As you are now the owner of this document which should have come to you for free, please

consider making a donation of £1 or more for the upkeep of the (Radar) website which holds
this document. | give my time for free, but it costs me money to bring this document to you.

You can donate here https://blunham.com/Misc/Texas

Many thanks.

Please do not upload this copyright pdf document to any other website. Breach of copyright
may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. |
requested permission to publish this from Texas Instruments (twice) but received no reply. It
is presented here (for free) and this pdf version of the document is my copyright in much the
same way as a photograph would be. If you believe the document to be under other
copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any

mirror site named on that site. If you downloaded it from elsewhere, please let me know
(particularly if you were charged for it). You can contact me via my Genuki email page:
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make
monetary gain by the use of these files. If you want someone else to have a copy of the file,
point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at

the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

| put a lot of time into producing these files which is why you are met with this page when you
open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or
simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.

Colin Hinson
In the village of Blunham, Bedfordshire.

' TM 990/302
SOFTWARE
DEVELOPMENT

BOARD
USER’S GUIDE

Paragraph

[0 YW N NS NN (S N G ——
ONOUTDhWN =

2.1
2.2
2.3
2.3.1
2.3.2
233
2.3.31

233.2
2333
2334
2335
2.3.4
235
24

2.5

2.6

2.7
271
2.7.2
2.7.3

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.2.1
3422
3.5
3.5.1
3.5.2

TABLE OF CONTENTS

Title Page

SECTION |. INTRODUCTION

General ... e B 1-1
Manual Organization 1-4
Typical System Operation 1-4
Memory AreasRelocated 1-7
SpeCifiCatioNS i e 1-7
ApplicableDocuments e 1-7
Command Format Syntax i 1-7
Character Changes Using ControlHand Control FKeys 1-8

SECTION I1.INSTALLATION AND OPERATION

General ... 2-1
Unpacking ... 21
Installation ... 2-1
Minimum Configuration e e 2-1
Connect Power Supply ... o i 2-3
Change RAM Memory Mapping and Install System PCBoards 2-3
Memory Mapping Change on MicrocomputerBoards 2-3
Preparing the TM 990/100M MicrocomputerBoard 2-5
Preparing the TM 990/101M MicrocomputerBoard 2-8
Install the Microcomputer BoardintoCardCage 2-8
SetUpandinstall TM990/302Boardot 2-8
Attach Terminal, Run Preliminary SystemCheck 2-9
Connect the Tape Recorderstothe TM990/302c.ooieinnnnnnnii... 2-9
Physical Device Numbers (DEVNOS) 2-12
System Initializationand MonitorCall 2-13
Calling SDB Program i 2-13
Recorder/Player Protocal i 2-14
Setting Up for a Write Operation (Two-Cassette Operation) 2-14
Setting Up for a Read Operation (Two-Cassette Operation) 2-14
One-Cassette Operationttt e e 2-15

SECTION Ill. TEXT EDITOR

General .. 3-1
System Configuration 3-1
CoNSIderations 3-1
Text Editor Cail and Special Key Functions oiiiiinunan.. .. 3-2
TextEditorCall e 3-2
Special Key Function i 3-1
Use Tab Function to Space Between SourceFields 3-2
Use Control H and F Commands to Correct Characters 33
ComMMaANAS ... e 3-3
GetSourceLines Command (G) ...t 3-3
PrintSource Lines Command (P) i 34

iii

3.53
3.56.31
353.2
354
355
3.5.6
3.5.7
3.6

3.7
3.8

41
4.2
43
43.1
432
433
4.33.1
43.3.2
4.4
447
442
4-43
444
445
446
447
45
4.6
a7
4.8
49
4.10

5.1
5.2
5.3
54
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.5.1
6.56.2

Insert Lines Source Command 34
Initial Source INpUL ... 3-6
Examples e ... 36
Delete Source LinesCommand (D) 3-9
Resequence Lines BeginningatNew Value(R) 3-10
Keep (Save) Edited Source LinesCommand (K} 3-11
Quit Text Editing Command (Q)o 3-1
Error Codesfor TextEditor i 3-12
DataBackuponCassettecoiiiiiiiiinnennnan.. B 3-14
Multifile Cassettes e 3-14

General e 4-1
CoNSIdEratioNS e e 4-2
Symbolic Assembler Calland Operationcuoiunn.. 4-4
System Set-Up ... e 4-4
Symbolic Assembler Call e e e e 4-4
One and Two-Cassette Operation e 4-5
Two-Cassette Operation ittt e it 4-6
One-Cassette Operation ... ittt ettt 4-6
Assembly Listing Format L 4-10
Assembly language Source StatementNumber 4-11
LoCation CoUNter ... e 4-11
Assembled Object Code ittt e e 4-11
Label Fleld 4-11
OpCode Field e 4-11
Operand Field e e 4-1
CommentField e e 4-11
INSTrUCHION St ... e e 4-12
Labels . e 4-12
Mathematical EXpressions it i it et 4-12
Object Code ... e e e 4-12
Errors ... e 4-12
Assembly of Example Program i e i 4-14

SECTION V. RELOCATING LOADER PROGRAM

General . e e e e i e 5-1
System Configuration 5-1
0o =170 [= ¢ 1 e T o T 5-1
Loader Program Calland Operation it iinnennnns 5-2
Examiples ... e 5-3
Error Codes ... o e 5-4

General ... e e 6-1
System Configuration it e e e 6-1
Considerations O, 6-2
ProgramDebuggerCall i e 6-2
Debug ProgramCommands i e 6-2
Execute Program Command (EX) i, 6-2
Inspect/Change CRUCommand (IC) i ittt 6-2

10.3.5 Binary to Hexadecimal ASCll Conversion iiiiia, 10-2
10.3.6 Echo Character onthe Primary ElAPort i 10-3
10.3.7 Output a Charactertothe Primary EIAPort, 10-3
10.3.8 Output a Messagetothe Primary EIAPort l 10-3
10.3.9 Input up to 80 Characters from Primary ElAPort 10-4
SECTION XI. UPLINK BETWEEN TM 990/302 AND HOST COMPUTER
1.1 GENEraAl oo 111
11.2 System Configuration and Execution Considerations 11-2
11.2.1 TMO90/506 Cablet 11-2
11.2.2 HostComputer EIAcard e 11-2
11.23 TM990/101MBaudRateciiiiiiiiiiiannainn, e 11-2
11.24 Host Computer Software it 11-2
11.25 ReturntoProgram Call i 11-2
11.2.6 Return to MONItOr e e 11-2
11.3 Uplink Program Call 11-3
114 Terminal Mode e 11-3
115 Load MoOde ... e e 11-6
APPENDICES
APPENDIX A - Wiring Teletype Model 3320/5JE for TM 990/10XM
APPENDIX B EIA RS-232-C Calling
APPENDIX C ASCII Code
APPENDIX D Binary, Decimal, and Hexadecimal Numbering
APPENDIX E Error Codes
APPENDIX F Assembler Directives
LIST OF ILLUSTRATIONS
Figure No. Title Page
11 TM 990/302 Software DevelopmentBoard oo, 1-2
1-2 Software Development System Diagram ... i 1-3
1-3 Typical Software DevelopmentSequence i 1-6
2-1 Software Development System Configuration, 2-2
2-2 Power Connections to Software DevelopmentSystem 2-4
2-3 Memory Configuration for the Software Development System 2-5
24 Address ROM Changeout at TM990/100MBoard oot 2-6
2-5 System Cabling Between Boards and Peripherals 2-10
31 Source Statement Fields 3-5

vi

6.56.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

7.1

7.2

7.3

74
7.5
7.5.1
75.2
753
7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.6.3
7.6.3.1
7.6.3.2
7.6.4
7.6.4.1
7642

8.1
8.2
8.3

9.1
9.2
93
94
9.5

10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4

Inspect/Change Memory Command{IM)
Inspect/Change Hardware Registers (IR}
Inspect/Change Workspace (Software) Register Comamand (IW)
Run Program for specified Number of Instructions (RU)
Set Breakpoint Command(SB) e e e
Software Trace Command (ST) i i,

SECTION VIi. EPROM PROGRAMMER

General . i
System Configuration
ConSIderationsc.oiiuiiiiii i
EPROMErasure Procedure ...t
Sy e SetUD ..
EPROM Personality Cardot e e
Insert PROM into Personality Card, Designate PROM Model
Personality Card LED'S i
COMIMBNAS .. e e
Program the EPROM Command (PP} i,
Compare EPROM Contents Command (CE)coiouuiun. ...
Format e e e e e e e e
EXamples ..
Read EPROM Contents into Memory Command{(RE)
Formiat e
EXamIples ..
Verify EPROM ArealsErased Command(VE)
oMMt

General ...
FOIMIAt . e

SECTION IX. SETTING BAUD RATE AT SECOND EIA PORT

General P
CoNSIderations
POt L e
EXamples ... o
ErrorCode

General ..
CoNSIderations
Utilties ... o
TM 990/302 Returnto System Software0iiriiineeiinnnnn,
Decimal ASCHl to Binary Conversion c...viieonoee i
Hexadecimal ASCllto Binary Conversionc..re i
Binary to Decimal ASCH CoNVersionuiuni s

4-1

4-3
4-4

5-1

7-1
7-2
7-3
7-4

11-1
11-2
113
11-4

Table No.
1-1

2-1
2-2
2-3
2-4
2-5
2-6
2-7

4-1
4-2

7-1
7-2 -

Symbolic Assembler 4-2

Two-Pass Assembler Operation e e 4-3
Flow Diagram of One-Cassette Operation, 4-9
Assembly Listing Format e 4-10
Assembly Listing of Example Program il 4-14
Relocating Loader Block Diagram i it 5-2
Typical EPROM Programming Configuration 7-3
Personality Card i e 7-4
In-Line and Parallel EPROM Programmingc..oiiivinennninneennn.. 7-7
Data Transfer In Parallel ProgrammingMode 7-9
System Configuration for Uplink Program i i, 11-1
Uplink Program Execution, T1990/10 as Host Computer 114
Uplink Program Execution, T1990/4 as HostComputer 11-5
Transferring Object In The LoadModeOnTI990/4 11-6
LIST OF TABLES

Title Page
Command Syntax Conventionsoiiiiiiiiiiinniiiiineneiinaannnn. 1-8
Jumper Connections for the TM990/100MBoard c.co ... 2-7
Jumper Connections for the TM990/101MBoard 2-7
SJumper Connectionsonthe TM990/302Board cciivveina. .. 2-8
Wait States Required for Memory Speed and SystemClock 2-8
Available Terminal-MicrocomputerCablescciiiiiiiinnn... 29
Device Locations/Connectionsin System ioiiiiiiiinienn., 2-12
DEVNO DesCriptiono it et e e ettt ettt et 2-12
Label Storage Vs. System RAM (Bytes) iiiiiiiiinnunnninn.. 4-4
Assembler ErrorCodes i e e e e 4-13
Personality Card Characteristics ittt ittt 7-3
Jumper Placementon PersonalityCard i, 7-3

vii

1.1

SECTION 1
INTRODUCTION

GENERAL

The TM 990/302 Software Development Board (SDB), used with a TM 990/10X micro-
computer board, provides the basic software development utilities needed to develop
software for a TM 990 microcomputer system. This manual provides information on the
installation as well as the operation of the TM 990/302, shown in Figure 1-1. A software
development system (Figure 1-2) consists of the following:

TM 990/302 Software Development Board

TM 990/100M or TM 990/101M microcomputer
Power supply (such as the TM 990/518)

Data terminal (EIA or TTY interface)

Board interface (such as the TM 990/510 chassis)

One or two audio cassette recorder/players for storage of source or object records
(it is possible to operate the system with one recorder)

Proper cabling.

Possible expansion memory {TM 990/201 or TM 990/206)

Equipment configurations and setup are explained in Section 2 of this manual. Software
utilities provided in EPROM on the TM 990/302 board include:

Text Editor (Section 3)

Symbolic Assembler (Section 4)
Relocating Loader {Section 5)
Debugger (Section 6)

EPROM Programmer (Section 7)
Memory Dump {Section 8)
Second EIA Baud Rate (Section 9)
User Utility Calls (Section 10)

Downloading Object Program From Host Computer To TM 990/302 (Section 11)

1-1

TERMINAL FOR

COMMAND INPUT,
SOURCE LISTING,
ERRORS s3sis

-
..
-
~a.

POWER SUPPLY
+6V, +12V,
2V,
+30 TO +50V

FOR TMS 2708, TMS
2716, TMS 2508, TMS 2516,

OBJECT FiLES

r— - —-—- — - |

| SDBMONITOR |

I IN EPROM I

e - — _ -

T™ 990/302 TM 990/10X
SOFTWARE MICROCOMPUTER
DEVELOPMENT BOARD
BOARD (CPU)

{" ——————— 1 r———-——-=-=-= 1

| RAM g ! RAM I
CASSETTE b e — - L - J
RECORDER/) f
PLAYER TO
CONTAIN ! EPROM PROGRAMMER
SOURCE AND : PERSONALITY CARD

I
I
TMS 2532
<l
(25 OPTIONAL
SECOND CASSETTE
RECORDER/PLAYER

Figure 1-2. Software Development System Diagram

1-3

1.2 MANUAL ORGANIZATION

To facilitate understanding of the software development tools provided by the TM 990/302
system, an example program is used in the Text Editing {Section 3), Symbolic Assembier
(Section 4), Relocating Loader (Section 5), Debugging (Section 6), and EPROM Programming
(Section 7) sections of this manual. This program, when executed, blinks the EPROM
programming LED on the TM 990/302 board and personality card. These LED’s are noted in
Figure 1-1. This manual is divided into the following sections:

Section 1: Introduction to the TM 990/302 software development system.
Section 2: Installation and operation of the TM 990/302 board within a system.

Section 3: Text Editor used to create initial source program and input changes to the
program.

Section 4: Symbolic Assembler used to assemble source programs; symbolic
addresses identified by 1 to 4 character labels are resolved by this two-pass
assembiler.

Section 5:; This section covers a relocating loader which resolves the relocation,
determines the load length, and loads object into memory.

Section 6: Debug package which controls and monitors the program execution and
aliows examining of the program by displaying the contents of hardware register
and memory through various debugging commands.

Section 7: EPROM Programmer which programs EPROMs with final object code
developed by this system.

Section 8: Memory dump routine dumps the memory contents in standard 990
object code form onto cassette.

Section 9: Set up baud rate command for second EIA port on TM 990/101M board.
Section 10: User utility calls. Some useful user callable routines are listed.
Section 11: Downloading object programs from host computer to TM 990/302.

Appendices containing auxiliary information such as cabling, object format,
numbering systems, ASCII code, glossary of terms, etc.

13 TYPICAL SYSTEM OPERATION

A flowchart depicting typical system operation with the TM 990/302 Software Development
Board is shown in Figure 1-3. Operation steps include:

(1

(2)

Initialize System. This includes setting up the system as described in Section 2:
system connections, powerup, cassette ready, system reset, and call-up utilities.

Text Editing. The Text Editor allows creation of source programs as well as up-
dating, insertion, or deletion of source lines. After developing the source programs,

1-4

(3)

(4)

(5)

(6)

(7)

in TMS 9900 assembly language the Text Editor writes the developed programs to
cassette upon command. Programming is made easier by the use of symbolic
labels and 11 assembler directives which are explained in Chapter 4 and Appendix
F.

Assemble Source Program. After generating a source program of assembly
language statements, the Symbolic Assembler is called to assemble the program
into object code. The assembler will provide an assembly listing, with errors noted,
and a cassette of assembled code called object. In the call to the assembiler, the user
can specify what options are desired from the assembly such as (1) listing to check
source code, or {2) an object code, (3) or both. The SDB program calls ailow
flexibility for the user in configuring his system. If a particular device in the system is
not desired (such as the object cassette recorder when a listing-only is desired), that
device can be assigned to “dummy” during SDB program call; thus “deleting” it
from the system configuration. One feature of the assembiler is that if an error is
found, no-op instructions (ignore this line) are substituted for the object code in
question. This will permit complete assembly of the program with space provided
for later updating the object. Assembler object is not relocatable.

Load Object Code. When the object code has been assembiled by the Symbolic
Assembler, it can be loaded into memory by the Relocating Loader. Even though a
program can be assembied as if it was to be loaded into memory at memory
address (M.A.) 00001, the Relocating Loader will load the program where directed
in memory, and resolve any conflicts in addressing. These conflicts occur when
code is assembled for loading at one address but is loaded at a different address.

Debug the Program. Debugging the program means to run the program in a
controlled environment, checking on its performance at selected places. This could
mean running the program until a specific instruction is executed, then stopping the
program to inspect various memory locations or hardware registers. This same
check couid be made after running the program for a limited number of
instructions. If an error is found in the program, the user can substitute different
values in memory, changing instructions or data values, and re-execute the
program again, checking for proper operation. Equipped with an assembler listing
showing memory locations, the user can relate machine instructions and data to the
assembled source. He can also check and change workspace register contents, CRU
values, and hardware registers (Program Counter, Workspace Register, and Status
Register).

Further Editing/Loading/Debugging. If the program needs further changes, the
source program can be brought in by the Text Editor to incorporate changes,
reassemble, and then reloaded into memory and executed under the Debugger.
This cycle can be run until the user is satisfied with the results.

Program the EPROM. When satisfied with program performance, the object
program can be reloaded into memory and then programmed onto one of several
types of eraseable programmable read-only memories (EPROMS). The EPROM can
then be placed in the user’s system (‘‘target’”” sytem) and executed. "'Personality”
cards are provided with the TM 990/302 SDB to accommodate a variety of EPROM
types. These cards plug into connector P2 on the left side of the SDB (left side facing
the board in a card cage). One personality card has a plug for insertion of a
TMS 2708 or TMS 2716 PROMs, the other card can accommodate the TMS 2508 or
TMS 2516 or TMS 2532 EPROM's.

15

START

PROGRAM

WORK
?

INITIAL INPUT
EDITING
TEXT
EDITOR
> GO SOURCE TAPE
! SOURCE INPUT,
- G_O OBJECT OUTPUT
ASSEMBLER LISTING,
ERRORS
YES
B ERRORS
?
NO
RELOCATING O O | ossecTineut
LOADER
INTERACTIVE
DEBUGGING CONTROL OF
PROGRAM EXECUTION

SAVE OBJECT
ON CASSETTE

OO0

PROGRAM
EPROM

OJO)

OBJECT INPUT

PLACE EPROM
IN TARGET
SYSTEM

Figure 1-3. Typical Software Development Sequence

14

15

1.6

1.7

MEMORY AREAS RELOCATED

Position of random access memory (RAM) and erasable programmable memory (EPROM) on
the microcomputer boards will be relocated at different addresses than as shipped from the
factory. To accomplish this, the TM 990/100M board requires a new address-decode PROM
while the TM 990/101M board requires several jumper placements (these are described in
detail in Section 2). EPROM on the microcomputer board is available for user generated

application software, but is not included in the SDB system memory mapping.

SPECIFICATIONS

Power:

The following are power requirements for the different boards in the system:

+5V =12V +12V
TM 990/302 1.5A 50 mA 50 mA
TM 990/100M 14A 0.1A 0.2A
TM 990/101M 1.7A 0.1A 03A

*Required only for EPROM programmer on TM 990/302

Temperature range: 0 to 55°C
Humidity: Up to 95%, noncondensing
APPLICABLE DOCUMENTS
e TM990/100M Microcomputer User’'s Guide
® TM990/101M Microcomputer User's Guide
® TMS 9900 Microprocessor Data Manual
® TMS 9301 Programmable interface Data Manual
® TMS 93902 Asynchronous Communication Controller
® The MOS Memory Data Book For Design Engineers
COMMAND FORMAT SYNTAX

Throughout this manual, formats for the different SDB commands are provided in
abbreviated form as well as in the form of examples. Table 1-1 defines the syntax used in the

abbreviated command formats.

1-7

35-55V

0.1A*
0
0

TABLE 1-1. COMMAND SYNTAX CONVENTIONS

SYMBOL EXPLANATION

<> item to be supplied by the user

{1 Optional item(s) in brackets may be included or excluded at the user's

discretion
f} Choose one of several optional items from the items in brackets
(CR) Carriage return
A Space bar
> Hexadecimal value

CHARACTER CHANGES USING CONTROL H AND CONTROL F KEYS

In communicating with the SDB monitor, errors to keyboard commands can be corrected
before the user enters a carriage return to execute the command. To correct one or more
keystrokes entered, use the CONTROL H key (press the CONTROL key, then the H key)to
backspace to the key entry in error. Then press the correct key entry. if valid key entries were
backed over during this operation, use the CONTROL F (press the CONTROL key, then the F
key) to forward space over correct entries (an alternate method would be to repeat the
keystrokes that were backspaced over).

1-8

SECTION 2
INSTALLATION AND OPERATION

21 GENERAL

This section contains information on installing the TM 990/302 and general operation of the
system. Figure 2-1 is a diagram showing system hookup.

2.2 UNPACKING

Check the carton for any outside breakage. If any is found, report this to your supplier or
carrier. If signing for receipt of carton from a carrier, note any carton breakage on the receipt
paperwork. Remove the TM 990/302 board from its carton and packing. Examine the board for
any discrepancies; if found, report these to your supplier or distributor.

23 INSTALLATION
2.3.1 MINIMUM CONFIGURATION
The minimum system configuration for the TM 990/302 should include the following:
® TM990/302 Software Development Board

e TM 930/100M or TM 990/101M microcomputer, fully populated with RAM
(TMS 4042's on the TM 990/100M, TMS 4045's on the TM 890/101M)

® Card cage (TM 990/510 or TM 990/520 or equivalent)
® Power Supply (TM 990/5618 or equivalent)

) Data terminal such as a:
— Decwriter Il
— Hazeiltine 1500 series
— Lear Siegler ADM-1, ADM-2, or ADM-3
—Soroc1Q 120
— Teletype modei 3320 5JE
— Texas Instruments models 733 KSR* or 743 KSR*

® (Cassette Recorder/Players (two preferred) of the following recommended models:
—General Electric 3-5121B
—Panasonic RQ-413 AS
—~Realistic CTR-40 (Radio Shack)
—~Realistic CTR-41 (Radio Shack)
—Sears 799.21683700
—Sharp RD-610
CAUTION

Operation with models other than those above may yield unreliable
data transfers or cause damage to the TM 990/302 control relay due to
excessive inrush currents. Use of the TM 990/302 with other than the
above tape units voids the factory warranty. Subsection 2.3.7 covers
tape unit checkout.

*Trademark of Texas Instruments Incorporated 2.1

® (Cassette tapes of the following recommended brands:
—Verbatim R300H
—Radio Shack Digital Tape C20-260301
—Texas Instruments Digital Tape 360333-0001

MICROCOMPUTER

‘CABLE WITH
BOARD ﬁ%F%90/518 T™ 990/518A
) POWER SUPPLY POWER SUPPLY

TM 990/302 BOARD

AC LINE
™ 990/508 VOLTAGE
MICROCOMPUTER TO CABLE

TERMINAL CABLE

Figure 2-1. Software Development System Configuration

2-2

232

233

2.3.3.1

CONNECT POWER SUPPLY

Connect the TM 990/518 power supply to the TM 990/5XX card cage as shown in Figure 2-2(a).
Verify correct voltages at the chassis rear panel connections before installing any boards into
the chassis.

Do not connect EPROM programming power unless object is in memory, ready to be
programmed onto the EPROM. There are two alternate ways to attach EPROM programming
power to the TM 990/302 board. Attach the 35V to 55V EPROM power at the power supply
terminal [Figure 2-2(b}] or at connector P2 as follows:

® At the power supply terminai on the TM 990/302 board, attach [Figure 2-2(b)}:
1. TB1-1toground
2. TB1-2to EPROM programming voltage source
3. TB1-3 and TB1-4 are unconnected
® or, at connector P2 on the TM 990/302 board, attach [see Figure 2-2(c)]:
1. Pin 20 to voltage source
2. Pin1,3,5 0or7toground.
NOTE

Disconnect the EPROM power if the EPROM programmer is not going to be used.
CAUTIONS

1. Do not touch the board with EPROM programming voltage
applied.

2. Do not read from cassettes while EPROM voltage is connected
and an EPROM is in the personality card attached to the
TM 890/302.

CHANGE RAM MEMORY MAPPING AND INSTALL SYSTEM PC BOARDS
Memory Mapping Change on Microcomputer Boards

The TM 990/302 Software Development Board software does not utilize the standard memory
adressing on the TM 890/10X microcomputer boards. On these boards, standard memory
configuration has random access memory (RAM) located in the highest memory addresses
while erasable read-only memory (EPROM) begins at addresses 000016. The SDB software
requires an opposite configuration with RAM in lower memory and the EPROM on the
microcomputer board disabled. The SDB system software will be resident in upper memory
on the TM 990/302 board. Figure 2-3 depicts the memory map of the TM 990/302 operating
system using both boards. It is assumed that:

® Both microcomputer boards are fully populated with RAM.
® Onboard RAM on the TM 990/100M is mapped from M.A. 0000 to 03FF1¢.

® Onboard RAM on the TM 990/101M is mapped from M.A. 0000 to OFFF1g.

2-3

016

100016 |

20001¢

E00016

T™ 990/101M

FFFF16

(a) USING TM 990/101M

016

(b)> USING TM 990/100M

TM 990/100M

MICRO— V///y RAM 2//, MICROCOMPUTER
40016
A COMPUTER BOARD
{ BOARD ‘00016 7777777, \
1555/ e 7
200016 Ll L
OFFBOARD OFFBOARD
EXPANSION EXPANSION
MEMORY T™ 990/302 MEMORY T™ 990/302
Z Z >BOARD { Z BOARD
Y 77777777, E00016 I~ 777777777,
EPROM EPROM
EPROM EPROM
/ FFFF1g /

2332

Figure 2-3. Memory Configuration For The Software Development System

Note that the entire onboard EPROM area of both microcomputers is eliminated from the
system memory map. The EPROM area on the TM 990/100M board is disabled by a new
address decode ROM, and the EPROM on the TM 990/101M board is located in upper memory
but not accessed by the system.

Advantages of RAM Memory Expansion

An expanded RAM memory will facilitate better use of the Text Editor and Program Debugger
as well as other software development programs. Program segments assembled by the
Symbolic Assembler will be the same size as without expanded memory; however, a larger
symbol table will be allowed. Expanded memory should begin at address 20001¢. See your
memory expansion board user’s guide for correct switch and jumper settings, and proper
installation into the system card cage.

2.3.3.3 Preparing the TM 990/100M Microcomputer Board

On the TM 990/100M board, a ROM address decoder must be replaced and jumpers set to the
configuration as shipped from the factory except for jumper J11 which is installed for a 20 mA
current loop terminal or disconnected (factory ship configuration) for an RS-232-C terminal;
this is shown in Table 2-1. After verifying jumper placement, replace the ROM in socket U17 of
the TM 990/100M. This new ROM address decoder changes the addressing scheme so that the
microcomputer RAM is in lower memory and microcomputer EPROM is disabled. The new
decode ROM is shipped (unconnected) on the TM 990/302 board, installed in storage socket
XU12. ROM placements are shown in Figure 2-4. Replace the ROM as follows:

® Remove the replacement ROM from socket XU12 on the TM 990/302 board, and
remove the ROM supplied with the TM 990/100M in socket U17; temporarily place
the latter ROM in a convenient location. Note that the new ROM replacement is
marked 2212017 U12” and the ROM to be replaced is marked 991575 U17".

2-5

® Position the replacement ROM in socket U17 of the 990/100M (as indicated by the U
number marked on the ROM). Positioning of ROM pin 1 is as shown in Figure 2-4.

® Carefully press the replacement ROM into the socket on the TM 990/100M board
until the ROM is firmly seated. Visually verify that pins are not bent and that they
make correct contact.

® Place the old ROM in the socket on the TM 990/302 board that held the replacement
ROM (which is now in the TM 990/100M board).

L L e
| : —
A | I | SRS Y N | S g
C— _—]
I I o A | . L]
N O17 I 0
|
]
nEEE
U
NNy =
LU sl
L | L)
J —_—
S~ TM™ 990/100 _J
PROM
IN XU12)

I
x T™ 990/302

PROM EXCHANGE PROCEDURE:

-

- Remove PROM in socket U17 on TM 990/ 100M microcomputer board.

2. Remove PROM in socket XU 12 of TM 990/302 board and insert it into
socket U17 of TM 990/100M board. -

3. Insert PROM removed from U17 of TM 990/100M board into socket

XU 12 of TM 990/302 board for safekeeping.

Figure 2-4. Address ROM Changeout At TM 990/100M Board

26

TABLE 2-1. JUMPER CONNECTIONS ON THE TM 990/100M BOARD

JUMPER PURPOSE SET TO POSITION*

J1 TMS 9901 interrupt P1-18**

J2,J43,J4 EPROM type DC

J5,J6,J8 Multidrop interface DC

J9,J10,J12

J7 EIA/Multidrop select EIA

JN EIA/20 mA Current loop select Instali for 20 mA, Disconnect for EIA**
Cs RESTART Delay Not Installed**

*DC = Don’t care; no change required for use in TM 990/302 configuration.

**Position as shipped at factory.

TABLE 2-2. JUMPER CONNECTIONS ON THE TM 990/101M BOARD

JUMPER PURPOSE SET TO POSITION*
E1-E2/E2-E3 INT4 From TMS 9902 (Local) E1-E2
E4-ES/E5-E6 INT5 From TMS 9902 (Remote) E4-E5
E7/E8/E8-E53 Wait State For Onboard EPROM DC
E9-E10/E10-E11 TMS 2708/TMS 2716 Memory Mapping DC
E12-E13/E13-E14 . Enable/Disable Onboard EPROM E12-E13**
E15-E16/E16-E17 RAM/EPROM Mapping E15-E16**
E18-E19 Pin 1 Of P3 Connected To Ground DC
E20-E21 Microterminal Power +5V DC
E22-E23 Microterminal Power + 12V DC
E24-E25 Microterminal Power —12V DC
E27-E28/E29-E30 EPROM is TMS 2708 DC
E26-E27/E28-E29 EPROM Is TMS 2716 DC
E32-E33/E34-E35 Expansion EPROM Is TMS 2708 DC
E31-E32/E33-E34 Expansion EPROM Is TMS 2716 DC
E36-E37 Teletype Terminal at P2 (E36-E37 f TTY Required)
E38-E39 Muitidrop At Local Port DC
E39-E40 EIAOr TTY At P2 E39-E40**
E54-E55 Port P3 EIA Compatible E54-E55**
ES5-E56 Port P3 Modem Compatible Not Installed
C25 RESTART Delay Not Installed**

*DC = Don’t Care; no changes required for use in TM 990/302 configuration.

**Position as shipped at factory.

TABLE 2-3. JUMPER CONNECTIONS ON THE TM 990/302 BOARD

JUMPER PURPOSE SET TO POSITION
E1-E2 Causes Wait State In Access Of Slow Memories* E1-E2**
E2-E3 Does Not Cause Wait State Not installed**
E4-E5 Load Function Enabled (Load Vectors in Upper Memory) Eq-E5**
E5-E6 Load Function Disabied Not Installed**

*Wait state requirement depends on variables listed in Table 2-4.
**Position as shipped at factory.

TABLE 24. WAIT STATES REQUIRED FOR MEMORY SPEED AND SYSTEM CLOCK*

MEMORY ACCESS (ns) 3MHz 4 MHz
450 Wait " Wait
300 No Wait) Wait
200 No Wait No Wait

*Jumper E2 — E1 = wait, E2 - E3= nowait

2.3.3.4 Preparing The TM 990/101M Microcomputer Board

2335

2336

On the TM 990/101M board, a new decode ROM is not necessary because the memory decode
changes (RAM in lower memory, onboard EPROM disabled) are caused by jumper changes
(Table 2-2). On the TM 990/101M, insert jumper E12-E13 to disable onboard EPROM (TIBUG is
not used)}, and insert jumper E15-E16 to reposition RAM/EPROM addressing so that RAMis in
lower memory and EPROM is in upper memory. If a teletypewriter is attached to port P2, insert
a jumper at E36-E37. All other jumpers are as installed at the factory, indicated in Table 2-2.

Install The Microcomputer Board Into the Card Cage

Verify that power is not applied to the card cage. Install the microcomputer board into the
chassis.

Set Up And install TM 990/302 Board
Memory mapping of the TM 990/302 board can be changed by settings of S1, a four position
DIP switch, and a solderabie jumper socket on the TM 990/302 board. For most applications,
the memory mapping will be for EPROM on the TM 990/302 containing system software, with
a memory map as shown in Figure 2-3. For this configuration, switch S1 and the two jumpers
should be as shipped from the factory:

® Switch S1: all four switches set to ON.

® Jumper sockets: E1-E2 and E4-E5 as shown in Tables 2-3 and 2-4.

With settings as desired, install the TM 990/302 board into the card cage.

2-8

234 ATTACH TERMINAL, RUN PRELIMINARY SYSTEM CHECK

235

Connect a cable from the data terminal to connector P2 of the microcomputer as shown in
Figure 2-5. Terminal cable numbers are listed In Table 2-5. Appendices A and B describe
cabling for Texas Instruments Model 733/745 and TTY Model 3320/5JE data terminal. At this
point, the system configuration can be checked. Apply power to the card cage backplane and
data terminal.

CAUTION

Before applying power, check that voltages at the power supply are as
specified in paragraph 1.5 and are connected as shown in Figure 2-2.

With power applied, check system operation at this point using the following procedure:

(1) Actuate the RESET switch on the microcomputer (right side facing the card cage).

(2) Press the CR (carriage return) key at the system terminal.

(3) The terminal should respond with a period (.) and a bell indicating at this point the
Software Development Board monitor is executing and the system is correctly
connected.

If the system monitor does not respond, recheck cabling, jumper connections, and ROM
placement (e.g., correct pin positioning), then restart the system by reexecuting steps (1) to (3)
above. When the system monitor executes, indicated by a period (.) on the terminal, do not

proceed further, but remove power and proceed to the installation of tape recorders, which
follows.

TABLE 2-56. AVAILABLE TERMINAL — MICROCOMPUTER CABLES

CABLE NUMBER CONNECTS
TM 990/501 Connector Kit For Custom Wiring
TM 990/502 RS-232-C Terminal
TM 990/503 Texas Instruments 743/745 Terminal
TM 990/504 Model 33 ASR Teletypewriter Modified For 20 mA Current Loop
TM 990/505 Texas Instruments 733 ASR Terminal

CONNECT THE TAPE RECORDERS TO THE TM 990/302

Figure 2-5 shows the connections between the audio tape recorder/players and the TM 990/
302 board. Although the system can be operated with one recorder, a system operates
optimally with two tape recorders. Connect the tape recorders as follows:

(1) Tape recorders operate in either a playback or record mode. The TM 990/508 cable
joins the TM 990/302 board (connector P2, right side viewed from card cage front) to
one or two recorders. At the recorder(s), attach the four labeled leads of the
TM 990/508 cable (T1 to T4) as follows:

29

T™ 990/510/520

CARD CAGE
SEE TABLE 25
— I
T™ 990/10X
MICROCOMPUTER / TERMINAL 2
P2 P3 P4 / (TM 990/101 ONLY)

T™ 990/302) N
P2 .

P3

PERSONALITY CARD E

R
i
T™ 990/508 CABLE —___
TERMINAL 1
WR DATA
j RD DATA
\ / .
7 .
/ \
J—

WR MOTOR
RD MOTOR
—
READ

CASSETTE\

AUX/LINE IN MONITOR/EAR \
O o/ \ O O\
- /' REM REM \"\

WRITE
CASSETTE

Figure 2-5. System Cabling Between Boards And Peripherals

a. Atthe record cassette unit, attach TM 990/508 leads as follows:

® lLead marked “WR MOTOR” to the motor control jack
(REMOTE) of the record unit.

® Lead marked “WR DATA"” to the auxiliary input jack (AUX) of
the record unit.

b. Atthe playback cassette unit, attach TM 990/508 leads as follows:

® Lead marked “RD MOTOR” to the motor control jack
(REMOTE) of the playback unit.

® Lead marked “RD DATA" to the earphone output jack (EAR or
MONITOR) of the playback unit.

NOTE

A schematic of the TM 990/508 cabile is provided in Appendix .

2-10

(2) Attach the femaie connector of the TM 990/508 cable to edge connector P2 on the
right side (facing card chassis) of the TM 990/302.

CAUTIONS

1. The TM 990/508 cable is keyed to fit only on
connector P2 of the TM 990/302 board. If an
unkeyed connector is used, verify that the audio
cassette cable is connected only to P2 of the
TM 990/302 board and not mistakenly to the
microcomputer board. Damage can occur if
mistakenly connected. -

2. Do not operate the tape recorders on battery
power as this could cause varying motor speeds
in recording and playback, resulting in erroneous
data.

3. Do notread data from cassettes while an EPROM
is inserted in the personality card attached to the
TM 990/302. This could mistakenly program bits
on the EPROM.

(3) Insert high-quality tapes into the recorder/players. Rewind the cassettes.
NOTES

1. Texas Instruments cannot guarantee system per-
formance when using substandard tapes. Use
only the highest quality tapes to ensure proper

performance. Paragraph 2.3.1 contains recom-
mended tapes.

2. If a digital cassette tape is used, avoid recording
in the area of tape with the beginning-of-tape
hole.

(4) Turn on the tape recorder/players.

(5) Setthe tape machine controls as follows:
® volume control to between 50 to 70 percent full volume.
® tone control to between 80 to 100 percent treble.

The correct settings will be indicated by illumination of the sensing LED on some
tape machines during data transfer.

CAUTION
Do not change the volume or tone control during

a read or write operation; this will probably result
in transmission of erroneous data.

2-11

24

PHYSICAL DEVICE NUMBERS (DEVNOS)

The 302 SDB monitor anticipates that external physical devices are connected to the system at
prescribed locations (system connections shown in Figure 2-1). These device locations are
shown in Table 2-6.

Physical device numbers (DEVNO's) are used to describe to the system software the
following:

® what physical devices (e.g., terminal, cassette recorder/player, etc.) are connected
to the system

® the reserved use for each physical device.

Before the system calls up any software development program, it must be given the system
configuration. This is accomplished with DEVNO'’s during the program call. DEVNO's actually
indicate if specified physical devices are connected to predetermined I/0 conectors on the
microcomputer and SDB board. These physical devices are listed in Table 2-6 along with
which connector to which these devices must be connected. Table 2-7 lists each DEVNO and
its corresponding connector and physical device.

DEVNO'’s are provided to the system when the particular SDB program is called up as in
paragrah 2.6.

TABLE 2-6. DEVICE LOCATIONS/CONNECTIONS IN SYSTEM

DEVICE CONNECTION . DEVNO

System Terminal Connected to connector P2 of the microcomputer 1

Cassette Player Motor controlled through plug marked RD MOTOR of the /508 cable 2
Cassette Player Motor controlled through plug marked WR MOTOR of the /508 cable 3

Auxiliary Terminal Connected to P3 of microcomputer board (TM 990/101M only) 4

{connected to P3 of the /302 board)

{connected to the /302 board)

TABLE 2-7. DEVNO DESCRIPTION

DESCRIPTION

0 Dummy. Used when DEVNO number is required but device is not present or not required.
1 System log (terminal) connected to P2 of microcomputer board.

2 Cassette unit with motor control attached to RD MOTOR plug of /508 cable connected to P2 on /302
. board. RD DATA plug is not affected; it must be inserted in EAR or MONITOR jack.

3 Cassette unit with motor control attached to WR MOTOR plug of /508 cable connected to P2 on /302
board. WR DATA plug is not affected; it must be inserted in AUX or LINE IN jack.

4 Auxiliary terminal optionally connected to P3 of TM 990/101M board {this microcomputer board
only).

2-12

25 SYSTEMINITIALIZATION AND MONITOR CALL

With the system properly installed and connected, the SDB monitor can be entered after
power is applied by (1) actuating the RESET switch (right side of microcomputer board when
facing chassis) and (2) pressing the CR (carriage return) key on the system terminal. The
system should respond with a period (.) and a bell on the system terminal.

NOTE

The EIA interface data format is fixed for 1 start bit, 2 stop bits, even
parity and 7 data bits. The baud rate is set up by software detecting the
bit width of the ASCII carriage return that user will type in after power
up. The available baud rates are: 110, 300, 1200, 2400, 4800, 9600 and

19,200 Hz.

26 CALLING SDB PROGRAM

Call the desired SDB program by responding with one of the following mnemonics to the SDB
monitor prompt (a period). The call is completed with a carriage return:

Mnemonic SDS Program
TE Text Editor (Section 3)
SA Symbolic Assembler (Section 4)

RL Relocating Loader (Section 5)
DP Debugging Package (Section 6)
EP EPROM Programmer (Section 7)
DM Dump Memory (Section 8)
SR 2nd EIA Baud Rate (Section 9)
UL Uplink (Section 11)

Examples:

JEO,2 Initial input of source program to Text Editor from keyboard; output
source to cassette unit with motor controlled by RD MOTOR plug and
data sent via WR DATA plug.

.TE2,3 Call Text Editor, read source from playback cassette (DEVNO 2);
output edited source to record cassette (DEVNO 3)

SA23.1 Call Symbolic Assembler, read source from playback cassette (DEVNO
2), write abject to record cassette (DEVNO 3), print listing on system
terminal (DEVNOQO 1)

SA234 Call Symbolic Assembiler, read source from playback cassette; write
obiject to record cassette, and print listing on terminal at auxiliary port
of TM 990/101M (DEVNO 4)

TE240r Read source from either cassette and print on the terminal at the

.TE34 auxiliary port of the TM 990/101M (DEVNO 4). DEVNO 4 should

operate at 2400 baud or less and be able to understand tab characters.
A Q" command is the only command given under the Text Editor (no
editing is attempted).

213

2.7

271

27.2

RECORDER/PLAYER PROTOCAL

The SDB software does not perform tape rewind operation; thus the user is responsible for
rewinding the tape before a read or write operation, and also for loading the tape to the area of
magnetic oxide before a write.

In a read operation, the software looks for a header which is an area of tape containing code
identifying the start of data. Data following the header code is considered to be valid recorded
data.

Before writing on the tapes, the tapes must be rewound to the clear leader, then brought
forward over the magnetic oxide area, erasing the magnetic oxide area of any possible header

coding from previous write operations. The write operation begins with writing the header for
the to-be-recorded data.

Before a read operation, rewind the tape to the clear leader. Software will find the start of valid
data by reading the clear leader and magnetic oxide areas (erased) until the header is read; the
data following the header is considered valid data.

Note that before tape can be moved using the recorder/player keys, the plug to the motor
control jack (REMOTE) must be removed.

SETTING UP FOR A WRITE OPERATION (TWO-CASSETTE OPERATION)
The following assumes a two-cassette operation using the TM 990/508 cable.

(1) Unplug the WR MOTOR plug from the record unit (REMOTE jack).

(2) Rewind the cassette to clear leader.

(3) With the RD DATA plug installed (microphone disabled), press the RECORD key to
advance tape into magnetic oxide area; this also erases the tape. Positioning at
magnetic oxide area can be ascertained by timing the run of tape or by viewing tape
through the clear window of the cassette case until the magnetic oxide area

appears.

(4) Reinsert the WR MOTOR plug (into REMOTE jack) to stop the tape (RECORD key
remains depressed).

The recorder is now ready for a software command to write to the recorder.
SETTING UP FOR A READ OPERATION (TWO-CASSETTE OPERATION)

This assumes that clear leader and erased tape precede the data header and that TM 990/508
cable is used.

(1) Plugthe RD DATA plug into the MONITOR/EAR jack.
(2) Unplug the RD MOTOR plug from the playback unit (REMOTE jack).
(3) Rewind tape to clear leader.

(4) Reinsert the RD MOTOR plug into the playback unit (REMOTE jack).

2-14

273

(5) Depress the PLAYBACK key at the playback unit.
The playback unit is now ready for a software command to read data from its cassette.

ONE-CASSETTE OPERATION

In a one cassette operation, the same DEVNO should be used for the read cassette as well as
for the write cassette (with the assembler, DEVNOs must be the same). This allows the use of
one motor control plug for both operations (as explained in Tables 2-6 and 2-7, DEVNO’s 2 and
3 refer to the motor control plug). For instance, in a text edit call, DEVNO 2 can be specified as
both the source input and the edited source output device, meaning that source records will be
read in from a recorder/player and edited records will be written to the same device. The
following call will be used: .

TE2,2
In this situation, when changing from a read operation to a write operation (or vice versa), the

RD MOTOR plug will be used for both operations (if DEVNO 3 was specified, the WR MOTOR
plug would be used for both operations).

- Both data plugs can be left plugged into the unit at the same time.

® To be able to read data, plug the RD DATA plug in the EAR or MONITOR Jack
e To be able to write data, plug the WR DATA plug into the AUX or LINE IN jack

For example, a text edit operation requires reading source from cassette, then writing edited
source back to the same tape. Using DEVNO 2 for both motor controls, set up as follows:

® Rewind cassette to clear leader.

® Plug WR DATA into the AUX/LINE IN/MIC jack of cassette player.
® Plug RD DATA plug into EAR or MONITOR jack of cassette player.
® Plug RD MOTOR plug into REM jack of cassette player.

® Press PLAYBACK key on cassette player.

On command, software will read in the source lines. After editing, set up as follows to write out
the edited source statements:

® Press the STOP key on the cassette player.
® Unplug the RD MOTOR plug from the cassette player.

® Rewind the cassette tape.

2-15

With the WR DATA plug into the cassette recorder (this disengages any microphone
but allows the erase mechanism to function when tape is moved), press the
RECORD key(s) at the cassette recorder. Verify that the magnetic oxide area of the
tape is brought past the record head. The erase function of the recorder will ensure
that previous header data will be erased, preventing mistakes during later read
operations.

When the tape is properly located, insert the RD MOTOR plug into the REM jack of
the cassette recorder; this will stop the tape movement leaving the cassette recor-
der ready to accept data via the text editor software.

After writing the edited source on tape, the user can read in the edited source lines. Set up as
follows(note WR DATA and RD DATA plugs are still inserted):

Press the STOP key at the recorder.
Unplug the RD MOTOR plug.

Rewind the tape to clear leader.

insert the RD MOTOR into the REM jack.

Press down the PLAYBACK key on the cassette player.

When commanded by software, the data on cassette will be read.

CAUTION
In one-cassette operation, it is sometimes necessary to change
cassettes without rewir'gding them. Exercise care to prevent any
movement of the tape within the cassette while the cassette is outside
the recorder/player; movement of the tape can result in loss of data.

2-16

3.1

3.2

33

SECTION 3
TEXT EDITOR

GENERAL

The TM 990/302 Text Editor provides a means for initially generating source-program state-
ments, storing them on cassette, and then later editing changes into these source statements.
Interactive communication from the terminal allows the user to (1) generate a new source-
statement file or (2) edit a previously generated source-statement file contained on cassette. In
either mode, the source statements can be edited as required, then written to cassette for
assembly by the assembler.

As an aid in using this manual, a single program that can be loaded and executed by the reader
on the TM 990/302 will be used to explain the system software. This program will cause the
LED on the TM 990/302 board to blink {shown in Figure 1-1). The writing of this program
begins in this section, in its inception as source statements. Later we will follow along this
theme in assembling, loading, and executing the program.

Text Editor comands are as follows:
® G command: Get source lines from source DEVNO device (paragraph 3.5.1)
® P Command: Print source line(s) on system terminal (paragraph 3.5.2)
o | Insert source line(s) within text command (paragraph 3.5.3)
® Delete source line(s) from text command (paragraph 3.5.4)

.® R command: Resequence line numbers using specified increment (default incre-
ments are 10: e.g., 010, 020, 030, etc.; paragraph 3.5.5)

o K Command: Keep line(s) in memory; write these to the destination DEVNQ device
and input source lines from the source device {paragraph 3.5.6)

® (Q command: Quit Text Editor mode, write remaining source lines in memory and
exit from Text Editor and reenter monitor (paragraph 3.5.7).

SYSTEM CONFIGURATION

Minimum configuration includes a system terminal, the TM 990/302 board, a microcomputer
board, and one cassette player/recorder. One cassette can be used in a dual role: container of
the source statements to be input and edited, and storage for the edited source statements.
The optimum system configuration includes two audio cassettes, one for the source cassette
{containing source statements to be edited) and one for the destination cassette (to receive
editd source code)}. See Section 2 for detailed data on system configuration.

CONSIDERATIONS
® The maximum program size which can be loaded into memory is limited by

memory space. Program segment size is determined by the number of characters
written to the destination DEVNO device during a K {Keep) or Q (Quit) command.

31

34

3.4.1

342

3421

® Memory space can be economized by judicious use of (1) comments following
source statements and (2) space between source statement fields. The latter is
facilitated by the horizontal tab feature of the Text Editor (paragraph 3.4.2).

® Theonly exit back to the monitor is through the Quit command. The ESC key will not
exit to the monitor.

TEXT EDITOR CALL AND SPECIAL KEY FUNCTIONS

TEXT EDITOR CALL
To call the Text Editor, respond to the monitor prompt with the following {see paragraph 1.7):

TEA<DEVNO > {A} <DEVNO> <(CR)>

DEVNG® containing source to be edited i DEVNO that receives edited source

f

When source lines will not be brought in from cassette but will be initially input from the
keyboard (i.e., a Get command is not heeded), the input DEVNO is 0 (zero for dummy).

Examples:

.JTE23 Input source lines from RD MOTOR cassette; write edited source to WR
MOTOR cassette.

.TEOQ,2 For input of source from keyboard; note that DEVNO 0 is used for keyboard
input which also disables get command; output edited source to RD MOTOR
cassette.

.TE2,2 Use one cassette (RD MOTOR cassette); input entire program segments from
this cassette; output edited segments back to this cassette.

.TE24 input from RD MOTOR cassette; write output to terminal connected to P3 of
TM 990/101M.

When initialized, the Text Editor will issue a question mark (?) prompt asking for user input of
Text Editor commands, explained in subsection 3.5.

TJTE23

? - Prompt for Text Editor command

SPECIAL KEY FUNCTIONS

Use Tab Function To Space Between Source Fields (Control)

To tab between the label, opcode mnemonic, operand, and comment fields of the source
statements, press the | key while the control (CTRL) key is pressed. This will automatically
place the required spacing between source fields when later printed as a source listing or by
the print command; however, initially the tab will create a single space. This function
economizes memory space.

3-2

3.4.2.2 Use CONTROLH gnd F Commands To Correct Characters

35

351

To correct a character already input on a line, press the H key while the CONTROL (CTRL) key is
pressed. For each CONTROL H entered, the printing mechanism will backspace one character.
When at the character to be changed, insert the correct character. To return to the end of the
line, use the CONTROL F command (press the F key while the CONTROL key is pressed). For
each CONTROL F entered, the printing mechanism will move forward one character. Instead
of using the CONTROL F function, the user can retype the characters that were backed over.

COMMANDS

All commands are comprised of one character with no, one, or two arguments. All are
terminated by a carriage return.

GET SOURCE LINES COMMAND (G)

This command brings one program segment of previously edited source lines into memory
from the input device designated in the Text Editor call and then prints the number of the last
line brought into memory. Once in memory, the source lines can be edited using the other
Text Editor commands. The bounds of one program segment are set by the Text Editor Keep
(K) or Quit (Q) command; each command writes one program segment to the source line
output device. Before reading in source lines in a one-cassette operation, itissues a prompt to
the user asking if the cassette is ready to be read from. In a two-cassette operation, prompts
are not issued and the command executes after the carriage return. Format (see paragraph

1.7):

?G <(CR)>
Example:

G

**SWAP TAPES
Prompts issued in singie-cassette operation only
**HIT ‘'CR'TO GO —

900 -«—————Number of last statement brought into memory
? -<«——————When program segment read, prompt issued
NOTE

Source lines can be inserted from the keyboard
into the memory buffer before bringing in source
lines from the cassette with the Get command.
When this is the case, the first line number on the
cassette must be a higher number than the
highest line number inserted from the keyboard.
Keyboard insertion is explained in paragraph
3.5.3. Errors are explained in paragraph 3.6.

33

35.2 PRINT SOURCE LINES COMMAND (P)

This command causes designated source lines to be printed on the system terminal. A
four-digit source line number, printed to the left of each line is used to uniquely reference each
line. The command consists of the mnemonic P followed by either no, one, or two numbers
{line numbers in decimal) and a carriage return. A no-number command will print out the first
line in the buffer. A one-number command will print out the line specified. A two-number
command will print the lines from the first line number to the second line number; the first line
number must be a smaller number than the second line number. if the first line number is not
specified (i.e., a space entered), its default value will be the first line number in the buffer.
Printing of lines can be stopped/started by depressing the terminal space bar.

7P [Source Line]{',‘}[Last Source Line]<(CR)>

¥ optional last line of multiline print

First {or only) line number

Examples:
(1) ?P = Finish with carriage return
100 IDT ‘BLINK’ <Fjrst line in memory buffer
? - v Return to command scanner
(2) ?P100 ‘ Print source line 100
100 IDT ‘BLINK’
?
{3) ?P100,140 Print source lines 100 to 140
100 10T ‘BLINK’
110 BEGN LWPI >1000 WP ADDR
120 LI R12,>1706 LED CRU ADDR
130 STRT MOV R1,R1 R1ALL ZEROES?
140 JEQ ON YES, LIGHT LED
? - . Prompt for next command

3.5.3 INSERT SOURCE LINES COMMAND
This command is used to input source lines from the terminal:
® asinitial source-line inputs (first input of progfam source code)

® between or following existing source lines

34

® in place of existing source lines (replace existing lines)

Lines are inserted by specifying the line number then following this with the source statement
to be inserted. In this manner, the user can designate his own line numbering system. It is
suggested that lines be in increments, with the increment value sufficient to allow later
insertion of lines without renumbering the existing lines. For example, an increment of ten
{lines 100, 110, 120, etc.) would allow later inserting lines 101 to 109, 111 to 119, etc. Note that
line numbers will also be the source statement number in the assembly listing.

Source line format is the same as will be displayed in the source listing (from left to right: iabel
field, opcode field, operand field, comment field), with each field separated by at least one
space. When inserting source lines, the line number precedes the source statement. The labe!
field begins foliowing this line number or following this line number and a single space. The
mnemonic field begins two spaces foliowing the line number (if no label) or one space
foltowing the label.

NOTE

it is recommended that all spaces between fields
be inserted with the CONTROL | tab function with
the label field beginning immediately after the
line number. The CONTROL | tab function en-
sures that all fields be aligned in a source listing
or line printing. When inserted, tabs appear
merely as a single space. See paragraph 3.4.2.1.

Figure 3-1 shows the format for inserting a source line. It follows the general source listing
format shown in Figure 4-4 {Section 4)

J[————~——-—— source statement fields

7XXXX "LABEL OPCODE OPERAND COMMENTS' <«———finish with carriage return

A \ \ \
each field separated by at least 1 space
\ or CONTROL 1 tab, no spaces in fields
opcode begins 2 spaces or a CONTROL 1 tab

\ﬁne number (1 to 4 digits)

after line number

one or no space between line number and label field

Text Editor command prompt

Figure 3-1. Source Statement Fields

35

3.5.3.1 Initial Source Input

When used for initial input of source statements (generated from keyboard, not read in from
cassette), the Text Editor is the first software development program called. In this case, merely
call the Text Editor, specifying DEVNO 0 (zero) for source input and DEVNO 2 or 3 for source
output, then use the insert line process.

CAUTION
If DEVNQ 0 is not used for source input, an end-of-
file will not be written by the Quit command and

inserted source lines will be lost.

To begin lines at line number 100, enter the number 100 followed by the source statement. For
example:

two spaces or one CONTROL | indicate first entry is opcode

)

2100 IDT ‘BLINK’
?110 BEGN LWPI > 1000 WP ADDR
? one or no space indicates first entry is label

Note that the question mark prompt from the Text Editor command scanner appears after
each line insertion. At this command level, either additional lines can be inserted or any of the
other Text Editor commands can be executed.

3.5.3.2 Examples

(1) Compose initial source statements at terminal. The Text Editor would be the first
software program called, and data would be written to the cassette recorder player
with the RD MOTOR plug of the TM 990/508 cable plugged into the motor control
jack of the cassette recorder.

.TEOQ, 2

2100 IDT ‘BLINK’

?2110BEGN LWPI > 1000 WP ADDR
2120 U R12,>1706 LEDCRUADDR
7130 SBO 0 TURNONLED

2140 END
?

(2) Add further code between lines. In this case, a timing mechanism to measure a half
second. '

7132 LI R2,50000 SET DELAY COUNTER
?134LOOP DEC R2 |SR2ZERO?

7136 JUNE LOOP NO, DECREMENT AGAIN
?

3-6

(3)

(4)

(5)

(6)

A printing of the program so far would show the following:

?P100,140

100
110
120
130
132
134
136

140
?

BEGN

LOOP

IDT
LWPI
U
SBO
LI
DEC
JNE
END

‘BLINK’
>1000
R12,:-1706
0

R2,50000
R2

LOOP

WP ADDR

LED CRU ADDR
TURNON LED

SET DELAY COUNTER

IS R2 ZERO?

NO, DECREMENT AGAIN

Now it is desired to add some control statements for turning off and LED as well as

for turning it on. Insert the following after line 120:

?121STRT MOV R1,R1
?122 JEQ ON YES, LIGHTLED
2123 JMP OFF NO, TURN OFF LED
?1240N SBO 0 TURNONLED

7125 SETO R1

R1ALL ZEROES?

SET ON/OFF FLAG

72126 JMP RUN GO TO TIMER
?1270FF SBZ 0 TURN OFFLED
7128 CLR R1

?

RESET FLAG

A printout of the program would now look like:

?P100,140

100

110 .

120
121
122
123
124
125
126
127
128
130
132
134
136
140

BEGN

STRT

ON

OFF

LOOP

IDT
LWPI
LI
Mov
JEQ
JMP
SBO
SETO
JMP
S8z
CLR
SBO
LI
DEC
JNE
END

‘BLINK’
>1000
R12,>-1706
R1,R1
ON

OFF

0

R1

RUN

0

R1

0
R2,50000
R2

LOOP

WP ADDR

LED CRU ADDRESS
R1 ALL ZEROES?

YES, LIGHT LED

NO, TURN OFF LED
TURN ON LED

SET ON/OFF FLAG
GO TO TIMER

TURN OFF LED
RESET FLAG

TURN ON LED

SET DELAY COUNTER
IS R2 ZERO?

NO, DECREMENT AGAIN

The timing required for the decrementing timer can now be checked for a correct
value. Since the two instructions at lines 0134 and 0136 require a total of 24 clock
and memory cycles (at 333 ns each), a half-second blink would take approximately
62,500 loops through those two instructions. This will require a change in the

37

(7)

(8)

(9)

(10)

(11

(12)

loop-count value at line 0132. To change, merely insert over the old line 0132.

2132 Ll R2,62500 SET DELAY COUNTER
?

A printout of line 0132 shows the change was made.

?P132

132 Lt R2,63500 SET DELAY COUNTER
?

A check of the printout shows that register numbers were preceded by the letter R;
however, this has not been set up so that the assembler will recognize these
alphanumeric register symbols (it automatncally recognizes the number only).

-Refer to appendix F2.5.

An AORG assembler directive is necessary to designate program location when
loading object into memory (Symbolic Assembler object is absolute, not re-
locatable). This directive should be added at the beginning of the source code.

2101 AORG >1040 -
?

At the end of the decrement loop at lines 134 and 136, there is a need for some
means to repeat the entire sequence with the LED in the opposite mode (lit or
extinguished). Thus, there is a need to jump back to the start of the program
reentering it where the R1 flag is checked.

7138 JMP STRT RESTART PROGRAM
? ,

To have the program ready to execute as soon as it is ioaded by the Relocating
Loader, a program entry label can be specified in the operand field of the END
assembler directive. The program entry label identifies the start of program execu-
tion. This address is placed in the Program Counter by the Relocating Loader so that
the program can be executed by the.EX command of the Program Debugger. Note
that by inserting over an existing line, the new line replaces the old.

7140 END BEGN

?
Finally, a printout of the program as it is constructed so far:
?P100,140
100 IDT ‘BLINK’
101 AORG >1040

38

354

105 DREG

110 BEGN LWPI >1000 WP ADDR

120 Ll R12,>1706 LED CRU ADDR

121 STRT MoV R1,R1 R1 ALL ZEROES?

122 JEQ ON YES, LIGHT LED

123 JMP OFF NO, TURN OFF LED
124 ON SBO 0 TURN ON LED

125 SETO R1 SET ON/OFF FLAG
126 JMP RUN GO TO TIMER

127 OFF sSBZ 0 TURN OFF LED

128 CLR R1 RESET FLAG

130 SBO 0 TURN ON LED

132 LI R2,62500 SET DELAY COUNTER
134 LOOP DEC R2 IS R2 ZERO?

136 JNE LOOP NO, DECREMENT AGAIN
138 JMP STRT .RESTART PROGRAM

140 END BEGN

DELETE SOURCE LINES COMMAND

This command deletes source lines one line at a time. When the line(s) are deleted, source line
numbers following the deleted lines remain the same until renumbered by the resequence (R)
command used with the Keep and Quit commands. A carriage return completes the
command.

The format is similar to the insert lines process. In response to the question mark of the Text
Editor command scanner, specify the line number to be deleted, and follow this with a carriage
return. An erroneous line number can be deleted by retyping the line preceding the line to be
deleted and inserting a plus (+) sign after the number of the retyped line (e.g., 220+).

Format (see paragraph 1.7):
? <line number> <{CR)>
Examplés:
(1) Inour BLINK programming exémple, notice that line 130 should be delefed and that
the next line, 132, needs to be changed in order to show the beginning of the

counter; thus lines 130 and 132 can be deleted and substituted with a correct line
132. (Note that this can also be caused by deleting one line and inserting over the

other.)
7130 <4—o——— . Delete line 130, finish with a CR
7132 <+————— Delete line 132, finish with a CR
?7P128,134 «——————— Print from line 128to0 134
128 CLR R1 RESET FLAG Lines 130 and
134 LOOP DEC R2 IS R2 ZERO? 132 deleted
2130 RUN LI R2,62500 SET DELAY COUNTER new line
? - control back to command scanner

39

(2) Lines 0122 and 0123 of the program can be replaced with a single instruction.

2122 JNEOFF NO TURN OFF LED «— Repiace line 122 with new line
2123 = Delete line 123
? - Return to command scanner

(3) Finally, a printout of the program as it is constructed so far:

?P100,140

100 DT ‘BLINK’

101 V AORG >1040

105 DREG

110 BEGN LWPI >1000 WP ADDR

120 L R12,>1706 LED CRU ADDR

121 STRT MOV R1,R1 R1ALL ZEROES?

122 JNE OFF NO, TURN OFF LED
124 ON SBO 0 TURN ON LED

125 SETO R1 SET ON/OFF FLAG
126 JMP RUN GO TO TIMER

127 OFF SBZ 0 TURN OFF LED

128 CLR R1 RESET FLAG

130 RUN Lt R2,62500 SET DELAY COUNTER
134 LOOP DEC R2 IS R2 ZERO?

136 JNE LOOP NO, DECREMENT AGAIN
138 JMP STRT RESTART PROGRAM
140 END BEGN

?

3.5.5 RESEQUENCE LINES BEGINNING AT NEW VALUE (R)

This command begins line numbering at a specified decimal value and renumbers all lines
beginning at that value, incrementing each line by ten. This command has a practical appli-
cation where a series of line inserts and deletes has widely changed line numbering or has
filled up the numbers between lines so that insertion by line number is not possible. Re-
numbering of lines takes place during a Keep or Quit command when lines are written to the
ouput buffer. The increment value of ten cannot be changed. A line number can be from 1 to
9999 with numbers from 1 to 8999 incremented by ten and numbers from 9000 to 9999
incremented by one. If a program is large enough to have a line number greater than 9999, the
transfer to tape operation is halted, an end-of-file is written to the output cassette, and the Text
Editor is exited with an ERROR 32 message output (errors are explained in paragraph 3.6).
Data following line 9999 will be lost.

Format (see paragraph 1.7):
?R<first line number in decimal>

\——— must be less than 900019

For example, if a program has line numbers 112, 113, 115,119, 120, 121, 127, and 130, and the
following is executed:

?R255

the program (after a Keep or Quit) will have line numbers of 255, 265, 275, 285, 295, 305, 315,
and 325. ’

3-10

35.6

35.7

CAUTION

Do not follow the Resequence command with a
Quit command, else only the first program seg-

. ment will be written to cassette. Instead, use the
Keep command to record each segment, then use
the Q command to write the EOF.

KEEP (SAVE) EDITED SOURCE LINES COMMAND (K)

This command writes the source lines in the memory edit buffer to the output DEVNO device
(specified in the call for the Text Editor). The Text Edito~ retains program control (unlike the
Quit command which transfers control to the monitor). The block of lines will be stored on the
output device as a source segment, the entity that will be brought in later as a block by the Get
source lines command (paragraph 3.5.1). The Keep command is terminated with a carriage
return; after which a prompt is printed reminding the user that the correct tape should be on
the write cassette. The software will wait until a carriage return is entered, indicating that the
cassette recorder is ready. If a number is returned after Keep command execution, this is the
first line now in the memory edit buffer. If no number is printed, the memory edit buffer is

empty.

Format (prompt issued only for one-cassette operation):

?<(CR)>
Example:
7K
**SWAP TAPES Prompt: when tape is ready,
**HIT ‘CAR’' TO GO— answer with carriage return
1010 = First line in buffer following Keep
? - Return to Text Editor command scanner

NOTE

Make sure that the cassette unit is correctly
connected, powered up, and ready for operation
before executing the Keep command.

QUIT TEXT EDITING COMMAND (Q)

This command is the only exit from the Text Editor program to the monitor. The Quit
command is similar to the Keep command (paragraph 3.5.6); however, the Quit command
performs the following additional functions:

® if initial input of source lines (DEVNO 0 designated at editor call as input device;
thus no input from cassette), the Quit command writes an end-of-file mark to
cassette after the memory edit buffer contents are written to the output cassette
(does not attempt to read input device).

e ifinputis broughtin from cassette (not initial input), the Quit command reads in the
remaining input-device program contents up to the end-of-file mark (written there
by a previous Quit command) and writes these to the output device so that all
program contents are on the output device.

® the Quit command returns control to the monitor.

After the Quit command is executed, it should be assumed that the memory buffer is empty of
useable data.

Format (see paragraph 1.7):

?7Q <(CR)>
. - control returns to SDB monitor (period printed)

CAUTION

The end-of-file mark is used by the Text Editor to
terminate its casette read operation and return
control to the Text Editor command scanner. If an
end-of-file mark is not found, control will not be
passed to the Text Editor editing commands;
thus, it is imperative to use the Quit command to
terminate program editing.

36 ERROR CODES FOR TEXT EDITOR
36.1 **ERROR21
e Commands:G,K,Q

® Meaning: Error in transmission of source statements from cassette to memory
buffer; could be a checksum error or error in data communications format.

® Recovery Procedure: The program segment with the error is lost and will not be
written to cassette with a Keep or Quit command. A Quit command will write the
remaining program segments to the output cassette; then, the truncated program
can be read in again and the lost source records re-entered. Or, after the Quit
command, read in the original source cassette (with error) to see if the error
reoccurs (any editing in the first session will not be on this cassette). Or, the
program segment can be considered lost and the user can continue editing the
remaining source segments, finishing the session with a Quit command, without
the program segment in error.

36.2 **ERROR22
e Command: G

® Meaning: There is a source line in the memory buffer with a line number larger than
the first line number of a segment brought in from cassette. Incoming source lines
should be ascendingly greater than line numbers in the buffer.

® Recovery Procedure: Further input of a program segment is prohibited (i.e., Get
command is prohibited). Commands other than Get can be executed; however,
editing out of the line(s) causing this error will not permit Get command to execute.
A quit command causes a return to the monitor without reading in remaining
program segments from input cassette. User can re-edit original source on the
input cassette or edit the truncated source on the output cassette.

312

3.6.3 **ERROR23
® Command: G

® Meaning: Get command cannot be performed because end-of-file (EOF) has been
detected; thus complete program file has been read.

® Recovery Procedure: Execute Quit command to write memory buffer contents to
cassette.

3.64 **ERROR24
® Command: G
® Meaning: Insufficient space in memory buffer to receive new source records.

® Recovery Procedure: Execute Keep command to write buffer contents to cassette.
Re-execute Get command.

3.65 **ERROR25

¢ Command: All

® Meaning: Text Editor command input is not valid.

® Recovery Procedure: Insert valid Text Editor command.
3.6.6 **ERROR26

® Command: K,R

® Meaning: Resequencing of line numbers requested after Keep command executed.
Entire program through EOF marker must have the same line sequence numbering.

® Recovery Procedures:
(1) Continue using present sequencing value

(2) or execute Quit command, reenter Text Editor, and specify new re-

sequencing value before first Keep command. Last Resequence
command will apply.

36.7 **ERROR27
® Command: P

® Meaning: In Print command, first (beginning) line number to be printed was larger
than second {ending) line number.

® Recovery Procedure: Reenter command with first line number smaller than second
line.number.

313

3.68 **ERROR28

Command: P, |

Meaning: Line number to be printed is too smali; a line number of higher value has
been sent to the output cassette.

Recovery Procedure: Reenter command; use a source line number with a value
higher than the highest source line number in the output cassette.

3.69 **ERROR29

Commands: Insert or Change Commands

Meaning: Command issued to insert or change a line having a higher value than the
highest-numbered line in the memory buffer.

Recovery Procedure: If line to be inserted or changed has a higher number than the
highest line number memory buffer, use Get command to read in the program
segment containing line numbers in the range desired.

3.6.10 **ERROR 30

Command: Insertion Command

Meaning: Not enough memory buffer space for line to be inserted or line to replace
existing line.

Recovery Procedure: Decrease memory buffer contents using a Keep command or
the line deletion command. Then attempt the line insertion again. If insertion
command also causes a line to be deleted (replace existing line), then line to be
replaced was deleted but new line was not inserted in its place.

3.6.11 **ERROR 31

Command: R
Meaning: Starting line in the Resequence command is larger than 9000.

Recovery Procedure: Reissue the Resequence command with a line-start value less
than 9000.

3.6.12 **ERROR 32

Command: R

Meaning: Resequencing command attempted to generate a line number larger
than 9999 during a Keep or Quit function. Maximum line number allowed is 9999.

Recovery Procedure: When the line number reaches 9999, an end-of-file is written
to the cassette, and data following line 9999 is lost. Re-edit source as required and
begin resequencing lines with a lower beginning number. The resequencing
command increments line numbers from 1 to 8399 by ten, and increments line
numbers from 9000 to 9999 by one.

314

3.7

38

DATA BACKUP ON CASSETTE

Sometimes it is desireable to make a backup tape of source programs in order to share known
source or to have a copy in the case of inadvertant destruction of the master source. To make a
backup tape, use the Text Editor with the following commands:

.TE23
Q
The tape will be copied from the cassette unit controlied by DEVNO 2 to the tape unit
controlled by DEVNO 3.
MULTIFILE CASSETTES
The use of multifile cassettes is discouraged. All files are serial and may be difficult to find via

random positioning. With several files per cassette, greater protection must be taken for the
cassette.

315

4.1

SECTION 4
SYMBOLIC ASSEMBLER .

GENERAL

The TM 990/302 Symbolic Assembler is a two-pass assembler that interprets the source
statements created using the Text Editor. These source statements are assembled into
absolute (not relocatable) machine code executable by the TMS 9900 series of micro-
computers {See Figure 4-1).

The symbolic Assembler performs the following functions:

® translates the assembly language mnemonics used by the TMS 9900 series of
microcomputers

® assembles the two pseudo instructions NOP and RT (see paragraph 4.5); however,
memory mapping instructions LMF, LDD, and LDS are not recognized by this
asembler

® allows use of at ieast 136 one- to four-character labels for symbolic memory
addressing

® allows comments to follow as part of a source statement

® interprets limited add and subtract expressions used with symbolic addresses
(LABL-2, LABL+10, etc.); see paragraph 4.7

® interprets eleven assembler directives to facilitate coding (assembler directives are
explained in Appendix F)

® provides assembler listings containing source statement number in decimal,
location counter value in hexadecimal, assembler object in hexadecimal,
source statement, comments, and error messages (See Figure 4-1)

® assembled object output contains loader tags as well as a checksum code for each
object record. Object is in absolute form, not relocatable.

The TM 990/302 Symbolic Assembler is a two-pass assembler. This means that the assembler
reads the source code twice. Before each read operation, the source code cassette tape must
first be positioned at program beginning before the assembler is executed. During the first
pass, the assembler builds a table containing:

® symbols used in operands for addressing

® the address of these symbols.
During the second pass, the assembler resolves the relative addresses and displacements in
instructions using these symbols, and generates an object on cassette and hard-copy

assembly listing on the system terminal. Figure 4-2 depicts the passes of the two-pass
operation.

4-1

ONE OR TWO O_O

CASSETTE T™ 990/302

OPERATION
OO |-

COMMAND
INPUT

ASSEMBLY LANGUAGE SOURCE STATEMENT NUMBER (DECIMAL)
(SAME AS TEXT EDITOR LINE NUMBERS)

LOCATION COUNTER (HEXADECIMAL) gggg??ERLElgg:iNTG
4 ASSEMBLED CODE (HEXADECIMAL)

LABEL FIELD
OP CODE FIELD
OPERAND FIELD
/ /— COMMENT FIELD

0033 FEOO OZEO ST LWPI WS SET WORKSFACE FPOINTER
FEOZ FFAO

GOZ4 FEO4 OZ0OO0 LI RO,10 RO = TENS MULTIFLIER
FEO&L 000A

D03 FEOZ 0407 LR R? RY = NO. OF TRIES

0034 FEOA 04CA CLR R10 R10 = NO. OF TRIES

D037 FEOC OZOC LI R1Z2,20 T™MS 9902 ORI ADDR.
FEOE 0030

D03 # OUTPUT OFEMING MESSAGE

Figure 4-1. Symbolic Assembler

42 CONSIDERATIONS

e Optimum system configuration would include two cassette recorder/players. A
one-recorder/player operation could require changing source and object tapes as
many times as necessary during the second pass; this would not be necessary in a
two recorder/player operation. In a one-recorder/player operation, take care to
avoid writing over the source code cassette with assembled object. Cassette
operation is explained in paragraph 2.7.

® LMF, LDD, and LDS instructions {memory mapping) are not interpreted.

® Assembler directives are restricted to the 11 defined in Appendix F. External symbol
references and definitions are not recognized; thus, assembler programs cannot be
linked by a linking loader.

® Object will be in non-relocatable absolute code; thus, the user must specify the
program load address with the AORG assembler directive (explained in Appendix
F).

® Macro instructions are not recognized by the assembler.

(1) FIRST PASS: BUILD TABLE OF SYMBOLS

SYMBOLIC

ASSEMBLER

(2) REWIND CASSETTE

f————

OO

(3) SECOND PASS: RESOLVE ADDRESSES,
GENERATE SOURCE LISTING, :
ERROR REPORT

—

SYMBOLIC:

LOoC.
LABEL CNTR.
STRT 0000
LOOP 001C
LOP1 002C
LOP2 00A4

SUM1 00FA
Sum2 00FC
SumM3 00FE
SUM 4 0100

[oxe)

ASSEMBLER

SYMBOL
TABLE

® ®
L] [
L] L)
SYMBOL
TABLE
A~ TN~
LOC. OPCODE
CNTR. (HEX) SOURCE STMT.
0000 02E0 STRT LWPI > 1000
0002 1000
0004 04E0 CLR @SuUM1
0006 00FA
0008 04EQ CLR @SUM2
000A 00FC ,
000C 04E0 CLR @SUM3
000E OOFE
® [] []
L J [) [J
[] [] ®
e N A NN N NA

Figure 4-2. Two-Pass Assembler Operation

® Label size is restricted to a maximum of four alphanumeric characters; the first
character must be alphabetical.

® With minimum configuration of the TM 990/100M with 1K bytes of RAM and a TM

990/302 board, the label table (generated during assembly first pass) will allow use
of 136 symbols. See Table 4-1.

TABLE 4-1. LABEL STORAGE VS. SYSTEM RAM (BYTES)

TOTAL SOURCE OBJECT LABEL NO. OF
MICROCOMPUTER RAM RAM BUFFER BUFFER TABLE* SYMBOLS
1K (TM 990/100M fully populated) 4096 3196 80 820 136
4K (TM 990/101M fully populated) 7168 3196 80 3892 648

*Table size in bytes; six bytes required per symbol.

4.3 SYMBOLIC ASSEMBLER CALL AND OPERATION
4.3.1 SYSTEMSETUP

Prior to calling the Symbolic Assembler, perform the following:
® setup the system as explained in Section 2

® remove the write protect tab from the source cassette to prevent writing over
source statements

® rewind and load (past clear leader) the cassette(s) as the system does not perform a
load cassette function that would wind the cassette to the magnetic film area of the
tape.

432 SYMBOLIC ASSEMBLER CALL

Before calling the assembier, set up the system as explained in paragraph 4.3.1. To call the
Symbolic Assembler, answer the monitor prompt with the following:

SAA <DEVNO> {A} <DEVNO> {A} <DEVNO> <(CR)>

DEVNO of device to receive listing

DEVNO of device that will receive assembled object

DEVNO of device containing source statements

SA command calls assembler

4.4

Examples:

(1) .SA 3,3,1 - Finish with a carriage return

Listing to system terminal

Object to cassette 2

— Source statements from cassette 1

(2) .SA 220 = Finish with a carriage return

No listing (dummy specified, object only desired)

L Obiject to cassette 1 (same as source)
L Source statements from cassette 1

(3) SA20,1 = Finish with a carriage return -

LListing on system terminal

No object (listing only desired)

L—.":‘oou rce statements from cassette 1

{4) Maximum equkipment configuration

SA234 = — Finish with a carriage return

Listing to second EIA connector (printer or hard-copy device)
control will be through the system terminal

Object code to cassette 2

L— Source code from cassette 1
NOTE

Prior to using DEVNO 4 in the assembler its baud
rate should be initialized with the SR command.

433 ONE- AND TWO-CASSETTE OPERATION

Two-cassette operation is recommended because it uses less steps than a single-cassette
operation. Assembler procedures are slightly different for each configuration. Single or dual
cassette operation is automatically determined by the assembler by comparing source-input
and object-output DEVNO values (same DEVNO indicates single-cassette operation).

45

NOTE

For either operation, position the tape as speci-
fied in paragraph 2.7 prior to beginning
assembly.

4.3.3.1 Two-Cassette Operation

Before execution of the assembler call (paragraph 4.3.2), set up the system as explained in
Section 2, and have the source cassette rewound to the clear leader. When the assembler call
is executed, the assembler will begin reading source statements and continue until the END
assembler directive is read or an end-of-file is read (the end-of-file is placed on the tape as one
of the final operations of the Text Editor Quit command). After all source code is read in, the
code must be read again in a second pass in which the assembler resolves all relocatable
symbolic addresses, prints an assembled source code listing (if designated), and writes
assemhled object to the designated cassette. Before this second pass, the assembler outputs
the two-line message:

** REWIND TAPE
**HIT ‘CR" TOGO —

Rewind the source-statement cassette and ready it for the second pass of the assembly. When
ready, press the carriage return to begin pass two. The source statements will be read in again.
During this pass symbolic addressing will be resolved using addresses from the symbol table
generated during the first pass. If the source program is too large to fit into the source
statement buffer, repeated reads of the source statement cassette will be made until the END
assembler directive or end-of-file is read, with the assembler performing operations on each
portion read. As the object buffer is filled up, the object code will be written to the object
cassette. When assembly is complete, control reverts back to the monitor and the monitor
period prompt will be issued. An example of assembler interaction at the system terminal is as
follows (this example designates dummy for source listing in order to show basic interaction
between Symbolic Assembler and user without a listing):

SA23,0
** REWIND TAPE ‘ Set up for second pass
** HIT ‘CR’ TO GO —
- End of assembly, period prompt from monitor
| 4.3.3.2 One-Cassette Operation

One-cassette operation requires more steps than a dual-cassette operation; thus, the latter
configuration is recommended. Operation is similar to the two-cassette operation as ex-
plained in paragraph 4.3.3.1,and it is recommended that the user read that paragraph first. A
flow chart of a one cassette operation is shown in Figure 4-3.

Single-cassette operation is sensed by the monitor from the assembler call command (same

cassette DEVNO for source-input and object-output indicates single cassette), and the
assembler uses interactive message and procedures accordingly. Prior to calling the

46

INSERT
SOURCE
CASSETTE

ENTER
ASSEMBLER

READIN
SOURCE
STATEMENTS,
1ST PASS

REWIND
SOURCE
CASSETTE

READ IN
SOURCE
STATEMENTS,
2ND PASS

OBJECT CODE
BUFFER FULL

INSERT
OBJECT CODE
CASSETTE

HAS
END OF FILE
BEEN PROCESSED

INSERT
OBXCT
CODE
CASSETTE

INSERT
SOURCE
CASSETTE

Figure 4-3. Flow Diagram Of One-Cassette Operation

47

assembler, the source cassette must be rewound with the tape before the program beginning.
When the assembler call is executed, the assembler begins reading in source statements from

cassette.

NOTE

Considerations for cassette operation in a one-
recorder/player configuration are provided in
paragraph 2.7. When “rewind"” is stated herein, it
does not mention the need to unplug the motor
control plug. Remember to wind tape passed
clear leader before recording on it.

During the first pass, the assembler will build the symbol table of symbol characters and their
addresses. The first pass is completed after the read of and END directive or an end-of-file
code. At this time, the assembler sends a message asking that the source cassette be rewound
to the beginning of the program so that the second pass can be initiated.

If the program is small enough, it will be necessary to change cassettes only once (unload
source cassette, load object cassette). In this small-program example, the entire program can
be contained in the source and object buffers without additional reads or writes (see Table
.4-2). This operation will require:

(1)

(2)

(3)

(4)

Ready source cassette for first pass {rewind); execute assembler call. First pass
begins when carriage return is pressed. Entire source tape is read in. Message
prompt indicates end of first pass of source tape:

**REWIND TAPE
**HIT 'CR'TOGO —

Set up for second pass of reading source. Rewind the source cassette, and enter a
carriage return to start second pass. After the second pass is complete, the
following message requests that the source cassette be removed and the object
cassette inserted: ‘

**SWAP TAPES
**HIT ‘CR' TO GO —

Replace source cassette with a rewound object cassette {do not rewind the source
cassette as further source lines for this program may be on the cassette). Position
object tape past clear leader under printhead. Press the carriage return to start
writing of object to cassette.

When the monitor prints a period (.) on the terminal, program assembly is complete
and the user can call up another SDB program. Assembled object is on the cassette
in the unit. »

If the source program is so large that the object buffer in memory fills up, successive readings
of source and writings of object are required in the second pass:

48

(1

(2)

(3)

(4)

Ready source cassette for first pass (rewind); execute assembler call. First pass
begins when carriage return is pressed. Entire source tape is read in. Message
prompt indicates end of first pass of source tape:

**REWIND TAPE
**HIT ‘CR’ TO GO —

Rewind source tape for second pass of reading source. Enter a carriage return when
ready. Source is read in and object sent to object buffer. When the object buffer is
full, the following message requests a change from the source cassette to the object
casette:

**SWAP TAPES
**HIT ‘CR"TOGO —

Replace source cassette with object cassette (do not rewind either but have tape
past clear leader if initial input). Depress the carriage return; object will be written to
the object cassette. When complete, the next prompt asks to reinsert the source
cassette: '

**SWAP TAPES
**HIT ‘CR’ TO GO —

Replace the object cassette with the source cassette (do not rewind either). Depress
the carriage return; source will be read again from the source cassette. When the
assembiler finishes with this segment of source, the message prompt appears:

**SWAP TAPES
**HIT'CR’' TO GO —

Repeat steps (3) and (4) until assembly of the program is complete. Completion will be
indicated by a period (.) prompt at the terminal meaning that any SDB command can be
entered. Complete program object will be in cassette in unit.

NOTE

1. Because the assembler does not designate which
cassette to load next, it is recommended to mark
each cassette as “SOURCE"” or “OBJECT” to
identify the tape contents.

2. When cassettes are removed unwound, take care
to prevent movement of the tape within the
cassette while removed. Such movement could
result in loss of data.

49

An example of assembler/user interaction is as follows:

SA220= Assembler call (DEVNO 2 for source and object)
** REWIND TAPE } Set up source for second pass
**HIT‘'CR' TO GO — | depress carriage return
** SWAP TAPES } Insert object cassette,
**HIT‘CR' TO GO — depress carriage return
°
® } Successive source/object cassette changes
°
** SWAP TAPES } Insert source cassette,
**HIT ‘CR’ TO GO — depress carriage return
** SWAP TAPES } Insert object cassette,
**HIT'‘CR’ TO GO — depress carriage return
. - End of assembly, control returns to monitor
44 ASSEMBLY LISTING FORMAT
If designated in the assembiler call, a source statement listing will be printed during the second
pass of the assembler. The listing format is shown in Figure 4-3. Paragraphs 4.4.1 to 4.4.7
explain the different columns and fields of the listing.
;
ASSEMBLY LANGUAGE ‘LOURCE STATEMENT NUMBER (DECIMAL)
(SAME AS TEXT EDITOR LINE NUMBER)
LOCATION COUNTER (HEXADECIMAL)
ASSEMBLED OBJECT CODE (HEXADECIMAL)
LABEL FIELD
INSTRUCTION MNEMONIC
OPERAND FIELD
/ '/—— COMMENT FIELD
0022 FEOO OZEO 3STAR LWPI WZP SET WORESFACE FOIMTER
FEOZ FFAO
CGOT4 FEO4 Q200 LI RO, 16 RO = TENZ MULTIFLIER
FEO& O00A
O03% FEOZ 0409 LR R9 B = MO, OF TRIE=
G024 FEOA O4CA LR R1¢Q R1O = M), F TRIEZ=
D027 FEOD Oz0C LI R12, 230 ™S 2907 CRJ ADDR.
FEGE 00320
<] # CQUTPUT COFEMING MEZSAGE
OG22 FELO ZFAO OF @MESZ.14 CFENINMNG
FE1Z FEBO

Figure 4-4. Assembly Listing Format

4-10

44.1

442

443

444

445

446

447

ASSEMBLY LANGUAGE SOURCE STATEMENT NUMBER

This is the decimal line number of the source statement. This line number is the same
specified when using the Text Editor. This number shows the sequence in which the state-
ments were processed by the assembiler.

LOCATION COUNTER

This is the hexadecimal number showing the memory address of the assembled code.
Location counter values are given only to locations containing executabie code or data values.
This value is also used by the assembler to generate the symbol table locations.

The location counter value is absolute from the beginning of the program; thus, it normally
begins with location 000016 unless an AORG (absolute origin) assembler directive designates
an alternate address. If used, the AORG value will bias the location counter to the specified
memory address. The object code generated following an AORG directive is not relocatable,
and will force load to the specified address. The location counter also indicates the memory
address at which the object resides when loaded into memory without a loader bias. In Figure
4-4, the object code is 02E016 at memory address (M.A.) FE0016, FFAO16 at M.A. FE021g, etc.
The location counter increments by 00021g, indicating the number of bytes from the
beginning of the program. '

ASSEMBLED OBJECT CODE

The hexadecimal object code, resulting from the assembly process, is placed in the third
column. The corresponding source statement is shown in the next two columns to the right.

LABEL FIELD

This field contains an alphanumeric (A to Z, 0 to 9) symbol which may be used to reference the
instruction or data on the same line. The symbol will be given the value in the location counter.
Symbols can contain a maximum of four characters, the first of which must begin with an
alphabetic character (A to Z), and optional other characters must be alphanumeric. Labels
must begin at the first column of the source statement. This field is separated from the
mnemonic field by at least one space. A comment can begin in the first column of the label
field as explained in paragraph 4.4.7.

INSTRUCTION MNEMONIC FIELD

This four-character field contains assembly-language and assembler-directive instruction
mnemonics. It is separated from adjacent fields by at least one space.

OPERAND FIELD

This field contains the operands of the instructions and directives. It is separated from
adjacent fields by at least one space and contains no spaces.

COMMENT FHELD

This field contains comments that explain source-statement operation or its role in the

“ program. A comment can take up a full line by beginning the line with an asterisk (*) in the first

character position of the label field.

45

4.6

4.7

4.8

INSTRUCTION SET
The 72 instructions used by the microcomputers are assembled by the Symbolic Assembiler.
This includes the DCA, DCS, and LIIM instructions used by the TMS 9940. Instructions are
listed in Appendix H. The Symbolic Assembler also recognizes two pseudo instructions:
® The NOP instruction that can be used in place of a JMP $+2 instruction which
essentially is a no-op (no operation). NOP can be used to replace code to be deleted
in memory or it can be used to force additional execution time. Both NOP and JMP
$+2 assemble to the machine code 100016. The pseudo instruction uses no
operand.
® The RT instruction can be used in place of a B *R11 instruction (the normal return
from a branch and link subroutine). Both RT and B *R11 assemble to the machine
code 045B16. The pseudo instruction uses no operand.
LABELS
Labels are explained in paragraph 4.4.4.
MATHEMATICAL EXPRESSIONS
Mathematical expressions can be used in a limited basis. They must follow several rules:
® can be used only with valid symbols
® restricted to use with instructions of formats 1, 3, 4, 6, and 9; note that these formats
contain T fields that designate the type of addressing on the source or destinaticn
operand (formats are explained in Appendix H, instruction Set); for example: MOV
@TABL+2,@SUM-16
® cannot be used with immediate operands (no LI R2,VALU+18, or LWPI WP+32)

® total value of the expression cannot exceed 65,535 (FFFF16)

® are limited to only addition and subtraction expressions; multiplication and
division will not be interpreted.

® may not be parenthesized.
® cannot be used with the EQU assembler directive.
OBJECT CODE

Object format is generated in 16-bit hexadecimal segments, each segment preceded by a
loader tag. Loader tags and object format are explained in Appendix G.

All object records will contain a checksum field. This checksum is the two’s complement of the
hexadecimal value of the ASCII code of all generated object codes and the loader tags in one
object record. The Relocating Loader will use this value to chech the validity of each object
record loaded.

Object loader tags utilized by the Symbolic Assemblerare0,1,7,9, B, and F.

4-12

ERRORS

As the assembily listing is being printed during the second assembler pass, errors found
during assembly will be noted on the assembily listing by an error number message foliowing
the line in question. The error number will identify the error according to the codes in Table
4-2.

For object code corresponding to an invalid source line, the assembler will replace that
instruction with “NOP” {no operation) assembler pseudo-instructions which have an object
value equal to 100016. The NOP instruction merely tells the processor to execute the next
instruction; this allows the user to run his program during debugging, substituting other
object code for the NOP’s. One NOP will be substituted for each word in the invalid.instruction.

An error total will be printed at the end of the listing. Error numbers are explained in Table 4-2
and Appendix E.

TABLE 4-2. ASSEMBLER ERROR CODES

ERROR
NO. EXPLANATION
1 Invalid Symbol: Symbols must be alphanumerical with the first character alphabetical. Use correct format.

2 Mulitiply Defined Svhbol: Symbeol is used to define location of a previous source line. Use other symbol.

3 Symbol Table Overflow: Symbol table cannot accept any further entries. Restrict quantity of symbols to
amount shown in Table 4-1.

4 Mnemonic Size Too Large: Op-code mnemonic is more than four characters.

5 Undefined Mnemonic: Op-code mnemonic is not one of the valid TM 990 mnemonics nor a defined XOP
mnemonic. Valid TM 990 mnemonics are listed in Appendix H.

6 Itligal Register Number: Register number is greater than 15.

*
7 CRU Instruction Displacement: Displacement of TB, SBZ, or SBO instructions is outside the range of —128
to +127 words.

8 Jump Instruction Displacement: Displacement of j jump instructions is outside the range of 128t0 +127

words.
9 inviaid Shift count: Shift count must be from zero to 15.
10 Non-increasing Location Counter: Memory address in AORG assembler directive is a smaller value than

current value of location counter. This will occur when second AORG value is less than the value in a
prior AORG directive. Location Contents must be in ascending order.

1 Byte Value Too Large: Operand of BYTE assembler directive is a value larger thana 255.

12 No start of Text: Character string foliowing a TEXT “assembler directive did not start with a single quote.
Such character strings are delimited with single quotes. A single quote within a TEXT directive is
specified by two single quotes.

13 IDT Length Error: Character string of IDT assembler directive (at beginning of program) has character string
of more than eight characters.

14 Inviaid IDT: Character string of IDT assembler directive did not begin with a single quote.
15 lllegal TEXT Statement: TEXT statement contained character that cannot be interpreted.
16 Hiegai XOP Number: XOP number above 15 specified. XOP numbers are from 0 to 15.

17 Undefined Symbol: Symbol was used in an instruction which had not been defined in the symbol field of
the source statement.

18 Input 1/0 Error: Error in reading source from cassette; probably a checksum error or improper cassette
connection.

19 No END Directive: Must have an END directive as last statement in program (see paragraph F.2.7 in
Appendix F). Use Text Editor to input this statement.

20 lllegal mathematical expression used. Rewrite without mathematical expression. See paragraph 4.7.

413

4.10 ASSEMBLY OF EXAMPLE PROGRAM

Figure 4-5 shows the listing generated by the assembly of the example program written in the
Text Editor section of this manual. In the assembler cali, the DEVNO's for both source and
object were the system terminal; thus, the object records are also printed out.

0100

0101 1040

0106 1040

0110 1040 02EOD
1042 1000

0120 1044 020C
1046 1706

o121 1048 COM

0122 104A 1603

0124 104C 1D0O

0125 104E 0701

0126 1050 1002

0127 1062 1E00

0128 1064 0401
0130 1086 0202

1058 F424
0134 - 105A 0602
0136 106C 16FE
0138 105E 10F4
0140 1040
ERRORS=0

ONNOOBL THK

R1
R2
R12
BEGN

STRT

ON

OFF

" RUN

Loop

IDT
AORG

-EQU

EQU
EQU
LWPI

Li

MOV
JNE
SBO
SETO
JMP
SBZ
CLR
LI

DEC
JNE
JMP
END

‘BLINK’
> 1040
1

-2

12
> 1000

R12,> 1706

R1, R1
OFF

0 -
R1

RUN

0

R1

R2, 62500

R2
LOOP
STRT
BGN

WP ADDR
LED CRU ADDR

R1 ALL ZEROS?

NO, TURN OFF LED
TURN ON LED

SET ON/OFF FLAG

GO TO TIMER

TURN OFF LED

RESET FLAG

SET UP DELAY COUNTER

..
IS R2 ZERO?

NO, DECREMENT AGAIN
RESTART PROGRAM

/—Obiect Records

1 N40RNCENEBLOOOBOZOCEI7DERCO41E1602R1DOOVF42EF

2104ERO701B1 002B1EOOBO4CIBO2OZBF424ENE02B1EFERL1 OF411 0407F3FCF
P1N4EBNTOIR1NO2RIFOORNACIBOZN2RF424B0S0ZBI SFERL OF411 04 07PF2FCF

\—— Colon indicates end-of-program; loader ignores any following object

Figure 4-5. Assembly Listing Of Example Program

414

5.1

52

53

SECTIONS
RELOCATING LOADER PROGRAM

GENERAL

This section explains the operation of the Relocating Loader program which can be used to
load object code into memory for execution or for programming onto PROM's. Features of the
Relocating Loader program allow the user to designate the following:

® Load Address: The address where the program is to be loaded into memory. This
address is used to determine the program start address when using the Debugger
or where the code is located when using the PROM Programmer.

® Load Bias: A bias to be added to the values of relocatable addresses in the program
being loaded. Because a program can be assembled as if it begins at relative
location 000016 and is to be executed beginning at a different address, then the
relocation must be resoived before execution. For example, if a program is
assembled as if it began at memory address 00001g but is loaded into memory for
execution beginning at address E0001g, it should be biased by the value E0001¢,
and a symbolic address with an assembled address value of 00801¢ will have an
address value-of E0801g after being loaded. If a segment of a program is being
loaded the bias will be to the beginning of program, not beginning of the segment.

NOTE
" The TM 990/302 Symbolic Assembler does not
output relocatable object; its object is in absolute
form.

® Load Length: Length in bytes of object code to be input from the object cassette;
this allows loading only part of a program.

® Start Address: For an absolute object file, it is the absolute address of the first byte
to be loaded into memory. For a relocatable object file, it is equal to the value of the
second parameter (load bias) plus the relocatable address of the first byte to be
loaded into memory. This parameter is ineffective with the Relocating Loader if an
object file on cassette was generated from a source file without an AORG directive,
(This will not occur when using the mandatory IDT directive). .

SYSTEM CONFIGURATION
A typical configuration is shown in Figure 5-1.

Communication to the system will be through the system console. The cassette recorder/
player will contain the object tape, wound to the clear leader.

CONSIDERATIONS

Memory addresses 000016 to 03FF1g are reserved for use by the operating system. Do not
attempt to load programs in this memory area.

Remove any EPROM connected to the TM 990/302 board or remove EPROM programming

power before reading data from cassette; otherwise, the EPROM could be mistakenly
programmed. _

51

Be aware of the address at which the program will begin when (1) in the target system and (2)
in debugging using the Program Debugger (Section 6). The Relocating Loader will resolve any
address conflicts in relocatable code for either of these functions. With the assistance of the
Load Length and Start Address, a large program can be divided into segments and loaded into
memory. Usually a Load Length value greater than the length of the program will not affect the
normal loading of the program because the loading will stop at the end of the object
program. However, the sum of the Load Length and the Start Address should always be less
than or equal to FFFF1¢.

54 LOADER PROGRAM CALL AND OPERATION

The call to the Relocating Loader uses two lines. The first line requests the Relocating Loader
and specifies the DEVNO of the recorder/player containing the object cassette. The second
line issued to describe the four load criteria: Load Address, Load Bias, Load Length, and Start
Address (further defined in paragraph 5.1 above). All four criteria are assumed to be hexa-
decimal values.

The first line is a response to the period (.) prompt by the monitor. The second line is a
response to a question mark (?) prompt by the Relocating Loader. Both lines are completed
with a carriage return.

NOTE
if the second line parameters cannot be

interpreted by the Relocating Loader, the
question mark prompt will be reissued.

_—

CONTROL

O O

OBJECT

Figure 5-1. Relocating Loader Block Diagram

The format is as follows (see paragraph 1.7):

.RL<DEVNO> <(CR)>
?7<Load Address>- <,> <Load Bias< >,> <Load Length> <,> <Start Address> <(CR)>

5-2

55 EXAMPLES

(1) This first example can be used to load into memory the example program that was
developed in the sections on the Text Editor and Assembler. Load a 201¢ byte
program at memory address 104016. It does not need to be relocated because itwas
assembled as if it began at memory address 10401¢ by using the AORG >- 1040
directive (also, the Symbolic Assembler outputs only absolute object). This will set
up the program for being run on the Program Debugger with the Program Counter
set to 104016. Begin loading at the start of the program. :

I’z input object program from cassette 1
RL2
71040,0,20,1040

\\———Start to load at the beginning of object program

Load 201 bytes maximum
No bias needed, AORG >1040 used
Load code into memory starting at memory address 10401¢g
NOTE

The relocating Loader sets the Program Counter
to the entry address specified in the END
assembler directive of the program. Because the
example program uses this feature, the program
can be executed after being loaded by using the
EX (execute program) command of the Program
Debugger (paragraph 6.5.1)

(2) Load entire 10001g byte program into memory starting at memory address 4001g,
bias to starting at memory address E0001¢ (code is relocatable). The maximum load
length is 10001 bytes, and start the loading at the beginning of the object
program. (The bias of E0001¢ allows this program to be programmed onto an
EPROM which will be inserted into the system and executed with a beginning

program address of E0001g).
/ Input program from cassette 2
RL3

?400,E000, 1000, ECO0
\———Stan to load at the beginning of object program
Load 100016 bytes maximum
Bias to memory address E0001¢ (code is relocatable)
Load code into memory starting at memory address 40016

53

(3) Load entire 2048-byte program starting at memory address 10001g with no bias
{code is written in absolute form with an AORG directive specifying the beginning
load address). Note that spaces are used for field delimiters as well as the comma.
Object program is on cassette 1.

RL2
21000,0, 800, 1000

\—— Start load at the beginning of object program
Maximum length is 2048 bytes (8001¢)
No bias (code is in absolute form)
Load code into memory at address 100016

(4) Load the second 10001 byte segment of a 200016 byte program into memory
starting at memory address 20001g. Bias as if the entire program began at memory
address D0001g. Note that the bias for the beginning of the program is given (not
the beginning of the program segment). Object program is on cassette 2.

.RL 3
72000, D0O0O, 1000, EO0O

\Start load 10001¢ bytes after the beginning of
object program
Segment size is 10001g bytes
' Bias for program start address is D0001g (code is relocatable)

-Load program segment into memory at address 200016
(5} Load the last 1001 bytes of a 20001 byte program into memory starting at
memory address 20001¢. No bias is wanted as code is in absolute form. Object
program is on cassette 1.

.RL2
72000 0 100 1FOO

\—Start load 1F001¢ bytes after the beginning of object
program
Segment size is 1001g bytes
No bias as code is in absoiute form
Load program segment into memory at address 20001

ERROR CODES

If an error occurs during a load, an error message is written on the system terminal and the
load is aborted. Error messages contain a code which is defined as follows.

54

5.6.1 **ERRORS51

Meaning: An invalid load tag was found. The loader interprets several load tags
including 9 (absolute load address), A (relocatable load address), B {(absolute data),
and C (relocatable data). Load tags used by the 990 family of computers are
explained in Appendix G.

Recovery: Rewind cassette and re-execute the load operation. If the error reoccurs,
reassemble the program to obtain a new object on cassette.

5.6.2 **ERROR52

Meaning: Checksum error occurred. When the object code is formatted into object
records by the assembiler, the last load tag field of each record is a checksum value
which is the two’s complement of the sum of all ASCHl character values representing
the object code; this includes all characters beginning with the first tag character in
the object record up to and including the 7" tag of the checksum field. The loader
makes a similar computation when loading the object and compares the results to
the checksum value. If the comparison is a match, the loaded data is considered
valid.

Recovery: Rewind cassette and re-execute the load operation. If the error reoccurs,
reassemble the program to obtain a new object on cassette.

NOTE

For both errors 51 and 52, clean the tape heads of the recorders (if
possible) before re-executing the load operation.

55

6.1

6.2

SECTION 6
PROGRAM DEBUGGER

GENERAL
The TM 990/302 Program Debugger allows the user to monitor the execution of his program,
check for problems and (if necessary) patch code in question, then resume program execution
using the new values. The Debugger features include: (1) execution of one or more in-
structions starting at a designated Program Counter value, (2) singie-step execution, (3)
execute program to a specified instruction location (breakpoint), (4) trace program execution
with hardware register printout after each instruction executed, (5) record conditional-jump
caused path changes, and (6) inspect and change contents of memory, the hardware registers,
the workspace registers, or Communication Register Unit (CRU) values. The Relocating
Loader program (Section 5) is needed in order to load into memory the object to be debugged.
Commands under the Debugger include (applicable paragraph number is in parentheses):

® EX Command: Execute program unconditionally (6.5.1)

® IC Command: Inspect/change CRU values {6.5.2)

® IM Command: Inspect/change memory contents {6.5.3)

® IR Command: Inspect/change hardware register values (6.5.4)

® IWCommand: Inspect workspace register (6.5.5)

® RU Command: Conditional jump run, record path changes (6.5.6)

® SB Command: Set breakpoint for execution limit (6.5.7)

® ST Command: Software trace where the three hardware register contents are
printed out during each instruction execution {6.5.8).

SYSTEM CONFIGURATION

Minimum system configuration would include one cassette and a terminai as peripherals.
Object would be loaded into memory with the Relocating Loader, and the debugged object
would be written back to the same cassette using the Dump Memory program (Section 8).

® connect the cassette and terminal as explained in Section 2.

® load an object program at the desired beginning address using the Relocating
Loader as explained in Section 5.

® insert the tape which will receive the debugged object in the recorder/player, and
rewind itto clear leader. Paragraph 2.7 describes correct tape handling procedures.

6-1

6.3

6.4

6.5

6.5.1

6.5.2

CONSIDERATIONS
All numerical inputs to commands must be hexadecimal values without the preceding
greater-than (>) sign. For example, to inspect fifteen bits at CRU address 1001¢, the value F
(nat 15) must be specified:

?1C100,F

Program execution begins at the address values in the hardware registers. These registers are
first set by the IR (inspect registers) command described in paragraph 6.5.4. '

PROGRAM DEBUGGER CALL
Answer the monitor period prompt with the following:
.DP<(CR)> Finish with a carriage return

The Program Debugger will respond with a question mark (?) prompt asking for one of the
Debugger commands. For example:

.DP «———Call Debugger
?7 - Debugger prompt asking for command

DEBUG PROGRAM COMMANDS
EXECUTE MEMORY COMMAND (EX)

The EX command causes program execution to begin at the Workspace Pointer (WP) and
Program Counter (PC) address set using the IR {inspect hardware registers, paragraph 6.5.4)
command or at the PC value set by the Relocating Loader when a program entry address is
specifed in the END assembler directive of the program.

Format:
? EX <{CR)>
NOTE

The example program developed in the section
on the Text Editor and Symbolic Assembler, and
loaded by the Relocating Loader can be executed
with the EX command if properly assembled and
loaded. When executed, the LED on the TM 9390/
302 board (next to edge connector P2) should
blink.

INSPECT/CHANGE CRU COMMAND (IC)

This command causes a pattern of 1 to 16 bits to be displayed at a CRU software base address
and allows the user to write a 1-to-16 bit pattern to the CRU software base address displayed.
The address entered is the unshifted register 12 contents, not the CRU bit address (i.e., the
CRU bit address is the register 12 16-bit address shifted one bit right). For a further explanation
of the CRU and the instructions that read and write to it, see the programming section of your
microcomputer user’s guide.

6-2

The command displays a 16-bit value. After displaying the value read at the CRU, the
printhead spaces to the right and awaits one of the following:

® aspace causing the same CRU address to be read again and the value displayed
® acarriage return causing a return to the Debug Program scanner
® a new hexadecimal number to be written to the address displayed followed by a
space or carriage return causing the action specified in the above two descriptions
for space and carriage return.
Format:

2IC[A]<CRU Address> {/}}<{No. of Bits]> <(CR)>

If 0 used or no entry, 16 bits displayed

Examples:
21C 120 Show value at CRU bits 009016 to 009F 16 (TMS 9901)
0120=FFFF Carriage return, return to command scanner.
?1C 120,8 Show value at CRU bits 00901 to 009716
0120=00FF 0 Enter a value of zero, terminated with a space
0120=0000 Carriage return, return to command scanner
?2IC 120 Show value at CRU bit 009016 to 009F 16
0120=FF00 Carriage return, return to command scanner
?

If the number of bits specified is 0, all 16 bits will be read. The valid bit numbers are 0-F1¢.

The CRU value displayed will show the CRU bit values beginning at the address specified. If
one bit address is requested, its value (a one or zero) will be shown in the rightmost bit
(least-significant bit or LSB) of the displayed value and the remainder of the displayed
value is zero filled. If 2 to 16 address bits are to be displayed, succeeding addresss bits
will be shown right to left as depicted below: '

21C 80,6
0080=003A
0 3 4 7 8 1M 12 15
o110 0100 0111 101 0] ‘L——CRUbitaddress
/ L>0 40
Buffer register L = 1 41
containing CRU >0 42
values 1 43
» 1 44
» 1 45

6-3

653

INSPECT/CHANGE MEMORY COMMAND (IM)

This command has two modes. In the first mode, the contents of one 16-bit memory address is
displayed, and the user can select further action by the following:

® A space-bar input causes the next word to be displayed.
® A minus-key input causes the previous word to be displayed.

® A carriage-return input causes a return to the Program Debugger command
scanner.

In the second mode, a block of such 16-bit memory contents are displayed, and the user can
select further action by the following:

® A space-bar input causes a pause during the display process. Another space bar
entry will continue it.

® An ESC-key input causes the early termination of the display process.
Formats:

?IM[A]l<Memory Address> <(CR)>

\—causes contents of one memory address to be displayed.

?IM[A] <Beginning Address> {A> [Ending Address>] <(CR)>

causes contents from “beginning address” to “ending
address’’ to be displayed

Examples:
(1) ?2IM1000 <= finish with carriage return
1000=FFFF = carriage return entered
? - prompt for next command
(2) M 1000 i
1000=FFFF space entered
1002=FF00 space entered
1004=00EE carriage return entered
? prompt for next command

(3) ?7IM 100,110
0100=FFFF FFO0 OOEE 0000 AA11 AAAQ EE11 8888

0110=EEAA
?
(4) ?IM 100 :
0100=FFFF EE new value 00EE entered, space entered
0102=FF00 0 new value 0000 entered, space entered
0104=00EE — minus entered
0102=0000 prints changed contents of M.A. 0102
? CR returns to command scanner

6-4

654

6.5.5

INSPECT/CHANGE HARDWARE REGISTERS (IR)

This command is used to set up the hardware registers before executing the execute (EX)
command, the software trace (ST) command, the conditional jump run command (RU), or the
set breakpoint {SB) command. To change the displayed register, enter a new value next to the
dsplayed value. To repeat the displayed register’s value, enter a minus (—) sign.

Format:
IR <(CR)>
Examples:
(1) 2R finish with a carriage return
W=0700 Workspace Register displayed, space entered
P=0122 Program Counter displayed, space entered
S$=1000 Status Register displayed, space or CR entered
? prompt for next command
(2) ?IR
W=0700 6A0— new value, minus entered
W=06A0 new register value displayed, CR entered
? ‘ return to command scanner
(3) 7R
W=06A0 new value shown as in above command, CR
? entered

INSPECT/CHANGE WORKSPACE {SOFTWARE) REGISTERS COMMAND (IW)
This command allows the user to inspect and change one or all 16 of the Workspace Registers.
These software registers are located in memory beginning at the address specified by the
current Workspace Pointer value or as defined using the inspect/change hardware registers
debug command (IR). Contents will be displayed as contents of memory addresses instead of
a specific register. Specify either one register number after the IW command or specify only
the IW command to inspect all register contents. The command is completed with a carnage
return. Options are available when a register is displayed.

® space bar entry will display contents of next register

® minus key (—) will display contents of previous register

® hexadecimal value entered will change contents of displayed register to the entered
value

Formats (see paragraph 1.7):

? IW[A] [Register No.] <(CR)>

6-5

6.5.6

Examples:
(1) Inspect one register with WP = 200016

2IW6 finish with carriage return
200C=2314 finish with carriage return

{2) Inspect and change register values

W6
200C=2314 Ré6 displayed, press space bar
200E=9887 BBBB R7 displayed, enter new R7 value, press space bar
2010=0EEE CCCC R8displayed, enter new R8 value, press space bar
2012=5555— R9 displayed, enter minus sign to display R8
2010=CCCC— R8 displayed showing change

~ 200E=BBBB R7 contents, finish with carriage return
? return to command scanner

(3) Print out entire Workspace Register values with WP at M.A. 200016

?2IW «—finish with carriage return, print all registers (default)
2000=0113 EEDD F435 0000 AAAA 2314 9887 OEEE
2010=5555 4444 3476 5FFA 1111 2222 2333 FFF

RUN PROGRAM, MONITOR CONDITIONAL JUMPS (RU)

This command causes controlled program execution beginning at the value in the Program
Counter, which can be set using the IR (inspect hardware register) command. The run
command operand is the number (in hexadecimal) of instructions to be executed, with no
default value; a number must be specified. This conditional jump run command provides the
ability’ -to record the data path changes caused by conditional jump instructions (excludes
unconditional jump or JMP instruction). During the program execution each instruction is
checked to see if it is a conditional jump instruction and also to see if that conditional jump
instruction causes a path change (jump condition supported by Status Register contents). If
so, the address of that jump instruction will be recorded on a 16 word buffer. After the
specified number of execution steps is completed, the contents of the current hardware
registers (WP, PC, and ST) and the buffer is printed out. The buffer contents are as follows: the
first contains the most recently occurred conditional jump instruction, the second word
contains the second most recent one, and so on. The maximum number of path changes that
can be recorded is 16. If more than 16 path changes have occurred, the most recent 16 changes
are recorded. If there are less than 16 path changes, the unused buffer spaces are filled with
zeros.

Format (see paragraph 1.7):

? RU[A] <N><(CR)>

Number (in hex) of steps of execution.

After executing the specified number of instructions, control will return to the Debug Package
Command Scanner, which issues its question mark prompt.

6-6

65.7

Examples:

2R ' finish with a carriage return
W=0710 space entered
P=0604510 = set Program Counter to the execution-start

address, terminated with carriage return

?RU 46 Run for 461g instructions
0710 0554 1000 =— WP, PC, & ST contents at run completion
0290=054E 0532 0524 0000 0000 0000 0000 0000 3 conditional

02A0=0000 0000 0000 0000 0000 0000 0000 0000 jumps executed
?

The above example showed that 461 instructions have been executed and three path
changes recorded. The most recent path change is in memory address 054E 1.

SET BREAKPOINT COMMAND (SB)

This command allows the user to designate one or two memory addresses at which program
execution will hailt and the contents of the hardware registers will be printed out. When a
breakpoint is executed, all breakpoints are cleared, and new breakpoints must be re-entered, if
desired.

The breakpoint command substitutes the machine code for XOP 15 at the address of the
breakpoint(s). When the breakpoint is executed, the hardware registers contents are printed
out (WP, PC, and ST register contents), the original contents at the breakpoint address are
restored, and command returns to the Debugger Package command scanner. Execution of
this command follows this sequence:

® Enterthe IR command to set up the hardware registers to the beginning of program
execution.

® Enter the SB command speci\fyirig the hexadecimal memory addresses where the
breakpoints are desired. When the command is terminated with a carriage return,
program execution starts.

® When any breakpoint occurs, the hardware-register contents will be printed out,
control will return to the command scanner with the question-mark prompt issued,
and all breakpoints will be cleared.

Format:

?SB[A] <Breakpoint Address> {A} [Breakpoint Address} <(CR)>

\ \

hexadecimal values

Exampiles:

(1) ?R finish with carriage return
W=0710 = set up workspace pointer and the start
address of the program to be executed
P=0342 05A0
?SB05F4 - set address of last instruction to be executed
- 0710 05F4 1000 «———— breakpoint printout of register contents
? - return to command scanner, breakpoints cleared

6-7

(2) ?SB610 finish with carriage return
0710 0610 1000 «—breakpoint printout of register contents
? - return to command scanner, breakpoint cleared

6.5.8 SOFTWARE TRACE COMMAND (ST)

This command causes the contents of the Workspace Pointer, Program Counter, and Status
Register to be printed out after execution of each instruction. Controlled program execution
begins at the value in the program counter, which can be set using the IR command. The ST
command operand is the number (in hexadecimal) of instructions to be executed, with a
default vaiue of one instruction if no operand is specified. The trace function is provided by
printing out the hardware register contents after each instruction execution. To use this
command:

® Initialize the hardware registers to the start of program execution.

® Enter the Software Trace Command.
At each instruction execution, the WP, PC, and ST contents will be printed.
Formats (see paragraph 1.7}:

? STIA] IN] <(CR)>

Number of steps of execution (hexadecimal, defauit = 1)

Example:

Execute 4 instructions under software trace.

2R Finish with a carriage return

W=0710 Space entered

P=0322 5EE Change program counter value, CR exit
?ST3 = Trace 3 instructions

0710 OS5EE 1000
0710 05F0 4000
0710 O05F2 2000 .
? - Return to command scanner

CAUTIONS

1. Execute the software trace on user programs
only. Do not execute this program on one of
the SDB utilities.

2. This command cannot be stopped before
completion of all instructions executed (can-
not be stopped by ESC key).

6.5.9 EXIT USING ESCKEY

To exit a debugger command, press the ESC key and control reverts to the debugger
command scanner. A second ESC key entry hands over control to the monitor.

6-8

71

SECTION 7
EPROM PROGRAMMER

GENERAL
This program allows the user to program the following EPROMSs:

® TMS 2708 EPROM

® TMS 2716 EPROM

® TMS 2508 EPROM

® TMS 2516 EPROM

® TMS 2532 EPROM
Prior to programming these EPROMs, the user object program must be loaded into memory
using the Relocating Loader (Section 5). This program will have gone through the software
development cycle of generation by text editing, assembly into object, load object into
memory and program debug, then repetition of this cycle (edit-assemble-load-debug) until
final approval of the object program. The second consideration in paragraph 7.3 explains a

restriction on reading in data to be programmed.

Two hardware selections must be made before the erased EPROM can be inserted and the
EPROM programming software called up. These include:

® selection of the correct personality card for the EPROM type

® insertion of jumpers on the personality card corresponding to the specific EPROM
to be programmed. .

It is assumed that the system memory will have been correctly configured according to the
memory mapping switch on the TM 990/302 board (see paragraph 2.3.3.1).

When the system is configured properly, the EPROM Programmer can be called up. It has four
basic features available to the user:

® program the EPROM with the contents of the designated memory addresses in
either inline mode (consecutive byte addresses) or parallel mode (all even bytes or
all odd bytes). The values programmed into EPROM are automatically compared to
the designated memory address upon compietion.

® compare EPROM contents to memory contents; this is especially useful in checking
a just-programmed EPROM for correct data transfer and is an automatic feature of
the EPROM programmer

® read EPROM contents into memory (no copy verification is made)

® verify that the EPROM is erased (all ones)

7-1

7.2

73

7.4

15

751

SYSTEM CONFIGURATION

System configuration should consist of the following:

e TM990/302 and microcomputer boards with program to be placed into the EPROM
already loaded into RAM using the Relocating Loader (Section 5)

® +35to +55V power supply
® terminal for interactive control
® personality card for the EPROM to be programmed
® erased EPROM
This configuration is shown graphically in Figure 7-1.
CONSIDERATIONS

e The EPROM Programmer requires a 35 to 55 voit power supply. The TM 990/518
power supply provides this power requirement.

® Bits on the EPROM can be mistakenly programmed if the EPROM is inserted in the
personality card attached to the TM 990/302 board while EPROM programming
voltage is applied to the board and data is being read from a cassette. This
necessitates that the program to be programmed on the EPROM be read from
cassette while the EPROM is not connected to the TM 990/302 board or while
EPROM programming power is not connected to the board.

EPROM ERASURE PROCEDURE

The EPROM can be erased by exposing the chip to ultraviolet light (wavelength of 2537
angstroms) through the transparent window on the chip. Recommended exposure is ten
watt-seconds per centimeter which is equivalent to approximately 30 minutes exposure to a
filterless model S52 short wave ultraviolet lamp approximately 2.5 centimeters above the
EPROM. EPROM erasure state is all ones.

SYSTEM SETUP

EPROM PERSONALITY CARD

An EPROM personality card attaches to the TM 990/302 SDB board at connector P3 as shown
in Figure 7-2. This card provides the socket to hold the EPROM as well as interface circuitry
between the SDB and the EPROM.

There are two personality cards available for the TM 990/302 SDB. As shown in Table 7-1, each
card is used for programming more than one EPROM type.

7-2

75.2

TABLE 7-1. PERSONALITY CARD CHARACTERISTICS

FOR PROGRAMMING PART NUMBER
TMS 2708 and TMS 2716 TM 990/514
TMS 2508, TMS 2516, and TMS 2532 TM 990/515

To insert the personality card, press the female connector on the back of the personality card
on to connector P3 (left side of the TM 990/302 Board). Note the top and bottom of card as

shown in Figure 7-2. LED DS1 will glow when the personality card is properly attached.

INSERT PROM INTO PERSONALITY CARD, DESIGNATE PROM MODEL

Insert the EPROM to be programmed into the personality card as shown in Figure 7-2. Align
the pins with pin one of the EPROM in the top right (facing the card) of the socket on the

personality card. Take care to prevent pins from being bent.

Two personality cards, as shown in Table 7-1, are used to hold two different EPROM models.
To designate which model is being programmed, position the three jumpers on the right side

of the card onto the pins corresponding to the PROM model as shown in Table 7-2.

TABLE 7-2. JUMPER PLACEMENT ON PERSONALITY CARD

EPROM MODEL CARD NUMBER JUMPER PLACEMENT ON CARD
TMS 2708 TM 990/514 2708
TMS 2716 TM 890/514 2716
TMS 2508 TM 990/515 2508
TMS 2516 TM 990/515 2516
TMS 2532 TM 990/515 2532
POWER
SUPPLY

T™M 990/302 BOARD
(CODE TO BE
PROGRAMMED IN RAM)

TM 980/10X BOARD

EE

PERSONALITY CARD TERMINAL FOR INTERACTIVE

COMMUNICATION

Figure 7-1. Typical EPROM Programming Configuration

7-3

CONNECTOR P3 OF TM 990/302 BOARD

R S
— SET THREE JUMPERS TO RIGHT OR LEFT

* POSITION ACCORDING TO EPROM TYPE

Z7

2716 2708

ﬁ0081 /
. L.E.D.GLOWS WHEN CARD -‘/ PIN 1 OF‘/ L.E.D. GLOWS

INSERTED CORRECTLY ON EPROMIN ppoGa e
TM 990/302 BOARD UPPER RIGHT
CORNER OF
SOCKET

Figure 7-2. Personality Card

753 PERSONALITY CARDLED'S

7.6

If the personality card is inserted incorrectly (e.g., upside down), the LED marked GO on the
card will be extinguished. When inserted correctly, this light will glow.

While the EPROM is being programmed, the following LED’s will illuminate:
® LED on the right side of the personality card
® LED on the TM 990/302 board (next to edge connector P2).

COMMANDS

The EPROM Programmer is called by the EP mnemonic request to the command scanner of
the SDB monitor. The EPROM Programmer responds with a question mark:

finish with a carriage return
question mark response

.EP
?

A A

One of four responses can be input to the question mark (?) inquiry:
®PP Program the EPROM (paragraph 7.6.1). This response also compares EPROM
contents to memory contents (the same as the CE command below) when
programming is complete

o CE Compare the EPROM contents with the contents of memory; this can be used
to verify data in a just-programmed PROM (paragraph 7.6.2)

74

7.6.1

® RE Read the contents of the EPROM into memory; this can also be used for PROM
data verification (paragraph 7.6.3)

o VE Verify that the EPROM is erased (all ones) (paragraph 7.6.4)

Commands PP, CE, and RE use the same five- to six-field format as explained in paragraph
7.6.1 for the PP command. Parameters in the second line are completed with a carriage return.

NOTE
If the second line parameters cannot be inter-
preted by the EPROM Programmer, the question
mark prompt will be reissued. ’

PROGRAM THE EPROM COMMAND (PP)

The EPROM programming software is called by the mnemonic PP followed by five or six fields
of description data in answer to the question mark inquiry on the terminal:

Format (see paragraph 1.7):

EP « finish with a carriage return

?PP <EPROM type_> {/,\}<mem start>{’}}mem stop{/}}<EPROM stan>{’,\}<P/|>{1}}[byte start]<(CR) >
no comma or space

The fields in the second line of the EPROM programming call require specific data before the
EPROM programming will begin. When programming is complete, the EPROM Programmer
will compare EPROM contents to memory contents, and give a comparison result similar to
the CE command (paragraph 7.6.2). The fields in the second line are explained below in their
order of appearance. After each explanation is an example using the command fields so far

© covered.

?PP EPROM type This field specifies the four-digit number of the EPROM to be programmed
(2708, 2716, 2508, 2516, or 2532). The software will then verify that the
carrect personality card is being used and the correct jumpers are in place
on the personality card for the EPROM being programmed (see paragraphs
7.56.1 and 7.5.2 for personality card setup). For example:

.EP
?PP2708,

NOTE

If the card or jumpers are not correct, the question
mark prompt will be reissued.

Mem Start This field specifies the start address in memory that contains the program to
be programmed in the EPROM. This is a hexadecimal number not preceded
by a greater-than sign. For example:

EP
?PP2708,1000,

7-5

Mem Stop

EPROM Start

P/l

This field specifies the last address in memory that contains the programto
be programmed in the EPROM. This is a hexadecimal number not preceded
by a greater-than sign. For example:

.EP
?PP2708,1000,102C,

program the EPROM with the 45 bytes in
M.A. 100016 to 102C1¢

This field specifies the EPROM address of the first byte in the EPROM to be
programmed.

This allows partial programming of the EPROM (thus allowing pro-
gramming of the EPROM in stages), if desired, since only the program area
specified from the Mem Start to the Mem Stop fields wiil be programmed at
any one time. The number must be hexadecimal, not preceded by a greater-
than sign. If the address is too large, programming will be repeated. There is
no provision to determine if any of the EPROM area has already been
programmed. There is no need to specify an EPROM ending address, since
this will be determined from the memory area containing the code
(determined from the Mem Stop-Mem Start value). For example:

EP
?PP2708,1000,102C,4AC,

Zprogram the EPROM with the contents of memory
addresses 100016 to 102Cq¢ beginning at EPROM address
004C16

In this field, place an | for in-line mode or a P for parallel mode. These two
modes are shown graphically in Figure 7-3. In the in-line mode, the EPROM
is programmed with continuous contents of the memory addresses
specified. In parallel mode, the EPROM is programmed with either the even
or odd memory address contents (this allows 16-bit machine code to be
contained in two 8-bit even- and odd-byte EPROM sections, the
addressing configuration of TM 990 microcomputer boards).

if-the | mode is given, EPROM programming begins in the in-line mode
immediately. If the P mode is given, another inquiry follows (this inquiry).
For example:

.EP
?7PP2708,1000,102C,4C,| = finish with CR

NOTE

in-line mode with programming execution be-
gins when carriage return is executed; if P
{parallel) mode given, one more inquiry is issued
(explained below, page 7-8).

7-6

RAM MEMORY START BYTE

MEMORY EVEN BYTE
MEMORY ODD BYTE

\

/— EPROM BYTES

6 O— «— EPROM START
———-——\-
6 _ CX\\

MEMORY LIMIT —»

(a) In-Line EPROM Programming

RAM MEMORY START BYTE

~— EPROM BYTES

-<«+— EPROM START

ocm\'

® []
[] L]
[] ®
MEMORY LIMIT O
N —

(b) Parallel EPROM Programming
(Either Even or Odd Memory Bytes
Programmed on EPROM)

Figure 7-3. In-Line And Parallel EPROM Programming

Byte Start

This field is necessary only if a “P" response is entered in the P/l field.
Because the parallel mode will program the EPROM with either the even-or
odd-byte memory address contents, this must be specified before pro-
gramming. The response to this command designates whether to start at
the beginning byte specified in the Mem Start field or at the beginning byte
+ 1in that inquiry. A ‘0" (zero) response means to start at the starting byte
in the Mem Start field, and a 1" (one) entry means to start at starting byte +
1. For example, if the memory starting byte is even, then a 0 response would
start the programming with even bytes beginning at the start byte specified
(100016 in the accompanying examples above), and a 1 response would
start programming with odd bytes beginning at the start byte + 1 specified
{10011 in the accompanying examples). Conversely, if the start byte was

-odd, then a 0 response would program using odd-numbered memory
bytes, and a 1 response would program using even-numbered memory
bytes. The carriage return following this inquiry initiates EPROM memory
programming in the paraliel mode. Figure 7-4 depicts data transfer from
memory for both a 0 or 1 answer with the memory bounds starting at an
even address. The following is a list of inquiries for a completed EPROM
programming procedure in the parallel mode:

EP
?PP2708,1000,102C,4C,P,0 -= followed by a CR

Zbeginning at EPROM address 004C1g, program in the contents
of the even memory addresses from 10001g to 102C1¢

During programming, the LED’s on the personality (Figure 7-2) and TM 990/302 card (Figure
1-1) will iluminate. When programming is complete, the EPROM Programmer will compare
the contents of the EPROM with the contents of memory to verify data programmed. This
comparison will be run ten times. If data is found to be erroneous, a message will be printed of
the memory address and contents (first) and also the corresponding EPROM contents
(second). This printout will occur ten times if the error is found during all of the ten com-
parisons. When complete, the message “DONE" is then printed. For example:

.EP

?PP2708,1000,102C,4C,P,0

100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
100C=00
DONE

?

0058=40
0058=40 ,
0058=40 EPROM BYTE 00581¢g was programmed with
0058=40 data from memory byte 100C1g, but a
0058=40 comparison on contents after programming
0058=40 shows the data differs. Error found

0058=40 during all ten comparisons.

0058=40
0058=40
0058=40

7-8

-«— EPROM START

RAM MEMORY START BYTE
/ a EPROM BYTES
O-
O
O;
O-
O

. .
.)
. °
O .
MEMORY LIMIT O
4

(a} Program Even Memory Bytes into EPROM

RAM MEMORY START BYTE
/ /— EPROM BYTES

O <— EPROM START
O -
O
O~

O
G
O-

MEMORY LIMIT O

' 7

{b)} Program OddNumbered Memory Bytes into EPROM

Figure 7-4. Data Transfer In Parallel Programming Mode

7-9

76.2

NOTE

If the EPROM fails the comparison immediately
after programming, the user should wait about
one minute to allow the EPROM to cool. In some
cases excessive heat caused by programming the
EPROM may cause the data to be read incorrectly.
The user should wait a few minutes and verify the
data using the ‘CE’ command.

.COMPARE EPROM CONTENTS COMMAND (CE)

This command compares the contents programmed in the EPROM to the corresponding
contents of memory in order to verify that the EPROM has been correctly programmed. This
comparison is run ten times. Command format is the same as for the EPROM Programming
command explained in paragraph 7.6.1. When the comparison is complete, control returns to
the EPROM programmer command scanner and a question mark (?) promptis issued.

7.6.2.1 Format

?CE-~EPROM type - {’,‘}<mem start> {A} <mem stop: {/}}cEPROM stan>{/.\}<P/l‘>{/,\}[byte start}- (CR) -

Nno comma or space

e EPROMtype: 2708, 2716, 2508, 2516, or 2532

® Mem Start:hexadecimal start address of memory contents to be compared

® Mem Stop: hexadecimal final address of memory contents to be compared

® EPROM Start: starting byte in the EPROM to be checked (this will be the EPROM
byte programmed with the contents of the byte in the mem start field), a hexa-
decimal number :

® P/l parallel or in-line mode (see paragraph 7.6.1 and Figure 7-3) '

® Byte Start: Mem Start address or Mem Start address + 1 for parallel mode.

These fields are explained in detail in paragraph 7.6.1. Note that these hexadecimal numbers
are not preceded by a greater-than sign.

If contents of a byte in the EPROM differs from the contents of the corresponding memory
byte, a one-line message is written showing the contents of both the memory address and
EPROM address (in that order) for each mismatch found. Since this comparison is run ten
times, the error message can be written that many times. When the entire compare process is
complete, the message “DONE" is printed and control returns to the SDB command scanner.

7-10

7.6.2.2 Examples

(1) .EP finish with carriage returns
?CE2708,1000,102C,4C,P,0
100B=40 0057=00 comparison discrepancies found during
100B=40 0057=00 all ten comparisons.
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00
100B=40 0057=00 J
DONE \ \
? memory EPROM
addr. and addr. and
contents contents
(2) .EP = finish with carriage return
?CE2716,2000,2400,0,1
DONE «=— EPROM/memory comparison okay
? return to programmer command scanner

7.6.3 READ EPROM CONTENTS INTO MEMORY COMMAND (RE)

This command reads the contents in the EPROM into a designated memory area. This can be
used with the Dump Memory command (Section 8) in order to store object on cassette for later
debugging, EPROM programming, etc. Command format is the same as for the EPROM
Programming command explained in paragraph 7.6.1. No check is made to verify correct data
transfer. When data transfer is complete, the word “DONE” is printed out and control retu ms
to the SDB monitor and a period (.) prompt is issued.

7.6.3.1 Format

?RE<EPROM type>- {A} <mem start> {A}<mem stop>{ } <EPROM start> {/}}»:P/b {'}}[byte start}- (CR) -

NO comma or space

® EPROM Type: 2708, 2716, 2508, 2516, 2532, or 9940

® Mem Start: hexadecimal start address of memory area to be written to

® Mem Stop: hexadecimal final address of memory area to be written to

e EPROM Start: startmg byte in the EPROM to be read into memory (hexadecimal

value)

® P/l: parallel or in-line mode (see paragraph 7.6.1 and Figure 7-3)

® Byte Start: mem start address or mem start address + 1 for parallel mode.

7-11

These fields are explained in detail in paragraph 7.6.1.

Only the memory area specified will be written to with data from the EPROM beginning at the
EPROM address specified. If the memory area is larger than the EPROM contents to be stored,
memaory bytes not written to will not be altered. If the P mode (parallel) is requested, data
transfer will be from the EPROM bytes to:

® every other byte beginning at the EPROM start address if a 0 (zero) is specified in the
“Byte Start” field

® every other byte beginning at the EPROM start address + 1ifa 1 {one) is specified in
the “‘Byte Start” field.

7.6.3.2 Examples

764

(1) .EP
'?RE2516,2800,29FF,0,1 finish with a carriage return

DONE \
? transfer the EPROM contents, in inline mode,

beginning at EPROM address 0, to memory addresses
280016 to 29FF 16

{2) Inthis example, transfer the contents of two TMS 2708 EPROM'’s (1K by 8 each) into
memory. The EPROM's have been programmed in the parallel mode; thus, one will
be read into the even-number bytes and the other read into the odd-number bytes,
beginning at memory address 1000.

EP
?RE2708,1000,17FE,0,P.0

DONE ’ load at M.A. 10001¢, 100216, 100416,...,17FE16
.EP ‘
?RE2708,1000,17FF,0,P,1

DONE load at M.A. 10011¢, 100316, 100516,...,17FF16
e returnto command scanner

Note: the second EPROM reading sequence could also have been:
?RE2708,1001,17FF,0,P,0

VERIFY EPROM AREA IS ERASED COMMAND (VE)

This command checks designated memory addresses in the EPROM for an erased condition
(all ones). The format consists of the mnemonic VE followed by the EPROM type and the
hexadecimal beginning and ending addresses of the EPROM area to be verified (no greater-
than sign precedes the hexadecimal number). The command is completed with a carriage
return. As the case with the CE command (paragraph 7.6.2), the specified condition is checked
for ten times, and discrepancies are printed out as many times as found. If non-erased bytes
are found, the addresses and their contents are printed out; no printout indicates all addresses
checked were erased. When the verification process is complete, the word “DONE" is printed
out and control is returned to the SDB command scanner with a period (.) printed on the
terminal.

7-12

7.6.4.1 Format

?VE,<EPROM Type> {4} <Start Address> {4} <Ending Address> <(CR)>

[

No ComMma or space
7.6.4.2 Examples

(1) .EP
?VE2716,0,7FF -= finish with a carriage return
0710=EF N
074B=FB
0710=EF
074B=FB \ bytes not fully erased
0710=EF (found during all ten checks)
074B=FB
0710=EF
0748=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB
0710=EF
074B=FB W,
DONE
? - return to command scanner

(2) .EP
?VE2708,400,7FF
DONE all bytes found erased
?

7-13

8.1

8.2

8.3

SECTION 8
DUMP MEMORY COMMAND

GENERAL

This program dumps object programs in memory to a cassette. The object programs are
dumped in absolute format which is not relocatable in a later load by the Relocatable Loader
(i.e., the object code will not have relocatable code tags; thus, to later reload and execute the
code, it must be reloaded at the absolute address at which it can properly execute).

FORMAT

The format is on two lines. The first line is in response to the period (.) prompt by the monitor.
This line specifies the Dump Memory command and the DEVNO of the cassette to which the
object will be dumped; it is executed by a carriage return. The second line is in response to the
question mark {?) prompt by the Dump Memory command. This line contains the memory
bounds of the object to be dumped: the start and stop address of the object, both addresses
should be even values. Both lines are completed by carriage returns, and delimiters between
fields can be commas or spaces. Addresses must be hexadecimal without the greater-than
sign (>).

DM {‘,‘}<DEVNO> <(CR)>
A

? <start address> {} <stop address>> <(CR)>

EXAMPLE
.DM 2 Both lines completed
21000,14FE with carriage returns

\-_— Dump to cassette 1 the object program contained in memory addresses
100016 to 14FE16

81

9.1

9.2

9.3

9.4

95

SECTION 9
SETTING BAUD RATE AT SECOND EIA PORT

GENERAL

There are two kinds of CPU boards (TM 390/100M and TM 990/101M) that can be used in the
TM 990/302 system. One major difference between these two CPU boards is that two EIA
connectors are provided on the TM 990/101M while only one EIA connector is provided on the
TM 990/100M board. If the TM 990/101M board is used, the set rate {SR) command is needed
to set up the proper baud rate for the second EIA port (port P3, the middle port on the outside
edge when inserted in the card cage). In order to use this port, the user must specify the port
baud rate using the SR (set rate) command.

CONSIDERATIONS

On the second EIA port, the data format is fixed for one start bit, two stop bits, even parity, and
seven data bits. The only thing the user needs to set up is the baud rate. The available baud
rates are: 110, 300, 1200, 2400, 4800, 9600, and 19,200 Hz.

FORMAT

SR <{(CR)
? <BAUD RATE> <(CR)>

EXAMPLES

(1) .SR
719200 Set to 19.2K baud

(2) .SR
21200 Set to 1200 baud

ERROR CODE
if a nonsupported rate is specified in the SR command, the following message is output:
**ERROR 91

To recover, re-execute the SR command with one of the baud rates specified in paragraph 9.2,

91

101

10.2

10.3

SECTION 10
USER UTILITY CALLS

GENERAL

There are several user callable utilities in the TM 990/302 system software. These utilities can
provide very important assistance to the user in debugging and be of use when coding an
exercise program. The entries to these utilities are through BLWP instructions. A table of
BLWP vectors is located in lower system software ROM. The utilities use their own
workspaces.

CONSIDERATIONS

Since the entry of the utilities require BLWP vectors, any attempt to get into the utilities with
other than the required BLWP instruction will cause an unknown resuit. These utilities are
located at memory addresses 801¢ through 3FF1g; thus these locations are reserved.

UTILITIES

10.3.1 TM 990/302 RETURN TO SYSTEM SOFTWARE

This is not a utility as much as it is an entry point to the TM 990/302 system software. It
provides a convenient way of returning from user’s program to TM 990/302 system program.

Calling sequence:

BLWP @=>-E000

10.3.2 DECIMAL ASCII TO BINARY CONVERSION

This routine converts the signed decimal ASCH number to a binary value in two’'s complement
form. The conversion range is from —32768 to +32767. The conversion stops when a
character other than a decimal ASCIl character (hexadecimal 30 to 39 following the sign
character) is detected in the number string. Before it is called, register R1 should contain the
ASCII-number buffer address. After completion, register R0 contains the binary result and R1
points to one byte after the last ASCIl digit.

Calling sequence:

BLWP @>E004
Example:
Li R1,BUFF R1 ponts to the ASCIl buffer
BLwpP @=>E004 Do a conversion
MOV RO,R10 Put resuit into R10
BUFF TEXT ‘—12366’ Decimal ASCII character string
BYTE 0 Terminate string with a non-decimal ASCII

101

10.3.3 HEXADECIMAL ASCII TO BINARY CONVERSION

This routine converts a hexadecimal number to a binary value. The conversion range is from 0

- to FFFF16. The conversion stops when a character other than a hexadecimal ASCII character
{(hexadecimal 30 to 39 and 41 to 46) is detected in the number string. Before it is called, register
R1 should contain the buffer address of the hex ASCHl number. After it is returned, RO contains
the binary result and R1 points to one byte after the last ASCH digit.

Calling sequence:

BLWP @=>E008
Example:
L R1,BUFF R1 points to ASCll buffer
BLWP @>E008 Do a conversion
MOV RO,R10 Put result into R10
BUFF TEXT ‘“1BA’ Hexadecimal ASCIl character string
BYTE 0 : Terminate string with a non-hexadecimal ASC

10.3.4 BINARY TO DECIMAL ASCH CONVERSION

This routine converts a binary value in two's complement form to a signed decimal ASCI|
number. The ASCII result is terminated with a ‘space’ (hexadecimal 20). Before it's called, RO
should contain the binary value and R1 the ASCII buffer address. After it’s returned R1 points
to one byte after last digit.

Calling sequence:

BLWP @>E00C
Example:
MOV @NUM,RO Place binary number in RO
L R1,BUFF R1 points to buffer
BLWP @>EQ00C Do a conversion, decimal ASCli in BUFF
NUM DATA 1234

10.3.5 BINARY TO HEXADECIMAL ASCIl CONVERSION
This routine converts a binary value to a hexadecimal ASCH number. The ASCH result is
terminated with a ‘space’ (hexadecimal 20) which is the string delimiter for the print ASCII
routine. Before the conversion is called, RO should contain the binary number and R1 should
contain the hex ASCHl buffer address. After it’s returned, R1 points to one byte after the last
digit.
Calling sequence:

BLWP @>EO010

10-2

Example:

MOV @NUM,R0 RO contains hex number

L R1,BUFF R1 points to buffer

BLWP @>E010 Do a conversion, decimal ASCH in BUFF
NUM DATA >FFB0O

10.3.6 ECHO CHARACTER ON THE PRIMARY EIA PORT

This routine inputs a character from the EIA terminal and echoes it back to the primary EIA port
(port P2 on the microcomputer). The character is stored in the high order byte of RO.

Calling sequence:
BLWP @:>E014
10.3.7 OUTPUT A CHARACTER TO THE PRIMARY EIA PORT

This routine outputs an ASCII character which is stored in the high order byte of R0. The
character is output at EIA port P2 on the microcomputer board.

Calling sequence:

BLWP @=>E018

Example:
LI R0,>3000 RO contains an ASCII0 in high order byte
BLWP @=>>E018 Output it

10.3.8 OUTPUT A MESSAGE TO THE PRIMARY EIA PORT
This routine outputs a string of ASCll characters to the primary EIA port (port P2 on the
microcomputer). The output is terminated by a byte of zeroes (null character). Before
execution, RO must contain the address of the message.

Calling sequence:

BLWP @>E01C
Example:
LI RO,MSSG Address of message in RO
BLWP @>Eo01C
MSSG TEXT ‘IT SURE IS EASY TO USFE’ Message
BYTEO Null delimiter

10-3

10.3.9 INPUT UP TO 80 CHARACTERS FROM PRIMARY EIA PORT
This routine inputs up to 80 characters from the P2 port of the TM 990/10X microcomputer.
The character string ends with a carriage return. Characters are stored beginning at M.A
011016.

Calling sequence:

BLWP @:-E020

10-4

SECTION 11
UPLINK BETWEEN TM 990/302 AND HOST COMPUTER

11.1 GENERAL

The TM 990/302 Uplink program allows the Software Development System to be used as an
ASR 733 emulator to communicate with a host computer such as the T1 990/10 or T1990/4. This
feature allows the use of a more powerful computer when doing program development such
as text editing, assembly, link editing, etc. Then the object can be written directly to the
TM 990/302 for final debugging in the test bed environment in which the program wiill
operate. Object program transfer is through a host computer utility such as copy/concatenate.
The Uplink program operates in two basic modes:

TM 990/506 CABLE:
CONNECTOR P1 7O P3 OF TM 990/101M MICROCOMPUTER
CONNECTOR P3 TO HOST COMPUTER EIA BOARD

HOST |
TERMINAL

TM 990/101M

HOST
COMPUTER

Figure 11-1. System Configuration For Uplink Program

1.2

1.21

11.22

11.23

11.24

11.25

11.2.6

e Terminal Mode in which the host computer is accessed and controlled through the
Software Development System keyboard (paragraph 11.4).

® Load Mode in which the TM 990/302 acts as a passive 733 ASR terminal, accessed
{such as for storage on a cassette) through the keyboard of the host computer
(paragraph 11.5).

SYSTEM CONFIGURATION AND EXECUTION CONSIDERATIONS

Figure 11-1 shows the system configuration. The TM 990/302 and TM 990/101M boards are
interconnected through the card cage backplane. The host computer's EIA interface board is
connected to the secondary EIA port on the TM 990/101M via the TM 990/506 cable (this
secondary microcomputer port is necessary for system operation with the Uplink program).
Note that only the TM 990/101M microcomputer can be used.

TM 990/506 CABLE

The TM 990/506 cable should be hooked up with cable connector P1 connected to connector
P3 of the TM 990/101M microcomputer, and with cable connector P3 connected to the 25-pin
EIA port on the host computer. This cabling is a reverse of the configuration in the TM 990/506
User’'s Guide for modem use.

HOST COMPUTER EIA CARD

The EIA card in the host computer must be configured to communicate at the same baud rate
or lower than the console interface on the TM 990/302. The EIA card should be jumpered for 10
bits, both send and receive.

TM 990/101tM BAUD RATE

The second EIA port on the TM 990/101M (P3 attached to cable TM 990/506) must be initialized
to the desired baud rate with the SR command (Section 9). The uplink will not work above 2400
baud.

HOST COMPUTER SOFTWARE

When transferring object code to the TM 990/302 from the host computer, the rewind inhibit
option (RO for TXDS operating systems) for output to digital cassette should be used to avoid
control code problems.

RETURN TO PROGRAM CALL

To return to the program call mode (defined in paragraph 11.3)}, press the CONTROL D
character at the TM 990/302 console. This is the D key pressed while the CONTROL key is
pressed. When executed, the question mark prompt asks for input of load parameters shown
in the example in paragraph 11.3.

RETURN TO MONITOR

To return to the Software Development System monitor press the CONTROL C character at the
TM 990/302 console. This is the C key pressed while the CONTROL key is pressed. When
control is passed to the monitor, the host computer and the TM 990/302 are no longer
communicating with each other.

11.3 UPLINK PROGRAM CALL

14

When the UL command is entered at the TM 990/302 console, the command mode is entered
and a question mark (?) prompt is issued asking for entry of load parameters, the same as
required by the Relocating Loader (Section 5).

Format:

UL = complete with carriage return

?<load address> <,> <load bias> <,> <load length> <,> <start address> <(CR) -
B s p— —

L address within the program to start load

+— number of bytes to load (maximum)

— bias to be added to relocatable code

beginning address where to store program on TM 9390/302 board

The second-line parameters are the same as for the Relocating Loader program, explained in
paragraph 5.1.

When the second line parameters are concluded with a carriage return, the TM 990/302 goes
into the Terminal Mode (paragraph 11.4).

Example:
.SR set baud rate with
71200 SR command (Section 9)
.UL ‘
?71000,0,600,0 -= : loading parameters
NOTE
Control may revert back to the program call by
entering a CONTROL D (EOT, press the D key
while CONTROL key is pressed); the question
mark prompt will appear asking for insertion of
new load parameters.
TERMINAL MODE

in the Terminal Mode, system control is maintained at the Software Development Board
console attached to the TM 990/101M board. In this configuration, the TM 990/302 should

appear like a 733 ASR in that all data sent to the host computer will be echoed back to the
TM 990/302 and printed on the terminal connected to the TM 990/101M. In effect, the
TM 990/302 becomes transparent to the terminal/host communications. All functions at the
host computer (assembilies, file manipulations, etc.) can be done at the 733 ASR through the
TM 990/302. All entries would be the same as if they were entered at the host terminal.

Figure 11-2 and 11-3 are examples of executing the copy/concatenate program on the
T1990/10 and TI990/4 host computers respectively. Both load the same object program to the
TM 990/302.

Host Terminal 302
Terminal

302
Terminal

IR
100
L -

Set baud rate

TASO IS0 FON0 0 -

Call Uplink

UZER I0: REGEER
FRZZCODE: PARNEER

[l oo

COFY - COMCATENRTE

IHFUT ROCEZES MAME (T : CMAIHIOE A
JQUTRUT ACZEZY HAME: Cmus
FEFLRCET: MO
SME-IMUm RECORD LEMGTHS

CadFy COMFLETED

ZvEZTEM COMPMARD IMNTERFRETER - FLEAZE LOG IH\

L Load parameters

990/10 operating

> system executes,

object copied thru
EIA port

CONTROL C pressed at 302

[1] =

&: IF «

TIK

=00
4P=ED4E Q50N
=000n

TES

L

terminal

Call Debugger
at TM 990/302

Figure 11-2. Uplink Program Execution, Tl 990/10 As Host Computer

Host Terminal 302

302

Set baud

rate
B (-TF :
E TLEGD - — Call Uplink

51- (RN -

FlF1a00.ns 1000, 1 - Set load parameters
(Twaan TVITTEM FELEARTE 2, Boot TX990 at host computer
MEMORY ZIZECWORTIZY : Z45T7F AURTLARLE: 16741
o No OCP, execute TX990
TEDE TS eH 1.0 e nn
FEOSESM: THICAT - 3YE
IMEUT: DEC2:iMAIHG-OES . -

ﬁ OUTELT: =1 Execute object copy
JETIONT: RO through EIA port
THCCAT 337543 e
T=T o TTEE1 S o+ [~ 1 i 5] [|:|L:_'

: CONTROL C at 302 terminal
L FROGREM: - to revert to
[. OF TM 990/302 monitor,

= | 7IF call Debugger

£) =S

g F=F03A 1000

| ==Dn4n0n
L T"E':-::

NOTE: Both host and TM 990/302 can use the same terminal.

Figure 11-3. Uplink Program Execution Using TX990 on Host Computer

11-56

115

LOAD MODE

In this mode, the Uplink program executes as if the TM 990/302 is a 733 ASR with digital
cassettes. The Uplink program is called as shown in paragraph 11.3, then control is main-
tained through the host computer console. If a transfer is initiated from the host computer to
one of the cassette drives of the TM 990/302 EIA port, the TM 990/302 will collect one line of
tagged object code, then use the Relocating Loader to place the object code into the memory
of the TM 990/302.

Figure 11-4 is an example of loading object down from the Tl 990/4 host computer to the TM
990/302. Note in this program that if the RO option is not used, the object code will be printed
on the TM 990/302 console. When using the operating system on the T1990/10 computer, the
RO option is not necessary.

At TM 990/302 Console:

At TI 990/4 Console:

FROGRAM: TECCAT -ZWE
IMFUT: DICS:MAING-IYE

OLTRPUT: 21

AFPTIOHZ: RO

THCCAT 9375473 ee

AIRZLS #AF 11 nn: 0z

Figure 11-4. Transferring Object in The Load Mode On T1 9904

After the TM 990/302 Uplink has received the specified amount of data, it will return to the
monitor as shown in Figure 11-4 with the period (.) prompt. The host computer will return to its
monitor or utility menu. After the object code has been down loaded to the TM 990/302 board,
the object can be debugged using the Program Debugger (explained in Section 6)

11-6

APPENDIX A

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/10XM

GENERAL

Figure A-1 shows the wiring configuration required to connect a 3320/5JE Teletype in
a 20 mA current loop with a TM 990/10XM. Other teletypewriter models may require
different connections; therefore, consult the manufacturer for correct wiring of other
models. Teletypewriters can be used with Assembly No. 999211-0001 only.

CAUTION

Note the 117 Vac connection at pins 1 and 2. Be sure that this
voltage is not accidently wired to the TM 990/10XM board.

CONNECTIONS

The following assumes that the teletypewriter is wired as it came from the factory.

(1

(2)

(3)

(4)

(5)

(6)

Locate the 151411 terminal block at the left rear (viewed from the rear) of the
machine (Figure A-1).

Move the white/blue wire from terminal 4 to terminal 5 on the terminal
block.

Move the brown/yellow wire from terminal 3 to terminal 5 on the terminal
block.

Move the purple wire from terminal 8 to terminal 9 on the terminal block {for
20 mA neutral signaling).

Locate the power resistor behind the teletype power supply. Remove the
blue wire from the 750 ohm tap and connect it to the 1450 ohm tap, as shown
in Figure A-2.

Check pins 3, 4, 6, and 7 at terminal strip 151411. Voltage to ground must be
zero with power applied. If not, do not connect to the TM 990/10XM.

NOTE

For teletypewriter operation jumper J11 must be instalied and
J7 must be in the EIA position.

A-1

A-3 TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM 990/10XM has
been activated, reverse connections 6 and 7 at the terminal strip.

TM 990/10XM
P2
OUTPULL
25
PRINTER OUTPUSH
T | 24
INPULL

— e

YBOARD
KEYBO INPUSH

—_—

18

l

(123456789

EEEEEEEEEEE)

/

Qw

TELETYPE

STRiP
151411

MODEL 3320/5JE

TERMINAL

-,
<]

VIOLET{PURPLE)

. YELLOW

BLACK/GREEN

A

\

LEFT REAR VIEW OF TELETYPEWRITER

DETAIL A

WHITE/BROWN

_RED/GREEN
WHITE/YELLOW
- WHITE/BLACK
WHITE/BLUE

I~ BROWN/YELLOW
GREEN/ORANGE
. RED
GRAY(SILVER)

L
b WHITE/RED

117 VAC

117 VAC

*NO.6 SPACE LUGS

Figure A-1. Teletypewriter Terminal Strip Connections

A-2

1450 OHM TAP

DETAIL A

Figure A-2. Teletypewriter Resistor Connection

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector P2 on the
TM 90/10XM and a 743 KSR data terminal. Also shown is the relationship between cable
wires and signals to the serial interface, the TMS 9902. Figure B-2 shows the cable con-
figuration for the 733 data terminal.

NOTE
When using an RS-232-C device, disconnect jumper J11 and
insert jumper J7 in the EIA position.

E1A CABLE
T™ 990/10XM
. A
Is N
P2 P2
TM™S 9902 LA
PROTECTIVE GND '
1
an B RECEIVED DATA , , TRANSMIT DATA
13 743 DATA
2 TRANSMITTED DATA RECEIVE DATA
xOUT 3 3 12 TERMINAL
. 5 oCco REQUEST TO SEND P
ATS T 8 8 1n:
crs |8 DTR » _
— 17 SIGNAL GND
55m SIGNAL GND , ,; ;

NOTE: Suggested E1A cable connectors {(1ITT Cannon or TRW Cinch)
P2: DB 25P
1. DE 155

Figure B-1. EIA RS-232-C Cabling For 743 Data Terminal

B-1

TM 990/10XM EIA CABLE
P1
T™MS 9902
PROTECTIVE GROUND PROTECTIVE GROUND .
an B RECEIVED DATA TRANSMIT DATA 2
xouT |2 TRANSMITTED DATA RECEIVE DATA 3 ’aa
+ 33K, %W T
L ‘ £Ts 5 DATA
AW ‘ OSR 6 TERMINAL
SIGNAL GND SIGNAL GND 7
ATs is ocP REQUEST TO SEND 8
Dsal? DTR DATA TERMINAL READY 20

Figure B-2. EIA RS-232-C Cabling For 733 Data Terminal

APPENDIX C

ASCIl CODE

TABLE C-1. *ASCli CONTROL CODES

BINARY HEXADECIMAL
CONTROL CODE : CODE
NUL — Null 000 0000 00
SOH - Start of heading 000 0001 01
STX — Start of text 000 0010 02
ETX — End of text 000 0011 03
EOT - End of transmission 000 0100 04
ENQ - Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL — Bell 000 0111 07
BS - Backspace 000 1000 08
HT — Horizontal tabulation 000 1001 09
LF - Line feed 000 1010 OA
VT - Vertical tab 000 1011 oB
FF — Form feed 000 1100 oC
CR . — Carriage return 000 1101 oD
SO - Shift out 000 1110 OE
Si — Shift in 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 - Device control 1 ‘ 001 0001 1"
DC2 - Device control 2 001 0010 12
DC3 - Device control 3 001 0011 13
DC4 — Device control 4 (stop) 001 0100 14
NAK — Negative acknowledge 001 0101 15
SYN — Synchronous idle 001 0110 16
ETB — End of transmission block 001 0111 17
CAN - Cancel 001 1000 18
EM - End of medium 001 1001 19
SUB -~ Substitute 001 1010 1A
ESC - Escape 001 1011 1B
FS — File separator 001 1100 1C
GS - Group separator 001 1101 10
RS - Record separator 001 1110 1E
US — Unit separator 001 1111 1F
DEL - Delete, rubout 111 1111 7F

*American Standards institute Publication X3.4-1968

C1

TABLE C-2. *ASCll CHARACTER CODE

HEXADECIMAL

BINARY HEXADECIMAL BINARY
CHARACTER CODE CODE CHARACTER CODE CODE
Space 010 0000 20 P 101 0000 50
' 010 0001 21 Q 101 0001 51
" {dbl. quote) 010 0010 22 R 101 0010 52
010 0011 23 s 101 0011 53
s 010 0100 24 T 101 0100 54
% 010 0101 25 U 101 0101 55
& 010 0110 26 v 101 0110 56
 (sgl. quote) 010 0111 27 w 101 0111 57
{ 010 1000 28 X 101 1000 58
) 010 1001 29 Y 101 1001 59
* (asterisk) 010 1010 2A 4 101 1010 5A
+ 010 1011 28 (101 10N 58
. {comma) 010 1100 2C . 101 1100 5C
~ (minus) 010 1101 20] 101 1101 5D
. (period) 010 1110 2€ A 101 1110 5E
/ 010 1111 2F _ {undertine) 101 1111 5F
o 011 0000 30 110 0000 60
1 011 0001 31 a 110 0001 61
2 011 0010 32 b 110 0010 62
3 011 0011 33 ¢ 110 0011 63
a4 011 0100 34 d 110 0100 64
5 011 0101 35 e 110 0101 65
6 011 0110 36 f 110 0110 66
7 011 0111 37 g 110 0111 67
8 C11 1000 38 h 110 1000 68
) 011 1001 39 ' 110 1001 69

011 1010 3A i 110 1010 6A
; 011 10m 38 k 110 1011 68
< 011 1100 3C i 110 1100 6C

011 1101 3D m 110 1101 6D
> 011 1110 3 n 110 1110 6E
? 011 1111 3F 0 110 1111 6F
@ 100 0000 40 p 111 0000 70
A 100 0001 a1 q 111 0001 7
) 100 0010 a2 r 111 0010 72
c 100 0011 43 s 111 0011 73
o 100 0100 a4 1 111 0100 74
E 100 0101 a5 u 111 0101 75
F 100 0110 46 v 111 0110 76
G 100 0111 47 w 111 0111 77
H 100 1000 a8 x 111 1000 78
1 100 1001 49 y 111 1001 79
J 100 1010 aA z 111 1010 7A
K 100 1011 48 { 111 101 78
L 100 1100 ac ' 111 1100 7C
M 100 1101 4D } 11 1101 70
N 100 1110 4 ~ 111 1110 7€
o) 100 1111 aF

*American Standards Institute Publication X3.4-1968

A1

D-2

D-2.1

APPENDIXD

BINARY, DECIMAL AND HEXADECIMAL NUMBERING

GENERAL
This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

POSITIVE NUMBERS

Decimal (Base 10).
When a numerical quantity is viewed from right to left, the right-most digit represents
the base number to the exponent 0. The next digit represents the base number to the
exponent 1, the next to the exponent 2, then exponent 3, etc. For example, using the
base 10 (decimal):

106 105 104 103 102 101 100
X, X X X, X X X

or

1,000,000
100,000
l 10,000
y 1000 100 10 1
X, XXX, X X X

For example, 75,264 can be broken down as follows:

75, 2
TT T ‘
l———4x100=4x1 = 4
6x101=6x10 = 60
L 2x102=2x100 = 200
5x103=5x 1000 = 5000
7 x 104 =7 x 10,000= +70,000

7526419

D-1

D-2.2 Binary (Base 2).
As base 10 numbers use ten digits, base 2 numbers use only 0 and 1. When viewed
from right to left, they each represent the number 2 to the powers 0, 1, 2, etc,,
respectively as shown below:

215 26 25 24 23 22 21 20
(32,768) ee®e® (64) (32) (16) (8) (4) (2) (1)
X eoe X X X X X X X

For example, 110112 can be translated into base 10 as follows:
1 1 0 1 1

» l Lix20=1x1 =1
1x21=1%x2 =2
0x22=0x4 =0

1x23=1%x8 =8
1x24=1x16=+16

2710
or 110112 equals 2719.
Binary is the language of the digital computer. For example, to place the decimal
quantity 23 2310) into a 16-bit memory cell, set the bits to the following:
0 _ 15

o/|o|jo|ojlO0jOojO|O|O|OjO([TjO|1 1|1

whichis1+ 2+ 4 + 16 = 2319.

D-2.3 HEXADECIMAL (Base 16). Whereas binary uses tow digits and decimal uses ten digits,
hexadecimal uses 16 (0to 9, A, B,C, D, E, and F).

The letters A through F are used to represent the decimal nunbers 10 through 15 as
shown on the following page.

N1o N16 N1o N1e
0 0 8 8
1 1 9 9
2 2 10 A
3 3 1" B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

D-2

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16
to the powers 0, 1, 2, 3, etc., as shown below:

163 162 161 160

(4096) (256) (16) (1)
X X X X

For example, 7 B A 516 can be translated into base 10 as follows:

7 B A 5
I IJOxw0=5x1 = 5
10x161=10x16 = 160
11 %162 =11 x 256 = 2,816
7-163=7x4096 = 28,672
31,65310
or 7 b A516 equals 31,6531¢.

Because it would be awkward to write out 16-digit binary numbers to show the
contents of a 16-bit memory word, hexadecimal is used instead. Thus

003E16 or > 003E (> indicates hexadecimal)

is used instead of
0000 0000 0011 11102

to represent 62109 as computed below:
BASE 2

1 1 1 1 1 02

I —I_—1x21 0
1x21 = 2
1x22 = 4
1x23 = 8
1x24 = 16
1x25 = 32
6210

D-3

BASE 10
6 210

2 x 100
6 x 101

I
&~

6210

BASE 16
3 Ei16

. I;-14><160 = 14
3x161 = 48

6210

Note that the 16 binary bits into four-bit parts facilitates recognition and translation

into hexadecimal.
0000 0000 0011 11102/ C 7 B F16
N L
0 0 3 E16 1100 0111 1011 11112

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa.
Table D-2 shows binary, decimal and hexadecimal equivalents for numbers 0 to 15.
Note that Table D-1 is divided into four parts, each part representing four of the 16-bits
of a memory cell or word (bits) 0 to 15 with bit 0 being the most significant bit (MSB)
and bit 15 being the least significant bit (LSB). Note that the MSB is on the left and
represents the highest power of 2 and the LSB on the right represents the 0 power of 2
(20 = 1). As explained later, the MSB can also be used to signify number polarity (+ or
-).

NOTE

To convert a binary number to decimal or hexadecimal, convert
the positive binary value as described in Section D-4.

D-4

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
163 162 161 160
BIIS| 0 1 2 3 4 56 7 [87 8 11 h2 13 14 15
HEX DEC | HEX DEC |HEX DEC |HEX DEC
0 o] o o] o ol o 0
1 4096 1 256 | 1 16] 1 1
2 8192 2 512 2 32| 2 2
3 12288 3 768 | 3 48] 3 3
4 16384| 4 1024 | 4 64| 4 4
5 20480} 5 1280| 5 80| 5 5
6 24576| 6 1536 | 6 9% | 6 6
7 28672| 7 1792} 7 112) 7 7
8 32768| 8 2048 | 8 128 8 8
9 36864) 9 2304| 9 144 9 9
A 40960 A 2560 | A 160 | A 10
B 45056 B 2816| B 176 | B 1
C 49152 C 3072| C 192 C 12
D 53248] D 3328} D 2081 D 13
E 57344)| E 3584 | E 224 | E 14
F 61440 F 38401 F 240 | F 15

To convert a number from hexadecimal, add the decimal equivalents for
each hexadecimal digit. For example, 7A821g would equal in decimal 28,672
+ 2,560 + 128 + 2. to convert hexadecimal to decimal, find the nearest
decimal number in the above table less than or equal to the number being
converted. Set down the hexadecimal equivalent then subtract this number
from the nearest decimal number. Using the remainder(s), repeat this
process. For example:

31,36210 = 700016 + 269010 7000
2,69010 = A0016 + 13010 A0Q0
13010 = 8016 + 210 80
210=216 2

7A8216

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY DECIMAL HEXADECIMAL
(N2) (N10) (N16)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 1 B
1100 12 C
1101 13 D
1110 14 E
111 15 F
10000 16 10
10001 17 11
10010 18 12
10011 19 13
10100 20 14
10101 21 15
10110 22 16
10111 23 17
11000 24 18
11001 25 19
11010 26 1A
1101 27 18
11100 28 1C
11101 29 1D
11110 30 1E
11111 31 1F

100000 32 20

D-6

D-3 ADDING AND SUBTRACTING BINARY

Adding and subtracting inbinary uses the same conventions for decimal; carrying
over in addition and borrowing in subtraction.

Basically,
0 1 10
1 1 : -1
' 10 {the carry, 1, is carried to the left) 01 (1 is borrowed from
top left)
1 1
=0 + carry 1
1 1
: = 0 (from above) + 1 = 1 + 1
%— ’ 101
carry cary 1 + 1 = 10-—————/_
pe 1
1 1000 0110
} =0+ 1 carry
1 -1 Borrowthe 1 | — 1
1 { o1 o1
=0+ 1 carry
b
100

"Lt o

Lcarry 1 + carry 1

R

POSITIVE/NEGATIVE CONVERSION (Binary).

To compute the negative equivalent of a positive binary or hexadecimal number, or
interpret a binary or hexadecimal negative number (determine its positive equivalent)
use the two’s complement of the binary number.

NOTE

To convert a binary number to decimal, convert the positive
binary value (not the negative binary value) and add the sign.

D-7

Two's complementing a binary number includes two simple steps:

a. Obtain one’s complement of the number (1's become 0’s, 0’s becomes 1's)
(invert bits).

b. Add 1tothe one’s complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+29) 111 (12 110 (-23) 101 (-32)
101 Invert 000 Invert 001 Invert 010 lnvert
+1 Add 1 +1 Add 1 +1 Add 1 +1

110 {-29) 001 (+19) 010 (+29) 011 (+39)

This can be expanded to 16-bit positive numbers:

fl

(=39F6;g) 0017 1001 1111 0110 (39F64¢ +14,8381¢)
1100 0110 0000 1001 Invert

+1 Add 1

]

(<C60A;g) 1100 0110 0000 1010 (CE0A;g
SIGN BIT(-)

—14,8381g) Two's Complement

And to 16-bit negative numbers:

(=C60A4g) 1100 0110 0000 1010 (C60A 15
0011 1001 1111 0101 Invert

+1 Add 1

—14,8384¢)

(=39F64g) 0011 1001 1111 0110 (39F64g +14,8381g) Two's Complement

SIGN BIT(+)

D-8

APPENDIX E

ERROR CODES

E-1 SYMBOLIC ASSEMBLER ERROR CODES

Error
No.

Explanation

1

10

11

Invalid Symbol: Symbols must be alphanumerical with the first chéracter alpha-
betical. Use correct format.

Multiply Defined Symbol: Symbol is used to define location of a previous source
line. Use other symbol.

Symbol Table Overflow: Symbol table cannot accept any further entries. Restrict

‘quantity of symbols to amount shown in Table 4-1.

Mnemonic Size Too Large. Op-code mnemonic is more than four characters.
Undefined Mnemonic: Op-code mnemonic is not one of the valid TM 990
mnemonics not a defined XOP mnemonic. Valid TM 990 mnemonics are listed in
Appendix H.

lllegal Register Number: Register number is greater than 15.

CRU Instruction Displacement: Displacement of TB, SBZ, or SBO) instruction is
greater than 256 (pius or minus).

Jump Instruction Displacement: Displacement of jump instruction is greater than
256 (plus or minus).

Invalid Shift Count: Shift count must be from zero to 15.

Non-increasing Location Counter: Memory address in AORG assembler directive
is a smaller value than current value of location counter. This will occur when
second AORG value is less than the value in a prior AORG directive. Location

Counter contents must be in ascending order.

Byte Value Too Large: Operand of BYTE assembler directive is a value larger
than 256.

E-1

12

13

14

15

16

17

18

19

20

No Start of Text: Character string following a TEXT assembler directive did not
start with a single quote. Such character strings are delimited with single quotes.
A single quote within a TEXT directive is specified by two single quotes.

IDT Length Error: Character string of IDT assembler directive {(at beginning of
program) has character string of more than eight characters.

Invalid IDT: Character string of IDT assembler directive did not begin with a single
quote.

llegal Text Statement: Text statement contained character that cannot be
interpreted.

lllegal XOP Number: XOP number above 15 specified. XOP numbers are from 0
to 15.

Undefined Symbol: Symbol was used in an instruction which had not been
defined in the symbol field of the source statement.

Input 1/0 Error: Error in reading source from cassette; probably a checksum
error or improper casette connection. ’

No END Directive: Must have an END directive as last statement in program
(see paragraph F.2.7 in Appendix F). Use Text Editor to input this statement.

lllegal Mathematical Expression. Delete expression (explained in paragraph 4.7).

E-2 TEXT EDITOR ERROR CODES

Error

No.

Explanation

21

Commands: G, K, Q
Meaning: Error in transmission of source statements from cassette to memory
buffer, could be a checksum error or error in data communications tormat.

Recovery Procedure: The program segment with the error is lost and will not be
written to cassette with a Keep or Quit command. A Quit command will write the
remaining program segments to the output cassette; then, the truncated program
can be read in again and the lost source records re-entered. Or, after the Quit
command, read in the original source cassette (with error) to see if the error
reoccurs (any editing in the first session will not be on this cassette). Or, the
program segment can be considered lost and the user can continue editing the
remaining source segments, finishing the session with a Quit command, without
the program segment in error.

E-2

22

23

24

25

26

27

Command: G A
Meaning: There is a source line in the memory buffer with a line number large
than the first line number of a segment brought in from cassette. Incoming
source lines should be ascendingly greater than line numbers in the buffer.

Recovery Procedure: Further input of a program segment is prohibited (i.e., Get
command is prohibited). Commands other than Get can be executed; however,
editing out of the line(s) causing this error will not permit Get command to
execute. A Quit command causes a return to the monitor without reading in
remaining program segments from input cassette. User can re-edit original
source on the input cassette or edit the truncated source on the output cassette.

Command: G
Meaning: Get command cannot be performed because end-of-file (EOF) has been
detected; thus complete program file has been read.

Recovery Procedure: Execute Quit command to write memory buffer contents to
cassette.

Command: G
Meaning: Insufficient space in memory buffer to receive new source records.

Recovery Procedure: Execute Keep command to write buffer contents to.cassette.
Re-execute Get command.

Command: All
Meaning: Text Editor command input is not valid.

Recovery Procedure: Insert valid Text Editor command.

Command: K, R

Meaning: Resequencing of line numbers requested after Keep command
executed. Entire program through EOF marker must have the same line sequence
numbering.

Recovery Procedures:

(1) Continue using present sequencing value

(2) or execute Quit command, reenter Text Editor, and specify new resequencing
value before first Keep command. Last Resequence command will

apply.
Command: P

Meaning: In Print command, ‘irst (beginning) line number to be printed was
larger than second (ending) line number.

E-3

28

29

30

31

32

Recovery Procedure: Reenter command with first line number smaller than
second line number.

Command: P, | :
Meaning: Line number to be printed is too small; a line number of higher value
has been sent to the output cassette.

Recovery Procedure: Reenter command; use a source line number with a value
higher than the highest source line number in the cutput cassette.

Commands: Insertion or change commands

Meaning: Command issued to insert or change a line having a higher value
than the highest-numbered line in the memory buffer.

Recovery Procedure: If line to be inserted or changed has a higher number than
the highest line number memory buffer, use Get command to read in the program
segment containing line numbers in the range desired.

Command: Insertion Command
Meaning: Not enough memory buffer space for line to be inserted or line to
replace existing line. '

Recovery Procedure: Decrease memory buffer contents using a Keep command
or the line deletion command. Then attempt the line insertion again. If insertion
command also causes a line to be deleted (replace existing line), then line to be
replaced was deleted but new line was not inserted in its place.

Command: R

Meaning: Starting line number in Resequence command was a value greater than
9000 (decimal).

Recovery Procedure: Re-execute Resequence Command with a starting-line less
than 9000.

Command: R

Meaning: Resequencing command executed and tried to generate a line number
greater than 9999 during a Keep or a Quit function. Maximum line number
allowed is 9999. '

Recovery Procedure: When the line number reaches 9999, an end-of-file is written
to the cassette, and data following line 9999 is lost. Re-edit the source as
required and begin resequencing lines with a lower beginning number. The
resequencing command increments line numbers from 1 to 8999 by ten, and
increments line numbers from 9000 to 9999 by one.

E4

E-3 RELOCATING LOADER ERROR CODES

Error
No.

Explanation

51

52

Meaning: An invalid load tag was found. The loader interprets several load tags
including 9 (absolute load address), A (relocatable load address), B (absolute
data), and C (relocatable data). Load tags used by the 990 family of computers
are explained in Appendix G.

Recovery: Rewind cassette and re-execute the load operation. If the error re-
occurs, reassemble the program to obtain a new object on cassette.

Meaning: Checksum error occurred. When the object code is formatted into object
records by the assembler, the last load tag field of each record is a checksum value
which is the two’s complement of the sum of all ASCII character values represent-
ing the object code; this includes all characters beginning with the first tag
character in the object record up to and including the 7" tag of the checksum
field. The loader makes a similar computation when loading the object and com-
pares the results to the checksum value. If the comparison is a match, the loaded
data is considered valid.

Recovery: Rewind cassette and re-execute the load operation. If the error
reoccurs, reassemble the program to obtain a new object on cassette.

E-4 BAUD RATE CHANGE ERROR CODE

Error
No. Explanation
91 Meaning: Baud rate specified is not one of the following: 110, 300, 1200, 2400,

4800, 9600, or 19200 Hertz.

Recovery: Specify one of the above baud rates.

E-5

F-2

F-2.1

APPENDIX F

ASSEMBLER DIRECTIVES

GENERAL

This appendix defines the following eleven assembler directives recognized by the
Symbolic Assembler (described in Section 4). Note that at least two of these must be
used in every program: the IDT and END directives. These directives and
corresponding paragraph number are: :

® AORG Absolute origin of statement (absolute location) F.2.1
® BSS Block of memory starting with symbol F.2.2
® BYTE Eight-bit immediate value F.2.3
o DATA Sixteen-bit immediate value F.2.4
® DREG Define registers as being preceded by anR F.2.5
® DXOP Define XOP opcode mnemonic F.2.6
® END End of source code F.2.7
e EQU Label equated to symbol or value F.2.8
® EVEN Location counter to even-numbered address F.2.9
e IDT Identifying symbol for program F.2.10
® TEXT Code character string in ASCIl code ‘ F.2.11
DIRECTIVE FORMATS

Syntax used in this subsection (see paragraph 1.7):
< > ltems enclosed in these must be supplied by the user
[] Itemsenclosed in these are optional
A Indicates at least one space
> Indicates hexadecimal quantity follows
AORG DIRECTIVE
Format:
[label] A <AORG> A <location> A [comment]

The AORG directive places a value in the location counter and defines the source
statement code as beginning at that location. The location value must be in decimal or

F-1

F.2.2

F23

hexadecimal. By default, the location counter for the assembler begins at 000016 and
is incremented by two for each word occupied by the instruction. The first AORG in a
program can be preceded only by an IDT directive. If successive AORG's are used, the
AORG value must be higher than the current contents of the location counter. In the
case of more than one AORG, the length of the object module for the Relocating
Loader is computed as the difference between the lowest AORG value and the highest
address listed in the assembler listing plus two. The loading address is that of the first
AORG. When a label is used with the AORG directive, it is assigned the value that the
directive places in the location counter. Comment field is optional. Example:

AORG >FC00 Begin assembling source code at location
counter value of >FC00

BSS DIRECTIVE
Format:
[tabel] A <BSS> A <number of bytes> A [comment]

The BSS (block with starting symbol) directive advances the location counter (which
the assembler uses to count the bytes of machine code) a quantity of bytes as
specified in the directive. In essence, it “reserves” a block of bytes starting at the next
location counter value; this block will be void of object code when loaded later by the
Relocating Loader. Code assembler after this directive will be loaded following this
block when loaded by the loader. An optional label (in the label field) can be specified
to identify the first location in the block. The byte count must be in decimal or
hexadecimal.

BYTE DIRECTIVE
Format:
[label] A <BYTE> A <1-8 bit value,..., 1-8 bit value> A [comment]

This directive places one or more decimal'or hexadecimal (8 bits maximum) values in
successive bytes. If the value specified is larger than 8 bits (one byte), an error
message is printed and the right-most eight bits are assembled into the byte. When a
label is used, it is assigned the location of the first byte in the directive. If more than
one byte is specified, successive bytes will be separated by commas. Successive
entries to this directive will be placed in consecutive byte locations. Specified bytes
will begin at even or odd addresses, depending upon preceding code.

F-2

F24

F.25

F.2.6

Example:

BYTE 125,240,>FF,0,33

\——Successive bytes to be assembled with hexadecimal
values of each

DATA DIRECTIVE .
Format:

[label] A <DATA> A <1-16 bit value,.., 1-16 bit value> A [comment]
This directive is similar to the BYTE directive (paragraph F.2.3) except that it places 16

bit values into (successive) memory locations. Data is placed in even address
locations.

Example:
DATA <FFFF,1764,>BB,0,444
Assemble as 00BB,0000
REGISTER USAGE
" RX EQU X eg. RI EQU 1

If it is wished to use predefined registers, it will be necessary to define register numbers
with EQU directives.

DXOP DIRECTIVE
Format:
[label] A <DXOP> A <symbol,XOP no.> A [comment]
This directive allows the user to specify a one- to four-character mnemonic in place of

the XOP mnemonic and the XOP number used in an extended operation instruction.
This directive permits the use of a mnemonic to define the use of the particular XOP,

F-3

F.2.7

useful when this instruction is used repeatedly. The DXOP opcode and space are
followed by (1) the mnemonic to be used as the operand of the XOP instruction and (2)
the XOP number, both separated by a comma. The label field is optional, the label will
be assigned the current location counter value.

NOTE
The DXOP directive must be used in the pro-
gram prior to using the abbreviated format it
defines.
For example:
XOP @>FC00,14
can be sirhplified by specifying

DXOP ECHO,14

then using

ECHO @>FCo00
END DIRECTIVE
Format:

[label] A <END> A [entry point] A [comment]

This directive is amandatory for each program. It designates to the assembler that this
is the final input from the source program. In essence, it informs the assembler that all
source lines have been read in and that the next phase of assembling should begin.
This is the last statement in the program, and any statements following it will be
ignored. When the optional label is used, itis assigned the current value in the location
counter. The optional operand field contains a symbol (absolute or relocatable)
specifying the entry point of the program. When the entry-point operand is used, the
entry point is specified in the object code so that the Program Counter will be set to this
value by the loader immediately after loading. The program can then be executed by
the EX command of the Program Debugger.

- Example:

END START

location labelled START is entry point for
program

F-4

F28 EQU DIRECTION

Format:

<label> A <EQU> A <expression> A [comment]

This directive assigns a value to a label for use during assembly. The operand field can
contain a symbol or expression which has been previously defined (e.g., any constant
such as a numerical value or a previously used symbol or expression of these). This
directive allows the user to substitute easily remembered mnemonics in program
source lines. The optional label will be assigned the current value in the location
counter. Mathmatical expressions (e.g., LABL + 5) cannot be used with this directive.

Examples:

(1)

(2)

(3)

SUM EQU- 1
allows using SUM for register 1 such as

MOV @>FC00,SUM MOVE QTY TO R1
instead of
MOV @>FC00,1 MOVE QTY TO R1

INT EQU 9681
allows this constant value to be used in subsequent source lines
LI R1,INT PLACE CONSTANT IN R1
instead of remembering the constant value.
If INT has been previously defined as above, the following
MOV @INT+4,@INT1

will result in moving the value located four bytes beyond location INT into
location INT1. -

F.29 EVENDIRECTIVE

Format:

[label] A <EVEN> A [comment]

F-5

F.2.10

F.2.11

This directive is used to set the location counter at an even numbered value. Ifitis at an
even numbered value, no action is taken. If the location counter is at an odd value, the
quantity of one is added to it. This directive ensures that code will start at an even
address.

IDT DIRECTIVE
Format:
[label] A <IDT> A <‘character strin‘g'> A [comment]

This is a mandatory directive and should be the first statement in a program, pre-
ceding any source statements that will result in object code. The mnemonic is
followed by a space and a character string of one to eight alphanumeric characters in
single quotes. The optional label will be assigned the value of the location counter.

TEXT DIRECTIVE
Format:
[label] A <TEXT> A [-] <’‘character string’> A [comment]

This directive, like the BYTE and DATA directives, is used to generate absolute data for
program use. BYTE and DATA statement operands are interpreted as numerical
values. The TEXT statement operand contains alphanumeric characters which are to
be interpreted into ASCII code. Inputs in the operand field are enclosed in single
quotes. If itis desired to have the last character in the string negated (left-hand sign bit
set to one), place a minus sign before the character string. This latter feature can be
used to identify the final character in the string. The optional label field will be
assigned the value in the location counter; this value will identify the location of the
first character in the string.

Examples:
(1) CMNT . TEXT ‘LOAD TAPE, HIT CR’
(2) CMNT TEXT —'LOAD TAPE, HITCR.

Minus sign preceding text causes final character to be
negated

F-6

APPENDIX G
990 OBJECT CODE FORMAT
G.1 GENERAL

In order to correctly load a program into memory using a loader, the program in
hexadecimal machine code must be in a particular format called object format. Such a
format is required by the Relocating Loader (Section 5 explains loader execution). This
object format has a tag character for each 16-bit word of coding which flags the loader
to perform one of several operations. These operations include:

® Load the code at a user-specified absolute address and resolve relative
addresses. (Most assemblers assemble a program as if it was loaded at
memory address 00001g; thus relative addresses have to be resolved.)

® Load entire program at a specific address.

® Set the program counter to the entry address after loading.

® Check for checksum errors that would indicate a data error in an object
record.

NOTE

The TM 990/302 Symbolic Assembler does not provide
relocatable object code; thus the relocating feature of the first
operation example above is not required. The Symbolic
Assembler utilizes the following object tags only (further
described in Table G-1): 0, 1,7,9,B,and F.

G.2 STANDARD 990 OBJECT CODE

Standard 990 object code consists of a string of hexadecimal digits, each representing

four bits, as shown in Figure G-1.
TAG CHARACTERS

[/7] AT AT

00000SAMPROG 9004 BC06DB000290042C0020A0024BCB1BCO02A7F21AF
A00288024 1800008CB4 180002B0380A00CAC0052C00A 2B02EQC0032B0200BOFOF 7F 1DEF
A00D6BCOAOCO0CAB04C3B8C160C00CCBC1AOC0O0D0OBC072B0281B3A00A00ECB02217F151F
AOOEEB0900BO6C 1AO0EAB1102A00F 28054381 1F882C20C00328C101B0OB44BE0447F 18EF
A01008DD66B0003B80282C00A2B11EDBO3407F832F —
CHECKSUM FIELD —/

'ZOOCEOOIOC 7FCABF

x LENGTH OF RELOCATABLE CODE

RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE)
END OF OBJECT CODE MARKER

Figure G-1. Object Code Example

G-1

The object record consists of a number of tag characters, each followed by one or two
fields as defined in Table G-1. The first character of a record is the first tag character,
which tells the loader which field or pair of fields follows the tag. The next tag
character follows the end of the field or pair of fields associated with the preceding tag
character. When the assembler has no more data for the record, the assembler writes
the tag character 7 followed by the checksum field, and the tag character F, which
requires no fields. The assembler then fills the rest of the record with blanks, and
begins a new record with the appropriate tag character.

Tag character 0 is followed by two fields. The first field contains the number of bytes of
relocatable code, the second field contains the program identifier assigned to the
program by an IDT assembler directive. When no IDT directive is entered, the field
contains blanks. The loader uses the program identifier to identify the program, and
the number of bytes of relocatable code to determine the load bias for the next module
or program. The PX9ASM assembler is unable to determine the value for the first field
until the entire module has been assembled, so PX9ASM places a tag character 0
followed by a zero field and the program identifier at the beginning of the object code
file. At the end of the file, PX9ASM places another tag character zero followed by the
number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the
entry address is absolute. Tag character 2 is used when the entry address is re-
locatable. The hexadecimal field contains the entry address. One of these tags may
appear at the end of the object code file. The associated field is used by the loader to
determine the entry point at which execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when
the last appearance of the symbol in the second field is in relocatable code. Tag
character 4 is used when the last appearance of the symbol is absolute code. The
hexadecimal field contains the location of the last appearance. The symbol in the
second field is the external reference. Both fields are used by the linking loader to
provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code,
with a location, or an absolute zero, and the symbol that is referenced. When the
object code field contains absolute zero, no location in the program requires the
address that corresponds to the reference (an IDT character string, for example).
Otherwise, the address corresponding to the reference will be placed in the location
specified in the object code by the linking loader. The location specified in the object
code similarly contains absolute zero or another location. When it contains absolute
zero, no further linking is required. When it contains a location, the address corres-
ponding to the reference will be placed in that address by the linking loader. The
location of each appearance of a reference in a program contains either an absolute
zero or another location into which the linking loader will place the referenced
address.

G-2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG HEXADECIMAL FIELD
ND FIELD MEANI
CHARACTER (FOUR CHARACTERS) Seco NG
0 Length of all reio- 8-character program Program start
catable code identifier
1 Entry address None Absolute entry
address
2 Entry address None Relocatable entry
address
3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbol catable code
4 Location of last 6-character symbol Externai reference
appearance of last used in absolute
symbot code
5 Location 6-character symbol Relocatabie external
definition
6 Location 6-character symbol Absolute external
definition
7 Checksum for None Checksum
current record
‘ 8 Ignore checksum None Do not checksum for
error
9 Load address None Absolute load
address
A Load address None Relocatable load
address
B Data None Absolute data
C Data None Relocatabie data
D Load bias value® None Load point specifier
F None None End-of-record
G Location 6-character symbol Relocatable symboi
definition
H Location 6-character symbol Absolute symbol
definition

*Not supphied by assembler

Tag characters b and 6 are used for external definitions. Tag character 5 is used when
the location is relocatable. Tag character 6 is used when the location is absolute. Both
fields are used by the linking loader to provide the desired linking to the external
definition. The second field contains the symbol of the external definition.

G-3

Tag character 7 precedes the checksum, which is an error detection word. The check-
sum is formed as the record is being written. It is the 2's complement of the sum of the
8-bit ASCIl values of the characters of the record from the first tag of the record
through the checksum tag 7. If the tag character 7 is replaced by an 8, the checksum
will be ignored. The 8 tag can be used when object code is changed in editing and itis
desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag
character 9 is used when the load address is absolute. Tag character A is used when
the load address is relocatable. The hexadecimal field contains the address at which
the following data word is to be loaded. A load address is required for a data word that
is to be placed in memory at some address other than the next address. The load
address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the
data is absolute; an instruction word or a word that contains text characters or
absolute constants, for example. Tag character C is used for a word that contains a
relocatable address. The hexadecimal field contains the data word. The loader places
the word in memory location specified in the preceding load address field, or in the
memory location that follows the preceding data word.

To have object code loaded at a specific memory address, precede the object program
with the D tag foliowed by the desired memory address (e.g., DFD0O0).

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other
990 assemblers. Tag character G is used when the location or value of the symbol is
relocatable, and tag character H is used when the location or value of the symbol is
absolute. The first field contains the location or value of the symbol, and the second
field contains the symbol to which the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the
record, followed by blanks. This record is referred to as an end-of-module separator
record.

Figure G-2 is an example of an assembler source listing and corresponding object

code. A comparison of the object tag characters and fields with the machine code in
the source listing will show how object code is constructed for use by the loader.

G4

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SAMFLE SDSMAC 945278 #%
PRGE Onial
BO61 / 16T ~SAMPLE’
A2 2900 AL - DATA WSPACE
A3 8082 LASH‘ DRATA START
G894 294 ARG DRTA ©
0005 0886 WSFACE BS5 32
006 926 TABLE BSS 100
0097 PP3A START
0988 098A 24CC CLR 12
9B09 B8V83C P94CH CLR v
0810 GOBE 26> LI 2, TRABLE
0030 ov26” .
Q811 AA32 CSeD MOV O, @TABLE+2
BO34 A3
3912 0896 1001 JMF $+4
2013 0998 LOOP
B914 009 Az LI 4, >1234
909A 1234
PO13 903C 0244 RNDI 4, >FEED
2O9€ FEED
8316 B8R DCR4 MOYB 4. 42+
3017 DOR2 D203 LI - 5. 55555
BBA4 5555
3015 BPRE CBBS MOV S, @TABLE .
Y0R8 Bv26”
Bu13 END
NO ERRORS
DRORRSAMFLE HOODOC OO DOSAREOOOOAN USAEOICCEOGT ORGS0 0V e BC S ONPF SO 0F no
CO028RIOUIENZOIERISIAENSIAEFEEDEIC 3 EQZOSESSSSEC S0SL 00 2a FF SC1F 01
H SAMPLE D0-00- 00 0314323

SHTHARC 345273 ee

Figure G-2. Source Code And Corresponding Object Code

G-5

APPENDIX H

INSTRUCTION SET

INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION
A A000 1 04 X Add (word)
AB 8000 1 05 X Add (byte)
ABS 0740 6 02 X Absolute Value
Al 0220 8 04 X Add Immediate
ANDI 0240 8 02 X AND immediate
B 0440 6 - Branch
BL 0680 6 - Branch and Link (R11)
BLWP 0400 6 - Branch; New Workspace Pointer
c 8000 1 0-2 Compare (word)
CcB 9000 1 0-2,5 Compare (byte)
Cl 0280 8 02 Compare Immediate
CKOF 03C0 7 - User Defined
CKON 03A0 7 - User Defined
CLR 04CO 6 - Clear Operand
CoC 2000 3 2 C pare Ones Corr sp di g
czc 2400 3 2 Compare Zeroes Corresponding
DCA 2C00 9 0-57 Correct BCD Addition {9940)
DCS 2C40 9 05,7 Correct BCD Subtraction (9940)
DEC 0600 6 04 X Decrement (by one)
DECT 0640 6 .04 X Decrement (by two)
DIV 3C00 9 4 Divide
IDLE 0340 7 - Computer Idie
INC 0580 6 o4 X Increment (by one)
INCT 05C0o 6 04 X Increment (by two)
INV 0540 6 02 X Invert {One’s Complement)
JEQ 1300 2 - Jump Equal (ST2=1)
JGT 1500 2 - Jump Greater Than {ST1=1), Arithmetic
JH 1800 2 - Jump High {STO=1 and $T2=0}, Logical
JHE 1400 2 - Jump High or Equat (STO or ST2=1), Logical
JL 1A00 2 - Jump Low {STO and $T2=0), Logical
JLE 1200 2 - Jump Low or Equal {STO=0 or §T2=1), Logical
LT 1100 2 — Jump Less Than (ST1 and ST2=0), Arithmetic
JMP 1000 2 - Jump Unconditional
JNC 1700 2 - Jump No Carry (ST3=0)
JNE 1600 2 - Jump Not Equal (ST2=0}
JNO 1800 2 - Jump No Overflow (ST4=0)
JOoC 1800 2 - Jump On Carry (ST3=1)

H-1

INSTRUCTION SET, ALPHABETICAL INDEX (Concluded)

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION
Jop 1C00 2 - Jump Odd Parity {ST5 1)
LDCR 3000 4 a25 X Load CRU
Ll 0200 8 - X Load Immediate
LiM 2C80 9 14,15 Load Interrupt Mask immediate (9940)
Limi 0300 8 1215 Load Interrupt Mask Immediate
LREX 03EQ 7 12-15 Load and Execute
LWP} 02€E0 8 - Load Immediate to Workspace Pointer
MOV €000 1 02 - X Move (word)
MOvVB D000 1 0-25 X Move (byte)
MPY 3800 9 - Multipty
NEG 0500 6 02 X Negate (Twe's Complement)
ORI\ 0260 8 0-2 X OR immediate
RSET 0360 7 12-15 Reset AU
RTWP 0380 7 015 Return from Context Switch
S 6000 1 0-4 X Subtract {word)
sB8 7000 1 0-5 X Subtract (byte)
SBO 1D00 2 - Set CRU Bit to One
sBZ 1E00 2 Set CRU Bit to Zero
SETO 0700 6 Set Ones
SLA 0A00 5 04 X Shift Left Arithmetic
SOC E000 1 02 X Set Ones Corresponding {(word)
socs8 F000 1 0-2,5 X Set Ones Corresponding (byte)
SRA 0800 5 03 X Shift Right (sign extended)
SRC 0800 5 0-3 X Shift Right Circular
SRL 0900 5 0-3 X Shift Right Logical
STCR 3400 4 0-2,5 X Store From CRU
STST 02C0 8 Store Status Register
STWP 02A0 8 Store Workspace Pointer
swes 06C0O 6 - Swap Bytes
SzC 4000 1 0-2 X Set Zeroes Corresponding {word)
SZC8 5000 1 0-2,5 X Set Zeroes Corresponding {byte)
T8 1F00 2 2 Test CRU Bnt
X 0480 6 - Execute
xXopP 2C00 9 6 Extended Operation
XOR 2800 3 02 X Exclusive OR

H-2

INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED

0200 u Load Immediate 8 02
0220 Al Add immediate 8 04
0240 ANDI And Immediate 8 0-2
0260 ORI Or Immediate 8 02
0280 Cl Compare immediate 8 02
02A0 STWP Store WP 8 -
02C0 STST Store ST 8 -
02E0 LWPH Load WP Immediate 8 -
0300 LIMi Load Int. Mask 8 1215
0340 iDLE tdle 7 -
0360 RSET Reset AU 7 12-15
0380 RTWP Return from Context Sw. 7 0-15
03A0 CKON User Defined 7 -
03Co CKOF User Defined 7 -
03E0 LREX Load & Execute 7 —
0400 BLWP Branch; New WP 6 -
0440 8 Branch 6 -
0480 X Execute 6 -
04CO0 CLR Clear to Zeroes 6 -
0500 NEG Negate to Ones 6 0-2
0540 INV Invert 6 02
0580 INC Increment by 1 6 04
05C0 INCT Increment by 2 6 04
0600 DEC Decrement by 1 6 04
0640 DECT Decrement by 2 6 04
0680 BL Branch and Link 6 —
06C0 SWPB Swap Bytes 6 —
0700 SETO Set to Ones 6 -
0740 - ABS Absolute Value 6 0-2
0800 SRA Shift Right Arithmetic 5 03
0900 SRL Shift Right Logical 5 03
0A00 SLA Shift Left Arithmetic 5 04

. 0800 SRC Shift Right Circular 5 03
1000 JMP Unconditional Jump 2 -
1100 JLT Jump on Less Than 2 -
1200 JLE Jump on Less Than or Equal 2 -
1300 JEQ Jump on Equal 2 -
1400 JHE Jump on High or Equal 2 -
1500 JGT Jump on Greater Than 2 —
1600 JNE Jump on Not Equal 2 -
1700 JNC Jump on No Carry 2 -
1800 JOoC Jump on Carry 2 -
1900 JNO Jump on No Overflow 2 -
1A00 Ju Jump on Low 2 -
1800 JH Jump on High 2 -
1C00 JOP Jump on Odd Parity 2 -
1000 SBO Set CRU Bits to Ones 2 -
1E00 SBZ Set CRU Bits to Zeroes 2 -
1F00 T8 Test CRU Bit 2 2
2000 coc Compare Ones Corresponding 3 2

H-3

INSTRUCTION SET, NUMERICAL INDEX (Conciuded)

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED
2400 czcC Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0.2
2€C00 XOP Extended Operation 9 6
2C00 DCA Correct BCD Addition (9940) 9 0-5,7
2C40 DCS Correct BCD Subtraction (9940) 9 0-5,7
2C80 LM Load interrupt Mask (9940} 9 14-15
3000 LDCR Load CRU 4 0-25
3400 STCR Store CRU 4 025
38¢C0 MPY Muitipty 9 -
3C00 DIV Divide 9 4
4000 sZC Set Zeroes Corresponding (Word} 1 0-2
5000 SZCB Set Zeroes Corresponding (Byte) 1 02,5
6000 S Subtract Word 1 0-4
7000 SB Subtract Byte 1 0-5
8000 (o} Compare Word 1 02
9000 cB Compare Byte 1 025
A000 A Add Word 1 0.4
8000 AB Add Byte 1 0-5
c000 MOV Move Word 1 0-2
D000 MOVB Move Byte 1 0-25
EQQO S0C Set Ones Corresponding (Word) 1 0-2
F000 Selet:] Set Ones Corresponding (Byte) 1 0-2,5
INSTRUCTION FORMATS
FORMAT 0 1 2 3 4 5 7 2 9 10 11 12 13 14 GENERAL USE
1 OPCODE | B | Tp | DR [s 1 SR ARITHMETIC
2 OP CODE T SIGNED DISPLACEMENT Jump
3 OP CODE WR Ts SR LOGICAL
4 OP CODE [~ Tg SR CRU
5 OP CODE] c R SHIFT
6 OP CODE I 1g SR PROGRAM
7 OP CODE NOT USED CONTROL
8 OP CODE N R IMMEDIATE
9 OP CODE [DR [7s SR MPY, DIV, XOP
OP CODE OPERATION CODE
8 BYTE INDICATOR (1=BYTE)
Tp DESTINATION ADDRESS TYPE*
DR DESTINATION REGISTER
Ts SOURCE ADDRESS TYPE*
SR SOURCE REGISTER
C CRU TRANSFER COUNT OR SHIFT COUNT
R REGISTER '
N NOT USED
*TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGI!STER
01 INDIRECT REGISTER
10 { PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)

1

PROGRAM COUNTER RELATIVE + INDEX REGISTER (SR OR DR>0)
INDIRECT REGISTER, AUTCINCREMENT REGISTER

H-4

TO P2ON
T™M 990/302
BOARD

APPENDIX |

SCHEMATIC OF CABLE TM 990/508

BETWEEN AUDIO CASSETTES
AND TM 990/302 BOARD
P2
GND |- LN BLK P1.1 (BARREL)Y RD DATA
\
AUDIO| 2 ! CLR }TWISTED PAIR
IN < P1-2 (TIP) BELDFOIL 8761
3
SHIELD
AUDIO| 4 PR CLR 1 i
ouT 7 \ 3-2 (TiP) WR DATA
5 v BLK TWISTED PAIR
GND < P3-1 (BARREL)/ BELDFOIL 8761
7]
SHIELD
mct -8 P4.1 (BARREL
' ’} RD MOTOR
mco |-8 P42 (TIP) BELDEN 8442
10
MC3 P51 (BARREL)}WR MOTOR
12
MC?2 P52 (TIP) BELDEN 8442
BARREL, PIN
\ TIP, PIN2

CABLE AUDIO CASSETTE
PLUG SOCKET

RD DATA EAR OR MONITOR

WRDATA AUXORMICORLINEIN

RD MOTOR REM
WR MOTOR REM

CAUTION

Do not plug the AUX input and EAR output plugs into the same
recorder at the same time as this may cause ground loop prob-
lems with some recorders.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133

