As you are now the owner of this document which should have come to you for free, please consider making a donation of $£ 1$ or more for the upkeep of the (Radar) website which holds this document. I give my time for free, but it costs me money to bring this document to you. You can donate here https://blunham.com/Misc/Texas

Many thanks.
Please do not upload this copyright pdf document to any other website. Breach of copyright may result in a criminal conviction.

This Acrobat document was generated by me, Colin Hinson, from a document held by me. I requested permission to publish this from Texas Instruments (twice) but received no reply. It is presented here (for free) and this pdf version of the document is my copyright in much the same way as a photograph would be. If you believe the document to be under other copyright, please contact me.

The document should have been downloaded from my website https://blunham.com/, or any mirror site named on that site. If you downloaded it from elsewhere, please let me know (particularly if you were charged for it). You can contact me via my Genuki email page: https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin

You may not copy the file for onward transmission of the data nor attempt to make monetary gain by the use of these files. If you want someone else to have a copy of the file, point them at the website. (https://blunham.com/Misc/Texas). Please do not point them at the file itself as it may move or the site may be updated.

It should be noted that most of the pages are identifiable as having been processed by me.

I put a lot of time into producing these files which is why you are met with this page when you open the file.

If you find missing pages, pages in the wrong order, anything else wrong with the file or simply want to make a comment, please drop me a line (see above).

It is my hope that you find the file of use to you.
Colin Hinson
In the village of Blunham, Bedfordshire.

TM 990/E351 Output Module

 What Nex (1)

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Copyright (c) 1980
TEXAS INSTRUMENTS INCORPORATED

1. INTRODUCTION
1.1 General
1-1
1.2 Manual Organization 1-1
1.3 General Specifications 1-1
1.4 Product Index 1-2
1.5 Applicable Documents 1-2
2. INSTALLATION AND OPERATION
2.1 General 2-1
2.2 Unpacking and Inspection 2-1
2.3 Jumper/Switch Positions 2-1
2.3.1 CRU Base Address Selection 2-1
2.3.2 Eight Position DIP Switch 2-2
2.3.3 Watchdog Timer Options (Jumpers J1, J2, and J3) 2-2
2.3.3.1 First Timeout Jumpers (J2 and J3) 2-3
2.3.3.2 Second Timeout Jumper (J1) 2-3
2.3.3.3 Polling CRU for Second Timeout 2-3
2.4 Front Connector P2 2-4
3. PROGRAMMING
3.1 General 3-1
3.2 Output Ports at Front Connector P2 3-1
3.3 CRU Base Address Nomenclature 3-2
3.4 Selecting Most Significant Bits of CRU Hardware Base Address 3-3
3.5 Selecting CRU Functions 3-3
3.6 Programing Examples 3-5
3.6.1 Write a Logical 1 to Port 0 (Close Circuit at Port 0) 3-5
3.6.2 Write a Logical 1 to Port 5 and Read Echo Back. 3-5
3.6.3 Read Switch S2-3 for Data Level 3-5
3.6.4 Set and Poll Watchdog Timer 3-6
3.6.5 Clear All Output Ports 3-6
3.6.6 Write a Logical 1 to Fort 3, Turn Off All Other Ports and Set the Watchdog Timer 3-6
3.6.7 Sample Program 3-7
4. THEORY OF OPERATION
4.1 General 4-1
4.2 TM 990/E351 Architecture 4-1
4.2.1 CRU Base Address Selector and Decoder 4-1
4.2.2 Data Level Select and Data Level Input Port. 4-1
4.2.3 Control Logic 4-1
4.2.4 Watchdog Timers 4-4
4.2.5 Output Ports 4-5
A SCHEMATICS
B PARTS LIST

C 74LS123 MONOSTABLE MULTIVIBRATOR

LIST OF ILLUSTRATIONS

k'IGURE TITLE PAGE
1-1 TM 990/E351 MODULE DIMENSIONS 1-3
1-2 TM 990.E351 PRINCIPAL COMPONENTS 1-4
1-3 TM 990/E351 BLOCK DIAGRAM 1-5
2-1 EXAMPLE OF PORT O CONTROLLING A 24 V RELAY 2-4
3-1 OUTPUT PORTS AT FRONT CONNECTOR P2 3-1
3-2 CRU ADDRESSING NOMENCLATURE 3-3
3-3 EXAMPLE OF CRU ADDRESSING 3-4
3-4 DERIVATION OF R2'S VALUE IN EXAMPLE 3.6.6 3-7
3-5 DEMONSTRATION DISPLAY FOR THE SAMPLE PROGRAM 3-9
4-1 TM 990/E351 BLOCK DIAGRAM 4-2
4-2 CRU BASE ADDRESS SELECTOR/DECODER 4-3
4-3 DATA LEVEL SELECT/DATA LEVEL INPUT PORT 4-3
4-4 CONTROL LOGIC 4-4
4-5 WATCHDOG TIMER 4-5
4-6 OUTPUT PORTS 4-6
LIST OF TABLES
TABLE IITLE PAGE
1-1 TM 990/E351 CONFIGURATIONS $1-2$
2-1 CRU BASE ADDRESS SELECTED 2-1
3-1 FRONT CONNECTOR P2 PIN ASSIGNMENTS 3-2
3-2 CRU FUNCTION ADDRESSING. 3-4

1.1 GENERAL

The TM $990 / E 351$ is an opto-isolated dc power output module for use with the TM 990/E150 CPU module. The module uses the small, low-cost $100 \times 160 \mathrm{~mm}$ board format (see Figure 1-1) and can provide direct drive for up to eight loads. The loads may be relays, lamps, motors, or other control elements that operate in systems using up to 30 Vdc. . Each port can sink up to 1.2 A . Each port can handle a peak current up to 5 A with a pulse width of less than 10 milliseconds and a duty cycle of less than 10 percent. Other features include:

- Compatible with TM 990/E150 CPU module
- Dual watchdog timer for failsafe operation against improper program sequence
- Echo back feature at each port for software testability and output data verification during program execution
- Easy, low-cost, high reliability I/O connection through DIN41612, Form F, front connector
- DIN41612, Form C, backplane connector
- Small, low-cost $100 \times 160 \mathrm{~mm}$ board format
- Eight-bit dip switch for data input of a data constant

Principal TM 990/E351 components are shown in Figure 1-2. A block diagram for the TM 990/E351 is given in Figure 1-3.

1.2 MANUAL ORGANIZATION

This manual is organized as follows:

- Section 1 covers module characteristics and specifications
- Section 2 shows how to install, power-up, and operate the TM 990/E351
- Section 3 covers the programming aspects of the module
- Section 4 covers the theory of operation with circuit descriptions keyed to schematic diagrams.

1.3 GENERAL SPECIFICATIONS

- Power Requirements: Voltage Regulation | Current | | | |
| :---: | :---: | :---: | :---: |
| | +5 V | $\pm 3 \%$ | 0.4 A |
- Operating Temperature: 00 C to $70^{\circ} \mathrm{C}$
- Storage Temperature: -400 C to $80^{\circ} \mathrm{C}$
- Humidity: 0-95\% non-condensing
- Module Dimensions: See Figure 1-1.
1.4 PRODUCT INDEX

The TM 990/E351 is available in two different configurations. These configurations are listed in Table 1-1.

TABLE 1-1. TM 990/E351 CONFIGURATIONS

'MODEL	DESCRIPTION
TM 990/E351-1	TM 990/E351 shipped with on-board DIP switch, watchdog timer, and user's manual.
TM 990/E351-2	TM 990/E351 shipped without on-board DIP switch, watchdog timer, and user's manual.

1.5 APPLICABLE DOCUMENTS

The following is a list of documents that provide supplementary information for the TM 990/E351 user.

- TMS 9901 Programmable Systems Interface
- The Optoelectronics Data Book (Texas Instuments)
- The TTL Data Book (Texas Instruments)

FIGURE 1-1. TM 990/E351 MODULE DIMENSIONS

O.C. $=$ OPTO COUPLER
P.D. = POWER DRIVER

2.1 GENERAL

The procedures for unpacking and setting up the TM 990/E351 module for operation are given in this section along with a test routine that can be used to check out the module.

2.2 UNPACKING AND INSPECTION

Remove the TM 990/E351 from its carton and discard any protective wrapping. Inspect the module for any damage that might have occurred in shipping. Report any damage to your TI supplier.

2.3 JUMPER/SWITCA POSITIONS

2.3.1 CRD Base Address Selection

The TM $990 / E 351$ output ports can be assigned a unique CRU base address. Either an 8-position socket platform or an 8-position DIP switch (S1) is provided for this CRU base address selection. If $S 1$ is a socket platform, the user has the option of using jumpers or inserting a DIP switch in the socket.

If the socket platform is used, jumpers at S1-8 to Si-1 are inserted to indicate a zero; sockets left unjumpered will be high. If a DIP switch is used, switch settings are $O N=$ zero, $O F F=$ one. Comparator circuitry compares the jumper/switch values with values found on bus address lines A3 (S1-8) to A10 (Si-1). The first address that is available is 000016 . Addresses that are available follow in steps of $1610(1016)$. The jumper/switch positions for selecting a specific CRU hardware base address are given in Table 2-1.

TABLE 2-1. CRU BASE ADDRESS SELECTED

$\begin{gathered} \mathrm{S} 1-8 \\ \text { A3 } \end{gathered}$	$\begin{gathered} \mathrm{S} 1-7 \\ \mathrm{~A}^{2} \end{gathered}$	$\begin{gathered} \mathrm{S} 1-6 \\ \text { A5 } \end{gathered}$	$\begin{gathered} \mathrm{S} 1-5 \\ \mathrm{~A} 6 \end{gathered}$	$\begin{gathered} \text { S1-4 } \\ \text { A7 } \end{gathered}$	$\begin{gathered} \mathrm{S} 1-3 \\ \mathrm{~A} 8 \end{gathered}$	$\begin{gathered} \mathrm{S} 1-2 \\ \mathrm{Ag} \end{gathered}$	$\begin{array}{r} \text { S1-1 } \\ \text { A } 10 \end{array}$	CRU HARDWARE BASE ADDRESS		$\begin{aligned} & \text { SOFTWARE } \\ & \frac{\text { BASE ADDR }}{(\mathrm{HEX})} \end{aligned}$
								(DEC)	(HEX)	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	16	10	20
0	0	0	0	0	0	1	0	32	20	40
0	0	0	0	0	0	1	1	48	30	60
0	0	0	0	0	1	0	0	64	40	80
0	0	0	0	0	1	0	1	80	50	AO
0	0	0	0	0	1	1	0	96	60	CO
0	0	0	0	0	1	1	1	112	70	EO
					-					
0	1	1	1	1	i	1	1	2032	7F0	FEO
-					-					
					-					
1	1	1	1	1	i	1	1	4080	FFO	1 FEO

$0=$ Jumpered or $\mathrm{ON}, 1=$ Unjumpered or OFF

The following procedure can be used to determine the jumper/switch positions for a CRU base address that is not given in Table 2-1.

1) Convert the 3 most significant hex digits of the CRU hardware base address into their binary equivalents.
2) Convert the 8 least significant bits of the binary equivalents into ON/OFF equivalents to determine the jumper/switch positions for si-1 through S1-8. The following jumper/switch definitions apply: $0=$ Jumpered or $O N$, 1 = Unjumpered or OFF.

EXAMPLE: Determine the jumper/switch (S1) positions that are required to select CRU hardware base address $2032_{10}\left(07 \mathrm{FO}_{16}\right)$.

SOLUTION:

1) $0 \quad 7 \quad \mathrm{~F} \quad 0$

000001111111
2) $\begin{array}{llllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ ON OFF OFF OFF OFF OFF OFF OFF $\mathrm{Si}-8 \longrightarrow$ Through $\longrightarrow \longrightarrow \mathrm{Si-1}$

2.3.2 Constant Data Input

An 8-position jumper platform is provided for inputting constants such as parameters or station numbers during program execution. A 74LS251 data selector/multiplexer decodes address lines A12-A14 and provides an output that is determined by the positions of S2-1 (LSB) through S2-8 (MSB). The user may insert an 8-position DIP switch in this platform. The values are as follows;

$$
0=\text { Jumpered or } O N, 1=\text { Unjumpered or } O F F
$$

2.3.3 Watchdog Timer Options (Jumpers J1, J2, and J3)

The TM 990/E351 is protected by a watchdog timer. This timer starts counting down at system reset (IORST- active) or when reset via the CRU (this is covered in detail in Section 3, Programming). Its length of countdown time is dependent upon the impedance circuitry connected to the two 74 LS 123 retriggerable monostable multivibrators that provide the countdown. This impedance is hardware programmable by the size of the capacitance and resistance inserted at pins E10 through E17. A data sheet and application sheet on the 74 L 5123 is provided in Appendix C. It includes formulae on customizing countdown time. As shipped at the factory, there are two countdown periods, one followed by another:

```
- First time period: 20 milliseconds
- Second time period: 10 milliseconds
```

A countdown can be avoided by resetting the watchdog timer via the Commuication Register Unit (CRU) by writing to a displacement of 8 from the hardware base address as covered in Section 3.

The effect of countdown on the system is determined by jumpers as explained in the following paragraphs.
2.3.3.1 First Timeout Jumpers (J2 and J3). The first timeout period occurs approximately 20 milliseconds after the timer is set. This countdown causes the following actions depending upon the jumpers set by the user:

- Output ports can be set to the open state (RESET, jumper J3):
- E8-E7: Reset output ports to open state
- E8-E9: Do not reset output ports to open state

NOTE
Jumper J3 should not be left unconnected. Choose one of the two options above.

- Optionally and at the same timeout, a context switch can be caused to handle the timeout (NMI*, PWRFAIL, jumper J2):
- E5-E6: Powerfail indicated on connector pin P1-A24 (causes interrupt INT1 at TM 990/E150 microcomputer, vectors at 000416 for WP and. 0006_{16} for PC)
- E5-E4: Causes context switch to NMI* (non-maskable interrupt) vectors in upper memory via pin P1-CO4 (vectors at 3FFC 16 for WP and $3 \mathrm{FFE}_{16}$ for PC at TM 990/E150)
- E4/E5/E6 without jumper: No signal sent to CPU

*NOTE

NMI is the same as the LOAD interrupt (vectors in upper memory).
2.3.3.2 Second Timeout Jumper (J1). The second timeout occurs approximately 10 milliseconds after the first timeout. The following occur depending upon the jumper settings:

- E2-E1: System placed in hold mode by GRANTOUT line on system bus being pulled low (it is necssary that the GRANTIN/GRANTOUT jumper on the backplane be removed).
- E2-E3: No hold state issued.

NOTE

Do not leave jumper J 1 unjumpered. Pick one of the two options shown above. If unjumpered, bus arbitration circuitry using GRANTIN and GRANTOUT can be impaired.
2.3.3.3 Polling CRU for Second Timeout. The CRU can be used to poll for issuance of the second timeout. To do this, poll jumper/switch S2-1 as described in Section 3. It is mandatory that jumper/switch S2-1 be in the OFF position for this feature. A one sensed at S2-1 indicates no timeout; a zero indicates a timeout.

See section 3.2 for a description of the front connector (P2) and pin assignments. There are eight possible ports on the TM 990/E351. Each port is divided into a + side and a - side. The purpose of each port is to complete or break the circuit connected to the + side and the -side under software control.

Each port can used to control a circuit operating up to 30 V . The circuit must not exceed 1.2 A continuous current and 5 A peak current.

Two or more ports may be connected together to carry higher currents. If two ports are coupled to the same controlled circuit, then only the LDCR instruction should be used to access the coupled ports. If two SBO instructions are used to access the coupled ports and an interrupt occurs after the execution of the first SBO instruction, then an overload of one of the coupled ports could occur.

Each side of each port (i.e. PO+) is assigned two pins (see Section 3.2). Thus there are 4 pins for each port, two for the negative side and two for the positive side. Both pins of the same polarity on the same port must be connected in parallel to the line being controlled. This decreases the effective resistance of the connection.

For example, Figure $2-1$ shows Port 0 controlling a 24 V relay.

FIGURE 2-1. EXAMPLE OF PORT O CONTROLLING A 24 V RELAY

3.1 GENERAL

This section describes how to use the Communications Register Unit (CRU) to do the following:

- Write to one of eight output ports
- Set the watchdog timer
- Read Data Level
- Clear the output latches
- Read Echo Back

The reader should be familiar with the various jumper options as explained in Section 2.

3.2 OUTPUT PORTS AT FRONT CONNECTOR P2

The 32 pins at front connector P2 are grouped as shown in Table 3-1. Pins on the Z row and D row of the same pin number (i.e. $Z 2$ and $D 2$) are connected in parallel to the same line. This decreases the effective impedence of the connector pins.

The pin pairs are also designated as either the + side or the -side of a given port number (i.e. $Z 2 / D 2=+$ side of $P O, 24 / D 4=-$ side of PO). When a logical 1 is written to Port 0 ($P O$) using a CRU instruction, pins $22 / D 2$ are effectively coupled to $Z 4 / D 4$, closing the circuit. The same is true for the other ports and the circuits connected to them. When a logical 0 is written to a port, the circuit connected to that port is effectively opened.

Figure 3-1 shows the front connector and the port designations for the appropriate pins.

FIGURE 3-1. OUTPUT PORTS AT FRONT CONNECTOR P2
table 3-1. FRONT CONNECTOR P2 PIN ASSIGNMENTS

Pins	Output Port	Pins	Output Port
Z2/D2	P0 +	Z4/D4	PO-
Z6/D6	P1+	Z8/D8	P1-
Z10/D10	P2+	Z12/D12	P2-
Z14/D14	P3+	Z16/D16	P3-
Z18/D18	P4+	Z20/D20	P4-
Z22/D22	P5+	Z24/D24	P5-
Z26/D26	P6+	Z28/D28	P6-
Z30/D30	P7+	Z32/D32	P7-

3.3 CRU BASE ADDRESS NOMENCLATURE

The following are definitions of CRU address nomenclature. These are shown in Figure 3-2.

- CRU Hardware Base Address: Bits 3 through 14 of register 12 with bits 0 through 2 and 15 deing zeros. Bits 3 through 14 of R12 are applied to bus address bits A3 to A14 (plus signed displacement -- see Hardware Bit Address below).
- CRU Hardware Bit Address: Final address bus value (with A14 as LSB, A3 as MSB) at execution of the CRU instruction. This includes the CRU Hardware Base Address (see below) and the signed 8-bit displacement of the single-bit $C R U$ instruction (SBO, $S B Z$, and $T B$), or the resulting CRU bit addressed by a CRU mulitibit instruction (LDCR or STCR).
- CRU Software Base Address: Entire contents of register 12.

For a complete discussion of CRU addressing, see Section 5 of "TM 990/E150 Microcomputer User's Guide".

ADD SIGNED DISPLACEMENT

ADDRESS BUS

FIGURE 3-2. CRU ADDRESSING NOMENCLATURE

3.4 SELECTING MOST SIGNIFICANT BITS OF CRU HARDWARE BASE ADDRESS

Bus address lines A3 through A10 contain the module select address. These lines are compared to jumper/switch Si. Only CRU instructions with a CRU hardware address corresponding to $S 1$ settings will be executed on this particular module. This allows several TM 990/E351 modules to be used in a system; each addressable through unique switch-selectable CRU addresses.

3.5 SELECTING CRU FUNCTIONS

Table 3-2 lists the CRU functions on the TM 990/E351 module. A software base address of 010016 is used as an example. The column in Table 3-2 labeled EXAMPLE SFTWR ADDRESS represents the example software base address plus the displacement necessary to select the desired function.

The column in Table 3-2 labeled HARDWARE DISPLACEMENT represents the displacement from the hardware base address to select the desired output port or function. This can be used as the displacement in single-bit CRU instructions (SBO, SBZ, TB).

There are eight CRU addressable output ports on the TM 990/E351 module. These ports are selected via address lines A12 through A14 (three LSBs of the hardware base address).

A11 is used as a function select control line. When A11 is low during a CRU output instruction (i.e. LDCR, SBO, SBZ), the programmer can write to one of the eight output ports. When Al1 is high, one of the auxillary functions is selected. Notice that when A11 is high during an output function, A13 and A14 are ignored.

For an example of CRU addressing on the TM 990/E351 refer to Figure 3-3. Assume that S 1 is set for a hardware address of 0080,16 . Then R12 is loaded with a software address of two times 0080_{16} or 010016 .

TABLE 3-2. CRU FUNCTION ADDRESSING

INPUT FUNCTION	OUTPUT FUNCTION	HARDWARE	EXAMPLE SFTWR	CRU HARDWARE BIT ADDRESS (R12)			
(STCR, TB)	(LDCR, SBO, SBZ)	DISPLACEMENT	ADDRESS*	11	12	13	14
Read Echo Back	Close Switch AT						
Port 0	Port 0	00	0100	0	0	0	0
Port 1	Port 1	01	0102	0	0	0	1
Port 2	Port 2	02	0104	0	0	1	0
Port 3	Port 3	03	0106	0	0	1	1
Port 4	Port 4	04	0108	0	1	0	0
Port 5	Port 5	05	010A	0	1	0	1
Port 6	Port 6	06	010C	0	1	1	0
Port 7	Port 7	07	O10E	0	1	,	1
Read Data Level							
S2-1/2nd Timeout	Set Timer	08	0110		0	0	0
Jumper/Switch S2-2	Set Timer	09	0112	1	0	0	1
Jumper/Switch S2-3	Set Timer	OA	0114	1	0	1	0
Jumper/Switch S2-4	Set Timer	OB	0116	1	0	1	1
Jumper/Switch S2-5	Clear Latches	OC	0118	1	1	0	0
Jumper/Switch S2-6	Clear Latches	OD	011A	1	1	0	1
Jumper/Switch S2-7	Clear Latches	OE	011C			1	0
Jumper/Switch S2-8	Clear Latches	OF	011 E	1	1	1	1

*In this example, register 12 contains 010016 and jumper/switch S1 (CRU base address select) is set $\mathrm{Si-8}$ to $\mathrm{Si-1}$ as follows; 00001000 , where $0=$ Jumpered or $0 N, 1=$ Unjumpered or $O F F$.

FIGURE 3-3. EXAMPLE OF CRU ADDRESSING

Assume that a SBO 0 instruction is executed (as in Figure 3-3). The following points would apply to our example;

1) Bits 3 through 10 carry the information to select the board which has it's S1 switch set to 0816 .
2) Since A11 is low in this case, a Write to Output function is selected.
3) Bits 12,13 and 14 are all low, selecting Port 0 .
4) Bits $0,1,2$ and 15 are ignored for CRU functions.
5) Thus Port 0 would be turned on.

It will be assumed for the following examples that:

- The user is familiar with the TM 990 Assembly language
- The CRU Hardware Base address is 0080_{16} and the CRU software base address is $0100{ }_{16}$.
- Jumper/switch S 1 is set to decode the hardware base address, 0080_{16} as follows;

$$
=0816
$$

3.6.1 Write a logical 1 to Port 0 (Close circuit at Port 0)

LI	R12,>0100	LOAD R12 WITH THE CRU SOFTWARE BASE ADDRESS
SBO	0	CLOSE CIRCUIT AT PORT ONE

This closes the circuit connected to $\mathrm{PO}+$ and PO .
3.6.2 Write a logical 1 to Port 5 and Read Echo Back

LI	R12,>0100	LOAD R12 WITH THE CRU SOFTWARE BASE ADDRESS
SBO 5	SET PORT 5 TO 1	
TB	5	HAS PORT 5 CIRCUIT CLOSED?
JNE ERROR	NO, JUMP TO ERROR ROUTINE	
\bullet		

This example writes a 1 to port 5, tests port 5 and jumps to an error routine if Port 5 was not senssd as being a closed circuit.
3.6.3 Read Jumper/switch S2-3 for Data Level

LI R12,>0100 LOAD R12 WITH THE CRU SOFTWARE BASE ADDRESS
TB $>A \quad>A$ IS FROM TABLE 2-3, HARDWARE DISPLACEMENT TO SELECT READ DATA LEVEL JUMPER/SWITCH S2-3

This reads one of the DATA LEVEL jumper/switches. These jumper/switches are set when the TM 990/E351 board is installed. The value of the jumper/switches can represent anything the user wants. Some of the possibilities are;

1) a code identifing the location of the board in the system
2) the type of device that the board is controlling
3) constant data input
3.6.4 Set and Poll Watchdog Timer

LI R12,>0100	LOAD R12 WITH THE CRU SOFTWARE BASE ADDRESS	
SBO 8		
TRIGGERS THE TIMER		
\bullet		
-		
TB	8	
JNE TIMEOUT	HES A TIMEOUT OCCURRED?	
\bullet		
\bullet		

Remember that the Watchdog Timer must be set every 20 ms or the options set at jumpers J 2 and J 3 will occur as specified in paragraph 2.3.3. It is the programmers responsibility to see that the timer is kept set. A routine to set the timer should be included in any loop or subroutine that waits for an input or interrupt.

To poll the Watchdog Timer for the second timeout, test the CRD address of data level jumper/switch S2-1. The jumper/switch must be jumpered or set to OFF for this test to be valid. A zero indicates a timeout occured, a one indicates a timeout did not occur. \qquad
3.6.5 Clear All Output Ports

LI R12,>0100 LOAD R12 WITH THE CRU SOFTWARE BASE ADDRESS	
SBO $>C$	RESETS ALL PORTS TO LOGICAL O'S (OPENS CIRCUITS)

This is a short-cut method to shut down all circuits controlled by the same board at the same time.
3.6.6 Write a Logical 1 to Port 3, Turn Off All Other Ports, and Set the Watchdog Timer

LI	R12,>0100
LI	LOAD R12 WITH THE CRU SOFTWARE BASE ADDRESS
LDCR	
R2,9	
-	
-	

The value 10816 loaded into R 2 is derived in Figure 3-3. This value represents the two bits necessary to write to port 3 and set the timer. The zeros written to the other ports will open any closed circuits at these ports. R 2 is loaded into the CRU as shown in the figure.

Bit 7 is set to 1 in R2. When the LDCR instruction is executed, this bit sets the timer.

Bit 12 is set to 1 in R2. When the LDCR instruction is executed, this bit causes Port 3 to be set to a logical 1.

CRU Function

 FIGURE 3-4. DERIVATION OF R2'S VALUE IN EXAMPLE 3.6 .6

3.6.7 Sample Program

The following assumptions are made for the sample program in Figure 3-5;

1) Jumper/switch S1 is set to select a hardware base address of 0080_{16} as in the previous examples.
2) Jumper J 1 is set for NO HOLD, E2 to E3.
3) Jumper J 2 is set for a PWRFAIL- interrupt, E5 to E6.
4) Jumper J3 is set to INACTIVE, E8 to E9.
5) A demonstration display similar to the one shown in Figure 3-6 is connected to P2.
6) A TM 990/E150 CPU board with TIBUG TM $990 / E 4001$ and the TM 990/E351 board are installed in a suitable chassis with suitable power supply.
7) A terminal is connected to the TM $990 / E 150$ board.

If entered as it is listed, this program will light the display LED's in sequence.

After the demonstration, substitute a NOP $\left(1000{ }_{16}\right.$) for the SBO 8 instruction at memory location $3 C 3 C_{16}$. With the SBO 0 instructon removed, the Watchdog Timer will not be set in time. A PWRFAIL- interrupt will be issued and the 'TIMEOOT' message will be displayed. Control is returned to the monitor.

FIGURE 3-5. SAMPLE PROGRAM, SHEET 1 OF 2
*
*THIS SECTION IS THE MESSAGE TO BE DISPLAYED IF A TIMEOUT *OCCURS FROM THE WATCHDOG TIMER. AFTER 'TIMEOUT' HAS BEEN *DISPLAYED, CONTROL IS RETURNED TO THE MONITOR
$3 C 70$
3C70 FAO $3 C 723 C 78$ $3 C 740460$ 3C76 0080 $3 C 78$ DOA 3C7A 5449 3C7C 4D45 3C7E 4F55 3C80. 5400
$3 F 88$
$3 F 880460$ 3F8A 3C70

ARG $>3 C 70$
XOR EMESS,14
B $\quad e>80$
MESS
DATA >DOA
DATA >5449
DATA $>4 \mathrm{D} 45$
DATA >4 F55
DATA >5400

SET ADDRESS FOR ERROR MESSAGE OUTPUT ERROR MESSAGE

BRANCH TO MONITOR
GARAGE RETURN, LINE FEED
MESSAGE -'T','I'
'M', 'E'
'O', U'
'T', END OF MESSAGE TAG
*THE PWRFAIL- INTERRUPT VECTORS TO >3F88. THIS INSTRUCTION *branches to the message routine

ARG >3 F88
B $>3 C 70$
SET ADDRESS FOR PWRFAIL- INTERRUPT TO POINT TO ERROR MESSAGE ROUTINE

FIGURE 3-5 SAMPLE PROGRAM, SHEET 2 OF 2

4.1 GENERAL

This section covers the theory of operation of the TM 990/E351. Information in the following manuals can be used to supplement the material in this section:

- The TTL Data Book
- The Optoelectronics Data Book
- The Transistor and Diode Data Book.

4.2 TM 990/E351 ARCEITECTURE

The block diagram for the TM $990 / E 351$ is given in Figure 4-1. The major sections are the CRU base address selector and decoder, the data level selector and data level input port, the control logic, the watch dog timer, and the output ports. Each of these sections will be described in the sections that follow.

4.2.1 CRU Base Address Selector and Decoder

The CRU base address selector and decoder circuitry is given in Figure 4-2. The TM $990 / E 351$ can be assigned a unique CRU base address as explained in Section 2.3.1. This address is determined by the setting on jumper/switches S1-1 through S 1 -8. The incoming value on address lines A3 through A10 is compared to the value determined by the jumper/switch settings of S1-8 to S1-1 respectively. When they are equal the 74 L 5266 comparators produce an active (high) signal; this signal is inverted by $U 11$ which in turn produces an active (low) signal for the control logic. This signal is essentially a board select signal.

4.2.2 Data Level Selec \mathfrak{C} and Data Level Input Port

The data level input port circuitry is shown in Figure 4-3. An 8-position socket platform (S2) is provided for inputting constants such as parameters or station numbers. These data levels can also be used for testing/evaluating the performance of certain circuits on the TM 990/E351. The data levels that are set on S2-1 through S2-8 can be read when the 74LS251 data selector at U7 is addressed and selected. This chip reads address lines A12-A14 and is selected by an active $1 Y 2$ or 1 Y3 output from control logic decoder SN74LS156 at U9. S2-1 is wire-ORed with the Watchdog Timer output 2Q-, allowing software monitoring of the second timeout (see paragraph 2.3.3.3).

4.2.3 Control Logic

The control logic selects the input nort, the output port, the echo back port, the watch dog timer and also can be used to clear the output ports. In order to produce these five control signals, a SN74LS156 reads address lines A11 and A12-, plus CRUCLK- and is gated on by a board select signal from the CRU base address decoder after it is inverted by $U 11$. The control logic circuitry is given in Figure 4-4.

FIGURE 4-2. CRU BASE ADDRESS SELECTOR/DECODER ;

FIGURE 4-3. DATA LEVEL SELECT/DATA LEVEL INPUT PORT

FIGURE 4-4. CONTROL LOGIC

4.2.4 Watchdog Timers

The watchdog timer circuitry is given in Figure 4-5. The timer provides the user of the TM 990/E351 with an excellent tool to identify erroneous program sequences and protect the system interfaces and attached peripherals (motors, relays, and controlled machines) against damage.

The TM 990/E351 has two time outs; timeout 1 equals 20 ms and timeout 2 equals 10 ms . If a program is running correctly, the timer will be reset by software before a timeout occurs. If not, the first timeout will generate either a PWRFAIL- or NMI- interrupt depending on the position of jumper J 2 and then try a new system startup. If jumper $J 2$ is not used, neither PWRFAIL- nor NMI- interrupt will occur.

The position of jumper $J 3$ determines whether the output ports are reset or not reset after the first timeout. After timeout 1 is completed, timeout 2 will start. If the system recovers through the NMI- or PWRFAIL- interrupt, then the program will reset the timer and start timeout 1 again.

If the NMI- or PWRFAIL- interrupts fail to bring about a system recovery, then timeout 2 will cause a system hold by pulling the GRANTOUT line low if jumper $\bar{J} 1$ is connected E1 to E2. This type of system stop is possible when the GRANTIN-/GRANTOUT jumper on the backplane is removed from the slot occupied by the TM 990/E351 module. Once the system enters the hold mode, it can only be restarted by a system-RESET.

4.2.5 Output Ports

A partial diagram of the 8-bit output port with echo back circuitry, opto-couplers and power drivers is shown in Figure 4-6. Port 7 (P7) of the output ports is shown driving a relay so that certain theoretical aspects of this circuitry can be explained.

The output port consists of an 8-bit addressable latch (74LS259) which receives its data input from the processor via the CRUOUT line. This latch is addressed via address lines A12- through A14- and is selected by an active (low) signal from the control logic circuitry.

The 74LS259 latch provides outputs that are then inverted by the 74LS240 prior to being used to turn the photodiode on or off in the opto-couplers. When the photodiode conducts, the phototransistor in the opto-coupler conducts current through R33. This current produces the necessary voltage drop so that Q8 is now forward biased.

Q8's current flows through R42 thus providing the necessary forward bias for Q16. Q16 can be considered as a closed switch at this time thus activating the relay. The diode across $Q 16$ is for transient suppression. The zener diode's function is to protect the opto-coupler against inductive transients.

When the current through an inductive load is rapidly cut-off, an inductive kick occurs. If this inductive kick produces approximately 33 volts, the zener diode will conduct current through R42 and turn on Q16. Q16 will shunt the inductive kick thus protecting the opto-coupler.

FIGURE 4-6. OUTPUT PORTS

APPENDIX A

SCHEMATICS

PARTS LIST

C1
C2
C3
C4-C11
C12-C16
CR1-CR8
E1-E9
J1-J3
P1
P2
Q1-Q8
Q9-Q16
R1
R2
R3-R4
R5-R9
R10-R17
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35-R42
R43
R46
S1-S2
U1
U2
U4-U5
06
07
09
010
-011
U12
013
014
015-U22

Capacitor, tant., 39 MFD, $10 \%, 10 \mathrm{~V}$
Capacitor, . 33 uF, 2\%, 25 Vdc
Capacitor, ceramic, . 15 uF, 2\%, 25 V
Capacitor, ceramic, $220 \mathrm{pF}, 10 \%, 200 \mathrm{~V}$
Capacitor, . $047 \mathrm{uF},+80 \%,-20 \%$
Diode, IN726A
Pin, . 025 square
Connector, jumper plug
Connector, IEC/DIN, PCB, 64-pin male
Connector, IEC/DIN, male, 32-pin, right angle
Transistor A5T2907, PNP
Transistor TIP 33B
Resistor, 10 K ohm, 5%, $\frac{1}{2} \mathrm{~W}$
Resistor, $1.0 \mathrm{~K} \mathrm{ohm}, 5 \%$, $\frac{1}{4} \mathrm{~W}$
Resistor, $220 \mathrm{~K} \mathrm{ohm}, 5 \%$, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, $150 \mathrm{ohm}, 5 \%$, $\frac{1}{4} \mathrm{~W}$
Resistor, $1.0 \mathrm{~K} \mathrm{ohm}, 5 \%$, $\frac{1}{4} \mathrm{~W}$
Resistor, 220 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, $1.0 \mathrm{~K} \mathrm{ohm}, 5 \%$, $\frac{1}{4} \mathrm{~W}$
Resistor, 220 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 220 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5\%, $\frac{1}{4} \mathrm{~W}$
Resistor, 220 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, $1.0 \mathrm{~K} \mathrm{ohm} ,\mathrm{5} \mathrm{\%}, \mathrm{\frac{1}{4}} \mathrm{~W}$
Resistor, 220 K ohm, 5\%, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 220 K ohm, 5\%, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 220 K ohm, 5\%, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5\%, 立 W
Resistor, 220 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 100 ohm, 5\%, $\frac{1}{4} \mathrm{~W}$
Resistor, 2.2 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Resistor, 1.0 K ohm, 5%, $\frac{1}{4} \mathrm{~W}$
Switch, dual in line, 8 position
Network, SN74LS125N
Network, SN74S11N
IC, SN74LS266N
Network, resistor, 10.0 K ohm, DIL
Network, SN74LS25 1N
IC, dual 2-line-to-4-line decoder
Network, SN74LS123N
Network, SN74LSO4N
IC, SN74LS259N
IC, SN74LS240N
Network, SN7 4LS25 1N
IC, TIL-33B Optically Coupled Isolator

APPENDIX C

DATA SHEET ON 74 LS 123 MONOSTABLE MULTIVIBRATOR

NOTE
Countdown time for the watchdog timer can be varied according to the impedance inserted at sockets E10 to E17 as shown on page 2 of the schematics. Formulae and charts for customizing this timeout period are provided in this data sheet.

Designing with Low Power Schottky SN54/74LS123 Dual Retriggerable Monostable Multivibrators

From Bulletin CA-196
by ${ }^{-1}$
W. T. Greer, Jr. Low-Power Schottky Engineering

INTRODUCTION

Texas Instruments SN54/74LS123 Dual Retriggerable Monostable Multivibrator, direct replacement for the SN54/74L123 and SN54/74123 is a one-shot capable of very long output puises and up to 100% duty cycle. The SN54/74LS123 also features de tnggering from gated low-level active ("A") and high-level active (" B ") inputs and provides a "Clear" mput which terminates the output puise at any predetermined time independent of tuming components, Rext and $\mathrm{C}_{\text {ext }}$. The output pulse width can also be extended by retriggenng the mput prior to the termination of an existing output pulse.

The "B" input on a SN54/74LS123 is designed to handle pulses with a transition rate as slow as 1 volt per $10 \mu \mathrm{~s}$ (Schmitt tngger input) with jitter-free one-shot action. This capability allows the SN54/74LS123 to be used as an interface element between circurts with very slow rising output puises and circuits which require fast nsing input puises.

DEVICE DESCRIPTION

- 100% maximum duty cycle
- DC triggered from actıve-high or active-low logic inputs
- Input clamp diodes
- Low power dissipation
- Compensated for VCC and temperature variations
- Compatible with TTL and DTL circuits

A functional block diagram is shown in Figure 1. Each one-shot has two inputs, one active low and one active high, which allow both leading or traling edge triggerng. Once triggered, the basic pulse width may be extended by

FIGURE 1. LS123 Logic Diagram
retriggenng the gated low-level actrve (A) or high-level actrve (B) inputs, or the puise width may be reduced by use of the overriding clear. Therefore an input cycle time shorter than the output cycle tume will retngger the LS123 and result in a continuously high Q output.

FUNCTIONAL TABLE

Clear	A	B	Q	¢
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\dagger		
H	t	H		
\uparrow	L	H		

RULES FOR OPERATION

1. An external resistor (Rext) and an external capacitor ($\mathrm{C}_{\text {ext }}$) are required as shown in Figure 1 for proper crrcuit operation.
NOTE: For best results, system ground should be applied to the Cext terminals.
2. This value of Rext may vary from $5 \mathrm{k} \Omega$ to $160 \mathrm{k} \Omega$ from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
3. Cext may vary from 0 pF to any necessary value.
4. The input may have a minumum amplitude of -0.5 voit and a maximum of 5.5 volts.
5. The output pulse width (T_{w}) is defined as follows:

$$
T_{w}=K^{*} \cdot R_{e x t} \cdot C_{\text {ext }}
$$

NOTE: K is independent of Rext.
If.
Rext is in $\mathrm{k} \Omega$
Cext is in pF
T_{w} is in ns
6. When an electrolytic capacitor is used as $C_{\text {ext }}$, the switching diode required by most one-shots is not needed for LS123 oderation.
7. For remote trimming, the circuit shown in Figure 2 is recommended:

Rrm should be as close as possible to the lsiz3.

FIGURE 2. Remote Trimming Circuit

8. The retrigger pulse width is calculated as shown in Figure 3.

[^0]
-see figure 4 for K.

FIGURE 3. Retngger Pulse Width Calculation
9. A 0.001 to $0.01 \mu \mathrm{~F}$ by-pass capacitor between $V_{C C}$ and ground as close as possible to the LS123 is recommended.

FIGURE 4. Multiplier Factor (K) Versus External Capacitor ($C_{\text {ext }}$)

Output Puise Width
As shown in operating Rule 5, the output pulse width (T_{w}) is defined as

$$
T_{w}=h \cdot R_{\text {ext }} \cdot C_{\text {ext }}
$$

However, for capacitor values less than 1000 pF , the typical curves in Figure 5 can be used.
'LS123
TYPICAL OUTPUT PULSE WIDFH
vs
EXTERNAL TIMING CAPACITANCE

FIGURE 6. Output Pulse Width Versus Temperature

APPLICATIONS

Delayed Pulse Generator With Override
The first one-shot, $\left(O S_{1}\right)$, determmes the delay time by preselected values of Rext 1 and Cext 1 , whereas the second one-shot, OS_{2}, determines the output pulse width, by preselected values of Rext and $\mathrm{C}_{\text {ext }}$. (See Figure 7.)

The output pulse can be temminated at any time by a positive nsing pulse into the overmde input.

FIGURE 7. Delayed Pulse Generator with Overrde

TYPE SN54LS123, SN74LS123
 retriggerable monostable multivibrators

- D-C Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Puises, Up to 100\% Duty Cycle
- Overriding Clear Terminates Output Puise
- Compensated for VCC and Temperature Variations

description

. Fhese d-c triggered multivibrators feature output pulse width control by three methods. The basic puise time is programmed by selection of external resistance and capacitance values (see typical application data).

Once triggered, the basic pulse width may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by
 use of the overriding clear. Figure 1 illustrates pulse control by retriggering and eariy clear.

The LS123 is provided enough Schmitt hysterisis to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond.

NOTES. 1. An external timing capacitor may be connected between $C_{\text {ext }}$ and $R_{\text {ext }} / C_{\text {ext }}$ (positive).
2. To obrein variabie pulse widths, connect an external veriable resistance between $R_{\text {ext }} / \mathcal{C}_{\text {ext }}$ and V cc.
description (continued)

OUTPUT PULSE CONTROL USING RETRIGGEA PULSE
NOTE Retrigger pulse must not start betore $022 \mathrm{C}_{\text {ext }}$ (in picotarads) nanoseconds after previous trigeer puise
FIGURE 1 -TYPICAL INPUTIOUTPUT PULSES
schematics of inputs and outputs

TYPES SN54LS123, SN74LS123
 retriggerable monostable multivibrators

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54LS			SN74LS			UNIT			
		MIN	TYPI	MAX	MIN	TYP寺	MAX							
$\mathrm{V}_{1 \mathrm{H}}$	Hightevel input voltage							2			2			V
V_{11}	Low-level imput voltage						07			08	V			
$V_{1 K}$	Inpur clamo woitage	$V_{C C}=$ MIN	$11=-18 \mathrm{~mA}$				-1.5			-15	V			
V_{OH}	Highalevel output voltage	$\begin{aligned} & V_{C C}=M I N . \\ & V_{I L}=V_{I L} \text { max } \end{aligned}$	$\begin{aligned} & V_{1 H}=2 V \\ & 1 \mathrm{OH}=-400 \end{aligned}$		2.5	3.5		2.7	3.5		V			
VOL	Low-level ourput voltage	$V_{C C}=$ MIN,	$V_{\text {IH }}=2 \mathrm{~V}$,	$1 \mathrm{OL}=4 \mathrm{~mA}$		0.25	04		0.25	04	V			
OL	Low-ievel output voltege	$V_{\text {IL }}=V_{\text {IL }}$ max		$\mathrm{TOL}^{\prime}=8 \mathrm{~mA}$					035	0.5	\checkmark			
$1 /$	input current ar maximum mput voltage	$V C C=$ MAX .	$V_{1}=7 \mathrm{~V}$				0.1			01	mA			
I/H	High-tevel tnput current	$V_{C C}=$ MAX	$V_{1}=27 \mathrm{~V}$				20			20	$\mu \mathrm{A}$			
IIL	Low-level input current	$V_{C C}=$ MAX,	$V_{1}=04 \mathrm{~V}$				$\underline{04}$			-04	mA			
105	Short-circuit output currento	$V C C=M A X$			-20		-100	-20		-100	$m A$			
ICC	Supply current (quescemt or trigyered)	$V C C=M A X$,	Soe Note 13			12	20		12	20	mA			

${ }^{1}$ For conditions shown as MAIN or MAX, use the approprsate vatue specified under recommended operating conditions.
\ddagger All tyonel valuet ane at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
-Not more than one outpur should be shortwd at a time and duration of the short-cireurt should nor exceed one second.

13. With all outputs apen and 45 V appined to all date and clear inpurs, ' Cc is measured after a momentary ground, then 4.5 V , is epploed to clock.
switching characteristics, $V_{C C}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see note 14

PARAMETER 1	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	A	0	$\begin{array}{ll} C_{e x t}=0, & R_{e x t}=5 \mathrm{k} \Omega, \\ C_{L}=15 p F, & R_{L}=2 \mathrm{k} \Omega \end{array}$		23	33	ns
PLH	B	0			23	44	ns
	A	$\overline{0}$			32	45	ns
TPHL	B	0			34	56	ns
${ }_{\text {tPHL }}$	Clear	Q			20	27	กs
${ }^{\text {PPLH}}$		0			28	45	
Ima (min)	A or B	0			116	200	ns
1 mo	A or B	0	$\begin{array}{ll} C_{e x t}=1000 p F, & R_{e x t}=10 \mathrm{k} \Omega, \\ C_{L}=15 p F, & R_{L}=2 \mathrm{k} \Omega \end{array}$	4	45	5	μs

\& tpLH $^{\text {I }}$ propagation chativy time, low-to-hrgh-ievet output PHL \equiv propagetion deloy time, hyeh-to-low-level output
w O ㅋ width of pulse at ourput 0
NOTE 14 Loed circuit and voltage waveforms are shown on page 3-1

FIGURE C-1. WATCHDOG TIMER

This index shows the page numbers of various subjects in this manual. An ' F ' preceding page numbers indicates subject matter is covered in a figure. A ' T ' preceding page numbers indicates subject matter is covered in a table.

PAGE

Architecture. 4-1
Components F1-5,F1-6
Connector, Front, P2
Description. 2-4
Pin Assignments T3-2
Output Ports F2-4,F3-1
Control Logic 4-1, F4-4Communications Register Unit (CRU)
Addressing Nomenclature F3-3
Addressing, Example F3-4
Base Address Nomenclature 3-2
Base Address Selection. 2-1, T2-1
Base Address Selector and Decoder 4-1, F4-3
Hardware Base Address, Selecting Most Significant Bits. 3-3
Selecting Functions 3-3,T3-4
Data Level Input Port 4-1, F4-3
Data Level Select. 4-1, F4-3
Documents, Applicable 1-2
Jumpers
General 2-1
First Timeout (J2, J3) 2-3
Second Timeout (J1) 2-3
Watchdog Timers, Description 2-2
Manual Organization. 1-1
Output Ports
Ports at Front Connector P2 F2-4, 3-1,F3-1
Theory of Operation 4-5, F4-6
Product Index 1-2
Programming
Examples 3-5,3-6
Sample Program 3-7
Specifications 1-1, F1-3
Switches
CRU Base Address Select 2-1
Data Level/Constant Input 2-2
Watchdog Timer
First Timeout Jumpers (J2 and J3) 2-3
Options (Jumpers J1, J2, and J3) 2-2
Polling CRU for Second Timeout. 2-3
Programming example. 3-6
Second Timeout Jumper (J1) 2-3
Theory of Operation 4-4, F4-5

[^0]: -See Figure 4 for values of K

