
Please do not upload this copyright pdf document to any other website. Breach of copyright 
may result in a criminal conviction. 

This Acrobat document was generated  by me, Colin Hinson, from a document held by me. I 
am unable to find the author to request permission to publish, so beware, this is not totally 
my copyright.  It is presented here (for free) and this pdf version of the document is my 
copyright as it is part of my database of documents. If you believe the document to be under 
other copyright, please contact me. 

The document should have been downloaded from my  website https://blunham.com/Radar, 
or any mirror site named on that site. If you downloaded it from elsewhere, please let me 
know (particularly if you were charged for it).  You can contact me via my Genuki email page: 
https://www.genuki.org.uk/big/eng/YKS/various?recipient=colin 

You may not copy the file for onward transmission of the data nor attempt to make 
monetary gain by the use of these files. If you want someone else to have a copy of the file, 
point them at the website. (https://blunham.com/Radar).  Please do not point them at the 
file itself as it may move or the site may be updated. 

It should be noted that most of the pages are identifiable as having been processed by me. 

_______________________________________ 

I put a lot of time into producing these files which is why you are met with this page when you 
open the file. 

In order to generate this file, I need to scan the pages, split the double pages and remove any 
edge marks such as punch holes, clean up the pages, set the relevant pages to be all the same 
size and alignment. I then run Omnipage (OCR) to generate the searchable text and then 
generate the pdf file. 

Hopefully after all that, I end up with a presentable file.  If you find missing pages, pages in the 
wrong order,  anything else wrong with the file or simply want to make a comment, please 
drop me a line (see above). 

It is my hope that you find the file of use to you personally – I know that I would have liked to 
have found some of these files years ago – they would have saved me a lot of time ! 

Colin Hinson 
In the village of Blunham, Bedfordshire. 

 



M.  



The Information contained in this manual is subject 
to change without notice. 

Millers Graphics shall not be liable for technical or 
editorial errors or omissions contained herein; nor 
for incidental or consequential damages resulting 
from the furnishing, performance, or use of this 
material or product described by this manual. 

This manual contains information protected by 
copyright. All rights are reserved. No part of this 
manual may be photocopied or reproduced in any form 
without prior written consent from Millers Graphics. 

Manual written by Craig G. Miller 

Explorer Software and Associated Manual 
(Printed in the United States of America) 

Copyright 1985 

by 

Millers Graphics 
1475 W. Cypress Ave. 
San Dimas, CA 91773 



TABLE OF CONTENTS 

The Explorer - An Overview  1 

The Explorer Files  2 

Loading it into the Environments  3 

The Function and Control Keys  10 

Starting It Up  13 

Warning - Warning - Warning  14 

Explorer's Main Screen  15 
Cpu Controls  16 
Grom Controls  17 
Vdp Controls  18 
Programmable Break Points  20 
Cpu Status & Interrupts  21 
Workspace Registers  24 
Vdp Registers  25 
Memory Pointer & Windows  26 
Memory Editor  29 
Search Function  31 
Grom Library & Instruction Counter  33 
Instruction Disassembly  34 

Explorer's Options Screen  35 
Number Conversion  36 
Cru Base  40 
High/Step speed Options  43 
Colors  44 
Decimal Instruction Counter  44 

Explorer's Registers Screen  45 
Gpl Status  46 
Vdp Status  47 
Vdp Write Only registers  48 



The Interrupt Routine  52 

Explorations  54 
Key scan routine and the Explorer  55 
Executing the Power Up Routine  57 
Executing a Basic CALL  62 
Executing an Extended Basic CALL  65 
Executing Other Assembly Language Programs  67 
Direct Execution of Modules  70 

Appendixes 
Overall 4A Memory Map  74 
Cpu Rom >0000->1FFF  75 
Cpu Scratch Pad Ram >8300->83FF  80 
KB Low/High Memory Expansion  83 
Basic and Editor/Assembler Vdp Memory  85 
Extended Basic Vdp Memory  86 
Grom - 0 >0000->17FF (System Monitor)  89 
Grom - 1 & 2 >2000->57FF (Basic Interpreter)  92 
Console Cru Bits  100 
9900 Microprocessor Instructions  101 
Break Point Work Sheet  103 
Grom Address & Vdp Register Work Sheets  104 



The EXPLORER - An Overview 

The Explorer program was designed to be used as a tool to help you understand 
how'your computer thinks and operates and to be as transparent as possible to 
the environment or program that loaded it. The Explorer converts your 4A into 
a programmer's instrument similar to a engineers Logic State Analyzer. But, 
instead of high/low trace lines on a screen it will display a number of items 
pertinent to the execution of programs by the 9900 Microprocessor. 

This new Explorer Instrument will allow you to execute Extended Basic, Basic, 
Assembly Language and a variety of Command Modules all under your control. 
You can stop and start execution at any time with Just the press of a key. 
You can watch the actual program screen in slower motion or you can watch the 
Explorer's Main Screen as it is dynamically updated after each and every 
instruction. You can stop the program and examine and modify memory and other 
items, which allows you to conduct "WHAT IF' experiments. 

The heart of the Explorer is a Machine Language Interpreter that thinks, acts 
and has the same logic as a software based 9900 microprocessor. Through this 
interpreter the Explorer will open the window into your 99/4A and allow you 
to see the actual inner workings of your computer in action. 

The Explorer goes through great lengths to analyze and preserve the 
environment that it is loaded into so that you can easily continue execution 
of that program or module. It is fully compatible with the Extended Basic, 
Editor Assembler, Mini Memory and other Assembly Language Loaders to allow a 
wide variety of Explorations. 

The following few pages contain the instructions and examples for loading the 
Explorer into these environments. We hope that you find this new Explorer 
instrument to be as much of an education in the the 99/4A's operation system, 
GPL Interpreter, and other languages and modules as we have. 

1 



THE EXPLORER FILES 

MGEXOOZOO This is the serial number of your disk for the warranty 
registration. It will appear as the first item on a Catalog 
list. 

EXP This is the Editor/Assembler, Mini Memory, Basic through the 
E/A or Mini Mem, or other Load and Run type loaders version of 
the Explorer. 

MEXP - This is the Myarc Disk Controller CARD'  version of the above 
file. 

ZBEXP This is the Extended Basic loader version of the Explorer. 

MXBEXP This is the Myarc Disk Controller CARD'  version of the above 
file. 

BASAMPLE - This is a sample Basic program that loads the Explorer and 
allows you to continue execution of the Basic program. 

XBSAMPLE This is a sample Extended Basic program that loads the 
Explorer and allows you to continue execution of the Extended 
Basic program. 

XBLOAD  This file can be renamed as LOAD so that whenever the Explorer 
disk is in drive 1 and Extended Basic is selected the Explorer 
will automatically load and pass control to you. 

XBMEMFULL This is an Extended Basic MERGE type file that contains line 
number 1. This file allows you to bypass the Extended Basic 
loader's Memory Full error condition when you or your Extended 
Basic program has previously loaded another Assembly language 
program that has filled up LOW Memory expansion. 

XBMEMOFF - This file is an example of how you can turn off memory 
expansion to load and execute your Extended Basic program from 
VDP RAM instead of High Memory Expansion. This is useful when 
your Extended Basic program is larger than the approx 6K bytes 
left after the Explorer is loaded. 

NOTE 
If you have a Myarc Disk Controller CARD replace the reference to 
"DSKI.EXP" in the BASAMPLE file with "DSK1.MEXP". Also replace the 
references to "DSK1.XBEXP" in the XBSAMPLE, XBLOAD and XBMEMFULL files 
with "DSKI.MXBEXP". 

' The Explorer is compatible with the Myarc Disk Controller CARD only. It 
will not work with the Myarc MPES (Mini Peripheral Expansion System) due 
to low level hardware differences between the Card and this system. 



LOADING THE EXPLORER INTO THE 

EXTENDED BASIC ENVIRONMENT 

The Explorer can be loaded into the Extended Basic environment either from 
the Command/Edit mode or from a running Extended Basic Program. If it is 
loaded from the Command/Edit mode of Extended Basic then, when you start up 
the Explorer, it will return to the Command/Edit mode environment. If it is 
loaded from a running program then, when you start up the Explorer, it will 
continue execution of the program exactly where it left off. 

NOTE 
CALL INIT must be executed either by you or the running Extended Basic 
program sometime prior to executing the CALL LOAD("DSK1.XBEXP"). Also, if you 
have a Myarc Disk Controller Card replace all references to "DSK1.XBEXP" with 
"DSK1.MXBEXP". 

FROM COMMAND/EDIT NODE 

Type in CALL LOAD("DSK1.XBEXP") and press enter. The Explorer will load and 
pass control of your computer to you. When you start up the Explorer it will 
return to the Command/Edit mode of Extended Basic but now it will be in your 
control. Once the Application Program screen has scrolled up 1 line and the 
cursor has reappeared you can slowly type in anything that is valid for the 
Extended Basic Command/Edit mode and watch it work. 

FRCN A RUNNING PROGRAM 

Place CALL LOAD("DSK1.XBEXP") into your Extended Basic program, where you 
want the Explorer to load and pass control to you, and then RUN your Extended 
Basic program. When your Extended Basic program reaches the line that 
contains this CALL LOAD the Explorer will load and pass control of your 
computer to you. When you start up the Explorer it will continue executing 
your Extended Basic program where it left off but it will be in your control 
so you can watch it work. 

Type in OLD DSR1.XBSAMPLE and LIST and RUN it to see an example of this type 
of loading and program execution. After this program has finished executing, 
the Extended Basic interpreter will go through its READY routine. This will 
load some default values into the Vdp registers, restore the color table and 
character set and the scroll the screen up one line to place the ' READY f 
message on the Application Program screen. Then it will scroll the screen up 
2 more lines and bring out the cursor. At this point Extended Basic is back 
in Command/Edit Mode and is waiting for you to type something in. 



LOADING THE EXPLORER INTO THE 

EXTENDED BASIC ENVIRONMENT Continued 

EXTENDED BASIC PROGRAM SIZE 

The Explorer occupies approximately 18K bytes of High Memory Expansion when 
it is loaded. This leaves all of Low Memory Expansion free for your Assembly 
Language subprograms and part of High Memory Expansion free for your RUNNING 
Extended Basic program. If you are not sure if your Extended Basic program 
will fit in memory with the Explorer then load and check your program as 
follows: 

1. OLD DSKx.yourprogram 
2. Type in RUN - press Enter and then Press and hold down FCTN 4 CLEAR. 
3. When the program breaks - type in SIZE and press Enter. 
4. The STACK size doesn't matter since this is in Vdp Ram. 
5. The PROGRAM space must be at LEAST 18,400 Bytes Free for the Explorer 

to execute your Extended Basic program properly. 

The reason you Must RUN and break your program before checking its size is to 
allow Extended Basic to perform the Pre-Scan routine. During Pre-Scan 
Extended Basic reserves room for your variables. The string variables stay in 
Vdp Ram so they don't matter. However, the Numeric variable's values are 
stored in High Memory Expansion so you must have enough space for these or 
your Extended Basic program will not execute properly. NOTE: We don't really 
recommend that you run large Extended Basic programs through the Explorer 
because of the amount of time that it takes. The Explorer was meant to be 
used with direct CALL's and small programs. 

If your Extended Basic program is too large to work in Memory Expansion with 
the Explorer you can use the XBMEMOFF file to turn off Memory Expansion and 
load your program into Vdp Ram. By doing this you can execute an Extended 
Basic program that has a RUNNING size of up to 12,876 bytes with CALL 
FILES(1). This also has an added advantage in that you can easily follow the 
Extended Basic interpreter's accesses to your program by having the 
Explorer's Memory Window set on Vdp Ram and in Dynamic mode. (see Memory 
Windows for more information). To use this file simply place your Program 
name and drive location in line 2 of this file instead of the DSK1.XBSAMPLE 
that is currently there. Also, your program MUST contain the CALL 
LOAD("DSKI.XBEXP") statement so that IT loads the Explorer. 

ILL 



LOADING THE EXPLORER INTO THE 

EXTENDED BASIC ENVIRONMENT Continued 

I MEMORY FULL ERROR CONDITION 

If, when you try to load the Explorer, you receive a MEMORY FULL error 
message on the screen you may be able to use the XBMEMFULL file to bypass 
this condition. This file is a MERGE type file that contains a single line 
(line number 1). This file will only work properly IF the Assembly Language 
program that was previously loaded, and is causing this error condition, 
resides ENTIRELY in LOW MEMORY EXPANSION. If any part of it resides in High 
Memory Expansion the Explorer may overwrite it when it is loaded. 

This error condition arises when the difference between the First Free 
address and Last Free address in Low Memory Expansion is too small. So, this 
file saves the current First Free and Last Free addresses in Low Memory 
Expansion and then loads the the default values for these pointers, loads the 
Explorer into High Memory and then restores the save values for these 
pointers when the Explorer is started up. 

Once again, this will NOT work if the Assembly Language program that was 
previously loaded is NOT entirely in Low Memory Expansion or if any portion 
of it resides in the Explorer's program space. 

Here is a break down of this one line file: 

CALL PEEK(8194,_O,_1,._2,_3):: Save the current First Free Address in 0 & _1 
Nave the current Last Free Address in J & _3 

CALL LOAD(8194,36,250,64,0, Put default value of >24FA into FFA 
Put default value of >4000 into LFA 

"DSX1.XBEXP", Load the Explorer 

8194,_0,_1,_2,0 Restores the saved values into FFA & LFA 
When you start up the Explorer. 

NOTE: The Extended Basic Versions (XBEXP & MXBEXP) ) will only work in 
Extended Basic. You cannot use this version with the Editor/Assembler or Mini 
Memory modules. 

5 



LOADING THE EXPLORER INTO THE 

BASIC ENVIRONMENT 

With either the Editor Assembler or the Mini Memory module or with the Myarc 
Disk Controllers CALL for loading Assembly Language programs the Explorer can 
be loaded into the Basic environment either from Command/Edit mode or from a 
running Basic Program. 

NOTE 
CALL INIT does NOT have to be executed prior to loading the Explorer with 
these modules unless you receive a MEMORY FULL error condition. The CALL LOAD 
statement in these modules automatically executes the CALL INIT if it hasn't 
been previously executed. Also any references to DSK1.EXP should be replaced 
with DSX1.MEXP to load the Explorer with the Myarc Disk Controller Card. 

FROM COMMAND/EDIT MODE 

Type in CALL LOAD("DSK1.EXP") and press enter. The Explorer will load and 
pass control of your computer to you. When you start up the Explorer it will 
return to the Command/Edit mode of Basic but now it will be in your control. 
Once the Application Program screen has scrolled up 1 line and the cursor has 
reappeared you can slowly type in anything that is valid for the Basic 
Command/Edit mode and watch it work. 

FROM A RUNNING PROGRAM 

Place CALL LOAD("DSK1.EXP") into your Basic program, where you want the 
Explorer to load and pass control to you, and then RUN your program. When 
your Basic program reaches the line that contains this CALL LOAD the Explorer 
will load and pass control of your computer to you. When you start up the 
Explorer it will continue executing your Basic program where it left off but 
it will be in your control so you can watch it work. 

Type in OLD DSX1.BASAMPLE and LIST and RUN it to see an example of this type 
of loading and program execution. After this program has finished executing, 
the Basic interpreter will go through its DONE routine. This will scroll the 
screen up one line and place f+ DONE +i on the screen, then it will scroll 
the screen up one more line and then load some default values into the Vdp 
registers, restore the color table and character set and finally scroll the 
screen up one more line and bring out the cursor. At this point Basic is back 
in Command/Edit Mode and is waiting for you to type something in. 



LOADING THE EXPLORER INTO THE 

BASIC ENVIRONMENT Continued 

BASIC PROGRAM SIZE 

Unlike Extended Basic, the size of your Basic program is not critical because 
Basic programs are ALWAYS loaded and executed from Vdp Ram. They are never 
run out of Expansion Memory so ALL of Expansion Memory is free for Assembly 
Language programs. 

MEMORY FULL ERROR CONDITION 

This condition may occur if you have previously loaded an Assembly Language 
program into memory. If this condition occurs you can easily clear it by 
executing CALL INIT. Unfortunately this will also clear out all references to 
the previously loaded Assembly Language program so you can not execute it 
through the Explorer. 

The Editor/Assembler - Mini Hem version of the Explorer (DSK1.EXP & 
DSK1.MEXP) loads into High Memory Expansion and occupies approximately 18K 
bytes of this memory area. It does not use Low Memory Expansion or the Mini 
Mem Ram so these areas and approx 6K bytes of High Memory are left free for 
your Assembly Language Subprograms. 

7 



LOADING THE EXPLORER INTO THE 

EDITOR ASSEMBLER or MINI MEMORY ENVIRONMENTS 

The Explorer can be loaded alone or along with a Non-Auto-Start Assembly 
Language program or subprogram. The Explorer MUST be the LAST file loaded 
because it will take control. Loading your own Assembly programs along with 
the Explorer will allow you to use the Explorer as a very powerful debugging 
aid. 

Once again, the Explorer loads itself into High Memory Expansion and occupies 
18K bytes of this area. This leaves 6K bytes free for your assembly program 
in High Memory plus room for the XOP 1 instruction. This also leaves all 4K 
of the Mini Memory Ram for your use and ALL 8K of Low Memory Expansion. The 
Explorer does NOT use any of the Editor Assembler Utilities so your program 
can write over these or modify them to suit your needs. With a little fancy 
AORGing in your own Assembly Language program you can easily load up to 18K 
bytes and still have enough room for the Explorer. 

EDITOR ASSEMBLER ENVIRONMENT 

Select 3 LOAD AND RUN 

When this prompt appears ' LOAD AND RUN a 
FILE NAME 

Type in DSK1.EXP and press Enter 

The Explorer will load and pass control of your computer to you. 

MINI MEMORY ENVIRONMENT 

Select 1 LOAD AND RUN 

When this prompt appears a LOAD AND RUN a 
FILE NAME 

Type in DSK1.EXP and press Enter 

The Explorer will load and pass control of your computer to you. 



FUNCTION and CONTROL SETS Continued 

CONTROL KEYS 

CTRL 1 SINGLE Instructs the Explorer to execute a single 
EXECUTION instruction, as pointed to by the PC field, and to 

update the entire Main Screen and Application 
Program's Screen each time it is pressed and released, 
according to the instruction executed. 

CTRL 2 CONTINUOUS Instructs the Explorer to continuously execute 
EXECUTION instructions according to the program flow and to 

update the Main screen after every instruction (if it 
is displayed) and the Application Program's Screen 
until CTRL 2 is pressed again to stop it or until a 
programmable Break Point is encountered. 

CTRL 3 PROM/STATUS Toggles the current screen display between the 
SCREEN Explorer's Main Screen and the Application Program's 

screen. (note the Explorer executes the program much 
faster when the actual program screen is displayed) 

CTRL # INTERRUPTS Toggles the Interrupt Enable/Disable flag (E D next to 
ON/OFF the IM field). If the flag is set to E, enable, the 

Explorer will execute the Interrupt routine(s) each 
time the Interrupt Mask (IM) does not equal zero (ie: 
LIMI 1 or LIMI 2 instruction or when you change it 
yourself) 

CTRL 5 SOUND OFF Pressing and releasing this key will immediately turn 
off the sound generator and zero out the sound 
indicator at >83CE in CPU Scratch Pad Ram. 

CTRL 9 SAVE OPTIONS - Pressing this key while the Explorer's Options Screen 
is displayed will write your color and H S options out 
to the Explorer Disk in drive one. These saved Options 
will automatically be loaded each time the Explorer is 
loaded. 

CTRL = EXIT Pressing this key when the Explorer is NOT in 
continuous execution mode will EXIT the Explorer to 
the computer's Title Screen (normal operation is 
resumed and control is released back to your computer) 

11 



FUNCTION and CONTROL KEYS continued 

SPECIAL KEY 

SHIFT TURBO When the Explorer is executing a program in Continuous 
Execution mode (CTRL 2) with the Explorer's Main 
Screen displayed you can press the SHIFT key to shift 
it into TURBO for faster execution of the program. 
Pressing this key stops the dynamic updating of the 
entire Main Screen display and only updates the top 
portion of the screen. Pressing SHIFT and the Enter 
key, the Space Bar or the CTRL key at the same time 
will allow the instruction counter to be dynamically 
updated in TURBO Mode. 

A FEW NOTES ABOUT THE KEYS 

1. The Explorer executes its CTRL key strokes when you let UP on the key 
not when it is pressed down. This allows you to press and hold CTRL 2 
and then hold down a key that the Application program is looking for 
and then let up on the CTRL and 2 keys and the Application Program 
will then accept the other key you are holding down. 

2. You can press CTRL 1 and then release the CTRL key but hold down the 1 
key and the Explorer will be in auto repeat mode for Single Execution 
or very slow continuous execution mode. However, if the Application 
Program goes through the key scan the 1 key WILL BE detected. 

3. You can also press CTRL 1 and the Shift keys and then release the CTRL 
1 keys and the Explorer will go into Turbo mode until you release the 
Shift Key. 

4. While the Explorer is executing a program (CTRL 2) all of the keys on 
the keyboard, except CTRL 2 - 5, function normally as far as the 
Application Program being executed is concerned. (Also see "Key Scan 
and the Explorer") 

5. FCTN QUIT (FCTN =) will only be recognized by the Application Program 
being executed when the INTERRUPTS are enabled (CTRL 4) since this is 
part of the level 1 interrupt routine. 



STARTING IT UP 

TITLE SCREEN 
Once the Explorer is loaded you will be greeted by the EXPLORER's Title 
screen. This screen will only appear when the program is first loaded. At 
this point you can press ANY key to bring up the Explorer's Main Screen. Once 
the Main Screen has appeared YOU are in control and ready for some 
Explorations. 

At this time it might be a good idea to play around with the various FCTN 
keys. You might also want to play around with the Arrow Keys and Enter key to 
get familiar with cursor's paths through the fields. But, DO NOT change ANY 
values if you want to continue proper execution of the Application Program. 
The Explorer has preset these values for you, according to the environment 
that it was loaded into. 

CTRL 3 
To see where you left off on the Application Program's screen just press and 
release CTRL 3. With the Application Program's screen displayed you can press 
and release CTRL 3 again to bring the Explorer's Hain Screen back up. (Note: 
the Application Program executes Much faster with the Application Program 
Screen displayed) 

CTRL 1 or CTRL 2 
With either the Explorer's Main Screen or the Application Program's Screen 
displayed you can press and release CTRL 1 to execute a single instruction. 
Pressing and releasing CTRL 2 will turn the Explorer ON and let it 
continuously execute instructions until CTRL 2 is pressed and released again. 

At this point and time just Explore and have fun. YOU CAN NOT HURT YOUR 
COMPUTER! The worst thing that can happen, if you change some of the values, 
is that you may lock you your computer and will have to shut it off and 
reload the Explorer (please see next page for a few Warnings). A little 
latter on in this manual is a section on Explorations. In this section we 
will take you step-by-step through various items and document them as we go. 

One last point before we leave this page. You may have noticed, if you loaded 
the Explorer through a running Basic or Extended Basic program that the 
screen color was set back to Cyan. Unfortunately, there is no way of checking 
the screen color when the Explorer is loaded so the Explorer sets up default 
values for the 8 Vdp Write Only registers. If you load the Explorer through a 
running Basic or Extended Basic program you can easily correct this by 
placing a CALL SCREEN(x) right after the CALL LOAD("DSK1.xxxxx"). Then when 
you start up the Explorer it will continue execution of your program and set 
the screen back to the color you want. Or, you can easily edit the V7 field 
of the Vdp Register display area and change the screen color. 



W A R MI N G WARNING WARNING 

WARNING WARNING 

DON'TS 

Even though the Explorer was made to be as Transparent as possible to the 
operation of your computer and its peripherals there are a few items you 
should be aware of. 

1. Any TIMING critical operations will NOT function properly. Because the 
Explorer is operating your computer in Interpretive mode its speed of 
operation is greatly reduced. This means that ALL Baud rate operations 
such as RS232 and CS1 or CS2 will not work properly. 

2. Since the transfer of data to and from the floppy disk controller is very 
timing critical these functions will not work properly. The Explorer will 
allow you to Explore right up to the point where the controller is looking 
for a device ready from the disk drive but it will not be received so an 
error is returned. The error is usually 06 - device not ready or no 
diskette/drive. This will not harm your drives or the floppy contained 
therein but you will NOT be able to successfully execute OLD, SAVE or CALL 
LOAD("DSKx.xxxx") type commands. 

3. If you own one of the RAM DISK type memory cards, we have found that you 
CANNOT make ANY Disk type accesses since these DSRs usually take control 
before the floppy disk controller DSR. When these devices take control 
they usually do a 32K bank switch and this pages the Explorer out of 
memory and out of control. Unfortunately they do not return back to us 
properly since we are executing in Interpretive mode so everything gets 
locked up. The only thing you can do if this happens is shut down and 
reload. 

4. The Myarc Ram Disk Card (128K Card) also does a Bank switch on Power Up 
and on EVERY Interrupt. If you own one of these cards you will not be able 
to successfully go through the Power Up Routine or use the interrupts when 
the Explorer is in control. 

IMPORTANT IMPORTANT IMPORTANT IMPORTANT 

5. If you have a Hard Disk Drive hooked up to your computer you can load 
files through the Explorer since this device is always spinning and in a 
ready state. HOWEVER, THERE IS A 99.99% CHANCE THAT IT WILL WIPE OUT THE 
FILE'S HEADER ON THE HARD DISK. We have also had it wipe out a few other 
files with similar names and quite a number of times it made such a mess 
of things that the only way to get the hard disk back in operation was to 
REFORMAT IT!!! Bye Bye files!!! 

DO NOT LOAD FILES OFF THE BIRD DISK THROUGH THE EXPLORER UNLESS YOU DON'T 
CARE IF IT WIPES OUT YOUR HARD DISK!!! - Don't say we didn't warn you! 



EXPLORER'S MAIN SCREEN 

CPU GROH VDP 
Control Control Control 
Area Area Area 

Cpu Grom Vdp 
ws 83E0 ad 0123 ad 0123 
pc 0024 by 00 by 00 
st 0000 st 00 st 00 
bp FFFF bp FFFF bp FFFF  

Binary display 
of Cpu Status 
Register 

Status 
lace 
0 0 0 0 
o p x im 
0 0 0 Od—Interrupt mask 

value. 
Work Space 
Register 
values 

r0 0000 
rt 0000 
r2 0000 
r3 0000  

r4 0000 
r5 0000 
r6 0000 
r7 0000  

r8 0000 
r9 0000 
r10 0000 
r11 0000  

r12 0000 
r13 0000 
r14 0000 
r15 0000 

e = enabled 
d = disabled 

(CTRL 4) 

v0 00 v2 00 v4 00 v6 00~ Vdp Register 
v1 00 v3 00 v5 00 v7 00 values 

c0000s Grom Lib 9800 00000000—Instruction 
____= counter in hex. 

MEMORY POINTER  
c = Rom or Ram 
g = Grom or Gram 
v = Vdp Ram 
0000 = address 
s = Static 
d = Dynamic 

Tracking 

00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

00 00 00 00 00 00 00.. 
00 00 00 00 00 00 00 Press FCTN 1 to 
00 00 00 00 00 00 00 display the other 
00 00 00 00 00 00 00 2 Memory Windows. 
00 00 00 00 00 00 00 
00 00 00 00 00 00 0 FCTN 9 to edit 

__________________=====rasa: 

  

Memory or Fields 

  

Next instruction —t 
...
020D LI R13,>9800 

to be executed. 

   

    

The UP, DOWN, LEFT and RIGHT arrow keys and the ENTER key will move you 
from field to field. FCTN 9 will toggle your cursor between editing 
memory and editing fields. While you are editing the fields or the 
Memory block in hex you can leave your alpha look key up or down and the 
Explorer will automatically adjust your alpha keystrokes into their 
proper upper or lower case entry. When you are editing the Memory block 
in ASCII or ASCII with Basic Bias the Explorer will allow you to enter 
alpha characters in either upper or lower case. 

The cursor will not leave a field that is being edited until you press 
one of the arrow keys or the Enter key. The exception to this is when 
you press and hold the zero key, this allows you to easily zero out some 
or all of the fields. 

If you press an invalid key or try to input an invalid value, the screen 
will change to the Error Colors while you are holding down the invalid 
key. These colors can be set by you on the Explorer's Options Screen. 

15 



Cpu 
ws 83E0 
pc 0024 
st 0000 
bp FFFF 

Cpu Controls  

ws - Workspace Pointer 
This 2 byte field tracks and sets the Cpu's Workspace Pointer Register. 
It contains the address of the first register in the currently selected 
Workspace (main software register area for the Cpu). When you or the 
Application Program change this pointer, the entire Cpu Register display 
area (RO thru R15) will also change. For most Grom based software 
(Basic, X-Basic, Editor/Assembler, Mini Memory and most other 
cartridges) this Field contains >83E0. For the interrupt routines this 
field contains >83C0 and for user written Assembly language programs 
this field can contain any valid even Cpu Ram address. As you change WS 
the Explorer writes the values in RO - R15 out to memory. There may be 
times when you are changing the WS back to 83E0 that the Sound Chip 
comes on. This happens when the last digit in the WS field is not zero 
because the Sound Chip resides at >8400. If this happens just press CTRL 
5 to turn it Off. 

pc - Program Counter 
This 2 byte field tracks and sets the Cpu's Program Counter (instruction 
pointer) Register and it points to the NEXT instruction to be executed. 
Since the Cpu operates only on even addresses (words not bytes) the 
least significant bit is always 0. You can place an odd address in this 
field but it will be rounded down to an even address internally. As this 
value changes, the disassembly of the next instruction at the bottom of 
the screen will also change. 

st - Status 
This 2 byte field tracks and sets the Cpu's Status Register and returns 
information on the LAST instruction executed that affected the Status 
Register (see the binary Status display on page 21). The display block 
in the upper right hand corner of the Main Screen screen (Status) is the 
binary break down of this register. As this value changes, this binary 
display area will also change and visa versa. 

bp - Break Point 
Since the Explorer's powerful machine language interpreter handles all 
tracking of Cpu memory, Rom and Ram, you can set a Break Point for any 
valid Cpu PC (program counter) address. Unlike other utility programs 
this allows you to set Break Points in Rom (Read Only Memory) as well as 
Ram. When the Cpu's PC register equals the value in the Break Point 
field the Explorer will halt execution of the Application Program and 
display the Explorer's Main Screen in the break point colors. Pressing 
any key will restore the screen to its normal colors and release control 
to you. (also see Break Points on page 20 for additional information) 



Grom 
ad 0123 
by 00 
st 00 
bp FFFF 

Grow Controls  

ad - Grow Address 
This 2 byte field tracks and sets the current Grom address. Since Grom 
is auto incrementing memory this address will automatically increase by 
one each time Grom/Gram memory is accessed. The Grom in the 99/4A and 
modules contain Data and the Graphics Programming Language (GPL) object 
code which is interpreted and executed by the GPL interpreter in console 
Rom. Grom is a memory mapped device which means that there are a couple 
of ports (Cpu memory addresses) that are used to transfer 1 byte at a 
time to and from Grom/Gram. When an Application Program or the GPL 
interpreter changes this Grom address it must first write the most 
significant byte of the Grom address followed by the least significant 
byte. In the GPL interpreter these address setting instructions may 
appear something like this: 
MOVB R6,00402(R13) (move MSB of R6 to >9CO2 (>0402+>9800)) 
MOVB 083ED,00402(R13) (move LSB of R6 to >9CO2 (>0402+>9800)) 

These instructions can be seen when the Cpu PC is at >0060. The Explorer 
tracks and executes these Grom address writes without any problems. 
However, if you stop the Application Program in the middle of a Grom 
Address Write and manually change this field the next instruction will 
change it again and unpredictable results will occur pine the Grom 
address will most likely be wrong. Do not change the Grom address unless 
you are experimenting or know where you are setting it to. 

by - Byte 
This 1 byte field contains the LAST byte read from or written to 
Grom/Gram. It does NOT contain the byte at the current Grom Address 
since Grom auto increments its address.(see Memory Windows on page 26 
for information on viewing the current byte in Grom memory) 

at GPL Status Byte 
This 1 byte field contains a copy of the GPL Status byte which is 
located in Scratch Pad Ram at >837C. When you or the Application Program 
change the byte at >837C this field will also change and visa versa. A 
binary break down of the bits in this Status byte can be seen and edited 
by pressing FCTN 8 - Registers. (see Registers Screen on page 45) 

bp - Grow Break Point 
Since the Explorer's powerful machine language interpreter handles all 
tracking of Grom you can set a Break Point for any valid Grom address. 
When the Grom address (AD) equals the value in the Break Point field the 
Explorer will halt execution of the Application Program and display the 
Explorer's Main Screen in the break point colors. Pressing any key will 
restore the screen to its normal colors and release control to you. 
(also see Break Points on page 20 for more information) 



Vdp 
ad 0123 - - - - 
by 00 - - - - 
st 00 - - - -- 
bp FFFF - - - -- 

Vdp Controls  

ad Vdp Address 
This 2 byte field contains the current Vdp read/write address or write 
only Vdp register being accessed. The specific Vdp operation taking 
place is determined by the value written to >8CO2, the port (Cpu memory 
address) for the Vdp processors Write Address Register which is 
reflected in this field. 

>0000 - >3FFF = a Read from Vdp Memory operation 
>4000 - >7FFF = a Write to Vdp Memory operation (address + >4000) 
>80xx - >87xx = a Write to Vdp Register Operation 

(ie: >81E0 sets Vdp register 1 to >EO) 
( >8320 sets Vdp register 3 to >20) 

Because the Vdp memory address is auto incremented by the Vdp Processor 
this address will increase by one after each Vdp read or write access. 
Once again since Vdp is a memory mapped device there are a couple of 
ports (Cpu memory addresses) that are used to transfer 1 byte at a time 
to and from Vdp memory and the Vdp Chip. When an Application Program 
changes this Vdp address it must first write the least significant byte 
of the Vdp address followed by the most significant byte. These address 
setting instructions may appear something like this: 

SWPB R6 
MOVB R6,11R15 
SWPB R6 
MOVB R6,1 R15 

(set up least significant byte) 
(move LSB of R6 to >8CO2) 
(set up most significant byte) 
(move MSB of R6 to >8CO2) 

The Explorer tracks and executes these set Vdp Address operations 
without any problems. IMPORTANT - Do Not change the PC, WS or Vdp AD 
fields in the middle of a set Vdp Address operation. This will cause 
future set Vdp Address operations to be out of sync until a Vdp Read 
data is executed, which will reset the Vdp chip and the Explorer to the 
proper state. 

by - Byte 
This 1 byte field contains the Last byte read from or written to Vdp 
Ram. It DOES NOT contain the byte at the current Vdp Address (AD) since 
Vdp auto increments its address after each read or write. (see Memory 
Windows on page 26 for information on viewing the current byte in Vdp 
memory) 



Vdp 

-- st 00 - - - -- 
---- -- ---- bp FFFF - - - _- 

Vdp Controls continued  

st - Vdp Status- 
This field contains a copy of the Vdp Status register when the 
Application Program screen was last displayed. This field is not updated 
while the Explorer's Main Screen is up, since it would Just be 
displaying the Vdp Status of the Explorer and not the Application 
Program. By toggling screens (CTRL 3) from time to time you can update 
this field. You can not edit the value in this field since this Vdp 
register is a READ ONLY register (except to place zero's in it). 

bp - Break Point 
Once again the Explorer's powerful machine language interpreter handles 
all tracking of Vdp Memory. This adds a powerful function to the 
Explorer which allows you to set some very specific break points for Vdp 
accesses. 

Break Point for a specified READ FROM VDP ADDRESS - >0000 thru >3FFF 
ie: BP 02E0 - halts Explorer on Vdp Read at address >02E0 

Break Point for a specified WRITE TO VDP ADDRESS _ >4000 thru >3FFF 
ie: BP 42E0 - halts Explorer on Vdp Write at address >02E0 

Break Point for a specified WRITE TO VDP REGISTER = >80xx thru >87xx 
ie: BP 81E0 - halts Explorer when Vdp register 1 gets set to >EO 

When the Vdp address (AD) equals the value in the Break Point field the 
Explorer will halt execution of the Application Program and display the 
Explorer's Main Screen in the break point colors. Pressing any key will 
restore the screen to its normal colors and release control to you. 
(also see Break Points on the next page for more information) 

19 



Cpu Grom Vdp 

-- ---- -- -- -- -- - - -  
bp 02B2 » 6000 bp 4300 - - - -- 

Programmable Break Points  

Since you are in complete control of the Application Program you can 
stop and start it at will. This could be considered as unlimited break 
points. However, the Explorer will allow you to program up to three 
different specific Break Points, one for each type of memory. 

To program a Break Point, move the cursor to the BP field for any one of 
the memory types and type in the address you would like the Explorer to 
halt on. These Break Points will halt the Explorer when it is in 
Continuous Execution Mode (CTRL 2), no matter which screen is displayed. 
If the Application Program's screen is displayed, the Explorer will halt 
execution and bring up the Main Screen. The screen will be displayed in 
the Break Point colors with two greater than signs (») pointing to the 
type of memory that caused the Break Point. At this time the Explorer is 
waiting for you to press a key and acknowledge the Break point 
condition. Once you press a key the normal Main screen colors will be 
displayed and the two » signs will be replaced with the letters BP. 

The Explorer was designed two allow you to use the Single Execution key 
(CTRL 1) to get past a break point. This also means that when you are 
Single Executing (CTRL 1) a program, the Break Points will not be 
activated and the screen will not change to the Break Point colors. 

To turn OFF the Break Point(s) simply place a value in this field that 
should never be reached by that type of memory. We have found that FFFF 
works very well for all types of memory. The Cpu's PC should never be 
equal to FFFF since this is an odd address and it is also part of the 
Load interrupt vector. Since Grom is a byte oriented memory mapped 
device this could be a valid address but most of the modules that we 
have seen only have valid Grom addresses up to F7FF. The exception to 
this rule is a new German Extended Basic module which has a data table 
that goes up to FFFF when you execute CALL APESOFT. In Vdp memory the 
highest address set should never be above 87FF since this is the highest 
valid Write to Vdp Register value. 



Status 
l a e c 
1 0 1 0 
o p x im 
0010e 

Cpu Status  

These fields contain the binary representation of the Cpu's Status (ST) 
register. Not all of the 16 bits in this register are active so only the 
active bits are displayed here. These bits can be thought of as binary 
On (1) and Off (0) switches. Also the interrupt mask field can contain 
hex values in the range of 0-F to indicate the current Hardware 
interrupt level allowed. 

Active bits in the 9900 Cpu's Status Register: 

L> A> EQ C OV OP X Znt Mask 
0 0 0 0 0 0 O nu nu nu nu nu 0 0 0 0 

1. - Logical Greater Than (L>) 
When this bit is set, equal to 1, it indicates that the last instruction 
executed that effected this bit in the Cpu's Status register resulted in 
a logical (unsigned number) greater than condition. 

a - Arithmetic Greater Than (A>) 
When this bit is set it indicates that the last instruction executed 
that effected this bit in the Cpu's Status register resulted in an 
arithmetic (signed number) greater than condition. 

e - Equal (EQ) 
When this bit is set it indicates that the last instruction executed 
that effected this bit in the Cpu's Status register resulted with the 
words or bytes operated upon being Equal or the word or byte being zero. 

c - Carry (C) 
When this bit is set it indicates that the last instruction executed 
that effected this bit in the Cpu's Status register caused the most 
significant bit of the word or byte operated upon to be carried out of 
the operand into this bit in the Status register. 

o - Overflow (0V) 
When this bit is set it indicates the the last instruction executed that 
effected this bit in the Cpu's Status register resulted in a too large 
or too small condition for signed numbers. 

p - Odd Parity (0P) 
This bit is used in Byte operations. When set it indicates that the 
that the parity of the destination byte operand of the last instruction 
executed that effected this bit in the Cpu's Status register has an odd 
parity. Odd parity means that the number of bits that are on in the byte 
add up to an odd value. Example: 01001100 (3 bits on) is odd parity and 
01001101 (4 bits on) is even parity. 



Status 

--  -- xim 
---- - - 1 Oe 

Cpu Status continued  

z - Extended Operation (Z) 
When this bit is set it indicates that that the Application Program flow 
has been transferred to one of the XOP vectors to continue execution. 
XOPs are Software controlled interrupts for the 9900 microprocessor. On 
the 99/4A only XOPs 0, 1 and 2 are implemented and on some 4A's only 
XOPs 0 and 2 are. XOP vectors are located in Cpu Rom starting at >0040 
for level 0. 

Level 0 >0040 = >280A - Workspace for unreleased Debugger Card 
>0042 = >0C1C - Program Counter (PC) for XOP 0 

Level 1 >0044 = >FFD8 - Workspace (WS) for XOP 1 (if implemented) 
>0046 = >FFF8 - Program Counter (PC) for XOP 1 

Level 2 >0048 = >83A0 - Workspace (WS) for XOP 2 
>004A = >8300 - Program Counter (PC) for XOP 2 

Levels 3 thru 15 are not implemented on the 99/4A. 

is - Interrupt Mask Value 
The hex value in this field represents the least significant 4 bits of 
the Cpu's Status register. These bits set the highest level of Hardware 
interrupt allowed by the 9900 microprocessor. On the 99/4A an interrupt 
can be triggered by an external peripheral device, the Vdp vertical 
retrace (60 times a second) or the clock on the 9901 for CS1 & CS2. The 
99/4A has only levels 0 & 1 and the non-maskable Load interrupt 
implemented. Level 0 is the reset interrupt (power up routine). Level 1 
controls the Cassette Timing, Peripheral Interrupt Routines, Auto Sprite 
Motion, Auto Sound Processing and the Quit Key. Level 1 also executes 
the User Interrupt Routine pointed to by the address in >83C4, if it 
does not contain zero. The vectors that are in the level 2 position in 
Rom are for a routine that blanks the screen after a certain amount of 
inactive time, this is not an actual Hardware Interrupt Level. The 
interrupt vectors are located in Cpu Rom memory starting at >0000. 

Level 0 >0000 = >83E0 - Workspace (WS) for Reset (Power Up routine) 
>0002 = >0024 - Program Counter (PC) for Reset 

Level 1 >0004 = >83C0 - Workspace (WS) for Level 1 Interrupt 
>0006 = >0900 - Program Counter for Level 1 (most consoles) 

Hardware Levels 2 thru 15 are not implemented on the 99/4A. 



Status 

---JIB 
---- - - - Oe 

Cpu Status (Interrupt Mask) continued  

Unlike any other utility program currently available for the 99/4A, the 
Explorer will execute interrupts during the normal flow of the 
Application Program. Whenever the Application Program or you set the IM 
field to a value that is greater than zero, (LIMI 1 thru 15 instruction) 
and interrupts are enabled (CTRL 4) the Explorer will stop execution of 
the current Application Program and begin execution of the interrupt 
routine pointed to by the level 1 vectors. After completing the 
interrupt routine the Explorer will continue execution of the current 
Application Program where it left off. 

To enable or disable interrupt execution press CTRL 4. The E or D 
indicator after the im hex value will change accordingly. 

Examples: im 
OE = interrupt execution enabled 

im 
OD = interrupt execution disabled 

NOTE 
When interrupts are enabled and the Explorer is running with the 
Application Program's screen displayed, you may notice that the 
Peripheral card lights will blink on and off. This happens because the 
interrupt routine is searching through the peripherals for their 
interrupt routines. When the Explorer is running with the Explorer's 
Main Screen displayed, the screen interrupt takes control before the 
peripheral scan so these lights will not come on. Also, when the 
interrupts are enabled the Application Program executes slower because 
of the extra code in the interrupt routine. It is not necessary to 
ALWAYS have the interrupts enabled for proper execution of the 
Application Program. 

21 



1.0 0000 r4 0000 r8 0000 r12 0000 
r1 0000 r5 0000 r9 0000 r13 0000 
r2 0000 r6 0000 r10 0000 r14 0000 
r3 0000 r7 0000 r11 0000 r15 0000 

Workspace Registers  

r0 - r15 - Cpu's Workspace Registers 
This portion of the Explorer's Main Screen contains a copy of the 
Application Program's current Workspace Registers. When the Explorer's 
Main Screen is displayed these registers are automatically updated on 
the screen after each and every instruction is executed. Any changes 
that you make to these registers or the actual area of memory pointed to 
by the Cpu WS field will affect the Application Program's workspace. 

Generally speaking the workspace registers can contain most anything 
that the programmer wants. However, there are a few registers that must, 
or will, contain certain items for, or after, the execution of some 
instructions. 

r0 - Holds shift count for a some of the Shift instructions 

r11 - Stores the Return address for the Branch and Link (BL) 
instruction and the Effective Address after an XOP. 

r12 - Holds the CRU base address during oru bit access instructions 
(SBO, SBZ, TB, LDCR, STCR) 

r13 - Stores the old Workspace Register (WS) value after a context 
switch, like the BLWP or XOP instruction or the execution of the 
interrupt routines. 

r14 - Stores the old Program Counter Register (PC) value after a context 
switch. 

r15 - Stores the old Cpu Status Register (ST) value after a context 
switch. 

(see the Scratch Pad Ram Memory Map in the Appendixes for additional 
information on the Interrupt workspace at >83C0 and the GPL workspace at 
>83E0) 



v0 00 v2 FO v4 F8 v6 F8 
v1 BO v3 OC v5 86 v7 07 

Vdp Registers  

These eight 1 byte fields track the TMS 9918A Video Display Processors's 
eight Write Only Registers. These Write Only Registers are used by the 
TMS 9918A to set up the various Vdp modes, graphics, text, bit map etc., 
and the various table locations, screen table, character table, sprite 
attribute table etc. 

v0 - Bit Map mode & External Vdp Chip enable 

v1 - 4K/16K Vdp Ram, Screen Enable/Disable, Vdp retrace Interrupt, Text 
mode, Multi-Color mode, Sprite Size & Sprite Magnification 

v2 - Screen Image Table base address - (times >400) 

v3 - Color Table base address - (times >40) 

vit - Character Pattern Table base address - (times >800) 

v5 - Sprite Attribute Table base address - (times >80) 

v6 - Sprite Pattern Table base address - (times >800) 

v7 - Text mode foreground color (most significant nibble) and the Screen 
color for all modes (least significant nibble) 

You can edit any one of these fields and then press CTRL 3 to bring up 
the Application Program's screen and immediately see what effect your 
edit has had on the Application Program. 

Pressing FCTN 8 - Registers will display these registers with their 
binary break down and the tables multiplied out to their proper base 
addresses. 

(Also see Registers Screen for more information on these registers) 



Memory Pointer — c0000s 

00 00 00 00 00 00 00 00 00 00 00 00 
xx 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 

Memory Window 

Memory Windows  

The three Memory Windows are a very powerful part of the Explorer. These 
Windows can be set to any valid address for the specified type of memory 
(Cpu, Vdp, Grom/Gram) either by you or the Application Program. Pressing 
FCTN 1 will toggle the Memory Window display between the three Memory 
Windows. These Windows can be any combination of Cpu, Grom or Vdp memory 
types as well as static or dynamically tracked. Using the Memory Edit 
function of the Explorer allows you to easily examine (any area) and 
change (Ram, Gram) areas of memory as you wish. These areas of memory 
can be displayed in Hexadecimal, ASCII or ASCII with the Basic Bias. The 
Memory Window has a Memory Pointer and Mode Indicator above it that can 
be edited by you. This Memory Pointer will also update itself as you 
move the cursor around in the Memory Window to indicate the exact 
address that the cursor is sitting on. 

c0000s - Memory Window Pointer 
This pointer is actually three different fields that consist of the 
following items: 

c  
This indicates which type of memory is displayed in the memory block. 
You can place any one of the following three alpha characters in this 
field and the memory block will instantly update itself and display that 
type of memory: 

c = Cpu Memory (Rom/Ram) 
g = Grom/Gram Memory 
v = Vdp Ram Memory 

-0000- 
When the cursor is NOT in the memory block or when the Explorer is in 
Continuous Execution mode, this indicates the current start address for 
the memory block displayed. When the cursor is in the memory block this 
indicates the exact address that the cursor is sitting on. The valid 
ranges for the different types of memory are as follows: 

>0000 - FFFF for Cpu Memory 
>0000 - FFFF for Grom Memory 
>0000 - 3FFF for Vdp Memory 



00 00 00 00 00 00 00 00 00 00 00 00 
xx 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 

Memory Windows continued  

s 
This indicates the MODE for the memory block. The Static mode (S) will 
leave the memory block exactly where you place it. The Dynamic (D) mode 
allows the memory block to follow the Application Program's access to 
the type of memory displayed as follows: 

c----d 
If the Type indicator is a C (Cpu Rom/Ram memory) and the mode 
indicator is a D (dynamic) the memory block will automatically 
follow the Cpu's PC register. 

g----d 
If the Type indicator is a G (Grom/Gram memory) and the mode 
indicator is a D (dynamic) the memory block will automatically 
follow the Grom Address (AD). 

If the Type indicator is a V (Vdp Ram memory) and the mode 
indicator is a D (dynamic) the memory block will automatically 
follow the Vdp Address (AD). 

NOTE: When the displayed Memory Window Mode is Dynamic the address 
that is being tracked starts on the second row of the Memory 
Window. This allows you to see the 12 bytes prior to the current 
tracked address. 

d 

00 00 00 00 00 00 00 00 00 00 00 00 
at 00 00 00 00 00 00 00 00 00 00 00 Actual byte 

tracked address 
xx 
00 00 00 00 00 00 00 00 00 00 00 00 

To change the Mode for the displayed Memory Window simply place an S or 
D in this field. Each one of the three Windows can have their own Mode. 

7 



FCTN 1 FCTN 2 FCTN 3 FCTN 4 

FCTN 6 FCTN 9 FCTN 0 FCTN = 

Memory Window & Memory Editor Keys  

The Following Keys Effect The Memory Window Display 

FCTN 1 - Toggles the display to one of the 3 different Memory Windows. 

FCTN 2 - Changes the size of the Memory Window display to one of the 4 
main sizes. 

FCTN 3 - Changes the size of the Next Instruction display area which 
affects the size of the Memory Window display. 

FCTN 4 - Increases the start address of the Memory Window by one full 
Page (Window). The amount of increase automatically compensates 
for the various Memory Window sizes. 

FCTN 6 - Decreases the start address of the Memory Window display by one 
full page (Window). The amount of decrease automatically 
compensates for the various Memory Window sizes. 

FCTN 9 - Toggles you in and out of the Edit Memory Mode. Or, to put it 
another way, it toggles you between editing of memory and 
editing of fields. 

FCTN 0 - Toggles the Basic Bias On and Off. When this Bias is On, the 
words "BASIC BIAS" will be displayed in the middle of the top 
double line (=). The bias ONLY effects the ASCII display of the 
Memory Window by offsetting the ASCII display with >60 to match 
the Basic environments. This Bias is most useful for editing 
the Screen Image area of Vdp Ram when you are in the Basic or 
Extended Basic environments. With this Bias you can also see 
the various ERROR messages in Grom for the two Basic languages. 

FCTN = - Toggles the Memory Window display between Hexadecimal values 
and their ASCII characters. 



-0000- ---- --- ---- 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 

Memory Editor  

The Explorer contains a very powerful and easy to use Memory Editor. 
To enter the Memory Editor when the cursor is in one of the fields at 
the top portion of the screen (above the double line a) Just press FCTN 
9. To exit the Memory Editor (when the cursor is in the Memory Window) 
you also press FCTN 9. The FCTN 9 key on the Main screen toggles you 
between editing the fields and editing memory. 

This Memory Editor allows you to examine any area and type of memory in 
your computer system. It was designed with future expansion in mind in 
that it treats ALL areas of Cpu memory as if it is Ram and ALL areas of 
Grom memory as if it is Gram (Auto Incrementing Graphics Ram the 
complement to Grom). By this we mean that the Explorer will allow you to 
attempt to write to any area of memory. After you have typed in the 
value or character into a memory location the Explorer attempts to write 
that value to the memory location and then rereads and redisplays the 
current Memory Window. If the location was Ram or Gram the Memory Window 
will reflect the change, if the location was Rom or Grom the change will 
not be displayed. With this feature any future Ram or Gram additions or 
modifications to your system can easily be edited. (Note: There 
currently isn't any GRAM in our systems) 

The size of the Memory Window/Edit Area can be changed at any time by 
simply pressing FCTN 2. There are 4 main sizes available. So, when you 
have reached the largest size (full screen) and you press FCTN 1 again 
the Memory Window will automatically drop back down to the smallest 
size. 

The Type of memory displayed (Cpu, Grom, Vdp) can be changed at any time 
by pressing FCTN 1 which brings in the next Memory Window you have set. 
Or, you can leave the Memory Edit mode and place the cursor at the start 
of the Memory Pointer field (c0000s) and input a C,G or V there. 
NOTE: If your Windows are in Dynamic (D) Mode pressing FCTN 1 will 
display the area of memory that is being tracked. If you do not want the 
address to change as you toggle between Memory Windows (FCTN 1) simply 
change them to Static (8) Mode. 



UP DOWN LEFT RIGHT 

SHIFT DP SHIFT DOWN SHIFT LEFT SHIFT RIGHT 

Memory Editor continued  

The Explorer's Memory Editor is a FULL SCREEN type of editor. This 
allows you to move the cursor around in the Memory Window with the four 
arrows keys ( FCTN Up, Down, Left & Right arrows). As you move the 
cursor around in the Memory Window the address in the Memory Pointer 
(0000s) will update itself and indicate the exact address that the 
cursor is currently sitting on. Also ALL of the keys in the Memory 
Editor will auto repeat if you hold them down. 

Pressing the UP arrow key when the cursor is sitting on the Top row of 
the Memory Window will allow you to scroll the Memory Window address and 
display down 12 bytes (t row). Conversely, pressing the DOWN arrow key 
when the cursor is on the Bottom row of the Memory Window will allow you 
to scroll the Memory Window address and display up 12 bytes (1 row). 

Pressing the LEFT arrow key when the cursor is sitting in the upper left 
hand corner (first byte of the Memory Window) will allow you to scroll 
the Memory Window start address and display down 1 byte. Conversely, 
pressing the RIGHT arrow key when the cursor is sitting in the lower 
right hand corner (last byte of the Memory Window) will allow to scroll 
the Memory Window address and display up 1 byte. 

The Explorer also has a unique feature in its Memory Editor in that you 
can lock the cursor on a given byte and drag the memory display around 
in the Window boundaries. To lock the cursor on a given byte (address) 
just press the FCTN and SHIFT keys down at the same time as you press 
the arrow keys. This allows you to drag a given byte to any location in 
the Window. This is very useful for positioning a given byte in the home 
(upper right hand corner) position of the Window. 

We would like to recommend at this time that you play with the various 
FCTN, Arrow and Shift keys of the Explorer's Memory Window and Memory 
Editor. This will help you to become more familiar and comfortable with 
its powerful features and to make future Explorations easier. 



c0000- st 0000 fn 0000  

Search String ' 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 Memory display 
00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 0 

Search Function  

The Explorer also contains a very powerful and easy to use Search Function. 
This function allows you to search through any type of memory, Cpu, Grom or 
Vdp, in Hexadecimal, ASCII or ASCII with Basic Bias. It also allows you to 
search forwards, low to high address range, or backwards, high to low address 
range. To activate the Search Function simply follow these steps: 

1. Select the type of memory you wish to search through by placing a C, G 
or V in the Memory Pointer field or by pressing FCTN 1 until the proper 
type of memory is displayed. You must do this PRIOR to activating the 
Search Function. 

2. Press FCTN 5 - Search - to activate the Search Function. 

3. Input the Start Address in the ST (Start) field and the End Address in 
the FN (Finish) field and then press Enter or the Down Arrow. 

4. Select either Hex display for a Hexadecimal searoh or ASCII display for 
a ASCII search by pressing FCTN = - ASCII/HEX Toggle. 

5. If you have selected ASCII, you can select either normal ASCII or ASCII 
with the Basic Bias by pressing FCTN 0 - Basic Bias On/Off. 

6. Type in the Hex value(s) or ASCII letters, according to the display, and 
then move the cursor back one space (left arrow key) to place it ON TOP 
OF THE LAST CHARACTER OR BYTE in your search string, and now press ENTER 
to start the search. 

Example: g0000- at 2000 fn 57FF 
: - --  
T I B A S I p.... 

Pressing Enter with the cursor sitting ON TOP OF the C in 'BASIC' will 
instruct the Explorer to search through Grom (0) memory from >2000 
through >57FF for the first occurrence of 'TI BASIC' and to display its 
start location in the Memory Window and Memory Pointer. If you place 
your cursor on top of the I in 'TI' the Explorer will ignore the rest of 
the search string and search for the first occurrence of 'TI' in the 
selected Grom memory range. 

'51 



g2152- 

- Me f ~ 

st 2153 fa •--~=-- 
T I B A S I : ~' : ~ . ' . 

T I S A S I C B+. 
I I I I I I 

.. . . . . s . .' 1 

. . . . . .. .. @ . 

Search Function Continued  

When the search string is found the Explorer will automatically display 
that area of memory in the Memory Window. It will also update the Memory 
Pointer to the address where your search string was found. It also 
adjusts the Search Function Start Address (ST) to allow you to just 
press Enter again to search for the next occurrence. If you are 
searching forward through memory it will set the Start Address (ST) to 
one address higher than the Memory Pointer value. If you are searching 
backwards through memory it will set the Start Address (ST) to one 
address lower than the Memory Pointer value. 

If the search string is not found the Explorer will NOT update the 
Memory Pointer, Memory Window or Start Address. If the first line of the 
Memory Window, up to and including the cursor location, does not match 
the search string display then your string was NOT found. 

To change the ST or FN fields when the cursor is in the search string 
area just press the Up arrow key. When you are finished with the Search 
Function just press FCTN 5 again to exit it. NOTE: This is the ONLY way 
to leave the Search Function and to resume normal operation of the 
Explorer. 

When you exit the Search Function the Explorer will remember the search 
string you input and the Start and Finish addresses where it left off. 
So, the next time you enter the Search function these items will 
automatically be displayed. However, it does not change the current 
memory type to the one you searched through before. This allows you to 
easily search through Cpu, Grom and Vdp for the same item(s). 

NOTE 
The Search Function is an independent function of the Explorer. When it 
is activated most of the other functions of the Explorer cannot be 
accessed (ie: FCTN 7 Options, CTRL 2 Continuous Execution etc.). Trying 
to activate one of these functions will cause the screen to change to 
its Error colors, which indicates that you need to leave the Search 
Function (press FCTN 5 again) before accessing this other function. 



-,£.~; -~~,~;~„~•'' a 
---r--~~,„g0{q:Lib 9800 00000000 

-- , -7+17';-- -- -- -- -- -- -- d  

Grom Library & Instruction Counter  

Grom Lib 9800 — Grom Library Page 
This field was added to the Explorer for two reasons. First to allow you 
to watch the 4A's operating search through the Grom Library for a 
particular CALL. And secondly for future expansion of your computer 
system. There currently isn't a Grom Library Expansion box available for 
your computer but there may be one in the near future and the Explorer 
is fully set up to handle it and GRAM simulators. 

You may have noticed at one time or another, when you removed or 
inserted a module that the REVIEW MODULE LIBRARY message came up in your 
menu. And, you probably have tried to make that selection to see what 
happens. Unfortunately, since there wasn't a Grom Library Expansion box 
hooked up, nothing happened. You can, however, watch TI Basic attempt to 
search through the nonexistent Grom Library. To do this simply load the 
Explorer into the Basic environment and start it up. When the cursor 
reappears and you are in Command/Edit mode of Basic slowly type in an 
invalid CALL such as, CALL MG and press Enter. As the computer searches 
for this invalid CALL you will notice that this field is updated to each 
of the Library pages until Basic oan not find the CALL and returns the 
f BAD NAME error message. (There will be more documentation on this when 
a Grom Library box is available) 

00000000 — Instruction Counter 
This four Byte (eight nibble or 32 bit) field is the Instruction Counter 
in hexadecimal that counts up to >FFFFFFFF before it resets itself. You 
can edit this field at any time and set it to any value or reset it back 
to zero. This field increments itself by one each time the Explorer 
executes a 9900 Machine Language Instruction. It is displayed on the 
Main Screen in hexadecimal, for purposes of speed, and it is also 
displayed on the Options screen in Decimal format. This way you can 
simply press FCTN 7 at any time to see the actual number of instructions 
(in decimal) executed so far. It is also handy as a quick hexadecimal to 
decimal number converter for converting large hex numbers into their 
decimal value. >FFFFFFFF equals 4,294,967,295 which is also the address 
range of a true 32 bit computer — 4 Gigabytes. 



DB46 MOVB R6,@>0402(R13)  

or 

Object 
Code 

 

DB46 MOVB R6,@>0402(R13)  Source 
0402 Code 
DB60 MOVB @>83ED,@>0402(R13) 

 

Instruction Disassembly  

The last display area on the Explorer's Main screen is the Next 
Instruction to be executed. This area can be displayed in two sizes, 
single line or three lines. The single line display will always display 
the complete Next instruction, no matter how many object code words make 
up the instruction. The three line display can display up to three 
instructions at a time if the first two instruction are only one word of 
object code in length. 

As each instruction is executed this area is updated and the next 
instruction to be executed will be displayed. This display area 
dynamically follows the Cpu's PC register and the area of memory that 
the PC points to. 

If you place the PC field on an area of Cpu Ram, say >2900, and then 
place the Memory Window at c2900s, you can edit the values in the Memory 
Window and watch the disassembly display change to the new instruction. 

EXAMPLE: Cpu 
Input - ws 2800 
Input  pc 2900 

st ---- - any value is ok 
bp FFFF 

c2900s Grom Lib 98- 

Type in-----04 20 00 00 -- -- -- -- -- -- -- -- 
-- -- -- -- -- -- -- -- -- -- --  

which 
equals 0420 BLWP @>0000 

By inputting the values indicated and typing in >04 20 00 00 into the 
Memory Window you will set the next instruction to do a Branch and Load 
Workspace Pointer @>0000. This will begin execution of the Power Up 
routine when you press CTRL 1 or CTRL 2. Go ahead and press CTRL 1 and 
note R13, R14 and R15 of the new Workspace. 

Set 



Number Converter 

hex FFFF + 0000 = 0000FFFF 

dee 65535 + 00000 = 0000065535 

bin 11111111 11111111 car 0 ovr 0 
+ 00000000 00000000 + add a and 

- sub o or 
= 00000000 00000000 f mul x xor 

11111111 11111111 / div n not 

Explorer Options 

Cru Base 1100 0 

Load Characters h s step speed 
Execute Key Scan h h high speed 

Colors test/scrn Counter 
Status Screen F4 
Break Point 1A d00000000000 

` Error Condition F6 / 

EXPLORER'S OPTIONS SCREEN 

The Explorer's Option Screen actually contains four sections, the Number 
Converter, The Cru Base switch, the Options section and the decimal Counter. 
The Number Converter has the same mathematical logic as the 9900 
Microprocessor. The Cru Base switch actually performs two functions. First it 
allows you to turn On (1) and Off (0) different Cru bits. Secondly it Reads 
back the selected Cru Base (bit) and displays it. The Options section of this 
screen allows you to configure the Explorer to your tastes and to save these 
Options on the Explorer Disk. 

To activate this screen just press FCTN 7 - Options - from either of the 
other two Explorer Screens (Main or Registers), while the Explorer is NOT 
Continuously Executing (CTRL 2) an Application Program. Once you have 
activated this screen you can return to the Explorer's Main Screen by 
pressing FCTN 7 again. 



Number Converter 

Operation hex FFFF _+ 0000 = 0000FFFF 
Indicator 

dec 65535+ 00000 = 0000065535 

bin 11111111 11111111 car 0 ovr 0 
+ 00000000 00000000 + add a and 

- sub o or 
= 00000000 00000000 * mul x xor 

11111111 11111111 / div n not 

Operation 
Selection 
Fields 

Number Converter  

The Explorer's Number Converter will convert Hexadecimal, Decimal and 
Binary numbers and perform the mathematical and relational operations of 
Add, Subtract, Multiply, Divide, AND, OR, XOR and NOT. The valid range 
for the different number bases is >0000 thru >FFFF, 0 thru 65535 and 
0000000000000000 thru 1111111111111111. This Number Converter operates 
dynamically in that ALL of the Number Converter fields are automatically 
updated as you type in EACH character, so type slow. 

When this screen is active the action performed by the the FCTN 9 key is 
changed. Pressing FCTN 9 takes your cursor from wherever it is on the 
screen and places it on the + sign in the mathematical and relational 
selection fields. When the cursor is already on one of these fields, 
pressing FCTN 9 will place the cursor back to the field that it was in. 

The mathematical and relational operations have the same logic as the 
9900 microprocessor. What this means is that they calculate the same 
result as the corresponding 9900 instruction. All of the mathematical 
and All of the relational operations except NOT operate on two numbers. 
The NOT relation works on a single number and the Explorer is set up to 
NOT a value that is in the input field following the operation 
indicator. 

The CAR 0 and OVR 0 indicators above the mathematical and relational 
selection fields simulate the CARRY and OVERFLOW bits of the Cpu's 
Status Register. These bits will be set or cleared on the various 
operations according to the operation performed and its result. 



NUMBER CONVERSION 

MITBEMITICAI. OPERATIONS 

Number Converter Continued  

Number Conversion 
To perform just a straight number conversion simply type in the number 
into the appropriate number base field. The Explorer will dynamically 
convert the number as you type it in. The proper conversion will be 
displayed in the the other two number bases's corresponding input 
fields. By looking in these fields for the result instead of the fields 
following the = sign you will not have to worry about the mathematical 
or relational operation indicator. 

Example - Convert >2006 into Dec and Bin 

Input\  hex 0000 
2 

 06 = 00002006 

Result dec 00000 08198 = 0000008198 

bin 00000000 00000000 car 0 
Result + 00100000 00000110 + add 

- sub 
= 00000000 00000000 * mul 
00100000 00000110 / div 

Mathematical Operations 
To perform a mathematical operation (add, sub, mul or div) input the two 
values into their proper number base input fields and press FCTN 9. With 
the cursor sitting on the + sign in the mathematical and relational 
selection fields you can move it around to the proper operation. When 
the cursor is on the proper operation simply press ENTER and that 
operation will be performed. Once an operation is selected the Explorer 
automatically executes it whenever you input values. 

Example - Divide 16500 by 8198 
Quotient 

hex 4074 / 2006 = 
Remainder 

Input dec 16500 / 08198    = 

bin 01000000 01110100 car 0 ovr 0 
/ 00100000 00000110 + add a and 

- sub o or 
Quotient  = 00000000 00000010 * mul x xor 
Remainder  00100000 01101000 /\div a not Select 

So 8198 goes into 16500 2 times with a remainder of 104. 

0,1 

ovr 0 
a and 
o or 
x xor 
n not 



RELATIONAL OPERATIONS 

Number Converter Continued  

Relational Operations 
Performing a relational operation (AND, OR, TOR or NOT) is much the same 
as performing a mathematical operation. Input the two values into their 
proper number base input fields and press FCTN 9. With the cursor 
sitting on the + sign in the mathematical and relational selection 
fields you can move it around to the proper relational operation. When 
the cursor is on the proper operation simply press ENTER and that 
operation will be performed. 

Example - Perform >42E0 AND >3FFF 

Input hex 42E0 a 
3 
 FF = 000002E0 Result 

dec 17120 a 16383 = 0000000736 Result 

Result 

 

bin 01000010 11100000 car 0 ovr 0 
a 00111111 11111111 + add aannđ̂ Select 

- sub o or 
= 00000000 00000000 * mul x xor 
 00000010 11100000 / div n not 

 

So this AND masks off the two high order bits and leaves us with >02E0 

The NOT operation is a single number operation. So the Explorer expects 
the value for a NOT to be in the input fields AFTER the Operation 
Indicator 

Example - NOT >BCDE 

Input hex n BCDE = 00004321 Result 

dec  n 48350 = 0000017185 Result 

Result 

 

bin  car 0 ovr 0 
n 10111100 11011110 + add a and 

- sub o or 
= 00000000 00000000 t mul x xor 
 01000011 00100001 / div n not Select 

 

So NOT turns Off the bits that are On, and On the bits that are Off 

38 



HEXADECIMAL TO CALL PEEK or CALL LOAD 

CALL PEEK or CALL LOAD to HEXADECIMAL 

Humber Converter Continued  

Hexadecimal to CALL PEEK or CALL LOAD 
Converting Hex numbers into their Decimal CALL PEEK or CALL LOAD 
addresses is a simple matter if you keep in mind the following rule. IF 
the Hex number is greater than >8000 then subtract it from Zero and look 
at the result. IF it is less than >8000 just do a straight number 
conversion. In this example the Hex number is greater than >8000 so we 
will subtract it from Zero. To do this input four zero's in the first 
Hex field, input 83E0 in the second Hex field, press FCTN 9, move the 
cursor down to - (sub) and press ENTER. 

Example - Convert >83E0 into its Decimal CALL PEEK address. 

Input hex 0000 - 83E0 = 00007C20 

dec 00000 - 33760 = 0000031776 Result 

So >83E0 can be peeked into with CALL PEEK(-31776,A,B) 

CALL PEEK or CALL LOAD to Hexadecimal 
Converting CALL PEEK or CALL LOAD values into their Hex looations is 
very similar to the above conversion. The rule to keep in mind here is - 
IF the CALL PEEK or CALL LOAD value is NOT negative, just do a straight 
number conversion. IF the CALL PEEK or CALL LOAD value IS negative then 
subtract the value from Zero (negative number conversion) and look at 
the result. So lets convert the above result back into its Hex location. 

Example - Convert CALL PEEK(-31776,A,B) into its Hex location. 

hex 0000 - 7C20 = 000083E0 Result 

Input dec 00000 - 31776 = 0000033760 

So CALL PEEK(-31776,A,B) is peeking into >83E0 

NOTE: The Decimal input fields perform a range check as you input 
values. So, if you try to input a Decimal value greater than 65535 the 
screen will change to its Error Condition Colors. ' 

39 



Explorer Options 

Cru Base 1100 0 

Cru Base  

Cru Base Switch 
The Cru Base function of the Explorer allows you Read and Set the 
different Cru Bits in the 99/4A. Cru Bits are just a bit level method of 
I/O but they can be joined together to form bytes or words. In the 
console they are used for interrupt detection, keyboard and joystick 
input and the cassette controls. In the peripheral devices they can be 
used for anything the hardware and software would like. In many cases 
they are used as binary switches to turn on and off selected items. For 
example, in the disk controller card there are designated bits 
(switches) to select the proper drive, side and to strobe the motor on. 

By setting the Cru Base field to a specified Cru address you can Read 
the Cru bit in the bit field. Also, after the specified Cru address has 
been set you can move the cursor to the bit field and input a 1 or a 0 
to turn On or Off the specified bit (depending on the particular 
hardware). 

The Explorer ALWAYS reads and redisplays the specified bit, however, 
some Cru bits can be set but not read as being set. This is a property 
of the hardware that the Cru Base address is set on. For example, if you 
have a TI RS232 Card you can turn it on by writing a 1 to Cru Base 1300. 
But, the Explorer will read back a zero even though the card is on. Now 
set the Cru Base address to 130E and input a 1 into the bit field. This 
will turn on the RS232 Card light and the Explorer will read back a 1. 
To turn the card off simply input a zero in the Bit field for Cru Base 
130E and Cru Base 1300. 

The value that is placed in the Cru Base address field is the same as 
the one you would place in Workspace Register 12 (R12) for a TB 0, SBO 0 
or SBZ 0 instruction. To obtain this address you multiply the Cru Bit 
number that you want to Read or Set by 2 and add the Cru Base address to 
it. 
Examples: Read Cru Bit 11 in the RS232 Card. 

2 * 11 = 22 22 = >16 >1300 + >16 = Cru Base 1316 

What Cru Bit number turns on the RS232 light? 
>130E - 1300 = >OE >OE = 14 14 / 2 = Bit number 7 

In many locations in the 4A operating system you will find instructions 
like - TB 0 JNE >xxxx These instructions are testing Cru bit 
number 0 of the Cru Base that is in R12 of the Workspace. The test 
result is reflected in the E (Equal) bit of the Cpu Status register. If 
the E bit is a 1 after the TB 0 instruction is executed the Cru bit was 
set (1) if it is a 0 the Cru bit was not set (0). You can fool the 
Application Program by changing the E bit immediately after the TB 
instruction is executed. 

#p1 



LOOKING FOR DEVICE SERVICE ROUTINES 

Cru'Base Continued  

Many of the peripheral cards and devices contain a Device Service 
Routine (DSR). This is a fancy name for the 9900  Assembly Language 
Object code that is burned into a Rom chip on the card or device. When 
the card or device is turned on this DSR code is paged into Cpu memory 
at >4000 through >5FFF so the 9900 micro can access and execute it. 

With the Explorer it is a simple matter to find out where all of the 
DSRs are located in your system. TI set up the Cru Bases and peripheral 
cards in such a way that each card resides on a >100 boundary starting 
at Cru Base >1000. So the first DSR can reside at Cru Baae >1000, the 
next at >1100 followed by >1200 etc. 

To find the different DSRs in your system follow these steps. 
1. On the Main Screen set the memory pointer to c4000s with ASCII 
display (Basic Bias Off). 
2. Press FCTN 7 - move the cursor down to the Cru Base field and input 
1000. 
3. Move the cursor to the Bit field and input a 1. 
4. Press FCTN 7 and look in the memory window. If its all dots there's 

no DSR at this Cru Base. If there is something there use the FCTN 4 
Page Up and FCTN 6 Page Down to look around. 

5. Someplace near the beginning (>4016) you should find the different 
DSR Link Names in the code (ie: DSB1, RS232, PIO, TP, etc.) or the 
CALLs that the card may contain (CALL FILES etc). This and the Cru 
Base map on the next page will help you identify which card's DSR you 
are looking at. 

6. When you are finished looking at this DSR press FCTN 7 and input a 
zero in the Bit field to turn the card Off. 

7. Move the cursor to the Cru Base field and input the next Cru Base 
address (add >100 to the previous Cru Base address) and continue with 
number 3 in these steps. 

NOTE: The DSRs are ALWAYS turned on by writing a 1 to the lowest Cru 
Base address for that device (ie: 1000, 1100, 1200, 1300 etc.). The 
other Cru Base addresses in the range for the card are the 128 Cru bits 
assigned to each peripheral apace (ie: 1102, 1104, 1106 etc.). But most 
of the peripheral devices do not use all 128 bits. They usually only use 
6 - 24 bits. Also, the selected card's light may or may not come on when 
you turn on the DSR. It depends on the hardware design. 

41 



CRU BASE ASSIGNMENT MAP 

Cru Base Continued  

Cru Base Assignments 

Cru Base 

0000 03FE 
0400 OFFE 
1000 - 10FE 
1100 - 11FE 
1200 - 12FE 
1300 - 13FE 
1400 - 14FE 
1500 - 15FE 
1600 - 16FE 
1700 - 17FE 
1800 - 18FE 
1900 - 19FE 
1A00 - 1AFE 
1B00 - 1BFE 
1C00 - 1CFE 
1D00 - 1DFE 
1E00 - 1EFE 
1F00 - 1FFE  

TI Assignment Your System 

Internal Console Use (see Appendix) 
unassigned (not scanned by DSR Link) 
unassigned - Production Tester  
Floppy Disk Controller 
Internal Modem 
RS232 1 & 2 & PIO 1 
unassigned 
RS232 3 & 4 & PIO 2 
unassigned 
Unreleased HEX-BUS Adapter 
TI Thermal Printer 
EPROM Programmer 
unassigned 
Unreleased TI Debugger Board 
Video Controller 
IEEE 488 Controller Card 
unassigned 
P-Code Card 

The Cru Base addresses go up to >1FFE, Cru Base 2000 wraps around so you 
are actually looking at 0000. To test this, input a Cru Base of 3100 
(1100+2000) and write a 1 to the Bit field and your disk controller 
light will come on. Don't forget to turn it back Off. 

NOTE: To enable RS232 3 & 4 and PIO 2 requires a special modification to 
your RS232 Card. The DSR Link names are in the Card but the hardware 
must be modified to place it at Cru Base 1500 to access them. This 
modification allows you to have 2 RS232 Cards in your system for a total 
of 4 RS232 ports and 2 PIO ports. 

42 



Load Characters h s step speed 
Execute Key Scan h h high speed 

Optidna  

Load Characters 
The Load Characters Option of the Explorer will place character set 
loading in one of two modes. The H mode loads the character sets at full 
speed. This is very handy for Basic and Extended Basic since they 
Reload the character set after each completed command in the 
Command/Edit mode or at the completion of a running program. When the 
mode is set to S the Explorer will track each byte of the character set 
as it is moved out to Vdp Ram. After you have watched the lengthy 
process of loading a character set a few times (S mode), we are sure 
that you will appreciate the default H mode. 

NOTE: The H mode has no effect when an Application Program, such as the 
Power Up routine or the TE II Module, DOES NOT use one of the GPL 
subroutines for loading the character sets. 

Execute Key Scan 
The Execute Key Scan Option of the Explorer allows you to speed up the 
key scan process by turning off the debounce delay loop. When this 
Option is set to the H mode the Explorer will automatically zero out the 
key scan's debounce delay loop counter and continue on with the key 
scan routine. If this Option is set to the S mode the Explorer will NOT 
zero out the debounce delay loop so inputting key strokes becomes a very 
slow operation. 

If you would like to watch the complete key scan routine simply place an 
S in this field. However, after a few times through the key scan we're 
sure you will prefer the H mode for most Application Program execution. 

Since the Explorer is operating your computer and Application Program in 
interpretive mode the inputting of key strokes is slower than normal. To 
properly input key strokes with the Application Program screen displayed 
just hold down the desired key until the cursor disappears. When the 
cursor reappears you can input the next key stroke. If you are inputting 
two or more consecutive key strokes of the same character wait for a 
second after the cursor reappears before pressing the key again. This 
prevents the application programs auto repeat delay counter from 
activating. When it does active it takes a long time before the cursor 
disappears. If it does activate just let up on the key, wait a second 
and then press it down again. 

43 



Colors text/scrn Counter 
Status Screen F4 
Break Point 1A d00000000000 
Error Condition F6 

Color Options & Counter  

Colors 
The Colors Option of the Explorer allows you to set your own Text and 
Screen colors for the Explorer's Status screens (all screens). You can 
also set your own Break Point colors and Error Condition colors. The 
Break Point colors are the colors that the Explorer changes the screen 
to whenever a Programmable Break Point is encountered. The Error 
Condition colors are the colors that the Explorer changes the screen to 
whenever you try to input an invalid value or press an invalid key. 

These colors are set in a 2 nibble field. The first nibble is the Text 
color and the second nibble is the Screen color. The color values are 
the same as the ones used in Assembly Language (see table below) and 
match the values that would be written to Vdp register 7 for Text Mode. 
NOTE: If you type in the same value for the Status Screen's Text and 
Screen colors you will not be able to see the Text any more. However, 
the Explorer will not leave the field until you press Enter or an Arrow 
key so you can just input a different value for the screen color and 
your Text will reappear, if its not transparent (0) 

Color Values 
0 = Transparent 8 = Medium Red 
1 = Black 9 = Light Red 
2 = Medium Green A = Dark Yellow 
3 = Light Green B = Light Yellow 
4 = Dark Blue C = Dark Green 
5 = Light Blue D = Magenta 
6 = Dark Red E = Gray 
7 = Cyan F = White 

Save Options - CTRL 9 
After you have set the the H S Options and Colors you can save these 
settings to the Explorer Disk. The Explorer will then use these settings 
as the default settings whenever it is loaded. To Save your settings, 
first make sure the Options Screen is displayed. Then remove the write 
protect tab from the Explorer diskette. Next place the Explorer disk 
BACK IN DRIVE 1 and press CTRL 9. And finally, put the write protect tab 
back on the Explorer disk. Your settings will not be saved if the 
Explorer disk is not in drive 1 or the write protect tab is on the disk. 

Counter 
This display area is the decimal conversion of the Hexadecimal Counter 
on the Main Screen. You can not edit this field, it was placed here so 
that you didn't have to convert the Hex counter yourself. 

44 



EXPLORER'S REGISTERS SCREEN 

/   Status Registers ---- 

hgh grt cnd car ovf 
Gs 0 0 0 0 0 0 0 0 00 

int 5rw ono fifth sprite number 
Vs 1 1 0 0 0 0 0 0 CO 

VDP Registers 

bit ext 
v0 0 0 0 0 0 0 0 0 00 

16k son int txt mlt sze nag 
v1 1 1 1 0 0 0 0 0 SO 

v2 0000 0000 00 screen image 0000 
v3 0000 1110 OE color table 0380 
v4 0000 0001 01 char pattern 0800 
v5 0000 0110 06 spri attribu 0300 
v6 0000 0000 00 spri pattern 0000 
v7 1111 0101 F5 txt/scrn clr ~  

On the Explorer's Registers Screen you will find the hex value and binary 
break down of the Gpl Status byte, the Vdp Status Register and Vdp Registers 
0 and 1. This screen also contains the hex value, binary value and the actual 
table addresses for Vdp registers 2 through 6. For completeness Vdp Register 
7 was also included here. 

Not all of the bits in the Gpl Status byte and Vdp Registers 0 and 1 are 
active so only the active bits are labeled As you move the cursor around on 
this screen the Explorer will automatically skip over the inactive bits. 
Also, since, the Vdp Status is a Read Only Register you can not edit this 
register it is here for the binary break down. 

Even though all of the bits are not active in Vdp Registers 2 through 6 you 
can still edit the inactive bits but they will not effect the Table address. 
This was allowed since some Application Programs write values that turn on 
the inactive bits even though they are ignored by the TMS 9918A Vdp 
Processor. 

45 



----- -- Status Registers 

hgh grt end car ovf 
Gs 0 0 0 0 0 0 0 0 00 

-- --- --- ----- ------ ------ 

Gpl Status  

The Gs display breaks down the Gpl Status byte into its binary 
representation. This byte is not an actual hardware register, like the 
Cpu Status and Vdp Status. It is instead controlled and used by the Gpl 
interpreter software in console Rom. The actual location of this byte is 
at >837C in Scratch Pad Ram. If you change the bits or the hexadecimal 
value displayed here, the Explorer will automatically change the value 
at >837C and the value on the Explorer's Main screen and visa versa. 

The following bits are used by the Gpl interpreter: 

Huh - High 
When this bit is set it indicates to the Gpl interpreter that a Gpl 
Logical Greater Than (unsigned numbers) condition exists. 

Grt - Greater Than 
When this bit is set it indicates to the Gpl interpreter that a Gpl 
Arithmetic Greater Than (signed numbers) condition exists. 

Cnd - Condition bit 
This bit is used by the Gpl interpreter for a variety of items. Its main 
use is to indicate a True (1) or False (0) result of a test. These tests 
are Gpl instructions that move one of the other bits in this byte to the 
CND bit. It is this bit that the BRANCH ON SET (>60) and BRANCH ON RESET 
(>40) instructions test before branching. Also, the Key Scan routine 
sets this bit if a key press is detected. 

Car - Carry 
When this bit is set it indicates to the Gpl interpreter that the most 
significant bit of the word or byte being operated upon has been carried 
out of the word or byte into this bit. 

Ovt - Overflow 
This bit gets set when a Gpl operation results in a too large or too 
small condition for 2's compliment numbers. 

k6 



Status Registers 

int 5rw ono fifth sprite number 
Vs 1 1 0 0 0 0 0 0 CO 

Vdp Status  

The Vs display is the binary break down of the TMS 9918A Vdp Processor's 
Status Register. The value that is shown here represents the value 
contained in that register when the the Application Program screen was 
LAST displayed. Since this register is a hardware Read Only register you 
can not edit the bits or hexadecimal value. It is here to display the 
binary break down which includes the following bits: 

int - Vertical Retrace Interrupt 
When this bit is set it indicates that the TMS 9918A has started the 
vertical retrace period. Vertical retrace is when the raster scan 
reaches the end of the active display area and then moves back to the 
top of the screen. It is at this time that the Vdp chip generates the 
Vdp interrupt for the 9901. Vertical retrace happens 60 times per second 
so we have 60 Vdp interrupts per second on a 60 Hz system (50 per second 
on a 50 Hz system). 

5rw - 5 or more sprites on a row 
This bit is set by the Vdp chip whenever there are 5 or more sprites on 
a row and the INT bit is set to 0 (not checked during vertical retrace). 
Since sprites are not allowed in Text mode this bit has no meaning when 
Text mode is active. 

one - Coincidence 
This bit is set by the Vdp chip whenever two or more sprites have at 
least one overlapping pixel. The Vdp chip checks for overlapping pixels 
as it generates the pixels on the screen, so this check occurs 60 times 
a second (60Hz). (Note: No sprites in Text mode.) 

fifth sprite number 
Whenever the 5rw bit is set, and you are not in Text mode, these 5 bits 
contain the number of the fifth sprite on the row. If 5rw is not set or 
if you are in Text mode these bits have no meaning and usually contain 
garbage. 

47 



VDP Registers 

bit ext 
v0 0 0 0 0 0 0 0 0 00 

16k son int txt mit sze mag 
v1 1 1 1 0 0 0 0 0 EO 

v2 0000 0000 00 screen image 0000 
v3 0000 1110 OE color table 0380 
v4 0000 0001 01 char pattern 0800 
v5 0000 0110 06 spri attribu 0300 
v6 0000 0000 00 spri pattern 0000 
v7 1111 0101 F5 txt/scrn clr 

Vdp Write Only Registers  

The next 8 Vdp Registers are the Vdp Write Only Registers. This means 
that your software can write to these registers but it can not read 
them. The first two, VO and V1, control the various Vdp modes. The next 
five, V2 through V6, control the various table locations in Vdp Ram and 
the last one, V7, controls the Text Mode text color and All modes screen 
color. 

v0 - 
Bit - Bit Map 
This binary switch enables and disables Bit Map Mode (1 or 0) when TIT 
and MLT in V1 are Off. 

Ext - External Vdp 
This binary switch enables and disables the External Vdp chip 
synchronization option of the TMS 9918A. You can enable this bit but 
since there isn't an External Vdp chip hooked up to synchronize with 
your Application Program's screen will go out of sync. Since you are in 
control you can play with this bit without hurting the Application 
Program. 



16k son int txt mlt sze mag 
v1 1 1 1 0 0 0 0 0 E0 

Vdp Write Only Registers Continued  

♦1 
16K - 161 Vdp Ran 
When this bit is set the TMS 9918A Vdp Processor handles the Dynamic Ram 
refresh for 4108 (8K) or 4116 (16K) DRam chips. When this bit is zero 
the TMS 9918A refreshes the 4027 (4K) DRam chips. The 99/4A  contains 
4116 DRams, the 4108 and 4027 DRams are not used in our consoles. 
IMPORTANT NOTE: If this bit is zero and the SCR (Screen Enable) bit is 
also zero the 4116 Vdp Dram chips will not be refreshed properly. This 
causes the values in many areas of Vdp memory, including the screen 
image, to decay to zero when the Application Program screen is toggled 
in (CTRL 3). 

sen - Soreen Enable/Disable 
When this binary switch is zero (disable) the Application Program screen 
will be blank and only the screen color will show. Many of the 
Application Programs blank the screen image while they are building 
their screens. To watch an Application Program build its screen just 
turn on this bit. ' 

int - Ydp Interrupt Enable/Disable 
When this binary switch is On (1) the Vdp chip will generate a Vdp 
Interrupt signal for the 9901 whenever the raster scan is at the end of 
the active display area (60 times a second for 60 Hz). 

txt - Text lode 
Turning this binary switch On places the Vdp Processor in Text Mode (40 
columns) when the BIT in VO and MLT in V1 are zero. 

alt - Helti-Color lode 
Turning this binary switch On places the Vdp Processor in Multi-Color 
Mode when the BIT in 70 and TYT in V1 are zero. 

sze - Sprite Size 
This switch selects the Sprite Size for the Vdp chip. When it is On (1) 
all sprites are made up of 4 characters (16x16 pixels). When it is Off 
all sprites are made up of 1 character (8x8 pixels). 

nag - Sprite Magnification 
This switch selects the Sprite Magnification for the Vdp chip. When it 
is On the sprite pixels are magnified 2x. When it is Off the sprite 
pixels are normal size. 

49 



v2 0000 0000 00 screen image 0000 
v3 0000 1110 OE color table 0380 
v4 0000 0001 01 char pattern 0800 
v5 0000 0110 06 spri attribu 0300 
v6 0000 0000 00 spri pattern 0000 
v7 1111 0101 F5 txt/scrn clr 

Vdp Write Only Registers Continued  

This section of the Explorer's Registers Screen contains information 
about Vdp registers v2 through v7. The Explorer automatically calculates 
the start address for each of the different tables that are controlled 
by v2 through v6. If you change the binary or hex values for these 
registers the address for that table in the Application Program will 
also change. 

v2 - Screen Image Table 
The least significant 4 bits (---- 0000) in this register control the 
start location of the Screen Image Table. This is the area of Vdp Ram 
that bolds the characters you see on the screen. This start address is 
equal to the value of the least significant 4 bits times >0400. 

v3 - Color Table 
All of the bits in this register control the start location of the Color 
Table. The Color Table is the area of Vdp Ram that contains the 
foreground and background colors for each of the active character set 
groups. This start address is equal to the value in this register times 
>0040. Note: In đit Map mode this register controls the ENDING location 
of the Color Table. 

v4 - Character Pattern Table 
The least significant 3 bits (---- -000) in this register control the 
starting location of the Character Pattern Table. This area of Vdp Ram 
holds the character definitions (CALL CHAR) for each of the active 
characters. The start address is equal to the value of these 3 bits 
times >0800. Note: Basic and Extended Basic set this table at >0000 - 
but the actual character definitions start at >03F0. This is really the 
the start of the definition of character number 126 not 30 - so Basic 
and Extended Basic Add 96 (>60) to the value of each character placed on 
the screen to compensate for this offset in the table. This is how the 
Basic Bias came to be and it was done by TI to conserve space in Vdp 
Ram. Note: In Bit Map mode this register controls the ENDING location of 
the Character Pattern Table. 

v5 - Sprite Attribute Table 
The least significant 7 bits (-000 0000) in this register control the 
starting location of the Sprite Attribute Table. This Table holds the 
Character number, Color, Dot Row and Dot Column position of each active 
sprite. The start address is equal to the value of the least significant 
7 bits times >0080 



v3 ---- ---- 
vw ---- ---- ---- ------- ---- 
v5---- ---- -- ---- ------- ---- 
v6 0000 0000, 00 spri pattern ,0000 
v7 1111 0101 F5 txt/scrn clr 

Tdp Write Only Registers Continued  

v6 Sprite Pattern Table 
The least significant 3 bits (---- -000) in this register control the 
starting location of the Sprite Pattern Table. Note: In Bit Hap mode 
this register controls the ENDING location of the Sprite Pattern Table. 
This table bolds the character definitions for the characters that make 
up the sprites. In Basic and Extended Basic this table also starts at 
zero. So, this table and the Character Pattern Tables are identical. 
What this means is that a sprite that is made up of character number 65 
is actually made up of an A. So if you redefine the A (CALL CRAR(65,...) 
the sprite will also change. In Assembly or Forth you can place this 
table in a different location ao that the sprite definitions and the 
character definitions can be independent of each other. Since this table 
overlaps the Character Pattern .Table it is also subject to the Basic 
Bias. So if you execute a CALL SPRITE(01,65...) you will find >A1 (161) 
in the Sprite Attribute Table for sprite 11 not >41 (65). 

In this Table and the Character Pattern Table there are 8 bytes per 
character. So to find the start address for a given character number 
just multiply the character number times 8 and add the tables starting 
address to it. If you are in the Basic or Extended Basic) environment 
don't forget to add the Basic Bias (>60 or 96) to the character value 
before you multiply it times 8. 

Examples: Basic or Extended Basic *A* 
65 +96 = 161 161 * 8 = 1288 
1288 = >0508 >0508 + >0000 = >0508 char pattern for *A" 

Editor Assembler or Hini Hem "A* 
65 * 8 = 520 

520 = >0208 >0208 + >0800 = >0A08 char pattern for "A* 

v7 - Text and Screen Color 
This register sets the color of the text when Text Mode is active and 
the color of the screen in ALL Hodes. In this register the most 
significant nibble (0000 ----. or >0-) sets the text color. The least 
significant nibble (---- 0000 or >-0) seta the screen color. When you 
execute CALL SCREEN(8) the Basics subtract one from 8 and write a 7 for 
the screen color. For some reason TI wanted the colors to start at 1 
instead of 0 in the Basics so ALL the color codes are offset by -1 
before they are written to the Color Table or this register. 

51 



TEE INTERRUPT ROUTINE 

As we mentioned earlier the Explorer WILL execute the Interrupt Routine along 
with the normal program flow if interrupts enabled. The Explorer executes the 
interrupt routine whenever the Interrupt Mask does not equal zero so this is 
a simulated interrupt and not an actual Hardware interrupt. The interrupt 
routine in the 99/4A performs the following functions (in this order): 

First a LIMI 0 is executed to disable any other interrupts - since the 
interrupts perform a context switch the old LIMI value along with the 
status is in R15 of the Interrupt Workspace (83C0). Note: The Explorer 
automatically sets the Interrupt mask to zero when RTWP is executed. 

Next the Workspace is changed to the GPL Workspace (83E0) and R12 is 
cleared. 

The Cassette interrupt timer flag in R14 is checked to see if it is On. 
If it is the interrupt routine hops down to the Cassette Timing routine 
at >1404 to continue which does NOT service the rest of the items. 

If the Cassette interrupt flag was not set Bit 2 of the 9901 is checked 
for a Vdp interrupt. If it was a Vdp interrupt instead of an External 
interrupt (generated by a peripheral device) the routine continues at 
VDP INTERRUPT. 

EXTERNAL INTERRUPT - If it was an external interrupt (peripheral) the 
routine turns on the cards one at • time starting at Cru Base 1000 to 
check for interrupt routines. If the card contains en interrupt routine 
(like the RS232 card) it is executed. Then the card is turned off and 
the next card is checked until the Cru Base = 2000 (end of peripheral 
devices). Then it hops down to END and leaves the interrupt routine. So, 
an External interrupt does NOT service the rest of the items. 

VDP INTERRUPT - First bit 2 of the 9901 is reset (turned off), then 83C2 
is moved into R1 and the most significant bit is checked. If its On then 
the routine hops down to VDP STATUS and skips Auto-Motion, Auto-Sound 
and the QUIT key. 

AUTO-SPRITE MOTION - The Auto-Sprite Motion bit in R1 is checked and if 
it is On this routine is skipped. Otherwise the interrupt routine moves 
837A (highest sprite number in auto motion) into R12. If it is zero the 
rest of the routine is skipped otherwise the routine moves the sprites 
to their new location according to the Sprite Motion (0780) and Sprite 
Attribute Tables in Vdp Ram. 

AUTO-SOUND PROCESSING - The Auto-Sound Processing bit in R1 is checked 
and if it is On this routine is skipped. Otherwise the interrupt routine 
checks the Host significant byte in 83CE. If its zero the rest of the 
routine is skipped if its not the location of the sound table is checked 
(Vdp Ram or Grom) and the next byte of the table is moved to the sound 
chip and 83CE is decremented. 

52 



THE INTERRUPT ROUTINE Continued 

QUIT KEY - The QUIT Key bit in R1 is checked and if it is On this 
routine is skipped. Otherwise the FCTN and = Keys are scanned. If they 
are being pressed down it performs a software reset (BLWP @>0000 - Power 
Up routine) 

VDP STATUS - If the most significant bit in 83C2 was set the interrupt 
routine would have hopped down to here to continue execution. At this 
point the Vdp Status byte is copied to 837B 

The Workspace pointer is set to 83C0 and the Screen Time Out Counter is 
then incremented by TWO. Next it is checked, if it is NOT zero the rest 
of this routine is skipped. Otherwise this routine, which is also 
pointed to by the Level 2 interrupt vector, is executed. This routine 
uses the copy of Vdp Register 1 which is stored at 83D4 (R10 of the 
Interrupt Workspace) to blank the screen by masking out the SCN bit in 
Vdp Register 1. 

The Workspace pointer is set back to 83E0 and the Interrupt Timer at 
8379 is incremented by the value in the most significant byte of R14. 

The User Interrupt Vector (ISR Hook in 83C4) is moved into R12 and if 
its not zero the User Interrupt routine is BRANCH and LINKed to. (R11 of 
83E0 contains the return address). After it is completed it sets the 
workspace back to 83E0 and returns with a RT (B 'R11) instruction. 

END - R8 of the Opi Workspace (83E0) is cleared, the workspace pointer 
is set to 83C0 and a RTWP is executed. 

53 



E2PLORATIOitS  

In this section of the manual we will take you through a few Explorations on 
the operation of the 99/4A. Keep in mind that since the Explorer is a machine 
language interpreter the Application Programs run slower. The Explorer 
operates the computer at about 1/300 its original speed, with the Application 
Program's screen displayed and interrupts disabled (CTRL 4). With interrupts 
enabled the speed can decrease to about 1/1000 the original speed. With this 
in mind best case tells us that something that normally takes 1 second will 
now require approx 300 seconds to complete. This is very evident when you are 
executing the Basic languages because they are now going through three levels 
of interpretation. The Explorer interprets the machine language which is the 
Gpl interpreter interpreting the Gpl object code which contains the Basic 
interpreter which is interpreting the Basic commands and/or program. And this 
is why we recommend that you use the Explorer on the Basics with direct CALLS 
and small programs. The heart of the Explorer, the machine language 
interpreter, has been optimized for speed and efficiency but whenever 
something is executed interpretatively it slows down. However, we felt that 
the wealth of information the Explorer returns because of its interpreter was 
worth it. So lets get started, but please follow the Explorations in order. 

First we will look up a few values in your computers memory. TI has 
released a number of different version of the 4A so we want to be sure 
that you use the right values. Most of the consoles have the same Rom 
but the Grom has under gone some minor changes. Only the real early 4A 
consoles have a slightly different Rom. 

1. Load the Explorer into the Extended Basic environment. 

2. Set the WS field under Cpu to 0000. With the WS set here' the Workspace 
registers contain the data that is in Cpu Rom memory at >0000. We had 
you use the WS instead of the Memory Window because it is easier to see 
the Vectors in word form. 

3. The registers currently contain the following information: 

RO = The Workspace Pointer (WS) for the Power Up Routine 
R1 = The Program Counter (PC) for the Power Up Routine 
R2 = The Workspace Pointer (WS) for the Level 1 Interrupt Routine 
R3 = The Program Counter (PC) for the Level 1 Interrupt Routine 

R4 = The WS for a routine that blanks the screen 
R5 = The PC for the above routine 
R6 = Data - Console clock speed and "AA" for checking validation bytes 
R7 = The opcode for the Branch instruction (start of Assembly key scan) 

R8 = The Cpu BP address to use for halting the Explorer on a Key Scan 
R9 = Data - zero and eight 

For the first Exploration just remember the value in R8 (02B2). A little 
latter on we will use the values in RO & R1. 

54 



KEY SCAN AND THE EXPLORER 

You already have one value that we need but we will need to SEARCH for 
one more. The value that was in R8 on the previous page is a good value 
to use for the Cpu Break Point for any Key•Scan. You see, there is a 
slight difference between the entry point for the Key Scan that an 
Assembly Language program uses and the entry that the Gpl Interpreter 
uses. But, they both pass through the R8 address. Note: Most consoles 
contain >02B2 as the address in R8 when the WS is set at >0000. 

Now lets find the second value that is handy to know for Key Scan 
operations. This value will be the PC address when a key press has been 
detected and the proper Cru Bits from the keyboard have been converted 
into their key code Hex value. But the Hex value has NOT been moved out 
to >8375 in Scratch Pad Ram yet, it is still in RO of the Workspace. By 
setting your Break Point here you can change the value in RO and fool 
the Application Program into thinking that a different key was pressed. 
This is handy if you want to input CTRL 2 through CTRL 5, which are used 
by the Explorer for special controls. 

1. Set your Memory Pointer to c----s. Any address will do since we are 
going to activate the Search Function. 

2. Press FCTN 5 to activate the Search Function and input 0000 as the ST 
address and 1FFF as the FN address. 

3. Make sure your Memory Window display is in Hex mode (FCTN =) 

4. Place your cursor in the Search String input area and type in 70 20. 

5. Press the left arrow key once to place the cursor on top of the 0 in 20 
and then press Enter. 

6. When the Explorer finds this value REMEMBER the Memory Pointer address. 
For most consoles it should be >043E. 

7. Press FCTN 5 to turn off the Search Function and Press FCTN 7 to bring 
up the Number Converter. 

8. Input >043E (or your Memory Pointers address) into the first Hex input 
field and >0006 into the second Hex input field. 

9. If the Operation Indicator is not a + then press FCTN 9 to place the 
cursor on the + and press Enter. 

10. The value after the = in the Hex result area is the Cpu Break Point 
address we were looking for. >0444 for most consoles. 
Now write these two values (addresses) down for future reference. 

Key Scan BP (02B2) Key Press Detected (0444) 

55 



LEY SCAB AND THE EXPLORER Continued 

Now that you have these two values (addresses) you can easily use them 
as Break Points in your Explorations. But you should be aware that the 
Application Program is not always looking for a key press when the >02B2 
is reached. Sometimes the Application Program is just resetting the 
keyboard (9901) to a known state. You can count on the second address 
(>0444) as always indicating that. a key press has been accepted. If you 
want to use CTRL 2 - CTRL 5 in executing your Application Program simply 
set the Cpu Break Point to the second address. When the Break Point is 
reached you can replace the key code in the moat significant byte of RO 
with the appropriate key code from the following table: 

CTRL 2 = >82 CTRL 3 = >B3  CTRL 4 = >B4 CTRL 5 = >B5 

So now lets see how those addresses work. 

1. Set your WS back to 83E0, make sure your PC is at 006A, set the Cpu BP 
at 02B2 (or your value) and press CTRL 2 and CTRL 3. 

2. The Explorer will now start to return to the Command Mode of Extended 
Basic. It will reach the Break Point before the screen scrolls but this 
is just Extended Basic resetting the keyboard. Just press any key to 
release the Break Point condition and press CTRL 2 and then CTRL 3 to 
start it back up. 

3. When the Break Point is reached again Extended Basic is in Command mode 
and is looking for a key press. Press any key to release the break point 
condition. 

4. Set your Memory Pointer to g----d with FCTN 1 so you can watch the key 
scan grab the key code out of of Grom 0. 

5. Set the Cpu BP at >0444 (or your value), press and hold down CTRL 2 and 
then press and hold the "L" key. 

6. Release the CTRL and 2 keys at the same time but hold down the "L" key 
until the Break Point is reached. 

7. The Explorer will then execute the key scan and Break when the key is 
detected and decoded, watch R4 when the key is detected. The most 
significant byte in RO is the key code for "L" and should be >4C. Change 
it to >4D, the "M". 

8. Now press CTRL 3 and then press CTRL 2 to start up the Explorer. 
Extended Basic will now place an "M" on the screen instead of the "L". 

NOTE: If you use the CTRL 1 - Single Execution - through the key scan 
the CTRL key may be detected, so if you were holding down the "L" key it 
would be decoded as CTRL L instead. The code that actually reads the 
keyboard cru bits is STCR R4,8 INV R4 (SEARCH for opcodes 36 04 05 44 
in console Rom for this Break Point, it should be at >0346.) 

SF 



THE POWER UP ROUTINE 

For this Exploration it doesn't matter what environment the Explorer is 
loaded into. Also, if the Explorer is already loaded, it doesn't matter where 
its at in the Application Program because we are going to restart the 
computer. 

The Power Up routine can be executed at anytime by simply following 
steps 1 & 2 and starting up the Explorer. What we are going to do though 
is set a few Break Points along the way. Remember the RO and R1 values 
we obtained when the WS was at 0000, well its now time to use them. 

1. Set the WS at 83E0 (RO value) if it is not already there. 

2. Set the PC at 0024 (R1 value). 

3. Set the Grom BP at 00EB 

4. Move the cursor down to the RO field and press and hold the zero key to 
clear out the WS. (This is not necessary for proper execution of the 
Power Up routine but we wanted you to see the first few instructions 
work) 

5. Set the Memory Window to g----d and set the Instruction Counter to zero. 

6. Set the disassembly to a 3 line display (FCTN 3) and make sure the 
interrupts are disabled (CTRL 4). 

7. Now press CTRL 1 a few times and watch the Workspace as the instructions 
start to set it up. 

8. When the PC reaches 0060 the Gpl interpreter is about to set the Grom 
address to the value in R6 (0020). These are the set Grom address 
instructions we talked about in the Grom Controls section of the manual. 
Press CTRL 1 and watch the Grom address and Memory Window as each byte 
of the address is passed to the Grom Write Address port (9800 + 402 = 
9CO2). 

9. After the address is set it will clear the Gpl Status CND bit (PC=006A) 
and then Set the Interrupt Mask to 2 and then to 0. If you had 
interrupts enabled (CTRL 4) the Explorer would go out and execute the 
interrupt routine right after the IM was set to 2. 

10. The Grom address of 0020 is the start of the Gpl Power Up routine so now 
lets turn it on, CTRL 2 and then CTRL 3 and let it reach our Break 
Point. 

57 



THE POWER UP ROUTINE Continued 

11. When the Break Point is reached (approx 9 seconds) just press any key to 
release the Break Point condition. This Break Point was set to allow you 
to turn the screen on. Four times previous to this break point the power 
up routine reset Vdp register 1 with the SCN bit off but now it will 
leave it where we set it. 

12. You can turn the screen on for Graphics mode (32 column) by either 
writing HO to v1 or by pressing FCTN 8 and moving the cursor down to the 
SCN bit in v1 and turning it on. Then press FCTN 8 again to get back to 
the Hain screen. 

13. Set the Grom BP to 6000, set the Vdp BP to 4300 and start up the 
Explorer again (CTRL 2 CTRL 3). The Power Up routine will now start to 
clear out the first 4B of Vdp Ram. Our Vdp Break Point will be reached 
in approx 20 seconds. 

14. When this break point is reached clear the break point condition by 
pressing any key and set the Vdp BP to 5000. Next Set your Memory 
Pointer to v0000s and the display to ASCII (FCTN =) with Basic Bias Off. 

15. Press FCTN 9 to put your cursor in the Memory Window (Editor) at 0000 
and type in "0123456789ABCDEFGHIJKLMNOPQRSTUVWZYZ'. Next press CTRL 3 to 
see the Application Program's screen. You may or may not be able to 
something on the screen at this time depending on what is in Vdp Ram 
where the tables are currently set at. We bad you do this so you could 
watch the Power Up routine load the Title screen character set. The 
Power Up routine does not use the built in subroutines to do this so the 
Load Characters H S option has no effect. 

16. The Power Up routine still has to clear the rest of the first 4K of Vdp 
Ram so it will be approx 98 seconds before the character set starts to 
load. The Vdp BP of 5000 will Break the Explorer before this happens so 
you can go take a break. The loop counter in R8, which should be at 
OD01, counts down the number of bytes yet to be cleared. You can bypass 
this clearing operation by setting R8 to 0001 but the Color Bars on the 
title screen may contain garbage because their character definitions 
haven't been cleared out. (Don't reset R8 for this Exploration) 

17. When the Vdp BP of 5000 is reached clear the Break point condition and 
set the Vdp BP to FFFF (turn it off). The Power Up routine still has a 
couple of items to do before it loads the character set. First it will 
load the color table and then it will scan the keyboard a few times to 
set it to a known state. This takes approx 5 seconds. Then it will load 
the character set. If you want to watch this happen on the Hain Screen 
set the Memory Pointer to v----d in Hex display mode and the Explorer 
will dynamically track the bytes as they are written to Vdp Ram. 

58 



TEE POWER UP ROUTINE Continued 

18. Press CTRL 2 CTRL 3  and watch the Title screen character set load. While 
it is loading you can press CTRL 3 to toggle between the Main Screen and 
the Application Program's screen. After the character set is loaded the 
Power Up routine will clear the screen and start to build the Title 
screen. The Grom BP of 6000 that we set earlier will Break the Explorer 
when the Title screen is fully built. 

19. When the Explorer reaches the Grom BP clear the break point condition 
and set the Grom BP to FFFF also set the Cpu BP to 02B2 (or your key 
scan break point). 

20. Set the Memory Pointer to v0128s in ASCII display mode. Press FCTN 9, 
type in your name and the press CTRL 3 to see YOUR new Title screen. Now 
lets play with the Vdp registers a little. Press CTRL 3 to bring up the 
Main screen again. 

21. Press FCTN 8 to bring up the Registers Screen. Move the cursor down to 
the BIT switch in v0 and enter a 1 (turn it On). Now press FCTN 8 and 
then CTRL 3 to see the Title screen in Bit Hap mode. 

22. Press CTRL 3 to bring up the Main Screen, press FCTN 8 and turn Off the 
BIT switch. Move the cursor to the TXT switch in v1 and turn it on. 
Press FCTN 8 and then CTRL 3 to see the Title screen in Text Mode. 

23. Press CTRL 3 and then FCTN 8, turn Off the TXT switch and turn ON the 
MLT switch. Press PCTN 8 and CTRL 3 to see the Title screen in 
Multi-Color mode. 

24. Press CTRL 3 and then FCTN 8, Leave the MLT switch ON and move the 
cursor back to the BIT switch and turn it On. That's right Bit Map 
Multi-Color mode - the one that TI forgot to tell us about! Now press 
PCTN 8 and CTRL 3 to see the Title screen in the new mode. One other new 
mode is Bit Map Text mode - which is Bit Map mode with the screen trying 
to display 40 columns. We haven't actually used these new modes for 
anything but they might be fun to play around with to see what the 
results would be. 

25. When you are done playing with the various modes set the BIT, TXT and 
MLT switches Off to set the Title screen back to its normal Graphics (32 
column) mode. If you know the values to place in v0 and v1 you can also 
set these modes from the Explorer's Hain screen by editing these fields. 

26. Take a look at the Instruction counter and press FCTN 7 to see it in 
Decimal. Ours says 105,272 Machine Language Instructions have been 
executed so fart And that does not include and interrupt routine 
execution since we disabled it (CTRL 4). Press FCTN 7 again to bring up 
the Main Screen. 

59 



THE POWER UP ROUTINE Continued 

27. Press CTRL 2 to start up the Explorer again but leave it on the Hain 
Screen. In a few seconds your Disk Controller light will come on. What 
has happened is the Power Up routine has started its peripheral card 
scan and it is looking for cards that contain Power Up Routines. The 
Disk Controller contains a Power Up routine that sets up Vdp Ram to a 
default of CALL FILES(3). IMPORTANT - If you are using a Myarc RAM DISK 
card the Explorer will lock up at this point because the card does a 32K 
Bank Switch when its internal Power Up routine starts. 

28. The TI DSR and our DSR (corcomp card) clear out Vdp Ram from 37D8 to 
3FFF and then place some values at 37D8 to signify that a Disk 
Controller is in the system and that space is reserved for 3 disk files. 
The Myarc Disk Controller DSR clears out its own DSR Ram at 5000 to 57FF 
and then writes a few bytes to Vdp Ram 37D8. 

29. After this clearing is finished the TI and Hyarc cards continue with a 
normal Power Up. Our DSR stays in control and builds the 9900  Disk 
Controller Title screen and this is where the Power Up routines start to 
differ. At this point the TI and Myarc cards release control back to the 
Gpl interpreter, our DSR stays in control until you select Basic or a 
module from the menu or press the space bar. This probably wasn't the 
smartest thing to do since it doesn't allow a Power Up routine in the 
module to be executed prior making a selection. Only a few modules have 
Power Up routines in them like the TEII and if you press the space bar 
twice to bring up the normal TI menu instead of the 9900 DC menu the 
power up routines are executed. 

30. At this point the TI and Hyarc cards have released control back to the 
Gpl interpreter to continue on with a little house keeping. Our DSR is 
still in control and, like the other cards, it will soon be looking for 
a key press. 

31. When the Explorer reaches the Cpu Break Point of 02B2 that we set 
earlier clear the Break Point condition. If you have our DSR (corcomp 
card) set the Cpu BP to FFFF, start up the Explorer, CTRL 2 CTRL 3 and 
press the space bar. When the screen starts to clear press CTRL 2 CTRL 3 
and set the Cpu BP back to the key scan BP, 02B2. Then start the 
Explorer back up CTRL 2 CTRL 3. When the Cpu BP is reached again all of 
the Power Up routines will be in the same place no matter which Disk 
Controller card you have. 

32. Clear the Break Point condition, set the Cpu BP to FFFF and start up the 
Explorer, CTRL 2 CTRL 3. At this time the Power Up routine is in a loop 
waiting for a Key press before it continues on. Go ahead and press a 
key. 

60 



TEE POWER UP ROUTINE Continued 

33. After the key is pressed the console Power Up routine will scan the 
module that is plugged into the Grom port for a module Power Up routine. 
If it has one (most don't) it is executed and if it returns, instead of 
taking control, the console Power Up routine will build the menu (with 
the SCN bit turned off again) and then turn on the screen and wait for 
you to make a selection. 

34. For now select 1 - TI Basic by pressing and holding the 1 key for a 
second or so (the screen will start to clear). The Power Up routine is 
still in control and it will now clear the screen. Normally at this time 
there is a BEEP sound generated but we have the interrupts turned off so 
this will not happen. But, the BEEP routine places a value of 0100 in 
83CE and it loops and waits for this to be changed to zero by the 
interrupt routine before it continues. Toggle to the Main Screen (CTRL 
3) and look at R3 if it contains 83CE then your are in this loop. If it 
doesn't contain 83CE then you are not there yet but you will soon be. 

35. When R3 contains 83CE you can get out of the loop by simply pressing 
CTRL 5 - this turns off the sound generator and zeros out 83CE. You 
could also stop the Explorer, set the Hemory Pointer to c83CE- and zero 
it out yourself but, CTRL 5 is much simpler because you can leave the 
Explorer running. NOTE: IF you make a selection from the 9900 Disk 
Controller menu (our DSR), other that the Space Bar, it will not go 
through this loop so you do not have to worry about clearing out the 
sound indicator at 83CE. 

36. The Power Up routine will now clear out Vdp Ram from 1000 to the disk 
buffer space at 37D7. Once again R8 is the counter so you can bypass 
this lengthy process by placing 0001 in it. Why 0001 and not 0000, 
because the instruction flow decrements R8 and then jumps if its not 
zero. If it decrements 0000 you end up with FFFF and that's not zero so 
it will really mess things up. This is a GOOD rule to remember any time 
you change loop counters - always set them to at least 0001. 

37. Once Vdp Ram is cleared or the counter reaches 0000 the Power Up routine 
clears parts of Scratch Ram, sets up the color table and releases 
control to Basic. You'll notice the Grom address to be in the 2000 
through 57FF range (Groms 1 & 2) when this occurs. So that ends the 
Power Up routine and begins the next Exploration of TI Basic. 

6 1 



EXECUTING A BASIC CALL 

There are 3 different ways to get into the Basic environment. The first and 
easiest is to load the Explorer there through CALL LOAD("DSX1.EXP" or NEXP) 
with the Editor Assembler or Mini Memory modules plugged in. The second way 
is to go through the Power Up routine as we did in the previous Exploration. 
And the third way is to set the Explorer up to directly execute Basic. (see 
Direct Execution of Other Modules). If you have just completed the previous 
Exploration then you are are already part way into the Basic environment. If, 
on the other hand, you are about to start your Explorations again then load 
the Explorer into the Basic environment. 

Start up the Explorer, CTRL 2 CTRL 3, and let it run until the screen 
scrolls and the cursor reappears. You are now in Basic's Command/Edit 
mode and it is waiting for you to type something in. When you type 
remember that everything is being executed interpretatively so things 
happen slower. 

Executing A Basic CALL 

1. After the cursor has reappeared press CTRL 2 and CTRL 3 to stop the 
Explorer and bring up its Main Screen. Now lets take a look at the 
format for a BASIC Subprogram Header (X-Basic is different). 

2. Set the Memory Pointer to g----s. Press FCTN 5 to activate the Search 
Function and input 2000 for ST and 57FF for FN. 2000 - 57FF is the Grom 
address range for the Basic Interpreter. Put your cursor in the Search 
String input field with the display in ASCII and Basic Bias Ott. Type in 
COLOR, press the left arrow key once to put the cursor on top of the R, 
and press Enter. 

3. When the cursor reappears and COLOR is found press FCTN 5 to exit the 
Search Function. Then press FCTN 9 to put the cursor in the Memory 
Window. With the cursor sitting in the home position (first byte) of the 
Memory Window press the left arrow key 5 times. This will place the 
beginning of the Subprogram Header in the home position of the Memory 
Window. Now press FCTN = to display it in Hex, and here's what you have: 

first word = 4D38 pointer to next subprogram header 
second word = 5713 entry point for this subprogram 
next byte = 05 length of this subprogram's name 
following bytes = 434F4C4F52 COLOR - this subprogram's name 

We are most interested in the second word or the Entry Point for the 
subprogram. This will allow us to set a Grom BP to halt the Explorer 
when Basic first starts to execute the subprogram. Previous to Basic 
arriving at this location it performs a few overhead type items which we 
will discuss in a moment. 

62 



EXECUTING A BASIC CALL Continued 

4. Now lets Search for SCREEN, the one we are going to execute. Make sure 
the Memory Pointer is set to Grom memory. Press FCTN 5 to activate the 
Search Function and reset ST back to 2000. Put your cursor in the Search 
String input field with the display in ASCII and Basic Bias Off. Type in 
SCREEN, move the cursor on top of the N, and press Enter. 

5. When SCREEN is found press FCTN 5 to exit the Search Function. Then 
press FCTN 9 to put the cursor in the Memory Window. With the cursor 
sitting in the home position press the left arrow key 5 times and set 
the display to Hex, now here's what you have: 

first word = 0000 
second word = 37BF 
next byte = 06 
following bytes = 53435245454E 

no more subprogram headers 
entry point for this subprogram 
length of this subprogram's name 
SCREEN - this subprogram's name 

6. Press FCTN 9 to get your cursor out of the Memory Window and move up to 
the Grom BP field and type in the Entry Point address (37BF) for SCREEN. 

7. Set your Memory Pointer to v----d or press FCTN 1 to bring up that 
Memory Window. Then press CTRL 2 and CTRL 3 to start up the Explorer. 

8. SLOWLY type in CALL SCREEN(7). By slowly we mean press down the letter 
key and hold it until the cursor disappears. When the cursor reappears 
press down the next letter. When you get to the second L in CALL wait 
for a second after the cursor reappears before you press the L key 
again. If you press it too soon Basic will try to go into Auto-Repeat 
mode but before it repeats the key it has a LARGE delay loop. If the 
cursor doesn't disappear within a second or so after you press the 
second L just let up on the L key for a bit to get out of this Auto 
Repeat delay loop and then press it down again. 

9 You may be wondering why the cursor doesn't blink. This is because the 
interrupts are turned Off. The Interrupt routine controls the counter 
that a lot of Application Programs use to blink the cursor and with the 
interrupts Off this counter never changes. 

10. After you have the complete CALL SCREEN(7) typed in press CTRL 2 CTRL 3 
and set the Cpu Break Point to the Key Detected Break Point (0444) then 
press CTRL 2 and CTRL 3. Next press and hold Enter until the cursor 
disappears and the Explorer Breaks. Clear the Break Point condition and 
set the Cpu BP to the Key Scan Break Point (02B2) and zero out the 
Instruction Counter field. Press CTRL 2 CTRL 3 to start it up again. Now 
here's where that overhead starts that we talked about. 

63 



(SZECUTING A BASIC CALL Continued 

11. Basic will now go through its CRUNCH routine. This routine parses the 
line you just typed in a word at a time and places the word in the 
CRUNCH buffer at 0320 in Vdp Ram. So first it will place CALL in the 
buffer and then it will scan through the reserved word list in Grom 
until it finds it. It then takes the token code for CALL (9D) and places 
it in the CRUNCH buffer where the C is. 

12. After it has crunched CALL it will set up the Crunch buffer with the 
codes for an unquoted string of x characters (C8 xx) and move the word 
SCREEN out there. As each character of SCREEN is moved the x char value 
is updated. Then it will place the token for "(" (B7) and then the 
tokens for another unquoted string of 1 character (C8 01) followed by 
the 7 and finally the ")" (B6). By toggling your screen (CTRL 3) back 
and forth you can look in the Dynamic Vdp Memory Window and watch this 
all happen. Also since you are in control you can stop the Explorer at 
any time and examine different areas of memory and then start it back up 
again. You may want to change your Memory Window to Dynamic Grom or Hex 
for awhile. Note: The characters on the Application Program screen have 
the Basic Bias added to them but the items in the Crunch buffer do not. 

13. When it has completed its crunching Basic will scroll the screen up one 
line and then begin execution of the CALL routine. CALL will in turn 
scan the peripheral DSRs and then Grom for SCREEN. Once SCREEN is found 
and its start address (entry point) is obtained it will save the return 
address, set up the start address and the Explorer will Break. 

14. At this point release the Break Condition. You can now single step 
through the SCREEN subprogram or just turn on the Explorer and let it 
go. The SCREEN subprogram is.approx 1,685 machine language instructions 
long. 

15. After the SCREEN subprogram is complete Basic will return and execute 
the following housekeeping routines. Reload the character sets - reset 
the screen color back to Cyan - reload the color table - reset Vdp 
registers 2, 3 & 4 and then reset the keyboard, the Explorer will Break 
at this point but just start it back up again. 

16. After it has performed its housekeeping it will scroll the screen up one 
line and bring out the cursor. When the cursor reappears you are back 
where we started in Command/Edit mode and the Explorer will Break. Clear 
the Break Point condition and press FCTN 7. That's right! 71,265 
Instructions have been executed to perform a CALL SCREEN (without a 
variable or interrupts) in Command mode. 

You can use this Exploration for any Basic CALL. After seeing this it 
really makes one appreciate what goes on behind the scenes! 



EXECUTING AN EXTENDED BASIC CALL 

The Explorer that operates in the Extended Basic environment is slightly 
different in two ways. First it has its own special loader for Extended Basic 
and second when it is loaded it resides in a different area of High memory 
Expansion. This version leaves 6K of Extended Basic's program space in High 
Memory free for your programs. It is for these two reasons that you can not 
use the Extended Basic version with the Editor Assembler, Mini Memory or 
other Load and Run type Loaders. Also, since Extended Basic tries to load a 
file off of DSK1 named LOAD we do not recommend that you select XB from the 
menu (Power Up routine) unless you want to go through this lengthy process. 

First load the Explorer into the Extended Basic environment Command/Edit 
mode with CALL INIT :: CALL LOAD("DSK1.XBEXP"), or MXBEXP for the Myarc 
card. Start up the Explorer, CTRL 2 CTRL 3, and let it run until the 
cursor reappears. 

Executing Al Extended Basic CALL 

1. When the cursor reappears stop Explorer and bring up its Main Screen. 
Now lets take a look at the format for an EXTENDED BASIC subprogram 
header which is different than a Basic or any other modules subprogram 
headers. Set the Memory Window for Grom (g ) and Search for SCREEN 
in the module space (ST=6000 FN=FFFF) 

2. Press FCTN 5 to leave the Search function and put the cursor in the 
Memory Window (FCTN 9) and press the left arrow 3 times to bring in the 
start of an Extended Basic subprogram header. Here's what we have in 
Hex display for Version 110: 

first word = A088 pointer to next subprogram header 
next byte = 06 length of this subprogram's name 
following bytes = 53435245454E SCREEN - this subprogram's name 
next word = AC66 entry point for this subprogram 

(version 100 = AC5D ) 

As you can see the entry point for an XB subprogram header FOLLOWS the 
name whereas in the other module's subprogram headers it precedes the 
name length byte. This was done to keep the Extended Basic CALLs from 
being executed in Basic which has a different Vdp memory map (no 
sprites). 

3. Now that we have the Entry Point for CALL SCREEN set the Grom BP to this 
value (AC66 - V110 or AC5D - V100), set the Memory Window to v----d and 
start up the Explorer with the Application Program screen displayed, 
CTRL 2 CTRL 3. 

65 



EXECUTING AN EXTENDED BASIC CALL Continued 

8. Slowly type in CALL SCREEN(?). After you have the complete CALL typed 
in stop the Explorer and bring up the Main screen. Set the Cpu BP to the 
Key Detected Break Point (0444) and start the Explorer back up. 

9. Press and hold the Enter key until the Break Point is reached. Then set 
the Cpu BP to the Key Scan address (02B2). Next zero out the Instruction 
Counter and start up the Explorer with the AP screen displayed. 

10. Extended Basic will now parse and crunch the CALL statement. It will 
also move it out to the Edit Recall Buffer in Vdp Ram at >08C0. You can 
use CTRL 3 to toggle between the screens and watch this happen. The 
crunch buffer (>0820) characters DO NOT have the Basic Bias (>60) added 
to them, but the characters on the screen (>0000 - >02FF) and in the 
Edit Recall buffer (>08C0) do. 

11. When it has completed its moving, parsing and crunching Extended Basic 
will scroll the screen up one line and begin execution of the CALL 
routine. CALL will first scan Extended Basic's Grom for SCREEN. When you 
are in Command/Edit mode it will scan the peripheral DSRs and the Grom 
Library if its not found in Extended Basic's Grom. Once SCREEN is found 
and its start address (entry point) is obtained it will set up the Grom 
start address and the Explorer will Break. 

12. At this point you can single step through the SCREEN subprogram or just 
turn on the Explorer and let it go. The Extended Basic SCREEN subprogram 
is approx 1,126 machine language instructions long. 

13. After the SCREEN subprogram is complete Extended Basic will Return and 
execute the following housekeeping routines along with resetting some 
pointers: Reload the character sets - Reset the screen color back to 
Cyan (v7) - Reload the color table - Zero out the sprite motion table - 
Clear out the sprite attribute table - Reset Vdp registers 1 through 6 
and then reset the keyboard, the Explorer will Break at this point but 
just start it back up again. 

14. After it has performed its housekeeping it will scroll the screen up one 
line and bring out the cursor. When the cursor reappears you are back 
where we started in Command/Edit mode and the Explorer will Break. Clear 
the Break Point condition and press FCTN 7. This time it was 
only 32,651 machine language instructions to complete the CALL SCREEN 
(without a variable or interrupts). How come only half as many as Basic 
when Extended Basic has more housekeeping to do? (Hint - watch how 
Extended Basic scrolls the screen) 



EXECUTING OTHER ASSEMBLY LANGUAGE PROGRAMS 

Through the Explorer you can run other Assembly Language programs. This gives 
you a very powerful and simple to use debugging tool. It can also be used as 
a learning tool since you can see the immediate results of each and every 
instruction as they are executed. So, if the instruction says SRL R8,8 or XOP 
*R0,2 you can see exactly what happens to the Registers, PC and WS right 
after you press CTRL 1. 

To load another Assembly Language program with the Explorer just keep 
the following items in mind. 
* It must be a Load and Run - Non-Auto-Start type program. The PROGRAM 

(Memory Image) type files Auto-Start so these will not work. 
* It must be loaded BEFORE the Explorer and it must NOT reside in the 

Explorer's memory space. 

There is a file on the Explorer disk named PREASSEM. This file sets up a 
couple of pointers for the Editor Assembler and Mini Memory Loaders. 
These pointers are used by the loaders to determine where a program 
should load and if it will fit. To use this file simply select LOAD AND 
RUN from the menu and type in DSK1.PREASSEM. After this file has loaded 
it will return back to the Load and Run prompt. It has now set up the 
pointers to reserve space for the Explorer. 

Next load your Assembly program and then the Explorer. With PREASSEM 
your program will not be allowed to load in the Explorer's memory space 
and it will return a MEMORY FULL Error if it tries to. This means that 
your program is too large to load into High Memory Expansion along with 
the Explorer. However, your program may load if it contains AORG 
statements BUT it will not run properly if any portion of it resides in 
the Explorer's memory space. If you do get a MEMORY FULL Error you will 
need to reload PREASSEM before trying the next file. Whenever there is 
an Error during loading the module resets the pointers. 

The Assembly file will not load with PREASSEM installed if it does not 
contain any AORGs and it is larger than 6K bytes. By placing a couple of 
AORGs in your source code and reassembling the file file you can load up 
to 6K in High Memory Expansion and up to 8K in Low Memory Expansion. If 
you have the Mini Memory module plugged in you could also use its 4K of 
Ram. This gives you a total of 18K of space for your Assembly file. 

NOTE: You do not need to use PREASSEM if you know for sure that your 
program is 6K or less in size. Using this file is just a simple way of 
making sure that the Explorer doesn't write over your program. This does 
not apply to AORG type programs since they do not use these pointers. 

So Now lets load an Assembly Language program and run it through the 
Explorer. 

• 



EXECUTING OTHER ASSEMBLY LANGUAGE PROGRAMS Continued 

For this example we will use the DEBUG program that comes with the 
Editor Assembler. This file is less than 6K in size so you do not need 
to use the PREASSEM file first. NOTE: If you are using the Mini Memory 
module you should REINITIALIZE it before you start. 

1. Select LOAD AND RUN from the Editor/Assembler or Mini Memory menu and 
load DEBUG. 

2. When the cursor comes back load DSK1.EXP, or MEXP for the Myare card. 

3. Press any key to get past the Explorer's Title screen and bring up the 
Main screen 

At this point you can start executing your Assembly program with one of 
two different methods. The first method is the same as the one you 
normally use for all Non-Auto-Start programs. The second method 
simulates an Auto-Start program. Before you start this example write 
down the Grom Address and set the Cpu BP to BOBE (the start address for 
DEBUG) 

Non-Auto-Start Method 
1. Start up the Explorer with CTRL 2 CTRL 3. At this point the Application 

Program Screen is the LOAD AND RUN screen of the module. 

2. After the Application Program has clear off the DSK1.EXP file name and 
the cursor has returned just hold down the ENTER key until the cursor 
disappears to bring up the PROGRAM NAME prompt. 

3. When the PROGRAM NAME prompt appears (in approx 27 seconds) slowly type 
in YOUR Program's start name (DEBUG) and press Enter. 

4. At this time the Editor Assembler module will do a few things before it 
starts to execute your program. It checks the name length - Moves the 
name from the screen into >834A - Loads the color table with >13 -
Clears the screen - Sets Vdp Register 7 to >F3 - Scans the DEF Table for 
the name - Saves the start address at >2022 - Loads the Workspace 
pointer at >20BA - puts the start address in RO and BRANCHES +R0 to 
start the program.' 

5. At this point the Explorer will Break. Clear the Break Point condition 
and write down the new Grom Address. We will talk about the Grom 
Addresses in a minute. Now you can start the Explorer back up or use 
CTRL 1 to see how the DEBUGGER begins. If you are learning Assembly 
Language this program is a good example to use since you have the 
documented source code for it on the E/A disk. Get a print out of it to 
follow as you walk through the program with the Explorer. 



EXECUTING OTHER ASSEMBLY LANGUAGE PROGRAMS Continued 

When a program Auto-Starts it takes control right after it is loaded so 
the module does NOT: Load the color table - clear the screen - set up V7 
- Load the User Workspace pointer to 20BA for the E/A or 70B8 for the 
Mini Mem and the Grom Address doesn't change. 

Simulated Auto-Start Method 
1. Set the Memory Pointer to c----s and using the Search Function in ASCII 

display find your program's Start Name (DEBUG) in the REF DEF Table. The 
start address for this table varies according to the number of DEFs in 
your program. For the the Editor/Assembler loader use 2600 for ST and 
4000 for FN. For the Mini Memory loader use 7600 for ST and 8000 for FN. 

2. When you have found the Start Name leave the Search Function and place 
the display in Hex mode. The structure of the REF DEF Table is: 6 Bytes 
for the name, including trailing space characters, followed by 2 Bytes 
that indicate the Start Address (PC). So for DEBUG the Hex display will 
be as follows: 44 45 42 55 47 20 BO BE 

DEBUG • 
• The first 6 bytes are the name followed by KOBE which is the Start 

Address (PC) for DEBUG. 

3. Set the Cpu PC to BOBE and now you are ready to execute the DEBUGGER 
as if it was an Auto-Start program. 

GPLLNL And The Grom Address 
TI has a minor problem with Auto-Start programs that use GPLLNK (Grom 
subroutines). Right after a GPLLNK is executed the program Returns back 
to the Module instead of continuing on. If you program in Assembly you 
may have run into this at one time or another. We had you write down 
the Grom addresses in the first example to show you how to overcome this 
problem. 

As you noticed a program that does not Auto-Start changes the Grom 
address by +>63 bytes. So, to overcome the problem in your programs just 
read the current Grom address when your program starts up, add >63 to it 
and then reset the Grom address to this new address. By adding >63 to 
the current address instead of just setting the address you will not 
have to worry about which module (E/A or MM) loaded it. This is only 
important if your program Auto-Starts and uses GPLLNK (Grom 
subroutines). This also applies to the Explorer when you use the 
Simulated Auto-Start Method. So when you use this method MAKE SURE you 
change the Grom address to the new address for your module. Here are the 
Grom addresses we have found, but they may be different in your modules. 

Editor Assembler 
>682F - Auto-Start - add >63 to it = >6892 - Non-Auto-Start address 
Mini Memory 
>68B3 - Auto-Start - add >63 to it = >6916 - Non-Auto-Start address 



DIRECT EXECUTION OF MODULES 

If you own a Navarone Widgit or a Myer° or Corcomp Disk Controller you can 
use the Explorer to execute modules other than Extended Basic, Editor 
Assembler or the Mini Memory. With one of these Disk Controllers you can have 
ANY module plugged into the cartridge port and use their Assembly Language 
loader utilities (CALL LR for Myarc or the Load And Run Assembly File from 
the Corcomp Disk manager). If you own a Widgit you can load the Explorer and 
then select one of the other modules to Explore. However, we have found that 
the Widgit has a nasty habit of SPIKING memory when the switch is moved so 
this is NOT very reliable. When it does spike memory, the Explorer usually 
goes out to lunch either right away or shortly after you start it up. 

Once you have the Explorer loaded and the module you want to Explore on 
line you can start executing it in two different ways. The first, and 
longest, way is to go through the Power Up routine and then select the 
module from the menu. The second way is to do a quick SEARCH, set the 
address and begin executing the module. Since we have already discussed 
the Power Up routine we will Explore the second method. For this example 
lets Explore the Disk Manager 2 Command Module. 

Non-Auto-Start Grom Modules 
1. Set the Memory, Pointer to g  and press FCTN 5 - Search - and set ST 

to 6000 and FN to F7FF (Grom module space) and then press Enter or the 
down arrow to put the cursor in the Search string input field in ASCII 
mode with Basic Bias Off. 

2. Type in as much of the module's name as you can. This is the name that 
appears on the menu. For come modules this may just be ENGLISH for 
others its the name. Include punctuation where its needed (ie: quotes or 
/). For our example we will type in "DISK MANAGE - don't forget the 
quote or the space between DISK and MANAGER and press Enter (the cursor 
is already on the last character of the search string). 

3. When the cursor oomes back and the search string has been found press 
FCTN 5 to turn of the Search Function. Next place the cursor in the 
Memory Window (edit) by pressing FCTN 9. 

4. With cursor sitting in the home position (first byte) of the Memory 
Window press the left arrow 5 times and then press FCTN = to display the 
Hex values. This is the start of an Application Program Header and it 
has the following format: 
first word = 0000 = next Application Program Header - no more 
second word = 8134 = Entry point for this Application Program 
next byte = OE = Name length for this Application Program 
next bytes = 2244 etc.= "DISK MANAGER" 
Make a note of the Entry Point address. 

5. Move your cursor to the Grom AD (Address) field and input the Entry 
Point address (8134), make sure the Cpu WS is at 83E0 and the PC is at 
006A. You are now ready to begin direct execution of the DISK MANAGER 2 
Command Module. 



DIRECT EXECUTION OF MODULES Continued 

Auto-Start Grom Modules CUFF) 
Auto-Start Grom modules are the ones that do not have a name on the Menu 
they just start right up. Many of the Scott Forsesman modules are of 
this type. Since they do not have an Application Program header you use 
a different method to directly execute these modules. 

1. With Explorer loaded and the module on line set the Memory Pointer to 
g6000- and look at the first word in Hex. It should be AA FF. The AA is 
the validation flag for Grom Headers. If its not at this Grom space 
check 8000, A000, C000 and E000 until you find it. 

The second byte is the version number. For most Auto-Start Grom Modules 
this will be FF. The FF is version number -1 in two's compliment. When a 
module has a negative version number it signifies that it has a Foreign 
Language Translation routine in it. Scott Forsesman uses this routine to 
take control and start up their modules. 

2. The Foreign Language Translation routine starts at 6013 in the Grom 
Module space (by default). So just set your Grom AD field to 6013, make 
sure the Cpu WS is at 83E0 and the PC is at 006A and start it up. 

Auto-Start Grom Modules (Power Up Routine) 
If a module isn't using the Foreign Language Translation routine it is 
possible that it is taking control with its Power Up routine. A standard 
Grom Module Header can reside at g6000, g8000, gA000, gC000 or gE000 and 
it has the following format: 

>x000 = >AA Valid GROM Header Identification Code 
>x001 = >00 Version number 
>x002 = >00 Number of Application Programs 
>x003 = >00 Reserved - not used 
>x004 = >0000 Address of Power Up Header 
>x006 = >0000 Address of Application Program Header 
>x008 = >0000 Address of DSR Routine Header 
>x00A = >0000 Address of Subprogram Header 
>x00C = >0000 Address of Interrupt Routine Header - none in GROM 
>x00E = >0000 Reserved for future expansion. 

Replace the x (>x004) with the proper address (6,8,A,C or E). This 
header format is also used for Rom modules (Cpu memory 6000-7FFF) and 
DSR headers (Cpu memory 4000-5FFF with the DSR enabled) 

1. Make a note of the value in gx004 - the Power Up Header address, if it 
is not zero. Set the Memory pointer to this address and make a note of 
the second word. This is the start address for the Power Up routine. 

2. Set the Grom address to this second word, make sure the Cpu WS is at 
83E0 and the PC is at 006A and start it up. 



DIRECT EXECUTION OF MODULES Continued 

Non-Auto-Start Rom Modules 
These modules are ones that were produced by some of the third party 
modules companies such as Atari Soft that generate a module name in the 
Menu. The procedure for direct execution of these modules is as follows: 

1. Set the Memory Pointer to c  and press FCTN 5 - Search - and set ST 
to 6000 and FN to 7FFF (Cartridge Rom module space) and then press Enter 
or the down arrow to put the cursor in the Search string input field in 
ASCII mode with Basic Bias Off. 

2. Type in as much of the module's name as you can, place your cursor on 
top of the last character in the search string and press Enter 

3. When the cursor comes back and the search string has been found press 
FCTN 5 to turn of the Search Function. Next place the cursor in the 
Memory Window (edit) by pressing FCTN 9. 

4. With cursor sitting in the home position (first byte) of the Memory 
Window press the left arrow 5 times and then press FCTN = to display the 
Hex values. This is the start of an Application Program Header and it 
has the following format: 
first word = xxxx = Next Application Program Header 
second word = xxxx = Entry point for this Application Program 
next byte = xx = Name length for this Application Program 
next bytes : xxxx etc.: (module's menu name) 

Make a note of the Entry Point address (second word) 

5. Move your cursor to the Cpu PC (Program Counter) field and input the 
Entry Point address, make sure the Cpu WS is at 83E0 and you are now 
ready to begin direct execution of a Non-Auto-Start Rom Cartridge. 

Auto-Start Rom Module 
Most of these start up with the Power Up Routine, so: 

1. Set the Memory Pointer to c6004-, make note of the first word (Power Up 
Routine Header address), set the Memory Pointer to this address and make 
note of the second word (Entry Point for the Power Up Routine). 

2. Move your cursor to the Cpu PC field and input the Entry Point, make 
sure the Cpu WS is at 83E0 and you are now ready to begin execution of 
the Auto-Start Rom Cartridge. 



DIRECT EXECUTION OF MODULES Continued 

A Few Notes On Modules 

1. If you hop directly into a module or TI Basic AFTER you have been 
playing around with other items it is possible that: 

A. The character set may not be right. 
B. The Vdp registers are no longer set to the Power Up settings (see 

Appendix) 
C. A copy of Vdp Register 1 is NOT in >83D4. This may cause your screen 

to go blank when you press a key. The Key scan routine resets V1 with 
whatever is in the most significant byte of >83D4 when a key is 
pressed. 

2. Some modules PRESUME that they are being executed right after the Power 
Up Routine so they fail to clear the screen or set up colors and Vdp 
Registers. If this occurs you will either have to set these items 
yourself or go through the Power Up•Routine to execute the module 
properly. 

3. MANY Modules use Auto-Sound processing and Auto-Sprite motion that is 
generated by the Interrupt Routine so interrupts will need to be enabled 
for proper execution. 

4. MANY Grom Modules use the Vdp Interrupt Timer at >8379 as a delay timer 
to compare values to before continuing. If R3 contains >8379 and you 
don't seem to be getting anywhere then either: Change the value at 
>8379 to one greater than the one that keeps showing up in RO or enable 
interrupts so this counter increments itself. 

5. Some modules wait for >83CE to be zero before they continue (Auto sound 
processing completed). If R3 contains >83CE just press CTRL 5, this will 
turn off the sound and zero out >83CE for you. 

6. Some modules, like TI LOGO, want to use the memory space that Explorer 
occupies and as such they will not execute properly. 

Other then these few items the execution of modules is very similar to 
executing Basic or Assembly Language programs. So have fun and DON'T 
stay up too late! 



 

OVERALL SYSTEM MAP 

 

+- 

  

  

1>0000 'CONSOLE ROM Interrupt Vectors, YOP Vectors, 

i 1 GPL Interpreter, Floating Point Routines, 
I>1FFF 1 XMLLNK Vectors, Low-level cassette DSR etc. 

8K Bytes 

1>2000 'LOW MEMORY EXPANSION RAM 
1 i Varies according to the loader used (Assembly). 
1>3FFF I Generally not used by Extended Basic programs. 

8K Bytes 

1>4000 IDSR ROW Device service routines 
I I Determined by CRU bit setting 
I>5FFF I Disk Controller, RS232, P-Code etc. 
+  

81 Bytes 

 

1>6000 'CARTRIDGE PORT ROM (& Mini-Mem RAM) 8K Bytes 
1 I 12K of Extended BASIC ROM. Upper 4K @ >7000 - >7FFF 
I>7FFF I is flipped to page in another 41 for a total of 12K 

>8000 
>8000 
>80FF 
>8100 
>81 FF 
>8200 
>82FF 
>8300 
>83FF 
>8400 
>87FF 
>8800 
>8802 
>BBFF 
>8C00 
>8CO2 
>8FFF 
>9000 
>93FF 
>9400 
>97FF 
>9800 
>9802 
>9BFF 
>9C00 
>9CO2 

>9FFF 

RAM MEMORY MAPPED DEVICES VDP, GROM, SOUND & SPEECH 81 Bytes 
duplication of scratch pad ram @ >8300 ->83FF 

duplication of scratch pad ram @ >8300 ->83FF 

duplication of scratch pad ram @ >8300 ->83FF 

CPU SCRATCH PAD RAM 256 bytes 

SOUND CHIP 

VDP READ DATA 
VDP STATUS (MSBy) 

VDP WRITE DATA 
VDP READ/WRITE ADDRESS (to write set MSb of the MSBy to 01) 

SPEECH READ 

SPEECH WRITE 

GROM/GRAM READ DATA 
GROM/GRAM READ ADDRESS 

GROM/GRAM WRITE DATA 
GROM/GRAM WRITE ADDRESS 

HIGH MEMORY EXPANSION RAM 24K Bytes 

Extended Basic High Memory Usage, Free space end 
pointed to by CPU RAM PAD address >8386 

Numeric values 

Line number table 

X-Basic program space 

>FFFF  

>A000 



CONSOLE ROM MEMORY MAP (most consoles) 

Power Up Routine Vector - Level 0 Interrupt (Reset) 
Level 1 - 9901 Interrupt Vector 
Unused interrupt vector - points to screen timeout routine 
Cpu•clock speed for Baud rate generation and 'AA' for Validation 
Assembly Language Key Scan Entry Point (B 002B2) - subtract 4 

from the branch address to get the Gpl entry point. 
Data - zero and eight 
Instructions for the unreleased TI Debugger board 
Branch and Link statement for BREAKPOINT check 
Entry address of Breakpoint for RS232 and Basic 

Subtract >10 from it to get the start of the key range check 
Subtract >1A from it to get the start of the key debounce 
Subtract >1C from it to get the end of the key routine 

POWER UP ROUTINE - start of console reset routine 
More instructions for the unreleased TI Debugger board 
XOP 0 vector - used by the TI Debugger board 
XOP 1 vector - user defined - Not supported on early consoles 
XOP 2 vector - user defined - 
START OF GPL INTERPRETER 
Set Grom/Gram address 
Next Gpl instruction 
>0C36 Points to start of branch tables for Gpl instructions 

GPL BRANCH VECTOR TABLES 
0270 Vector for Gpl miscellaneous instruction executor 
061E - Vector for >20 - MOVE instruction 
011A - Vector for >40 - BRANCH ON RESET instruction 
010E - Vector for >60 - BRANCH ON SET instruction 
Miscellaneous Instructions 
0838 - Vector for >00 - RETURN instruction 
083E - Vector for >01 - RETURN WITH CONDITION BIT instruction 
027A - Vector for >02 - RANDOM instruction 
02AE - Vector for >03 - SCAN (Key Scan) instruction 
029E - Vector for >04 - BACK (Screen Color) instruotion 
0104 - Vector for >05 - BRANCH instruction 
085A - Vector for >06 - CALL instruction 
05A2 - Vector for >07 - ALL (Clear Screen) instruction 
04DE - Vector for >08 - FORMATTED BLOCK MOVE instruction 
OOF4 - Vector for >09 - HIGH instruction 
00F4 - Vector for >OA - GREATER THAN instruction 
0024 - Vector for >013 - EXIT (Power Up) instruction 
00F4 - Vector for >OC - CARRY instruction 
OOF4 - Vector for >OD - OVERFLOW instruction 
18C8 - Vector for >OE - PARSE (Basic) instruction 
0608 - Vector for >OF - XML instruction 
1920 - Vector for >10 - CONTINUE (Basic) instruction 
1968 - Vector for >11 - EXECUTE (Basic) instruction 
19F0 - Vector for >12 - RETRUN TO BASIC (Basic) instruction 
082C - Vector for >13 - Unlisted - returns the Grow Base address 

from a library / program call 

>OCOC Vector for >14->1E - Unlisted - points to routines for 
the TI Debugger Board 

for >1F - Unlisted - points to routine for the 
TI Debugger board - part of { 
its Breakpoint routine. { 

>0000 
>0004 
>0008 
>000C 
>000E 

>0012 
>0014 
>0020 
>0022 

>0024 
>0038 
>0040 
>0044 
>0048 
>004E 
>0060 
>0070 
>0082 

>0C36 
>0C36 
>0C38 
>OC3A 
>OC3C 

>0C3E 
>0C40 
>0C42 
>0C44 
>0C46 
>0C48 
>OC4A 
>OC4C 
>0C4E 
>0050 
>0052 
>0054 
>0056 
>0058 
>ĐCSA 
>OCSC 
>OCSE 
>0060 
>0062 
>0064 

>0066 
thru 
>OC7A 
>0C7C >OC14 Vector 



{>OC7E 
>OC7E 
>0080 
>0082 
>0084 
>OC86 
>0088 
>OC8A 
>OC8C 
>OC8E 
>0C90 
>0C92 
>0C94 
>0C96 
>0C98 
>OC9A 
>OC9C 
>OC9E 
>OCAO 
>OCA2 
>OCA4 
>OC16 
>OCA8 
>OCAA 
>OCAC 
>OCAE 
>OCBO 
>OCB2 
>OCB4 
>OCB6 
>OCB8 
>OCBA 
>OCBC 
>OCBE 
>OCCO 
>OCC2 
>OCC4 
'>OCC6 
>OCC8 
>OCCA 
>OCCC 

>OCCE 
>OCDO 
>OCD2 
>OCD4 
>OCD6 
>0CD8 
>OCDA 

CONSOLE ROM MEMORY MAP Continued 
+-  

Gpl instructions with a negative opcode (Greater than >7F) 
>0136 - Vector for >80 - ABSOLUTE instruction 
>013A - Vector for >82 - NEGATE instruction 
>0140 - Vector for >84 - INVERT instruction 
>013E - Veotor for >86 - CLEAR instruction 
>0144 - Vector for >88 - FETCH instruction 
>0162 - Vector for >8A - CASE instruction 
>016E - Vector for >8C - PUSH instruction 
>OOEA - Vector for >8E - COMPARE ZERO instruction 
>0186 - Vector for >90 - INCREMENT instruction 
>0188 - Vector for >92 - DECREMENT instruction 
>0184 - Vector for >94 - INCREMENT BY TWO instruction 
>0182 - Vector for >96 - DECREMENT BY TWO instruction 
>OCOC - Vector for >98 - Unlisted (TI Debugger board) 
>OCOC - Vector for >9A - Unlisted (TI Debugger board) 
>OCOC - Vector for >9C - Unlisted (TI Debugger board) 
>OCOC - Vector for >9E - Unlisted (TI Debugger board) 
>0188 - Vector for >AO - ADD instruction 
>0186 - Vector for >A4 - SUBTRACT instruction 
>010E - Vector for >AB - MULTIPLY instruction 
>01EA - Vector for >AC - DIVIDE instruction 
>0190 - Vector for >BO - AND instruction 
>0196 - Vector for >B4 - OR instruction 
>0191 - Vector for >B8 - %OR instruction 
>019E - Vector for >BC - STORE instruction 
>0112 - Vector for >CO - EXCHANGE instruction 
>00D6 - Vector for >C4 - COMPARE HIGH instruction 
>OODA - Vector for >C8 - COMPARE HIGH OR EQUAL instruction 
>OODE - Vector for >CC - COMPARE GREATER THAN instruction 
>00CC - Vector for >DO - COMPARE GREATER THAN OR EQUAL 
>00EC - Vector for >D4 - COMPARE EQUAL instruction 
>00E2 - Vector for >D8 - COMPARE LOGICAL -- 
>0180 - Vector for >DC - SHIFT RIGHT ARITHMETIC instruction 
>01B4 - Vector for >EO - SHIFT LEFT LOGICAL instruction 
>01BB - Vector for >E4 - SHIFT RIGHT LOGICAL instruction 
>01C2 - Vector for >E8 - SHIFT RIGHT CIRCULAR instruction 
>06D2 - Vector for >ED - COINCIDENCE instruction 
>OCOC - Vector for >FO - Unlisted 
>05C8 - Vector for >F6 - INPUT/OUTPUT instruction 
>004E - Vector for >F8 - Unlisted (saves Grom address and base) 
>OCOC - Vector for >FC - Unlisted 

MOVE INSTRUCTION VECTORS (Block Move >20->3F) 
These tables are used by the MOVE instructions. 
They move blocks of memory (Data) from a designated source 
to a designated destination. 
The first three entries move bytes from the source. 
The next four entries move bytes to the destination. 

>0660 - CPU SOURCE 
>0672 - GROM SOURCE 
>0664 - VDP SOURCE 
>0682 - CPU DESTINATION 
>0686 - GRAM DESTINATION 
>06BA - VDP DESTINATION 
>0698 - VDP REGISTER DESTINATION 



i >OCDC 

>OCDC 
>OCDE 
>OCEO 
>OCE2 
>OCE4 
>OCE6 
>OCE8 
>OCEA 

>OCEB 
>OCEB 
>OCEE 
>OCFO 
>OCF2 
>OCF4 
>OCF6 
>OCF8 

>OCFA 
>OCFA 
>OCFC 
>OCFE 
>0000 
>0D02 
>0004 
>0006 
>0008 
>ODOA 
>ODOC 
>000E 
>0010 
>0012 
>0014 
>0016 
>0018 

>0D1A 
>0D1A 
>001C 
>0D1E 

>0020 
>0022 
>0D24 
>0026 
>0028 
>0D2A 
>OD2C 
>OD2E 
>0030 
>0032 
>0034 
>0036 
>0038 

CONSOLE RON MEMORY MAP Continued 

FORM►T INSTRUCTION TABLE - The Formatted Block Move instruction 
is a sub interpreter within the Gpl interpreter. 

>050A - Vector for STRING ACROSS 
>0508 - Vector for STRING DOWN 
>0504 - Vector for REPEAT ACROSS 
>0502 - Vector for REPEAT DOWN 
>0534 - Vector for SKIP ACROSS 
>0532 - Vector for SKIP DOWN 
>053A - Vector for REPEAT BLOCK 
>056C - Vector for SPECIAL - write color table or loads XPT, YPT 

INPUT/OUTPUT INSTRUCTION TABLE 
>05D6 - Vector for EXECUTE SOUND LIST 
>0506 - Vector for EXECUTE SOUND LIST 
>05E8 - Vector for CRU BIT INPUT 
>05EA - Vector for CRU BIT OUTPUT 
>1346 - Vector for CASSETTE WRITE ROUTINE (Low Level) 
>142E - Vector for CASSETTE READ ROUTINE (Low Level) 
>1426 - Vector for CASSETTE VERIFY ROUTINE (Low Level) 

LOCATION OF ALL 16 XML TABLES (Vectors) 
>001A - Vector for - >00 - Floating Point Table 
>12A0 - Vector for - >10 - Pointer to XTAB 
>2000 - Vector for - >20 * 
>3FC0 - Vector for - >30 * The Rest through >8300 are 
>3FE0 - Vector for - >40 a  pointers to the other XML 
>4010 - Vector for - >50 $ Tables 
>4030 - Vector for - >60 
>6010 - Vector for - >70 * 
>6030 - Vector for - >80 * 
>7000 - Vector for - >90 
>8000 - Vector for - >AO • 
>A000 - Vector for - >BO * 
>B000 - Vector for - >CO * 
>C000 - Vector for - >DO • 
>D000 - Vector for - >EO * 
>8300 - Vector for - >FO * 

FLOATING POINT ROUTINES TABLE 
>0000 - 
>OF54 - Vector for ROUND Check to see if FAC needs rounding 
>OFB2 - Vector for ROINU Round FAC starting at digit 

specified in ARG. 
>OFA4 - Vector for - STEXIT Store status 
>OFC2 - Vector for - OVEXP Over/underflow 
>OFCC - Vector for - OV Part of OVEXP 
>0080 - Vector for - FADD Floating point add 
>OD7C - Vector for - FSUB Floating point subtract 
>0E88 - Vector for - FMULT Floating point multiply 
>OFF4 - Vector for - FDIV Floating point divide 
>003A - Vector for - FCOMP Floating point compare 
>0084 - Vector for - SADD Stack add 
>0074 - Vector for - SSUB Stack subtract 
>OE8C - Vector for - SHULT Stack multiply 
>OFF8 - Vector for - SDIV Stack divide 
>0046 - Vector for - SCOMP Stack compare 

77 



CONSOLE ROM MEMORY MAP Continued 

>12A0 I XTAB XML TABLE 
>12A0 ; >11AE - Vector for - CSN 
>1212 >11A2 - Vector for - CSNGR 
>1214 >12B8 - Vector for - CFI 
>12A6 >1648 - Vector for - SYM 
>12A8 >164E - Vector for - SHE 
>12A1 >1642 - Vector for - ASSGNV 
>12AC >15D6 - Vector for - SCHSYM 
>12AE >163C - Vector for - VPUSH 
>12B0 >1F2E - Vector for - VPOP 
>12B2 >OACO - Vector for - SROM 
>12B4 >0B24 - Vector for - SCROD 
>12B6 >1868 - Vector for - PGMCH 

>1C9C BASIC STATEMENT TABLE - Used 
>1C9C >1A2C - Vector for - Spare 
>1C9E , >1A2C - Vector for - ELSE 
>1CA0 I >1A2C - Vector for - Reserved : : 
>1CA2 I >1A2C - Vector for - Reserved 1 
>1CA4 I >1BB6 - Vector for - IF 
>1CA6 i >118E - Vector for - GO 
>1CA8 >1AFC - Vector for - GOTO 
>1CAA >1AE0 - Vector for - GOSUB 
>1CAC >1B74 - Vector for - RETURN 
>1CAE >19E6 - Vector for - DEF 
>1CB0 >19E6 - Vector for - DIM 
>1CB2 >113C - Vector for - END 
>1CB4 >8000 - Vector for - FOR 
>1CB6 >1BEA - Vector for - LET 
>1CB8 >8002 - Vector for - BREAK 
>1CBA >8004 - Vector for - UNBREAK 
>1CBC >8006 - Vector for - TRACE 
>1CBE >8008 - Vector for - UNTRACE 
>1CC0 , >8016 - Vector for - INPUT 
>1CC2 >19E6 - Vector for - DATA 
>1CC4 >8012 - Vector for - RESTORE 
>1CC6 >8014 - Vector for - RANDOMIZE 
>1CC8 >1C14 - Vector for - NEXT 
>1CCA >8001 - Vector for - READ 
>1CCC >1A3C - Vector for - STOP 
>1CCE >803E - Vector for - DELETE 
>1CDO >19E6 - Vector for - REM 
>1CD2 >1192 - Vector for - ON 
>1CD4 >800C - Vector for - PRINT 
>1CD6 >800E - Vector for - CALL 
>1CD8 >19E6 - Vector for - OPTION 
>1CDA >8018 - Vector for - OPEN 
>1CDC >8011 - Vector for - CLOSE 
>1CDE >1A2C - Vector for - SUB 
>10E0 >803C - Vector for - DISPLAY 

>10E2 TABLE USED BY PARSE 
>10E2 >801C - Vector for - ( 
>10E4 >1A2C - Vector for - 8 
>10E6 >1A2C - Vector for - Spare 
>10E8 >1A2C - Vector for - OR 
>10EA >1A2C - Vector for - AND 
>10EC >1A2C - Vector for - XOR 
>10EE >1A2C - Vector for - NOT 

Convert ASCII to floating point 
Grom entry for CSN routine 
Convert floating point to integer 
Fetch BASIC symbol table entry 
Fetch BASIC symbol table value 
Assign BASIC variable 
Search BASIC symbol table 
Push value onto VDP stack 
Pop value from VDP stack 
Search ROM. Part of DSR routine 
Search GROM. Part of DSR routine 
Get BASIC program character 
by EXEC (Execute). 



CONSOLE R()( MEMORY MAP Continued 
r 
>1CF0 

>1CF0 >1A2C - Vector for - o 
>1CF2 >1A2C - Vector for - < 
>1CF4 >1A2C - Vector for - > 
>1CF6 >801E - Vector for - + 
>1CF8 >8020 - Vector for - — 
>1CFA , >1A2C - Vector for - • 
>1CFC I >1A2C - Vector for - / 
>1CFE I >1A2C - Vector for - 
>1000 1 >1A2C - Vector for - Spare 
>1002 1 >8010 - Vector for - Quoted string 
>1D04 I >1A5C - Vector for - Unquoted string 
>1006 ; >1A2C - Vector for - Line number 
>1008 I >804A - Vector for - EOF 
>100A 1 >8022 - Vector for - ABS 
>100C I >8024 - Vector for - ATN 
>100E 1 >8026 - Vector for - COS 
>1D10 I >8028 - Vector for - EXP 
>1012 I >802A - Vector for - INT 
>1014 1 >802C - Vector for - LOG 
>1016 1 >802E - Vector for - SGN 
>1018 ; >8030 - Vector for - SIN 
>101A 1 >8032 - Vector for - SQR 
>1D1C I >8034 - Vector for - TAN 
>101E ; >8036 - Vector for - LEN 
>1020 I >8038 - Vector for - CHR$ 
>1022 I >803A - Vector for - RND 
>1024 I >8040 - Vector for - SECS 
>1026 1 >8046 - Vector for - P0S 
>1D28 >8044 - Vector for - VAL 
>102A >8042 - Vector for - STR$ 
>102C >8048 - Vector for - ASC 

LED TABLE USED BY PARSE I 

(NUMERIC) 

TABLE USED BT COAT (Continue) 
>1D2E , >105C - Vector for -
>1030 I >1D3E - Vector for - < 
>1032 I >104C - Vector for - > 
>1034 I >1DEC - Vector for - + 
>1036 ; >1E18 - Vector for - - 
>1038 I >1E24 - Vector for - + 
>103A I >1E30 - Vector for - / 
>103C ; >1E3C - Vector for - 

>1E9C ; VPUSH for GPL 
>1EAA 1 VPUSH (XML >17) 
>1F2E 1  VPOP (XML >18) 

This map contains mostly Vectors (Entry Points) for the 
various routines. By watching the address in the PC field 
of the Explorer you can tell which of these routines is 
being executed. You can also use these vectors to set the 
Cpu Breakpoint (BP) to halt the Explorer on a given routine 
so you can Step through it. 



>8300 

>8300 
>8302 
>8304 
>8306 
>8308 
>830A 
>830C 
>830E 
>8310 
>8312 
>8314 
>8316 

>8318 

>8318 
>831A 
>831C 
>831E 
>8320 
>8322 
>8324 
>8326 
>8328 
>832A 
>832C 
>832E 
>8330 
>8332 
>8334 
>8336 
>8338 
>8331 
>833C 
>833E 
>8340 
>8342 
>8344 
>8345 

>8346 
>8348 

256 BYTES OF SCRATCH PAD RAM - YB USE 

YB TEMPORARY STORAGE AREA 
This area of Scratch Ram is used by X-Basic and Basic as a 
temporary holding area for the different routines. 
temporary variable 
temporary variable 
temporary variable 
temporary variable - Record Length on file access 
temporary variable - Address of Sprite Atttribute List 
temporary variable 
temporary variable 
temporary variable - increment value for Auto Num 
temporary variable - used in CALL LINK parameter passing 
temporary variable - used by CHAR type statements 
temporary variable - copy of VDP reg 1 for some commands 
temporary variable - DSR Link flag for some commands 

YB PERMIRENT STORAGE AREA 
This area of Scratch Ram is used for specific items by Y-Basic 
Used by LINK, LOAD & rtn control to Basic also String space bgn 
Points to 1st free add in VDP RAM also String space end 
Points to allocated str space - PAB Error - Temp string pointer 
Start of current statement 
Current Screen Address 
Return error code from Assembly Language Code 
VDP value stack base pointer 
Return address from Assembly Language Code 
NUD Table for Assembly Language Code. 
Ending screen display pointer 
Program text or token code pointer 
Pointer to current line number in line number table 
Start of Line number table pointer 
End of Line number table pointer 
Data pointer for read 
Line number table pointer for read 
Address of intrinsic Poly constants 
Subprogram symbol table pointer 
PAB address in VDP RAM (first link) PAB list 
Symbol table pointer 
VDP Ram free space pointer 
Current char/token 
Extended Basic Program RUN = 255 STOP = 0 (w/o 'READY') 
Extended Basic System Flags 

Bit 0 1 = Auto-Num Bit 4 1 = Edit Mode 
1 1 = On Break Next 5 1 = On Warning Stop 
2 6 1 = On Warning Next 
3 1 = Trace 7 

Crunch buffer destruction level 
Last subprogram block on stack 



INTERPRETER and FLOATING POINT GPL VALUE STACK POINTER 
HIGHEST AVAILABLE ADDRESS IN VDP RAM 
LSByte OF DATA STACK POINTER = AO = (>83A0) 
LSByte OF SUBROUTINE STACK POINTER = 80 = (>8380),  
KEYBOARD NUMBER TO BE SCANNED Default =0 
ASCII CODE DETECTED by SCAN routine also SGN for 
JOYSTICK Y-STATUS by SCAN routine also EXP for 
JOYSTICK X-STATUS by SCAN routine 
RANDOM NUMBER GENERATOR 
VDP INTERRUPT TIMER 
HIGHEST SPRITE # IN AUTO-MOTION 
COPY OF VDP STATUS REGISTER 
GPL STATUS BYTE (Set to 0 for a DSR CALL) (>20 =Key Press) 
CHARACTER BUFFER BYTE VDP RAM screen table 
POINTS TO THE CURRENT ROW on the screen 
POINTS TO THE CURRENT C0.UMN on the screen 

float/point 
float/point  

RND's >0 ->63 (0-99) 
>0 ->FF (0-255) 
>0 ->20 (0-32) 

256 BYTES OF SCRATCH PAD RAM Continued 

>836E 
>8370 
>8372 
>8373 
>8374 
>8375 
>8376 
>8377 
>8378 
>8379 
>837A 
>837B 
>837C 
>837D 
>837E 
>837F 

>834A 
>834A 
>834B 
>834C 
>834E 
>834F 
>8350 
>8352 
>8353 
>8354 
>8356 
>8358 
>835A 
>835C 

FLOATING POINT ERROR CODE 
SUBRTN POINTER / DSR's pots to 

ARG (Floating point argument) 
and DSR usage 

PAB I/O OPCODE 
PAB FLAG/STATUS 
PAB DATA BUFFER ADDRESS 
PAB LOGICAL REC LENGTH 
PAB CHARACTER COUNT 
PAB RECORD NUMBER 
PAB SCREEN OFFSET 
PAB OPTION LENGTH 
PAB DEVICE LENGTH 

1st char after PAB in VDP 
DSR 
DSR 
DSR 
DSR 
DSR 

Grom ?) DSR 
DSR 

FLOATING POINT and DSR usage, 36 bytes 
FAC (Floating point accumulator) 
for floating point routines 
this area holds a number in 
radix 100 notation. 

>836C ; FPERAD (float pnt err add in 
>836D Set to >08 for DSR call 

>8380 ITHE DEF►ULT SUBROUTINE STACK (Used by GPL Routines) 
>8380 ; Reserved For Basics interpreter 
>8382 I Reserved For Basics interpreter 
>8384 I Reserved Highest Address in Expansion Memory 
>8386 { Reserved Highest Free Address in Mem-Expansion 
>8388 I Reserved For the Basic interpreter Sub stack base 
>8389 ; Reserved For the Basic interpreter Exp-Mem Flag 
>838k I RETURN ADDRESS STACK FOR GROM SUBROUTINES 

(current Grom Address pushed to top of stack during Key Scan) 
>839E I 

>83A0 ITHE DEFAULT DATA STACK (Used by GPL Routines) 
I this area holds various information according to the GROM 
= routine being executed. 

>83BF I I 
+ + + 



>83C0 
>83C0 
>83C2 

>83C4 
>83C6 
>83C8 
>83CA 
>83CC 
>83CE 
>83D0 
>83D2 
>83D4 
>83D6 
>83D8 
>83DA 
>83DC 

>83DE 

>83E0 
>83E0 
>83E2 
>83E4 
>83E6 
>83E8 
>83EA 
>83EC 
>83EE 
>83F0 
>83F2 
>83F4 
>83F6 
>83F8 
>83FA 
>83FC 

>83FD 

>83FE  

256 BYTES OF SCRATCH PAD RAM Continued 

INTERRUPT WORKSPACE REGISTERS 
RO RANDOM NUMBER SEED 2 Bytes >0-FF >0-FF 
R1 Bit 0 1 = disable ALL of the following 

1 1 = disable Auto Sprite Motion 
2 1 = disable Auto Sound Processing 
3 1 = disable The QUIT Key 

Bits 4-15 not used 
R2 ISR HOOK - Start address of User Interrupt Routine 
R3 Reserved for Keyboard state and debounce info 
R4 Reserved for Keyboard *atate and debounce info 
R5 Reserved for Keyboard state and debounce info 
R6 Pointer to Sound Table - also see >83FD 
R7 Number of Sound Bytes for Auto Sound Processing (0100) 
R8 Varies (>0000 for Cassette DSR Link) 
R9 Varies 
R10 CONTENTS OF VDP REGISTER 1 (used for key scan) 
R11 SCREEN TIME OUT COUNTER (blanks when incremented to 0000) 
R12 RETURN ADDRESS SAVED BY THE SCAN ROUTINE (Old R11) 
R13 Return WS for context switch (RTWP) 
R14 Return PC for context switch (RTWP) 
R15 Return ST for context switch (RTWP) 

GPL WORKSPACE REGISTERS (ALL Registers used by GPL interpreter) 
RO Varies NOTE: RO - R7, R11 and R12 
R1 Varies are modified by Key Scan 
R2 Varies 
R3 Varies 
R4 Varies 
R5 Varies Used by Interrupt Routine 
R6 Varies Used by Interrupt Routine 
R7 Varies Used by Interrupt Routine 
R8 Cleared on Return from Interrupt Routine 
R9 GPL Interpreter use 
R10 OPL Interpreter use 
R11 RETURN ADDRESS for BL instruction and User Interrupt 
R12 Varies - Cru Base Address for key scan and DSRs 
R13 GROM/GRAM READ DATA port (9800) 
R14 STATUS FLAGS 
Bits 0 - 7 Control the cursor blink speed & 

Auto sound processing. The value in this byte 
increments the counter at >8379 

Bit 0 4 1 = 16K Vdp Ram 
1 5 
2 1 = Cass Interrupt Timer 6 1 = Multi-Color mode 
3 1 = Cass Verify 7 Sound table location 

1 = VDP 0 = Grom/Gram 
R15 VDP WRITE ADDRESS port (8CO2) 



Extended Basic LOW MEMORY EXPANSION after CALL INIT 

Address ; Value Description of address 1 
+ + 
1>2000 
1>2002 
1>2004 
1>2006 
I>2008 

>2008 
>200A 
>200C 
>200E 
>2010 
>2012 
>2014 
>2016 
>2018 
>201A 
>201C 
>201E 
>2020 
>2022 
>2024 
>2026 
>2028 
>202A 
>202C 
>202E 
>2030 
>2032 
>2034 
>2036 

>2038 

>205A XML link to name link routine pointer. 
>24FA First Free address in low mem-exp. 
>4000 Last Free address in low mem-exp. 
>AA55 Constant that indicates CALL INIT has been executed. 

UTILITY VECTOR TABLE (ie: BLWP @KSCAN ) 
>2038 Utility workspace pointer for BLWP @NUMASG 
>2096 NUMASG Utility starting address. 
>2038 Utility workspace pointer for BLWP @NUMREF 
>217E NUMREF Utility starting address. 
>2038 Utility workspace pointer for BLWP @STRASG 
>21E2 STRASG Utility starting address. 
>2038 Utility workspace pointer for BLWP @STRREF 
>234C STRREF Utility starting address. 
>2038 Utility workspace pointer for BLWP @XMLLNK 
>2432 XMLLNK Utility starting address. 
>2038 Utility workspace pointer for BLWP @KSCAN 
>246E KSCAN Utility starting address. 
>2038 Utility workspace pointer for BLWP @VSBW 
>2484 VSBW Utility starting address. 
>2038 Utility workspace pointer for BLWP @VMBW 
>2490 VMBW Utility starting address. 
>2038 Utility workspace pointer for BLWP @VSBR 
>249E VSBR Utility starting address. 
>2038 Utility workspace pointer for BLWP @VMBR 
>24AA VMBR Utility starting address. 
>2038 Utility workspace pointer for BLWP @VWTR 
>24B8 VWTR Utility starting address. 
>2038 Utility workspace pointer for BLWP @ERR 
>2090 ERR Utility starting address. 

UTILITY WORK SPACE STARTS HERE 
RO-R15 

>2057 I End of work space 
>2058 I 
>205A I Start of XML link to name link routine. 

i (Finds the name in the REF/DEF Table) 
>2090 Start of ERR Routine. (Return Error code to basic) 
>2096 Start of NUMASG Routine. (Numeric Assignment) 
>217E Start of NUMREF Routine. (Numeric Reference) 
>21E2 Start of STRASG Routine. (String Assignment) 
>234C Start of STRREF Routine. (String Reference) 
>2432 Start of XMLLNK Routine. (Link to system Utilities) 
>246E , Start of KSCAN Routine. (Keyboard Scan) 
>2484 I Start of VSBW Routine. (VDP single byte write) 
>2490 1 Start of VMBW Routine. (VDP multiple byte write) 
>249E I Start of VSBR Routine. (VDP single byte read) 
>24AA I Start of VMBR Routine. (VDP multiple byte read) 
>2488 I Start of VWTR Routine. (Write to VDP register) 

I (NOTE: No GPLLNK or DSRLNK in X-Basic CALL INIT) 

>24FA 1 First Free Address in Low Mem-Exp. pointed to by >2002 

1 - continued next page - 

83 



>A000 

>FFE7 

>FFFC 
>FFFE 

>FFFF  

 

Extended Basic LOW MEMORY EXPANSION Continued 

f The REF/DEF Table resides at the end of f 
• Low Memory Expansion. Each entry is 8 bytes long. f 
f 6 for the Name and 2 for the starting address. t 
• CALL INIT in X-Basic leaves this space empty. 
t s 
DEF Name (CALL LINK or BLWP e) 6 characters. 
Start address of the above routine, 2 bytes. 
DEF Name (CALL LINK or BLWP e) 6 characters. 
Start address of the above routine, 2 bytes. 

END OF LOW MEMORY EXPANSION 

 

>3FF0 
>3FF6 
>3FF8 
>3FFE 

>3FFF 

 

 

Extended Basic HIGH MEMORY EXPANSION usage 

START OF HIGH MEM-EXPANSION 
(If Hem-Exp is present then the value at >8389 
will be >E7 while the program is running) 

NUMERIC VALUE TABLE (in RADIX 100 notation) 

Starting point of the Symbol table in VDP RAH is 
pointed to by >833E while the program is running. 
The Symbol table then points into the Numeric value 
table for each of the variable names. 

Highest Free Address in Mem-Exp. pointed to by >8386 

LINE NUMBER TABLE - 4 Bytes per entry. 

1 Line # = 2 Bytes I Start Address of line = 2 bytes 1 
Line numbers are always stored highest # to lowest # 
Starting address of this table is pointed to by >8330 
Ending address of this table is pointed to by >8332 
Current line number being referenced 

in this table is pointed to by >832E 

PROGRAM SPACE (Last line entered is at the top) 

Start of program space = (value at >8332)+1 
Programs reserved words have been converted to Token values 
and the line numbers are removed from the beginning of 
each line. The format for each line is as follows: 

1st Byte = Number of bytes for the line 
Following Bytes = (Start Address) Actual line code with 

Token values replacing reserved words. 
Last byte = >00 

Highest address to be used in Mem-Exp. pointed to by >8384 

Workspace Pointer for LOAD Interrupt (non-maskable interrupt, 
Start Address (PC) for LOAD Interrupt not DSK1.LOAD) 

END OF HIGH MEMORY EXPANSION 

+-  



CHARACTER PATTERN TABLE 
+96 Offset (>60 Bias) 

>03C0-03DF Vdp Roll Out 

768+8*character number= 
address in decimal 

Character 
Character 
Character 
Character 

etc. 

number 30 
number 31 
number 32 
number 33 

PABS (Value Stack) 
STRINGS 
SYMBOL TABLES 
NUMERIC VALUES 
LINE NUMBER TABLE 
PROGRAM SPACE 

>0800 

>35D7 

CHARACTER PATTERN TABLE 
Standard Chars at 
>0900 - >OAFF 

Also used for PABs 

>1000 FREE SPACE 

>0800 

>OFFF  

Also used for loader PAB 

>35D7 
+  

OVERALL VDP MAPS WITH BASIC AND EDITOR ASSEMBLER 

Addr BASIC 

>0000 I SCREEN IMAGE TABLE 
{ Start ĆHAR PATTERN TABLE 

+96 Offset (>60 Bias) 

>02FF I END SCREEN IMAGE 

>0300 I COLOR TABLE 
>031F 

>0320 I CRUNCH BUFFER 
>036F 

>07FF   

EDITOR ASSEMBLER 

SCREEN IMAGE TABLE 
Default start of Sprite 
Pattern Table 

End Screen Image 

SPRITE ATTRIBUTE TABLE 

>0380 COLOR TABLE 

>03C0-03DF Vdp Roll Out 
>03E0-045F Value Stack 

>0400 = char >80 in 
sprite pattern 

>0780 I SPRITE MOTION TABLE 
>07FF 

>0370 

>03F0 
>03F8 
>0400 
>0408 

Addr 

>0000 

>02FF 

>0300 

>037F 

>077F 

>35D8 
I DISK FILE BUFFERS 

>3FFF  

>35D8 
I DISK FILE BUFFERS 

>3FFF I 

o e 



+- 
16K VDP RAM Extended Basic Use 

>0000 VDP SCREEN 1MAGE TABLE 768 Bytes 
1 Byte per screen position. Character value offset by >60 (96) I 

(Row-1)}32+Col=Address 
>02E2=New line Address 

>0300 I SPRITE ATTRIBUTE TABLE 112 Bytes 
I 4 Bytes per sprite. (room for 28 sprites) 

>036F I I vert pos-1 I borz pos I char #+96 I early clock bit : color I 

>0370 EXTENDED BASIC SYSTEM AREA 128 Bytes 

>0371 Auto Boot needed Flag 
>0372 Line to start execution at 
>0376 Saved symbol table 'GLOBAL' pointer 
>0378 Used for CHR$ 
>0379 Sound Blocks 

>0382 Saved Program pointer for continue and Text pointer for break 
>0384 Saved Buffer Level for continue 
>0386 Saved Expansion Memory for continue 
>0388 Saved Value Stack pointer for continue 
>038A On-Error Line pointer 
>038C Edit Recall start address 
>038E Edit Recall end address 
>0390 Used as temp storage place (FAC12) 
>0392 Saved main symbol table pointer 
>0394 Auto load temp for inside Error 
>0396 Saved last Subprogram pointer for oontinue 
>0398 Saved On-Warning/Break bits for continue 
>039A Temp to save subprogram table 
>039C Same as above . Used in SUBS 
>039E Merged temp for PAB Pointer 
>03A0 Random Number generator seed 2 

>03A5 Random Number generator seed 1 

>03AA Input temp for pointer to Prompt 
>03AC Accept temp pointer 
>03AE Try Again 
>03B0 Pointer to standard string in VALIDATE 
>03B2 Length of standard string in VALIDATE 

>03B6 Size temp for record length. Also temp in Relocating Program 
>0387 Accept "TRY AGAIN" Flag 
>0388 Saved pointer in SIZE when "TRY AGAIN" 
>O3BA Used as temp storage place (FAC10) 
>03BC Old top of memory for Relocating Program / Temp for INPUT 
>03BE New top of memory for Relocating Program 

>03C0 I Temp Roll Out Area 32 Bytes 
(part of scratch pad RAM is moved here for various operations) 

>03DC I Floating point sign  
>03EF I I 

>02FF 



>03F0 = Char 30 
>03F8 = Char 31 
>0400 = Char 32 

(The Sprite Motion Table uses the memory 
space for character sets 15 & 16) 

>0800 i COLOR TABLE 
1 Byte/Character set 

>081F ; I foreground color : background color I 

32 Bytes 

I>03F0 ; PATTERN DESCRIPTOR TABLE 912 Bytes 
I SPRITE DESCRIPTOR TABLE 

>0780 SPRITE NOTION TABLE 128 Bytes 
4 Bytes/Sprite 

>07FF I I vert velocity I horiz velocity I sys use I sys use 1 

>0820 = CRUNCH BUFFER 160 Bytes 
This area is used while crunching ASCII into token codes. 

>08BE  

8 Bytes per character / 114 characters (30-143) 

>077F 

Used by the ROM routines SADD, SSUB, SMUL, SDIV, SCCMP etc. 
Top of Stack Pointed to by >836E (GOSUBS Stacked here) 

The items in this area move according 11840 Bytes 
to the size of the crunched program. 

The SYMBOL TABLES are generated (except the PAB) during 
the Pre-Scan period after you type RUN. The strings are 
placed in memory when they are assigned (ie: A8="Hello") 

Without Mem-Exp With Mem-Exp 

STRINGS STRINGS 

16K VDP RAM Extended Basic Use Continued 

>08C0 I EDIT/RECALL BUFFER 152 Bytes 
I This area holds the info you type in on the command line. 

>0957 

>0958 ; VALUE STACK (Default Base Pointed to by >8324) 

>0967 

>0968 

DYNAMIC SYMBOL TABLE & PABS DYNAMIC SYMBOL TABLE & PABS 

STATIC SYMBOL TABLE STATIC SYMBOL TABLE 

LINE NUMBER TABLE 

PROGRAM SPACE 
(crunched program) 

Numeric Values, Line Number 
Table and Program Space moved 
to High Mem-Expansion 

The Line Number Table and the Crunched Program are saved to 
I disk like they reside in memory for PROGRAM "Memory Image" 

>37D7 I type files. 



>37DD 
>37DF 
>37E1 
>37E2 

>37E3 
>37ED 
>37EF 
>37F0 
>37F1 
>37F3 
>37F4 
>37F5 

>37F7 
>37FF  

>38E3 

>39E3 

>39E9 

>3AE9 

>3BE9 

>3BEF 

>3CEF 

  

16K VDP RAM Extended Basic Use Continued 

   

>3708 I DISK BUFFERING AREA for CALL PILES(3) 
>3708 i Validation code for the Disk Controller DSR (>AA) 
>37D9 I Points to TOP of VDP memory (>3FFF) 
>37DB CRU base identification ( 11 for CRU 1100) 
>37DC Maximum number of OPENed files (>03 default) 

5 Bytes 

File Control Block for 1st file OPENed 6 Bytes 518 Bytes 
Current Logical record offset 
Sector number location of File Descriptor Record 
Logical Record Offset (only used with VARIABLE records) 
Drive number (high order bit set = Updated Data Buffer area) 

File Descriptor Record (brought in from the disk 256 Bytes) 
File Name 
Reserved (>0000) 
File Status Flags (file type and write protection) 
Max number of Records per Allocation Unit (1 AU = 1 Sector) 
Number of Sectors currently allocated (256 byte blocks) 
End of File offset within the last used sector 
Logical record length (ie: FIXED 80 or VARIABLE 254 etc.) 
# of FIXED length records or # of sectors for VARIABLE length 
(the bytes are reversed ie: LSBIMSB should be MSBILSB ) 

Reserved (>0000 >0000 >0000 >0000) 
Pointer Blocks - 6 nibble, 3 byte, clusters that point to 

the Start Sector numbers and the highest logical Record 
Offset in the cluster. Change the nibble order from 

Iss2:ss11 Iro1:as31 Iro3:ro21 to Iss3:s32:as11 Iro3:ro2:ro11 
Data Buffer area 256 Bytes 

File Control Block for 2nd file OPENed 6 Bytes 518 Bytes 
same pattern as above 

File Descriptor Record 256 Bytes 
same pattern as above 

Data Buffer area 256 Bytes 

File Control Block for 3rd file OPENed 6 Bytes 518 Bytes 
same pattern as above 

File Descriptor Record 256 Bytes 
same pattern as above 

Data Buffer area 256 Bytes 

>3DEF I VDP STACK AREA 252 Bytes 
>3EEA I Used by the Disk Controller DSR  

DISK DRIVE INFO 
>3EEB I Last Drive Number accessed 
>3EEC 1 Last track access on Drive 1 
>3EED I Last track access on Drive 2 
>3EEE I Last track access on Drive 3 

4 Bytes 

>3EEF I (?? not used any more was for the 99/4 ??) 
>3EF4 1 

6 Bytes I 
1 

>3EF5 1 VOLUME INFORMATION BLOCK 256 Bytes 1 
1 (Copy of Sector 0 from the last disk accessed for a WRITE) 1 

>3FF4 1 Contains Disk Name, type and bit map for used sectors. 1 

>3FF5 1 FILE NAME COMPARE BUFFER 11 Bytes I 
>3FFF 1 Contains disk number and 10 character file name for last access.: 



I>0000 
>0000 
>0001 
>0002 
>0004 
>0006 
>0008 
>000A 
>000C 
>000E 

CONSOLE GROH CHIP 0 (Monitor) 

GRCM HEADER 
>AA Valid GROM Header Identification Code 
>02 Version number 
>0000 Number of Programs. 
>0000 Address of Power Up Header 
>0000 Address of Application Program Header 
>1310 Address of DSR Routine Header 
>1320 Address of Subprogram Header 
>0000 Address of Interrupt Link 
>0000 Reserved for future? expansion. 

.... none here 
none here 
none here 

.... none in GROM 

+  

>0010 I GPLLNZ SUBROUTINE VECTOR TABLE 
The values in these tables contain the instruction >40 (BR) 
which is BRANCH if condition bit in status register is RESET 
and the address is relative to the 6K GROM chip it resides in. 
Actual address for GROH 0 = value - >4000 (ie: >43DC = >03DC) 

>0010 >43DC LINK programs to link between programs and DSR's 
>0012 >443C Return from LINK or DSR 
>0014 >49A9 CNS - Convert number into a string 
>0016 >4396 Load Title screen characters 
>0018 >439E Load Regular upper case characters 
>001 A >4446 Generate Basic WARNING message 
>001C >4449 Generate Basic ERROR message 
>001E >444C Begin execution of GROH Basic 
>0020 >4052 GROM Power Up routine 
>0022 >51FE INT - Convert floating point to Integer function 
>0024 >4C82 " - Exponentiation, raise a number to a power 
>0026 >4059 SQR - Square Root function 
>0028 >4DB4 EXP - Exponential function 
>002A >4E64 LOG - Natural Logarithm function 
>002C >4EF9 COS - Cosine function 
>002E >4F01 SIN - Sine function 
>0030 >4F5F TAN - Tangent function 
>0032 >4F80 ATN - Arctangent function 
>0034 >43CE - Generate BEEP sound 
>0036 >4306 - Generate HONK sound 

>0038 >054D12 = BRANCH to GROH 2 >4012 Get String Space routine 
>003B >525E - Bit reversal routine 
>003D >4417 - Special GROM entry point for Cassette DSR, points to 

a GROH routine that calls an XML to execute the low 
level Cassette DSR in the console ROM which returns 
to the high level Cassette DSR in GROM. 

>003F >052844 = BRANCH to GROM 1 >2844 Memory space check for PAB's 
>0042 >053754 = BRANCH to GROM 1 >37B4 GPL subprogram setup 
>0045 >60 : DATA - Basics screen character offset 
>0046 >0D00 = DATA - Speech Read address (>0000 + >8300 : >9000) 
>0048 >1100 = DATA - Speech Write address (>1100 + >8300 : >9400) 

>004A >43C2 Load Lower case characters 
--- The following three were changed in the later version of --- 
--- GROM - After approx 3/82 or LTA 1482 --- 

>004C >04B4 Address of the Title Screen character data table 
>004E >0684 Address of the Regular upper case character data table 
>0050 >0874 Address of the Lower case character data table 



CONSOLE GROl1 CHIP 0 Continued 

GROG! ROUTINES 
>0052 POWER UP ROUTINE (displays the Title Screen) 
>0396 LOAD TITLE SCREEN characters routine 
>039E LOAD REGULAR UPPER CASE characters routine 
>03C2 LOAD LOWER CASE characters routine 
>03CE GENERATE BEEP sound routine 
>03D6 GENERATE HONK sound routine 
>03DC LINK ROUTINES for linking between programs and DSR's 
>043C RETURN from link or DSR 

>0446 >05284C = BRANCH to GROM 1 >284C - WARNING routine 
>0449 >05284E = BRANCH to GROM 1 >284E - ERROR routine 
>044C >052010 = BRANCH to GROM 1 >2010 - Execute Basic 

>044F DATA TABLES 
>044F DATA >80 (Hex 80) 
>0451 DATA for VDP Register default values 
>0459 DATA for Color Table default values for Title Screen 
>0479 DATA for BEEP sound 
>0484 DATA for HONK sound 
>048F DATA :1981: 
>0496 DATA :TEXAS INSTRUMENTS: 
>04A7 DATA :HOME COMPUTER: 
>04B4 DATA for Title Screen Characters (CHR$(32-95)) 
>06B4 DATA for Regular Upper Case Characters (CHB$(32-95)) 
>0874 DATA for Lower Case Characters (CHR$(96-126)) 
>094D DATA :FOR: 
>0950 DATA for TI LOGO loaded at CHR$(1) in the Pattern Desc. Table 

>09A0 FLOATING POINT ROUTINES 
>09A0 Roll Out routine- moves part of Scratch Pad to VDP Roll Out Area 
>09A9 CNS - Convert Number into String routines 
>0AE6 Roll In routine- moves VDP Roll Out Area back into Scratch Pad 
>OAEF Balance of CNS routines 
>0C6C V PUSH - Push a number from FAC onto the VDP Value Stack 
>0077 V POP - Pop a number off the VDP value Stack to FAC 
>0082 - Exponentiation, raise a number to a power 
>0D59 SQR - Square Root function 
>0DB4 EIP - Exponential function 
>0E64 LOG - Natural Logarithm function 
>OEF9 COS - Cosine function 
>0F01 SIN - Sine function 
>0F5F TAN - Tangent function 
>0F80 ATN - Arotangent function 
>OFDB DATA and mist constants used by the Floating Point routines 
>117B Misc subroutines used by the Floating Point routines 
>11FE INT - Integer function 

>125E BIT REVERSAL ROUTINE 
>1267 DATA this is the >40 bytes that is moved into >8300 and used 

by the Bit reversal routine. 

>12A5 DATA :REVIEW MODULE LIBRARY: (currently not used) 

>12C0 j /  
>130F I \ Unused area contains >0000 / 



CONSOLE GR(I CHIP 0 Continued 

CASSETTE DSR - High Level - checks for OPEN errors, displays 
screen messages for cassette operation etc. 

PAB set up for DSR (see Editor/Assembler manual pages 291-304) 
PAB+O - I/O Opcode (Open, Close, Load, Save etc.) 
PAB+1 - Flag/Status (File-type, Mode of Operation & Data-type) 
PAB+2 - VDP Data Buffer Address 
PAB+4 - Logical Record Length 
PAB+5 - Character Count (bytes) to be transferred 
PAB+6 - Record Number (0-32767 not used for cassette I/O) 
PAB+8 - Bias for ASCII characters (>60 in Basics) 
PAB+9 Length of the Device Name (>03 for CS1) 
PAB+10 - Start of the Device Name 'CS1' or 'CS2' 

>1310 DSR Headers) 
>1310 >1318 - Pointer to next Device Name Header 
>1312 >1326 - Start address for this Device 
>1314 >03 - Name length for this Device 
>1315 >435331 - DATA :CS1: 
>1318 >0000 - Pointer to next Device Name Header - no more 
>131A >132C - Start address for this Device 
>131C >03 - Name length for this device 
>131D >435332 - DATA :CS2: 

>1320 SUBPROGRAM Header 
>1320 
>1322 
>1324 
>1325 

>1326 
>131A 

>1330 
>1374 

>135D 
>1387 

>1387 
>13CF 
>13DA 
>13DD 
>13F2 
>140E 
>1444 
>1489 

>1499 

>1549 
>1562 

>1573 
>15A0 

>15A0 
>16E0 
>1700 
>1730 
>1760 
>1790 
>17C0 

>0000 - Pointer to next Subprogram header - no more 
>1573 - Start address for this Subprogram 
>01 - Name length for this subprogram 
>03 - DATA :03: (can not CALL CTRL C (CHR$(3)) from Basics) 

Start of CS1 DSR (set up for CS1) 
Start of CS2 DSR (set up for CS2) 
Both CS1 & CS2 come here to start DSR 
DO CASE Branch table for OPEN, CLOSE, READ Record, WRITE Record, 

RESTORE/REWIND, LOAD, SAVE, DELETE(close) 
ERROR and EXIT routines 
CASSETTE ROUTINES 
OPEN a file routine 
READ a Record routine 
WRITE a Record routine 
Transfer data routine for READ and WRITE 
LOAD a file routine 
CLOSE a file routine 
VERIFY cassette data routine 
SAVE a file routine 
CASSETTE SUBROUTINES - These subroutines display the messages 
on the screen for cassette operation, turn on/off the cassette 
motors, look for key presses and wait for the leader to pass. 
Cassette Motor On >155E Cassette Motor Off 
Wait for leader to pass 
SUBPROGRAM >03 - Adds Bias >60 to the Cassette messages 
DATA TABLES 

Cassette operation messages 
Joystick Codes for key scan 
Small Character codes for key scan 
Shift Table codes for key scan 
FCTN Table codes for key scan 
CTRL Table codes for key scan 
Table for modes 1 & 2 for key scan 

01 



CONSOLE GROM CHIP 1 

>2000 I GROH HEADER 
>2000 I >AA Valid GROM Header Identification Code 
>2001 >02 Version number 
>2002 >01 Number of Programs. 
>2003 >00 Reserved 
>2004 >0000 Address of Power Up Header none here 
>2006 >214D Address of Application Program Header 
>2008 >0000 Address of DSR Routine Header 
>200A >4D1A Address of Subprogram Header (in GROM Chip 2) 
>200C >0000 Address of Interrupt Link .... none in GROM 
>200E >0000 Reserved for future? expansion. 

GROH CHIP 1 VECTOR TABLE (>2000 offset) 
>2010 >4417 Routine to begin execution of Basic program in GROM 
>2012 >4195 Routine to clear flags & set up keyboard 
>2014 >460B Routine to parse (scan) an inputted command line 
>2016 >466C Routine to generate the SYNTAX ERROR message. 
>2018 >467E Routine to restore cursor position after Error 
>201A >4192 Secondary entry point for Basic Interpreter 
>201C >47F1 Routine that CALLS routines in GROM 0 to load characters 
>201E >436D Routine to move blocks of VDP RAM 
>2020 >46AB Routine to reset the length byte for strings and numerics 

ERROR MESSAGES DATA TABLE 
>2022 The Error messages in this table have a >60 (96) offset added 

to them for Basic so use the Explorer's Basic Bias to see 
these. (1st byte=length - Next bytes=message) 

APPLICATION PROGRAM Header 
>214D >0000 Pointer to next Application Program Header ... none here 
>214F >2161? Start address for this program (Main entry point) 
>2151 >08 Name length for this program 
>2152 >54492042 DATA :TI BASIC: (for the menu screen) 
>2156 >41534943 

>215A >4228 Vector for routine that erases the symbol table (>222B) 
>215C DATA for the cursor character pattern 
>2164 DATA for the screen edge character pattern 
>216C DATA for VDP Registers 2, 3 and 4 (>FO OC F8) 

>216F START OF TI BASIC INTERPRETER 
The input line is scanned for the entries at >2214 and branches 
to them. If not one of these it executes the direct command 
(ie: CALL CLEAR or PRINT B+C etc.). 

>216F Entry point for 'NEW' routine 
>2192 Secondary entry point for Basic Interpreter 
>2195 Routine to clear flags, set up keyboard & prepare for input 

on the command line. 
>21D6 Edit Routine that CALLs other routines to store the input from 

the keyboard into the VDP RAM Screen Image Table. 
>21E5 Routine that CALLS another routine to scan the line just input 

and convert it into token codes and store it in VDP RAM 
>2214 CASE branch table for: 

RUN NEW CONTINUE 
LIST BYE NUMBER 
OLD RESEQUENCE SAVE and EXIT' 



CONSOLE GROM CHIP 1 Continued 

I TI BASIC INTERPRETER Cont.  
>222B ; Entry point for routine that erases the Symbol Table 
>2245 I  Entry point for 'LIST' routine 
>224D ; Entry point for 'RUN' routine 
>2268 I Entry point for 'CONTINUE' routine 
>228C I Entry point for 'NUMBER' routine 
>229F I Entry point for 'SAVE' routine  
>22A7 ; Entry point for 'OLD' routine 
>22AA I Entry point for 'RESEQUENCE' routine 
>2342 I Entry point for 'BYE' routine 
>236D ; Routine to move blocks of VDP RAM from a Lower address to 

a Higher address as you input program lines. 
I >8300 _ VDP location to move FROM 

>8302 = VDP location to move TO 
>835C = Number of bytes to move 

>2377 i Entry point for 'EDIT' (program lines) routine 
>2417 I Routine to begin execution of Basic program 
>2457 I Routine to scan an inputted command line CALLed from >21E5 
>266C ; Routine to generate the SYNTAX ERROR message. 
>267E I Routine to restore cursor position after Error 
>26AB I Routine to reset the length byte for strings and numerics 
>27E3 Routine that clears the screen, resets the cursor and edge 

characters and then executes the following routine 
>27F1 i Routine that CALLs routines in GROM 0 to load character sets, 

I I then it resets the foreground and background colors 
I I and resets VDP Registers 2, 3 and 4 

>2828 1 VECTOR TABLE FOR EDIT & PRESCIN ROUTINES (>2000 offset) 
>2828 ; >4FFF Prescan (builds symbol table and checks for errors) 
>282A >4F43 Generates Bad Line Number error message 
>282C >4C75 Routine to parse the input line for non space chars 
>282E >4DFA Lists a program line to screen (converts token code 

into ASCII, reserved words) 
>2830 >4CA6 Gets a valid character from the input line 
>2832 >4A42 Main edit routine to read in a line from the keyboard 
>2834 >4C36 Starts auto number with our line # and increment. 
>2836 >4FC4 Finds where the first token is stored in vdp ram for line 
>2838 , >4BD6 Deletes and inserts program lines (moves memory around) 
>283A ; >4F12 Checks for valid line number 
>283C ; >4EF9 Converts a line number from ASCII into Binary value 
>283E ; >4F50 Locates a program line in vdp ram 
>2840 I  >4C2B Starts auto number with default values of 100,10 
>2842 I >4FAF Converts line # from Binary to ASCII and displays it 
>2844 I >5493 Checks for room for symbol table or pab, this routine 

may execute a garbage collection and try again 
>2846 ; >5450 Checks for type of char 0-9 a-z A-Z etc. 
>2848 I >51E5 Places a variable in the symbol table 
>284A i >522B Puts dummy entries into the symbol table 
>284C I >4D24 Prints out the WARNING messages 
>284E ; >4D99 Prints out the ERROR messages 
>2850 ; >4C84 Checks the GPL stack and moves a char into it 
>2852 i >4CAO Increments the VDP pointer for the next char 
>2854 ; >4000 Handles unquoted strings adds unquoted token & len to it 
>2856 I >4C7A Gets first non space char from the input line 
>2858 I >4149 Secondary edit routine, allows different line length 
>285A ; >414F Third edit routine, allows different starting cursor pos 

Q ~ 



CONSOLE GROH CHIP 1 Continued 

RESERVED WORD TOKEN TABLE 
First 10 words point to the start of reserved word groupings. 
Groups are broken up by number of characters (1-10) per 
reserved word. The Token value follows the reserved word 

LINE EDITOR 
>2142 Routine that accepts keystrokes into a screen line. This is a 

line editor, it knows Insert, Delete etc. This entry point 
sets the default starting point and line length for Basic 

Second entry point for the line editor. By setting the line 
length in >835E before branching here you can change the 
maximum line length 

Third entry point for the line editor. By setting the line 
length in >835E and the start point in >8361 before branching 
here you can have your input start and stop any place on 
the screen 

Routine that moves memory around for inserting and deleting 
program lines 

Routine that sets up the values for NUMBER (auto line numbering) 
Routine that parses a line and gets the non space chars 
Routine that gets the first non space char. Both this routine 

and the one above CALL the routine at >2CA6 
Routine that checks the stack and moves a char to it 
Routine that increments the VDP pointer and jumps to >2C84 
Routine that checks for strings or numerics and handles each 
Routine that handles unquoted strings, adds token & length to it 
Routine that prints the WARNING message on the screen 
Routine that prints the ERROR message on the screen. The pointer 

to the length byte in GROM for the WARNING or ERROR message 
is in the Scratch Pad at >8376 

Routine that lists a program line on the screen. Starting point 
for the line is in >8302 

Routine that converts an ASCII line number into binary 
Routine that checks for valid line number input 
Routine that generates the BAD LINE NUMBER error message 
Routine that finds a line from the line number table 
Routine that converts line # from binary to ASCII & displays it 
Routine that finds the first token of a program line in VDP 
PreScan routine, scans line or program and builds symbol table 
Routine that places the variable in the symbol table 
Routine that checks char type 0-9, a-z, A-Z etc. Character that 

is checked is at >8342. This routine sets the condition bit 
in the GPL Status register if char is valid for variable name 

Routine that checks for enough room for a symbol table entry 
or a PAB. If there's not enough room between the symbol table 
and the string space it tries to move the string space to a 
lower address, this may execute a garbage collection. If 
there still isn't enough room it generates the MEMORY FULL 
error message. (Word at >834A = space needed in bytes) 

NOTE: Most of the above routines use the FAC and ARG sections of 
Scratch Pad RAM for parameter passing. Some of them will use 
the temporary space at >8300 - >8316. Usually whenever a 
a routine does anything with a single character the character 
is at >8342. Also, most of the references to Scratch Pad are 
with an offset of >8300. 
ie: opcode BF 14 0008 = Double byte store 0008 at >8314 

>285C 

>2142 

>2A49 

>2A4F 

>2BD6 

>2C2B 
>2C75 
>2C7A 

>2C84 
>2CA0 
>2CA6 
>2CC0 
>2D24 
>2D99 

>2DFA 

>2EF9 
>2F12 
>2F43 
>2F5D 
>2FAF 
>2FC4 
>2FFF 
>31E5 
>3450 

>3493 



CONSOLE GROM CHIP 1 Continued 
+  

BRANCH TABLE FOR A FEW OF THE ERROR MESSAGES 
I >05 5671 = Branch to 5671 - ILLEGAL STATEMENT 
1 >05 567D = Branch to 567D - MEMORY FULL- 
1 >05 407C = Branch to 4D7C - BAD VALUE 
i >05 4081 = Branch to 4D81 - STRING-NUMBER MISMATCH 

ENTRY POINTS FOR A FEW OF THE CALL STATEMENTS 

CLEAR - Places the space character + bias (>60) in every screen 
position by using the GPL statement of ALL : : 

DATA for SOUND >42,>08,>12,>22,>00,>00,>00,>00 
DATA for SOUND >01,>FF,>01,>04,>9F,>BF,>DF,>FF,>00 
SOUND - This routine handles the entire sound statement. First 

it checks the duration, then it converts it into 1/60 seconds 
because sounds are interrupt driven. Next it finds the first 
frequency and divides it into 111834 (111834/freq) and passes 
that value to a sound table it is setting up in VDP RAM. Next 
it gets the volume and sets that up and then passes all the 
values to the sound chip (>8400). Interrupt routine is in 
the console ROM chip. 

HCHAR - This routine and the VCHAR routine both call a 
subroutine at >3706 to parse the statement for X,Y,CHAR,#CHAS 
and converts these into integer values. Then it puts them on 
the screen using a FMT statement (Formatted block move) that 
allows for writing over the border characters. 

VCHAR - This is very similar to the above statement except that 
it places the characters vertically. The number of characters 
is at >834A, the character is at >8300, screen row is at 
>837E and the screen column is at >837F. 

CHAR - This routine converts the string into the proper values 
for defining a character and moves these values into VDP RAM 
at the proper character + bias (>60) location. Both FAC 
(>834A) and ARG (>835C) are heavily used during this CALL. 
This routine appears to set up a temporary string in VDP RAM 
so it is possible that it could invoke a garbage collection 
and if there isn't enough room it will generate a Memory Full 
error message. 

KEY - This parses the statement for the key unit, checks it for 
the proper range, CALLs >3767 to move it to >8374  and then 
executes the SCAN routine. After returning it checks the 
Status and places the proper value into your variable. Next 
it evaluates the keycode, converts it into floating point and 
places it in your variable. 

JOIST - This is very similar to the above statement except after 
returning from >3767 it computes the proper X and Y values 
by CALLing >5755 and then places them into your variables. 

Subprograms to do parsing for left parenthesis and commas, range 
checking for a range of 1-16, >0 or a preselected range. 

Subprogram to parse the row and column values out of a graphics 
statement (ie: CALL HCHAR...). 

SCREEN - This subprogram sets the Screen and border color. 
It uses the above subroutines to parse the statement and 
then places the value into VDP register 7. 

Subprogram to parse HCHAR and VCHAR statements for row, column 
(by CALLing >378E), ASCII character value and number of 
characters. 

+  

C 

>3510 
>3513 
>3516 
>3519 

>351C 

>3527 
>352F 
>3538 

>360E 

>362A 

>3643 

>3708 

>3748 

>3767 

>378E 

>37BF 

>37D6 



CONSOLE GRCM CHIP 2 
+- + 

>4000 
>4000 
>4002 
>4004 
>4006 
>4008 
>4001 
>400C 
>400E 
>4010 
>4012 
>4014 
>4016 
>4018 
>401A 
>401C 

>401E 
>40AF 
>4051 
>4053 
>4055 
>4057 
>4059 
>405B 
>405D 
>405F 

>4160 
>4174 
>41CF 
>41D7 

>4227 

>426C 
>4344 

>45E3 

>4641 

>46FC 

>474C 

>482B  

VECTOR TABLE FOR FILE ROUTINES (>0000 Offset) 
>426C DISPLAY routine 
>4160 DELETE routine 
>4227 PRINT routine 
>4344 INPUT routine 
>4018 OPEN routine 
>4174 CLOSE routine 
>41D7 RESTORE routine 
>45E3 READ routine 
>4956 GET DATA FROM GROM/GRAM or RAM 
>41CF CLOSE ALL OPEN FILES routine 
>46FC PROGRAM SAVE routine 
>4641 PROGRAM LOAD routine 
>4740 LIST routine 
>4BFC OUTPUT RECORD routine 
>4828 END OF FILE routine 

OPEN ROUTINE - This handles OPEN #x:"device.xx*,VARIABLE xx,... 
Case branch table for the following OPEN parameters: 
>40AB VARIABLE 
>406B RELATIVE 
>40D1 INTERNAL 
>4070 SEQUENTIAL 
>4095 OUTPUT 
>409A UPDATE 
>4014 APPEND 
>40B0 FIXED 

DELETE ROUTINE - This handles the various DELETE functions 
CLOSE ROUTINE - This handles CLOSE #x or CLOSE #x:DELETE 
CLOSE ALL FILES ROUTINE - This closes all open files 
RESTORE ROUTINE - This handles RESTORE (data), RESTORE xx (data) 

RESTORE #x and RESTORE #x,REC x for files 
PRINT ROUTINE - This handles both screen and file PRINT. Both 

this and the Display routine check for Internal or Display 
type records and handle each accordingly. 

DISPLAY - This handles the screen DISPLAY statement (no files) 
INPUT ROUTINE - This handles both the screen and file INPUT 

it also checks data type against variable type 
READ ROUTINE - This handles the reading of DATA into variables 

it is not used for files. CALL's routines at >48CC - >4992 
OLD ROUTINE - This is the OLD DSK1.xxxxx or OLD CS1 routine, it 

sets up the PAB, Calls the DSR, Tests the Checksum, gets the 
new addresses for the end & start of the line # table, makes 
adjustments for different RAM size (4K?) and stores them at 
>8332 & >8330 respectively. Adjusts the memory and updates 
the line # pointers if different RAM size. Both OLD & SAVE 
CALL routines at >4888 - >48CB 

SAVE ROUTINE - This is SAVE DSK1.xxx or SAVE CS1, it closes all 
open files, clears all break points, stores the start and end 
pointers for the line # table, finds the number of bytes used 
(>8370), passes it to the PAB and calls the DSR for a SAVE. 

LIST ROUTINE - This lists out the program lines to the screen 
or to the device specified. Unfortunately it generates a 
Syntax error if you use anything but a : after the device 
name. ie; LIST "PIO":100-150 is OK but not "PIO",VARIABLE 28 

END OF FILE ROUTINE - This is the EOF(x) function. 



CONSOLE GROM CHIP 2 Continued 

SUBROUTINES 
I>4888 OLD & SAVE SUBROUTINE - This gets the program name, initializes 

many of the program pointers, deletes the symbol table, sets 
up the PAB and returns. 

READ A INPUT SUBROUTINES - These find the symbol table entries, 
check for Strings or Numerics, decide if its GROM or RAM 
data and pass the Data item to the variable. 

>4956 GET DATA FROM GROM OR RAM - Reads the next Data item from 
GROM if the GROH Flag at >8389 is in >834D. If >834D is = 0 
then the next Data item is read from RAM. 

OPEN, CLOSE & RESTORE SUBROUTINES - These parse out the file 
number (ie: #1, if its there), check for the proper range 
(> 0 and < 256 ), scan the PAB chain for the proper file. 
If any of these items are not right it returns with an error. 
On a Close the routine at >49E6 deletes the PAB and adjusts 
the memory and PAB chain pointers. 

PRINT SUBROUTINES - These handle the outputting of data to the 
screen or to a file. They check for valid separators (,;:) 
and handle each accordingly. For screen output they add the 
character offset (>60) to each character. 
OUTPUT A RECORD - This is the subroutine that outputs a 
a record to either the screen or an output device, depending 
on the PAB ( file #0 = screen output) 

>4000 VECTOR TABLE FOR BASIC EXECUTION 
>4000 >56CD Screen Scroll Routine 
>4002 >5120 Move a String from the Program area to the String Space 
>4004 >4DB0 Second entry point for executing a Basic Program 
>4006 >56BB Subroutine to find line number after BREAK 
>4008 >5613 Subroutine that sets the pointer for next Data item 
>400A >5645 Subroutine to convert line number into ASCII (Trace mode) 
>400C >4DBF Third entry point for executing a Basic program (CONT) 
>400E >4E38 Subroutine that BREAKS a running program 
>4010 >408A First entry point for executing a Basic program (RUN) 
>4D12 >515C Subroutine that sets up room for a String 
>4D14 >55BB Subroutine that clears out a temporary String 
>4016 >56E1 Subroutine to convert a String into a Number 
>4018 >51A9 Garbage Collection subroutine. 

>401A 
>401A 
>401C 
>4D1E 
>4D1F 

SUBPROGRAM POINTER TABLE (For CALL xxxx...) 
>4024 Points to next Subprogram 
>3538 Entry point for this Subprogram 
>05 Length of this name 
>534F554E44 :SOUND: 

>4024 >402E Points to next Subprogram 
>4026 >351C Entry point for this Subprogram 
>4028 >05 Length of this name 
>4029 >434C454152 :CLEAR: 
>402E >4038 Points to next Subprogram 
>4030 >5713 Entry point for this Subprogram 
>4032 >05 Length of this name 
>4033 >434F4C4F52 :COLOR: 
>4038 >4042 Points to next Subprogram 
>403A >56EF Entry point for this Subprogram 
>403C >05 Length of this name 
>403D >4743484152 :GCHAR: 

i>48CC  

>4993 

>4B53 

>4BFC  

97 



CONSOLE GROH CHIP 2 Continued 
+- a 

SUBPROGRAM POINTER TABLE Cont.  
>4042 >4D4C Points to next Subprogram  
>4044 >360E Entry point for this Subprogram  
>4046 >05 Length of this name  
>4047 >4843484152 :BCH►R:  
>404C >4056 Points to next Subprogram  
>404E >362A Entry point for this Subprogram  
>4050 >05 Length of this name 
>4051 >5643484152 :VCHAR: 
>4056 >405F Points to next Subprogram 
>4D58 >3643 Ehtry point for this Subprogram 
>4D5A >04 Length of this name 
>405B >43484152 :CHAR: 
>4D5F >4067 Points to next Subprogram 
>4061 >3708 Entry point for this Subprogram 
>4063 >03 Length of this name  
>4D64 >484559 :KEY: 
>4067 >4071 Points to next Subprogram 
>4069 >3748 Entry point for this Subprogram 
>406B >05 Length of this name 
>406C >4A4F595354 :JOIST: 
>4071 >0000 Points to next Subprogram (no more) 
>4D73 >37BF Entry point for this Subprogram 
>4075 >06 Length of this name 
>4076 >53435245454E :SCREEN: 

>407C Generate 'BAD VALUE' Error Message 
>4081 Generate 'STRING-NUMBER MISMATCH' Error Message 
>4086 >56D4 - Branch to routine that sets up format for screen  
>4088 >566C - Branch to CAN'T DO THAT Error 
>408A RUE - This is where a Basic program first starts to RUN. This 

sets up the line number pointers, scrolls the screen up 
1 line and falls through to the next entry. 

>4DBO EXECUTE - This starts execution of the program or if in Command 
mode it executes the statement you just typed in. 

>4DBF Third Entry point for Basic program execution. This is where 
the CONTINUE Command branches to. 

>4E38 Subroutine that BREAKs a running program. It prevents a break 
while GROM is executing, sets up the BREAK message and 
displays the line number. 

>4E5B ee DONE ee - This is the normal end of program subroutine. 

VECTOR TABLE FOR BASIC RESERVED WORDS 
>4E84 >4F86 FOR 
>4E86 >5463 BREAK 
>4E88 >5479 UNBREAK 
>4E8A >5459 TRACE 
>4E8C >545E UNTRACE 
>4E8E >400E READ 
>4E90 >4004 PRINT 
>V92 >50DB CALL 
>4E894 >5111 QUOTED STRING CONSTANT 
>4E96 >400C RESTORE 
>4E98 >50CB RANDOMIZE 
>4E9A , >4006 INPUT 
>4E9C I >4008 OPEN 
>4E9E I >400A CLOSE 
>4EA0 I >4F99 ( (Left Parenthesis) 

oR 



CONSOLE GROtH CHIP 2 Continued 

I : VECTOR TABLE FOR BASIC RESERVED WORDS Cont. 
>4EA2 : >4FB2 + (Plus) 
>4EA4 : >4FA8 - (Minus) 
>4EA6 I >4ED1 ABS 
>4EA8 ; >4EDC ATN 
>4EAA I >4EE2 COS 
>4EAC 1 >4EE8 EXP 
>4EAE I  >4EEE INT 
>4EB0 1 >4EFA LOG 
>4EB2 : >4F26 SGN 
>4EB4 I >4F40 SIN 
>4EB6 I >4F46 SQR 
>4EB8 : >4F4C TAN 
>4EBA I >52BE LEN 
>4EBC : >53EA CHR$ 
>4EBE : >4F00 RND 
>4ECO I >4000 DISPLAY 
>4EC2 I >4002 DELETE 
>4EC4 : >524A SEG$ 
>4EC6 I >531A STR$ 
>4EC8 I >5349 VAL  
>4ECA >53A9 P0S 
>4ECC >5306 ASC 
>4ECE >05 401C EOF 

NOTE Rather than document each of the above items, which would I 
require another 4-6 pages of memory maps, we will talk about 
these routines in general. 

First off, many of these routines end with the Opcode of >10 I 
this is the same as Basic's CONT, so the interpreter will go 
back to >4DBF and grab the next statement in your Basic Program. 

All of these routines use various parts of Scratch Pad RAM 
with FAC (>834A) and ARG (835C) being used very heavily. There 
is also a 24 byte segment at the top of Scratch Pad RAM (>8300 
through >8316) used by Basic as temporary storage places  
for many of its routines. Some of the routines will clear out 
any values it has place into the FAC and ARG area or the Row, 
Column and Character value area at >837D - >837F.  

Most of the String handling routines require that FAC through 
FAC + 7 (>834A - >8351) be set up prior to execution as follows:) 

>834A = The Symbol table acdress that points to the string. I 
>834C = >6500 for a string and >6400 for numerics.  
>834E = The address in VDP RAM of the string. I 
>8350 = The length of the string.  
•>8352 - Sometimes the GROM Flag is temporarily stored here I 

1>54CF I Subroutine to handle User Defined Functions (ie: DEF ) 
1>5600 I Subroutine to check for String or numeric and set register bits.: 
I>5613 I Subroutine to set the pointer for DATA items. I 
1>5645 I Subroutine to convert the Line number into ASCII.  
I>565C I Subroutine to print out an Error Message. : 
>56BB 1 Subroutine to find line t after BREAK, UNBREAK or RESTORE. I 
I>56EF I GCHAR subroutine. I 
1>5713 1 COLOR subroutine. 
I>5740 I Subroutine to convert floating point to integer. I 
1>5755 I Subroutines used by CALL JuYST and CALL KEY. I 
1>57AB 1 Subroutine to check for Ur) left parenthesis ( . I 
>57C0 I Error Message subroutines. I 

~,Q 



CONSOLE CRU BIT MAP (9901) 

1 
1  
ICru Base Bit 

All of the Data for the 9901 on the 99/4A is inverted. 
On or Set = 0 and Off or Reset = 1 

 

;Address { No. { Description 

1 i 1  
0 0 = Internal 9901 Control 1 = Clock Control 
1 Set by an External Interrupt (Peripheral Device) 
2 Set by TMS 9918A  on Vertical Retrace Interrupt 
3 Set by Clock Interrupt for Cassette read/write routines 

Also used for Keyboard Matrix Row 7 

KEYBOARD 8 x 8 MATRIX 
Column 0 1 2 3 4 5 6 7 

+ + 
3 Row 7 = , M N / Joy1 Joy2 Fire 1 
4 Row 6 SPACE L K J H ; Joy1 Joy2 Left I 
5 Row 5 ENTER 0 I U Y P Joy1 Joy2 Right I 
6 Row 4 9 8 7 6 0 Joy1 Joy2 Down 1 
7 Row 3 FCTN 2 3 4 5 1 Joy1 Joy2 Up 1 
8 Row 2 SHIFT S D F G A 1 
9 Row 1 CTRL WE RTQ 1 
10 Row 0 , XCVBZ 1 

+ + 

11 Not Used 
12 Reserved High Level 
13 Not Used 
14 Not Used 
15 Not Used 

16 Reserved 
17 Reserved 
18 Bit 2 of Keyboard Matrix Column select (8x8 matrix) 
19 Bit 1 of Keyboard Matrix Column select 
20 Bit 0 of Keyboard Matrix Column select (MSB) 

( set up the column to read - R1 = 00xx thru 07xx ) 
( LI R12,>0024 LDCR R1,3 ) 
( and read the row bits (3-10) with ) 
( LI R12,>0006 STCR R4,8 INV R4 ) 

>002A , 21 
1 >002C 1 22 
I>002E I 23 
1>0030 1 24 
1>0032 25 
1>0034 26 
1>0036 27 
1>0038 28 
1 
I>OOFE 128 
+  

Set Alpha Lock 
Cassette CS1 motor control On/Off 
Cassette CS2 motor control On/Off 
Audio Gate enable/disable 
Cassette Tape Out 
Reserved 
Cassette Tape In 
a 

t Not Used - causes lock up. 
f 

 

1>0000 
1>0002 
1>0004 
1>0006 

>0006 
>0008 
>000A 
>000C 
>000E 

,>0010 
1>0012 
1>0014 
1 
1 
1>0016 
1>0018 
>001A 
>001C 
>001E 

>0020 
>0022 
>0024 
>0026 
>0028 



9900 MICROPROCESSOR INSTROCTIONS 

Result 
Status Bits compared 

Inst L> A> EQ C OV OP X to zero Description 

A x x x x x • yes Add words 
AB x x x x x x ▪ yes Add Bytes 
ABS x x x x x • no Absolute Value 
AI x x x x x yes Add word with Immediate value 
ANDI x x x . . . yes AND word with Immediate value 
B no Branch (Goto) 
BL no Branch & Link (Gosub - R11=Return Addr) 
BLWP  no Branch & Load Workspace Pointer 
C x x x no Compare words 
CB x x x x no Compare Bytes 
CI x x x yes Compare word with Immediate value 
CKOF  no External Clock Off - not on 4A 
CRON  no External Clock On - not on 4A 
CLR  no Clear (make it >0000) 
COC . . x . . no Compare Ones Corresponding 
CZC . . x . . . . no Compare Zeros Corresponding 
DEC x x x x x  • yes Decrement 
DECT x x x x x .  • yes Decrement by Two 
DIV . . . x .  no Divide (unsigned) 
IDLE  no Idle - Wait for Interrupt - not on 4A 
INC x x x x x • yes Increment 
INCT x x x x x . yes Increment by Two 
INV x x x . . . yes Invert (same as NOT) 
JEQ . . 1 . . .  ▪ no Jump if Equal (or Zero)(EQ=1) 
JGT 1  no Jump if Greater Than (A>=1) 
JH 1 . 0 . . .  ▪ no Jump if High (L>=1 and EQ=O) 
JHE 1 . 1 . . .  • no Jump if High or Equal (L>=1 or EQ=1) 
JL 0 . 0 . . .  • no Jump if Low (L>=0 and EQ=0) 
JLE 0 1 . . .  ▪ no Jump if Low or Equal (L>=0 or EQ=1) 
JLT . 0 0 . . .  • no Jump if Less Than (A>=0 and EQ=O) 
JMP  no Jump - always (unconditional) 
JNC . . . 0 . .  • no Jump if No Carry (C =0) 
JNE . . 0 . . .  ▪ no Jump if Not Equal (EQ=O) 
JNO . . . . 0 .  • no Jump if No Overflow (OV=O) 
JOC . . . 1 . .  ▪ no Jump On Carry (C =1) 
JOP 1 no Jump if Odd Parity (OP=1) 
LDCR x x x x . b . yes Load Cru Bits (Write Out Bits) 
LI x x x . . .  • yes Load with Immediate value 
LIMI  no Load Interrupt Mask Immediate 
LREX  no Load External - not on 4A 
LWPI  no Load Workspace Pointer Immediate 



9900 MICROPROCESSOR INSTRUCTIONS 

Result 
Status Bits compared 

Inst L> A> EQ C OV OP X to zero Description 

HOV x x x yes Move word 
MOVE x x x x yes Move Byte 
MPY  no Multiply (unsigned) 
NEG x x x x x yes Negate (same as Change Sign or NOT+1) 
NOP no No Operation - Pseudo (JMP $+2) 
ORI x x x . .  • yes OR with Immediate value 
RSET  no External Reset - not on 4A 
RT no Return - Pseudo (B +R11) 
RTWP x x x x x x x no Return with Workspace Pointer 
S x x x x x yes Subtract words 
SB x x x x x x yes Subtract Bytes 
SBO  no Set Bit to One 
SBZ  no Set Bit to Zero 
SETO  no Set to Ones (make it >FFFF) 
SLA x x x x x .  ▪ yes Shift Left Arithmetic 
SOC x x x . . .  ▪ yes Set Ones Corresponding 
SOCB x x x . . x  ▪ yes Set Ones Corresponding Bytes 
SRA x x x x . . yes Shift Right Arithmetic 
SRC x x x x . . yes Shift Right Circular 
SRL x x x x yes Shift Right Logical 
STCR x x x . . b yes Store Cru Bits (Read In Bits) 
STST  no Store Status Register 
STWP  no Store Workspace Pointer 
SWPB  no Swap Bytes 
SZC x x x . . .  yes Set Zeros Corresponding 
SZCB x x x . . x  yes Set Zeros Corresponding Bytes 
TB . . x . . .  no Test Bit 
X e e e e e e e yes Execute 
XOP e e e e e e x no Extended Operation - Software Interrupt 
XOR x x x . . . yes XOR - Exclusive OR 

b - Odd Parity bit is only affected on byte type Load Cru and Store Cru 
instructions (8 bits or less). 

e - The Execute instruction does not affect status bits, but the instruction 
that the Execute instruction executes may. The XOP instruction sets the X 
status bit and the instruction that the XOP branches to may affect the 
status bits. 

NOTE: If the Result is compared to zero it will set the E (Equal) when it is 
zero and clear the E bit in the Cpu Status Register when it is not zero. So 
if the instruction is MOV RO,RO and RO contains zero, the E bit will be set 
and the next instruction may be JNE >xxxx (Jump if Not Equal) which, in this 
case, has the same meaning as a Jump If Not Zero instruction would. 

102 



00EB  

6000 

BREAK POINT WORK SHEET 

CPU BP SETTINGS 

Key Scan Routine E/A and GPL 02B2 

Key Press Detected & Decoded 0444 

Read Key Board Cru Bits 0346 

Start Execution Of Interrupt Routine 0900 

GROB BP SETTINGS 

Reset V1 to Watch Power Up 

Power Up Title Screen Built 

YDP BP SETTINGS 

Start Screen Scroll 0020 

End Screen Scroll (32 Column) 4300 

Start Write To Basic Crunch Buffer 4320 

Start Write To X-B Crunch Buffer 4820 

Reset Screen Color in Basics 8707 



GROH START ADDRESS & VDP REGISTER 

WORK SHEET 

POWER UP ROUTINE TI BASIC 
Cpu Grom Cpu Grom 
WS 83E0  AD xxxx  WS 83E0  AD 216F 
PC 0024  PC 006A  

v0 00 v2 FO v4 F9 v6 F8 v0 00 v2 FO v4 F9 v6 F8 
v1 80 v3 OE v5 86 v7 F7 v1 EO v3 OE v5 86 v7 F7 

TI EXTENDED BASIC EDITOR/ASSEMBLER 
Cpu Grom Cpu Grom 
WS 83E0 AD 6372 ____ WS 83E0 AD 6025 
PC 006A  PC 006A  

v0 00 v2 00 v4 00 v6 00 v0 00 v2 00 v4 01 v6 00 
v1 EO v3 20 v5 06 v7 07 v1 EO v3 OE v5 06 v7 F5 

MINI MEMORY EASY BUG 
Cpu Grom Cpu Grom 
WS 83E0  AD 6020  WS 83E0  AD 7089  
PC 006A  PC 006A  

v0 00 v2 00 v4 01 v6 00 
v1 EO v3 OE v5 06 v7 F5  

v0 00 v2 FO v4 F9 v6 F8 
v1 EO v3 OE v5 86 v7 F7 

TERMINAL EMULATOR II - Title & Menu ADVENTURE 
Cpu Grom Cpu Grom 
WS 83E0  AD 6292  WS 83E0  AD 6798  
PC 006A  PC 006A  

v0 00 v2 00 v4 01 v6 00 v0 00 v2 00 v4 01 v6 F8 
v1 80 v3 OF v5 08 v7 CF v1 FO v3 OF v5 86 v7 48 

SPEECH EDITOR MUNCH MAN - Title 
Cpu Grom Cpu Grom 
WS 83E0  AD 6075 ____ WS 83E0  AD 6020 
PC 006A PC 006A  

v0 00 v2 FO v4 F9 v6 F8 v0 00 v2 00 v4 01 v6 00 
v1 EO v3 OE v5 86 v7 F7 v1 EO v3 OE v5 06 v7 03 



GROH START ADDRESS & VDP REGISTER 

WORE SHEET 

PARSEC - Title PARSEC - Game 
Cpu Grom Cpu Grom 
WS 83E0 AD 601D  WS 83E0 AD 60B7 ____ 
PC 006A PC 006A ____ 

v0 00 v2 00 v4 01 v6 00 v0 02 v2 06 v4 03 v6 03 
v1 E2 v3 OE v5 06 v7 11 v1 E2 v3 FF v5 36 v7 00 

Cpu Grom Cpu Grom 
WS  AD _ WS   AD 
PC  PC ---- 

v0 v2 _ v4 v6 v0 _ v2 v4 v6 __~ 
v1 _ v3 v5  v7 v1 _ v3 v5 _ v7 ` 

Cpu Grom Cpu Grom 
WS  AD  WS AD  
PC  PC 

v0 v2 _ v4 v6 v0 v2 v4 v6 ____ 
v1 .,_ v3v5~ v7^ v1 v3~ v5_ v7_ 

Cpu Grom Cpu Grom 
WS  AD WS    AD  
PC  PC 

v0 ̀  v2 v4 v6 v0 _ v2 ~ v4 v6 ___ 
v1 _ v3_ v5 ____ v7____ v1 v3 v5 v7_ 

Cpu Grom Cpu Grom 
WS    AD  WS AD  
PC  PC 

v0 v2_ v4__ v6 v0v2v4 v6~ 
v1 v3  v5 ____ v7____ v1 _ v3_ v5_,_.v7_,_ 



MILLERS GRAPHICS - LIMITED WARRANTY 

Millers Graphics warrants the Explorer program, which it manufactures, to be 
free from defeats in materials and workmanship for a period of 90 days from 
the date of purchase. 

During the 90 day warranty period Millers Graphics will replace any defective 
products at no additional charge, provided the product is returned, shipping 
prepaid to Millers Graphics. The Purchaser is responsible for insuring any 
product so returned and assumes the risk of loss during shipping. 

Ship to: 
Millers Graphics 

1475 W. Cypress Ave. 
San Dimes, California 91773 

WARRANTY COVERAGE 

This EXPLORER program is warranted against defective material and 
workmanship. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY 
ACCIDENT, UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR OTHER 
CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP. 

WARRANTY DISCLAIMERS 

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING, BUT NOT LIMITED 
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD. MILLERS 
GRAPHICS. SHALL NOT BE LIABLE FOR LOSS OR USE OF THE SOFTWARE OR OTHER 
INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE 
CONSUMER OR ANY OTHER USE. 

Some states do not allow the exclusion or limitation of implied warranties or 
consequential damages, so the above limitations or exclusion may not apply to 
you in those states. 

LEGAL REMEDIES 

This warranty gives you specific legal rights, and you may also have other 
rights that vary from state to state. 

REPLACEMENT AFTER WARRANTY 

After the 90 Warranty period has expired you may return any original 
defective diskette, along with a check for 4.00 to cover shipping and 
diskette costs, and we will replace it. 



MILLERS GRAPHICS 
1475 W. Cypress Ave. 
San Dimas, CA 91773 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109

