyright © 1980

TEXAS INSTRUMENTS INCORPORATED

TABLE OF CONTENTS

1. GENERAL **SPECIFICATIONS** 2. 3. INSTALLATION **KEY DEFINITIONS** 4. 4.1 4.2 4.3 4.4 CRU Display/Enter 4.5 Memory Enter, Display, Increment 4.6

5. EXAMPLES

6.

	Introduction	
6.2	Hardware Operation	9
6.3	Software Operation	12
6.4	Listing of Sample Microterminal Device Service Routine	15

4

LIST OF ILLUSTRATIONS

Figure 1	TM 990/301 Microterminal
Figure 2	Microterminal Block Diagram
Figure 3	Character Format
	TMS 1000 Software Flowchart
Figure 5	Microterminal Initialization and Command Scanner
	Output Data to Microterminal
	Output Data to TMS 9902 (to Microterminal)
	Input Data From Microterminal
Figure 9	Get Data From TMS 9902 (From Microterminal)
Figure 10	Load Signal Execution

LIST OF TABLES

Table 1	EIA Cable Signals																		2
Table 2	Microterminal Interface Signals						 •						•	•					9
Table 3	Microterminal Control Sequence				÷									•				 1	4
Table 4	DSR Action to Key Commands																	 1	6

TM 990/301 MICROTERMINAL

1. GENERAL

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost The Microterminal, intended primarily to support the Texas Instruments TM 990/1XXM microcomputers, allows the user to do the following:

- Read from ROM or read/write to RAM
- Enter/display Program Counter
- Execute user program in free running mode or in single instruction mode
- Halt user program execution
- Enter/display Status Register
- Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900 microprocessor)
- Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessor)
- Convert hexadecimal quantity to signed decimal quantity
- Convert signed decimal quantity to hexadecimal quantity

2. SPECIFICATIONS

- Power Requirements +12V (±3%), 50 mA
 -12V (±3%), 50 mA
 +5V (±3%), 150 mA
- Operating Temperature: 0°C to 50°C (+32° to +122°F)
- Operating Humidity: 0 to 95 percent, non-condensing
- Shock : Withstand 2 foot vertical drop

3. INSTALLATION AND STARTUP

To install the Microterminal onto a TM 990/100M, TM 990/101M or TM 990/180M microcomputer, do the following:

- Attach jumpers to:
 - On TM 990/100M: J13, J14, and J15, and set J7 to EIA position
 - On TM 990/101M: E20-E21, E22-E23, and E24-E25
 - On TM 990/180M: J4, J5, and J6, and set J13 to EIA position.
- Attach the EIA cable from the Microterminal to connector P2. Signals between the Microterminal and the microcomputer are listed as in Table 1.
- To initialize the system, actuate the microcomputer RESET switch, then press the microterminal CLR key.

NOTE

If the user has installed the *optional* filter capacitor on the **RESTART** input, this capacitor must be removed for proper operation (e.g., if C5 is installed on the TM 990/100M or TM 990/180M microcomputer, this capacitor must be removed).

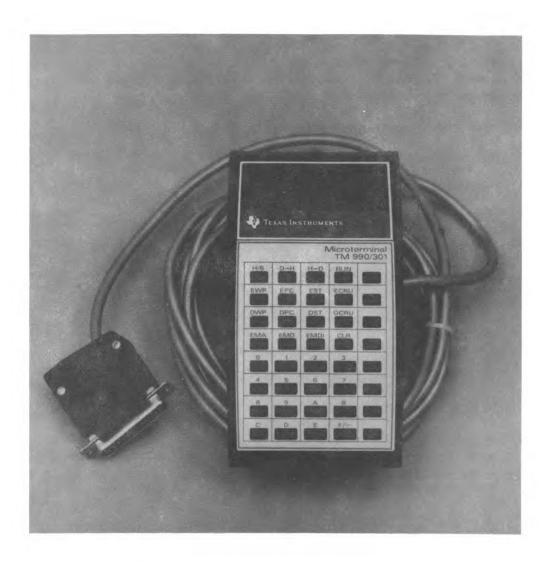


FIGURE 1. TM 990/301 MICROTERMINAL

EIA Connector	Interface	At TM 990/100M/180M							
Pin	Signal	P2 Pin	Signal						
2	TERMINAL DATA OUT	-2	RS232 RCV						
3	TERMINAL DATA IN	-3	RS232 XMT						
7	GND	-7	GND						
12	+12V	-12	+12V						
13	-12V	-13	-12V						
14	+ 5V	-14	+ 5V						
16	HALT	-16	RESTART						

TABLE 1. EIA CABLE SIGNALS

CAUTION

Before attaching the Microterminal to a power source, verify voltage levels between ground and EIA connector pins 12, 13, and 14 at connector P2 on the board. Voltage should not exceed values in Table 1.

4. KEY DEFINITIONS

4.1 DATA KEYS

Clear Key – Depressing this key blanks display, initializes and sends initialization message (ASCII code for A and ASCII code for Z) to host microcomputer.

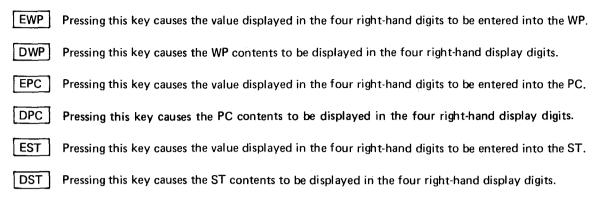
Hexadecimal Data Keys – Data is entered with the most significant digit (MSD) first. Depressing any one of these keys shifts that value into the right-hand display digit. All digits already in the data display are left shifted. For all operations other than decimal to hexadecimal conversion, the fourth digit from the right is shifted off the end of the right-hand display field when a data key is depressed. For a decimal to hexadecimal conversion, the fourth, is shifted off the end of the right digit from the right, rather than the fourth, is shifted off the end of the data field.

4.2 INSTRUCTION EXECUTION

H/S

Pressing this key while a program is running (run displayed) will halt program execution. The address of the next instruction will be displayed in the four left-hand display digits, and the contents of that address will be displayed in the four right-hand digits. Pressing this key while the program is halted, will execute a single instruction using the values in the Workspace Pointer (WP), Program Counter (PC), and Status Register (ST), and the displays will be updated to the next memory address and contents at that address.

RUN Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the three right-hand display digits.


4.3 ARITHMETIC

- (H→D) The signed hexadecimal data contained in the four right-hand display digits is converted to signed decimal data. Note that the most significant bit of the fourth display digit from the right is the sign bit (1 = negative). The conversion limits are minus 32,76810 (800016) to plus 32,767 (7FFF16). Two H→D key depressions are required. The sequence is:
 - 1. Depress H→D.
 - 2. Enter data via four hex data key depressions.
 - 3. Depress $[H \rightarrow D]$. The results of the conversion are displayed in the five right-hand display digits.
- D→H

The decimal data contained in the five right-hand display digits is converted to hexadecimal. The conversion limits are the same as for hexadecimal to decimal conversion. If the decimal number is negative, press the F/– key first to begin with a negative sign. The sequence is:

- 1. Depress $D \rightarrow H$.
- 2. Enter data via hex data key depressions.
- 3. Depress $D \rightarrow H$. The results of the conversion are displayed in the four right-hand display digits.

4.4 REGISTER ENTER/DISPLAY

4.5 CRU DISPLAY/ENTER

DCRU Pressing this key causes the data at the designated Communications Register Unit (CRU) addresses to be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal digits. The first digit is the count of bits to be displayed. The next three digits are the CRU bit address (equal to bits 3 to 14 in register 12 for CRU addressing). When DCRU is depressed, the bit count and address are shifted to the left-hand display, and the right-hand display will contain the values at the selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If nine or more, the value will be right justified in all four hexadecimal dioits

ECRUPressing this key enters a new data value at the CRU addresses and bit count shown in the left displayafter depressingDCRU. The new value is entered from the keyboard and displayed in the right-handdisplay. PressingECRUenters this value onto the CRU at the address shown in the left display.

CAUTION

Avoid setting new values at the TMS 9902 on the TM 990/100M/180M through the CRU (TMS 9902 is at CRU address 004016), as this device controls I/O functions.

4.6 MEMORY ENTER, DISPLAY, INCREMENT

- **EMA** Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shifted to the left-hand display and (2) the contents of that memory address to be displayed in the right-hand display.
- **EMD** Pressing this key causes the value in the right-hand display to be entered into the memory address contained in the left-hand display. The contents of that location will then be displayed in the four right-hand display digits (entered then read back).
- EMDI Pressing this key causes the same action as described for the EMD key; it also increments the memory address by two and displays the contents at that new address. The memory address is displayed on the left and the contents at that address is displayed on the right.

5. EXAMPLES

5.1 EXAMPLE 1, ENTER PROGRAM INTO MEMORY

Enter the following program starting at RAM location FE00₁₆. Set the workspace pointer to FF00₁₆ and the status register to 2000₁₆. Single step through the program and verify execution. Then execute the program in free run mode and verify execution. Then halt program execution.

NOTE

In the following examples, XXXX indicates memory contents at current value in Memory Address Register.

	OPCODE	INSTRUC	TIONS	
	04C0 0580 0280	CLR INC CI	R0 R0 R0, >00FF	CLEAR WORKSPACE REGISTER 0 INCREMENT WORKSPACE REGISTER 0 CHECK FOR COUNT 255
	00FF 16FC 10FF	JNE JMP	\$—6 \$—0	JUMP TO INC RO IF NOT DONE STAY HERE WHEN FINISHED
	KEY ENT	RIES		DISPLAY
Clear Display	Depress	CLR		• · · · · · · · · · · · · · · · · · · ·
Enter PC Value	Depress	F/-E	0	FE00
Enter into PC	Depress	EPC		FE00
Display PC	Depress	DPC		FE00
Enter ST Value	Depress	200	0	2000
Enter into ST	Depress	EST		2000
Display ST	Depress	DST		2000
Enter WP Value	Depress	F/- F/-	00	FF00
Enter Into WP	Depress	EWP		FF00
Display WP	Depress	DWP		FF00
Enter MA Value	Depress	F/ E	0	FE00
Enter Into MA	Depress	EMA		FE00 xxxx
Enter CLR 0 Opcode	Depress	040	0	FE00 04C0
Enter data, increment MA	Depress	EMDI		FE02 xxxx
Enter INC 0 Opcode	Depress	058	Ō	FE020580
Enter Data, Increment MA	Depress	EMDI		FE04 xxxx
Enter CI Opcode Enter Data,	Depress	028	0	FE04 0280
Increment MA	Depress	EMDI		FE06 xxxx

		KEY ENTRIES	DISPLAY
ENTER CI Immediate Operand	Depress	00FF	FE0600FF
Enter Data, Increment MA Enter JNE \$-6	Depress	EMDI	FE08 xxxx
Opcode	Depress	16 FC	FE08 16FC
Enter Data, Increment MA Enter	Depress	EMDI	FE0A xxxx
JMP \$-0 Opcode Enter Data,	Depress	10 F F	FE0A 10FF
Increment MA	Depress	EMDI	FE0C xxxx

The program has now been entered into RAM. Since the PC, ST and WP values have been previously set, the program can be executed in single step mode by depressing the H/S key.

		DISPLAY (AFTER)	EXECUTES INSTRUCTION
Depress	H/S	FE020580	CLR RO
Depress	H/S	FE040280	INC RO
Depress	H/S	FE08 16FC	CI RO,>00FF
Depress	H/S	FE020580	JNE \$6

This cycle will continue until R0 reaches the count of 255 at which point the program will continuously execute at location FE0A₁₆ because it is a jump to itself.

To verify this, depress:

DIIN	L
מוטחו	

DISPLAY

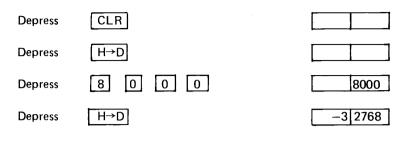
run

]

The program should now be "looping to self" at location FEOA16. To verify this, depress:

H/S

FF0	Δh	0F	F
	٦Ŧ	0.	•


Now examine the memory location corresponding to Register 0.

Depress	FF00	FE0A FF00
Depress	EMA	FF00 00FF

This illustrates that FF16 did become the final contents of WP0. Note that, when the program was being entered into RAM, EMDI was used rather than EMD because of the rather desirable feature of automatic address incrementing. The advantage of using EMD is that the actual contents of the addressed memory location are displayed after key depression (echoed back after being entered).

5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS

Convert 800016 to a decimal number

Convert 002016 to a decimal number

Depress	CLR	
Depress	H→D	
Depress	20	20
Depress	H→D	32

5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS Convert 45₁₀ to hex

Depress	CLR	
Depress	D→H	
Depress	4 5	45
Depress	D→H	2D
Convert –10	²⁴ 10 ^{to hex}	
Depress	CLR	
Depress	D→H	

1 0 2 4

5.4 EXAMPLE 4, ENTER VALUE ON CRU

F/-

D→H

Depress

Depress

Send a bit pattern to the CRU at CRU address (bits 3 to 14 of R12) 090_{16} with a bit count of 9 containing a value of 5 (000000101_2).

1024

FC00

Depress	CLR	
Depress	9090	9090
Depress	DCRU	9090 YYYY
Depress	0005	9 090 0005
Depress	[ECRU]	

The data will be entered into the onboard TMS 9901 of the TM 990/100/180M. To verify the data on the TMS 990, do the following:

Depress	CLR	
Depress	9090	9090
Depress	DCRU	9090 0005

YYYY indicates value at the current CRU address. Note that a DCRU operation is always required to specify bit count/CRU address.

.

5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS

Enter 0040_{16} into location FE20 and verify that it got there.

Depress	CLR	
Depress	F E 2 0	FE20
Depress	EMA	FE20xxxx
Depress	0 0 4 0	FE200040
Depress	EMD	FE200040

The contents of address FE20 are verified by an echo of data from memory to display following the pressing of EMD. If it is desired to view and enter data at address FE22, depress EMD.

6. DEVICE SERVICE ROUTINE CODING

6.1 INTRODUCTION

When used with the Texas Instruments TM 990/100M, TM 990/101M, or TM 990/180M Microcomputers, the Microterminal requires no special user coding because the software device service routine required to accommodate the Microterminal is resident in *TIBUG*, the debug monitor used on these boards. If the user utilizes any other microcomputer in conjunction with the Microterminal, a device service routine must be coded by the user to accommodate the Microterminal.

6.2 HARDWARE OPERATION

The Microterminal interfaces to any microcomputer utilizing the signals indicated in Table 2. The block diagram is shown in Figure 2.

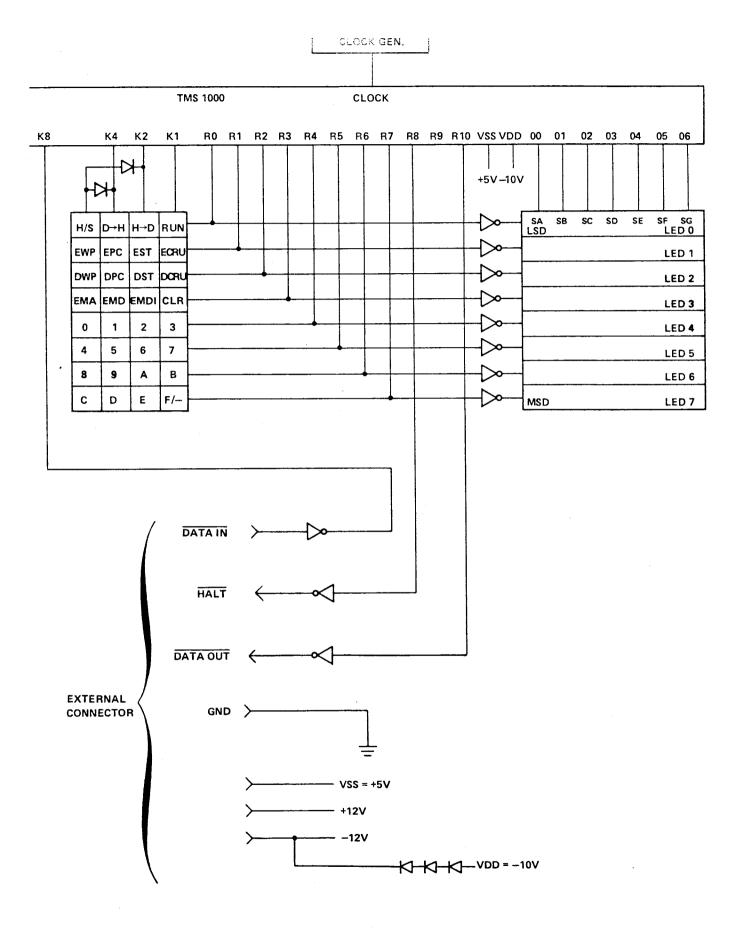
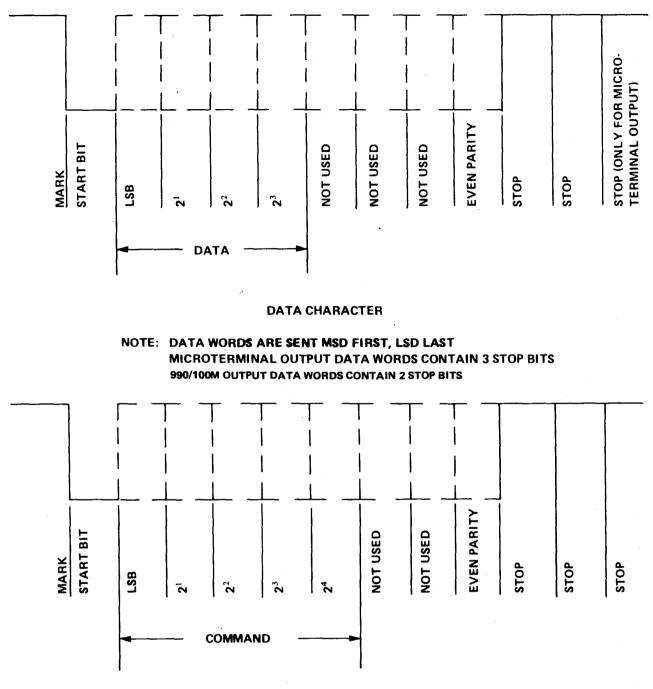

Signal Name	Maximum Voltage	Level	Connector
+5V	6V	POWER	P1 – 14
+12V	+14V	POWER	P1 12
-12V	-14V	POWER	P1 – 13
GROUND	- .	GROUND	P1 — 7
TERMINAL DATA IN	+14V	RS-232-C	P1 – 3
TERMINAL DATA OUT	+14V	RS-232-C	P1 – 2
HALT	+6V	OPEN COLLECTOR NPN	P1 – 16

TABLE 2. MICROTERMINAL INTERFACE SIGNALS


The Microterminal receives +12V, -12V, +5V and ground from the host microcomputer. Great care must be taken not to exceed the maximum rated voltages; otherwise, permanent damage to the Microterminal might occur. TERMINAL DATA OUT is an RS-232-C, 110 baud output from the Microterminal. A serial bit stream will be output from the Microterminal utilizing TERMINAL DATA OUT for commands and data from the Microterminal. Refer to Figure 3 for the format of commands and data. It should be noted that commands utilize one RS-232-C character (one start bit, a five bit command, two "don't care" bits, a parity bit and three stop bits), but a 16-bit data word utilizes four RS-232-C characters because only four data bits are included in an RS-232-C Microterminal data character. The software significance of commands and data is defined in paragraph 6.3. It should be noted that the Microterminal sends two unique ASCII characters (an A and Z) over TERMINAL DATA OUT when the CLR key is depressed. TERMINAL DATA OUT utilizes standard RS-232-C voltage levels:

- 12.0 volts \geq Logic 1 > 6.0 volts
- $-6.0 \text{ volts} > \text{Logic } 0 \ge -12.0 \text{ volts}$

TERMINAL DATA IN is a RS-232-C, 110-baud input to the Microterminal. A serial bit stream of data is required from the host microcomputer to update LED displays in situations defined in paragraph 6.3. Figure 3 defines the format of a Microterminal input data character (one start bit, four data bits, three "don't care" bits, an even parity bit and two stop bits). As in the case of Microterminal output data, four data characters are required to form a 16-bit word. The voltage levels required on TERMINAL DATA IN are RS-232-C standard (the same levels defined for TERMINAL DATA OUT). The frequency of TERMINAL DATA IN, as with any terminal device must not vary more than 2 per cent from its proper rate (110 baud).

COMMAND CHARACTER

NOTE: THE INDICATED BIT POLARITY IS THAT OUTPUTTED OR SEEN BY THE SOFTWARE. THE INTER-FACE BETWEEN THE MICROTERMINAL AND MICROCOMPUTER IS OF INVERSE POLARITY.

Figure 3. Character Format

HALT is the open collector output of a NPN transistor (pin 16 as shown in Table 1). This signal must be connected to a 1K resistor that is pulled up to 5 volts on the host microcomputer. HALT becomes active low for 30 μ sec when the user depresses H/S on the Microterminal while a user program is being executed. HALT provides one source for LOAD, a nonmaskable interrupt, on the TM 990/100M Microcomputer. Since the purpose of the HALT signal is to halt program execution, the user will be required to provide an interrupt to the host microcomputer when HALT becomes active low. The logic levels for HALT are:

Logic 1 = +5V Supply Level

 $GROUND \le Logic \ 0 < 0.8V$

Since HALT is an NPN transistor output, great care must be taken not to short the signal to a voltage.

6.3 SOFTWARE OPERATION

The Microterminal is internally controlled by a TMS 1000 microprocessor which does the following:

- Scans the keyboard to detect and process key depressions
- Refreshes the 7-segment LED displays
- Outputs commands to the host microcomputer to specify the function that the microcomputer must perform
- Outputs any required data to the microcomputer
- Outputs two unique characters (ASCII A and ASCII Z) when CLR is depressed
- Lowers \overline{LOAD} for 30 μ sec to halt program execution
- Receives input data from the host microcomputer for display

Figure 4 is the TMS 1000 software flowchart. The host microcomputer must receive and decode commands, receive any required data coming after the command, output any required data to the Microterminal and interrupt program execution when HALT = 0.

The required communication between the Microterminal and host microcomputer is shown in Table 3. As an example of the communication sequence, consider the following case of the user desiring to utilize the EMA function (display contents and address of designated memory address):

- 1. The user enters a memory address using four hex (0 to F) key depressions. The TMS 1000 detects and displays these four hexadecimal entries.
- 2. The user depresses EMA. The TMS 1000 sends a command character (00₁₆) over the interface via TERMINAL DATA OUT to specify the EMA operation.
- 3. The host microcomputer receives and decodes the command character. The microcomputer must now prepare to receive four data characters and assemble them into a 16-bit memory address register specifying the address of the desired memory location. The command contains three stop bits with the start bit of the first data character coming after the third stop bit of the command character. The start bit of each data character comes after the third stop bit of the preceding data character.

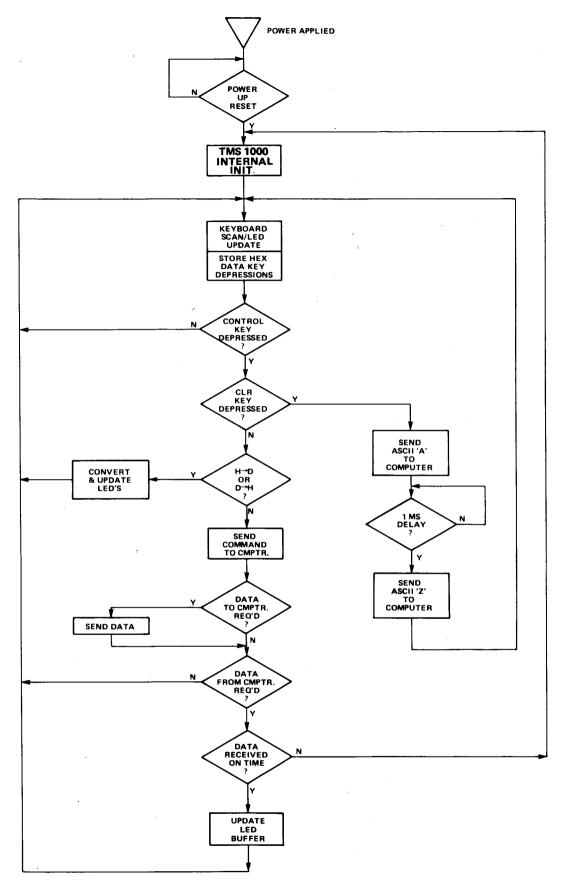


Figure 4. TMS 1000 Software Flowchart

TABLE 3. MICROTERMINAL CONTROL SEQUENCE

Key Depressed	Hexadecimal Code	Microterminal Sends	Microcomputer Sends In Response
EWP	0616	Command (1 EIA Character)	_
		Data to Enter (4 EIA Characters)	_
EST	⁰⁴ 16	Command (1 EIA Character)	_
		Data to Enter (4 EIA Characters)	_
EPC	⁰² 16	Command (1 EIA Character)	_
	10	Data to Enter (4 EIA Characters)	_
DWP	^{0C} 16	Command (1 EIA Character)	*Data to be displayed (4 EIA Characters)
DST	^{0A} 16	Command (1 EIA Character)	*Data to be displayed (4 EIA Characters)
DPC	⁰⁸ 16	Command (1 EIA Character)	*Data to be displayed (4 EIA Characters)
EMA	⁰⁰ 16	Command (1 EIA Character) Address (4 EIA Characters)	*Data to be displayed (4 EIA Characters)
EMD	¹⁴ 16	Command (1 EIA Character) Data to Enter (4 EIA Characters)	*Data to be displayed (4 EIA Characters)
EMDI	¹² 16	Command (1 EIA Character) Data to Enter (4 EIA Characters)	*Data to be displayed (4 EIA Characters)
DCRU	^{0E} 16	Command (1 EIA Character) Bit Count/Address (4 EIA Characters)	*Data to be displayed (4 EIA Characters)
ECRU	¹⁰ 16	Command (1 EIA Character) Data (4 EIA Characters)	_
CLR		ASCII A (1 EIA Character) ASCII Z (1 EIA Character)	-
			_
RUN	¹⁶ 16	Command (1 EIA Character)	-
H/S	(Unit in Run Mode)	HALT = 0 For 30 µsec	**PC to be displayed (4 EIA Characters) Data to be displayed (4 EIA Character
H/S	18 ₁₆ (Unit not in Run Mode)	Command (1 EIA Character)	*PC to be displayed (4 EIA Characters) Data to be displayed (4 EIA Character

*First character must be received by the Microterminal within 5 milliseconds after the end of the third stop bit of the command word is sent by the Microterminal. Each succeeding character must be received by the Microterminal within 5 milliseconds after the end of the second stop bit of the preceding data character is received from the microcomputer.

**First EIA character must be received by the Microterminal between 6 to 10 milliseconds of HALT becoming active low. Each succeeding character must be received by the Microterminal within 6 to 10 milliseconds of center point of second stop bit of the preceding character.

- 4. The host microcomputer fetches the 16-bit data word from the memory location specified by the contents of the memory address register.
- 5. This data is output from the microcomputer via four data characters on the TERMINAL DATA IN signal. The start bit for the first data character must occur before five ms has elapsed after receiving the third stop bit of the last memory address character from the Microterminal. Each of the remaining three data characters from the microcomputer must present a start bit within 5 milliseconds after the second stop bit of the preceding microcomputer data character. Longer time delays will cause the Microterminal to detect a data transmission error and blank the display.
- 6. The Microterminal displays the receive data.

The following points must be noted by the user who wishes to code a device service routine for the Microterminal:

- When data characters follow a Microterminal command character, each start bit follows the third stop bit of the previous character.
- All required input data to the Microterminal must occur within the required time frame; otherwise, the Microterminal will detect a data transmission error and blank the display.
- Command and data characters are of the format shown in Figure 3. When the Microterminal outputs a command followed by data, each character has three stop bits followed by the start bit of the next character.
- A 16-bit data word requires four data characters of the form shown in Figure 3.
- The Microterminal will always output two characters in succession (an ASCII A and ASCII Z) when CLR is depressed. For the user that might have several different types of terminal devices, these two characters might serve as an ID for the Microterminal.
- HALT must be wired to an interrupt in order to halt program execution.

6.4 LISTING OF SAMPLE MICROTERMINAL DEVICE SERVICE ROUTINE

Enclosed is a listing of a stand-alone device service routine for the Microterminal utilizing the TM 990/100M Microcomputer as the host device. A stand-alone service routine rather than *TIBUG* is included to focus understanding on the Microterminal functions (i.e., *TIBUG* contains many functions besides the Microterminal routines). Refer to Figures 5 to 10 for detailed program flow of parts of the stand-alone device service routine. Table 4 explains DSR assembly language action in response to keys pressed on the Microterminal. Note the following points about the stand-alone device service routine.

- Since this program is of a stand-alone nature, it is not necessary to use the A and Z character output by the Microterminal to identify itself when **CLR** is depressed. These two characters will be ignored because they will be recognized as invalid commands by the microcomputer command scanner.
- When the RESET pushbutton is depressed, the TM 990/100M will begin execution at the Program Counter location specified by the contents of memory location 0002₁₆ with the workspace pointer specified by the contents of memory location 0000₁₆.

LOAD is the entry point when the nonmaskable interrupt of the TMS 9900 is activated by the HALT signal (from the Microterminal) becoming low or the output from a TM 990/100M circuit activated two instructions after a LREX instruction (or two instructions are executed after the LREX instruction, then LOAD is entered). LOAD is used to halt program execution or for single instruction execution.

Microterminal Key Command	DSR Action And Comment					
EPC	INPT	R14	XOP1, INPUT PC TO R14	079		
	JMP	MTIN	TO COMMAND SCANNER	080		
EST	INPT	R15	XOP1, INPUT ST TO R15	081		
	JMP	MTIN	TO COMMAND SCANNER	082		
EWP	INPT	R13	XOP1, INPUT UP TO R13	083		
	JMP	MTIN	TO COMMAND SCANNER	084		
DPC	отрт	R14	XOP0, OUTPUT PC FROM R14	085		
	JMP	MTIN	TO COMMAND SCANNER	086		
DST	отрт	R15	XOP0, OUTPUT ST FROM R15	087		
	JMP	MTIN	TO COMMAND SCANNER	088		
DWP	ΟΤΡΤ	R13	XOP0, OUTPUT WP FROM R13	089		
-	JMP	MTIN	TO COMMAND SCANNER	090		
EMA	INPT	R8	XOP1, INPUT ADDR TO R8	091		
	MOV	*R8, R9	DATA AT ADDR TO R9	098		
	ΟΤΡΤ	R9	XOP0, OUTPUT (R9)	125		
	JMP	MTIN	TO COMMAND SCANNER	126		
EMD	INPT	R9	XOP1, INPUT DATA TO R9	093		
	MOV	R9, *R8	TO MEMORY INDIRECT R8	094		
	MOV	*R8, R9	TO R9 INDIRECT R8	098		
х. 	ОТРТ	R9	XOP0, OUTPUT (R9)	125		
	JWb	MTIN	TO COMMAND SCANNER	126		
EMDI	INPT	R9	XOP1, INPUT DATA TO R9	096		
	MOV	R9, *R8+	TO MEMORY, INDIRECT R8,			
			INCREMENT R8 TO NEXT ADDR.	097		
	MOV	*R8, R9	(NEXT M.A.) TO R9	098		
	OTPT	R9	XOP0, OUTPUT (R9)	125		
	JMP	MTIN	TO COMMAND SCANNER	126		
STEP	SETO	@STEPFG	SET STEP FLAG	104		
(H/S)	CLR	@HALTFG	CLEAR HALT FLAG	105		
	LREX		CAUSE LOAD INTERRUPT WHICH			
			GOES TO STEP ROUTINE	106		

TABLE 4. DSR ACTION TO KEY COMMANDS

Microterminal Key Command		DSR Action And Comment				
DCRU	*DO LOAD ROUTINE					
	INPT	R10	XOP1, GET BIT COUNT	108		
	•		AND CRU ADDR			
	•					
	•					
	*MOVE	CRU ADDR TO R	12	110-112		
	*EXECU	ITE MOVE (CRU)	TO R9	113-116		
	OTPT	R9	XOPO, OUTPUT (R9)	125		
	JMP	MTIN	TO COMMAND SCANNER	126		
ECRU	INPT	R9	XOP1, CRU DATA TO R9	118		
	•					
	*EXECL	TE MOVE (R9) T	O CRU	119, 120		
	JMP	MTIN	TO COMMAND SCANNER	121		
RUN	RTWP		BRANCH *R14 WITH (R13) =			
			ADDR. OF WP AND (R15) = STATUS REG	077		
HALT	SETO	R0	SET DELAY FLAG	122		
(H/S)	OTPT	R14	XOP0, OUTPUT VALUE OF PC	123		
	MOV	*R14, R9	MOVE DATA AT PC TO R9	124		
	OTPT	R9	OUTPUT (R9)	125		
1	JMP	MTIN	TO COMMAND SCANNER	126		

TABLE 4. DSR ACTION TO KEY COMMANDS (Concluded)

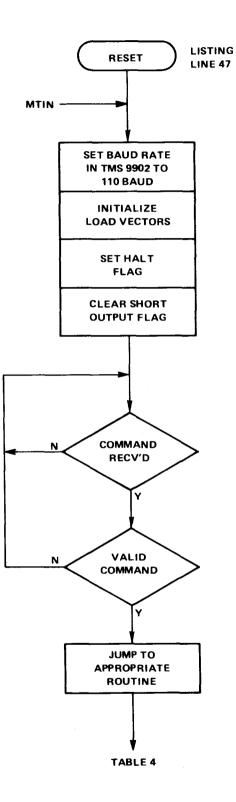


Figure 5. Microterminal Initialization and Command Scanner

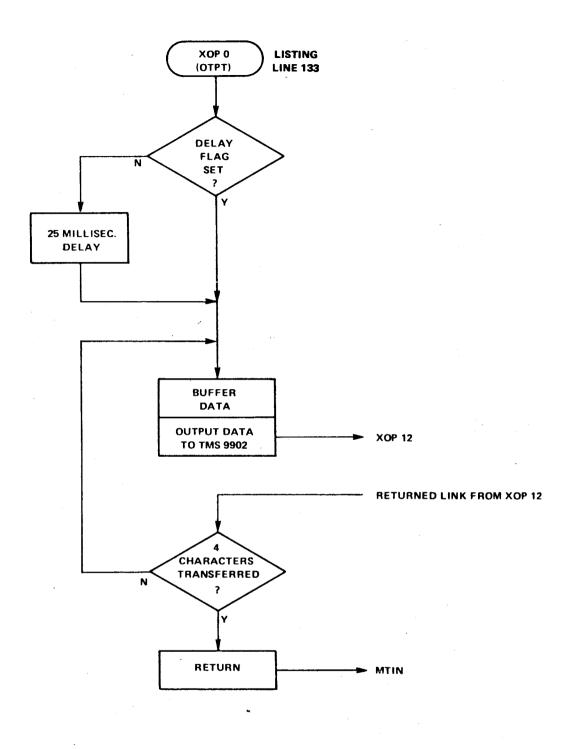


Figure 6. Output Data to Microterminal

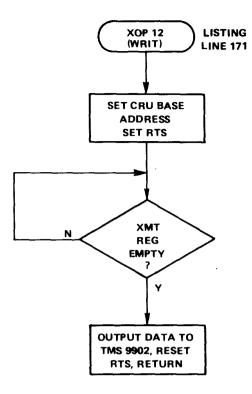


Figure 7. Output Data to TMS 9902 (to Microterminal)

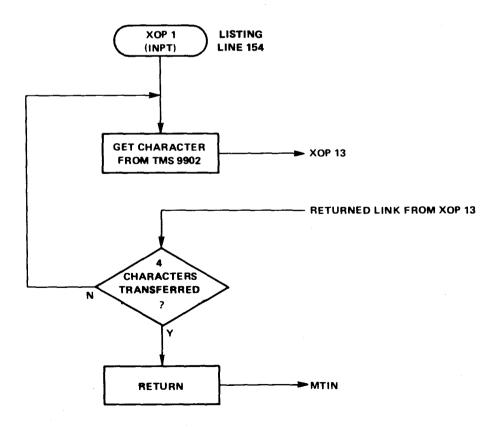


Figure 8. Input Data From Microterminal

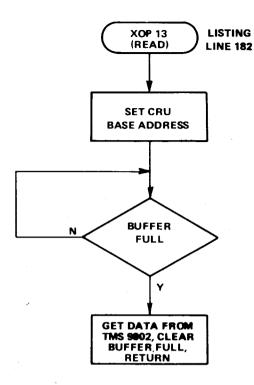


Figure 9. Get Data From TMS 9902 (from Microterminal)

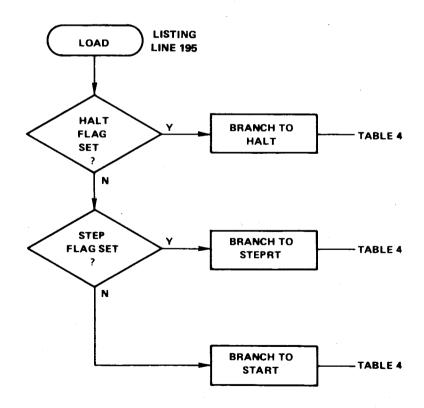


Figure 10. Load Signal Execution

0001			•	
0002			*******	*******
0003				STAND ALONE DEVICE SERVICE ROUTINE FOR THE
0004				RUMENTS TM990/301 MICROTERMINAL UTILIZING THE 4
0005				RUMENTS TM990/100M MICROCOMPUTER AS THE HOST (
0006				990/100MUTILIZES MEMORYLOCATIONS 00 THRU 🕢 📢
0007			♦ 30(ALL NUM)	BERS ARE HEX)FOR INTERRUPT VECTORS AND XOP 🔹 📢
0008			VECTORS, MEL	MORY LOCATIONS 80 THRU 7FF FOR EXECUTABLE 👘 📢
0009				EMORY LOCATIONS FEDD THRU FFFF FOR RAM STORAGE↓
				NTERFACE BETWEEN THE MICROTERMINAL AND
0010				IS RS232C SERIAL.A TMS9902 ACIA IS UTILIZED
0011			 IM330/100M 	IS RECOLUCERINE.N PROPERIONNIS OPPENDED -
0012			♦ UN THE TWA	90/100M AS THE UART DEVICE.
0013			*********	*****
0014			IDT	(MCTER)
0015		0.00B	LINK EQU	R11
0016		000C	CRUBAS EQU	R12
0017		FFBO	MREGS EQU	>FFB0
			XREGS EQU	>FFD4
0013		FFD4		
0019		FFC6	IREGS EQU	>FFC6
0020		FFF8	STEPFG EQU	>FFF8
0021		FFFA	HALTEG EQU	>FFFA
0.055			DXOP	OTPT,0
0023			DXOP	INPT,1
0.024			DXOP	READ,13
0025			DXOP	WRIT,12
	0000	FFB0	DATA	MREGS, INIT RESET VECTORS
0026	0000	rr B U	Thu hu	NREUSFINIT RESET TECHENS
	2000		DOTO	
0027	0004	FFFF	DAT A	>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF
	0006	FFFF		
	0003	FFFF		
	000 0	FFFF		
	000C	FFFF		
	000E	FFFF		
8500	0010	FFFF	DATA	>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FF
0020	0012	FFFF	201111	
	0012	FFFF		
	0016	FFFF		
	0018	FFFF		
	001A	FFFF		
	001C	FFFF		
	001E	0FFF		
0029	0020	FFFF	DATA	>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFF
	0022	FFFF		
	0024	FFFF		
	0026	FFFF		
	0028	FFFF		
	AS00	FFFF		
	0.050	FFFF		
	002E	0FFF		
0030	0030	FFFF	DATA	>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFF
	0032	FFFF		
	0034	FFFF		
	0036	FFFF		
	0038	FFFF		
	0038 003 0	FFFF		
	0001	₹ T ⁻ T ⁻ T [#]		

			•		
	0030	FFFF			
0004	003E	OFFF			
0031	0040	FFD4	DATA	XREGS,OTPTE	N XOPO VECTORS
0032	0042 0044	FFD4	DATA	XREGS, INPTE	N MODI UCCIDDO
0000	0044		DUTU	AREOSTITE	N XOP1 VECTORS
0033	0048	FFFF	DATA	>FFFF,>FFFF	•>FFFF•>FFFF
	0048	FFFF			
	004C	FFFF			
	004E	FFFF			
0034	0050	FFFF	DATA	>FFFF,>FFFF	,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFF
	0052	FFFF			
	0054	FFFF			
	0056 0058	FFFF FFFF			
	0050 005A	FFFF			
	0050	FFFF			
	005E	0FFF			
0035	0060	FFFF	DATA	>FFFF,>FFFF	,>FFFF,>FFFF,>FFFF,>FFFF,>FFFF,>FFF
	0062	FFFF			
	0064	FFFF			
	0066	FFFF			
	0068 006 A	FFFF			
	006C	FFFF FFFF			
	006E	OFFF			
0036	0070	FFC6	DATA	IREGS, WENTR	Ŷ
	0072				
0037	0074	FFC6	DATA	IREGS, RENTR	Y
	0076				
0038	0078	FFFF	DATA	>FFFF,>FFFF	•>FFFF•>FFFF
	007A 007C	FFFF			
	007C 007E	FFFF FFFF			
0039	0016		•		•
0040			**********	*********	*****
0041			 MICROTERMI 	NAL INITIALI	ZATION AND COMMAND SCANNER-THIS 👘 🔸
0042		•			A RESULT OF A RESET PUSHBUTTON 👘 🔸
0043					TE IS SET TO 110 BAUD, THE LOAD +
0044					D AND A WAIT LOOP IS ENTERED •
0045					FROM THE MICROTERMINAL. +
0046		0000			++++++++++++++++++++++++++++++++++++++
0047	0030 0082	020C 0080	INIT LI	CRUBH37/00	LUND CRO DASE REO
		•0080 •€00801			
0048	0084	1D1F	SBO	31	INITIALIZE UART
0049	0.036	322.0	LDCR	PCR,8	
	0033				
0050	008A	1E0D	SBZ	13	
0051	0030	3320	LDCR	9BR,12	SET BAUD RATE
	003E				INITIO IZE LOOD USCTOOS
0052	0090	0202	LI	2,>FFFC	INITIALIZE LOAD VECTORS
0053	0092 0094	FFFC 04C1	CLR	1	
0053	0094	CCB1	MOV	* *1+,*2+	
0004	0000	0.000			

23

0055	0098 0098	0201		LI	1.LOAD	
0.056	0090	0481		MOV	1,+2	
0057	0.0 9E	2F42	MTIN	READ	2	GET MICROTERMINAL COMMAND
0.028	00A0	$0.4 \oplus 0$		CLR	0	CLEAR SHORT OUTPUT FLAG
0.059	0.0 0 2	0720		SETO	JHALTEG	SET HALT FLAG
	0.0 N 4	FFFA				
0.060	00 0 6	0602		SWPB	2	RIGHT JUSTIFY COMMAND
0.061	00A3	0242		ANDI	2•>1E	STRIP OFF UNDEFINED BITS
	0088	001E				
0.065	80AC	0285		$\mathbb{C}\mathbf{I}$	2,>18	CHECK FOR INVALID COMMAND
0040	00AE	0018		1. 	54T T 61	DIRECTOR INCOME COMMOND
0063	00B0 corr	15F6		JGT	MTIN	DISREGARD INVALID COMMAND ADD COMMAND AND JUMP TABLE BIAS
0064	00B2	0222		ΗI	2,JMTB	HTT CANNERT HIT JONE LETE BIE?
0065	00 B4 00 B 6	0452		в	* 2	GO EXECUTE SPECIFIED FUNCTION
0066	00BS	10	JMTB	JMP	EMA	JUMP TABLE
0000		+00B31	011110	<u></u>		
0067	00BA	10		JMP	EPC	
0068	00BC	10		JMP	EST	
0069	0.0BE	10		JMP	EWP	
0070	0 0 C O	10		JMP	DPC	
0071	0.002	10		JMP	DST	
0072	00C4	10		JMP	DWP	
0073	0.006	10		JMP	DORU	
0.074	0.008	10		JMP	ECRU	
0.075	00CA	10		JMP	EMDI	
0076	0000	10		JMP	EMD	
0077	0.0CE	0380		RTWP		
0078	00D0	10	E 5 0	JMP	STEP	
0079	00D2	204E	EPC	INPT	14	GET PC
0080	00BH♥ 00D4	◆100B 10E4		JMP	MTIN	GO AWAIT NEXT COMMAND
0080	00D4 00D6	204F	EST	INPT	15	GET ST
0001		+1000	La de la	T () (1.0	
0082	00D3	10E2		JMP	MTIN	
0083	0 0 DA	204D	EWP	INPT	13	GET WP
		+100D				
0.084	0.0 DC	10E0		JMP	MTIN	
0.085	00DE	200E	DPC	DTPT	14	OUTPUT PC
	00C0•	◆100E				
0036	00E0	1 0DE		JMP	MTIN	
0.087	00E2	200F	DST	OTPT	15	DUTPUT ST
		◆100F				
0088	00E4	10DC	T	JMP	MTIN	
0.080	00E6	200D	DWP	OTPT	13	DUTPUT WP
0000		+1010		int D	ытты	
0090 0091	00E8 00E8	10DA 2048	EMA	UMP INPT	MTIN B	GET MEMORY ADDRESS REG
0071		•1018	Ent	111-1	0	OCT NENUKT HUDKESS KEU
0092	0068*	10		JMP	EMDI1	GO EXECUTE FUNCTION
0092	00EE	2049	EMD	INPT	9	GET DATA
0000		+1010				
0094	00F0	0609		MOV	9, •8	STORE DATA IN MEMORY
0095	00F2	10		JMP	EMDII	

0096	00F4		EMDI	INPT	9	GET DATA
	00CA+					
0097	00F6			MOV	9,+8+	STORE DATA IN MEMORY AND AUTO INC
0098	00F8		EMDI1	MOV	* 8,9	GET DATA FROM MEMORY
	00EC++					
	00F2+					
0099		10		JMP	HALT1	
0100	00FC		STEPRT		14	OUTPUT PC
0101	00FE	C25E		MOV	• 14,9	GET PC MEMORY DATA
0102	0100	0700		SETO	0	SET DELAY FLAG
0103	0102	10		JMP	HALT1	
0104	0104	0720	STEP	SETO	₽STEPFG	SET STEP FLAG
	0106	FFF8				
	00D0+					
0105	0108	04E0		CLR	ƏHALTEG	CLEAR HALT FLAG
	010A	FFFA				· · · · · · · · · · · · · · · · · · ·
0106	010C	03E0		LREX		FIRE LOAD INTERRUPT
0107	010E	0380		RTWP		EXECUTE USER CODE
0108	0110	204A	DORU	INPT	10	GET BIT COUNT AND CRU ADDRESS
	0006+					
0109	0112	0409		CLR	9	CLEAR DATA REG
0110	0114	C30A		MOV	10,12	
0111	0116	0240		ANDI	12,>0FFF	SAVE CRU ADDRESS
	0118	0FFF				
0112	011A	0A1C		SLA	12,1	PUT IN PROPER WORD POSITION
0113	011C	09CA		SRL	10,12	STRIP DUT ZERDES
0114	011E	0A6A		SLA	10,6	
0115	0120	022A		ĤΙ	10,>3409	SET UP STOR OP CODE
	0122	3409				
0116	0124	048A		X	10	EXECUTE STOR
0117	0126	10		JMP	HALT1	
0118	0128	2049	ECRU	INPT	9	GET DATA
	0003+					
0119	0128	022 0		AI	10,>FC00	SET UP LDCR OP CODE
	0120	FC00				
0120	012E	048A		X		EXECUTE LDCR
0121	0130	10B6		JMP	MTIN	
0122	0132	0700	HALT	SETO	0	SET DELAY FLAG
0123	0134	200E		DTPT	14	OUTPUT PC
0124	0136	C25E			* 14,9	
0125		2009	HALT1	OTPT	9	OUTPUT DATA
		◆101E				
		◆101A				
		◆1008		1640	64 T T 61	
0126	013H	10B1		JMP	MTIN	
0127			•			
0128						
0129					NAL DUTPUT-X	
0130						AL 16 BIT OUTPUT WORD TO 4 EIA
0131				PUT WOR		·····
0132	0400				************* *10.0	CHECK DELAY FLAG
0133		C01D		μUΥ	+13,0	CHECK DELHI FLHD
0104		◆013C1		INC	BDLY	BYPASS DELAY IF FLAG SET
0134	013E	16		JHE LI	0,>0F00	25 MS DELAY
0135	0140	0200		L.1	07/01/00	LO NO DELM

.

	0142	0F00									
0136	0144	0600	DLY	DEC	0						
0137	0146	16FE		JHE	DLY						
0138	0148		BDLY	LI	0,4	LOAD NUMBER OF TRANSFERS					
	014A	0004									
	013E+										
0139	0140	C25B		MOV		мача тата та обса					
					*11;7 • •	MOVE DATA TO REG9					
0140	014E	C049	CNOT		⇒ •1	MOVE DATA TO REGI					
0141	0150	0901		SRL		SAVE MSD					
0142	0152	0831		SLA	1,8	LEFT JUSTIFY					
0.143	0154	0221		AI	1,>3000	ADD CODE BIAS					
	0156	3000									
0144	0158			WRIT	1 .	CALL TIBUG DUTPUT ROUTINE					
0145	015A	0849		SLA	9.4	CALL TIBUG OUTPUT ROUTINE SHIFT IN NEW DIGIT					
	015C				0	DECREMENT WORD COUNT					
0146		0600		DEC		GO BACK IF NOT FINISHED					
0147	015E				CNOT	GU BHUN IF HUI FIHISHED					
0148	0160	0.33.0		RTWP							
0149						***********					
0150) ◆ MICROTERMINAL INPUT-XOP R+1										
0151			 CON 	VERTS 1	MICROTERMINAL 16	BIT INPUT WORD TO 4 EIA INPUT					
0152			♦ WOR	DS.							
0153					******	******************************					
0154	0162	0201				LOAD NUMBER OF TRANSFERS					
40104			10 100		177 000 i						
	0164										
		♦01621									
0155					+ 11	CLEAR DATA					
0156	0168		CNIN			MOVE DATA TO REGS					
0157	016A	0845		SLA		SHIFT TO LEFT					
0158	016C	0605		MOV	5,+11	PUT DATA IN MEMORY					
0159	016E			READ		GET EIA WORD					
0160	0170										
0161	0172			one	071L 0 411	SET ONES IN DATA WORD DECREMENT WORD COUNT					
0162	0174			3 0 0	3, 11	DECREMENT WORD COUNT					
0163	0176			DEC	1						
0164	0178				CNIN	GO BACK IF NOT FINISHED					
0165	017A	0380		RTWP							
0166			*****	******	**************	**********					
0167			+ WRI	TE CHAR	ACTER-XOP R+12						
0168			 TRH 	NSFER T	HE CHARACTER IN TH	E LEFT BYTE OF REGISTER R TO					
0169				UART.							
0170					**************	*****					
	0170	0000				SET CRU BASE ADDRESS					
0171			WEITIKI		CRODUS#2.0000	OF ONO DIGE INDUCEDO					
	017E	0080									
		♦017C1									
0172	0180	$1 \mathrm{D} 1 0$		SBO	16	SET RTS					
0173	0182	1F16		TB	22	CHECK XMT REG EMPTY					
0174	0184	16FB		JNE	WENTRY	GO BACK IF NOT EMPTY					
0175	0186	321B			+ 11 , 8	OUTPUT DATA TO UART					
0176	0188			SBZ	16	RESET RTS					
0177	018A			RTWP							
0178	0100	0000	*****		********	*****					
	♦ READ CHARACTER-XOP R,13										
0179			••=•			IN THE HADT INTO DECISTED O					
0130) IN THE UART INTO REGISTER R.					
0181	. . = =										
0182	0180	0200	RENTRY		CKORH2+>0080	SET CRU BASE ADDRESS					

	018E	0030								
	0076+	◆018C1								
0183	0190	1F15		TB	21	CHECK BUFFER FULL				
0184	0192	16FC		JNE	RENTRY	GO BACK IF BUFFER NOT FULL				
0185	0194	04DB		CLR	+11	CLEAR DATA				
0186	0196	361B		STOR	◆11+8	GET DATA FROM VART				
0187	0198	1E12		SBZ	18	CLEAR BUFFER FULL				
0188	019A	0380		RTWP						
0189			*****							
0190			+ LOA	D ROUTI	NE-THIS ROUTINE	IS ENTERED IF A LREX INSTRUCTIO				
0191			♦ IS	EXECUTE	D(THERE IS A TW	D INSTRUCTION DELAY AFTER THE LR				
0192			 BEF 	ORE THI	S ROUTINE IS EN	TEREDOOR IF THE LOAD SIGNAL FROM				
0193			♦ THE	MICROT	ERMINAL BECOMES	ACTIVE LOW.				
0194	····									
0195	0190	0201	LOAD	LI	1,HALTEG	CHECK HALT FLAG				
	019E	FFFA								
	0098♦◆01901									
0196	0180	0091		MOV	+1,2					
0197	01A2	13		JEQ	LOAD1	JUMP IF NOT SET				
0198	01A4	0460		в	PHALT	GO EXECUTE HALT FUNCTION				
	0186	01321								
0199	01 0 8	0641	LOAD1	DECT	1	CHECK STEP FLAG				
	01 8 2+	♦1302								
0200	01AA	0091		MOV	+1,2					
0201	01AC	13		JEQ	LOADS	JUMP IF NOT SET				
2020	01AE	0460		В	PSTEPRT	GO EXECUTE STEP FUNCTION				
	01B0	60FC/								
0203	01B2	0460	LOADE	В	TINIC	REINITIALIZE FOR INVALID LOA				
	01B4	00304								
	018C+	◆1302								
0204	01B6	0638	BR	DATA	>0638	TM39902 DATA RATE REG CONTENTS				
	0.08E+	♦01B6 [×]								
0205	01B8	62	CR	BYTE	>62	TMS9902 CONTROL REG CONTENTS				
0206				END	INIT					
	0088•	+01B84								

.